
Robust Reinforcement Learning with General Utility

Ziyi Chen, Yan Wen, Zhengmian Hu, Heng Huang
Department of Computer Science, Institute of Health Computing,

University of Maryland College Park
College Park, MA 20742, USA

{zc286,ywen1,zhu123,heng}@umd.edu

Abstract

Reinforcement Learning (RL) problem with general utility is a powerful decision
making framework that covers standard RL with cumulative cost, exploration
problems, and demonstration learning. Existing works on RL with general utility
do not consider the robustness under environmental perturbation, which is important
to adapt RL system in the real-world environment that differs from the training
environment. To train a robust policy, we propose a robust RL framework with
general utility, which subsumes many existing RL frameworks including RL,
robust RL, RL with general utility, constrained RL, robust constrained RL, pure
exploration, robust entropy regularized RL, etc. Then we focus on popular convex
utility functions, with which our proposed learning framework is a challenging
nonconvex-nonconcave minimax optimization problem, and design a two-phase
stochastic policy gradient type algorithm and obtain its sample complexity result for
gradient convergence. Furthermore, for convex utility on a widely used polyhedral
ambiguity set, we design an algorithm and obtain its convergence rate to a global
optimal solution.

1 Introduction

Reinforcement learning (RL) is an important decision-making framework [41] aiming to find the
optimal policy that minimizes accumulative cost, which is also a linear utility function of occupancy
measure. Recent works have extended standard RL to more general utility functions to account for a
variety of practical needs, including risk-sensitive applications [22, 8, 52], exploration maximization
[18, 54, 51, 13, 6], and safety constraints [54, 51, 13]. There are provably convergent algorithms to
solve RL with general utility [54, 55, 6]. However, these works study RL with general utility in a
fixed environment, which may fail in many applications where the policy is trained in a simulation
environment but implemented in a different real-world environment [37, 56].

To make the policy robust to such environmental change, robust RL has been proposed to find the
optimal robust policy under the worst possible environment [36, 20, 48, 45, 14]. However, all the
existing robust RL works restrict to linear utility function to our knowledge. Therefore, we aim to
answer the following research question:

Q: Can we train a robust policy for RL with general utility and obtain convergence results?

1.1 Our Contributions

We affirmatively answer this question by proposing robust RL with general utility, the first learning
framework that obtains a robust policy for general utility in the worst possible environment. It
is formulated as a minimax optimization problem minθ∈Θ maxξ∈Ξ f(λθ,ξ) where f is the utility
function and λθ,ξ is the occupancy measure under the policy parameter θ ∈ Θ and the environmental

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

transition kernel parameter ξ ∈ Ξ. Our robust RL with general utility is a combination of its two
important special cases, namely, RL with general utility [54] (formulated as minθ∈Θ f(λθ,ξ) where
the environmental parameter ξ is fixed) and robust RL [36] where f is restricted to linear utility
function. This new learning framework also covers many other existing RL frameworks including
constrained RL [2] and robust constrained RL [43] with safety critical applications such as healthcare
and unmanned drones, entropy regularized RL [10] and its robust extension [32] which help agents
learn from human demonstration, pure exploration [18] with application to explore an environment
with sparse reward signals and its robust extension, etc. These examples use convex utility functions
f , which is the focus of this paper. See Section 2.1 for details of these examples.

Then, we focus on designing provably convergent algorithms for our new proposed learning frame-
work with the widely used convex utility function f . In this case, our objective minθ maxξ f(λθ,ξ) is
still a highly challenging nonconvex-nonconcave minimax optimization problem. Hence, we have
to utilize the structure and properties of λθ,ξ to design algorithms and obtain convergence results.
To elaborate, we design a projected stochastic gradient descent ascent algorithm with two phases.
Interestingly, the first phase targeted at the objective function f obtains a stationary point of a different
envelope function. Hence, we add a second phase targeted at a corrected objective f̃ to converge to
a near-stationary solution of the original objective f . The convergence analysis is non-trivial with
two novel techniques. First, we have proved a projected gradient dominance property (Proposition
4) that is much stronger than the existing one on convex utility, with less assumptions, no bias term
and applicability to more general parameterized policy. Second, in the convergence analysis of the
second phase, we obtain convergence to a global Nash equilibrium (thus a stationary point) of f̃ by
Proposition 4, which is close to a stationary point of f by proving that∇ξ f̃(λθ,ξ)≈∇ξf(λθ,ξ).

Furthermore, with convex utility function f and the widely used s-rectangular polyhedral ambiguity
set Ξ (including the popular L1 and L∞ ambiguity sets), we design an alternative algorithm which
converges to a global optimal solution of this nonconvex-nonconcave optimization problem
at a sublinear rate O(1/K) (Theorem 3). This is much more challenging than global convergence
for convex RL (that is, RL with convex utility function and fixed ξ) [54, 51, 6] and for robust RL
with linear utility satisfying Bellman equation [36, 20, 45, 15, 25], so we need novel algorithm
design and novel techniques. First, we prove that argmaxξf(λθ,ξ) can be obtained in the finite
set of vertices V (Ξ) (Proposition 6). This is intuitive if f(λθ,·) is a convex function but in many
applications, only f(λ) is convex. To solve this challenge, we prove a novel local invertibility
property of λθ,· (Proposition 5) by checking Bellman equation of λθ,ξ state by state in two cases.
Then we prove Proposition 6 using a novel state-by-state extension from an optimal non-vertex ξ
to an optimal vertex ξ. Second, the major difficulty to design our algorithm is to find a descent
direction of Γ(θ) := maxξ f(λθ,ξ). We select the near-optimal vertices ξ ∈ Ξk ⊂ V (Ξ) that may
affect the optimization progress Γ(θk+1)− Γ(θk), and find the descent direction with provably large
descent for all the corresponding functions {f(λθk,ξ)}ξ∈Ξk

(Proposition 7) via convex optimization.
Third, by Proposition 6, the global convergence measure ∆k := Γ(θk)−minθ Γ(θ) at each iteration
k either is O(1/k)-close to optimal (Γ(θk) ≤ O(1/k)) or enjoys large descent (Eq. (26)), so we
prove the convergence in 3 cases: O(1/K)-optimal final θK , iterate Eq. (26) from θ0 or from a
O(1/k)-optimal intermediate θk.

1.2 Related Works

RL with General Utility. Standard RL aims to optimize over the accumulated reward/cost [21, 41].
Some early operation research works focus on other non-linear objectives such as variance-penalized
MDPs [12], risk-sensitive objectives [22, 8, 52], entropy exploration [18], constrained RL [2, 1, 35]
and learning from demonstration [39, 3].

[54] proposes RL with general utilities to cover the above applications and applies variational policy
gradient method that provably converges to the global optimal solution for convex utility. [55]
proposes a variance reduced policy gradient algorithm which requires Õ(ϵ−3) samples to achieve
an ϵ-stationary policy for general utility and Õ(ϵ−2) samples to achieve an ϵ-global optimal policy
for convex utility and overparameterized policy. [51] provides a meta-algorithm to solve the convex
MDP problem as a min-max game between a policy player and a cost player who produces rewards
that the policy player must maximize. They further show that any method-solving problems under the
standard RL settings can be used to solve the more general convex MDP problem. [27] obtains policy

2

gradient theorem for RL with general utilities. [6] proposes a simpler single-loop parameter-free
normalized policy gradient algorithm with recursive momentum variance reduction. This algorithm
requires Õ(ϵ−3) samples to achieve ϵ-stationary policy in general and Õ(ϵ−2) samples to achieve
ϵ-global optimal policy for convex utility. For large finite state action spaces, it requires Õ(ϵ−4)
samples to achieve ϵ-stationary policy via linear function approximation of the occupancy measure.
[53] proposes decentralized multi-agent RL with general utilities. [13] shows that convex RL is a
subclass of multi-agent mean-field games.

Robust RL. Robust RL is designed to learn a policy that is robust to perturbation of environmental
factors. Usually robust RL is NP-hard [45], but becomes tractable for ambiguity sets that is (s, a)-
rectangular [36, 20, 45, 44, 29, 56] or s-rectangular [45, 42, 23, 26]. Methods to solve robust
RL include value iteration [36, 20, 45, 15, 25], policy iteration [20, 4, 24] and policy gradient
[29, 44, 56, 42, 26, 17, 28].

2 Robust Reinforcement Learning with General Utility

Notations. The space of probability distribution on a space X is denoted as ∆X . If X is finite, we
denote its cardinality as |X |. ∥ · ∥p denotes p-norm of vectors and ∥ · ∥ = ∥ · ∥2 by default.

Reinforcement Learning with General Utility. Reinforcement Learning (RL) with general utility is
an emerging learning framework [54, 55, 6], specified by a tuple ⟨S,A, pξ, f, ρ, γ⟩, with finite state
space S, finite action space A, transition kernel pξ ∈ (∆S)S×A parameterized by ξ ∈ Ξ (Ξ ⊂ RdΞ

is convex and compact), discount factor γ ∈ (0, 1), general utility function f : ∆S×A → R and the
distribution ρ ∈ ∆S of the initial state s0. At time t, given the environmental state st, the agent takes
action at ∼ πθ(·|st) based on a policy πθ ∈ (∆A)S parameterized by θ ∈ Θ (Θ ⊂ RdΘ is convex).
Then the environment transitions to state st+1 ∼ pξ(·|st, at). The occupancy measure λθ,ξ ∈ ∆S×A

at (s, a)∈S×A is defined below.

λθ,ξ(s, a)
def
= (1− γ)

+∞∑
t=0

γtPπθ,pξ
(st = s, at = a|s0 ∼ ρ), (1)

where Pπθ,pξ
denotes the probability measure of the Markov chain {st, at}t≥0 induced by policy πθ,

transition kernel pξ and the initial distribution ρ. The aim of the agent is to find the optimal policy πθ
that solves minθ∈Θ f(λθ,ξ) given fixed transition kernel pξ . Here, f(λθ,ξ) can be seen as the overall
cost of selecting policy πθ in the environment pξ , and there are many examples of the utility function
f covering a variety of applications (See Section 2.1). However, existing works on RL with general
utility assume a fixed environmental transition kernel pξ , which may fail in many applications where
the policy is deployed in a real-world environment different from the simulation environment for
training. To obtain a policy that is robust to such environmental change, we propose a new learning
framework called robust RL with General Utility as follows.

Our Proposed Robust RL with General Utility. The goal of our proposed robust RL with general
utility is to find an optimal robust policy under the worst possible environmental parameter ξ from an
ambiguity set Ξ, as formulated by the following minimax optimization problem with general utility
function f .

min
θ∈Θ

max
ξ∈Ξ

f(λθ,ξ), (2)

In practice, the distance between the real-world environment (for deployment) and simulation
environment (for training) is assumed to be bounded. Therefore, Ξ is usually set as a neighborhood
around the nominal kernel ξ̂ estimated from the simulation environment, i.e. Ξ = {ξ ∈ RdΘ :

d(ξ, ξ̂) ≤ d0} with distance measure d and the distance upper bound d0 ≥ 0.

2.1 Examples of Our Robust RL with General Utility

Example 1: RL with General Utility.
When Ξ = {ξ̂} for a fixed environmental parameter ξ̂, our proposed robust RL with general utility (2)
reduces to (non-robust) RL with general utility minθ∈Θ f(λθ,ξ̂), as introduced above.

3

Example 2: Robust Constrained RL and Its Special Cases.
Robust constrained RL [38, 43, 40] is an emerging learning framework where an agent should
obey safety conditions in all possible real-world environments, which is important in safety critical
applications such as healthcare and unmanned aerial vehicle [43]. For math formulation, denote
c(0), c(1), . . . , c(K) as cost functions S ×A → R. At time t, the agent receives performance-related
cost c(0)(st, at) and safety-related costs {c(k)(st, at)}Kk=1. Define value functions V (k)

θ,ξ and robust

value functions V (k)
θ as follows.

V
(k)
θ,ξ

def
= ⟨c(k), λθ,ξ⟩ =

∑
s,a

c(k)(s, a)λθ,ξ(s, a), V
(k)
θ

def
= max

ξ∈Ξ
V

(k)
θ,ξ , k = 0, 1, . . . ,K. (3)

Then robust constrained RL is formulated as the following constrained policy optimization problem.

min
θ∈Θ

V
(0)
θ , s.t. V

(k)
θ ≤ τk for all k = 1, . . . ,K, (4)

where τk ∈ R is the safety threshold, and V (k)
θ ≤ τk means that the safety constraints V (k)

θ,ξ ≤ τk
holds for any environmental parameter ξ ∈ Ξ.
Proposition 1. The robust constrained RL problem (4) is a special case of our proposed robust RL
with general utility (2) using the following convex utility function f .

f(λ) =

{
⟨c(0), λ⟩, if ⟨c(k), λ⟩ ≤ τk for all k = 1, . . . ,K

+∞, otherwise
. (5)

After removing the safety constraints, robust constrained RL reduces to an important special case
called robust RL (formulated as minθ∈Θ maxξ∈Ξ⟨c(0), λθ,ξ⟩ with linear utility function f(λ) =

⟨c(0), λ⟩) [36]. Furthermore, when Ξ = {ξ̂} for fixed ξ̂, robust constrained RL and robust RL reduce
to constrained RL [2] and RL [41] respectively. All these examples are important special cases of our
proposed robust RL with general utility based on Proposition 1.

Example 3: Robust Entropy Regularized RL and Its Special Cases.
Robust entropy regularized RL is also an important RL framework with application to imitation learn-
ing and inverse reinforcement learning which help agents learn from human experts’ demonstration
[32, 33], and is formulated as the following minimax optimization problem.

min
θ∈Θ

max
ξ∈Ξ

∑
s,a

[
λθ,ξ(s, a)c(s, a)

]
− µ

∑
s

[
λθ,ξ(s)H[πθ(·|s)]

]
, (6)

where c is a cost function, λθ,ξ(s) =
∑

a λθ,ξ(s, a) is the state occupancy measure, andH[πθ(·|s)] =
−
∑

a πθ(a|s) log πθ(a|s) is the entropy regularizer (with coefficient µ ≥ 0) which encourages the
agent to explore more states and actions and helps to prevent early convergence to sub-optimal
policies.
Proposition 2. The robust entropy regularized RL problem (6) is a special case of our proposed
robust RL with general utility (2) using the following convex utility function f .

f(λ) =
∑
s,a

λ(s, a)
[
c(s, a) + µ log

λ(s, a)∑
a′ λ(s, a′)

]
. (7)

When µ = 0, robust entropy regularized RL (6) reduces to robust RL [36]. When c ≡ 0 but µ > 0,
robust entropy regularized RL reduces to robust pure exploration. Furthermore, when Ξ = {ξ̂},
robust entropy regularized RL, robust RL and robust pure exploration reduce to entropy regularized
RL [10], RL [41] and pure exploration [18] respectively. All these examples are important special
cases of our proposed robust RL with general utility based on Proposition 2.

2.2 Gradients for Our Robust RL with General Utility

Theorem 1. The gradients of the objective function (2) for our proposed robust RL with general
utility can be computed as follows.

∇θf(λθ,ξ) = Eπθ,pξ

[
+∞∑
t=0

γt
∂f(λθ,ξ)

∂λθ,ξ(st, at)

t∑
h=0

∇θ log πθ(ah|sh)

∣∣∣∣∣s0 ∼ ρ
]
, (8)

4

∇ξf(λθ,ξ) = Eπθ,pξ

[
+∞∑
t=0

γt
∂f(λθ,ξ)

∂λθ,ξ(st, at)

t∑
h=0

∇ξ log pξ(sh+1|sh, ah)

∣∣∣∣∣s0 ∼ ρ
]
. (9)

We make the following standard assumptions which are also used in RL with general utility [55, 6].
Assumption 1. There exist constants lπθ

, Lπθ
, lpξ

, Lpξ
> 0 such that for all s, s′ ∈ S, a ∈ A,

θ, θ′ ∈ Θ and ξ, ξ′ ∈ Ξ, we have

∥∇θ log πθ(a|s)∥ ≤ ℓπθ
, ∥∇θ log πθ′(a|s)−∇θ log πθ(a|s)∥ ≤ Lπθ

∥θ′ − θ∥,
∥∇ξ log pξ(s

′|s, a)∥ ≤ ℓpξ
, ∥∇ξ log pξ′(s

′|s, a)−∇ξ log pξ(s
′|s, a)∥ ≤ Lpξ

∥ξ′ − ξ∥.

Assumption 2. There exist constants lλ, Lλ > 0 such that for all λ, λ′ ∈ ∆S×A, ∥∇λf(λ)∥ ≤ lλ
and ∥∇λf(λ

′)−∇λf(λ)∥ ≤ Lλ∥λ′ − λ∥.
Proposition 3. Under Assumptions 1 and 2, the gradients (8) and (9) satisfy the following bounds
for any θ, θ′ ∈ Θ and ξ, ξ′ ∈ Ξ.

∥∇θf(λθ,ξ)∥ ≤ ℓθ :=
ℓπθ

(1− γ)2
, ∥∇ξf(λθ,ξ)∥ ≤ ℓξ :=

ℓpξ

(1− γ)2
, (10)

∥∇θf(λθ′,ξ′)−∇θf(λθ,ξ)∥ ≤ Lθ,θ∥θ′ − θ∥+ Lθ,ξ∥ξ′ − ξ∥, (11)

∥∇ξf(λθ′,ξ′)−∇ξf(λθ,ξ)∥ ≤ Lξ,θ∥θ′ − θ∥+ Lξ,ξ∥ξ′ − ξ∥, (12)

where Lθ,θ :=
ℓ2πθ

√
|A|(Lλ+ℓλ

√
|S||A|)

(1−γ)3 +
Lπθ

ℓλ
(1−γ)2 , Lθ,ξ :=

γℓπθ
ℓpξ

√
|S|

(1−γ)3 (Lλ +2ℓλ
√
|S||A|), Lξ,θ :=

ℓπθ
ℓpξ

√
|A|(Lλ+ℓλ

√
|S||A|)

(1−γ)3 , Lξ,ξ :=
γℓ2pξ

√
|S|(Lλ+2ℓλ

√
|S||A|)

(1−γ)3 +
ℓλ(Lpξ

+ℓ2pξ
|S|)

(1−γ)2 .

In practice, the exact gradients (8) and (9) are unavailable and can only be estimated via stochastic
samples. We refer the details to Appendix C as those largely follow [6].

Define the following projected gradients with stepsizes b, a > 0, which have been used to measure
convergence of algorithms to stationary points of optimization [30, 5, 47] and RL problems [49, 46,
34].

G
(θ)
b (θ, ξ) :=

1

b

[
θ−projΘ

(
θ−b∇θf(λθ,ξ)

)]
, G(ξ)

a (θ, ξ) :=
1

a

[
projΞ

(
ξ+a∇ξf(λθ,ξ)

)
−ξ
]

(13)

3 Gradient Convergence for Convex Utility

Assumption 3. The utility function f(λ) is convex.

Robust RL with convex utility functions f subsumes many important special cases, including robust
constrained RL, robust entropy regularized RL, constrained RL, robust RL, RL, pure exploration,
etc., as shown in Examples 2 and 3 in Section 2.1.

Partially inspired by the gradient descent ascent (GDA) algorithm [31] for nonconvex-concave
minimax optimization, we design the projected stochastic GDA algorithm (Algorithm 1) with two
phases to solve robust RL with convex utility. The first phase (called original phase) can be seen as
projected stochastic GDA algorithm on the original objective function f . Specifically, in the k-th the
outer loop with fixed ξk, the inner loop applies T projected stochastic gradient descent steps (14) to
obtain θk which converges to the global solution of Φ(ξk) := minθ∈Θ f(λθ,ξk) as f is convex. Then,
we update ξk using the projected stochastic gradient ascent step (15). However, the output ξ̃ of the
first phase only converges to a stationary point of the following the envelope function Φ̃ 1.

Φ̃(ξ) := max
ξ′∈Ξ

[
Φ(ξ′)− Lξ,ξ∥ξ′ − ξ∥2

]
. (18)

To converge to a stationary point of f , we add the second phase (called corrected phase) which
applies projected stochastic GDA to the following corrected objective.

min
θ∈Θ

max
ξ∈Ξ

f̃(θ, ξ) := f(λθ,ξ)− Lξ,ξ∥ξ − ξ̃∥2. (19)

1The convergence rate of ∥∇Φ̃(ξ̃)∥ is proved in [31] when f(λθ,ξ) is a convex function of θ, and will be
proved in Appendix N.2 for our Theorem 2 when f(λ) is convex.

5

Algorithm 1 Projected Stochastic Gradient Descent Ascent Algorithm For Convex Utility

1: Hyperparameters: K, T , K ′, T ′, α, β, a, b, Lξ,ξ , {m(k)
λ , H

(k)
λ ,m

(k)
θ , H

(k)
θ }4k=1.

2: Initialize: ξ0 ∈ Ξ, θ0, θK ∈ Θ.
Begin original phase to solve the original optimization problem (2)

3: for Iterations k = 0, 1, . . . ,K − 1 do
4: Initialize θk,0 ← θ0.
5: for Inner steps t = 0, 1, . . . , T − 1 do
6: Obtain g(θ)k,t ≈∇θf(λθk,t,ξk) by Algorithm 3 with hyperparameters m(1)

λ , H(1)
λ , m(1)

θ , H(1)
θ .

7: Apply the following projected stochastic policy gradient descent step.

θk,t+1 = projΘ
(
θk,t − αg(θ)k,t

)
. (14)

8: end for
9: Assign θk ← θk,T .

10: Obtain g(ξ)k ≈∇ξf(λθk,ξk) by Algorithm 3 with hyperparameters m(2)
λ , H(2)

λ , m(2)
ξ , H(2)

ξ .
11: Apply the following projected stochastic gradient descent step.

ξk+1 = projΞ
(
ξk + βg

(ξ)
k

)
. (15)

12: end for
13: Obtain ξ̃ from {ξk}K−1

k=0 uniformly at random.
Begin corrected phase to solve the corrected optimization problem (19)

14: for Iterations k = K,K + 1, . . . ,K +K ′ − 1 do
15: Initialize ξk,0 ← ξ̃.
16: for Inner steps t = 0, 1, . . . , T ′ − 1 do
17: Obtain g(ξ)k,t≈∇ξf(λθk,ξk,t

) by Algorithm 3 with hyperparameters m(3)
λ , H(3)

λ , m(3)
ξ , H(3)

ξ .
18: Apply the following projected stochastic gradient ascent step.

ξk,t+1 = projΞ
[
ξk,t + a

(
g
(ξ)
k,t − 2Lξ,ξ(ξk,t − ξ̃)

)]
. (16)

19: end for
20: Assign ξk ← ξk,T ′ .
21: Obtain g(θ)k ≈ ∇θf(λθk,ξk) by Algorithm 3 with hyperparameters m(4)

λ , H(4)
λ , m(4)

θ , H(4)
θ .

22: Apply the following projected stochastic gradient descent step.

θk+1 = projΘ
(
θk − bg(θ)k

)
. (17)

23: end for
24: Output: (θk̃, ξk̃) where k̃ is obtained from {K,K + 1, . . . ,K +K ′ − 1} uniformly at random.

The convergence analysis of Algorithm 1 is challenging largely because f(λθ,ξ) is only a convex
function of λθ,ξ not of θ. To tackle this challenge for non-robust convex RL with fixed ξ, [54]
assumed that a global Lipschitz continuous inverse mapping from λθ,ξ to θ exists. [55, 6] relaxed
this assumption to the following assumption of local inverse mapping, which covers the popular
direct policy parameterization πθ(a|s) = θs,a [6] and softmax policy parameterization πθ(a|s) =

exp(θs,a)∑
a′ exp(θs,a′)

(see Proposition 8 for the proof).

Assumption 4 (Local Invertibility of λ·,ξ). There exists constants ℓλ−1 > 0 and δ ∈ (0, 1) such that
for any fixed θ ∈ Θ and ξ ∈ Ξ, the occupancy measure (1) satisfies:
1. There exists sets Uθ,ξ ⊂ Θ and Vλθ,ξ

⊂ ∆S×A that contain θ and λθ,ξ respectively, such that
λθ,ξ : Uθ,ξ → Vλθ,ξ

is a bijection. Its inverse denoted as λ−1
θ,ξ is ℓλ−1 -Lipscthiz.

2. There exists at least one optimal policy θ∗(ξ) ∈ argminθ′∈Θ f(λθ′,ξ) such that for any δ ∈ [0, δ],
(1− δ)λθ,ξ + δλθ∗(ξ),ξ ∈ Vλθ,ξ

.

Proposition 4 (Projected Gradient Dominance for Convex Utility). Under Assumptions 1-4, the
utility function f satisfies the following gradient dominance property for any θ ∈ Θ and ξ ∈ Ξ.

f(λθ,ξ)− min
θ′∈Θ

f(λθ′,ξ) ≤
[√

2ℓλ−1

(
βLθ,θ + 1

)
+ βℓθ

]
∥G(θ)

β (θ, ξ)∥. (20)

6

Remark: Proposition 4 indicates that the function f(λ·,ξ) is projected gradient dominant for convex
utility function f , which is important in the convergence analysis of Algorithm 1. Our Proposition
4 is stronger than Lemma F.7 of [6], a similar gradient dominance property for convex RL which
requires assumption of positive definite Fisher information matrix, involves bias in the error term and
focuses on unconstrained optimization with softmax parameterized policy (a special of our general
parameterized policy with constrained variable θ ∈ Θ).

Technical Novelty. In our proof, to tackle the constraint θ ∈ Θ which is more challenging than the
unconstrained case Θ = R|S||A| in [55, 6], we apply Assumption 4 to θ′ := θ−βG(θ)

β (θ, ξ) not to the
obvious choice θ, which yields θδ ∈ Θ for any δ ∈ [0, δ] such that λθδ,ξ = (1− δ)λθ′,ξ + δλθ∗(ξ),ξ ∈
Vλθ,ξ

. Then

∇θf(λθ′,ξ)
⊤(θδ−θ′)

(i)

≥
[
∇θf(λθ′,ξ)−∇θf(λθ,ξ)+G

(θ)
β (θ, ξ)

]⊤
(θδ−θ′)

(ii)

≥ −O[δ∥G(θ)
β (θ, ξ)∥],

where (i) uses the projection property (θδ−θ′)⊤[G(θ)
β (θ, ξ)−∇θf(λθ,ξ)] ≤ 0 and (ii) uses ∥θδ−θ′∥ ≤

O(δ). The above bound implies Eq. (20) since f is convex and ℓθ-Lipscthiz.
Assumption 5. Ξ is convex and compact with diameter DΞ := maxξ,ξ′∈Ξ ∥ξ′ − ξ∥ > 0.

Assumption 5 holds for the commonly used direct kernel parameterization pξ(s′|s, a) = ξ(s, a, s′)
(for all s, s′ ∈ S and a ∈ A)[42, 28, 26, 17] and Ξ defined a compact neighborhood around a nominal
transition kernel parameter ξ̂.

We show the gradient convergence result of Algorithm 1 by the following theorem and demonstrate
the gradient convergence by the experiments in Appendix A.
Theorem 2 (Gradient Convergence for Convex Utility). Suppose Assumptions 1-5 hold. For any
precision 0 < ϵ ≤ 48Lξ,ξ

L̃

[√
2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]
, we can always find proper hyperparameter

values of Algorithm 1 (see Eqs. (127)-(150) in Appendix N.6 for these hyperparamter values) such
that the algorithm output (θk̃, ξk̃) is an ϵ-close to a stationary point, that is, E[∥G(θ)

b (θk̃, ξk̃)∥
2] ≤ ϵ2

and E[∥G(ξ)
a (θk̃, ξk̃)∥

2] ≤ ϵ2 with projected gradientsG(θ)
b andG(ξ)

a defined in Eq. (13). The number

of required stochastic samples is O
[log2[(1−γ)−1ϵ−1]

(1−γ)25ϵ10

]
.

Proof Sketch of Theorem 2 and Technical Novelty. Inspired by Appendix D of [31], ξ̃ from
the first phase satisfies E∥∇Φ̃(ξ̃)∥2 → 0 (see Appendix N.2). Then, ξk := ξk,T ′ from the inner
update (16) of the second phase converges to the unique maximizer (denoted as ξ∗k) of the Lξ,ξ-
concave function f̃(θk, ·) as T ′ → +∞ (see Appendix N.3). This means the update step (17) is
approximately projected gradient descent for minθ∈Θ Ψ̃(θ), which yields the convergence rate of
E
[
∥G(θ)

b (θk̃, ξk̃)∥
2
]

(see Appendix N.4).
However, the biggest challenge is to obtain the convergence rate of E

[
∥G(ξ)

a (θk̃, ξk̃)∥
2
]

(see Appendix
N.5), which corresponds to∇ξf while the second corrected phase aims at the corrected objective f̃ .
To show that ∇ξ f̃(θk, ξk) ≈ ∇ξf(θk, ξk), note that∇ξ f̃(θk, ξk)−∇ξf(θk, ξk) = −2Lξ,ξ(ξk − ξ̃)
and that ∇Φ̃(ξ̃) = 2Lξ,ξ[ξ

∗(ξ̃) − ξ̃] ≈ 0 (already proved) where ξ∗(ξ̃) is the unique maximizer
of Φ(ξ′) − Lξ,ξ∥ξ′ − ξ̃∥2, a strongly concave function of ξ′ in Eq. (18). Hence, it suffices to
show ξk ≈ ξ∗(ξ̃). Note that (θk, ξk) is an approximate Nash equilibrium of f̃ , i.e., ξk ≈ ξ∗k :=

argmaxξ∈Ξf̃(θk, ξ) (proved above) and θk ≈ argminθ∈Θf̃(θ, ξk) (derived below).

E[f̃(θk, ξk)− min
θ′∈Θ

f̃(θ′, ξk)] = E[f(λθk,ξk)− min
θ′∈Θ

f(λθ′,ξk)]
(i)

≤ O(E∥G(θ)
β (θ, ξ)∥) ≤ O(ϵ),

where (i) uses Proposition 4. Hence, based on the property of Nash equilibrium, we have ξk ≈
argmaxξψ(ξ) = ξ∗(ξ̃) where ψ(ξ) := minθ∈Θ f̃(θ, ξ) = Φ(ξ)− Lξ,ξ∥ξ − ξ̃∥2.

4 Global Convergence on Polyhedral Ambiguity Set

This section aims to obtain a global optimal policy θ∗ that minimizes the robust utility Γ(θ)
def
=

maxξ∈Ξ f(λθ,ξ). This maximization is challenging for convex utility f . In contrast, global conver-

7

gence results have been obtained without such challenge in some important special cases, including
convex RL with fixed ξ [54, 51, 6] and robust RL where linear utility f is amenable to both minθ∈Θ

and maxξ∈Ξ [36, 45, 42, 23, 26]. Fortunately, we will show that by using the popular s-rectangular
polyhedral ambiguity set Ξ, argmaxξ∈Ξf(λθ,ξ) always exists among the finitely many vertices of Ξ.

4.1 S-rectangular Polyhedral Ambiguity Set

In this subsection, we will introduce the popular s-rectangular polyhedral ambiguity set, and derive
its important propositions for designing globally converged algorithm.

Fhe global convergence is generally NP-hard, even for the important special case called robust RL
with linear utility, [45]. A common practice to make the problem tractable is to use direct kernel
parameterization pξ(s′|s, a) = ξ(s, a, s′) [42, 28, 26, 17] and assume the ambiguity set Ξ to satisfy
some certain rectangularity conditions, such as s-rectangularity defined below [45, 42, 23, 26].
Assumption 6. We use direct kernel parameterization and assume that Ξ is s-rectangular, i.e.,
Ξ = ×s∈SΞs := {ξ ∈ (∆S)S×A : ξ(s, ·, ·) ∈ Ξs, ∀s ∈ S}, a Cartesian product of Ξs ⊂ (∆S)A.
Proposition 5 (Local Invertibility of λθ,·). Suppose Assumption 6 holds and Ξ is a convex set. For
any θ ∈ Θ, ξ0, ξ1 ∈ Ξ and δ ∈ [0, 1], define the following kernel parameters ξδ ∈ (∆S)S×A.

ξδ(s, a, s
′) =


arbitrary as long as ξδ(s, a, ·) ∈ ∆S , if λθ,ξ0(s)=λθ,ξ1(s)=0

δλθ,ξ1(s)ξ1(s, a, s
′)+(1−δ)λθ,ξ0(s)ξ0(s, a, s′)

δλθ,ξ1(s)+(1−δ)λθ,ξ0(s)
, otherwise

, (21)

where λθ,ξ(s) :=
∑

a∈A λθ,ξ(s, a) for any s ∈ S, θ ∈ Θ and ξ ∈ Ξ. Then ξδ ∈ Ξ and its
corresponding occupancy measure is λθ,ξδ = δλθ,ξ1 + (1− δ)λθ,ξ0 .

Remark: Proposition 5 indicates that the mapping from ξ to λθ,ξ is locally invertible for s-
rectangular set Ξ, which is important to solve the aforementioned challenge that convex utility is not
amenable for maxξ∈Ξ f(λθ,ξ). This role is similar to that played by the local invertibility assumption
(Assumption 4) for policy θ. To our knowledge, Proposition 5 has never been obtained in the existing
literature.
Assumption 7. Under Assumption 6, for every s ∈ S , Ξs is a polyhedron spanned by a finite set of
vertices V (Ξs) :={ξ(s)m }Ms

m=1⊂Ξs, i.e., Ξs =
{∑Ms

m=1 νmξ
(s)
m : νm ≥ 0,

∑Ms

m=1 νm = 1
}

.

Polyhedral ambiguity set defined by Assumption 7 includes the widely used s-rectangular L1 and
L∞ ambiguity sets, defined as Ξ = {ξ ∈ (∆S)S×A : ∥ξ(s, :, :) − ξ̂(s, :, :)∥p ≤ αs, ∀s ∈ S} for
p ∈ {1,∞} respectively [7, 19, 16], where ξ̂ ∈ Ξ is the nominal transition kernel usually obtained
via empirical estimation. On polyhedral ambiguity set, the optimal kernels argmaxξ∈Ξf(λθ,ξ) can
always be obtained at the vertices of Ξ, as shown below.
Proposition 6. Under Assumptions 3, 6 and 7, for any θ ∈ Θ, we have maxξ∈Ξ f(λθ,ξ) =
maxξ∈V (Ξ) f(λθ,ξ), where V (Ξ) = ×s∈SV (Ξs) is the vertex set.

Technical Novelty. Suppose a non-vertex kernel ξ∗ ∈ argmaxξ∈Ξf(λθ,ξ)/V (Ξ) is optimal. Since
f is convex, if λθ,ξ∗ is a convex combination of λθ,ξ∗1 and λθ,ξ(ϵ) for some ξ1, ξ0 ∈ Ξ (corresponding
to ξ∗1 , ξ

(ϵ) respectively in the proof in Appendix I), then ξ1, ξ0 are also optimal. Ideally, if ξ1 ∈ V (Ξ)
or ξ0 ∈ V (Ξ), the proof is done. However, this is not guaranteed since in Proposition 5 and
Assumption 6, the convex combination coefficients differ among the states s ∈ S. To solve this
challenge, it suffices to find such optimal ξ1 that differs from ξ∗ at only one state s such that the
non-vertex ξ∗(s) /∈ V (Ξs) is replaced with vertex ξ1(s) ∈ V (Ξs). Then we can conduct such
change from non-vertex to vertex for only one state s at a time until the kernel becomes vertex at
every state, while keeping the optimality all the way. To find such ξ1(s), note that on polyhedral
set Ξs, there always exist ξ1(s) ∈ V (Ξs) and ξ0(s) ∈ Ξs such that the non-vertex point ξ∗(s) is a
convex combination of ξ1(s) and ξ0(s), while ξ∗(s′) = ξ1(s

′) = ξ0(s
′) for any s′ ̸= s. Hence, there

exists δ ∈ [0, 1] such that ξ∗ = ξδ defined by Proposition 5, which implies that λθ,ξ∗ is a convex
combination of λθ,ξ∗1 and λθ,ξ(ϵ) .

8

4.2 Globally Converged Algorithm

Algorithm 2 Globally Converged Algorithm for Convex Utility on
Polyhedral Ambiguity Set

1: Hyperparameters: K, {σk, ϵk, βk}K−1
k=0 .

2: Initialize: θ0 ∈ Θ.
3: for Iterations k = 0, 1, . . . ,K − 1 do
4: Calculate λθk,ξ , f(λθk,ξ) and∇θf(λθk,ξ) for all ξ ∈ V (Ξ).
5: Select near-optimal vertices Ξk :={ξ ∈ V (Ξ) : f(λθk,ξ) ≥

maxξ′∈V (Ξ) f(λθk,ξ′)− σk}.
6: Find d′k ∈ B1 := {d ∈ RdΘ : ∥d∥ ≤ 1} such that

Ak(d
′
k) ≤ mind∈B1

Ak(d) + ϵk.
(Ak is defined in Eq. (23). One way to solve mind∈B1

Ak(d)
is to apply projected subgradient method (28) and obtain
d′k ∈ argmaxd∈{dk,t:0≤t≤T}Ak(d).)

7: Let dk := d′k/∥d′k∥ and obtain θk+1 by Eq. (22).
8: end for
9: Output: (θK , ξK) where ξK ∈ argmaxξ∈V (Ξ)f(λθK ,ξ).

The original objective (2) is
equivalent to the minimization
problem minθ∈Θ Γ(θ), where
Γ(θ) := maxξ∈V (Ξ) f(λθ,ξ)
with finite vertex set V (Ξ)
based on Proposition 6. A nat-
ural choice to solve this min-
imization problem is the fol-
lowing policy update rule (for
simplicity we consider the un-
constrained policy space Θ =
RdΘ as in [55, 6]).

θk+1 = θk − βkdk, (22)

where βk > 0 is the stepsize
and dk is a unit descent direc-
tion of Γ(θk). Subgradient de-
scent method seems an obvi-
ous choice for dk which aligns with the direction of a subgradient ∇θf(λθk,ξk) where ξk ∈
argmaxξ∈V (Ξ)f(λθk,ξ). However, the convergence analysis of subgradient descent method [11]
requires the convexity of f(λ·,ξk) which does not hold in our setting, and the function value is
not monotonically decreasing. To solve these challenges, we design Algorithm 2 which selects
near-optimal vertices Ξk := {ξ ∈ V (Ξ) : f(λθk,ξ) ≥ maxξ′∈V (Ξ) f(λθk,ξ′) − σk} with a certain
threshold σk > 0 and obtains dk by solving the convex optimization problem mind∈B1

Ak(d) up to
precision ϵk > 0, where Ak(d) below denotes effective descent of Γ(θk) along the direction d.

Ak(d) := max
ξ∈Ξk

[
∇θf(λθk,ξ)

⊤d
]
, d ∈ B1 := {d′ ∈ RdΘ : ∥d′∥ ≤ 1}. (23)

Here we only care about the near-optimal vertices in Ξk ⊂ V (Ξ) because for any worse vertices
ξ ∈ V (Ξ)/Ξk, f(θk, ξ) < maxξ′∈V (Ξ) f(λθk,ξ′)−σk implies f(θk+1, ξ) < maxξ′∈V (Ξ) f(λθk+1,ξ′)
for appropriate σk > 0. This means such worse ξ can not affect the optimization progress Γ(θk)−
Γ(θk+1). Hence, by solving mind∈B1

Ak(d), we can obtain a direction dk in which all the potentially
effective function values {f(λθk,ξ)}ξ∈Ξk

have uniformly large amount of descent −∇f(λθk,ξ)⊤dk.

To analyze the global convergence of Algorithm 2, we want to guarantee sufficient descent Γ(θk)−
Γ(θk+1) whenever θk is not close to optimal. It suffices to slightly alter Assumption 4 as follows.
Assumption 8. A variant of Assumption 4 holds which replaces the non-robust optimal policy θ∗(ξ)
with a robust optimal policy θ∗ ∈ argminθ∈Θ Γ(θ) and shrinks the range from ξ ∈ Ξ to ξ ∈ V (Ξ).

Remark: Assumption 8 is no stronger than Assumption 4 and also covers the popular direct policy
parameterization. Also, Assumption 8 guarantees that from any policy θ ∈ Θ, there exists a partial
curve {θδ : δ ∈ [0, δ]} towards a robust optimal policy θ∗ such that λθδ,ξ = (1− δ)λθ,ξ + δλθ∗,ξ , so
we can utilize convexity of f and obtain the following important sufficient descent property.
Proposition 7 (Sufficient Descent on Polyhedral Ambiguity Set). Under Assumptions 1-3 and 8, at
any θ ∈ Θ := RdΘ , there exists a unit descent direction d (∥d∥ = 1) such that

f(λθ,ξ)− f(λθ∗,ξ) ≤
[
−
√
2ℓλ−1∇θf(λθ,ξ)

⊤d
]
+
, ∀ξ ∈ Ξ (24)

where θ∗ ∈ argminθ′∈Θ Γ(θ) is given by Assumption 8 and x+ := max(x, 0) for any x ∈ R.

Remark: d in Proposition 7 is a good descent direction since whenever the function value gap
f(λθ,ξ)− f(λθ∗,ξ) > 0, it is dominated by the gradient descent amount −∇θf(λθ,ξ)

⊤d > 0. Unlike
existing gradient dominance properties for robust RL [42, 26, 17], f(λθ,ξ)− f(λθ∗,ξ) ≤ 0 is possible
so we use [·]+ to cover all cases. This brings challenge and thus novel techniques to obtain the first
global convergence result of our robust RL with general convex utility as follows.
Theorem 3 (Global Convergence for Convex Utility on Polyhedral Ambiguity Set). Implement
Algorithm 2 with βk = 2

√
2ℓλ

k+2 , σk = 4
√
2ℓθℓλ
k+2 and any ϵk > 0. Then under Assumptions 1-3, 6-8, the

9

algorithm output θK has the following global convergence rate.

Γ(θK)− min
θ′∈Θ

Γ(θ′) ≤
√
2ℓλ−1 max

1≤k≤K
ϵk +

4ℓλ−1

K + 1
(ℓλ−1Lθ,θ + 2

√
2ℓθ). (25)

Remark: The convergence rateO(1/K) matches the state-of-the-art of policy gradient type methods
for robust RL [26], while the error term ϵk results from solving the convex optimization problem
mind∈B1 Ak(d) in line 6 of Algorithm 2.
Technical Novelty. Applying Proposition 7 to Algorithm 2 with σk = 2βkℓθ, we have

∆k := Γ(θk)− min
θ′∈Θ

Γ(θ′) ≤
[√

2ℓλ−1 [ϵk −Ak(d
′
k)]
]
+
+ 2βkℓθ. (26)

To overcome the main difficulty caused by [·]+ above, we analyze each k-th iteration in 2 cases
Ak(d

′
k) ≥ 0 and Ak(d

′
k) < 0. If Ak(d

′
k) ≥ 0, then ∆k ≤

√
2ℓλ−1ϵk + 2βkℓθ and thus ∆k+1 ≤√

2ℓλ−1ϵk +3βkℓθ; If Ak(d
′
k) < 0, then in Eq. (26) we replace Ak(d

′
k) with Ak(dk) ≤ Ak(d

′
k) < 0

and remove [·]+. This along with Γ(θk+1)− Γ(θk) ≤ βkAk(dk) +
Lθ,θ

2 β2
k (by smoothness) implies

∆k+1 ≤
k

k + 2
∆k +O

[ϵk
k + 2

+
1

(k + 2)2

]
. (27)

Then we obtain the rate (25) in 3 cases: If Ak(d
′
k) < 0 for all k = 0, 1, . . . ,K − 1, iterate Eq. (27)

from ∆0; If AK−1(dK−1) ≥ 0, ∆K ≤
√
2ℓλ−1ϵK + σk; If AK′−1(dK′−1) ≥ 0 while Ak(dk) < 0

for all k = K ′, . . . ,K − 1, iterate Eq. (27) from ∆K′ ≤
√
2ℓλ−1ϵK′−1 + 3βK′−1ℓθ.

Algorithm 2 involves convex optimization problems mind∈B1
Ak(d), which can be solved via the

following projected subgradient method for t = 0, 1, . . . , T − 1.

dk,t+1 ← projB1
[dk,t − α∇θf(λθk,ξk,t

)],where ξk,t ∈ argmaxξ∈Ξk
∇θf(λθk,ξ)

⊤dk,t. (28)

The best direction d′k ∈ argmaxd∈{dk,t:0≤t≤T}Ak(d) from the above subgradient method achieves
ϵk accuracy within T = O(ϵ−2

k) steps [11], which yields the following complexity result.
Corollary 1. Under the conditions of Theorem 3, for any ϵ > 0, implement Algorithm 2 with K =
8ℓλ−1ϵ−1(ℓλ−1Lθ,θ + 2

√
2ℓθ) iterations and T = 36ℓ2λ−1ℓ2θϵ

−2 subgradient descent updates (28)
with stepsize α = ϵ

3ℓλ−1 ℓ2θ
to obtain d′k. Then the output θK achieves Γ(θK)−minθ′∈Θ Γ(θ′) ≤ ϵ.

Finally, we can prove that all these Assumptions 1-8 required by our convergence results (Theorems
2 and 3) can be satisfied by the following examples.
Proposition 8. Assumptions 1-8 are all satisfied if we use the following choices:
• Softmax policy parameterization πθ(a|s) =

exp(θs,a)∑
a′ exp(θs,a′)

, where θ ∈ Θ = [−R,R]|S|×|A| for
some constant R > 0 to prevent πθ(a|s) from approaching 0.
• Direct kernel parameterization pξ(s

′|s, a) = ξs,a,s′ with s-rectangular L1 or L∞ ambiguity
sets defined as Ξ = {ξ ∈ (∆S)S×A : ∥ξ(s, :, :) − ξ̂(s, :, :)∥p ≤ αs, ∀s ∈ S} for p ∈ {1,∞}
respectively, where the fixed nominal kernel ξ̂ satisfies ξ̂(s, a, s′) > αs, ∀s, a, s′ to prevent pξ(s′|s, a)
from approaching 0.
• The utility function f(λ) defined in Eq. (7) for robust entropy regularized RL and its special cases,
within the range λ ∈ Λ = {λθ,ξ : θ ∈ Θ, ξ ∈ Ξ} for the domains Θ and Ξ selected above.

5 Conclusion

In this work, we propose robust RL with general utility, the first learning framework that obtains a
robust policy for RL with general utility. We propose a stochastic policy gradient type algorithm
for convex utilities and obtains its sample complexity result for gradient convergence. Furthermore,
for convex utility on polyhedral ambiguity set, we propose an alternative policy gradient type
algorithm and obtain its global convergence rate. Note that this globally converged algorithm requires
enumeration among many vertices, and thus it is an important future direction to reduce enumeration
by utilizing structural properties. In addition, to extend the results to large or continuous state-action
space is also an interesting direction.

10

Acknowledgments

This work was partially supported by NSF IIS 2347592, 2347604, 2348159, 2348169, DBI 2405416,
CCF 2348306, CNS 2347617.

References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.

In International conference on machine learning, pages 22–31, 2017.

[2] Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[4] Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least
squares policy iteration with provable performance guarantees. In International Conference on
Machine Learning, pages 511–520, 2021.

[5] Maxim Viktorovich Balashov. The gradient projection algorithm for a proximally smooth set
and a function with lipschitz continuous gradient. Sbornik: Mathematics, 211(4):481, 2020.

[6] Anas Barakat, Ilyas Fatkhullin, and Niao He. Reinforcement learning with general utilities:
Simpler variance reduction and large state-action space. In International Conference on Machine
Learning, 2023.

[7] Bahram Behzadian, Marek Petrik, and Chin Pang Ho. Fast algorithms for l∞-constrained s-
rectangular robust mdps. In Proceedings of the International Conference on Neural Information
Processing Systems (Neurips), 2021.

[8] Vivek S Borkar and Sean P Meyn. Risk-sensitive optimal control for markov decision processes
with monotone cost. Mathematics of Operations Research, 27(1):192–209, 2002.

[9] Winfried Bruns and Joseph Gubeladze. Polytopes, rings, and K-theory. Springer Science &
Business Media, 2009.

[10] Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. Operations Research, 70(4):2563–
2578, 2022.

[11] Yuxin Chen. Subgradient methods. https://yuxinchen2020.github.io/ele522
_optimization/lectures/subgradient_methods.pdf, 2020.

[12] Jerzy A Filar, Lodewijk CM Kallenberg, and Huey-Miin Lee. Variance-penalized markov
decision processes. Mathematics of Operations Research, 14(1):147–161, 1989.

[13] Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Oliver Bachem,
Rémi Munos, and Olivier Pietquin. Concave utility reinforcement learning: The mean-field
game viewpoint. In Proceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, pages 489–497, 2022.

[14] Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement by
minimizing robust baseline regret. In Proceedings of the International Conference on Neural
Information Processing Systems (Neurips), volume 29, 2016.

[15] Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 12086–12094,
2021.

[16] Julien Grand-Clément and Marek Petrik. Reducing blackwell and average optimality to dis-
counted mdps via the blackwell discount factor. In Proceedings of the International Conference
on Neural Information Processing Systems (Neurips), 2023.

11

https://yuxinchen2020.github.io/ele522_optimization/lectures/subgradient_methods.pdf
https://yuxinchen2020.github.io/ele522_optimization/lectures/subgradient_methods.pdf

[17] Etash Kumar Guha and Jason D Lee. Solving robust mdps through no-regret dynamics.
ArXiv:2305.19035, 2023.

[18] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. In International Conference on Machine Learning, pages 2681–2691,
2019.

[19] Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for l1-robust
markov decision processes. Journal of Machine Learning Research, 22(275):1–46, 2021.

[20] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research,
30(2):257–280, 2005.

[21] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

[22] Lodewijk CM Kallenberg. Survey of linear programming for standard and nonstandard marko-
vian control problems. part i: Theory. Zeitschrift für Operations Research, 40:1–42, 1994.

[23] Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Levy, and Shie Mannor. Policy gra-
dient for rectangular robust markov decision processes. In Proceedings of the International
Conference on Neural Information Processing Systems (Neurips), 2023.

[24] Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
markov decision processes via regularization. ArXiv:2205.14327, 2022.

[25] Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. An efficient solution to s-
rectangular robust markov decision processes. ArXiv:2301.13642, 2023.

[26] Navdeep Kumar, Ilnura Usmanova, Kfir Yehuda Levy, and Shie Mannor. Towards faster
global convergence of robust policy gradient methods. In Sixteenth European Workshop on
Reinforcement Learning, 2023.

[27] Navdeep Kumar, Kaixin Wang, Kfir Levy, and Shie Mannor. Policy gradient for reinforcement
learning with general utilities. ArXiv:2210.00991, 2023.

[28] Mengmeng Li, Tobias Sutter, and Daniel Kuhn. Policy gradient algorithms for robust mdps
with non-rectangular uncertainty sets. ArXiv:2305.19004, 2023.

[29] Yan Li, Guanghui Lan, and Tuo Zhao. First-order policy optimization for robust markov
decision process. ArXiv:2209.10579, 2023.

[30] Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In Proceedings of the International Conference on Neural Information Processing
Systems (Neurips), pages 5569–5579, 2018.

[31] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International Conference on Machine Learning, pages 6083–6093, 2020.

[32] Tien Mai and Patrick Jaillet. Robust entropy-regularized markov decision processes.
ArXiv:2112.15364, 2021.

[33] Daniel J Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg,
Yuanyuan Shi, Jackie Kay, Todd Hester, Timothy Mann, and Martin Riedmiller. Robust
reinforcement learning for continuous control with model misspecification. In Proceedings of
the International Conference on Learning Representations (ICLR), 2020.

[34] Weichao Mao, Lin Yang, Kaiqing Zhang, and Tamer Basar. On improving model-free algorithms
for decentralized multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 15007–15049, 2022.

[35] Sobhan Miryoosefi, Kianté Brantley, Hal Daumé, Miroslav Dudík, and Robert E Schapire.
Reinforcement learning with convex constraints. In Proceedings of the International Conference
on Neural Information Processing Systems (Neurips), pages 14093–14102, 2019.

12

[36] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

[37] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 3803–3810. IEEE, 2018.

[38] Reazul Hasan Russel, Mouhacine Benosman, and Jeroen Van Baar. Robust constrained-mdps:
Soft-constrained robust policy optimization under model uncertainty. ArXiv:2010.04870, 2020.

[39] Stefan Schaal. Learning from demonstration. In Proceedings of the International Conference
on Neural Information Processing Systems (Neurips), volume 9, 1996.

[40] Zhongchang Sun, Sihong He, Fei Miao, and Shaofeng Zou. Constrained reinforcement learning
under model mismatch. ArXiv:2405.01327, 2024.

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[42] Qiuhao Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
convergence guarantee. In Proceedings of the International Conference on Machine Learning
(ICML), volume 202, pages 35763–35797, 23–29 Jul 2023.

[43] Yue Wang, Fei Miao, and Shaofeng Zou. Robust constrained reinforcement learning.
ArXiv:2209.06866, 2022.

[44] Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In
Proceedings of the International Conference on Machine Learning (ICML), pages 23484–23526,
2022.

[45] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes.
Mathematics of Operations Research, 38(1):153–183, 2013.

[46] Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning
Research, 23(282):1–36, 2022.

[47] Tesi Xiao, Krishna Balasubramanian, and Saeed Ghadimi. A projection-free algorithm for
constrained stochastic multi-level composition optimization. In Proceedings of the International
Conference on Neural Information Processing Systems (Neurips), 2022.

[48] Huan Xu and Shie Mannor. Parametric regret in uncertain markov decision processes. In
Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, pages 3606–3613. IEEE, 2009.

[49] Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive
variance reduction. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

[50] Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis
of vanilla policy gradient. In International Conference on Artificial Intelligence and Statistics,
pages 3332–3380, 2022.

[51] Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is
enough for convex mdps. In Proceedings of the International Conference on Neural Information
Processing Systems (Neurips), volume 34, pages 25746–25759, 2021.

[52] Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. Cautious reinforcement
learning via distributional risk in the dual domain. ArXiv:2002.12475, 2020.

[53] Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, and Alec Koppel. Multi-agent reinforcement
learning with general utilities via decentralized shadow reward actor-critic. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 9031–9039, 2022.

13

[54] Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvári, and Mengdi Wang. Variational
policy gradient method for reinforcement learning with general utilities. In Proceedings of
the International Conference on Neural Information Processing Systems (Neurips), pages
4572–4583, 2020.

[55] Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari, and Mengdi Wang. On the conver-
gence and sample efficiency of variance-reduced policy gradient method. In Proceedings of the
International Conference on Neural Information Processing Systems (Neurips), 2021.

[56] Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Natural
actor-critic for robust reinforcement learning with function approximation. In Proceedings of
the International Conference on Neural Information Processing Systems (Neurips), 2023.

14

Appendix

Table of Contents
A Experiments 15

B Supporting Lemmas 16

C Stochastic Gradients 19

D Proof of Proposition 1 20

E Proof of Proposition 2 21

F Proof of Proposition 3 21

G Proof of Proposition 4 26

H Proof of Proposition 5 26

I Proof of Proposition 6 27

J Proof of Proposition 7 28

K Proof of Proposition 8 29
K.1 Proof of Assumptions 1, 2 and 3 . 29
K.2 Proof of Assumptions 5, 6 and 7 about ambiguity set Ξ 30
K.3 Proof of Assumptions 4 and 8 . 30

L Proof of Proposition 9 33

M Proof of Theorem 1 35

N Proof of Theorem 2 36
N.1 Convergence Rate of Inner Update Step (14) of the First Original Phase 36

N.2 Convergence Rate of E[∥∇Φ̃(ξ̃)∥2] from the First Original Phase 37
N.3 Convergence of the Inner Update Step (16) of the Second Corrected Phase 39

N.4 Convergence Rate of E[∥G(θ)
b (θk̃, ξk̃)∥

2] . 40

N.5 Convergence Rate of E[∥G(ξ)
a (θk̃, ξk̃)∥

2] . 42
N.6 Substituting Hyperparameters . 43

O Proof of Theorem 3 46
O.1 Analyze the k-th Iteration . 47
O.2 Obtain the Convergence Rate (25) . 47

P Proof of Corollary 1 48

A Experiments

In this section, we present simulation results of Algorithm 1 for convex utility.

Simulation Setting. We choose S = {1, 2, · · · , S} with S = 10 states and A = {1, 2, · · · , A}
with A = 5 actions. The discount factor is γ = 0.95 and we select uniform distribution as the

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Sample Complexity 1e7

0.0046

0.0048

0.0050

0.0052

0.0054

G
(

)
b

(
k,

k)
2

+
G

(
)

a
(

k,
k)

2

Figure 1: Numerical Experimental Result (the green vertical line denotes the transition from Phase I
to Phase II of Algorithm 1).

initial state distribution ρ. To optimize the objective function (2), we apply direct parameterization
to policy parameter θs,a = π(a|s) ∈ Θ = (∆A)S and transition kernel parameter ξs,a,s′ =

p(s′|s, a) ∈ (∆S)S×A. In order to preserve ξ(:, :, s′) ∈ ∆S , We select nominal kernel ξ(·, ·, s′)
as |10+εs′ |∑

s′ |10+εs′ |
, where εs′

i.i.d∼ N (0, 1) for each s′ ∈ S. Then we select sufficiently small radius

r = 0.01 < mins,a,s′ ξs,a,s′ and use the L2 ambiguity set Ξ := {ξ : ∥ξ(s, :, :)− ξ(s, :, :)∥ ≤ r} (for
transition kernel) such that all ξ ∈ Ξ have all positive entries. As for the general utility function f ,
we use the following convex entropy function with application to exploration (Example 2.2 of [54]).

min
θ∈Θ

max
ξ∈Ξ

f(λθ,ξ) := −
∑
s

λθ,ξ(s) log λθ,ξ(s) (29)

where λθ,ξ(s) :=
∑

a∈A λθ,ξ(s, a) denotes the state visitation measure for any s ∈ S, θ ∈ Θ and
ξ ∈ Ξ.

Hyperparameters. For Algorithm 1, we use the following hyperparameters obtained from fine-
tuning but not from Theorem 2: K = 200, T = 25, K ′ = 300, T ′ = 25, α = 0.002, β = 0.001,
a = 0.002, b = 0.002, Lξ,ξ = 20, m(1)

λ = 15, H(1)
λ = 100, m(1)

θ = 15, H(1)
θ = 100, m(2)

λ = 15,
H

(2)
λ = 100,m(2)

ξ = 15,H(2)
ξ = 100,m(3)

λ = 10,H(3)
λ = 100,m(3)

ξ = 10,H(3)
ξ = 100,m(4)

λ = 10,

H
(4)
λ = 100, m(4)

θ = 10, H(4)
θ = 100.

Environment. The experiment is implemented on Python 3.8 on AMD EPYC-7313 CPU with
3.00GHz, which costs about 1.5 hours in total.

Results. The numerical result of Algorithm 1 is shown in Figure 1. Here the y-axis is the norm of the

true projected gradient
√
∥G(θ)

b (θk, ξk)∥2 + ∥G(ξ)
a (θk, ξk)∥2 at each outer iteration k of both phases

of Algorithm 1 (separated by the green vertical dashed line), and the x-axis is the sample complexity
(i.e., the total number of generated samples up to iteration k). Figure 1 shows that the projected
gradient decays and converges to a small value, which matches Theorem 2.

B Supporting Lemmas

Lemma 1. Under Assumption 1, for any s, s′ ∈ S , a ∈ A, θ, θ′ ∈ Θ, ξ, ξ′ ∈ Ξ, we have

|πθ′(a|s)− πθ(a|s)| ≤ ℓπθ
∥θ′ − θ∥, |pξ′(s′|s, a)− pξ(s′|s, a)| ≤ ℓpξ

∥ξ′ − ξ∥, (30)∥∥∇ξpξ′(s
′|s, a)−∇ξpξ(s

′|s, a)
∥∥ ≤ [Lpξ

pξ′(s
′|s, a) + ℓ2pξ

]
∥ξ′ − ξ∥. (31)

16

Proof. Based on Assumption 1, the following inequalities holds for all s, s′ ∈ S, a ∈ A, θ ∈ Θ,
ξ ∈ Ξ, which by Lagrange mean value theorem directly proves Eq. (30)

∥∇θπθ(a|s)∥ ≤ ∥∇θ log πθ(a|s)∥ ≤ ℓπθ
, ∥∇ξpξ(s

′|s, a)∥ ≤ ∥∇ξ log pξ(s
′|s, a)∥ ≤ ℓpξ

.

Then we prove Eq. (31) as follows.∥∥∇ξpξ′(s
′|s, a)−∇ξpξ(s

′|s, a)
∥∥

=
∥∥pξ′(s′|s, a)∇ξ log pξ′(s

′|s, a)− pξ(s′|s, a)∇ξ log pξ(s
′|s, a)

∥∥
≤pξ′(s′|s, a)

∥∥∇ξ log pξ′(s
′|s, a)−∇ξ log pξ(s

′|s, a)
∥∥

+ |pξ′(s′|s, a)− pξ(s′|s, a)|
∥∥∇ξ log pξ(s

′|s, a)
∥∥

(i)

≤pξ′(s′|s, a)Lpξ
∥ξ′ − ξ∥+ ℓpξ

· ℓpξ
∥ξ′ − ξ∥

≤
[
Lpξ

pξ′(s
′|s, a) + ℓ2pξ

]
∥ξ′ − ξ∥,

where (i) uses Eq. (30) and Assumption 1.

Lemma 2. For any θ ∈ Θ and ξ ∈ Ξ, the occupancy measure λθ,ξ defined by Eq. (1) is the unique
solution to the following Bellman equation of λ ∈ R|S|×|A|.

λ(s′, a′) =
[
(1− γ)ρ(s′) + γ

∑
s,a

λ(s, a)pξ(s
′|s, a)

]
πθ(a

′|s′), s′ ∈ S, a′ ∈ A. (32)

Therefore, the state occupancy measure λθ,ξ(s) :=
∑

a∈A λθ,ξ(s, a) satisfies

λθ,ξ(s, a) = λθ,ξ(s)πθ(a|s). (33)

Proof. First, we can prove that λθ,ξ satisfies Eq. (32) as follows.

λθ,ξ(s
′, a′) = (1− γ)

+∞∑
t=0

γtPπθ,pξ
(st = s′, at = a′|s0 ∼ ρ)

= πθ(a
′|s′)(1− γ)

+∞∑
t=0

γtPπθ,pξ
(st = s′|s0 ∼ ρ)

= πθ(a
′|s′)(1− γ)

[
Pπθ,pξ

(s0 = s′|s0 ∼ ρ) + γ
+∞∑
t=0

γtPπθ,pξ
(st+1 = s′|s0 ∼ ρ)

]
= πθ(a

′|s′)(1− γ)
[
ρ(s′) + γ

+∞∑
t=0

γt
∑
s,a

Pπθ,pξ
(st = s, at = a|s0 ∼ ρ)pξ(s′|s, a)

]
= πθ(a

′|s′)
[
(1− γ)ρ(s′) + γ

∑
s,a

pξ(s
′|s, a)

(
(1− γ)

+∞∑
t=0

γtPπθ,pξ
(st = s, at = a|s0 ∼ ρ)

)]
=
[
(1− γ)ρ(s′) + γ

∑
s,a

λθ,ξ(s, a)pξ(s
′|s, a)

]
πθ(a

′|s′).

Next, we prove the uniqueness. Suppose λ1, λ2 ∈ R|S|×|A| satisfies Eq. (32). Then we have∑
s′,a′

|λ2(s′, a′)− λ1(s′, a′)| =
∑
s′,a′

γπθ(a
′|s′)

∣∣∣∑
s,a

[λ2(s, a)− λ1(s, a)]pξ(s′|s, a)
∣∣∣

≤γ
∑
s′

∑
s,a

|λ2(s, a)− λ1(s, a)|pξ(s′|s, a)

≤γ
∑
s,a

|λ2(s, a)− λ1(s, a)|,

17

which implies that (1− γ)
∑

s,a |λ2(s, a)− λ1(s, a)| ≤ 0 and thus λ2 = λ1, i.e., the solution to Eq.
(32) is unique.

Finally, we will prove Eq. (33). Note that

λθ,ξ(s) =
∑
a∈A

λθ,ξ(s, a)
(i)
= (1− γ)ρ(s′) + γ

∑
s,a

λ(s, a)pξ(s
′|s, a),

where (i) uses Eq. (32). Then Eq. (33) can be proved by substituting the above equality into Eq.
(32).

Lemma 3. Under Assumption 1, the occupancy measure (1) satisfies the following Lipschitz proper-
ties for any θ, θ′ ∈ Θ and ξ, ξ′ ∈ Ξ.

∥λθ′,ξ′−λθ,ξ∥≤
γ∥pξ′ − pξ∥+∥πθ′ − πθ∥

1− γ
≤
γℓpξ

√
|S|∥ξ′ − ξ∥+ℓπθ

√
|A|∥θ′ − θ∥

1− γ
. (34)

Proof. For any θ, θ′ ∈ Θ and ξ, ξ′ ∈ Ξ, we have

∥λθ′,ξ′ − λθ,ξ∥

=

√∑
s′,a′

|λθ′,ξ′(s′, a′)− λθ,ξ(s′, a′)|2

(i)
=
[∑
s′,a′

∣∣∣γπθ′(a′|s′)
∑
s,a

[
λθ′,ξ′(s, a)pξ′(s

′|s, a)− λθ,ξ(s, a)pξ(s′|s, a)
]

+
(
(1− γ)ρ(s′) + γ

∑
s,a

λθ,ξ(s, a)pξ(s
′|s, a)

)
[πθ′(a′|s′)− πθ(a′|s′)]

∣∣∣2]1/2
(ii)

≤
√∑

s′,a′

∣∣∣γπθ′(a′|s′)
∑
s,a

λθ′,ξ′(s, a)[pξ′(s′|s, a)− pξ(s′|s, a)]
∣∣∣2

+

√∑
s′,a′

∣∣∣γπθ′(a′|s′)
∑
s,a

pξ(s′|s, a)[λθ′,ξ′(s, a)− λθ,ξ(s, a)]
∣∣∣2

√∑
s′,a′

∣∣∣((1− γ)ρ(s′) + γ
∑
s,a

λθ,ξ(s, a)pξ(s′|s, a)
)
[πθ′(a′|s′)− πθ(a′|s′)]

∣∣∣2
(iii)

≤ γ

√∑
s′

(ℓpξ
∥ξ′ − ξ∥)2

+ γ

√∑
s′

∣∣∣∑
s,a

pξ(s′|s, a)[λθ′,ξ′(s, a)− λθ,ξ(s, a)]
∣∣∣2 +√∑

a′

(ℓπθ
∥θ′ − θ∥)2

(iv)

≤ γℓpξ

√
|S|∥ξ′ − ξ∥+ γ

√∑
s′

∑
s,a

pξ(s′|s, a)|λθ′,ξ′(s, a)− λθ,ξ(s, a)|2 + ℓπθ

√
|A|∥θ′ − θ∥

≤γℓpξ

√
|S|∥ξ′ − ξ∥+ γ∥λθ′,ξ′ − λθ,ξ∥+ ℓπθ

√
|A|∥θ′ − θ∥,

where (i) uses Eq. (32), (ii) uses triangular inequality, (iii) uses Lemma 1,
∑

a′ πθ′(a′|s′)2 ≤ 1 and∑
s′ [(1 − γ)ρ(s′) + γ

∑
s,a λθ,ξ(s, a)pξ(s

′|s, a)] = 1 and (iv) uses Jensen’s inequality. Then Eq.
(34) can be proved by rearranging the above inequality.

Lemma 4. The distance between any pair of probability vectors x, y ∈ ∆X on finite space X has
the upper bound that ∥x− y∥ ≤

√
2.

Proof. Denote d = |X | and xj , yj as the j-th entry of x, y respectively. Then

∥x− y∥2 ≤
d∑

j=1

x2j + y2j − 2xjyj ≤
d∑

j=1

xj + yj = 2.

18

Lemma 5. Under Assumptions 1-2, the projected gradients in (13) have the following properties.

∥G(θ)
β (θ, ξ)∥ ≤ ∥∇θf(λθ,ξ)∥ ≤ ℓθ, ∥G(ξ)

β (θ, ξ)∥ ≤ ∥∇ξf(λθ,ξ)∥ ≤ ℓξ, (35)

∥G(θ)
β (θ′, ξ′)−G(θ)

β (θ, ξ)∥ ≤
(1
β
+ Lθ,θ

)
∥θ′ − θ∥+ Lθ,ξ∥ξ′ − ξ∥, (36)

∥G(ξ)
α (θ′, ξ′)−G(ξ)

α (θ, ξ)∥ ≤ Lξ,θ∥θ′ − θ∥+
(1
α
+ Lξ,ξ

)
∥ξ′ − ξ∥. (37)

Proof. The proof for ∥G(θ)
β (θ, ξ)∥ in Eq. (35) simply follows from the contraction property of

projection as follows.

∥G(θ)
β (θ, ξ)∥ := 1

β

∥∥θ − projΘ
(
θ− β∇θf(λθ,ξ)

∥∥ ≤ 1

β

∥∥θ − (θ− β∇θf(λθ,ξ)
∥∥ = ∥∇θf(λθ,ξ)∥.

Then, ∥∇θf(λθ,ξ)∥ ≤ ℓθ by Proposition 3. The proof logic for ∥G(ξ)
β (θ, ξ)∥ is the same.

Next, we prove Eq. (36) as follows and the proof of Eq. (37) follows the same logic.

∥G(θ)
β (θ′, ξ′)−G(θ)

β (θ, ξ)∥ =1

β
∥projΘ[θ′ − β∇θf(λθ′,ξ′)]− projΘ[θ − β∇θf(λθ,ξ)]∥

≤ 1

β
∥θ′ − θ∥+ ∥∇θf(λθ,ξ)−∇θf(λθ′,ξ′)∥

(i)

≤
(1
β
+ Lθ,θ

)
∥θ′ − θ∥+ Lθ,ξ∥ξ′ − ξ∥, (38)

where (i) uses Proposition 3.

Lemma 6. Suppose X ⊂ Rd is a closed convex set. For any x ∈ Rd and x′ ∈ X , we have

[x′ − projX (x)]⊤[x− projX (x)] ≤ 0 (39)

Proof. For any δ ∈ (0, 1], xδ := δx′ + (1 − δ)projX (x) belongs to the convex set X since
x′, projX (x) ∈ X . Then based on the definition of projection we have

0 ≤∥xδ − x∥2 − ∥projX (x)− x∥2

≤∥xδ − projX (x)∥2 − 2[xδ − projX (x)]⊤[x− projX (x)]

=δ2∥x′ − projX (x)∥2 − 2δ[x′ − projX (x)]⊤[x− projX (x)].

The above inequality can be rearranged as follows

[x′ − projX (x)]⊤[x− projX (x)] ≤ δ

2
∥x′ − projX (x)∥2,

which proves Eq. (39) as δ → +0.

C Stochastic Gradients

To get the stochastic estimation of the gradients (8) and (9), we first estimate the occupancy measure
(1) as follows.

λ̂(τ (λ); s, a) :=
1− γ
mλ

mλ∑
i=1

Hλ−1∑
h=0

γh1{s(λ)i,h = s, a
(λ)
i,h = a}, (40)

where 1{·} is an indicator function and τ (λ) := {τ (λ)i }
mλ
i=1 contains mλ independent trajectories

τ
(λ)
i := {s(λ)i,h , a

(λ)
i,h }

Hλ−1
h=0 (i = 1, . . . ,mλ) of length Hλ generated from the policy πθ and transition

kernel pξ. Then the estimated cost function is ĉ := ∇λf [λ̂(τ
(λ))].

19

Algorithm 3 Obtain Stochastic Gradients at (θ, ξ)

1: Input: z := (θ, ξ) ∈ Z := Θ×Z .
2: Hyperparameters: mλ, Hλ, mθ, Hθ, mξ, Hξ.
3: Generate independent trajectories τ (λ)i := {s(λ)i,h , a

(λ)
i,h }

Hλ−1
h=0 (i = 1, . . . ,mλ) from πθ, pξ.

4: Obtain λ̂(τ (λ); s, a) for every s, a ∈ S ×A by Eq. (40) with τ (λ) := {τ (λ)i }
mλ
i=1.

5: Obtain ĉ := ∇λf [λ̂(τ
(λ))].

6: Generate independent trajectories τ (θ)i := {s(θ)i,h , a
(θ)
i,h}

Hθ−1
h=0 (i = 1, . . . ,mθ) from πθ, pξ.

7: Obtain g(θ)(τ (θ), θ, ξ, ĉ) by Eq. (41) with τ (θ) := {τ (θ)i }
mθ
i=1.

8: Generate independent trajectories τ (ξ)i := {s(ξ)i,h, a
(ξ)
i,h}

Hξ−1
h=0 (i = 1, . . . ,mξ) from πθ, pξ.

9: Obtain g(ξ)(τ (ξ), θ, ξ, ĉ) by Eq. (42) with τ (ξ) := {τ (ξ)i }
mξ

i=1.
10: Output: g(θ)(τ (θ), θ, ξ, ĉ) ≈ ∇θf(λθ,ξ), g(ξ)(τ (ξ), θ, ξ, ĉ) ≈ ∇ξf(λθ,ξ).

The stochastic gradients (8) and (9) can be approximated respectively by the following stochastic
sample averaged values known as GPOMDP [50].

g(θ)(τ (θ), θ, ξ, ĉ) =
1

mθ

mθ∑
i=1

[
Hθ−1∑
t=0

γtĉ(s
(θ)
i,t , a

(θ)
i,t)

t∑
h=0

∇θ log πθ(a
(θ)
i,h | s

(θ)
i,h)

]
, (41)

g(ξ)(τ (ξ), θ, ξ, ĉ) =
1

mλ

mλ∑
i=1

[
Hλ−1∑
t=0

γtĉ(s
(ξ)
i,t , a

(ξ)
i,t)

t∑
h=0

∇ξ log pξ(s
(ξ)
i,h+1 | s

(ξ)
i,h, a

(ξ)
i,h)

]
. (42)

where τ (θ) := {τ (θ)i }
mθ
i=1 and τ (ξ) := {τ (ξ)i }

mξ

i=1 contain mθ independent trajectories τ (θ)i :=

{s(θ)i,h , a
(θ)
i,h}

Hθ−1
h=0 (i = 1, . . . ,mθ) and mξ independent trajectories τ (ξ)i := {s(ξ)i,h, a

(ξ)
i,h}

Hξ−1
h=0 ∪

{s(ξ)i,Hξ
} (i = 1, . . . ,mξ) respectively, both generated from the policy πθ and transition kernel pξ.

We summarize the procedure of obtaining the stochastic gradients (8) and (9) in Algorithm 3. These
stochastic gradients approximate the true gradients with the following error bounds.
Proposition 9. Under Assumptions 1 and 2, the stochastic gradients (41) and (42) have the following
error bounds.

Eπθ,pξ
∥g(θ)(τ (θ), θ, ξ, ĉ)−∇θf(λθ,ξ)∥2

≤
3ℓ2πθ

(1− γ)4
[
L2
λ|S||A|

(1

mλ
+ γ2Hλ

)
+

ℓ2λ
mθ

+ ℓ2λ[1 +Hθ(1− γ)]2γ2Hθ

]
, (43)

Eπθ,pξ
∥g(ξ)(τ (ξ), θ, ξ, ĉ)−∇ξf(λθ,ξ)∥2

≤
3ℓ2pξ

(1− γ)4
[
L2
λ|S||A|

(1

mλ
+ γ2Hλ

)
+

ℓ2λ
mξ

+ ℓ2λ[1 +Hξ(1− γ)]2γ2Hξ

]
. (44)

D Proof of Proposition 1

As follows, we slightly rewrite the utility function f defined in Eq. (5), by replacing λ with λθ,ξ.

f(λθ,ξ) =

{
⟨c(0), λθ,ξ⟩, if ⟨c(k), λθ,ξ⟩ ≤ τk for all k = 1, . . . ,K

+∞, otherwise
.

Therefore, for any θ ∈ Θ, we have

max
ξ∈Ξ

f(λθ,ξ) =

{
max
ξ∈Ξ
⟨c(0), λθ,ξ⟩, if ⟨c(k), λθ,ξ⟩ ≤ τk for all ξ ∈ Ξ and k = 1, . . . ,K

+∞, otherwise
.

Recalling the definition of the robust value function (3), i.e., V (k)
θ

def
= maxξ∈Ξ⟨c(k), λθ,ξ⟩, the

equation above can be rewritten as follows.

max
ξ∈Ξ

f(λθ,ξ) =

{
V

(0)
θ , if V

(k)
θ ≤ τk for all k = 1, . . . ,K

+∞, otherwise
.

20

Therefore, θ ∈ Θ minimizes maxξ∈Ξ f(λθ,ξ) if and only if θ solves the constrained robust RL
problem (4), as repeated below.

min
θ∈Θ

V
(0)
θ , s.t. V

(k)
θ ≤ τk for all k = 1, . . . ,K.

Finally, we will prove that f(λ) defined in Eq. (5) is a convex function. Note thatAk = {λ ∈ ∆S×A :
⟨c(k), λ⟩ ≤ τk} is a convex set, so A = ∩Kk=1Ak is also a convex set. Then for any λ1, λ0 ∈ ∆S×A

and α ∈ [0, 1], we aim to prove that
f [αλ1 + (1− α)λ0] ≤ αf(λ1) + (1− α)f(λ0). (45)

If either λ1 /∈ A or λ0 /∈ A, then Eq. (45) obviously holds as the right side equals +∞. Otherwise, if
λ1, λ0 ∈ A, then δλ1 + (1− δ)λ0 ∈ A as A is a convex set, and thus Eq. (45) holds with equality as
proved below.

f [δλ1 + (1− δ)λ0] =⟨c(0), δλ1 + (1− δ)λ0⟩
=δ⟨c(0), λ1⟩+ (1− δ)⟨c(0), λ0⟩
=δf(λ1) + (1− δ)f(λ0).

E Proof of Proposition 2

The utility function f in Eq. (7) satisfies

f(λθ,ξ) =
∑
s,a

λθ,ξ(s, a)
[
c(s, a) + µ log

λθ,ξ(s, a)∑
a′ λθ,ξ(s, a′)

]
(i)
=
∑
s,a

[
λθ,ξ(s, a)c(s, a)

]
+ µ

∑
s,a

λθ,ξ(s)πθ(a|s) log πθ(a|s)

(ii)
=
∑
s,a

[
λθ,ξ(s, a)c(s, a)

]
− µ

∑
s

[
λθ,ξ(s)H[πθ(·|s)]

]
.

where (i) uses λθ,ξ(s) =
∑

a λθ,ξ(s, a) and Eq. (33) that λθ,ξ(s, a) = λθ,ξ(s)πθ(a|s), and (ii)
denotes the entropy function that H[πθ(·|s)] = −

∑
a πθ(a|s) log πθ(a|s). The above function is

exactly the minimax objective function (6) of the robust entropy regularized RL.

Finally, we will prove that f(λ) defined in Eq. (7) is a convex function. For any λ0, λ1 ∈ ∆S×A and
δ ∈ [0, 1], denote λδ = δλ1 + (1− δ)λ0, λδ(s) =

∑
a λδ(s, a) and policy πδ(a|s) = λδ(s,a)

λδ(s)
. Then,

the convexity of f can be proved as follows.
δf(λ1) + (1− δ)f(λ0)− f(λδ)

=µ
∑
s,a

[
δλ1(s, a) log

λ1(s, a)

λ1(s)
+ (1− δ)λ0(s, a) log

λ0(s, a)

λ0(s)
− λδ(s, a) log

λδ(s, a)

λδ(s)

]
=µ
∑
s,a

[
δλ1(s, a) log π1(a|s) + (1− δ)λ0(s, a) log π0(a|s)

− [δλ1(s, a) + (1− δ)λ0(s, a)] log πδ(a|s)
]

=µ
∑
s,a

[
δλ1(s)π1(a|s) log

π1(a|s)
πδ(a|s)

+ (1− δ)λ0(s)π0(a|s) log
π0(a|s)
πδ(a|s)

]
=µ
∑
s

[
δλ1(s)KL[π1(·|s)∥πδ(·|s)] + (1− δ)λ0(s)KL[π0(·|s)∥πδ(·|s)]

]
≥ 0.

F Proof of Proposition 3

The first formula of Eq. (10) can be proved as follows and the second formula can be proved in the
same way.

∥∇θf(λθ,ξ)∥
(i)

≤ Eπθ,pξ

[
+∞∑
t=0

γt|c(st, at)|
t∑

h=0

∥∇θ log πθ(ah|sh)∥

]

21

(ii)

≤ Eπθ,pξ

[
+∞∑
t=0

γt
t∑

h=0

ℓπθ

]

= ℓπθ

+∞∑
t=0

γt(t+ 1) =
ℓπθ

(1− γ)2
,

where (i) uses Eq. (41) and (ii) uses c(st, at) ∈ [0, 1] and Assumption 1.

Define the following V function.

Vθ,ξ(c) := Eπθ,pξ

[∞∑
t=0

γtc(st, at)
∣∣∣s0 ∼ ρ]. (46)

For any fixed cost function c : S ×A → R, the gradient ∇θVθ,ξ(c) can be rewritten as follows.

∇θVθ,ξ(c)
(i)
=Eπθ,pξ

[
+∞∑
t=0

γtc(st, at)
t∑

h=0

∇θ log πθ(ah|sh)

]

=Eπθ,pξ

[
+∞∑
h=0

γh∇θ log πθ(ah|sh)
+∞∑
t=h

γt−hc(st, at)

]

=
+∞∑
h=0

γh
∑
s,a

Pπθ,pξ
(sh = s, ah = a|s0 ∼ ρ)∇θ log πθ(a|s)

Eπθ,pξ

(
+∞∑
t=h

γt−hc(st, at)

∣∣∣∣∣sh = s, ah = a

)

=
∑
s,a

+∞∑
h=0

γhPπθ,pξ
(sh = s, ah = a|s0 ∼ ρ)∇θ log πθ(a|s)

Eπθ,pξ

(
+∞∑
t=0

γtc(st, at)

∣∣∣∣∣s0 = s, a0 = a

)
(ii)
=

1

1− γ
∑
s,a

λθ,ξ(s, a)∇θ log πθ(a|s)Qθ,ξ(s, a; c), (47)

where (i) uses Eq. (5) of [6] and (ii) uses the occupancy measure (1) and defines the following Q
function.

Qθ,ξ(s, a; c) := Eπθ,pξ

(
+∞∑
t=0

γtc(st, at)

∣∣∣∣∣s0 = s, a0 = a

)
. (48)

The above Q function has the following upper bound

|Qθ,ξ(s, a; c)| ≤
cmax

1− γ
, (49)

where cmax := maxs,a |c(s, a)| and also satisfies the following Bellman equation.

Qθ,ξ(s, a; c) = c(s, a) + γ
∑
s′,a′

pξ(s
′|s, a)πθ(a′|s′)Qθ,ξ(s

′, a′; c). (50)

Therefore, for any θ, θ′ ∈ Θ, ξ, ξ′ ∈ Ξ and fixed cost function c, we have

max
s,a
|Qθ′,ξ′(s, a; c)−Qθ,ξ(s, a; c)|

≤γmax
s,a

∑
s′,a′

|pξ′(s′|s, a)− pξ(s′|s, a)|πθ′(a′|s′)|Qθ′,ξ′(s
′, a′; c)|

+ γmax
s,a

∑
s′,a′

pξ(s
′|s, a)|πθ′(a′|s′)− πθ(a′|s′)||Qθ′,ξ′(s

′, a′; c)|

22

+ γmax
s,a

∑
s′,a′

pξ(s
′|s, a)πθ(a′|s′)|Qθ′,ξ′(s

′, a′; c)−Qθ,ξ(s
′, a′; c)|

(i)

≤ γcmax

1− γ
(
max
s,a
∥pξ′(·|s, a)− pξ(·|s, a)∥1 +max

s
∥πθ′(·|s)− πθ(·|s)∥1

)
+ γmax

s,a
|Qθ′,ξ′(s, a; c)−Qθ,ξ(s, a; c)|,

where (i) uses Eq. (49). Rearranging the above inequality yields that

max
s,a
|Qθ′,ξ′(s, a; c)−Qθ,ξ(s, a; c)|

≤ γcmax

(1− γ)2
(
max
s,a
∥pξ′(·|s, a)− pξ(·|s, a)∥1 +max

s
∥πθ′(·|s)− πθ(·|s)∥1

)
(i)

≤ γcmax

(1− γ)2
(
ℓpξ
|S|∥ξ′ − ξ∥+ ℓπθ

|A|∥θ′ − θ∥
)
. (51)

where (i) uses Lemma 1. For any θ ∈ Θ, ξ ∈ Ξ and fixed cost functions c, c′, we have

max
s,a
|Qθ,ξ(s, a; c)−Qθ,ξ(s, a; c

′)|
(i)

≤Eπθ,pξ

(
+∞∑
t=0

γt|c′(st, at)− c(st, at)|

∣∣∣∣∣s0 = s, a0 = a

)

≤
+∞∑
t=0

γt∥c′ − c∥∞ =
∥c′ − c∥∞
1− γ

. (52)

where (i) uses Eq. (48).

Therefore, Eq. (11) can be proved as follows.

∥∇θf(λθ′,ξ′)−∇θf(λθ,ξ)∥
=∥∇θVθ′,ξ′ [∇λf(λθ′,ξ′)]−∇θVθ,ξ[∇λf(λθ,ξ)]∥
(i)

≤ 1

1− γ
∑
s,a

∣∣λθ′,ξ′(s, a)− λθ,ξ(s, a)
∣∣∥∥∇θ log πθ′(a|s)

∥∥∣∣Qθ′,ξ′ [s, a;∇λf(λθ′,ξ′)]
∣∣

+
1

1− γ
∑
s,a

λθ,ξ(s, a)
∥∥∇θ log πθ′(a|s)−∇θ log πθ(a|s)

∥∥∣∣Qθ′,ξ′ [s, a;∇λf(λθ′,ξ′)]
∣∣

+
1

1− γ
∑
s,a

λθ,ξ(s, a)
∥∥∇θ log πθ(a|s)

∥∥∣∣Qθ′,ξ′ [s, a;∇λf(λθ′,ξ′)]−Qθ,ξ[s, a;∇λf(λθ′,ξ′)]
∣∣

+
1

1−γ
∑
s,a

λθ,ξ(s, a)
∥∥∇θ log πθ(a|s)

∥∥∣∣Qθ,ξ[s, a;∇λf(λθ′,ξ′)]−Qθ,ξ[s, a;∇λf(λθ,ξ)]
∣∣

(ii)

≤ ℓπθ
ℓλ

(1− γ)2
∑
s,a

∣∣λθ′,ξ′(s, a)− λθ,ξ(s, a)
∣∣+ Lπθ

ℓλ
(1− γ)2

∑
s,a

λθ,ξ(s, a)∥θ′ − θ∥

+
ℓπθ

1− γ
∑
s,a

λθ,ξ(s, a) ·
γℓλ

(1− γ)2
(
ℓpξ
|S|∥ξ′ − ξ∥+ ℓπθ

|A|∥θ′ − θ∥
)

+
ℓπθ

(1− γ)2
∑
s,a

λθ,ξ(s, a)
∥∥∇λf(λθ′,ξ′)−∇λf(λθ,ξ)

∥∥
∞

(iii)

≤
ℓπθ

ℓλ
√
|S||A|

(1− γ)2
∥∥λθ′,ξ′ − λθ,ξ

∥∥+ Lπθ
ℓλ

(1− γ)2
∥θ′ − θ∥

+
γℓλℓπθ

(1− γ)3
(
ℓpξ
|S|∥ξ′ − ξ∥+ ℓπθ

|A|∥θ′ − θ∥
)
+

ℓπθ
Lλ

(1− γ)2
∥∥λθ′,ξ′ − λθ,ξ

∥∥
(iv)

≤
ℓπθ

(Lλ + ℓλ
√
|S||A|)

(1− γ)2
·
γℓpξ

√
|S|∥ξ′ − ξ∥+ℓπθ

√
|A|∥θ′ − θ∥

1− γ
+

Lπθ
ℓλ

(1− γ)2
∥θ′ − θ∥

+
γℓλℓπθ

(1− γ)3
(
ℓpξ
|S|∥ξ′ − ξ∥+ ℓπθ

|A|∥θ′ − θ∥
)

23

(v)

≤
γℓπθ

ℓpξ

√
|S|

(1− γ)3
(Lλ+2ℓλ

√
|S||A|)∥ξ′−ξ∥+

(ℓ2πθ

√
|A|(Lλ+ℓλ

√
|S||A|)

(1− γ)3
+

Lπθ
ℓλ

(1− γ)2
)
∥θ′−θ∥,

where (i) uses the gradient (47), (ii) uses Assumptions 1-2 and Eqs. (49), (51) and (52) with
cmax = ∥∇λf(λθ′,ξ′)∥∞ replaced by its upper bound ℓλ, (iii) uses Assumption 2, (iv) uses Lemma 3
and (v) uses Assumption 1.

The proof of Eq. (12) follows the same logic. To elaborate,∇ξVθ,ξ(c) can be derived as follows in a
similar way to the derivation of Eq. (47)

∇ξVθ,ξ(c) :=Eπθ,pξ

[
+∞∑
t=0

γtc(st, at)
t∑

h=0

∇ξ log pξ(sh+1|sh, ah)

]

=
+∞∑
h=0

γh
∑
s,a,s′

Pπθ,pξ
(sh = s, ah = a, sh+1 = s′|s0 ∼ ρ)∇ξ log pξ(s

′|s, a)

Eπθ,pξ

(
+∞∑
t=h

γt−hc(st, at)

∣∣∣∣∣sh = s, ah = a, sh+1 = s′

)

=
+∞∑
h=0

γh
∑
s,a,s′

Pπθ,pξ
(sh = s, ah = a|s0 ∼ ρ)pξ(s′|s, a)∇ξ log pξ(s

′|s, a)

Eπθ,pξ

(
c(s, a) +

+∞∑
t=1

γtc(st, at)

∣∣∣∣∣s0 = s, a0 = a, s1 = s′

)
(i)
=

1

1− γ
∑
s,a,s′

λθ,ξ(s, a)∇ξpξ(s
′|s, a)[c(s, a) + γVθ,ξ(s

′; c)], (53)

where (i) uses the occupancy measure (1) and defines the following V function.

Vθ,ξ(s
′; c) := Eπθ,pξ

[∞∑
t=0

γtc(st, at)
∣∣∣s0 = s′

]
. (54)

The above V function has the following upper bound

|Vθ,ξ(s, a; c)| ≤
cmax

1− γ
, (55)

where cmax := maxs,a |c(s, a)| and also satisfies the following Bellman equation.

Vθ,ξ(s; c) =
∑
a

πθ(a|s)
[
c(s, a) + γ

∑
s′

pξ(s
′|s, a)Vθ,ξ(s′; c)

]
. (56)

As a result,

max
s
|Vθ′,ξ′(s; c)− Vθ,ξ(s; c)|

≤max
s

∑
a

∣∣πθ′(a|s)− πθ(a|s)
∣∣[∣∣c(s, a)∣∣+ γ

∑
s′

pξ′(s
′|s, a)

∣∣Vθ′,ξ′(s
′; c)
∣∣]

+ γmax
s

∑
a

πθ(a|s)
∑
s′

∣∣pξ′(s′|s, a)− pξ(s′|s, a)∣∣Vθ′,ξ′(s
′; c)
∣∣

+ γmax
s

∑
a

πθ(a|s)
∑
s′

pξ(s
′|s, a)

∣∣Vθ′,ξ′(s
′; c)− Vθ,ξ(s′; c)

∣∣]
(i)

≤ cmax

1− γ
(
ℓπθ
|A|∥θ′ − θ∥+ γℓpξ

|S|∥ξ′ − ξ∥
)
+ γmax

s
|Vθ′,ξ′(s; c)− Vθ,ξ(s; c)|,

where (i) uses Eq. (55) and Lemma 1. Rearranging the above inequality yields that

max
s
|Vθ′,ξ′(s; c)− Vθ,ξ(s; c)| ≤

cmax

(1− γ)2
(
ℓπθ
|A|∥θ′ − θ∥+ γℓpξ

|S|∥ξ′ − ξ∥
)
. (57)

24

Similar to Eq. (52), we have

max
s
|Vθ,ξ(s; c′)− Vθ,ξ(s; c)| ≤

∥c′ − c∥∞
1− γ

. (58)

Therefore, we can prove Eq. (12) as follows.

∥∇ξf(λθ′,ξ′)−∇ξf(λθ,ξ)∥
=∥∇ξVθ′,ξ′ [∇λf(λθ′,ξ′)]−∇ξVθ,ξ[∇λf(λθ,ξ)]∥
(i)

≤ 1

1− γ
∑
s,a,s′

∣∣λθ′,ξ′(s, a)− λθ,ξ(s, a)
∣∣∥∥∇ξpξ′(s

′|s, a)
∥∥

∣∣∇λf(λθ′,ξ′)(s, a) + γVθ′,ξ′ [s
′;∇λf(λθ′,ξ′)]

∣∣
+

1

1− γ
∑
s,a,s′

λθ,ξ(s, a)
∥∥∇ξpξ′(s

′|s, a)−∇ξpξ(s
′|s, a)

∥∥
∣∣∇λf(λθ′,ξ′)(s, a) + γVθ′,ξ′ [s

′;∇λf(λθ′,ξ′)]
∣∣

+
γ

1− γ
∑
s,a,s′

λθ,ξ(s, a)
∥∥∇ξpξ(s

′|s, a)
∥∥∣∣Vθ′,ξ′ [s;∇λf(λθ′,ξ′)]− Vθ,ξ[s;∇λf(λθ′,ξ′)]

∣∣
+

1

1− γ
∑
s,a,s′

λθ,ξ(s, a)
∥∥∇ξpξ(s

′|s, a)
∥∥

(
γ
∣∣Vθ,ξ[s;∇λf(λθ′,ξ′)]−Vθ,ξ[s;∇λf(λθ,ξ)]

∣∣+ ∣∣∇λf(λθ′,ξ′)(s, a)−∇λf(λθ,ξ)(s, a)
∣∣)

(ii)

≤
ℓpξ

1− γ

(
ℓλ +

γℓλ
1− γ

) ∑
s,a,s′

pξ′(s
′|s, a)

∣∣λθ′,ξ′(s, a)− λθ,ξ(s, a)
∣∣

+
1

1− γ

(
ℓλ +

γℓλ
1− γ

) ∑
s,a,s′

λθ,ξ(s, a)
[
Lpξ

pξ′(s
′|s, a) + ℓ2pξ

]
∥ξ′ − ξ∥

+
γℓpξ

1− γ
∑
s,a,s′

λθ,ξ(s, a)pξ(s
′|s, a) · ℓλ

(1− γ)2
(
ℓπθ
|A|∥θ′ − θ∥+ γℓpξ

|S|∥ξ′ − ξ∥
)

+
ℓpξ

1− γ
∑
s,a,s′

λθ,ξ(s, a)pξ′(s
′|s, a)

[
γ
∥∥∇λf(λθ′,ξ′)−∇λf(λθ,ξ)

∥∥
∞

1− γ
+
∥∥∇λf(λθ′,ξ′)−∇λf(λθ,ξ)

∥∥
∞

]
(iii)

≤
ℓpξ
ℓλ
√
|S||A|

(1− γ)2
∥∥λθ′,ξ′ − λθ,ξ

∥∥+ ℓλ
(
Lpξ

+ ℓ2pξ
|S|
)

(1− γ)2
∥ξ′ − ξ∥

+
γℓλℓpξ

(1− γ)3
(
ℓπθ
|A|∥θ′ − θ∥+ γℓpξ

|S|∥ξ′ − ξ∥
)
+

ℓpξ
Lλ

(1− γ)2
∥∥λθ′,ξ′ − λθ,ξ

∥∥
(iv)

≤
ℓpξ

(
Lλ + ℓλ

√
|S||A|

)
(1− γ)2

γℓpξ

√
|S|∥ξ′ − ξ∥+ℓπθ

√
|A|∥θ′ − θ∥

1− γ
+
ℓλ
(
Lpξ

+ ℓ2pξ
|S|
)

(1− γ)2
∥ξ′ − ξ∥

+
γℓλℓpξ

(1− γ)3
(
ℓπθ
|A|∥θ′ − θ∥+ γℓpξ

|S|∥ξ′ − ξ∥
)

≤
ℓπθ

ℓpξ

√
|A|
(
Lλ + ℓλ

√
|S||A|

)
(1− γ)3

∥θ′ − θ∥

+
(γℓ2pξ

√
|S|
(
Lλ + 2ℓλ

√
|S||A|

)
(1− γ)3

+
ℓλ
(
Lpξ

+ ℓ2pξ
|S|
)

(1− γ)2
)
∥ξ′ − ξ∥,

where (i) uses the gradient (53) and denotes∇λf(λθ′,ξ′)(s, a) =
∂f(λθ′,ξ′)

∂λ(s,a) as the (s, a)-th element
of ∇λf(λθ′,ξ′), (ii) uses∇ξpξ′(s

′|s, a) = pξ′(s
′|s, a)∇ξ log pξ′(s

′|s, a), Assumptions 1-2 and Eqs.
(31), (55), (57) and (58) with cmax = ∥∇λf(λθ′,ξ′)∥∞ replaced by its upper bound ℓλ, (iii) uses
Assumptions 2 and (iv) uses Eq. (34).

25

G Proof of Proposition 4

Implement one projected gradient step from θ and obtain θ′ = projΘ
(
θ − β∇θf(λθ,ξ)

)
= θ −

βG
(θ)
β (θ, ξ) where the projected gradient G(θ)

β (θ, ξ) is defined by Eq. (13). Based on Assumption 4,
for any δ ∈ [0, δ], there exists θδ ∈ Θ such that λθδ,ξ = (1− δ)λθ′,ξ + δλθ∗(ξ),ξ ∈ Vλθ,ξ

. Based on
Assumption 4, for any δ ∈ [0, δ], there exists θδ ∈ Θ such that λθδ,ξ = (1 − δ)λθ′,ξ + δλθ∗(ξ),ξ ∈
Vλθ′,ξ . Then we have,

∥θδ − θ′∥
(i)

≤ ℓλ−1

∥∥λθδ,ξ − λθ,ξ∥∥ = δℓλ−1

∥∥λθ∗(ξ),ξ − λθ,ξ
∥∥ (ii)

≤
√
2δℓλ−1 , (59)

where (i) uses the Lθ,θ-smoothness of f(λ·,ξ) based on Proposition 3, (ii) uses Lemma 4.

By applying Lemma 6 to X = Θ, x = θ − β∇θf(λθ,ξ), x′ = θδ ∈ Θ (so projX (x) = θ′ =

θ − βG(θ)
β (θ, ξ)), we obtain that

(θδ − θ′)⊤[G(θ)
β (θ, ξ)−∇θf(λθ,ξ)] ≤ 0. (60)

Then on one hand, f(λθδ,ξ) has the following lower bound.

f(λθδ,ξ)
(i)

≥f(λθ′,ξ) +∇θf(λθ′,ξ)
⊤(θδ − θ′)−

Lθ,θ

2
∥θδ − θ′∥2

(ii)

≥ f(λθ′,ξ) +
[
∇θf(λθ′,ξ)−∇θf(λθ,ξ) +G

(θ)
β (θ, ξ)

]⊤
(θδ − θ′)−

Lθ,θ

2
∥θδ − θ′∥2

(iii)

≥ f(λθ′,ξ)−
(
Lθ,θ

∥∥θ′ − θ∥∥+ ∥G(θ)
β (θ, ξ)∥

)
∥θδ − θ′∥ −

Lθ,θ

2
∥θδ − θ′∥2

(iv)

≥ f(λθ′,ξ)−
√
2δℓλ−1

(
βLθ,θ + 1

)
∥G(θ)

β (θ, ξ)∥ − Lθ,θδ
2ℓ2λ−1 , (61)

where (i) and (iii) use Lθ,θ-smoothness of f(λ·,ξ) based on Proposition 3, (ii) uses Eq. (60), and
(iv) uses Lemma 5, ∥θδ − θ′∥ ≤

√
2δℓλ−1 (obtained in the same way as Eq. (59)) and θ′ − θ =

−βG(θ)
β (θ, ξ). On the other hand, f(λθδ,ξ) has the following upper bound since f is convex.

f(λθδ,ξ) ≤ (1− δ)f(λθ′,ξ) + δf(λθ∗(ξ),ξ) = (1− δ)f(λθ′,ξ) + δ min
θ′′∈Θ

f(λθ′′,ξ). (62)

The above two inequalities (61) and (62) imply that

f(λθ′,ξ)− min
θ′′∈Θ

f(λθ′′,ξ) ≤ lim sup
δ→+0

1

δ

[
f(λθ′,ξ)− f(λθδ,ξ)

]
≤
√
2ℓλ−1

(
βLθ,θ + 1

)
∥G(θ)

β (θ, ξ)∥. (63)

Finally, we prove Eq. (20) as follows.

f(λθ,ξ)
(i)

≤f(λθ′,ξ) + ℓθ∥θ′ − θ∥
(ii)

≤ min
θ′′∈Θ

f(λθ′′,ξ) +
[√

2ℓλ−1

(
βLθ,θ + 1

)
+ βℓθ

]
∥G(θ)

β (θ, ξ)∥.

where (i) uses Eq. (10) which implies that fλ·,ξ is ℓθ-Lipschitz, (ii) uses θ′ − θ = −βG(θ)
β (θ, ξ) and

Eq. (63).

H Proof of Proposition 5

We will first prove that ξδ ∈ Ξ. Note that the s-rectangular ambiguity set Ξ can be expressed as a
Cartesian product of Ξs for all s ∈ S . Hence, as Ξ is convex, Ξs is convex for all s ∈ S . Therefore,
for any s ∈ S , ξδ(s, ·, ·) ∈ Ξs since it is a convex combination of ξ0(s, ·, ·) ∈ Ξs and ξ1(s, ·, ·) ∈ Ξs

defined by Eq. (21), so ξδ ∈ Ξ.

26

Next, we will prove λθ,ξδ = δλθ,ξ1 + (1− δ)λθ,ξ0 . Denote λδ := δλθ,ξ1 + (1− δ)λθ,ξ0 , so the aim
becomes to prove λθ,ξδ = λδ . Based on Lemma 2, it suffices to prove the following equation.

λδ(s
′, a′) =

[
(1− γ)ρ(s′) + γ

∑
s,a

λδ(s, a)ξδ(s
′|s, a)

]
πθ(a

′|s′), s′ ∈ S, a′ ∈ A. (64)

For each s ∈ S , consider the following two cases.

(Case 1): λθ,ξ1(s) > 0 or λθ,ξ0(s) > 0.
Note that

λδ(s, a)ξδ(s, a, s
′)

(i)
=
[
δλθ,ξ1(s, a) + (1− δ)λθ,ξ0(s, a)

]δλθ,ξ1(s)ξ1(s, a, s′) + (1− δ)λθ,ξ0(s)ξ0(s, a, s′)
δλθ,ξ1(s) + (1− δ)λθ,ξ0(s)

(ii)
= πθ(a|s)

[
δλθ,ξ1(s) + (1− δ)λθ,ξ0(s)

]δλθ,ξ1(s)ξ1(s, a, s′) + (1− δ)λθ,ξ0(s)ξ0(s, a, s′)
δλθ,ξ1(s) + (1− δ)λθ,ξ0(s)

(iii)
= δλθ,ξ1(s, a)ξ1(s, a, s

′) + (1− δ)λθ,ξ0(s, a)ξ0(s, a, s′), (65)

where (i) uses Eq. (21) and λδ := δλθ,ξ1 + (1− δ)λθ,ξ0 , (ii) and (iii) use Eq. (33).

(Case 2): λθ,ξ0(s) = λθ,ξ1(s) = 0.
In this case, λδ(s) = δλθ,ξ1(s)+(1−δ)λθ,ξ0(s) = 0 and thus λδ(s, a) = λθ,ξ1(s, a) = λθ,ξ0(s, a) =
0 for any a ∈ A, so Eq. (65) also holds for any choice of ξδ(s, ·, ·).
Therefore, we can prove Eq. (64) as follows.[

(1− γ)ρ(s′) + γ
∑
s,a

λδ(s, a)ξδ(s
′|s, a)

]
πθ(a

′|s′)

(i)
=
[
(1− γ)ρ(s′) + γ

∑
s,a

[δλθ,ξ1(s, a)ξ1(s, a, s
′) + (1− δ)λθ,ξ0(s, a)ξ0(s, a, s′)]

]
πθ(a

′|s′)

=δ
[
(1− γ)ρ(s′) + γ

∑
s,a

λθ,ξ1(s, a)ξ1(s, a, s
′)
]
πθ(a

′|s′)

+ (1− δ)
[
(1− γ)ρ(s′) + γ

∑
s,a

λθ,ξ0(s, a)ξ0(s, a, s
′)
]
πθ(a

′|s′)

(ii)
= δλθ,ξ1(s, a) + (1− δ)λθ,ξ0(s, a) = λδ(s, a),

where (i) uses Eq. (65) and λδ := δλθ,ξ1 + (1− δ)λθ,ξ0 and (ii) applies Lemma 2 to λθ,ξ1 and λθ,ξ0 .

I Proof of Proposition 6

Fix any θ ∈ Θ, and there exists at least one ξ∗ ∈ argmaxξ′∈Ξf(λθ,ξ′). If ξ∗ ∈ V (Ξ) :=
×s∈SV (Ξs), then this proposition directly holds. Hence, we focus on the case where ξ∗ /∈ V (Ξ),
which means ξ∗(s0) /∈ V (Ξs0) for at least one s0 ∈ S .

Based on Assumption 6-7, there exists a probability vector ν := [ν1, . . . , νMs0
] such that ξ∗(s0) =∑Ms0

m=1 νmξ
(s0)
m , where we denote ξ′(s) := ξ′(s, ·, ·) ∈ Ξs for all ξ′ ∈ Ξ. Without loss of generality,

we assume ν1 = max1≤m≤Ms
νm (Otherwise we can make this assumption hold by permutating the

elements in each Ξs.).

For any ϵ > 0, define ξ∗1 , ξ
(ϵ) ∈ (∆S)S×A such that ξ∗1(s) = ξ(ϵ)(s) = ξ∗(s) for any s ̸= s0, while

at s = s0 we define ξ∗1(s0) = ξ
(s0)
1 ∈ V (Ξs0) and

ξ(ϵ)(s0) =ξ
∗(s0) + ϵ[ξ∗(s0)− ξ∗1(s0)] = [(1 + ϵ)ν1 − ϵ]ξ(s0)1 +

Ms0∑
m=2

(1 + ϵ)νmξ
(s0)
m ,

which implies that

ξ∗ =
ϵξ(ϵ) + ξ∗1
1 + ϵ

. (66)

27

It is easily seen that ξ∗1 ∈ Ξ by its definition. Since limϵ→+0[(1 + ϵ)ν1(s) − ϵ] = ν1(s) =
max1≤m≤Ms νm(s) > 0, there exists a sufficiently small ϵ > 0 such that [(1 + ϵ)ν1(s) − ϵ, (1 +

ϵ)ν2(s), . . . , (1+ ϵ)νMs(s)] ∈ [0, 1]|Ξs| is a probability vector and thus ξ(ϵ) ∈ Ξ. Furthermore, select
arbitrary δ ∈ [0, 1] if λθ,ξ(ϵ)(s0) = λθ,ξ∗1 (s0) = 0 and the following δ otherwise.

δ =
λθ,ξ(ϵ)(s0)

ϵλθ,ξ∗1 (s0) + λθ,ξ(ϵ)(s0)
, (67)

where λθ,ξ(s) :=
∑

a∈A λθ,ξ(s, a) is defined as the state occupancy measure for any s ∈ S , θ ∈ Θ
and ξ ∈ Ξ. Then it can be directly verified that ξ∗ satisfies the following equality.

ξ∗(s, a, s′) =


arbitrary as long as ξ∗(s, a, ·) ∈ ∆S , if λθ,ξ(ϵ)(s)=λθ,ξ∗1 (s)=0

δλθ,ξ∗1 (s)ξ
∗
1(s, a, s

′)+(1−δ)λθ,ξ(ϵ)(s)ξ(ϵ)(s, a, s′)
δλθ,ξ∗1 (s)+(1−δ)λθ,ξ(ϵ)(s)

, otherwise
.

Hence, based on Proposition 5, ξ∗ satisfies

λθ,ξ∗ = δλθ,ξ∗1 + (1− δ)λθ,ξ(ϵ) . (68)

On one hand, f(λθ,ξ∗1) ≤ f(λθ,ξ∗) and f(λθ,ξ(ϵ)) ≤ f(λθ,ξ∗) since ξ∗ ξ∗ ∈ argmaxξ′∈Ξf(λθ,ξ′).
On the other hand, the above Eq. (68) along with convexity of f implies that

f(λθ,ξ∗) ≤ δf(λθ,ξ∗1) + (1− δ)f(λθ,ξ(ϵ)).

Therefore, f(λθ,ξ∗1) = f(λθ,ξ(ϵ)) = f(λθ,ξ∗) = maxξ′∈Ξ f(λθ,ξ′). If ξ∗1 ∈ V (Ξ), then the proof
is done. Otherwise, note that ξ∗0(s0) /∈ V (Ξs0) while ξ∗1(s0) ∈ V (Ξs0), and ξ∗1(s) = ξ∗0(s) for
any s ̸= s0. Hence, in the same way, we can obtain the sequence ξ∗2 , ξ

∗
3 , . . . , ξ

∗
N that satisfies the

following conditions by changing non-vertex into vertex at one state each time until no non-vertex
remains (i.e., until the condition 2 below holds):

1. For 1 ≤ k ≤ N − 1, ξ∗k(sk) /∈ V (Ξsk) while ξ∗k+1(sk) ∈ V (Ξsk), and ξ∗k(s) = ξ∗k+1(s)
for any s ̸= sk.

2. ξ∗N ∈ V (Ξ).

3. For 1 ≤ k ≤ N , f(λθ,ξ∗k) = maxξ′∈Ξ f(λθ,ξ′).

As a result, we find the optimal vertex ξ∗N ∈ V (Ξ) ∩ argmaxξ′∈Ξf(λθ,ξ′), which concludes the
proof.

J Proof of Proposition 7

Based on Assumption 8, for any θ ∈ Θ and δ ∈ [0, δ], there exists θδ ∈ Θ such that λθδ,ξ =
(1− δ)λθ,ξ + δλθ∗,ξ.

∥θδ − θ∥
(i)

≤ ℓλ−1

∥∥λθδ,ξ − λθ,ξ∥∥ = δℓλ−1

∥∥λθ∗,ξ − λθ,ξ
∥∥ (ii)

≤
√
2δℓλ−1 , (69)

where (i) uses the Lθ,θ-smoothness of f(λ·,ξ) based on Proposition 3, (ii) uses Lemma 4. Hence, on
one hand, using Lθ,θ-smoothness of f(λ·,ξ) based on Proposition 3, f(λθδ,ξ) has the following lower
bound.

f(λθδ,ξ) ≥f(λθ,ξ) +∇θf(λθ,ξ)
⊤(θδ − θ)−

Lθ,θ

2
∥θδ − θ∥2, (70)

On the other hand, f(λθδ,ξ) has the following upper bound since f is convex.

f(λθδ,ξ) ≤ (1− δ)f(λθ,ξ) + δf(λθ∗,ξ) = (1− δ)f(λθ,ξ) + δ min
θ′∈Θ

max
ξ′∈Ξ

f(λθ′,ξ′). (71)

Combining the above two inequalities, we obtain that

−∇θf(λθ,ξ)
⊤ θδ − θ
∥θδ − θ∥

≥f(λθ,ξ)− f(λθδ,ξ)
∥θδ − θ∥

− Lθ,θ

2
∥θδ − θ∥

28

(i)

≥ δ[f(λθ,ξ)−minθ′∈Θ maxξ′∈Ξ f(λθ′,ξ′)]

∥θδ − θ∥
− Lθ,θ

2
∥θδ − θ∥

(ii)

≥ f(λθ,ξ)−minθ′∈Θ maxξ′∈Ξ f(λθ′,ξ′)√
2ℓλ−1

−
√
2δℓλ−1Lθ,θ

2
(72)

where (i) uses Eq. (71), and (ii) uses Eq. (69) and assumes f(λθ,ξ) ≥ minθ′∈Θ maxξ′∈Ξ f(λθ′,ξ′)
without loss of generality (otherwise, Eq. (24) trivially holds).

Based on the Bolzano–Weierstrass theorem, there exists a sequence δn → +0 such that θδn−θ
∥θδn−θ∥ →

d ∈ RdΘ as n → +∞. Hence, ∥d∥ = 1 and we can conclude the proof by letting δ = δn and
n→ +∞ in the above inequality.

K Proof of Proposition 8

K.1 Proof of Assumptions 1, 2 and 3

Proposition 2 indicates that the utility function f defined by Eq. (7) is convex, which proves
Assumption 3.

To prove Assumptions 1 and 2, it suffices to prove that the following functions have bounded
first-order and second-order derivatives for any (s, a, s′) ∈ S ×A× S .

1. log πθ(a|s) = θs,a − log
∑

a′ exp(θs,a′) as a function of θ ∈ Θ = [−R,R]|S|×|A|.

2. log pξ(s
′|s, a) = log ξ(s, a, s′) as a function of ξ ∈ Ξ = {ξ′ ∈ (∆S)S×A : ∥ξ′(s, :, :

)− ξ̂(s, :, :)∥p ≤ αs, ∀s ∈ S} where p ∈ {1,∞} and ξ̂(s, a, s′) > αs, ∀s, a, s′.

3. f(λ) =
∑

s,a λ(s, a)
[
c(s, a) + µ log λ(s,a)∑

a′ λ(s,a′)

]
(repeat Eq. (7)) as a function of λ ∈ Λ =

{λθ,ξ : θ ∈ Θ, ξ ∈ Ξ}.

For any θ ∈ Θ = [−R,R]|S|×|A|, we have

πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′)

≥ πmin
def
=

exp(−R)
exp(−R) + (|A| − 1) exp(R)

> 0. (73)

When p = 1 or p =∞, any ξ ∈ Ξ satisfies

pξ(s
′|s, a) = ξ(s, a, s′) ≥ ξ̂(s, a, s′)− ∥ξ(s, :, :)− ξ̂(s, :, :)∥p

≥ ξ̂(s, a, s′)− αs

≥ ξmin
def
= min

s,a,s′
[ξ̂(s, a, s′)− αs] > 0, (74)

where ξmin > 0 since it is minimum over finitely many positive numbers ξ̂(s, a, s′)− αs. Then for
any θ ∈ Θ and ξ ∈ Ξ, we have

λθ,ξ(s, a)
def
= (1− γ)

+∞∑
t=0

γtPπθ,pξ
(st = s, at = a|s0 ∼ ρ)

≥ γ(1− γ)Pπθ,pξ
(s1 = s, a1 = a|s0 ∼ ρ)

= γ(1− γ)
∑
s′,a′

ρ(s′)πθ(a
′|s′)pξ(s|s′, a′)πθ(a|s)

≥ γ(1− γ)
∑
s′,a′

ρ(s′)πθ(a
′|s′)ξminπmin

= λmin
def
= ξminπminγ(1− γ) > 0. (75)

Finally, for any (s, a, s′), (s1, a1, s
′
1), (s2, a2, s

′
2) ∈ S ×A× S , we obtain all the derivative bounds

as follows, where 1{·} is an indicator function.

∂ log πθ(a|s)
∂θ(s1, a1)

= 1{s1 = s}
[
1{a1 = a} − πθ(a1|s)

]
∈ [−1, 1].

29

∂2 log πθ(a|s)
∂θ(s1, a1)∂θ(s2, a2)

= −1{s1 = s}πθ(a1|s)
∂ log πθ(a|s)
∂θ(s2, a2)

∈ [−1, 1].

∂ log pξ(s
′|s, a)

∂ξ(s1, a1, s′1)
=

1

ξ(s, a, s′)
1{(s1, a1, s′1) = (s, a, s′)} ∈ [0, ξ−1

min].

∂2 log pξ(s
′|s, a)

∂ξ(s1, a1, s′1)∂ξ(s2, a2, s
′
2)

=−ξ−2(s, a, s′)1{(s1, a1, s′1)=(s2, a2, s
′
2)=(s, a, s′)}∈ [−ξ−2

min, 0].

∂f(λ)

∂λ(s1, a1)
=c(s1, a1)+log

λ(s1, a1)∑
a′ λ(s1, a′)

+1− λ(s1, a1)∑
a′ λ(s1, a′)

∈
[
cmin−log(|A|λmin), cmax+1

]
,

where cmin = mins,a c(s, a) and cmax = maxs,a c(s, a).

∂2f(λ)

∂λ(s1, a1)∂λ(s2, a2)
=1{s1 = s2}

[
1{a1 = a2}
λ(s1, a1)

− 1∑
a′ λ(s1, a′)

−1{a1 = a2}−λ(s1, a1)
[
∑

a′ λ(s1, a′)]2

]
∈
[
− 1

|A|λmin
− 1

|A|2λ2min

,
1

λmin
+

1

|A|λmin

]
.

K.2 Proof of Assumptions 5, 6 and 7 about ambiguity set Ξ

It is straightforward to verify that the ambiguity set Ξ = {ξ ∈ (∆S)S×A : ∥ξ(s, :, :)− ξ̂(s, :, :)∥p ≤
αs, ∀s ∈ S} (p ∈ {1,∞}) is convex and compact, which proves Assumption 5.

Assumption 6 can be proved easily by letting Ξs = {ξs ∈ (∆S)A : ∥ξs − ξ̂(s, :, :)∥p ≤ αs}
(p ∈ {1,∞}).

Then we will prove Assumption 7, that is, Ξs = {ξs ∈ (∆S)A : ∥ξs−ξ̂(s, :, :)∥p ≤ αs} (p ∈ {1,∞})
is a polyhedron. Based on Definition 1.1 and Theorem 1.26 of [9], it is equivalent to prove that Ξs is
bounded (already proved above) and is an intersection of finitely many closed half-planes (obvious
based on the definitions of ∥ · ∥1 and ∥ · ∥∞).

K.3 Proof of Assumptions 4 and 8

We will only prove Assumption 8, since Assumption 4 can be proved in the same way.

Fix any ξ ∈ Ξ and θ ∈ Θ = [−R,R]|S|×|A|. Then we select any θ∗ = θ∗(θ) ∈ argminθ′∈Θmin
∥θ′−

θ∥∞ where Θmin := argminθ′∈Θ Γ(θ′) is a compact set since Γ is a continuous function.

Define the following notations.
• λ(δ)θ,ξ = (1− δ)λθ,ξ + δλθ∗,ξ for δ ∈ [0, 1] (we select δ = 1).

• Policy π(δ)
θ,ξ defined as π(δ)

θ,ξ(a|s) =
λ
(δ)
θ,ξ(s,a)

λ
(δ)
θ,ξ(s)

where λ(δ)θ,ξ(s) =
∑

a′ λ
(δ)
θ,ξ(s, a

′)

(Note that λ(δ)θ,ξ(s) ≥ λ
(δ)
θ,ξ(s, a) ≥ λmin > 0, so λ(δ)θ,ξ(s) can be the denominator and π(δ)

θ,ξ(a|s) > 0).

• θ(δ)θ,ξ ∈ R|S|×A with each entry defined as follows.

(θ
(δ)
θ,ξ)s,a = log

[
(1− δ)λθ,ξ(s, a) + δλθ∗,ξ(s, a)

(1− δ)λθ,ξ(s, a) exp(−θs,a) + δλθ∗,ξ(s, a) exp(−θ∗s,a)

]
, (76)

which is valid since π(δ)
θ,ξ(a|s) > 0 and πθ(a|s) ≥ πmin > 0.

• Uθ,ξ = {θ(δ)θ,ξ : δ ∈ [0, 1]} ⊂ R|S|×|A|.

• Vθ,ξ = {λ(δ)θ,ξ : δ ∈ [0, 1]} ⊂ ∆S×A.

Now, it remains to prove the following two statements.
(P1): θ(0)θ,ξ = θ and θ(1)θ,ξ = θ∗.
(P2): Uθ,ξ ⊂ Θ = [−R,R]|S|×|A|.

30

(P3): λ(δ)θ,ξ = λ
θ
(δ)
θ,ξ,ξ

.

(P4): The mapping θ(δ)θ,ξ → λ
(δ)
θ,ξ from Uθ,ξ to Vθ,ξ is a bijection and is Lipschitz continuous in both

directions.

(P1) obviously follows from Eq. (76).

Note that (θ(δ)θ,ξ)s,a defined by Eq. (76) is a monotone function of δ ∈ [0, 1], and (P1) implies that

(θ
(0)
θ,ξ)s,a = θs,a ∈ [−R,R] and θ(1)θ,ξ = θ∗s,a ∈ [−R,R]. Therefore, (θ(δ)θ,ξ)s,a ∈ [−R,R] which

proves (P2).

To prove (P3), rewrite Eq. (76) as follows.

(θ
(δ)
θ,ξ)s,a

= log[λ
(δ)
θ,ξ(s, a)]− log

[
(1− δ)λθ,ξ(s)πθ(a|s) exp(−θs,a) + δλθ∗,ξ(s)πθ∗(a|s) exp(−θ∗s,a)

]
= log[λ

(δ)
θ,ξ(s, a)]− log

[(1− δ)λθ,ξ(s)∑
a′ exp(θs,a′)

+
δλθ∗,ξ(s)∑
a′ exp(θ∗s,a′)

]
= log

[
λ
(δ)
θ,ξ(s)π

(δ)
θ,ξ(a|s)

]
− log

[(1− δ)λθ,ξ(s)∑
a′ exp(θs,a′)

+
δλθ∗,ξ(s)∑
a′ exp(θ∗s,a′)

]
= log

[
π
(δ)
θ,ξ(a|s)

]
+ cδ(s), (77)

where we denote cδ(s) := log
[
λ
(δ)
θ,ξ(s)

]
− log

[
(1−δ)λθ,ξ(s)∑
a′ exp(θs,a′)

+
δλθ∗,ξ(s)∑
a′ exp(θ∗

s,a′)

]
. Therefore,

π
θ
(δ)
θ,ξ

(a|s) =
exp

[
(θ

(δ)
θ,ξ)s,a

]∑
a′ exp

[
(θ

(δ)
θ,ξ)s,a′

] = π
(δ)
θ,ξ(a|s) =

λ
(δ)
θ,ξ(s, a)

λ
(δ)
θ,ξ(s)

. (78)

Note that for any θ′ ∈ R|S|×|A|, we have

λθ′,ξ(s
′) =

∑
a′

λθ′,ξ(s
′, a′)

(i)
=
∑
a′

[
(1− γ)ρ(s′) + γ

∑
s,a

λθ′,ξ(s, a)pξ(s
′|s, a)

]
πθ′(a′|s′)

=(1− γ)ρ(s′) + γ
∑
s,a

λθ′,ξ(s, a)pξ(s
′|s, a) (79)

where (i) uses Lemma 2. Then we have[
(1− γ)ρ(s′) + γ

∑
s,a

λ
(δ)
θ,ξ(s, a)pξ(s

′|s, a)
]
π
θ
(δ)
θ,ξ

(a′|s′)− λ(δ)θ,ξ(s
′, a′)

(i)
=π

θ
(δ)
θ,ξ

(a′|s′)
[
(1− γ)ρ(s′) + γ

∑
s,a

λ
(δ)
θ,ξ(s, a)pξ(s

′|s, a)− λ(δ)θ,ξ(s
′)
]

(ii)
= δπ

θ
(δ)
θ,ξ

(a′|s′)
[
(1− γ)ρ(s′) + γ

∑
s,a

λθ,ξ(s, a)pξ(s
′|s, a)− λθ,ξ(s′)

]
+ (1− δ)π

θ
(δ)
θ,ξ

(a′|s′)
[
(1− γ)ρ(s′) + γ

∑
s,a

λθ∗,ξ(s, a)pξ(s
′|s, a)− λθ∗,ξ(s

′)
]

(iii)
= 0,

where (i) uses Eq. (78), (ii) uses λ(δ)θ,ξ = (1 − δ)λθ,ξ + δλθ∗,ξ and (iii) uses the Eq. (79) for
θ′ ∈ {θ∗, θ}. Based on Lemma 2, the equality above implies (P3).

Next, we prove (P4). Note that the mapping from θ to λ(δ)θ,ξ = λ
θ
(δ)
θ,ξ,ξ

is Lipschitz continuous based

on Lemma 3. Hence, we only need to consider its reverse mapping.

31

If λθ∗,ξ = λθ,ξ, then πθ∗ = πθ. Hence, θ ∈ Θmin := argminθ′∈Θ Γ(θ′) because Γ(θ′) =
maxξ′∈Ξ f(λθ′,ξ′) can be seen as a function of πθ′ . Therefore, θ∗ = θ which means Uθ,ξ = {θ} and
Vθ,ξ = {λθ,ξ} are singletons. In this case, (P4) trivially holds.

Therefore, we focus on the case where λθ∗,ξ ̸= λθ,ξ . Before proving (P4), we will prove the following
statement.

(P5) There exists a constant L′ > 0 such that ∥θ∗ − θ∥∞ ≤ L′∥λθ∗,ξ − λθ,ξ∥∞ for any θ ∈ Θ =

[−R,R]|S|×|A|.

Define θ′∗ ∈ θ ∈ R|S|×|A| such that θ′∗s,a = θ∗s,a + 1
|A|
∑

a′(θs,a′ − θ∗s,a′). Then it can be easily
verified that

πθ′∗,ξ = πθ∗,ξ, (80)∑
a′

θ′∗s,a′ =
∑
a′

θs,a′ . (81)

Note that πθ(a|s) = exp(θs,a)∑
a′ exp(θs,a′)

and πθ′(a|s) = exp(θ′
s,a)∑

a′ exp(θ′
s,a′)

, so θ′s,a − θs,a = log πθ′(a|s) −

log πθ(a|s) + u(s) where u(s) := log
[∑

a′ exp(θ′s,a′)
]
− log

[∑
a′ exp(θs,a′)

]
. Then combining

with Eq. (81), we obtain that u(s) = 1
|A|
∑

a′ [log πθ(a
′|s)− log πθ′(a′|s)]. Therefore,

|θ′∗s,a − θs,a|

≤| log πθ′∗(a|s)− log πθ(a|s)|+
1

|A|
∑
a′

∣∣ log πθ(a′|s)− log πθ′∗(a′|s)
∣∣

(i)

≤π−1
min|πθ∗(a|s)− πθ(a|s)|+

π−1
min

|A|
∑
a′

∣∣πθ(a′|s)− πθ∗(a′|s)
∣∣

≤2π−1
min max

a′

∣∣πθ∗(a′|s)− πθ(a′|s)
∣∣

≤2π−1
min max

a′

∣∣∣λθ∗,ξ(s, a
′)

λθ∗,ξ(s)
− λθ,ξ(s, a

′)

λθ,ξ(s)

∣∣∣
=2π−1

min max
a′

[∣∣∣λθ∗,ξ(s, a
′)− λθ,ξ(s, a′)
λθ∗,ξ(s)

+
λθ,ξ(s, a

′)

λθ∗,ξ(s)λθ,ξ(s)
[λθ,ξ(s)− λθ∗,ξ(s)]

∣∣∣
(ii)

≤ 2

|A|λminπmin
max
a′
|λθ∗,ξ(s, a

′)− λθ,ξ(s, a′)|

+
2

|A|2λ2minπmin
·
∑
a′

|λθ∗,ξ(s, a
′)− λθ,ξ(s, a′)|

≤4∥λθ∗,ξ − λθ,ξ∥∞
|A|λ2minπmin

, (82)

where (i) uses Eqs. (73) and (80) which imply that πθ(a|s), πθ∗(a|s) = πθ′(a|s) ∈ [πmin, 1] for
θ, θ∗ ∈ Θ, (ii) uses λθ∗,ξ(s), λθ,ξ(s) ≥ |A|λmin for θ, θ∗ ∈ Θ as a result of Eq. (75).

Based on the definition of θ′∗, we have maxa′ θ′∗s,a′ − mina′ θ′∗s,a′ = maxa′ θs,a′ − mina′ θs,a′ ≤
2R. Therefore, for each s ∈ S, there are three cases: −R ≤ mina′ θ′∗s,a′ ≤ maxa′ θ′∗s,a′ ≤ R,
maxa′ θ′∗s,a′ > R and mina′ θ′∗s,a′ < −R, and we can define θ′′ ∈ R|S|×|A| as follows

θ′′s,a =


θ′∗s,a, −R ≤ min

a′
θ′∗s,a′ ≤ max

a′
θ′∗s,a′ ≤ R

θ′∗s,a −max
a′

θ′∗s,a′ +R, max
a′

θ′∗s,a′ > R

θ′∗s,a −min
a′

θ′∗s,a′ −R, min
a′

θ′∗s,a′ < −R

.

It can be easily verified that the θ′′ defined above satisfies θ′′ ∈ Θ = [−R,R]|S|×|A| (since
maxa′ θ′∗s,a′ − mina′ θ′∗s,a′ ≤ 2R) and πθ′′ = πθ′∗ = πθ∗ (the second = comes from Eq. (80)).
Therefore, θ′′ ∈ Θmin and thus

∥θ∗ − θ∥∞
(i)

≤ ∥θ′′ − θ∥∞ ≤ ∥θ′′ − θ′∗∥∞ + ∥θ′∗ − θ∥∞, (83)

32

where (i) uses θ′′ ∈ Θmin and θ∗ ∈ argminθ′∈Θmin
∥θ′ − θ∥∞. To further obtain the upper bound of

∥θ′′ − θ′∗∥∞ in the above inequality, we discuss the three aforementioned cases.

(Case I): When −R ≤ mina′ θ′∗s,a′ ≤ maxa′ θ′∗s,a′ ≤ R, we have θ′′s,a − θ′∗s,a = 0.

(Case II): When maxa′ θ′∗s,a′ > R, we have

0 < θ′∗s,a − θ′′s,a = max
a′

θ′∗s,a′ −R
(i)

≤ max
a′

θ′∗s,a′ −max
a′

θs,a′ ≤ ∥θ′∗ − θ∥∞,

where (i) uses θ ∈ Θ = [−R,R]|S|×|A|.

(Case III): When mina′ θ′∗s,a′ < −R, we have

0 < θ′′s,a − θ′∗s,a = −min
a′

θ′∗s,a′ −R
(i)

≤ min
a′

θs,a′ −min
a′

θ′∗s,a′ ≤ ∥θ′∗ − θ∥∞,

where (i) uses θ ∈ Θ = [−R,R]|S|×|A|.

Summarizing the above three cases, we obtain that ∥θ′′ − θ′∗∥∞ ≤ ∥θ′∗ − θ∥∞ and therefore Eq.
(83) implies that

∥θ∗ − θ∥∞ ≤ ∥θ′′ − θ′∗∥∞ + ∥θ′∗ − θ∥∞ ≤ 2∥θ′∗ − θ∥∞
(i)

≤ 8∥λθ∗,ξ − λθ,ξ∥∞
|A|λ2minπmin

def
= L′, (84)

where (i) uses Eq. (82). This proves (P5).

We consider Eq. (76) as a function of δ and take its derivative as follows.∣∣∣∂(θ(δ)θ,ξ)s,a

∂δ

∣∣∣
=
∣∣∣ λθ∗,ξ(s, a)− λθ,ξ(s, a)
(1− δ)λθ,ξ(s, a) + δλθ∗,ξ(s, a)

+
λθ∗,ξ(s, a) exp(−θ∗s,a)− λθ,ξ(s, a) exp(−θs,a)

(1− δ)λθ,ξ(s, a) exp(−θs,a) + δλθ∗,ξ(s, a) exp(−θ∗s,a)

∣∣∣
(i)

≤∥λθ
∗,ξ − λθ,ξ∥∞
λmin

+
|λθ∗,ξ(s, a)[exp(−θ∗s,a)− exp(−θs,a)] + exp(−θs,a)[λθ∗,ξ(s, a)− λθ,ξ(s, a)]|

λmin exp(−R)
(ii)

≤ ∥λθ
∗,ξ − λθ,ξ∥∞
λmin

+
exp(R)|θ∗s,a − θs,a|+ exp(R)|λθ∗,ξ(s, a)− λθ,ξ(s, a)|

λmin exp(−R)
(iii)

≤ ∥λθ
∗,ξ − λθ,ξ∥∞
λmin

+ exp(2R) · L
′∥λθ∗,ξ − λθ,ξ∥∞ + ∥λθ∗,ξ − λθ,ξ∥∞

λmin

≤2(L′ + 1) exp(2R)

λmin
∥λθ∗,ξ − λθ,ξ∥∞ (85)

where (i) uses θ, θ∗ ∈ Θ = [−R,R]|S|×|A| and Eq. (75), (ii) uses θ, θ∗ ∈ Θ = [−R,R]|S|×|A|, (iii)
uses Eq. (84).

Therefore, for any δ, δ′ ∈ [0, 1], we have

∥θ(δ
′)

θ,ξ − θ
(δ)
θ,ξ∥∞ ≤

2(L′ + 1) exp(2R)

λmin
∥λθ∗,ξ − λθ,ξ∥∞|δ′ − δ|

=
2(L′ + 1) exp(2R)

λmin
∥λ(δ

′)
θ,ξ − λ

(δ)
θ,ξ∥∞,

which proves the statement (P4) and thus proves Assumption 8.

Assumption 4 can be proved in the same way simply by replacing θ∗ with any θ∗(ξ) ∈
argminθ′∈Θ f(λθ′,ξ).

L Proof of Proposition 9

The estimated occupancy measure (40) is an unbiased estimator of the following truncated occupancy
measure with truncation level Hλ.

λ
(Hλ)
θ,ξ (s, a)

def
= (1− γ)

Hλ−1∑
t=0

γtPπθ,pξ
(st = s, at = a|s0 ∼ ρ). (86)

33

Denote λ̂(τ (λ)) :=
[
λ̂(τ (λ); s, a)

]
s,a∈S×A ∈ R|S||A|, λ(Hλ)

θ,ξ :=
[
λ
(Hλ)
θ,ξ (s, a)

]
s,a∈S×A ∈ R|S||A|,

λθ,ξ :=
[
λθ,ξ(s, a)

]
s,a∈S×A ∈ R|S||A|, Then the estimation error of occupancy measure has the

following upper bound.

Eπθ,pξ

∥∥λ̂(τ (λ))− λθ,ξ∥∥2
(i)
= Varπθ,pξ

[
λ̂(τ (λ))

]
+ Eπθ,pξ

∥∥λ(Hλ)
θ,ξ − λθ,ξ

∥∥2
(ii)
=

1

mλ
Var
[
λ̂1(τ

(λ)
1)

]
+
∑
s,a

∣∣∣(1− γ) +∞∑
t=Hλ

γtPπθ,pξ
(st = s, at = a|s0 ∼ ρ)

∣∣∣2
(iii)

≤ 1

mλ
E
∥∥λ̂1(τ (λ)1)

∥∥2 + [(1− γ) +∞∑
t=Hλ

γt
]∑

s,a

[
(1− γ)

+∞∑
t=Hλ

γtPπθ,pξ
(st = s, at = a|s0 ∼ ρ)

]
(iv)

≤ 1

mλ
+ γ2Hλ , (87)

where (i) uses E∥X∥2 = VarX + ∥EX∥2 for random vector X := λ̂(τ (λ)) − λθ,ξ, (ii) uses Eqs.
(1) and (86) and uses the fact that λ̂ defined by Eq. (40) is average among the mλ i.i.d. individual
estimators λ̂i(τ

(λ)
i ; s, a) := (1− γ)

∑Hλ−1
h=0 γh1{s(λ)i,h = s, a

(λ)
i,h = a} for i = 1, . . . ,mλ, (iii) uses

VarX ≤ E∥X∥2 for random vector X := λ̂1(τ
(λ)) and Pπθ,pξ

(st = s, at = a|s0 ∼ ρ) ∈ [0, 1], and
(iv) uses 0≤∥λ̂1(τ (λ)i ∥2≤

∑
s,a λ̂1(τ

(λ)
i ; s, a) = 1 and

∑
s,a Pπθ,pξ

(st = s, at = a|s0 ∼ ρ) = 1.

Define the cost function as c := ∇λf(λθ,ξ). The error of estimating c by ĉ := ∇λf [λ̂(τ
(λ))] has the

following upper bounds.

Eπθ,pξ
∥ĉ− c∥2∞ =Eπθ,pξ

∥∇λf
[
λ̂(τ (λ))−∇λf(λθ,ξ)∥2∞

(i)

≤L2
λEπθ,pξ

∥λ̂(τ (λ))− λθ,ξ∥2

(ii)

≤ L2
λ

(1

mλ
+ γ2Hλ

)
(88)

Eπθ,pξ
∥ĉ− c∥2 ≤ |S||A|Eπθ,pξ

∥ĉ− c∥2∞ ≤ L2
λ|S||A|

(1

mλ
+ γ2Hλ

)
(89)

where (i) uses Assumption 2 and (ii) uses Eq. (87). Also, c and ĉ have the following norm bound
based on Assumption 2.

max
(
∥c∥∞, ∥ĉ∥∞

)
≤ ℓλ. (90)

Note that g(θ)(τ (θ), θ, ξ, c) defined by Eq. (41) (replace ĉ with c) is the average of the following mθ

i.i.d. individual stochastic gradients.

g
(θ)
i (τ

(θ)
i , θ, ξ, c) =

Hθ−1∑
t=0

γtc(s
(θ)
i,t , a

(θ)
i,t)

t∑
h=0

∇θ log πθ(a
(θ)
i,h | s

(θ)
i,h). (91)

Then it can be easily seen that g(θ)i (τ
(θ)
i , θ, ξ, c) defined above is an unbiased estimator of the

following truncated policy gradient.

∇θf
(Hθ)(λθ,ξ) = Eπθ,pξ

[
Hθ−1∑
t=0

γtc(st, at)
t∑

h=0

∇θ log πθ(ah|sh)

]
. (92)

Also, g(θ)i (τ
(θ)
i , θ, ξ, c) can be bounded as follows by using Eq. (90) and Assumption 1.

∥g(θ)i (τ
(θ)
i , θ, ξ, c)∥ ≤

Hθ−1∑
t=0

γt|c(s(θ)i,t , a
(θ)
i,t)|

t∑
h=0

∥∇θ log πθ(a
(θ)
i,h | s

(θ)
i,h)∥

34

≤
Hθ−1∑
t=0

(t+ 1)γtℓλℓπθ
≤ ℓλℓπθ

(1− γ)2
. (93)

Therefore, we can prove Eq. (43) as follows, and Eq. (44) can be proved using the same logic.

Eπθ,pξ
∥g(θ)(τ (θ), θ, ξ, ĉ)−∇θf(λθ,ξ)∥2

≤3Eπθ,pξ
∥g(θ)(τ (θ), θ, ξ, ĉ)− g(θ)(τ (θ), θ, ξ, c)∥2

+ 3Eπθ,pξ
∥g(θ)(τ (θ), θ, ξ, c)−∇θf

(Hθ)(λθ,ξ)∥2 + 3∥∇θf
(Hθ)(λθ,ξ)−∇θf(λθ,ξ)∥2

(i)

≤3Eπθ,pξ

∥∥∥ 1

mθ

mθ∑
i=1

Hθ−1∑
t=0

γt
[
ĉ(s

(θ)
i,t , a

(θ)
i,t)− c(s

(θ)
i,t , a

(θ)
i,t)
] t∑
h=0

∇θ log πθ(a
(θ)
i,h | s

(θ)
i,h)
∥∥∥2

+ 3Varπθ,pξ
[g(θ)(τ (θ), θ, ξ, c)] + 3

∥∥∥Eπθ,pξ

+∞∑
t=Hθ

γtc(st, at)
t∑

h=0

∇θ log πθ(ah|sh)
∥∥∥2

(ii)

≤ 3Eπθ,pξ

[1

mθ

mθ∑
i=1

Hθ−1∑
t=0

γt∥ĉ− c∥∞(t+ 1)ℓπθ

]2
+

3

mθ
Varπθ,pξ

[g
(θ)
1 (τ

(θ)
1 , θ, ξ, c)] + 3

(+∞∑
t=Hθ

γtℓλℓπθ
(t+ 1)

)2
(iii)

≤ 3L2
λ|S||A|

(1

mλ
+ γ2Hλ

)(ℓπθ

(1− γ)2
)2

+
3

mθ

(ℓλℓπθ

(1− γ)2
)2

+ 3
(ℓλℓπθ

γHθ [1 +Hθ(1− γ)]
(1− γ)2

)2
≤

3ℓ2πθ

(1− γ)4
[
L2
λ|S||A|

(1

mλ
+ γ2Hλ

)
+

ℓ2λ
mθ

+ ℓ2λ[1 +Hθ(1− γ)]2γ2Hθ

]
,

where (i) uses Eqs. (8),(41),(92) and ∇θf
(Hθ)(λθ,ξ) = Eπθ,pξ

g(θ)(τ (θ), θ, ξ, c), (ii) uses Eq. (90),
Assumption 1 and g(θ)(τ (θ), θ, ξ, c) = 1

mθ

∑mθ

i=1 g
(θ)
i (τ

(θ)
i , θ, ξ, c) where {g(θ)i (τ

(θ)
i , θ, ξ, c)}mθ

i=1 are
independent, (iii) uses Eqs. (89) and (93).

M Proof of Theorem 1

The policy gradient (8) is proved by Eqs. (5) and (6) of [6]. We will next prove the transition gradient
(9).

Under the transition kernel pξ and policy πθ, the probability of obtaining a certain trajectory τt =
{sh, ah}th=0 ∪ {st+1} with initial state distribution ρ can be expressed as follows.

Pπθ,pξ
(τt) = ρ(s0)

t∏
h=0

[
πθ(ah|sh)pξ(sh+1|sh, ah)

]
.

Hence, the gradient of the log of the above probability can be computed as follows.

∇ξ logPπθ,pξ
(τt) =

t∑
h=0

∇ξ log pξ(sh+1|sh, ah). (94)

Denote c := ∇λf(λθ,ξ). Then the transition gradient (9) can be obtained as follows.

∇ξf(λθ,ξ) = ∇λf(λθ,ξ)
⊤∇ξλθ,ξ

=
∑
s,a

c(s, a)∇ξ

∞∑
t=0

γtPπθ,pξ
(st = s, at = a)

= ∇ξ

∞∑
t=0

∫
γtc(st, at)Pπθ,pξ

(τt)dτt

35

=
∞∑
t=0

∫
γtc(st, at)∇ξPπθ,pξ

(τt)dτt

=
∞∑
t=0

∫
γtc(st, at)

[∇ξPπθ,pξ
(τt)

Pπθ,pξ
(τt)

]
· Pπθ,pξ

(τt)dτt

=
∞∑
t=0

Eτt∼Pπθ,pξ

[
γtc(st, at)∇ξ logPπθ,pξ

(τt)
∣∣s0 ∼ ρ]

(i)
= Eπθ,pξ

[∞∑
t=0

γtc(st, at)
t∑

h=0

∇ξ log pξ(sh+1|sh, ah)

∣∣∣∣∣s0 ∼ ρ
]

where (i) uses Eq. (94).

N Proof of Theorem 2

Based on Proposition 9, we define the following error terms E(ξ)
j and E(θ)

j (i, j ∈ {1, 2, 3, 4}) to
bound the estimation errors of the stochastic gradients in lines 6, 10, 17 and 21 of Algorithm 1
respectively.

E
(θ)
j :=

3ℓ2πθ

(1− γ)4
[
L2
λ|S||A|

(1

m
(j)
λ

+ γ2H
(j)
λ

)
+

ℓ2λ

m
(j)
θ

+ ℓ2λ[1 +H
(j)
θ (1− γ)]2γ2H

(j)
θ

]
, (95)

E
(ξ)
j :=

3ℓ2pξ

(1− γ)4
[
L2
λ|S||A|

(1

m
(j)
λ

+ γ2H
(j)
λ

)
+

ℓ2λ

m
(j)
ξ

+ ℓ2λ[1 +H
(j)
ξ (1− γ)]2γ2H

(j)
ξ

]
. (96)

Then we prove Theorem 2 in the following procedures.

N.1 Convergence Rate of Inner Update Step (14) of the First Original Phase

Lemma 7. Suppose Assumptions 1-4 hold. Apply the projected stochastic gradient descent step
(14) in Algorithm 1 to the policy optimization problem minθ∈Θ f(λθ,ξk) with fixed ξk ∈ Ξ. Select
stepsize α = 1

2Lθ,θ
and initialization θk,0 = θ0. Then the output θk := θk,T globally converges at

the following rate for any δ ∈ [0, δ].

E
[
f(λθk,ξk)−min

θ∈Θ
f(λθ,ξk)

∣∣ξk]
≤(1− δ)TE

[
f(λθ0,ξk)−min

θ∈Θ
f(λθ,ξk)

∣∣ξk]+ 4Lθ,θℓ
2
λ−1δ +

E
(θ)
1

δLθ,θ
, (97)

where E(θ)
1 is defined in Eq. (95).

Proof. For any θk,t ∈ Θ in the update rule (14), there exists at least one optimal policy θ∗k,t ∈
argminθ′∈Θf(λθ′,ξk) such that for any δ ∈ [0, δ], there exists θ(δ)k,t ∈ Θ that satisfies λ

θ
(δ)
k,t,ξk

=

(1− δ)λθk,t,ξk + δλθ∗
k,t,ξk

. Since f is convex, we have

f(λ
θ
(δ)
k,t,ξk

) ≤ (1− δ)f(λθk,t,ξk) + δf(λθ∗
k,t,ξk

) = (1− δ)f(λθk,t,ξk) + δmin
θ∈Θ

f(λθ,ξk). (98)

Then, we analyze the optimization progress of the stochastic gradient descent step (14) as follows.

f(λθk,t+1,ξk)

(i)

≤f(λθk,t,ξk) +∇θf(λθk,t,ξk)
⊤(θk,t+1 − θk,t) +

Lθ,θ

2
∥θk,t+1 − θk,t∥2

=f(λθk,t,ξk) +
[
∇θf(λθk,t,ξk)− g

(θ)
k,t

]⊤
(θk,t+1 − θk,t)

+ (g
(θ)
k,t)

⊤(θk,t+1 − θk,t) +
Lθ,θ

2
∥θk,t+1 − θk,t∥2

36

≤f(λθk,t,ξk) +
1

2Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2 +
Lθ,θ

2
∥θk,t+1 − θk,t∥2

+ (g
(θ)
k,t)

⊤(θk,t+1 − θk,t) +
Lθ,θ

2
∥θk,t+1 − θk,t∥2

≤f(λθk,t,ξk) + (g
(θ)
k,t)

⊤(θk,t+1 − θk,t) + Lθ,θ∥θk,t+1 − θk,t∥2

+
1

2Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2

(ii)

≤ f(λθk,t,ξk) + (g
(θ)
k,t)

⊤(θ
(δ)
k,t − θk,t) + Lθ,θ∥θ(δ)k,t − θk,t∥

2

+
1

2Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2

≤f(λθk,t,ξk) +∇θf(λθk,t,ξk)
⊤(θ

(δ)
k,t − θk,t)−

Lθ,θ

2
∥θ(δ)k,t − θk,t∥

2

+
[
g
(θ)
k,t −∇θf(λθk,t,ξk)

]⊤
(θ

(δ)
k,t − θk,t) +

3Lθ,θ

2
∥θ(δ)k,t − θk,t∥

2

+
1

2Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2

(iii)

≤ f(λ
θ
(δ)
k,t,ξk

) +
1

2Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2 +
Lθ,θ

2
∥θ(δ)k,t − θk,t∥

2

+
3Lθ,θ

2
∥θ(δ)k,t − θk,t∥

2 +
1

2Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2

(iv)

≤ (1− δ)f(λθk,t,ξk) + δmin
θ∈Θ

f(λθ,ξk) +
1

Lθ,θ
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2 + 4Lθ,θℓ
2
λ−1δ2, (99)

where (i) and (iii) use Lθ,θ-smoothness of f(λ·,ξk) based on Proposition 3, (ii) uses the update rule
(14) with stepsize α = 1

2Lθ,θ
which implies that θk,t+1 ∈ argminθ∈Θ

[
(g

(θ)
k,t)

⊤(θ− θk,t)+Lθ,θ∥θ−
θk,t∥2

]
, (iv) uses Eq. (98) and the following inequality.

∥θ(δ)k,t − θk,t∥
(i)

≤ℓλ−1

∥∥λ
θ
(δ)
k,t,ξk

− λθk,t,ξk

∥∥ = ℓλ−1δ
∥∥λθ∗

k,t,ξk
− λθk,t,ξk

∥∥ (ii)

≤
√
2ℓλ−1δ,

where (i) uses Assumption 4 and (ii) uses Lemma 4. Rearranging Eq. (99) and taking conditional
expectation, we obtain that

E
[
f(λθk,t+1,ξk)−min

θ∈Θ
f(λθ,ξk)

∣∣ξk]
≤(1− δ)E

[
f(λθk,t,ξk)−min

θ∈Θ
f(λθ,ξk)

∣∣ξk]+ 1

Lθ,θ
E
[
∥∇θf(λθk,t,ξk)− g

(θ)
k,t∥

2
∣∣ξk]+4Lθ,θℓ

2
λ−1δ2

(i)

≤(1− δ)E
[
f(λθk,t,ξk)−min

θ∈Θ
f(λθ,ξk)

∣∣ξk]+ 4Lθ,θℓ
2
λ−1δ2 +

E
(θ)
1

Lθ,θ
,

where (i) uses Eq. (43) in Proposition 9 and E
(θ)
1 defined in Eq. (95) with j = 1. Then the

convergence rate (97) can be proved by iterating the above inequality as follows.

N.2 Convergence Rate of E[∥∇Φ̃(ξ̃)∥2] from the First Original Phase

Lemma 8. Implement the first original phase of Algorithm 1 with stepsizes α = 1
2Lθ,θ

and β =
1

2Lξ,ξ

√
K

. The inner projected stochastic gradient descent step (14) is implemented up to precision
ϵ0 > 0 as follows.

E
[
f(λθk,ξk)−min

θ∈Θ
f(λθ,ξk)

∣∣ξk] ≤ ϵ0. (100)

Then, the output ξ̃ of the first original phase has the following convergence rate.

E
[∥∥∇Φ̃(ξ̃)∥∥2] ≤ 8f∗ − 8E

[
Φ(ξ0)

]
Kβ

+ 10Lξ,ξβℓ
2
ξ + 20Lξ,ξϵ0 + 20E

(ξ)
2 , (101)

37

where E(ξ)
2 is defined in Eq. (96) with j = 2.

Proof. For any fixed ξ ∈ Ξ, define the optimal policy parameter θ∗(ξ) and the optimal utility value
Φ(ξ) as follows.

θ∗(ξ) :∈ argmin
θ∈Θ

f(λθ,ξ) (102)

Φ(ξ) :=min
θ∈Θ

f(λθ,ξ) = f(λθ∗(ξ),ξ). (103)

Since f(λθ,·) is Lξ,ξ-smooth for any θ ∈ Θ based on Proposition 3, for any (θ, ξ) ∈ Θ × Ξ,
f(λθ,ξ′) − Lξ,ξ

2 ∥ξ
′ − ξ∥2 is a concave function of ξ′. As a result, Φ(ξ′) − Lξ,ξ∥ξ′ − ξ∥2 is a

Lξ,ξ-strongly concave function of ξ′ and thus it has the following unique maximizer.

ξ∗(ξ) := argmax
ξ′∈Ξ

[
Φ(ξ′)− Lξ,ξ∥ξ′ − ξ∥2

]
(104)

Accordingly, we define the following Moreau envelope function (repeat Eq. (18)).

Φ̃(ξ) := max
ξ′∈Ξ

[
Φ(ξ′)− Lξ,ξ∥ξ′ − ξ∥2

]
= Φ[ξ∗(ξ)]− Lξ,ξ∥ξ∗(ξ)− ξ∥2. (105)

Based on Lemma 3.6 of [31], Φ̃ is Lξ,ξ-smooth with

∇Φ̃(ξ) = 2Lξ,ξ[ξ
∗(ξ)− ξ] (106)

Similar to Lemma D.3 of [31], we obtain the following ascent property of the above envelope function
Φ̃ for any k = 0, 1, . . . ,K − 1.

E
[
Φ̃(ξk+1)

∣∣ξk]
(i)

≥E
(
Φ[ξ∗(ξk)]− Lξ,ξ

∥∥ξ∗(ξk)− projΞ
[
ξk + βg

(ξ)
k

]∥∥2∣∣ξk)
(ii)

≥ E
(
Φ[ξ∗(ξk)]− Lξ,ξ(1 + τk)

∥∥ξ∗(ξk)− projΞ
[
ξk + β∇ξf(λθk,ξk)

]∥∥2
− Lξ,ξ(1 + τ−1

k)
∥∥projΞ[ξk + β∇ξf(λθk,ξk)

]
− projΞ

[
ξk + βg

(ξ)
k

]∥∥2∣∣ξk)
(iii)

≥ E
(
Φ[ξ∗(ξk)]− Lξ,ξ(1 + τk)

∥∥ξ∗(ξk)− ξk∥∥2 − Lξ,ξβ
2(1 + τk)

∥∥∇ξf(λθk,ξk)
∥∥2

+ 2Lξ,ξβ(1 + τk)
〈
ξ∗(ξk)− ξk,∇ξf(λθk,ξk)

〉
− Lξ,ξβ

2(1 + τ−1
k)
∥∥g(ξ)k −∇ξf(λθk,ξk)

∥∥2∣∣ξk)
(iv)

≥ Φ[ξ∗(ξk)]− Lξ,ξ(1 + τk)
∥∥ξ∗(ξk)− ξk∥∥2 − Lξ,ξβ

2(1 + τk)ℓ
2
ξ

+ 2Lξ,ξβ(1 + τk)E
[
f(λθk,ξ∗(ξk))− f(λθk,ξk)−

Lξ,ξ

2
∥ξ∗(ξk)− ξk∥2

∣∣∣ξk]
− Lξ,ξβ

2(1 + τ−1
k)E

(ξ)
2

(v)

≥Φ[ξ∗(ξk)]− Lξ,ξ(1 + τk)
∥∥ξ∗(ξk)− ξk∥∥2 − Lξ,ξβ

2(1 + τk)ℓ
2
ξ

+ 2Lξ,ξβ(1+τk)
[
Φ[ξ∗(ξk)]− Φ(ξk)− ϵ0 −

Lξ,ξ

2
∥ξ∗(ξk)− ξk∥2

]
−Lξ,ξβ

2(1 + τ−1
k)E

(ξ)
2

(vi)

≥ Φ̃(ξk)− Lξ,ξτk
∥∥ξ∗(ξk)− ξk∥∥2 − Lξ,ξβ

2(1 + τk)ℓ
2
ξ

+ 2Lξ,ξβ(1 + τk)
[Lξ,ξ

2
∥ξ∗(ξk)− ξk∥2 − ϵ0

]
− Lξ,ξβ

2(1 + τ−1
k)E

(ξ)
2

(vii)

≥ Φ̃(ξk) +
1

4

(
β(1 + τk)−

τk
Lξ,ξ

)∥∥∇Φ̃(ξk)∥∥2 − Lξ,ξβ
2(1 + τk)ℓ

2
ξ

− 2Lξ,ξβ(1 + τk)ϵ0 − Lξ,ξβ
2(1 + τ−1

k)E
(ξ)
2 , (107)

where (i) uses Eqs. (15) and (105), (ii) holds for any τk > 0 whose value is to be determined later,
(iii) uses contraction property of projection and ξ∗(ξk) ∈ Ξ, (iv) uses Propositions 3-9 and the error

38

term E
(ξ)
2 defined in Eq. (96), (v) uses Eqs. (100) and (103), (vi) uses Eqs. (104)-(105) which imply

that Φ̃(ξk) = Φ[ξ∗(ξk)]− Lξ,ξ∥ξ∗(ξk)− ξk∥2 ≥ Φ(ξk), (vii) uses Eq. (106). Taking unconditional
expectation of Eq. (107) and telescoping it over k = 0, 1, . . . ,K−1 with β = 1

2Lξ,ξ

√
K
∈
[
0, 1

2Lξ,ξ

]
,

τk ≡ βLξ,ξ

2 ≤ 1
4 , we obtain that

β

8

K−1∑
k=0

E
[∥∥∇Φ̃(ξk)∥∥2]

≤E
[
Φ̃(ξK)− Φ̃(ξ0)

]
+

5K

4
Lξ,ξβ

2ℓ2ξ +
5K

2
Lξ,ξβϵ0 +KLξ,ξβ

2
(
1 +

2

βLξ,ξ

)
E

(ξ)
2

(i)

≤f∗ − E
[
Φ(ξ0)

]
+

5K

4
Lξ,ξβ

2ℓ2ξ +
5K

2
Lξ,ξβϵ0 +

5KβE
(ξ)
2

2
,

where (i) uses the following range of Φ̃(ξ) (defined in Eq. (105)) that holds for any ξ ∈ Ξ.

Φ̃(ξ) ≤ max
ξ′∈Ξ

Φ(ξ′) = max
ξ′∈Ξ

min
θ∈Θ

f(λθ,ξ′) ≤ min
θ∈Θ

max
ξ′∈Ξ

f(λθ,ξ′) = f∗ (108)

Φ̃(ξ) ≥ Φ(ξ) (109)

As a result,

E
[∥∥∇Φ̃(ξ̃)∥∥2] = 1

K

K−1∑
k=0

E
[∥∥∇Φ̃(ξk)∥∥2]

≤
8f∗ − 8E

[
Φ(ξ0)

]
Kβ

+ 10Lξ,ξβℓ
2
ξ + 20Lξ,ξϵ0 + 20E

(ξ)
2 .

N.3 Convergence of the Inner Update Step (16) of the Second Corrected Phase

Next we focus on the second corrected phase which aims to solve the following minimax optimization
problem (repeat Eq. (19)).

min
θ∈Θ

max
ξ∈Ξ

f̃(θ, ξ) := f(λθ,ξ)− Lξ,ξ∥ξ − ξ̃∥2, (110)

where ξ̃ is obtained from {ξk}K−1
k=0 uniformly at random in the first original phase. Based on

Proposition 3, it can be easily verified that f̃ has the following smoothness properties and f̃(θ, ·) is
Lξ,ξ-strongly concave.

∥∇θf̃(θ
′, ξ′)−∇θf̃(θ, ξ)∥ ≤ Lθ,θ∥θ′ − θ∥+ Lθ,ξ∥ξ′ − ξ∥, (111)

∥∇ξ f̃(θ
′, ξ′)−∇ξ f̃(θ, ξ)∥ ≤ Lξ,θ∥θ′ − θ∥+ 3Lξ,ξ∥ξ′ − ξ∥, (112)

Next, we will see the convergence rate of the projected stochastic gradient ascent steps (16) to the
following optimal variable, which is unique due to strong concavity of f̃(θk, ·).

ξ∗k := argmax
ξ∈Ξ

f̃(θk, ξ). (113)

The optimization progress of each step of Eq. (16) for k = K,K + 1, . . . ,K + K ′ − 1 can be
bounded as follows.

E
[
∥ξk,t+1 − ξ∗k∥2

∣∣θk]
(i)

≤E
[
∥ξk,t + a

(
g
(ξ)
k,t − 2Lξ,ξ(ξk,t − ξ̃)

)
− ξ∗k∥2

∣∣θk]
(ii)

≤ (1 + ck)E
[
∥ξk,t + a∇ξ f̃(θk, ξk,t)− ξ∗k∥2

∣∣θk]
+ (1 + c−1

k)E
[
∥a
(
g
(ξ)
k,t − 2Lξ,ξ(ξk,t − ξ̃)−∇ξ f̃(θk, ξk,t)

)
∥2
∣∣θk]

(iii)
= (1 + ck)E

[
∥ξk,t − ξ∗k∥2 + 2a⟨∇ξ f̃(θk, ξk,t)−∇ξ f̃(θk, ξ

∗
k), ξk,t − ξ∗k⟩

39

+ a2∥∇ξ f̃(θk, ξk,t)−∇ξ f̃(θk, ξ
∗
k)∥2

∣∣θk]
+ a2(1 + c−1

k)E
[
∥g(ξ)k,t −∇ξf(λθk,ξk,t

)∥2
∣∣θk]

(iv)

≤ (1 + ck)(1− 2Lξ,ξa+ 9L2
ξ,ξa

2)E
[
∥ξk,t − ξ∗k∥2

∣∣θk]+ a2(1 + c−1
k)E

(ξ)
3

(v)
=

16

17
E
[
∥ξk,t − ξ∗k∥2

∣∣θk]+ 2E
(ξ)
3

9L2
ξ,ξ

, (114)

where (i) uses Eq. (16), ξ∗k ∈ Ξ and contraction property of projection, (ii) holds for any ck > 0

whose value will be assigned later, (iii) uses ∇ξ f̃(θk, ξ
∗
k) = 0 and the definition of f̃ in Eq. (110),

(iv) uses Proposition 9, the error term E
(ξ)
3 defined in Eq. (96) as well as the 3Lξ,ξ-smoothness and

Lξ,ξ-strongly concavity of f̃(θk, ·) (see Eq. (112)), and (v) uses a = 1
9Lξ,ξ

and ck = 1
17 . Iterating

the unconditional expectation of Eq. (114) over t = 0, 1, . . . , T ′ − 1, we obtain that

E
[
∥ξk − ξ∗k∥2

∣∣θk] = E
[
∥ξk,T ′ − ξ∗k∥2

∣∣θk]
≤
(16
17

)T ′

E
[
∥ξk,0 − ξ∗k∥2

∣∣θk]+ 17(2E
(ξ)
2)

9L2
ξ,ξ

≤
(16
17

)T ′

D2
Ξ +

34E
(ξ)
3

9L2
ξ,ξ

. (115)

where the second ≤ denotes DΞ := supξ,ξ′∈Ξ ∥ξ′ − ξ∥ as the diameter of the compact set Ξ.

N.4 Convergence Rate of E[∥G(θ)
b (θk̃, ξk̃)∥

2]

Since f̃(θ, ·) is strongly concave, it has unique maximizer ξ̃∗(θ) and the corresponding function value
Ψ̃(θ) defined as follows.

ξ̃∗(θ) := argmax
ξ∈Ξ

f̃(θ, ξ) (116)

Ψ̃(θ) := max
ξ∈Ξ

f̃(θ, ξ), (117)

Furthermore, since f̃(θ, ·) is Lξ,ξ-strongly concave and f̃ has the smoothness properties (111) and
(112), we can easily obtain that ξ̃∗(θ) is (Lξ,θ/Lξ,ξ)-Lipschitz and Ψ̃ is L̃ := Lθ,θ + Lθ,ξLξ,θ/Lξ,ξ-
smooth with the following gradient, following the proof of Lemma 4.3 in [31]. 2

∇Ψ̃(θ) = ∇1f̃ [θ, ξ̃
∗(θ)] = ∇1f(λθ,ξ̃∗(θ)). (118)

Note that for any k = K, . . . ,K +K ′ − 1, the projected stochastic gradient ascent step (17) satisfies

∥g(θ)k ∥ =
1

b

∥∥θk − (θk − bg(θ)k

)∥∥
(i)

≥ 1

b

∥∥projΘ(θk − bg(θ)k

)
−
(
θk − bg(θ)k

)∥∥
(ii)
=

1

b
∥θk+1 − θk + bg

(θ)
k ∥,

where (i) uses θk ∈ Θ and the definition of projection and (ii) uses the stochastic gradient descent
step (17). The above inequality implies that

(g
(θ)
k)⊤(θk+1 − θk) ≤ −

1

2b
∥θk+1 − θk∥2. (119)

Then, we analyze the optimization progress of the potential function (117) along the projected
stochastic gradient descent step (17) as follows.

EΨ̃(θk+1)

(i)

≤E
[
Ψ̃(θk) +∇Ψ̃(θk)

⊤(θk+1 − θk) +
L̃

2
∥θk+1 − θk∥2

]
2∇1f̃ [θ, ξ̃

∗(θ)] and ∇1f(λθ,ξ̃∗(θ)) denote gradients with respect to only the first input argument θ.

40

(ii)
= E

[
Ψ̃(θk) +

〈
∇1f(λθk,ξ̃∗(θk))− g

(θ)
k , θk+1 − θk

〉
+ (g

(θ)
k)⊤(θk+1 − θk)

+
L̃

2
∥θk+1 − θk∥2

]
(iii)

≤ E
[
Ψ̃(θk) +

1

2L̃

∥∥g(θ)k −∇1f(λθk,ξ̃∗(θk))
∥∥2 + L̃

2
∥θk+1 − θk∥2 −

1

2b
∥θk+1 − θk∥2

+
L̃

2
∥θk+1 − θk∥2

]
≤E
[
Ψ̃(θk) +

1

L̃

∥∥g(θ)k −∇θf(λθk,ξk)
∥∥2 + 1

L̃

∥∥∇θf(λθk,ξk)−∇1f(λθk,ξ̃∗(θk))
∥∥2

−
(1

2b
− L̃

)
∥θk+1 − θk∥2

]
(iv)

≤ EΨ̃(θk) +
E

(θ)
4

L̃
+
L2
θ,ξ

L̃
E
∥∥ξk − ξ̃∗(θk))∥∥2 − 1

4b
E∥θk+1 − θk∥2

(v)

≤EΨ̃(θk) +
E

(θ)
4

L̃
+
D2

ΞL
2
θ,ξ

L̃

(16
17

)T ′

+
34L2

θ,ξE
(ξ)
3

9L̃L2
ξ,ξ

− 1

4b
E∥θk+1 − θk∥2, (120)

where (i) uses the L̃ := Lθ,θ+Lθ,ξLξ,θ/Lξ,ξ-smoothness of Ψ̃, (ii) uses Eq. (118), (iii) uses Cauchy-
Schwartz inequality and Eq. (119), (iv) uses b = 1

4L̃
, Propositions 3-9 and the error term E

(θ)
4 defined

by Eq. (95), (v) uses Eq. (115). Denote G(θ)
b (θk, ξk) = 1

b

[
θk − projΘ[θk − b∇θf(λθk,ξk)]

]
for

k = K, . . . ,K +K ′ − 1. Its norm can be bounded as follows.

E∥G(θ)
b (θk, ξk)∥2

=
1

b2
E∥θk+1 − θk + bG

(θ)
b (θk, ξk)− (θk+1 − θk)∥2

≤ 2

b2
E∥θk+1 − θk + bG

(θ)
b (θk, ξk)∥2 +

2

b2
E∥ − (θk+1 − θk)∥2

(i)

≤ 2

b2
E∥projΘ[θk − bg

(θ)
k]− projΘ[θk − b∇θf(λθk,ξk)]∥2

+
8

b

[
E[Ψ̃(θk)− Ψ̃(θk+1)] +

E
(θ)
4

L̃
+
D2

ΞL
2
θ,ξ

L̃

(16
17

)T ′

+
34L2

θ,ξE
(ξ)
3

9L̃L2
ξ,ξ

]
(ii)

≤ 2E
∥∥g(θ)k −∇θf(λθk,ξk)

∥∥2
+

8

b

[
E[Ψ̃(θk)− Ψ̃(θk+1)] +

E
(θ)
4

L̃
+
D2

ΞL
2
θ,ξ

L̃

(16
17

)T ′

+
34L2

θ,ξE
(ξ)
3

9L̃L2
ξ,ξ

]
(iii)

≤ 2E
(θ)
4 +

8E
(θ)
4

bL̃
+

8

b
E[Ψ̃(θk)− Ψ̃(θk+1)] +

8D2
ΞL

2
θ,ξ

bL̃

(16
17

)T ′

+
272L2

θ,ξE
(ξ)
3

9bL̃L2
ξ,ξ

, (121)

where (i) uses Eqs. (17) and (120) as well as G(θ)
b (θk, ξk) =

1
b

[
θk − projΘ[θk − b∇θf(λθk,ξk)]

]
,

(ii) uses Eq. (110), and (iii) uses Proposition 9 and the error term E
(θ)
4 defined by Eq. (95).

By rearranging the above inequality and averaging it over k = K,K+1, . . . ,K +K ′− 1, we obtain
the convergence rate of E[∥G(θ)

b (θk̃, ξk̃)∥
2] as follows.

E[∥G(θ)
b (θk̃, ξk̃)∥

2] =
1

K ′

K+K′−1∑
k=K

E∥G(θ)
b (θk, ξk)∥2

≤2E(θ)
4 +

8E
(θ)
4

bL̃
+

8

bK ′E[Ψ̃(θK)− Ψ̃(θK+K′)] +
8D2

ΞL
2
θ,ξ

bL̃

(16
17

)T ′

+
272L2

θ,ξE
(ξ)
3

9bL̃L2
ξ,ξ

41

(i)

≤34E(θ)
4 +

32L̃

K ′ E
[
f̃(θK , ξ̃

∗(θK))− f̃(θK+K′ , ξ̃∗(θK))
]
+ 32D2

ΞL
2
θ,ξ

(16
17

)T ′

+
1088L2

θ,ξE
(ξ)
3

9L2
ξ,ξ

(ii)
= 34E

(θ)
4 +

32L̃

K ′ E
[
f(λθK ,ξ̃∗(θK))− f(λθK+K′ ,ξ̃∗(θK))

]
+ 32D2

ΞL
2
θ,ξ

(16
17

)T ′

+
1088L2

θ,ξE
(ξ)
3

9L2
ξ,ξ

(iii)

≤ 34E
(θ)
4 +

32L̃

K ′

[
Γ(θK)− f∗

]
+ 32D2

ΞL
2
θ,ξ

(16
17

)T ′

+
1088L2

θ,ξE
(ξ)
3

9L2
ξ,ξ

, (122)

where (i) uses Eqs. (116)-(117) and selects the stepsize b = 1

4L̃
, (ii) uses Eq. (110), and (iii) uses

f∗ := minθ∈Θ maxξ∈Ξ f(λθ,ξ) and Γ(θ) := maxξ∈Ξ f(λθ,ξ).

N.5 Convergence Rate of E[∥G(ξ)
a (θk̃, ξk̃)∥

2]

Denote ψ(ξ) := minθ∈Θ f̃(θ, ξ) = Φ(ξ)− Lξ,ξ∥ξ − ξ̃∥2. Then, on one hand,

ψ
[
ξ∗(ξ̃)

]
− ψ(ξk)

(i)
=max

ξ∈Ξ
ψ(ξ)− ψ(ξk)

=max
ξ∈Ξ

min
θ∈Θ

f̃(θ, ξ)−min
θ∈Θ

f̃(θ, ξk)

≤max
ξ∈Ξ

f̃(θk, ξ)−min
θ∈Θ

f̃(θ, ξk)

(ii)
= f̃(θk, ξ

∗
k)−min

θ∈Θ
f̃(θ, ξk)

(iii)

≤ f̃(θk, ξk) +
3Lξ,ξ

2
∥ξk − ξ∗k∥2 −min

θ∈Θ
f̃(θ, ξk), (123)

where (i) uses Eq. (104), (ii) uses Eq. (113), (iii) uses ∇ξ f̃(θk, ξ
∗
k) = 0 at the optimal variable ξ∗k

defined by Eq. (113) and 3Lξ,ξ-smoothness of f̃(θ, ·) implied by Eq. (112). On the other hand, since
f̃(θ, ·) is Lξ,ξ-strongly concave, ψ is Lξ,ξ-strongly concave. Hence,

ψ(ξk) ≤ψ
[
ξ∗(ξ̃)

]
+∇ψ

[
ξ∗(ξ̃)

]⊤[
ξ∗(ξ̃)− ξk

]
− Lξ,ξ

2

∥∥ξ∗(ξ̃)− ξk∥∥2
(i)
=ψ
[
ξ∗(ξ̃)

]
− Lξ,ξ

2

∥∥ξ∗(ξ̃)− ξk∥∥2. (124)

where (i) uses ∇ψ
[
ξ∗(ξ̃)

]
= 0 at the unique optimizer ξ∗(ξ̃) = argmaxξ∈Ξ ψ(ξ) (see Eq. (104)).

Then, we have

∥G(ξ)
a (θk, ξk)∥2

=
1

a2
∥∥projΞ(ξk + a∇ξf(λθk,ξk)

)
− ξk

∥∥2
(i)

≤ 2

a2
∥∥[projΞ(ξk + a∇ξ f̃(θk, ξk)

)
− ξk

]
−
[
projΞ

(
ξ∗k + a∇ξ f̃(θk, ξ

∗
k)
)
− ξ∗k

]∥∥2
+

2

a2
∥∥projΞ(ξk + a∇ξf(λθk,ξk)

)
− projΞ

(
ξk + a∇ξ f̃(θk, ξk)

)∥∥2
≤ 4

a2
∥∥projΞ(ξk + a∇ξ f̃(θk, ξk)

)
− projΞ

(
ξ∗k + a∇ξ f̃(θk, ξ

∗
k)
)∥∥2 + 4

a2
∥ξ∗k − ξk∥2

+
2

a2
∥∥projΞ(ξk + a∇ξf(λθk,ξk)

)
− projΞ

(
ξk + a∇ξ f̃(θk, ξk)

)∥∥2
≤ 4

a2
∥∥(ξk + a∇ξ f̃(θk, ξk)

)
−
(
ξ∗k + a∇ξ f̃(θk, ξ

∗
k)
)∥∥2 + 4

a2
∥ξ∗k − ξk∥2

+ 2
∥∥∇ξf(λθk,ξk)−∇ξ f̃(θk, ξk)

∥∥2
(ii)

≤ 8
∥∥∇ξ f̃(θk, ξk)−∇ξ f̃(θk, ξ

∗
k)
∥∥2 + 8

a2
∥ξ∗k − ξk∥2 +

4

a2
∥ξ∗k − ξk∥2 + 2

∥∥2Lξ,ξ(ξk − ξ̃)
∥∥2

42

(iii)

≤
(
72L2

ξ,ξ+
12

a2

)
∥ξk−ξ∗k∥2 + 16L2

ξ,ξ

[
∥ξk − ξ∗(ξ̃)∥2 + ∥ξ∗(ξ̃)− ξ̃∥2

]
(iv)

≤
(
72L2

ξ,ξ +
12

a2

)
∥ξk−ξ∗k∥2+32Lξ,ξ

(
f̃(θk, ξk)+

3Lξ,ξ

2
∥ξk−ξ∗k∥2−min

θ∈Θ
f̃(θ, ξk)

)
+4∥∇Φ̃(ξ̃)∥2

(v)
=
(
120L2

ξ,ξ +
12

a2

)
∥ξk − ξ∗k∥2 + 32Lξ,ξ

[
f(λθk,ξk)−min

θ∈Θ
f(λθ,ξk)

]
+ 4∥∇Φ̃(ξ̃)∥2, (125)

where (i) uses projΞ
(
ξ∗k + a∇ξ f̃(θk, ξ

∗
k)
)
− ξ∗k = 0 based on Eq. (113), (ii) uses the definition of f̃

given by Eq. (110), (iii) uses 3Lξ,ξ-smoothness of f̃(θk, ·) based on Eq. (112), (iv) uses Eqs. (106),
(123) and (124), (v) uses Eq. (110). Taking expectation of the above Eq. (125) and averaging it over
k = K, . . . ,K +K ′ − 1, we obtain the convergence rate of E[∥G(ξ)

a (θk̃, ξk̃)∥
2] as follows.

E[∥G(ξ)
a (θk̃, ξk̃)∥

2]

≤ 1

K ′

(
120L2

ξ,ξ +
12

a2

)K+K′−1∑
k=K

E∥ξk − ξ∗k∥2 + 4E∥∇Φ̃(ξ̃)∥2

+
32Lξ,ξ

K ′

K+K′−1∑
k=K

E
[
f(λθk,ξk)−min

θ∈Θ
f(λθ,ξk)

]
(i)

≤
(
120L2

ξ,ξ +
12

a2

)[(16
17

)T ′

D2
Ξ +

34E
(ξ)
2

9L2
ξ,ξ

]
+ 4
(8f∗ − 8E

[
Φ(ξ0)

]
Kβ

+ 10Lξ,ξβℓ
2
ξ + 20Lξ,ξϵ0 + 20E

(ξ)
2

)
+ 32Lξ,ξ

[√
2ℓλ−1(bLθ,θ + 1) + bℓθ

]
E
[
∥G(θ)

b (θ, ξ)∥
]

(ii)

≤
(
120L2

ξ,ξ +
12

a2

)[(16
17

)T ′

D2
Ξ +

34E
(ξ)
2

9L2
ξ,ξ

]
+
32f∗−32E

[
Φ(ξ0)

]
Kβ

+ 40Lξ,ξβℓ
2
ξ

+ 80Lξ,ξϵ0 + 80E
(ξ)
2 + 32Lξ,ξ

[√
2ℓλ−1(bLθ,θ + 1) + bℓθ

]
[
34E

(θ)
4 +

32L̃

K ′

[
Γ(θK)− f∗

]
+ 32D2

ΞL
2
θ,ξ

(16
17

)T ′

+
1088L2

θ,ξE
(ξ)
3

9L2
ξ,ξ

]1/2
(126)

where (i) uses Eqs. (20), (101) and (115), (ii) uses Eq. (122), (iii) uses ℓθ, ℓξ = O[(1 − γ)−2],
Lθ,ξ, Lξ,ξ, L̃ = O[(1− γ)−3] based on Proposition 3 and selects stepsizes a = 1

9Lξ,ξ
= O[(1− γ)3],

b = 1

4L̃
= O[(1− γ)3], β = 1

2Lξ,ξ

√
K

= O[K−1/2(1− γ)3].

N.6 Substituting Hyperparameters

Denote δ = min
[
δ, ϵ2

5760Lξ,ξLθ,θℓ2
λ−1

, 12
]
= O[(1 − γ)6ϵ2]. Then we select the following hyperpa-

rameter values.

K =36ϵ−4
{
64Lξ,ξ

[
f∗−E[Φ(ξ0)]

]
+ 20ℓ2ξ

}2
= O[(1− γ)−8ϵ−4] (127)

T =
1

3δ
log
{
1440Lξ,ξϵ

−2E
[
Γ(θ0)− min

θ∈Θ,ξ∈Ξ
f(λθ,ξ)

]}
= O

[log[(1− γ)−1ϵ−1]

(1− γ)6ϵ2
]

(128)

K ′ =
294912L̃L2

ξ,ξ

L̃2ϵ4

[
Γ(θK)− f∗

][√
2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]2
= O[(1− γ)−9ϵ−4] (129)

T ′ =33 log
{
544Lξ,ξDΞLθ,ξL̃

−1ϵ−2
[√

2ℓλ−1

(
Lθ,θ+4L̃

)
+ℓθ

]}
=O

(
log[(1−γ)−1ϵ−1]

)
(130)

α =
1

2Lθ,θ
(131)

β =
1

2Lξ,ξ

√
K

(132)

43

a =
1

9Lξ,ξ
, (133)

b =
1

4L̃
, (134)

m
(1)
θ =

17280Lξ,ξℓ
2
πθ
ℓ2λ

Lθ,θδϵ2(1− γ)4
= O[(1− γ)−10ϵ−4], (135)

m
(1)
λ =

17280Lξ,ξℓ
2
πθ
L2
λ|S||A|

Lθ,θδϵ2(1− γ)4
= O[(1− γ)−10ϵ−4], (136)

H
(1)
λ =

1

2 log(γ−1)
log
[17280Lξ,ξℓ

2
πθ
L2
λ|S||A|

Lθ,θδϵ2(1− γ)4
]
= O

[log[(1− γ)−1ϵ−1]

1− γ

]
(137)

H
(1)
θ =

4

1− γ
log
(2

1− γ

)
+

1

log(γ−1)
log
[51840Lξ,ξℓ

2
πθ
ℓ2λ

Lθ,θδϵ2(1− γ)4
]
= O

[log[(1− γ)−1ϵ−1]

1− γ

]
(138)

m
(2)
ξ =

148512ℓ2λℓ
2
pξ

ϵ2(1− γ)4
= O[(1− γ)−4ϵ−2], (139)

m
(2)
λ =

148512L2
λℓ

2
pξ
|S||A|

ϵ2(1− γ)4
= O[(1− γ)−4ϵ−2], (140)

H
(2)
λ =

1

2 log(γ−1)

[148512L2
λℓ

2
pξ
|S||A|

ϵ2(1− γ)4
]
= O

[log[(1− γ)−1ϵ−1]

1− γ

]
(141)

H
(2)
ξ =

4

1− γ
log
(2

1− γ

)
+

1

log(γ−1)
log
[297024ℓ2λℓ2pξ

ϵ2(1− γ)4
]
= O

[log[(1− γ)−1ϵ−1]

1− γ

]
(142)

m
(3)
ξ =

13369344L2
θ,ξℓ

2
pξ
ℓ2λ
[√

2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]2
L̃2ϵ4(1− γ)4

= O[(1− γ)−10ϵ−4], (143)

m
(3)
λ =

13369344L2
θ,ξℓ

2
pξ
L2
λ|S||A|

[√
2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]2
L̃2ϵ4(1− γ)4

= O[(1− γ)−10ϵ−4], (144)

H
(3)
λ =

1

2 log(γ−1)

[13369344L2
θ,ξℓ

2
pξ
L2
λ|S||A|

[√
2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]2
L̃2ϵ4(1− γ)4

]
=O

[log[(1− γ)−1ϵ−1]

1− γ

]
(145)

H
(3)
ξ =

4

1− γ
log
(2

1− γ

)
+

1

log(γ−1)
log
[26738688L2

θ,ξℓ
2
pξ
ℓ2λ
[√

2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]2
L̃2ϵ4(1− γ)4

]
=O

[log[(1− γ)−1ϵ−1]

1− γ

]
(146)

m
(4)
θ =

3760128L2
ξ,ξℓ

2
πθ
ℓ2λ[
√
2ℓλ−1(Lθ,θ + 4L̃) + ℓθ]

2

L̃2ϵ4(1− γ)4
= O[(1− γ)−10ϵ−4], (147)

m
(4)
λ =

3760128L2
ξ,ξℓ

2
πθ
L2
λ|S||A|[

√
2ℓλ−1(Lθ,θ + 4L̃) + ℓθ]

2

L̃2ϵ4(1− γ)4
= O[(1− γ)−10ϵ−4], (148)

H
(4)
λ =

1

2 log(γ−1)

[3760128L2
ξ,ξℓ

2
πθ
L2
λ|S||A|[

√
2ℓλ−1(Lθ,θ + 4L̃) + ℓθ]

2

L̃2ϵ4(1− γ)4
]

=O
[log[(1− γ)−1ϵ−1]

1− γ

]
(149)

H
(4)
θ =

4

1− γ
log
(2

1− γ

)
+

1

log(γ−1)
log
[7520256L2

ξ,ξℓ
2
πθ
ℓ2λ[
√
2ℓλ−1(Lθ,θ + 4L̃) + ℓθ]

2

L̃2ϵ4(1− γ)4
]

44

=O
[log[(1− γ)−1ϵ−1]

1− γ

]
(150)

Substituting the above hyperparameter choices into Eqs. (95) and (96), we have

E
(θ)
1 :=

3ℓ2πθ

(1− γ)4
[
L2
λ|S||A|

(1

m
(1)
λ

+ γ2H
(1)
λ

)
+

ℓ2λ

m
(1)
θ

+ ℓ2λ[1 +H
(1)
θ (1− γ)]2γ2H

(1)
θ

]
≤ Lθ,θδϵ

2

1440Lξ,ξ
, (151)

E
(ξ)
2 :=

3ℓ2pξ

(1− γ)4
[
L2
λ|S||A|

(1

m
(2)
λ

+ γ2H
(2)
λ

)
+

ℓ2λ

m
(2)
ξ

+ ℓ2λ[1 +H
(2)
ξ (1− γ)]2γ2H

(2)
ξ

]
≤ ϵ2

12376
, (152)

E
(ξ)
3 :=

3ℓ2pξ

(1− γ)4
[
L2
λ|S||A|

(1

m
(3)
λ

+ γ2H
(3)
λ

)
+

ℓ2λ

m
(3)
ξ

+ ℓ2λ[1 +H
(3)
ξ (1− γ)]2γ2H

(3)
ξ

]
≤ L̃2ϵ4

1114112L2
θ,ξ

[√
2ℓλ−1

(
Lθ,θ + 4L̃

)
+ ℓθ

]2 , (153)

E
(θ)
4 :=

3ℓ2πθ

(1− γ)4
[
L2
λ|S||A|

(1

m
(4)
λ

+ γ2H
(4)
λ

)
+

ℓ2λ

m
(4)
θ

+ ℓ2λ[1 +H
(4)
θ (1− γ)]2γ2H

(4)
θ

]
≤ L̃2ϵ4

313344L2
ξ,ξ[
√
2ℓλ−1(Lθ,θ + 4L̃) + ℓθ]2

, (154)

where we used
[
1 +H

(k)
θ (1− γ)

]2
γH

(k)
θ ≤ 2 for H(k)

θ ≥ 4
1−γ log

(
2

1−γ

)
(k = 1, 2, 3, 4).

Lemma 7 implies that for any fixed ξ ∈ Ξ, θT ′ obtained from the update rule (14) satisfies

E
[
f(λθT ′ ,ξ)−min

θ∈Θ
f(λθ,ξ)

]
(i)

≤(1− δ)TE
[
f(λθ0,ξk)−min

θ∈Θ
f(λθ,ξk)

]
+ 4Lθ,θℓ

2
λ−1δ +

E
(θ)
1

δLθ,θ

(ii)

≤ E
[
Γ(θ0)− min

θ∈Θ,ξ∈Ξ
f(λθ,ξ)

]
exp

{
log(1− δ) · 1

δ
log
[
1440Lξ,ξϵ

−2E
[
Γ(θ0)− min

θ∈Θ,ξ∈Ξ
f(λθ,ξ)

]}
+

ϵ2

1440Lξ,ξ
+

ϵ2

1440Lξ,ξ

(iii)

≤ ϵ2

480Lξ,ξ
.

where (i) uses Lemma 7, (ii) uses Eqs. (128), (151) and δ ≤ ϵ2

5760Lξ,ξLθ,θℓ2
λ−1

, (iii) uses log(1− δ) ≤
−δ for δ ∈ [0, 1/2]. Hence, the above inequality implies that ϵ0 defined by Lemma 8 satisfies
ϵ0 ≤ ϵ2

480Lξ,ξ
.

As a result, we can prove that E
[
∥G(ξ)

a (θk̃, ξk̃)∥
2
]
≤ ϵ2 and E

[
∥G(θ)

b (θk̃, ξk̃)∥
2
]
≤ ϵ2 by substituting

ϵ0 ≤ ϵ2

480Lξ,ξ
and Eqs. (127)-(154) into the convergence rates (122) and (126). The number of

samples required by Algorithm 1 is

KT (m
(1)
λ H

(1)
λ +m

(1)
θ H

(1)
θ) +K(m

(2)
λ H

(2)
λ +m

(2)
ξ H

(2)
ξ)

+K ′T ′(m
(3)
λ H

(3)
λ +m

(3)
ξ H

(3)
ξ) +K ′(m

(4)
λ H

(4)
λ +m

(4)
θ H

(4)
θ)

=O[(1− γ)−8ϵ−4]O
[log[(1− γ)−1ϵ−1]

(1− γ)6ϵ2
]
O[(1− γ)−10ϵ−4]O

[log[(1− γ)−1ϵ−1]

1− γ

]
45

+O[(1− γ)−8ϵ−4]O[(1− γ)−4ϵ−2]O
[log[(1− γ)−1ϵ−1]

1− γ

]
+O[(1− γ)−9ϵ−4]O

(
log[(1− γ)−1ϵ−1]

)
O[(1− γ)−10ϵ−4]O

[log[(1− γ)−1ϵ−1]

1− γ

]
+O[(1− γ)−9ϵ−4]O[(1− γ)−10ϵ−4]O

[log[(1− γ)−1ϵ−1]

1− γ

]
=O

[log2[(1− γ)−1ϵ−1]

(1− γ)25ϵ10
]
.

O Proof of Theorem 3

Note that σk = 2βkℓθ, so by the definition of Ξk := {ξ ∈ V (Ξ) : f(λθk,ξ) ≥
maxξ′∈V (Ξ) f(λθk,ξ′)− 2βkℓθ} we have

f(λθk,ξ) < max
ξ′∈V (Ξ)

f(λθk,ξ′)− 2βkℓθ, ∀ξ ∈ V (Ξ)/Ξk. (155)

Hence,

max
ξ′∈Ξ

f(λθk,ξ′)− f(λθk+1,ξ)
(i)

≥max
ξ′∈Ξ

f(λθk,ξ′)− f(λθk,ξ)− 2ℓθ∥θk+1 − θk∥

(ii)
> 2βkℓθ − 2ℓθβk = 0, ∀ξ ∈ V (Ξ)/Ξk (156)

where (i) uses Eq. (10) in Proposition 3 which implies that f(λ·,ξ) is ℓθ-Lipschitz continuous, (ii)
uses Eq. (155) and the update rule (22) with ∥dk∥ = 1. Eqs. (155) and (156) respectively imply the
following two equations.

Γ(θk) = max
ξ′∈Ξk

f(λθk,ξ′) ≥ f(λθk,ξ∗k+1
), (157)

Γ(θk+1) = max
ξ′∈Ξk

f(λθk+1,ξ′) = f(λθk+1,ξ∗k+1
), (158)

where ξ∗k+1 ∈ argmaxξ′∈Ξk
f(λθk+1,ξ′).

Based on Proposition 7, there exists a unit descent direction d̃k (∥d̃k∥ = 1) such that

0<f(λθk,ξ)−min
θ′∈Θ

Γ(θ′)≤f(λθk,ξ)−f(λθ∗,ξ)≤
[
−
√
2ℓλ−1∇θf(λθk,ξ)

⊤d̃k
]
+
, ∀ξ ∈ Ξk (159)

Then we have

Γ(θk)− min
θ′∈Θ

Γ(θ′)
(i)
= max

ξ′∈V (Ξ)
f(λθk,ξ′)− min

θ′∈Θ
Γ(θ′)

(ii)

≤ min
ξ∈Ξk

f(λθk,ξ)− min
θ′∈Θ

Γ(θ′) + 2βkℓθ

(iii)

≤ min
ξ∈Ξk

[
−
√
2ℓλ−1∇θf(λθk,ξ)

⊤d̃k
]
+
+ 2βkℓθ

=
[
−
√
2ℓλ−1Ak(d̃k)

]
+
+ 2βkℓθ

(iv)

≤
[√

2ℓλ−1 [ϵk −Ak(d
′
k)]
]
+
+ 2βkℓθ, (160)

where (i) uses Proposition 6, (ii) uses Ξk := {ξ ∈ V (Ξ) : f(λθk,ξ) ≥ maxξ′∈V (Ξ) f(λθk,ξ′) −
2βkℓθ}, (iii) uses Eq. (159), (iv) uses Ak(d̃k) ≥ mind∈B1

Ak(d) ≥ Ak(d
′
k)− ϵk based on line 6 of

Algorithm 2.

46

O.1 Analyze the k-th Iteration

(Case 1): If Ak(d
′
k) ≥ 0, then Eq. (160) implies that

Γ(θk)− min
θ′∈Θ

Γ(θ′) ≤
√
2ℓλ−1ϵk + 2βkℓθ. (161)

Hence, by ℓθ-Lipschitz continuity of Γ(·) := maxξ∈Ξf(λ·,ξ) (based on Proposition 3), we have

Γ(θk+1)− min
θ′∈Θ

Γ(θ′) ≤ Γ(θk)− min
θ′∈Θ

Γ(θ′) + ℓθ∥θk+1 − θk∥
(i)

≤
√
2ℓλ−1ϵk + 3βkℓθ, (162)

where (i) uses Eq. (161) and the update rule (155) with ∥dk∥ = 1.

(Case 2): If Ak(d
′
k) < 0, then since ∥d′k∥ ≤ 1, dk = d′k/∥d′k∥ satisfies Ak(dk) ≤ Ak(d

′
k) < 0.

Hence, Eq. (160) implies that

Γ(θk)− min
θ′∈Θ

Γ(θ′) ≤
√
2ℓλ−1 [ϵk −Ak(dk)] + 2βkℓθ. (163)

As a result, we bound the one-step optimization progress of Γ(θk) as follows.

Γ(θk+1)− Γ(θk)
(i)

≤f(λθk+1,ξ∗k+1
)− f(λθk,ξ∗k+1

)

(ii)

≤∇θf(λθk,ξ∗k+1
)⊤(θk+1 − θk) +

Lθ,θ

2
∥θk+1 − θk∥2

(iii)
= βk∇θf(λθk,ξ∗k+1

)⊤dk +
Lθ,θ

2
β2
k

(iv)

≤ βkAk(dk) +
Lθ,θ

2
β2
k

(v)

≤βk
(
ϵk +

Lθ,θβk
2

+

√
2βkℓθ
ℓλ−1

)
− βk√

2ℓλ−1

[
Γ(θk)− min

θ′∈Θ
Γ(θ′)

]
,

where (i) uses Eqs. (157) and (158), (ii) uses Lθ,θ-smoothness of f(λ·,ξ) based on Proposition 3, (iii)
uses the update rule (22) with ∥dk∥ = 1, (iv) uses ξ∗k+1 ∈ Ξk and the definition of Ak in Eq. (23),
(v) uses Eq. (163). Rearranging the above inequality yields that

Γ(θk+1)− min
θ′∈Θ

Γ(θ′)

≤
(
1− βk√

2ℓλ−1

)[
Γ(θk)− min

θ′∈Θ
Γ(θ′)

]
+ βk

(
ϵk +

Lθ,θβk
2

+

√
2βkℓθ
ℓλ−1

)
(i)
=

k

k + 2

[
Γ(θk)− min

θ′∈Θ
Γ(θ′)

]
+

2
√
2ℓλ−1ϵk
k + 2

+
8ℓ2λ−1

(k + 2)2

(Lθ,θ

2
+

√
2ℓθ

ℓλ−1

)
, (164)

where (i) uses βk =
2
√
2ℓλ−1

k+2 .

O.2 Obtain the Convergence Rate (25)

(Case 1): If Ak(d
′
k) < 0 for all k = 0, 1, . . . ,K − 1, then we iterate Eq. (164) over k =

0, 1, . . . ,K − 1 as follows.

Γ(θK)− min
θ′∈Θ

Γ(θ′)

≤
K∑

k=0

k(k + 1)

K(K + 1)

[2√2ℓλ−1ϵk
k + 1

+
8ℓ2λ−1

(k + 1)2

(Lθ,θ

2
+

√
2ℓθ

ℓλ−1

)]
≤ 2
√
2ℓλ−1

K(K + 1)

K∑
k=1

(kϵk) +
4ℓλ−1

K + 1
(ℓλ−1Lθ,θ + 2

√
2ℓθ)

≤
√
2ℓλ−1 max

1≤k≤K
ϵk +

4ℓλ−1

K + 1
(ℓλ−1Lθ,θ + 2

√
2ℓθ). (165)

47

(Case 2): If AK−1(dK−1) ≥ 0, then Eq. (162) holds for k = K − 1, i.e.,

Γ(θK)− min
θ′∈Θ

Γ(θ′) ≤
√
2ℓλ−1ϵK−1 + 3βK−1ℓθ ≤

√
2ℓλ−1ϵK−1 +

6
√
2ℓθℓλ−1

K + 1
. (166)

(Case 3): If AK′−1(dK′−1) ≥ 0 for some K ′ ∈ {1, . . . ,K − 1} while Ak(dk) < 0 for all
k = K ′, . . . ,K − 1, then we iterate Eq. (164) over k = K ′, . . . ,K − 1 as follows.

Γ(θK)− min
θ′∈Θ

Γ(θ′)

≤
K∑

k=K′+1

k(k + 1)

K(K + 1)

[2√2ℓλ−1ϵk
k + 1

+
8ℓ2λ−1

(k + 1)2

(Lθ,θ

2
+

√
2ℓθ

ℓλ−1

)]
+
K ′(K ′ + 1)

K(K + 1)
[Γ(θK′)− min

θ′∈Θ
Γ(θ′)]

(i)

≤ 2
√
2ℓλ−1

K(K + 1)

K∑
k=K′+1

(kϵk) +
4ℓλ−1(K −K ′)

K(K + 1)
(ℓλ−1Lθ,θ + 2

√
2ℓθ)

+
K ′(K ′ + 1)

K(K + 1)

(√
2ℓλ−1ϵK′ + 2βK′ℓθ

)
(ii)
=

2
√
2ℓλ−1

K(K + 1)

K∑
k=K′+1

(kϵk) +
4ℓλ−1(K −K ′)

K(K + 1)
(ℓλ−1Lθ,θ + 2

√
2ℓθ)

+
K ′(K ′ + 1)

K(K + 1)

(√
2ℓλ−1ϵK′ +

4
√
2ℓθℓλ−1

K ′ + 2

)
≤
√
2ℓλ−1 max

K′+1≤k≤K
ϵk +

4ℓλ−1

K + 1
(ℓλ−1Lθ,θ + 2

√
2ℓθ), (167)

where (i) applies Eq. (162) to k = K ′ and (ii) uses βk =
2
√
2ℓλ−1

k+2 .

In sum, the convergence rate (25) holds in all the above three cases.

P Proof of Corollary 1

Note that Ak(d) := maxξ∈Ξk

[
∇θf(λθk,ξ)

⊤d
]

defined by Eq. (23) is convex and ℓθ-Lipschitz con-
tinuous. Hence, the best direction dk ∈ argmaxd∈{dk,t:0≤t≤Tk}Ak(d) obtained from the subgradient
method (28) converge at the following rate [11].

Ak(dk)− min
d∈B1

Ak(d)
(i)

≤∥dk,0 − d
∗
k∥2 + ℓ2θTα

2

2Tα

(ii)

≤ 4 + 4

24ℓλ−1ϵ−1
=

ϵ

3ℓλ−1

,

where (i) denotes d∗k ∈ argmaxd∈B1
Ak(d), (ii) uses T =

36ℓ2
λ−1 ℓ

2
θ

ϵ2 = O[(1 − γ)−4ϵ−2], α =
ϵ

3ℓλ−1 ℓ2θ
and ∥dk,0∥, ∥d∗k∥ ≤ 1. Hence, the accuracy ϵk = ϵ

3ℓλ−1
is achieved in Algorithm 2.

Substituting ϵk = ϵ
3ℓλ−1

, K =
8ℓλ−1

ϵ (ℓλ−1Lθ,θ + 2
√
2ℓθ) = O[(1− γ)−3ϵ−1] into the convergence

rate (25), we obtain that

Γ(θK)− min
θ′∈Θ

Γ(θ′) ≤
√
2ℓλ−1 max

1≤k≤K
ϵk +

4ℓλ−1

K + 1
(ℓλ−1Lθ,θ + 2

√
2ℓθ) ≤ ϵ.

The above ϵ accuracy above requires K|V (Ξ)| = O[|V (Ξ)|(1 − γ)−3ϵ−1] evaluations to λθk,ξ,
f(λθk,ξ) and ∇θf(λθk,ξ), KT = O[(1 − γ)−7ϵ−3] subgradient updates (28), and K = O[(1 −
γ)−3ϵ−1] gradient descent updates to the policy gradient descent updates (22).

48

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we have accurately reflect our contributions,
namely, our proposed new learning framework (robust RL with general utility), and our
proposed algorithms as well as their convergence results for convex utilities, concave utilities
and other utilities that satisfy weak Minty variational inequality.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

49

Answer: [Yes]
Justification: All our lemmas, propositions and theorems contain assumptions (if there are)
and the corresponding proofs are shown in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the experiment section, we have provided all details needed to reproduce
our experiments, including the problem setup (e.g. utilization function, transition kernel
parameterization, policy parameterization, ambiguity set, discount factor), the algorithms
we implemented (as shown in our algorithm boxes) and the hyperparameter choices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

50

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have uploaded our code which generates the simulation data for our
experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have shown the experimental settings in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report one time implementation of each algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

51

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have shown the hardware and computing resource in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not see any ethics violation of our theoretical study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not see any societal impact of our foundational theoretical study since it
is not tied to particular applications, let alone deployments.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

52

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release data. The code is simply implementation of the
algorithms in this work, which does not pose any risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

53

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have uploaded an anonymized zip file containing our code and a readme
file on how to use the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

54

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

55

	Introduction
	Our Contributions
	Related Works

	Robust Reinforcement Learning with General Utility
	Examples of Our Robust RL with General Utility
	Gradients for Our Robust RL with General Utility

	Gradient Convergence for Convex Utility
	Global Convergence on Polyhedral Ambiguity Set
	S-rectangular Polyhedral Ambiguity Set
	Globally Converged Algorithm

	Conclusion
	Appendix
	 Appendix
	Experiments
	Supporting Lemmas
	Stochastic Gradients
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Assumptions 1, 2 and 3
	Proof of Assumptions 5, 6 and 7 about ambiguity set
	Proof of Assumptions 4 and 8

	Proof of Proposition 9
	Proof of Theorem 1
	Proof of Theorem 2
	Convergence Rate of Inner Update Step (14) of the First Original Phase
	Convergence Rate of E["0365("0365)2] from the First Original Phase
	Convergence of the Inner Update Step (16) of the Second Corrected Phase
	Convergence Rate of E[Gb()(k"0365k,k"0365k)2]
	Convergence Rate of E[Ga()(k"0365k,k"0365k)2]
	Substituting Hyperparameters

	Proof of Theorem 3
	Analyze the k-th Iteration
	Obtain the Convergence Rate (25)

	Proof of Corollary 1

