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Abstract

In this work, we study the issue of reward hacking
on the response length, a challenge emerging in
Reinforcement Learning from Human Feedback
(RLHF) on LLMs. A well-formatted, verbose but
less helpful response from the LLMs can often de-
ceive LLMs or even human evaluators and achieve
high scores. The same issue also holds for some
reward models in RL. To address the challenges
in both training and evaluation, we establish a
more reliable evaluation protocol for comparing
different training configurations, which inspects
the trade-off between LLM evaluation score and
response length obtained by varying training hy-
perparameters. Based on this evaluation, we con-
duct large-scale studies, where the results shed
insights into the efficacy of hyperparameters and
tricks used in RL on mitigating length bias. We
further propose to improve the reward model by
jointly training two linear heads to predict the
preference, one trained to correlate with length
and the other trained to decorrelate with length
and therefore focusing more on the actual con-
tent. We then discard the length head in RL to
ignore the spurious length reward. Experiments
demonstrate that our approach eliminates the re-
ward correlation with length, and improves the
obtained policy by a significant margin.

1. Introduction

Reinforcement Learning from Human Feedback (RLHF)
has emerged as a critical technique to elicit the capabilities
from pretrained large language models (LLMs) to gener-
ate more helpful, honest, and harmless responses that align
with human preferences (Ziegler et al., 2019; Askell et al.,
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2021; Ouyang et al., 2022), which has led to the success of
ChatGPT (Schulman et al., 2022) and many other Al sys-
tems (Pichai, 2023; Anthropic, 2023; Touvron et al., 2023).
RLHF trains a reward model (RM) on human preferences
for the responses of given prompts, followed by training
the language model to generate responses that maximize
the learned reward through reinforcement learning. Such
a paradigm simplifies human data collection, as acquiring
human ratings is easier than collecting demonstrations for
supervised fine-tuning. Moreover, it has been observed
that RLHF has weak-to-strong generalization, where the
policy becomes more creative than the supervision it re-
ceives (Burns et al., 2023).

Despite the promises, one subtle issue of RLHF is reward
hacking, or reward model over-optimization, i.e., the policy
obtains a high reward but does not fulfill the actual objec-
tives. It happens because the RM is not a perfect proxy of hu-
man preferences and has limited out-of-distribution (OOD)
generalization, but the policy is a capable LLM that can
learn to generate OOD examples to exploit the vulnerabili-
ties of the RM (Hendrycks et al., 2021; Ramé et al., 2024).
More critically, the human preference data can often be bi-
ased and inconsistent due to the difficulty and subjectivity
of the task itself, flaws in the rating criteria, and the limited
quality of raters. The most common pattern of reward hack-
ing in practice is verbosity: the language models generate
more tokens to make the response appear more detailed or
better formatted after RLHF (usually for helpfulness) but
the actual quality does not improve (Singhal et al., 2023;
Wang et al., 2023b). This tendency is largely due to a prefer-
ence among human raters for longer responses, which could
be exploited by RM easily and cause the length hacking.
Given the challenges in controlling the quality of human
data, it becomes increasingly important and beneficial to
study mitigating the impact of spurious features from the
reward modeling and algorithmic perspective.

In this paper, we take a step towards mitigating reward hack-
ing by conducting a comprehensive study on the impact of
reward models and the RL algorithm on the verbosity and
performance of the learned policy. Considering the chal-
lenges in model-based evaluations due to their biases (Zeng
et al., 2023), e.g., open-sourced LLMs climb up on Alpaca-
Eval (Li et al., 2023a) leaderboard by utilizing the length
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bias of the judge GPT-4 (Liu, 2024), we first establish a more
reliable evaluation protocol for comparing different training
configurations, which gathers evaluation results from large-
scale grid search under these configurations and compares
the achieved performance on the Pareto front of evaluation
score vs. length. This offsets the length biases and gives a
holistic understanding of the optimal result each approach
can achieve at different lengths to reduce the randomness of
the conclusions due to the length bias in model-based eval-
uation. Under this setup, we investigate the effectiveness
of hyperparameters and tricks in RL for reducing reward
hacking on length, including reward clipping (Mnih et al.,
2015) and length penalty (Singhal et al., 2023). While tun-
ing and tricks can push up the Pareto front, we find it hard
to conclude with simple principles for tuning this large set
of hyperparameters. We seek to solve the issue from its root
and eliminate the spurious length signal from the reward. To
this end, we train a two-head reward model to disentangle
representations for length from the actual preference and
discard the length head during RL. The proposed reward
disentangling method, ODIN', helps the policy achieve a
higher Pareto front than previous results with a more ex-
pensive tuning budget, and the conclusion holds for both
PPO (Schulman et al., 2017) and ReMax (Li et al., 2023b),
showing the great potential of ODIN to improving the dif-
ferent RL-tuning algorithms and shed light for reducing the
length hacking.

2. Related Works

Reinforcement Learning from Feedbacks. Since its origin
on language models (Ziegler et al., 2019), RLHF has empow-
ered the success of several epochal LLM systems (Schulman
et al., 2022; OpenAl, 2023; Pichai, 2023; Anthropic, 2023;
Team, 2023), and more diverse sources of preferences have
been used to train the reward model (Bai et al., 2022; Lee
et al., 2023) or provide feedbacks directly in RL (Liu et al.,
2023). Since both human and LLM evaluators have bi-
ases, ODIN stays relevant for RLHF/RLAIF as long as a
reward model needs to be trained. Most of the powerful
conversational assistants (Ouyang et al., 2022; Schulman
et al., 2022) in practice use PPO (Schulman et al., 2017)
for RL and achieved significant improvement on the LLM’s
instruction-following ability. Many alternatives to PPO also
have appeared showing promises for better learning from
feedbacks. Most of these approaches are offline algorithms,
which includes SLiC-HF (Zhao et al., 2023), DPO (Rafailov
et al., 2023), IPO (Azar et al., 2023), KTO (Ethayarajh et al.,
2023), RSO (Liu et al., 2024) and ReST (Gulcehre et al.,
2023). They use humans or LLMs to annotate a large batch
of LLM generations and then train the policy on the anno-

'Odin sacrificed one eye for wisdom, similarly our RM discards
the length head for more focus on the actual content.

tated demonstrations or preferences, without sampling from
the policy during training. Offline algorithms can be less
prone to reward hacking as the demonstrations are updated
less frequently, but hacking can still happen in the long term.
In this paper, we mainly focus on the online algorithms
which are more widely adopted in practice.

Mitigating Reward Hacking in RLHF. Shen et al. (2023)
proposed to use a smaller reward model to learn the biases in
the reward and a larger reward model to learn the true reward.
Different from their approach, we explicitly train a linear
projection on the shared reward model features to be corre-
lated with length and remove such correlation from the other
head. Language models sometimes have a contrary length
bias where it favors generating shorter sequences. Sountsov
& Sarawagi (2016) found encoder-decoder models tend to
generate shorter sequences with beam search. Singhal et al.
(2023) explored ways to reduce length increase for PPO,
including regularizations for PPO (increasing KL regulariza-
tion, omitting outputs beyond a length threshold and reward
scaling), and improvements on reward model training data
(including length balancing, confidence-based truncation
and reward data augmentation with random preferred re-
sponse as negative examples). Their mitigations in PPO
were not able to prevent length increase compared to SFT,
and the reward becomes lower compared with the setting
without the regularizations. The improvements on the re-
ward model either decrease reward model accuracy or fail to
decrease correlation with length to significantly small values.
Rewarded Soup (Rame et al., 2023) interpolates weights
of policies trained to optimize different reward objectives,
which can approximate more costly multi-policy strategies.
Instead of interpolating the policies, WARM (Ramé et al.,
2024) uses weight-averaged reward models to improve their
OOD robustness and reduce reward hacking in RL.

LLM Evaluations. For instruction-following evaluation,
current evaluations of SFT/RLHF models usually rely on the
auto-raters, e.g., GPT-4, since it is a scalable and efficient
way (Zheng et al., 2023a; Touvron et al., 2023). However,
current open models utilize the length bias of the auto-rater,
i.e., GPT-4 is more likely to give a higher score for longer
responses compared to the short responses, to climb on
Alpaca-Eval (Li et al., 2023a; Liu, 2024). To conduct fair
and holistic evaluations of the actor models trained via our
reward models, in our paper, we evaluate the models by
comparing the Pareto front. As for benchmarks, we aim
to evaluate the base capabilities of LLMs, e.g., reasoning
and commonsense. Since they are mostly gained from per-
taining corpus (Zhou et al., 2023) and SFT/RLHF has lim-
ited data compared to the pretraining, we only expect it
could still maintain the performance on benchmarks, e.g.,
on MMLU (Hendrycks et al., 2020), Truthful QA (Lin et al.,
2021).
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Figure 1: The explanation of ODIN. ODIN has two heads to predict two rewards. In RM training stage, ODIN is trained with
the same human preference data as vanilla RM with a carefully designed loss to disentangle the length sinal and the quality
signal into two heads. Only the quality head is involved in RL fine-tuning stage, and the length reward is discarded to reduce

reward hacking on length.
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Figure 2: The main results of ODIN. We compare the Pareto
front of PPO (Schulman et al., 2017), ReMax (Li et al.,
2023b) trained with vanilla reward model and ODIN, as well
as the model trained with DPO (Rafailov et al., 2023) loss.
For ReMax* and PPO*, we aggregated results with reward
clipping and length penalty for comparison, which involves
a larger search space and compute budget than the ODIN
results.

3. Preliminaries

We consider the RLHF pipeline widely adopted in the de-
velopments of LLMs (Ziegler et al., 2019; Stiennon et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023), which
consists of three stages: (1) Supervised Fine-tuning (SFT);
(2) Reward modeling: training the reward model based on
the SFT checkpoint; (3) RL: using the SFT checkpoint as
initialization and the reward model for feedback.

Reward Modeling. Same as (Stiennon et al., 2020; Ouyang
et al., 2022; Touvron et al., 2023), we consider the approach
where the reward model is initialized from a supervised
fine-tuned LM, with a randomly initialized linear layer ap-
pended to the end to project the feature representation of
the whole sequence into a scalar representing the reward.
The reward model is trained to minimize the loss under the
Bradley-Terry model (Bradley & Terry, 1952) on pair-wise
comparisons of model responses as

‘C(e) = _]E(:v,ywyl)~D [IOg (U (TG (:C’ yw) —Te ('737 yl)))] s

ey
where 7¢(z, y) is the scalar reward from the reward model
with trainable parameters @ for prompt = and the response y;
1., and y; are the chosen and rejected responses respectively,
and o (-) denotes the sigmoid function.

RL Objective. Different from SFT, RL fine-tuning stage
does not require golden responses for supervision. Instead,
the reward model is used as a proxy of human feedback on
the responses generated by the policy throughout training.
Specifically, it fine-tunes the parameters w of the policy 7,
by maximizing the the following objective:

My | 2)],

@)
where the SFT policy 75T is used as initialization of 7,
Dy = {(2,9)|2 ~ Dr,y ~ Tu(yle)}, and B > 0is a
constant adjusting strength of the KL regularization. The
KL regularization term is used to mitigate reward hacking
by preventing the policy 7,, from drifting away from the
SFT model 75FT (Stiennon et al., 2020; Ouyang et al., 2022).
In practice, the KL term is replaced with some estimator,
which makes Eq. (2) equivalent to maximizing some aux-
iliary reward 7 (z, y). Following Stiennon et al. (2020), we
consider the naive estimator in this paper, and define the

E(e,y)~D,,, [ro(,y)] — BDkL [mw (y | 2)|I7
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auxilary reward as

#(x,y) = re(z,y) — Blog :S’”FT((% 3)

See Schulman (2020) for unbiased estimator of KL.

RL Algorithms. Different RL algorithms can be used
to maximize 7(x,y). We compare two options to see
how existing mechanisms in RL algorithms can reduce re-
ward hacking in RLHF: the simpler REINFORCE with
baseline (Williams, 1992), and the more sophisticated
PPO (Schulman et al., 2017). For REINFORCE, we con-
sider the ReMax variant (Li et al., 2023b), which saves
memory and compute significantly by replacing the value
network with the reward on the greedy decoding of the
current policy. Li et al. (2023b) proved that similar to RE-
INFORCE, ReMax has an unbiased gradient estimate and
reduces gradient variance under certain assumptions. Re-
Max maximizes the following objective with gradient ascent
on w:

E(zy)~ps,, [F(2,y) = (2, 9)]log mw (y|2), (4
where § is the greedy sampling from 7.

PPO is a more prevalent option adopted by many
works (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022; Touvron et al., 2023). For clarity, we provide
details of PPO in the context of RLHF for LLMs in Algo-
rithm 1 in Appendix. PPO maximizes the clipping objective

; Tw(WlT) A 1 Tw (y|T) A
Ep.,, [ min { 7rwmd(y‘I)A, clip (ﬂwold(ylx)’ 1—¢ 1+ e) A},
(%)
where € > 0 is a constant for clipping, % is the
Wold

likelihood ratio, A is the advantage usually estimated by
GAE (Schulman et al., 2015) as a function of the value es-
timate and the reward. Intuitively, this clipping objective
can help reduce reward hacking. It prevents the model from
becoming over-confident on samples with positive advan-
tage to over-optimize the reward by stopping optimizing on
samples when their likelihood ratio % > 1+ €. See
our results in Figure 3 (a). ™

4. Mitigating Reward Hacking in Practice

In this section, we first establish a more reliable evaluation
for comparing different methods, which uses the length of
the generated response L(y) as an indicator of the degree of
reward hacking. Then, we study the impact of RL hyperpa-
rameters and tricks on the Pareto front of model-based or
human evaluation metrics against L(y), and propose a more
reliable approach by training a reward model that disentan-
gles the spurious length correlation from the actual reward
on contents.

4.1. Evaluation

It is challenging to evaluate the policy automatically through
LLM evaluators, as the policy has been optimized against
a reward model initialized from a LLM, and these LLM
evaluators can often be biased in practice (Zeng et al., 2023;
Zheng et al., 2023a; Singhal et al., 2023). Previous works
studying reward hacking have been using a ground-truth re-
ward model to generate the preference data for training and
evaluate the policy using the ground-truth reward (Gao et al.,
2023; Ramé et al., 2024), but here we want to develop an ap-
proach that applies to reward models trained on real human
preference data. To achieve this, we look at the model-based
evaluation metric S against the average response length L
on the evaluation set, and compare the Pareto front achieved
by each method or configuration. We consider the response
length because it is easy to measure and well-reflects the
degree of reward hacking in RLHF for LLMs; in practice,
the policy tends to generate longer responses when reward
hacking happens (Ramé et al., 2024; Wang et al., 2024). A
better method or configuration should achieve higher score
when L is the same, therefore a higher Pareto front in the
plots. We mainly use model-based evaluations in our stud-
ies, where we compare responses generated by the policy
against the responses generated by the SFT baseline. We
then use the following win score as the metric:

Win Score = 50 + 100 x M, 6)
n

where 7,5, (Nose) 1 the number of examples rated as win-
ning (losing) against the baseline, and n is the total number
of evaluation examples. Win Score > 50 when the test
model is no worse than the baseline. See Section 5 for more
details.

4.2. How much hacking can we mitigate by tuning RL?

We investigate how much the hyperparameters and tricks
used in RL can reduce reward hacking and improve evalua-
tion results. While this helps to some extent, we find it can
be hard to obtain a simple principle that will guarantee a
significantly better Pareto front.

PPO Hyperparameters. The KL regularization is intro-
duced into the RL objective to explicitly prevent reward
hacking. In Figure 9, we show that larger KL weight 3
can indeed prevent excessive length increase, but the win
score becomes worse and the policy becomes closer to SFT
initialization. In Figure 3 (a), we show the effect of KL
is marginalized when reward clipping is introduced. As
mentioned in Section 3, the clipping objective can poten-
tially reduce reward hacking. From Figure 3 (b), we find
it is indeed the case, with smaller € bringing around 2.5
points of improvement on the Pareto front. However, the
effect becomes more complicated when reward clipping is
introduced; see Figure 10. Another mechanism that can po-
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Figure 3: (a) Results under different 3’s, when sweeping 7, €, N and c. The effect is marginal when the length is around
SFT init. We show the version without reward clipping in Figure 9. (b) Results under different PPO clipping €, when
disabling reward clipping and sweep 77, IN. More conservative € reduces hacking and improves results, but the trend becomes
complicated when enabling reward clipping (Figure 10). (c) Results under different sizes of experience batch N, when
sweeping 7, 3, € and ¢. We use batch size b = 32, so N = 32,64, 256 correspond to 0%, 50% and 87.5% “off-policy”
samples, and e clipping is ineffective when N = 32. Surprisingly, larger IV is not beneficial. (d) Results under different
reward clipping thresholds ¢, when sweeping 7, 3, €, N. Certain ¢ can outperform the baseline without clipping, but this

requires tuning.

tentially alleviate reward hacking is to sample the responses
from the old policy, which should reduce the chance of sam-
pling from a hacking policy. This is effective when N > b,
where the policy is trained on (N — b) “off-policy” experi-
ences in each PPO inner epoch. Surprisingly, in Figure 3
(c), we show that a higher degree of off-policy makes it
more likely to generate longer responses, and the win score
around the length of 75T is not as high as pure on-policy
(N = b), where even the PPO clipping ¢ is ineffective (
P,y (z,y) = 1). We leave studying GAE as future work.

Reward Clipping. Reward clipping is widely adopted by
previous works like (Mnih et al., 2015; Engstrom et al.,
2020) as well as the Deepspeed RLHF implementation.
Specifically, we clip the reward from the reward model
and use the clipped auxiliary reward as

T (y]2)

~cli .
p(‘r7 y) = chp(rg(x, y)7 —C, C) - ﬁlog Wa

Tg @)
where ¢ > 0 is a constant. Reward clipping can alleviate
reward hacking in that it prevents the policy from trying to
achieve higher rewards by generating hacking patterns to
the reward model. In Figure 3 (d), we do observe that a
proper c leads to a higher win score for PPO at length close
to the SFT init. In Figure 8, we show that a proper clipping
can also improve ReMax, but a more aggressive clipping
(e.g., ¢ = 1) can hinder effective learning by preventing
the policy from exploiting higher reward responses. As
a result, similar to the recommendation in (Zheng et al.,
2023b), careful tuning is required to use reward clipping
successfully in practice.

Length Penalty. A more straightforward way to prevent
reward hacking on length is to explicitly penalize longer
responses. Singhal et al. (2023) adds a length penalty pro-
portional to the response length using the standard deviation

of reward as the coefficient. However, to eliminate the corre-
lation with length, we also need to consider the covariance
between the reward and length, which can be constantly
changing during RL due to shifts in the distribution of gen-
erations. Therefore, we simply make the coefficient a tun-
able constant « > 0, and change the auxiliary reward into
fg)(x, y) = fo(z,y) — a* L(y), where L(y) is number of
tokens in the response y. In Figure 4, we show that length
penalty makes f’g’ (z,y) less affected by length and improves
the Pareto front, but is not as effective as ODIN, which bakes
length decorrelation into RM training to make the reward
more reliable and does not add new hyperparameters to RL.

4.3. Reward Disentanglement: a more reliable approach

In the previous section, we have shown the difficulty of re-
ducing the simple reward hacking pattern of length through
tuning and tricks in RL against a vanilla reward model. Here,
we demonstrate a better approach where we train the reward
model to disentangle the actual reward from spurious re-
wards correlating with patterns that do not always represent
the quality of the response but can add to the vulnerabilities
of the reward model and make it easier to be exploited by the
policy. Different from previous approaches that learn and
integrate rewards from multiple types of preferences (Wu
et al., 2023), we discard the spurious rewards during RL.
We find this removes the need to use reward clipping and
length penalty to prevent length increase and achieves better
results without excessive tuning on the disentangled reward
model.

Learning Multiple Rewards on Shared Representations.
To minimize the overhead, we increase the output dimension
of the final linear layer of the RM to predict different re-
wards. This is sufficient to separate the spurious reward from
the original scalar reward, since the RM is a pretrained LLM
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with enough capacity, and the observed reward hacking is a
consequence of spurious rewards being exploited. Specifi-
cally in the case of disentangling length reward r§(z, y) and
the actual reward reflecting quality of the response 7'3(x, Y)s
we represent the full reward from the feature representation
as r(z, y) + (2, y), and consider the following ranking

loss for reward model:

L(,yury1) = —E[log (o (g (2, y0) + 7§ (@, yu)
- 7“2 (.13, yl) - Tg (Z‘, yl) ))]7
which equivalently trains the model to decompose the origi-

nal projection weights into the sum of two sets of projection
weights, and should have better capacity.

®)

Comparing Length Penalty with Disentangled RM (ReMax)

&
! o Vanila .
90 ngth Penal Length Penalty _—
ise led 60 —e— Disentangled RM —
ialization A SFTInitialization //'
80 55 /_/
8 8° i 1
!

Comparing Length Penalty with Disentangled RM (PPO)

210 220 230 240 250 260 185 190 195 200 205 210 215 220
Length Length

Figure 4: Comparing the effect of length penalty and ODIN on
ReMax and PPO. For both ReMax and PPO, length penalty (LP)
can improve the Pareto front, but not as significant as ODIN. Due
to limited computes, we ran less experiments for LP, so this set was
selected so that each method shares the same RL hyper-parameters
as LP. See Appendix E.4 for hyperparameters considered.

Disentangling the Rewards. We consider the case when
supervision can be added to all but one of the rewards, since
unsupervised learning of disentangled representations is
impossible without inductive biases on both the models and
the data for generative models (Locatello et al., 2019). In
the case of length and quality, we first design the loss to
enhance the length correlation of ' while minimizing that
for rQ as follows:

Lh(x,y) = |plrg(z.y), Ly))| — p(r(z, 1), L(y)), 9

where L(y) is number of tokens in the response y, and
p(X,Y) is the Pearson correlation of X, Y computed within
the global minibatch. To compute p within the global mini-
batch when data parallel is enabled, we gather the rewards
and lengths from all devices only in the forward pass, which
leads to the correct gradients for parameters 6 in the back-
ward pass since the reward predictions are independent of
each other in the Transformer architecture (Vaswani et al.,
2017). Note we use L5(z,y) as a regularization added to
the ranking loss in Eq. 8. When L} (z, y) is minimized to
-1, 7"{5 and 7'3 will have zero correlation, which can be
beneficial since it indicates 7“3 and 7§ did not co-adapt to
reduce the ranking loss and both heads are learning inde-
pendently to maximize their predictive power. However,

perfect correlation and decorrelation can be hard to achieve
in practice, since we usually train on minibatches, and we
want to generalize the RM to OOD examples in RL.

To further enhance disentanglement between 7"3 and rj and
learn both more effectively, we enforce the orthogonality of
their projection weights. Specifically, let Wq, W € R1*4
be the linear projection for quality and length rewards. We
introduce the orthogonality loss

Ly =|WoW{|. (10)

When enforced together with L5 (x, y.,, /) and L5 (z,y),
LY can be beneficial for disentangling the feature repre-
sentations of length and quality into orthogonal subspaces,
because the feature representation of the RM will learn to
align the length and quality representations with Wy and
‘W, to minimize other losses, and Wy, and W, are learned
to be orthogonal. In Table 1 and Figure 5, we show that
adding £ further reduced the length correlation, and lead
to even better RL policies.

Note that both £§(z,y) and £J can be minimized when
W = 0. To prevent this from happening and improve
training dynamics, we add weight normalization (Salimans
& Kingma, 2016) to both W and W1, before computing
the losses and predicting the rewards.

Summary. We train ODIN with weight-normalized Wq
and W, to minimize the following loss

LR, Yo, Y1) FALE (2, o) +ALLE (2, 1) + Ao LG, (11)

where AL, Ao > 0 are constants for regularization strength.
In RL, we only use the rQ from ODIN. Without excessive
tuning, we find setting A\, = Ao = 1 to yield reasonably
good results for RL outperforming many baselines in Fig-
ure 2. In Table 1, we show that using only the quality reward
7“3 of the disentangled RM maintains the validation accu-
racy compared with the baseline, while drastically reducing
correlation with length.

5. Experiments
5.1. Settings

Dataset. We use the OpenAssistant dataset (Kopf et al.,
2023), a human-generated, human-annotated assistant-style
conversation corpus with over 10,000 complete and fully an-
notated conversation trees. Our preprocessing of this dataset
involves the following steps: (1) We transform all items into
a dialogue format (see Appendix E.5) and discard samples
with non-English prompts or responses. (2) For prompts as-
sociated with multiple ranked responses, we retain all these
responses by considering all the pairwise comparisons. This
results in k(k — 1)/2 unique comparisons when a prompt
has k ranked responses.
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Figure 5: The performance of the policies trained by two
different ODIN’s. Ao = 1.0 denotes the ODIN trained using
both Length Loss and Orthogonal loss while A\p = 0.0
represents the reward model only trained with Length loss.

Models and Training. We use Vicuna-7b as the base
model 7ger,2 which is a SFT model with decent instruction-
following capability. We fine-tune the reward model from
Vicuna-7B with randomly initialized projection layer ap-
pended to the last layer. We also initialize the policy 7,
from the same Vicuna-7b. All experiments are implemented
with DeepSpeed-Chat (Yao et al., 2023) and Huggingface
Transformers (Wolf et al., 2020), running on 8§ NVIDIA
A100 80GB GPUs. We tried different learning rates from
{le — 5,3e — 5,5e — 5} with batch size 128 for tuning
both the baseline RM and ODIN on 22k preference data
for 3 epochs, and picked the one with the highest valida-
tion accuracy for both. We fine-tune all the parameters in
the models for both RM training and RL without freezing
anything or using adapters. To evaluate how the efficacy
of ODIN can transfer across different RL algorithms, we
experiment with ReMax (Li et al., 2023b), an efficient and
effective version of REINFORCE without a value network,
and Proximal Policy Optimization (PPO)(Schulman et al.,
2017). We provide more details on the hyperparameters in
Appendix E. To compare with other alternatives for utilizing
human feedback, we re-implement Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023) and use it to tune the
same Vicuna 7B on the same Open Assistant human pref-
erence data as we train our reward models. For reference,
we also evaluate and compare with another open-sourced
models trained with DPO, tulu-2-dpo-"7b (Ivison et al.,
2023), which is based on the same pretrained model (Llama
2 7B) as Vicuna 7B.

Evaluation Metrics. Our main focus is on open-ended
generation. Incorporating recent advances in automated

Zhttps://huggingface.co/lmsys/vicuna-7b-v1.5.

Table 1: Direct reward model evaluation. We calculate
the Pearson correlation p, Spearman’s r,, and Kendall’s
7 between response length L(y) and reward score r(z, y).
Note 66% of this preference data test set has the chosen
response longer than rejected response.

P T rs Val Acc.
Baseline RM 0.451 0.422 0.338 70.1
AL =10,20=0.0] -005 -0.04 -0.05 70.1
AL =1.0,20=1.0 | -0.03 0.008 0.006 69.2

Table 2: The evaluation results on the separated test set,
where Chosen-L (Rejected-L) means the chosen response is
longer (shorter) than the rejected response. ODIN obtains
more balanced accuracies on the two sets, showing less
length bias.

RM Chosen-L.  Rejected-L.
Baseline RM 86.8% 39.3%
AL =1.0,20 =0.0 83.3% 44.8%
AL =10, =10 82.4% 45.4%

evaluation (Dubois et al., 2023; Zheng et al., 2023a; Chiang
et al., 2023), we use model-based metrics for large-scale
studies. We use GPT-4 (OpenAl, 2023) as the judge to
compare two responses for each prompt. We use the same
prompt as Chen et al. (2023), where GPT-4 is asked to give
a rating for each response when both responses are present
in the input; see Appendix D for details. By comparing the
two ratings, the result can be win, tie or lose. To counter
positional bias in GPT-4 ratings (Wang et al., 2023a), we
collect two sets of ratings by alternating the order of test and
baseline model responses. A winning response must receive
at least one win and at most one tie. This protocol can mit-
igate the positional bias and improve the rating quality of
GPT-4 as reported by Chiang et al. (2023). After counting
number of win, tie and lose for the test model, we use the
Win Score as defined in Eq. 6 as the aggregated metric. To
show the relative improvement each model obtained com-
pared with the SFT baseline (Vicuna-7B), for each prompt,
we use one response generated by Vicuna-7B, and collect
the other one from the RL policy we want to evaluate in
all our GPT-4 evaluations. Taking the length bias in the
GPT-4 evaluations into account (Wang et al., 2023b), a real
improvement is achieved with higher Win Score at a similar
average length, therefore we use the Pareto front achieved
by each method for the final judgement. To validate the
results, we also select best models at different length scales
and compare them with human studies.

Benchmarks. For the GPT-4 evaluation and human stud-
ies, we use prompts from the LIMA (Zhou et al., 2023)
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Figure 6: The human evaluation & GPT-4 pairwise-comparison results between models trained with our ODIN and length
penalty baselines at the lengths of 230, 245, and 260. These lengths are close to our SFT initialization, the GPT-3.5 Turbo
and the tulu-2-dpo—7b models, respectively. Note that all the models selected are on the Pareto front. The baseline

here is the ReMax & PPO with Length Penalty.

test-set, which contains 300 open-ended prompts in total.
We also evaluate the performance of our models on bench-
marks on specific model capabilities. Following Instruct-
Eval (Chia et al., 2023), we test the trained policy gy, on
BBH (Suzgun et al., 2022), MMLU (Hendrycks et al., 2020),
DROP (Dua et al., 2019), and Truthful QA (Lin et al., 2021)
to evaluate the model’s ability on challenging task solving,
multi-task, Math, and Truthfulness. We expect the trained
policy to improve on the LIMA evaluations, and maintains
its ability on the benchmarks (BBH, MMLU, DROP and
TruthfulQA), which is not targeted by the Open Assistant
data we are using but was obtained from pretraining.

5.2. Results

RM Evaluation. The efficacy of the reward models is best
judged by the performance of the policy they supervised,
which is demonstrated by the large-scale studies based on
GPT-4 evaluation in Figure 2 and our human studies in
Figure 6. For direct comparison of the reward models, we
mainly evaluate the accuracy of distinguishing the chosen
and rejected responses on the Open Assistant test set. We
also look at the correlation of the reward with length to
measure how much the reward prediction relies on length.
Besides the linear Pearson correlation p, which we explicitly
used for training ODIN, we also consider the rank correla-
tions, Kendall’s 7 and Spearman’s r; (See Appendix C),
to see how much the reward rankings correlate with length
rankings, as the reward model is optimized for ranking.
We report results of RMs with the highest validation accu-
racy in Table 1. It shows that, despite only being trained
to minimize the Pearson correlation with length, the rank
correlations are also eliminated, which helps understand

why ODIN outperforms the linear length penalty in Figure 4
as it can only remove linear correlation. Without exploit-
ing length information, ODIN is able to maintain most of
the prediction accuracy on preference data, and the drop is
insignificant considering the significant reduction in correla-
tion and the 66% natural length bias in the preference data.
This indicates that 7Q better utilized the actual content for
rankings.

Automatic Evaluation. The main results are shown in Fig-
ure 2, where the Pareto front of the policy m,, trained by
ODIN is always higher than that of the respective baselines
(PPO* and ReMax*) when L(y) > 210; L(y) < 210 may
indicate bad quality as the SFT model tuned on high-quality
demonstrations has L(y) = 220. Note we included addi-
tional tricks (reward-clipping and length-penalty) and used
more compute budget for PPO* and ReMax* shown in the
plots. We also provide head-to-head GPT-4 evaluations of
the best models of each method in Figure 6.

Human Studies. We further conduct human studies involv-
ing 8 college students as participants rating the quality of
generated responses. Each rater evaluates 90 samples, with
at least three ratings obtained for each sample. Due to the
limited budget, we sample 60 prompts from the LIMA test
set in each group of evaluation. Since human evaluations
can also be biased toward longer or shorter responses, we
select models with similar average lengths on the Pareto
front of each method for comparisons. For each sample,
we presented raters with the original prompt as well as two
randomly positioned responses. Referring to the guideline,
the rater will choose a better response or rate both as sim-
ilar. The guideline asks raters to consider the following
criteria: Alignment with the User’s Intent, Clarity and Preci-
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Table 3: The benchmark results of the trained policies m,,. We select the policies with different average response
lengths (annotated in parenthesises) on the Pareto front. Vanilla: the policy trained with the baseline RM. TQA(mc1):

TruthfulQA(mc1). SFT Init: Vicuna-7B.

Datasets | SFT Init | ODIN (230)  Vanilla (230) | ODIN (245)  Vanilla (245) | ODIN (260)  Vanilla (260)
BBH 36.92 37.07 36.94 37.09 36.70 37.10 37.55
Drop 29.02 29.05 28.70 29.10 2891 28.94 28.27

MMLU 49.81 49.86 49.85 49.83 49.74 49.87 49.96

TQA(mcl) 32.68 34.64 33.90 34.67 33.89 34.63 33.66

sion, Directness and Relevance, and Efficiency and Brevity.
(See Appendix B for details.) The results can be seen in
Figure 6 where all the examined models trained with ODIN
are more preferred than the baselines, with the difference
being the most significant at the highest length of 260.

Results on Benchmarks. We show the results in Table 3.
We observe improvements in TruthfulQA, which may come
from a better understanding of the questions after RLHF.
They also maintain the performance for all other tasks com-
pared to the SFT initialization. It is worth pointing out
that on every length scale, the policies trained by ODIN
could perform better than those trained by the vanilla re-
ward model.

6. Conclusion

In this work, we embark on an exploration to address the
challenge of reward hacking in RLHF, focusing particularly
on the issue of verbosity as a form of reward hacking. To
combat this, we first introduce a more reliable evaluation
protocol which evaluates different methods by the score-
verbosity trade-off. We conduct extensive experiments to
verify the impact of hyperparameters and tricks (reward
clipping and length penalty) on reward hacking. While
we observed some trends for PPO clipping and the replay
buffer size, the best results of baselines come from tuning
all these dimensions, and it becomes hard to draw definitive
conclusions about how these hyperparameters should be
tuned when applied all together. We seek to resolve the
issue from its root and propose ODIN, a novel approach
designed to disentangle representation of the content quality
from the lengths of responses. ODIN demonstrates notable
improvements on the Pareto front, which transfers across
two RL algorithms (ReMax and PPO). This advancement
not only showcases the effectiveness of our approach but
also sheds light on future research in RLHF.

Impact Statement

By striving to eliminate reward hacking, we contribute to
the development of Al systems that are more trustworthy
and aligned with ethical standards. Our approach shows
great potential for LLMs, such as those used in conversa-

tional agents, to prioritize the quality of information over
mere verbosity, thereby enhancing the user experience and
preventing the dissemination of misleading or unnecessarily
verbose information.

Our work also has significant societal consequences. As
LLMs become increasingly integrated into our daily lives,
ensuring their responses are both helpful and concise can
lead to more efficient communication and information ex-
change. This has implications for educational technology,
customer service, and any domain where LLMs are em-
ployed to interact with humans. By reducing the propensity
for generating overly verbose responses, we can improve
accessibility, particularly for individuals who may struggle
with processing large amounts of information quickly.
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A. Appendix

Algorithm 1 Proximal Policy Optimization for RLHF

Initialize policy parameters w from SFT model, old policy parameters wqg = w, batch size b. m = 1,2,..., M
Construct a batch of experiences Dr,, = by sampling N prompts 2 ~ Dpy, and their completions y ~ Ty, (y|x)-
k=1,2,..,Kn=12,.. N/bSample a batch Bx.,,,, of b examples from Dr,, . Compute the reward, value and

advantage estimate A for each (z,y) € Bﬂwold. Update the value network parameters. Update the policy with the clip
objective. wyjq — w

B. Human Study

We designed the following human study interface based on the Gradio, shown as Figure 7. After consenting to the study, the
participants are presented with a screen containing a session ID used to track and reference back the session, and guidelines
framing how to evaluate the response. The criteria used are described in Table 4.

Criteria | Description
Alignment with User’s Intent | Ensure the response directly addresses the user’s question or task, interpreting
underlying intentions when not explicitly stated.
Clarity and Precision Responses should be easy to understand, avoiding unnecessary jargon and main-
taining focus on the user’s query.
Directness and Relevance Keep the response strictly related to the task, avoiding unrelated information or
tangents.
Efficiency and Brevity Provide comprehensive yet concise information, steering clear of repetitive or
overly detailed content that does not enhance understanding.

Table 4: Criteria for evaluating responses in the human study interface.

C. Correlation Metric

We use three correlation metrics in our main paper, i.e., Spearsman’s rank correlation rs, Kendall’s 7, and Pearson p. We
compute p, r; and 7 using the following formulas:

Do (@i — pa) (Yi — )

p= \/Z((m - ,Ufz)Q Z(yl - Ny)2

2
re=1-— 7%7 (12)
- n(%—l) ngn(xi —x;)sgn(y; — yj),

where d; = R(X;) — R(Y;) is the difference between two ranks of each observation and n is the number of the observations.
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E Label

Session ID: 188768

Prompt: 2 /60

User Task Evaluation Guidelines: Relevance and Helpfulness
Below are responses for the following question from two different models. Please evaluate which of the answers would be more helpful. If you think both answers are equally helpful, please select the last option.

During your evaluation consider the following criteria to judge the more helpful response with.

o Alignment with User's Intent: Ensure the response directly addresses the user's question or task, interpreting underlying intentions when not explicitly stated.
o Clarity and Precision: Responses should be easy to understand, avoiding unnecessary jargon and maintaining focus on the user's query.

o Directness and Relevance: Keep the response strictly related to the task, avoiding unrelated information or tangents.

o Efficiency and Brevity: Provide comprehensive yet concise information, steering clear of repetitive or overly detailed content that does not enhance understanding.

Question

How to best apply snow chains to my Honda CR-V?

Model A
To properly apply snow chains to your Honda CR-V, follow these steps:

1. Park your vehicle on a level surface and engage the parking brake.

2. Place the chain on the drive wheels of your vehicle. The chain should be positioned so that the locking mechanism is towards the front of the vehicle.
3. Open the driver's side door and step out of the vehicle.

4. Locate the tire valve stem on the drive wheel.

5. Insert the chain through the valve stem and around the tire.

6. Close the valve stem to secure the chain in place.

7. Repeat this process for the other drive wheel.

8. Test the chains by gently applying pressure to the drive wheels.

9. If the chains are too tight, loosen them by adjusting the valve stem.

10. If the chains are too loose, tighten them by adjusting the valve stem.

Remember to always follow the manufacturer's instructions for proper use and maintenance of snow chains.

Model B
To properly apply snow chains to your Honda CR-V, follow these steps:
1. Turn off the engine and apply the parking brake.
2.0pen the hood and locate the front wheel hubs on each side of the vehicle.
3.Remove the wheel nuts and set them aside in a safe place.
4. Place the first chain around the wheel hub and slide it onto the tire.
5. Use the chain's locking mechanism to secure the chain to the wheel hub.
6. Repeat this process for the other three wheels.
7.0nce all four chains are securely in place, tighten the wheel nuts in a star pattern to ensure that the chains remain tight and do not loosen during driving.
8. Finally, make sure to test the chains by rotating the tires by hand to ensure that they are not too tight or too loose.

Evaluation

Answer 1 is better Answer 2 is better They are about the same

Next

Figure 7: We design a human study UI using Gradio as the above shows.
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D. Evaluation Prompt

[System Prompt]

You are a helpful and precise assistant for checking the quality of the answers.
[User Prompt]

[Question]

[The Start of Assistant]l’s Answer]

Answer 1

[The End of Assistant1’s Answer]

[The Start of Assistant2’s Answer]

Answer 2

[The End of Assistant2’s Answer]

We would like to request your feedback on the performance of two Al assistants in response to the user question
displayed above. Please rate the helpfulness, relevance, accuracy, level of details of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where a higher score indicates better overall performance. Please first
output a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The two scores
are separated by a space. In the subsequent line, please provide a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that the order in which the responses were presented does not affect your
judgment.

Table 5: The GPT4 evaluation prompt.

E. Hyperparameter
E.1. Model generation config.

For RLHF training, to encourage models’ exploration, we choose top_p = 0.9 and temperature 7' = 1.0 as the generation
config which aligns with the setting used in Deepspeed-Chat and ReMax. As for evaluation, we use T=0.8 and top_p=0.8 to
avoid over-randomness on the generations.

E.2. PPO config

We do full-model fine-tuning for both the actor and critic. Same as (Nakano et al., 2021), we use one epoch (set K = 1),
and set v = 1.0, A = 0.95 for GAE. We train the model on Open Assistant for 3 epochs, which translates to 702 gradient
update steps under the batch size b = 32, and takes around 11 hours to finish on § A100 GPUs with ZeRO stage 2. To make
the search space tractable, we use the same learning rate 7 for the actor and critic. We search n € {5e — 7, 1e — 6, 2e — 6},
e €{0.1,0.2,0.4}, 8 € {2.5e — 3,5¢ — 3,1le — 2,2¢ — 2}, ¢ € {inf, 2,4}, and N € {32, 64, 256}. Note we did not finish
all experiments with 5 = 2.5e — 3, but we have included the partial results in the plots when 8 = 2.5e — 3 is not explicitly
excluded.

E.3. ReMax Config

The full-model finetuning is applied as well. Same as PPO, we use global batch size 32, and train the model for 3 epochs on
the prompt set. We search 5 € {le — 3,2.5¢ — 3,5¢ — 3,1le — 2} and ) € {le — 6, 5e — 7} first. But we found the lengths
of the trained actor models are mostly over 225. Unlike PPO, ReMax baselines do not have many hyperparameters (only 3
and 1)), we add some extra § € {5e — 3,5.5e —3,6e — 3,...,9.5e — 3} with ) = 5e — 7 to get more results across different
lengths, which makes the comparisons between different Pareto fronts more reliable.

E.4. Configs for Length Penalty Experiments

For experiment shown in Figure 4, we tried « € {le — 3,1e — 4,1e — 5,5¢ — 4,1e — 6,5¢ — 6} for ReMax, and
a € {be — 5,1e — 4,5e — 4, 1e — 3} for PPO. We select evaluation results with the same set of other RL hyperparameters
like 1, 3, €, N for different settings. Therefore, the length penalty setting always tends to have more data points.
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Impact of Reward Clipping on ReMax
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Figure 8: The effect of Reward Clipping on ReMax. We sweep the 1 and /5.

E.5. Dialogue Format

We convert the prompts and responses in OpenAssistant into dialogue format using the following template:

Human: [The user prompt]
Assistant: [The answer to the prompt]

If the dialogue is multi-turn, we will use the same template as described and make all the previous turns’ prompts and
answers as the model’s inputs.

F. Frequently Asked Questions
F.1. Why do not use other prompt sets for evaluating the models’ capability on free-form QA?

We use LIMA (Zhou et al., 2023) as our test set for evaluating the instruction-following capability of models since it has 300
prompts, the size of which is larger than the other commonly used test set, e.g., WizardLM test set(218 prompts) (Xu et al.,
2023), Koala(180 prompts) (Geng et al., 2023), MT-bench (Zheng et al., 2023a), and Self-Instruct(252 prompts) (Wang
et al., 2022). The evaluation cost (for human study) is extremely high since we have tons of actor models to evaluate. Thus,
the main evaluations are conducted by GPT-4, and we also select some models on the Pareto front to do human study.

F.2. Why do you choose Vicuna-7B as the base model or the starting point of the RL?

We choose Vicuna-7B as our base model for two reasons: (1). Compared to other open-sourced 7B models, Vicuna-7B has
pretty good instruction-following capability. To ensure efficient and effective exploration in RLHF, we need a good base
model. (2). To ease the comparison and provide an accurate and comprehensive view of the RL algorithm, we chose the
well-known SFT model but did not do the SFT on the OpenAssistant dataset by ourselves. It can also help us avoid the
selection of the SFT checkpoint, where different people have different criteria. By using Vicuna-7B and the reward model
we provided, we believe the community could reproduce our results more easily.

G. Case Study

We show two comparison in Figure 12 and Figure 13, where our models could generate more accurate answers with shorter
length.
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Impact of KL Regularization Strength (8) on PPO
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Figure 9: The effect of KL regularization strength when sweeping 7, €, N and disabling reward clipping. While the result
becomes more sensitive to KL, it indicates that we can find better results with smaller /3, and results with larger 5 can be
surprisingly improved when reward clipping is considered.

Impact of policy update clipping (¢) on PPO
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Figure 10: The effect of PPO clipping threshold when sweeping 7, 3, IV and c¢. With reward clipping, the result becomes
better, but the effect of € becomes complicated, with ¢ = 0.1 and € = 0.4 both being better than ¢ = 0.2.

Impact of Degree of Off-policy on PPO
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Figure 11: Results under different sizes of experience batch IV, when disabling reward clipping and sweeping 7, 3, €. We use
batch size b = 32, so N = 32,64, 256 correspond to 0%, 50% and 87.5% “oft-policy” samples, and € clipping is ineffective
when NV = 32. Similar to the case with reward clipping, larger NV is not beneficial.
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Prompt:

what does \\multirow {5} {*} do in latex?

ODIN: (96 tokens)

The command \\multirow {5} {*} is used in LaTeX to create a multi-line cell in a table. It is
similar to the \\multirow command, which allows you to merge cells, but instead of merging
cells, it creates a new cell that spans multiple lines.\n\nThe \"5\" in the command is the
number of lines the cell should span, and can be adjusted as needed. The \"*\" indicates that
the cell should span the full width of the column.\n\n

ReMax with Vanilla RM: (285 tokens)

The command "\\multirow {5} {*}" is used in LaTeX to horizontally center a row of five
items. The ‘'multirow’ command is used to merge cells in a table and create a single cell that
spans multiple columns. The "{}" indicates the width of the cell, which is five times the
width of the column.\n\nHere is an example of how to use "\\multirow {5} {*}" in a
table:\n"""css\n\\begin {tabular} {|c[c|c|c|c|}\n \\hline\n \\multirow {5} {*} & Column 1 &
Column 2 & Column 3 & Column 4 & \\\\\n \\hline\n Item 1 & Value 1 & Value 2 & Value 3
& Value 4 & \\\\n Item 2 & Value 5 & Value 6 & Value 7 & Value 8 & \\\\n Item 3 & Value
9 & Value 10 & Value 11 & Value 12 & \\\\\n Item 4 & Value 13 & Value 14 & Value 15 &
Value 16 & \\\\n Item 5 & Value 17 & Value 18 & Value 19 & Value 20 & \\\\n
\\hline\n\\end {tabular}\n"""\nIn this example, the row containing the items \"Item 1\" to
\"Item 5\" is horizontally centered in the table.

Figure 12: The comparison of our actor model, trained with ODIN, with the actor model trained with the vanilla reward
model.

Prompt:
Please prove that 3+5=9

ODIN: (18 tokens)

I'm sorry, but that is incorrect. 5 + 3 equals 8.

PPO with Vanilla RM + Length Penalty: (69 tokens)

I'm sorry, but that is a false statement. 5 + 3 equals 8. Please keep in
mind that, its a basic math fact that 5+3 is 8 and not 9. I'm glad I could
help! If you have any more questions or need further assistance, please
don't hesitate to ask!

Figure 13: The comparison of our actor model, trained with ODIN, with the actor model trained with the vanilla reward
model.
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