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Abstract

Gene selection in high-dimensional genomic data is essential for
understanding disease mechanisms and improving therapeutic out-
comes. Traditional feature selection methods effectively identify
predictive genes but often ignore complex biological pathways
and regulatory networks, leading to unstable and biologically ir-
relevant signatures. Prior approaches, such as Lasso-based meth-
ods and statistical filtering, either focus solely on individual gene-
outcome associations or fail to capture pathway-level interactions,
presenting a key challenge: how to integrate biological pathway
knowledge while maintaining statistical rigor in gene selection? To
address this gap, we propose a novel two-stage framework that inte-
grates statistical selection with biological pathway knowledge using
multi-agent reinforcement learning (MARL). First, we introduce a
pathway-guided pre-filtering strategy that leverages multiple sta-
tistical methods alongside KEGG pathway information for initial
dimensionality reduction. Next, for refined selection, we model
genes as collaborative agents in a MARL framework, where each
agent optimizes both predictive power and biological relevance.
QOur framework incorporates pathway knowledge through Graph
Neural Network-based state representations, a reward mechanism
combining prediction performance with gene centrality and path-
way coverage, and collaborative learning strategies using shared
memory and a centralized critic component. Extensive experiments
on multiple gene expression datasets demonstrate that our approach
significantly improves both prediction accuracy and biological in-
terpretability compared to traditional methods.

Release code and preprocessed data can be found at https://github.com/ehtesam3154/
bioMARL
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1 Introduction
With the rapid advancement of high-throughput technologies, high-

dimension, low-sample-size (HDLSS) data have become increas-
ingly prevalent in biomedical research. Large cohort cancer stud-
ies, such as The Cancer Genome Atlas (TCGA) [10], contain vast
amounts of HDLSS genomic data, offering an unprecedented op-
portunity to understand cancer mechanisms and improve therapeu-
tic outcomes [1, 7, 21]. However, extracting meaningful insights
from this large genomic data requires addressing major analyti-
cal challenges, such as statistical randomness, experimental noise,
and sample heterogeneity, which often result in inconsistent and
biologically or clinically irrelevant gene signatures [53].

A well-known example of this challenge is the discrepancy be-
tween two early breast cancer diagnostic gene panels: MammaPrint,
a 70-gene signature developed in the Netherlands [42], and a 76-
gene signature from a similar study in San Diego [45]. Despite their
shared goal of predicting disease progression, only three genes
overlapped, highlighting the difficulty of selecting stable gene sig-
natures (i.e., biomarkers). Traditional feature selection methods,
such as Lasso-based approaches [28, 41], have been widely used for
biomarker selection due to their ability to enforce sparsity and iden-
tify predictive genes. However, these methods primarily focus on
individual gene-outcome associations while neglecting the complex
biological pathways and regulatory networks that govern gene func-
tion. Genes do not operate in isolation; rather, they interact within
intricate systems, and integrating biological pathway information
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as prior knowledge can enhance the robustness and interpretability
of selected gene signatures [13]. By leveraging known gene inter-
actions and functional relationships, gene selection methods can
improve reproducibility and biological relevance.

That said, integrating biological pathway knowledge into gene
selection presents unique challenges that extend beyond simple
statistical incorporation. While databases like KEGG [24] provide
extensive biological pathway information, effectively leveraging
this knowledge requires understanding complex dependencies be-
tween genes and their collective impact on biological processes.
Most traditional feature selection methods operate independently
of biological pathway knowledge, relying purely on statistical pat-
terns in the data [52]. Simple filtering or scoring mechanisms that
attempt to integrate pathway information often fail to capture the
dynamic nature of gene interactions, leading to suboptimal gene
selection. This highlights the need for a framework that models
these complex dependencies while making biologically informed
decisions about gene importance, ensuring selected gene signatures
reflect mechanisms rather than purely statistical associations.

Our contribution: A pathway-aware gene selection per-
spective. We approach the gene selection problem from the per-

spective of collaborative decision-making, where each gene acts as
an intelligent agent that learns when its inclusion benefits both pre-

dictive power and biological relevance. The key insight is that: genes
function through complex regulatory pathways and networks, inter-
acting via molecular mechanisms, protein-protein interactions, and
signaling cascades to drive cellular functions. Our selection agents
mirror this biological reality by learning to make decisions that con-
sider both their individual contributions and their collective impact

within these pathways. By prioritizing genes with established path-
way annotations, our framework leverages decades of experimental
validation and enables more interpretable results, as selected genes
can be understood within known biological processes. This biologi-
cal context-aware selection also facilitates cross-study validation
and increases the likelihood of identifying druggable targets, as
existing therapeutics often target specific pathways.

This paper presents a two-stage architecture where pathway-
guided statistical pre-filtering creates a biologically relevant re-
duced gene set, followed by a MARL-based selector where genes
function as collaborative agents through sophisticated mechanisms
including intelligent reward design, shared memory, and central-
ized feedback to maintain both statistical significance and biological
relevance while optimizing predictive performance. Our key con-
tributions are as follows:

o First framework to unify statistical feature selection with
pathway knowledge in genomic data analysis.

e Novel application of MARL to model gene selection as a
collaborative decision process.

o Introduction of biologically-informed learning mechanisms
that maintain both predictive power and pathway relevance.

2 Problem Statement

This paper addresses the challenge of selecting relevant genes from
high-dimensional genomic datasets. The goal is to identify a subset
of genes that optimize predictive performance while maintaining
biological interpretability and pathway-level coherence, addressing
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the limitations of traditional feature selection methods in captur-
ing complex gene interactions. Formally, given a high-dimensional
genomic dataset D with gene set G, where each sample consists of
gene expression values and an associated outcome, our objective
is to select an optimal subset Gopr € G such that |Gopr| < |G,
significantly reducing the dimensionality while preserving predic-
tive power. Through a two-stage selection process, we first ob-
tain a pre-filtered set Gpre C G using pathway-guided statistical
methods, followed by a refined selection process that produces the
final ranked set G, gukeq from which the top k genes form Gopt.
The selected genes should not only optimize the performance of
downstream prediction tasks but also reflect meaningful biological
pathway relationships, ensuring both statistical significance and
biological relevance in the final gene signature.

3 Methodology
3.1 Framework Overview

Figure 1 illustrates our pathway-aware gene selection framework
BioMARL consisting of two main components: The first compo-
nent implements a biological pathway-guided gene pre-filtering
that combines multiple statistical selection methods with pathway
information from the KEGG database. This initial filtering creates
a biologically relevant reduced gene set by evaluating both sta-
tistical significance and pathway-level performance. The filtered
gene set then serves as input to our MARL based selector, where
each gene is modeled as an independent agent within a collabora-
tive framework. This incorporates pathway knowledge at multiple
levels: through pathway-aware state representations using Graph
Neural Networks and a reward mechanism that considers both
statistical and pathway-based performance. The framework is fur-
ther enhanced with collaborative learning mechanisms including a
shared memory system for effective knowledge sharing between
agents and a centralized critic for evaluating collective agent be-
havior. This ultimately outputs a ranked list of selected genes that
demonstrate both strong predictive power and biological relevance.

3.2 Pathway-Guided Gene Pre-filtering

Why integrate biological context with statistical selection?
Purely statistical feature selection in genomic data analysis faces
two fundamental challenges. First, the curse of dimensionality in
HDLSS genomic datasets results in unstable feature! rankings,
where small variations in data can lead to substantially different se-
lected gene sets. Second, complex non-linear interactions between
genes make it difficult to accurately determine gene importance
using individual statistical measures alone. Although advanced
statistical techniques, such as regularization and ensemble meth-
ods, attempt to mitigate these issues, they remain biology-agnostic
and fail to capture functional gene relationships. A biologically in-
formed approach, leveraging pathway knowledge, introduces natu-
ral constraints and grouping structures to address these challenges.
It reduces the effective search space by prioritizing biologically
plausible feature combinations, while the inherent pathway-based
organization of genes facilitates the identification of functionally

!In this work, we use ‘feature’ and ‘gene’ interchangeably, as ‘feature’ is the standard
term in the broader feature selection literature, including gene selection studies.
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(a) Pathway-Guided Statistical Integration
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(b) Multi-agent Reinforced Optimization with Central Critic,
Personalized Reward Mechanism and Shared Memory
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Figure 1: Framework Overview. BioMARL consists of two key parts: (a) pathway-guided meta-selection combining multiple statistical methods
with KEGG pathway information for initial filtering; (b) a pathway-aware multi-agent RL framework for refined selection, with centralized
evaluation, shared memory and a multi-component reward system to enhance collaboration among agents while preserving biological
relevance. The iteratively generated feature set is evaluated in downstream task, with iterations continuing until optimization or set limit.

relevant interactions that purely statistical approaches may over-
look. By embedding pathway information, gene selection becomes
more stable, interpretable, and computationally efficient, focusing
on gene sets that align with known biological mechanisms rather
than purely data-driven statistical associations.

We implement a pathway-guided pre-filtering strategy that com-
bines statistical feature selection with biological pathway knowl-
edge. The pre-filtering process consists of three main components:
Base Score Computation. Multiple statistical feature selection
methods are employed to compute initial importance scores for
each gene. For a dataset D with gene set G, each method f; € F
generates a score vector Sj, where Sig represents the importance
score assigned to gene g by method f;. Our framework employs
three methods (|F| = 3): chi-squared test, random forest importance,
and SVM-based feature ranking.

Pathway Performance Integration. We leverage the KEGG path-
way database P = {py,...,pm} to incorporate biological context.
For each pathway p; containing a gene set Gi, we compute a score
Sp(pi) using a classifier trained on genes within that pathway:
Sp(pi) = classifier_performance(D[G;]), where D[G;] represents
the dataset restricted to genes in pathway p;.

Integrative Score Calculation. The final importance score §; for
each gene g combines both statistical and pathway-based evidence.
Each method’s weight is computed based on its performance: wi =

Sp(fi)
Lfer Sp(ff)’
validation data. The base meta-score for gene g is: my = ; wi - Sig.
This score is then adjusted using pathway information: §; = my -

where Sy (f;) is the performance score of method f; on

(14 B -log(1+ Sp(g))),where Sy(g) is the mean performance score

of pathways containing gene g, and f is a scaling factor. Unmapped
genes retain their base meta-scores to avoid penalizing potentially
important but less studied genes. The final filtered gene set is:
Gpre = {9 € G :
standard deviation of the adjusted scores.

8 > p + 20} where y and o are the mean and

3.3 Multi-Agent Gene Selection Framework

‘Why model genes as collaborative decision-makers? Building
on the pre-filtered gene set Gpre, we implement a MARL framework
where each gene in Gpre acts as an agent that learns to make selec-
tion decisions collaboratively. Traditional feature selection methods
treat genes independently, failing to capture the complex interac-
tions within biological pathways. MARL allows us to model genes
as collaborative agents to reflect both their individual significance
and collective behavior in pathways. Through pathway-aware state
representations and a reward mechanism that integrates both statis-
tical and pathway-level performance, agents learn selection strate-
gies that balance predictive power with biological relevance while
efficiently handling high-dimensional genomic data.

Action Space. The action space for each agent i (i.e, gene i) is
binary: a; € {0, 1}, where 0 represents discarding and 1 represents
selecting the gene.

State Representation. To effectively capture both gene interactions

and pathway relationships, we employ a Graph Neural Network
(GNN) for state representation. The state s; at time step t is con-
structed as: sy = GNN(X}, E), where X; represents the expression
matrix of genes in Gpre augmented with pathway embeddings at
time step t. The edge connections E; are constructed through an
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adaptive mechanism that combines correlation and pathway infor-
mation: Ejj = p - CGjj + (1 — p) - Jij where Cjj is the correlation
between genes i and j, J;; is the Jaccard similarity of their pathway
memberships, and p is the correlation weight. This information is
then processed through graph convolutional layers:

h=o(Ax W)
s¢ = pool(a(ARW (1))

where A is the normalized adjacency matrix derived from the edge
connections, W(® and W(1) are learnable weight matrices, and
o is the ReLU activation function. The pooling operation aggre-
gates node-level features into a global state while preserving both
individual gene characteristics and pathway contexts.
Multi-Agent Deep Q-Network Architecture. Each agent employs
a Deep Q-Network (DQN) to learn optimal selection strategies. The
Q-function for agent i (i.e., gene i) is approximated by a neural
network Q;(s, a; ;) that maps states to action values, where 8;
are the network parameters. The network learns to estimate the
expected cumulative reward for taking action a in state s:

Qi(s,a;0;) ~E[R; | st = s,a; = a]

where Ry = Z;:;D yk ¢4k is the discounted cumulative reward. Dras-
tic reduction in feature space while trying to maintain or improve
prediction performance does not exactly go hand-in-hand. To sta-
bilize learning and improve efficiency, we implement prioritized
experience replay and maintain a target network. Prioritized replay
ensures that important transitions are sampled more frequently
during training, while the target network, updated periodically,
reduces overestimation bias in the Q-value updates. The networks
are trained using the Huber loss to provide robustness against out-
liers, and an epsilon-greedy policy with decaying exploration rate
ensures sufficient exploration of the feature space while gradually
focusing on exploiting learned strategies.

Centralized Critic. To provide a global perspective on the collec-
tive performance of our multi-agent feature selection system, we
implement a centralized critic V (s) that maps the current state s;
to a scalar value estimate v;. The critic architecture combines com-
pression, gating, and dynamic layers to effectively process the high-
dimensional state information. It is trained to minimize the mean
squared error between its prediction and observed performance
improvement: I i = MSE(vy, It ), where I is global performance

improvement at time step t.

The critic’s value estimates are incorporated into the DQN learn-
ing process, influencing the target Q-values: Qtarget = Aa(rs +
ymaxg Q(st+1, @)) + Apvr, where Aq and A, are weighting factors.
This integration helps balance local and global optimization, pro-
moting more stable and effective feature selection by providing a
baseline that reduces variance in the policy updates. The global
value estimate provided by the critic serves as a form of baseline,
helping to reduce variance in the policy gradients implicitly com-
puted by the DQNs through their value function updates.

Shared Memory. To enhance collaboration between agents and
leverage collective knowledge, we introduce a shared memory
mechanism consisting of two components: a collaboration suc-
cess record and a synergy matrix. The collaboration success record
H is defined as a mapping from gene sets to their corresponding
performance improvements: H : P(F) — R where F is the set of
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all features, #(F) power set of F, and R represents performance
improvements. For a given feature set S € #(F), the collaboration
success is updated as H(S) = max(H (5), Ap), where Ap is the ob-
served performance improvement when using feature set S. The
synergy matrix M € R9%d where d is the number of features, cap-
tures pairwise feature interactions. For features i and j, the synergy
value updated as: M[i, j] += Ap, when features i and j are both
present in a successful feature combination. Both components fol-
low an exponential decay mechanism to adapt to changing feature
relationships over time.

The shared memory influences the action selection process by
introducing a synergy bias. The probability of selection action a for

feature i is given by: P(aj = 1) = o (Q(Sj, D+n-Zjep,; M[i,j]],
where Q(sj, 1) is the Q-value for selecting feature i, P; refers to the
top k partners to consider for feature i based on the synergy matrix,
o is the sigmoid function, and 7 is a hyperparameter controlling
the influence of the synergy bias.

Reward Mechanism. To address the credit assignment problem
in MARL-based feature selection, we implement a sophisticated
reward mechanism that combines efficient performance estimation
with pathway-level insights to guide agent decisions. The reward
calculation consists of three key components:

Personal Performance Impact Estimator. First, to estimate individual
feature contributions efficiently, we construct a perturbation matrix
D¢, where each row flips a single element of the selection vector a; €
{0, 1}d, representing an alternative feature state. Evaluating model
performance for each state yields labels y;, and (D, y;) is passed
as training data to an ensemble meta-learner fmeta (combining
random forest, XGBoost, LightGBM with a meta model and a neural
network). Performance changes are estimated as AR; = fmeta(D¢) —
R, where R; is the current performance. By leveraging matrix-
based updates and parallel computation, our approach avoids the
inefliciencies of sequential feature evaluations, making it scalable
for high-dimensional genomic data.

The reward for each agent incorporates uncertainty-aware ad-
justments. Given an uncertainty vector u; estimated by fmeta, we
compute the confidence factor ¢; = %ur and define the reward
as: rpgse = ARt © ¢t — log(1 + ut) + It 1, where It represents global
performance improvement.

To maintain accuracy throughout the selection process, we imple-
ment an online learning mechanism. Periodically, at a pre-defined
update frequency F, we update the meta-learner using a buffer
B = {(a;,Rf}}f:I of recent experiences, where a; represents the
joint action vector of all agents at time ¢, and B is the buffer size.
The update minimizes the loss:

L= )" (fmeta(ar) — Re)* + AQ(fineta)

(ar.Rt)eB

where Q( fmeta) is a regularization term with coefficient A.

Gene Centrality Measure. We introduce a pathway-based centrality
measure that evaluates each gene’s importance within and across
biological pathways. Unlike traditional centrality metrics that focus
solely on network topology, our measure considers both the gene’s
pathway membership and its connectivity patterns to capture its
functional significance. For a gene i, we define a centrality score ¢;
that captures its importance within and across pathways: ¢ = nj X
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2 pep, |Gipl, where n; is the number of pathways containing gene
i, P; is the set of pathways containing gene i, and |G;,p| represents
the number of genes connected to gene i in pathway p.

For a selection S, the aggregate centrality function ®(S) incorpo-
rates both pathway membership and cross-pathway connectivity:

o(s)= ) [m > IGipns|
ies\ peP;
For each gene i, we calculate a differential centrality score Ag;

that quantifies how its inclusion or exclusion impacts the overall
pathway representation. For unselected genes, we calculate:

Adi = (S U {i}) — ®(S)

where @(S) represents the aggregate centrality score for the current
selection S. For genes already in the selection, we calculate the loss
in centrality from their removal:

Agi = @(S) — (S \ {i})

This formulation rewards genes that serve as critical connectors
between multiple pathways, reflecting their potential regulatory
importance in biological processes.

Pathway Coverage Measure. We implement a pathway coverage
measure to ensure comprehensive representation of biological pro-
cesses by evaluating how effectively the selected genes span known
biological pathways. For a given pathway p, we define a coverage
score p that measures the proportion of pathway genes included in

the current selection: /p(S) = l—'lsg—clp—l, where Gp represents the set
P

of genes in pathway p, and S is the current gene selection. For each
gene i, we calculate a differential coverage score Ay; that quantifies
its contribution to pathway coverage. For unselected genes, we
calculate the potential coverage gain:

AYi =¢p(SU {i}) — ¥p(S)
For genes already in the selection, we calculate the coverage loss
from their removal:

A = Yp(S) — Yp(S\ {i})
This measure encourages the selection of genes that maximize
the representation of diverse biological processes while penalizing
redundant selections within already well-covered pathways.

The final reward for each gene i combines the base performance

estimate with the pathway-based measures through a weighted
SUM: I'j = @ - Ppgse + & - Adpi + { - A, where w, £, { are weighting
coefficients that sum to 1, balancing the importance of statistical
performance (rpgqe), gene centrality impact (Ag;i), and pathway
coverage contribution (Ay;).
Optimal Set Selection. The final optimal gene set is determined
by computing weighted importance scores for each gene based on
the Q-value differences between its selection and rejection actions
over time: w; = Zthl yT_‘{Qg(s;, 1)— Ql‘ (s¢,0)), where y is a decay
factor giving more weight to recent decisions. Genes are ranked
by these scores and the top k genes form the optimal set Gops =
{gi € Granked : i < k} are selected. This captures the cumulative
learning of agents while favoring consistently important genes.
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4 Experiment

4.1 Experimental Setup.

Dataset Descriptions. We performed experiments on the TCGA
breast invasive carcinoma (BRCA) [9], lung adenocarcinoma (LUAD)
[11] and ovarian serous cystadenocarcinoma (OV) [12] datasets.
For the BRCA studies, patients were classified based on estrogen
receptor (ER+ versus ER-), progesterone receptor (PR+ versus PR-),
human epidermal growth factor receptor 2 (HER2+ versus HER2-),
and triple negative (TN versus non-TN) status. For the LUAD and
OV studies, we stratified patients into two groups based on sur-
vival time: those who survived less than 25 months and those who
survived more than 50 months. Each dataset has 20,530 features
(i.e., genes). More detailed statistics shown in Table 1.

Table 1: Sample distribution across datasets. Class 1: ER+, HER2+,
PR+, TN, survival time <25 months. Class 2: ER-, HER2-, PR-,
non-TN, survival time >50 months.

Dataset | Class 1 Class 2

BRCA (ER) | 332 80
BRCA (HER2) | 334 78
BRCA (PR) | 285 127
BRCA (IN) | 65 347
LUAD 109 21
ov 63 49

Baseline Algorithms. We compared BioMARL with eight widely
used feature selection methods: 1. K-Best [48] selects K features
with the highest feature score; 2. mRMR [35] selects a feature sub-
set with the highest relevance to the target and least redundancy
among themselves; 3. LASSO [41] uses regularization to shrink
coefficients of less useful features to zero, effectively performing
feature selection during model fitting; 4. RFE [20] recursively re-
moves the weakest features until a specified number of features
is reached; 5. LASSONet [28] is a neural network with sparsity
to encourage the network to use only a subset of input features;
6. GFS [5] selects features using genetic algorithms, which recur-
sively generates a population based on a possible feature subset,
then uses a predictive model to evaluate it; 7. RRA [38] collects
distinct selected feature subsets, and then integrates them based on
statistical sorting distribution; 8. MCDM [22] approaches feature
selection as a Multi-Criteria Decision-Making problem and uses
the VIKOR sort algorithm to rank features based on the judgment
of multiple selection methods. All experiments use AUC score as
the metric to evaluate the classification performance. The baselines
along with our method, were executed 10 times on each dataset
for every experiment, and the average AUC score across these
runs was reported for each method. We adopted Random Forest as
the downstream classification model and during each run, a 70-30
training-testing split was employed, with genomic feature selec-
tion performed using 5-fold cross-validation on the training set,
followed by evaluation of the selected features on the hold-out set.
All reported performance scores correspond to k = 100 selected
features.

4.2 Experimental Results

Overall Comparison. In this section, we assess the performance
of BioMARL and baseline algorithms for feature selection on the
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Figure 2: Overall performance comparison of BioMARL with eight state-of-the-art baselines: Best performing baseline highlighted in
lightcoral and second-best in lightblue.

aforementioned datasets. Figure 2 shows the comparison result.
BioMARL outperforms other selection algorithms in 5 out of the
6 datasets, demonstrating consistently higher AUC scores. Addi-
tionally, it exhibits relatively low variance in most cases, indicating
stable and reliable performance. The underlying driver behind this
performance is BioMARL'’s dual-layer optimization approach. The
pathway-guided pre-filtering first creates a high-quality candidate
pool by eliminating statistically insignificant genes while preserv-
ing meaningful pathway relationships. This provides a strong foun-
dation for feature selection which the subsequent MARL framework
then leverages through sophisticated reward estimation that consid-
ers both individual gene contributions and their synergistic effects,
allowing agents to identify feature combinations that maximize
classification performance.

Ablation Study. To validate the impact of each technical compo-
nent, we developed three variants of BioMARL: (i) BioMARLRwd
uses performance improvement directly as the reward for RL agents,
(ii) BioMARL~C"* operates without a centralized critic, and (iii)
BioMARL-Mem excludes the shared memory mechanism. Table
2 presents the comparison results for two breast cancer studies,
as well as the LUAD and OV datasets. BioMARL outperforms
BioMARL-Rwd demonstrating that the pathway-aware reward
mechanism effectively balances statistical significance with biologi-
cal relevance, resulting in more robust and biologically meaningful
feature selection. The superior performance over BioMARL~C"?
highlights the importance of centralized critic in capturing global
state information, resulting in better-coordinated agent behaviors
and avoiding conflicting local optimizations. Finally, advantage
over BioMARL-Me™ demonstrates the value of shared memory
mechanism, which enables collaborative learning and accelerates
the discovery of synergistic feature sets by avoiding redundant
exploration of suboptimal combinations.
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Figure 3: The influence of different hold-out percentages in terms
of AUC score. ‘optimized’ refers to the subset of features selected by
BioMARL.

Study of the Impact of Hold-out Percentage. In gene selection
problems with imbalanced datasets and limited samples, evaluating
feature selection algorithms across various train-test splits, includ-
ing unconventional ratios, might be beneficial. This highlights the
model’s robustness in scenarios with smaller sample sizes, where
traditional splits (80-20 or 70-30) may not suffice. Additionally, it
offers practical insights into model performance when data avail-
ability is limited, which is common in expensive and data-scarce
applications. In the experiment setup section, we used a 70-30 train-
test split. We further explored the impact of the holdout setting
through experiments on BRCA(ER) and LUAD, as shown in Figure 3.
While they exhibit varying patterns due to factors like randomness
of dataset partitioning, training data volume, and task complexity,
BioMARL consistently demonstrates performance enhancements.
Despite the lack of uniform trend across them, the results generally
indicate that BioMARL reliably improves performance across most
scenarios. This consistency affirms the robustness of our approach
regardless of the holdout percentage used.

Clear Separation of Breast Cancer Patients by BioMARL-
Selected Genes. The heatmap of gene expression data for top 100
genes selected by BioMARL exhibits a well-defined pattern, achiev-
ing perfect separation between PR+ and PR- breast cancer patients.
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Table 2: Ablation study of BioMARL. Best performance highlighted in bold

Variant Technical Component Performance
Personalized Reward | Centralized Critic | Shared Memory BRCA(ER) | BRCA(HER2) | LUAD | ov
BioMARLFwd X v v 0.9598 + 0.023 0.8184 + 0.061 0.7064 = 0.107 0.6276 + 0.106
BioMARL~Crt v X v 0.9605 + 0.029 0.8073 + 0.030 0.7623 = 0.058 0.6298 + 0.095
BioMARL~Mem v v X 0.9618 + 0.0166 0.7914 + 0.093 0.7712 = 0.089 0.6494 + 0.100
BiocMARL v v v 0.9706 £ 0.0198 0.8357 +£ 0.0296 0.8327 + 0.0601  0.6439 + 0.065

Most of the selected genes show elevated expression in PR- patients,
suggesting their involvement in pathways related to PR signaling
and breast cancer progression. This clear distinction underscores
BioMARL’s effectiveness in identifying biologically meaningful and
clinically relevant features, reinforcing its potential as a powerful
tool for biomarker discovery. Identifying genes that distinguish PR
subtypes is critical for understanding the molecular mechanisms
driving breast cancer heterogeneity and could provide valuable
insights for prognosis and targeted therapy development. Notably,
similar clear expression patterns were also observed in other breast
cancer subtypes which further validate BloMARL’s robustness in
capturing key regulatory signatures, highlighting its significance in
advancing precision oncology and personalized treatment. A poten-
tial reason behind this is its collaborative multi-agent architecture
that enables agents to identify complementary genes that collec-
tively maximize class separation, rather than relying on individual
significance, forming robust discriminative patterns.

[ —

Selected Genes

Figure 4: Heatmap of the expression profiles of 100 marker genes
selected by BioMARL on the BRCA(PR) dataset.

Gene Enrichment Analysis.To evaluate the biological relevance
of genes selected by BioMARL and baseline methods, we performed
gene set enrichment analysis. This analysis aims to identify sig-
nificant overlaps between selected genes and known functional
gene sets, which may provide insights into the biological processes
and pathways potentially involved in these cancers. We examined
the enrichment of Gene Ontology (GO) terms [3] among the top-
ranked 100 genes identified by each method. Figure 5 illustrates
the frequency of enriched GO terms p-value < 0.01 for all different
methods across three datasets. BlioMARL demonstrated superior
performance on both datasets which suggests that it effectively cap-
tures genes involved in biologically relevant processes specific to dif-
ferent cancer types. The underlying impetus for this is BioMARL’s
pathway-guided pre-filtering that establishes a biologically relevant
initial feature space, and its ability to combine biological domain

knowledge with collaborative learning, where intelligent agents
make selection decisions guided by both pathway information and
collective performance optimization.
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Figure 5: Enrichment analysis of selected genes for breast, ovarian
and lung cancer datasets. Bar plots show the frequency of
significantly enriched Gene Ontology terms (p-value < 0.01) for
different selection methods.

Robustness Check of BioMARL Under Different Classifica-
tion Models. Feature selection methods depend on evaluating the
currently selected feature subset at each step with a downstream
predictive model to identify the optimal feature subset. In our de-
sign, we employed the Random Forest for evaluation due to its
stability and robustness. However, more rigorously, a feature selec-
tion method should be able to generalize to diverse downstream
models. We examine the robustness of BioMARL on BRCA(TN) by
changing the classifier to XGBoost, SVM, Decision Tree, LASSO
and Ridge Regression. The comparison results, depicted in Figure 6
shows that BioMARL exhibits downstream model-agnostic robust-
ness and reliability. A potential reason behind this robustness is
our multi-agent framework’s ability to learn feature importance
through collaborative decision-making and shared memory, rather
than being tied to any specific model’s optimization criteria. The
agents learn selection strategies that identify fundamentally predic-
tive features through their collective experience, leading to stable
performance regardless of the downstream classifier used.

Case Study I: BioMARL Selected Genes Have Proven Rele-
vance in Cancer. To further validate the biological relevance of
genes uniquely selected by BioMARL, we conducted a literature
review focusing on these genes in the context of breast cancer. Ta-
ble 3 highlights a subset of the top-ranked genes and their known

associations with breast cancer pathogenesis. Our analysis revealed
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Table 3: Literature review of the candidate cancer genes. This table presents citations highlighting the relevance of the genes
selected exclusively by BioMARL.

Gene Name Pathway Desccription Reference
When expressed in adults, driven by the CYP3A771C allele,
= LrtiLg is associated with altered hormone metabolism and impacts breast cancer outcomes. (23]
Upregulated in DCIS but downregulated in invasive breast cancer;
NME1 hsa00230 loss of NME1 promotes tumor invasion by increasing MTI-MMP surface levels. (32)
FGA o . Ident'l.ﬁt'ad as a key bl'oma.rker in HER2-positive breast cancer plasma samples, (43]
with lower levels in cancer patients compared to controls, reverting to control levels post-surgery.
GRB7 hsa04140 Co-amplified with HER2 gene in breast cancer, GRB7 facilitates HER2-mediated signaling (8]
and tumor formation, with its protein overexpression concurrent with HER2 amplification.
Major oncogene amplified in 20-30% of breast cancers,
ERBBz hsa04520 its overexpression correlates with tumor chemoresistance and poor patient prognosis, [15]
making it a crucial therapeutic target.
AGTRI hsa04614 Shows profound. overexpression in a subset <?f breaf;t tumors across mdejpendent cohorts, (37]
suggesting a potential role in tumorigenesis and as a therapeutic target.
Significantly upregulated in breast cancer tissues, with high expression correlating with

FSMC1 hsa03050 poor survival outcomes and involvement in critical cancer-related cellular processes. (25]
TUBB3 hsa04540 High TUBB3 expression in breast cancer correlates with decreased sensitivity 27]

to taxane-based chemotherapy and is associated with high tumor grade and advanced tumor stage.

Figure 6: Robustness evaluation of BioMARL across classification
models, measured by AUC score on BRCA(TN). Larger area
coverage indicates better overall performance across feature
selection methods.

that several of these genes have established roles in breast cancer
progression, metastasis, or treatment response. For instance, the
adult expression of CYP3A?7 is linked to altered estrogen metabo-
lism, potentially influencing breast cancer outcomes and response
to specific chemotherapeutic agents [23]. ERBBZ is amplified in
20-30% of breast cancers, driving chemoresistance and poor prog-
nosis, making its overexpression a key therapeutic target [15]. GRB7
not only facilitates HER2-mediated signaling and tumor formation
in breast cancer cells but can also be selectively retained and over-
expressed in some solid tumors independent of HER2 amplification
[8]. Additionally, PSMC1 exhibits significantly higher expression in
breast cancer tissues compared to normal tissues, with high tran-
script levels correlating with poor survival outcomes, suggesting
its potential as a prognostic biomarker for aggressive disease [25].
Case Study II: BioMARL Improved Survival Prediction. To
evaluate the prognostic significance of the top genes selected by
BioMARL, we conducted a survival analysis on cancer datasets.
Patients’ overall survival was assessed using Kaplan-Meier (KM)

plots, stratified by high and low expression levels of the top-ranked
genes identified by BioMARL. As shown in Figure 7, KM survival
curves were generated for both groups, and the log-rank test was
performed to compare their survival distributions. The KM curves
revealed a clear separation between the two groups for the selected
genes, indicating potential prognostic value. Additionally, the log-
rank test produced significant p-values for these genes, reinforcing
their association with overall survival in different cancer patients.
This analysis demonstrates that genes selected by BioMARL are not
only relevant to the disease but also have significant implications
for patient outcomes.
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Figure 7: Survival analysis on (a) breast cancer and (b) lung
cancer patients with gene selected by BioMARL

Real-World Deployment and Validation of BioMARL in Gas-
tric Cancer Patient Data. Validating a single gene as a cancer
biomarker requires substantial financial investment, as biologists
and biomedical scientists must conduct gene knockout or knock-
down experiments to assess its effects on cell viability, proliferation,
and apoptosis in vitro. These studies are typically performed in
mouse models or cancer cell lines, rather than in actual cancer
patients. Identifying a viable drug target and developing a thera-
peutic for real patients requires clinical trials, which are essential
for evaluating safety and efficacy. Over the past two decades, the
average cost of drug development has ranged from $539 million to
$2.8 billion [33]. The proposed BioMARL can help prioritize target
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genes, significantly reducing wet-lab experiment costs and lowering
research and development (R&D) expenses in drug discovery.

To evaluate the real-world applicability of BioMARL, we an-
alyzed cancer patient data from Vanderbilt University Medical
Center. Compared to the widely used t-test, a fundamental sta-
tistical method for biomarker identification in cancer studies [42],
BioMARL-selected genes demonstrated stronger biological rele-
vance, with significant associations with key cancer pathways and
greater therapeutic potential, as evidenced by their prevalence in
high-impact cancer journals. These results demonstrate the robust-
ness of BioMARL and highlight its potential to advance biomarker-
driven precision oncology by improving drug development and

clinical trial design.
5 Related Work

Gene Selection in Genomic Studies. Feature engineering algo-
rithms for gene expression data fall into three categories: filter,
wrapper, and embedded methods. Filter methods [17, 18, 34] eval-
uate and filter features based on their potential contribution to
model performance, typically using relevance scores and thresh-
olds for gene selection. For example, the Grouping Genetic Algo-
rithm [18] addresses feature grouping in RNA-Seq data. Wrapper
methods [2, 29] assess feature significance using classification al-
gorithms like k-Nearest Neighbors, Random Forests, and Support
Vector Machines. Embedded methods [26, 54] combine classifier
configuration with feature subset exploration. However, these tra-
ditional approaches often neglect crucial gene interactions and
biological context, while struggling to handle the dynamic nature
of gene expression data, potentially missing key biomarkers.
Multi-agent Reinforcement Learning (MARL). MARL addresses
multi-agent environments [40] where agents interact to achieve
shared or individual goals. The combinatorial nature and envi-
ronmental complexity [31] make training challenging, with many
MARL applications addressing NP-Hard problems like manufactur-
ing scheduling [14, 16], vehicle routing [39, 51], and multi-agent
games [6, 36]. While deep RL has advanced to handle large-scale
systems [47], and both multi-agent [4, 19, 30, 46, 49, 50] and single-
agent [44, 55] approaches have been developed for feature selection,
these methods lack comprehensive domain knowledge integration
and are not optimized for HDLSS data scenarios, where direct ap-
plication without proper dimensionality reduction can lead to com-
putational inefficiency and poor convergence.

6 Concluding Remarks

We introduce BioMARL, a novel framework that transforms gene
selection into a pathway-aware collaborative decision process for
genomic analysis. By unifying statistical feature selection with bio-
logical pathway knowledge through MARL, our approach bridges
the divide between purely statistical methods and biological con-
text in gene selection. The framework’s two-stage architecture,
combining pathway-guided pre-filtering with collaborative agent
modeling, ensures both statistical rigor and biological relevance
in selected gene signatures. Through extensive evaluation on mul-
tiple TCGA datasets, BioMARL demonstrates superior predictive
performance while maintaining interpretability through pathway-
level insights. Gene Ontology enrichment analysis confirms that
selected genes form biologically coherent signatures, validating our

KDD '25, August 3-7, 2025, Toronto, ON, Canada.

framework’s ability to capture meaningful pathway interactions.
These genes exhibit distinct expression patterns that differentiate
breast cancer patients, highlighting the framework’s potential for
biological discovery and its applicability in precision oncology.
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8 Appendix

8.1 Implementation Details

Hyperparameters and Reproducibility
Pathway-Guided Gene Pre-filtering: For each pathway, we evaluate

performance using a Random Forest classifier with 100 trees and
default scikit-learn parameters. The pathway performance bonus
scaling factor f is set to 0.2.

Multi-Agent Gene Selection Framework: Each agent’s DQN consists

of a 4-layer network (256-128-64-2 neurons) with ReLU activation
and layer normalization. The learning rate is 0.0003, the discount
factor y is 0.85, the initial € is 0.95 with a decay rate of 0.99, and the
minimum e is 0.1. The experience replay buffer capacity is 1700 with
3000 exploration steps for each run, with a batch size of 64. Target
network updates occur every 50 steps. The Graph Neural Network
uses two graph convolutional layers with a hidden dimension of
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Algorithm 1 Pathway-Aware Gene Selection Framework

Input: Dataset D with gene set G, KEGG pathway database P, Maximum
features k
Output: Selected gene set G,p; With |Gope| = k
1: Phase 1: Pathway-Guided Pre-filtering (Section 3.2)
2: for all method f; € {chi-squared, random forest, SVM} do
3: Compute scores S; « f;(D) for all genes
4 w; « performance; /3’ ; performance;;
5. end for
6: for all pathway p; € P do
7: Sp(pi) « classifier performance(D[G;])
8: end for
9: for all gene g € G do
10: Lo Yiwi- Si.g
11: §g < mg-(1+p-log(1+5,(g)))
12: end for
13: Gpre «— {g € G: 54 > p+20}
14: Phase 2: Multi-Agent Gene Selection (Section 3.3)
15: Initialize DON agents for each gene in G
16: Initialize shared memory M with synergy matrix M;; and success record
c
17: Initialize centralized critic V' with gating mechanism
18: Initialize meta-learner ensemble fy,,.;4
19: for episode =1 to E do
20: st « GNN(X¢, E;) with pathway-augmented edges
21: fort=1to T do

22: for all agent i do

23: Get top partners P; from M;;

24: bias; « ﬁZjEP,- ij

25: P(a;=1) « o(Q;(s;s, 1) +bias;)

26: Select a; using e-greedy policy

27: end for

28: // Performance estimation

29: D, « construct perturbation matrix

30: APt up — fineta(Dy) = Changes and uncertainties
31: ¢t — 1/(1+u;) & Confidence factors
32: Ihase «— APt ® ¢ —log(1+u;)

33: // Pathway metrics

34: for all gene i do

35: if a; = 0 then

36: Agi — @(SU {i}) — @(S)

a7: Ay — Y (S U {i}) - ¥ (S)

38: else

39: Agi — ®(S) — @(S\ {i})

a0: AYi — ¥ (S) — ¥p(S\ (1))

41: end if

42: ri & Qrpase + PAG; + YAy,

43: end for

44 // Critic and memory updates

45 v — V(st) = Global value estimate
46: Update M;; for selected gene pairs

47: Decay memory weights: M;; « AM;;

48: for all agent i do

49: erge.r — Aa(ri + ymaxy Qi (s¢41,a")) + Apoy
50: Update DON using (sy, @i, 74, St41, Qrarget)

51: end for

52: Update critic by minimizing ||o; — I¢||*

53: St — Sr11

54: end for

55: end for

56: Compute final weighted scores using Q-value differences
57: Rank genes based on weighted scores to get G, anked

58: Gopr < top k genes from Gyanked

59: return Gop
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64, and pathway embeddings of dimension 64. Edge creation uses
a correlation weight a of 0.7. A; and A, of the critic was set to 0.7
and 0.3 respectively. The meta-learner combines Random Forest,
XGBoost, and LightGBM regressors (each with 100 estimators),
with a linear meta-model and a neural network (256-128-64-32-1
neurons).. The final reward weighting coefficients (w, &, {’) were set
to 0.5, 0.25, and 0.25 respectively Online updates of the meta leaner
occur every 50 steps. The shared memory mechanism uses a decay
factor of 0.99 and an exploration bonus of 0.005. The synergy bias
weight f is initialized at 0.08 and increases linearly up to 0.3. All
experiments were repeated 10 times with different random seeds.
Environmental Settings. All experiments are conducted on the
Ubuntu 22.04.5 LTS operating system, AMD Ryzen Threadripper
2950X 16-Core Processor, and 3 NVIDIA RTX A4500 GPUs (20GB
VRAM each) with 128GB of system RAM. The framework uses
Python 3.10.12 and PyTorch 2.2.1 with CUDA 11.8 support.

8.2 Pseudocode of the algorithm
The entire procedure algorithm is described as Algorithm 1.
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