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ABSTRACT

Most freshwater aquatic studies rely on Eulerian monitoring, i.e., water quality and
quantity are monitored using grab samples or semi-continuous sensors deployed at fixed cross-
sections. While Eulerian monitoring is practical, it provides a limited understanding of spatial
and temporal heterogeneity and their effects on environmental processes. This dissertation
summarizes the design and application of The Navigator, an alternative Lagrangian monitoring
system that offers cost-effective solutions for in-situ, real-time data collection in lotic and lentic
freshwater ecosystems such as streams, rivers, ponds, and reservoirs. The Navigator features a
suite of methods — an autonomous surface vehicle (ASV) with GPS and LTE connectivity, water
quality sensors, depth sonar, computer vision camera, cloud computing, and a webpage
dashboard to visualize data in real-time. With these technologies, The Navigator provides insight
into where, how, and why water quality and quantity change in time and space as it moves

through the current or flows following user-specified pathways.

First, we tested our prototype of The Navigator in the monitoring of water quality

parameters at high spatial-temporal resolution 2111\9ng the Rio Grande and a retention pond in



Albuquerque, NM. Then, we deployed the Navigator to quantify experimental mixing lengths
downstream of the outfall of a wastewater treatment plant in the Rio Grande near Albuquerque,
NM, under various flow regimes. Lastly, we deployed The Navigator to examine the role of
Santa Rosa Lake in attenuating the propagation of wildfire disturbances generated 170 km
upstream during and after the Hermit’s Peak-Calf Canyon wildfire. We quantified changes in
water density, turbidity, and other water quality parameters along the river-lake section using

Lagrangian monitoring.
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Chapter 1

General Introduction

1.1 CONTEXT

The study of freshwater ecosystems is undergoing a transformative phase, shifting from
the challenge of collecting sufficient data to measure processes to dealing with an abundance of
signals and deciphering their meanings (Pellerin et al 2016; Arabi et al. 2020; Rode et al. 2016).
Advances in technology, such as miniaturized sensors, real-time measurements, and autonomous
platforms, have led to a growing quantity, frequency, and resolution of data (Horsburgh et al.
2015; McCabe et al. 2017; Krajewski et al. 2006; Griffiths et al. 2022). This has raised the
possibility of a future where limnologists can simultaneously measure the rates of multiple
processes at various scales and in near real-time (Glasgow et al. 2004), which would greatly
benefit managers and scientists. However, the influx of data presents a challenge in
distinguishing the desired signal from the noise of overlapping spatiotemporal scales (Bloschl et

al. 2019; Kraus 2017).

In ecohydrology, determining the variables that can or need to be monitored is an initial
step, as it provides the foundation for designing successful studies. From this, a selection of the
type of pattern that will be used to explain observed processes follows, i.e., spatial, temporal, or a
combination of both (Doyle and Ensign 2009). Temporal patterns, achieved through repeated
observations at a fixed location over time (e.g., water quality data from a sonde at a fixed
location), referred to as Eulerian monitoring, have yielded important insights to ecohydrologists
(Romero et al. 2016; Burns et al. 2019). Another approach, which involves capturing purely

spatial patterns at a specific moment in time, and is referred to as synoptic monitoring, has

1



gained popularity through advancement in satellite imagery (Casper et al. 2012; Krajewski et al.
2006). A third approach, which entails generating a single pattern that combines both temporal
and spatial information by collecting data along a flow path, and is referred to as Lagrangian
monitoring (e.g., water temperature data obtained from a drifting buoy) has been vastly
underutilized in freshwater ecosystems, despite being standard practice in atmospheric and
marine sciences (Gruberts et al. 2012, Bertani et al. 2016, Hensley et al. 2020). Within this
context, the introduction and rapid adoption of Lagrangian monitoring techniques can be a means
to link and integrate Eulerian and synoptic data, and increase our understanding of where, how,
and why water quality and quantity change in time and space (Post et al. 2007; Ball et al. 2021;

Kraus 2017) (Figure 1.1).

Lagrangian monitoring can enhance our understanding of freshwater ecosystems and
contribute to effective and timely management of freshwater resources (Griffiths et al. 2022;
Bertani et al. 2016; Brown, Battaglin, and Zuellig 2009). However, upfront and day-to-day costs
remain prohibitively expensive in freshwater applications (Hensley et al. 2020). To date, the
HYCAT by Xylem is the only complete solution that is commercially available, but its

$110,000-170,000 price tag is prohibitively expensive for most users.

This dissertation focuses on the development of The Navigator, an affordable (~$5,100)
and novel smart sensing Lagrangian monitoring technology that can collect water quality
parameters and transmit data in real-time that are currently uncommon, i.e., at the sub-minute
scale and following natural flow currents, resulting in better understanding of spatiotemporal

patterns and improved predictions of water quality and quantity dynamics.
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Monitoring
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Variation in time

Figure 1.1. Monitoring approaches typically used in Ecohydrology.

1.2 OBJECTIVES
The specific objectives of my dissertation are:

1. Design, deploy, and test The Navigator, an autonomous surface vehicle (ASV) for
Lagrangian monitoring of freshwater ecosystems.

2. Quantify experimental mixing lengths downstream of a wastewater treatment plant under
various flow regimes and examine the predictive ability of long-standing empirical
equations routinely used for predicting mixing lengths.

3. Investigate the role of a flood-control reservoir in controlling the propagation of wildfire
disturbances generated from the Hermit's Peak-Calf Canyon through a combination of

Eulerian and Lagrangian monitoring techniques.



1.3 DISSERTATION LAYOUT

Chapter 2 focuses on the design, development, and validation of The Navigator, a smart
Lagrangian monitoring system. In Chapter 3 we quantified mixing lengths downstream of a
wastewater treatment plant under various flow regimes using The Navigator. In Chapter 4 we
used The Navigator to investigate the wildfire disturbance propagation from the Hermit's Peak-
Calf Canyon wildfire. Lastly, Chapter 5 presents a comprehensive summary of the overall

findings and conclusions derived from the research conducted throughout the dissertation.
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Chapter 2

Development of The Navigator: A Lagrangian sensing system to characterize

surface freshwater ecosystems.

Aashish Khandelwal'!, Tzion Castillo'?, Ricardo Gonzalez-Pinzén'!

ICivil, Construction and Environmental Engineering, University of New Mexico, Albuquerque,

NM USA
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This manuscript is currently in publication in the journal Water Research

2.1 INTRODUCTION

Recent advances in high-resolution sensors, real-time telemetry, analytical equipment,
and computer technology, among others, have sparked the ‘renaissance of hydrology’ (Gabrielle,
2019). In the context of surface water quality dynamics, this technological revolution has
enabled the monitoring of multiple solutes across the periodic table (Abbott et al., 2018; Burns et
al., 2019; Kirchner and Neal, 2013; Rode et al., 2016), in some cases at sub-hour resolutions
(Jarvie et al., 2018; Lloyd et al., 2016; Nichols et al., 2022), and over multiple decades (Dupas et
al., 2018; Huang et al., 2022; Li et al., 2020; Matson et al., 2021). However, due to affordability
issues, those advances have contributed to an improved understanding and management of
surface water resources only in a small number of watersheds across the globe (Arsenault et al.,
2023; Devaraj et al., 2022). To date, thus, we still lack reliable, continuous, and consistent
information on the extent and dynamics of surface water quantity and quality at local, regional,

and global scales (United Nations Environment Programme, 2021). To tackle this shortcoming,



the UN’s sustainable development goal 6 (SDG6) aims to increase data availability for evidence-
based management, regulations, and policymaking to “ensure access to water and sanitation for
all”.

While satellite observations can help monitor regional-to-continental scale processes
(e.g., evapotranspiration, intercontinental water and dust fluxes) and help identify relevant large-
scale features (e.g., anoxic zones, flooding, and hurricanes) (Arabi et al., 2020; Li et al., 2022;
Roman et al., 2019; Wieland and Martinis, 2019), the temporal and spatial resolution of their
information is typically inadequate to support local-to-regional scale decision-making associated
with the management of surface water resources (Manfreda et al., 2018; Tapley et al., 2019).
These limitations have kept Eulerian monitoring, i.e., the tracking of water quantity and quality
at a site and over time, as the current standard technique applied in consulting, research, and

enforcement of regulations associated with freshwater resources (Doyle and Ensign, 2009).

Eulerian monitoring of surface freshwaters can be done through grab sampling followed
by laboratory analyses or semi-continuous sensors in situ (e.g., optical and wet-chemistry
sensors) and has been used to quantify water quantity and quality dynamics at sub-hour to
monthly frequencies. Eulerian monitoring is spatially limited due to the sparseness of
instrumented sites, and this is particularly inconvenient for analyses featuring highly
heterogeneous and rapidly changing environments (Krause et al., 2015). Also, since Eulerian
monitoring fundamentally integrates the spatial heterogeneity, dynamics, and watershed
modifications upstream of the monitoring site (Gonzalez-Pinzén et al., 2019), this technique falls
short when linking causation and correlation. Some of the most common examples of these
challenges are differentiating between point and distributed sources of contamination in water

quality assessments and separating rainfall, snowmelt, and groundwater contributions from



stream flow measurements. An alternative to overcoming some of the challenges of Eulerian
monitoring is the use of Lagrangian monitoring, where water parcels are tracked as they move

through aquatic systems.

Lagrangian monitoring of surface waters can be done with crews sampling or monitoring
from a moving vehicle (e.g., boat or kayak) or using instrumented autonomous surface vehicles
(ASVs; also known as uncrewed surface vehicles USVs). Due to the intractability and
remoteness associated with Lagrangian monitoring, and high personnel costs, there is a strong
demand for ASVs. While Lagrangian monitoring has been widely used in oceanography using
drifters (Subbaraya et al. 2016) and in atmospheric studies using balloons (Businger et al., 1996),
its upfront, maintenance, and operational costs remain prohibitively expensive for the monitoring
of surface freshwater ecosystems. Currently, most commercially available ASVs for freshwater
ecosystems are adaptations of ASVs used in oceanography, which has resulted in large-size and

costly vehicles for example, the Teledyne Z-Boat 1800RP.

The advantages brought by Lagrangian monitoring can be better explained by comparing
Eulerian and Lagrangian monitoring of a marathon race and the propagation of a disturbance in a
river corridor. After the start of the events, Eulerian monitoring helps quantify what happens
over time at fixed cross-sections, such as the finish line or a bridge. Therefore, Eulerian-based
statistical analyses are limited to piece-wise rankings, histograms (or probability density
functions), percentile analyses, and averages. On the other hand, Lagrangian monitoring would
let us link spatiotemporal variations of relevant quantities such as stride length, cadence, heart
rate, vertical oscillation, ground contact time, and speed for a runner, or temperature, dissolved
oxygen, turbidity, and other water quality parameters changing as the disturbance moves

downstream. The only requisite is that runners and rivers ‘wear’ sensors. From those individual



quantities and the relationships among them, e.g., change of heart rate as a function of change in
elevation and change in dissolved oxygen levels as a function of turbidity, more robust
spatiotemporal analyses can be performed to characterize a runner’s performance during a

marathon or a river’s response to a disturbance.

Since most of the progress made to date in the study and management of freshwater
ecosystems is based on the use of Eulerian monitoring, any productive discussion about ways to
improve the monitoring of freshwater ecosystems should consider strengthening the capabilities
of existing infrastructure. For example, there are over 10,000 USGS streamflow stations around
the US, and some are also instrumented with water quality sensors (“USGS WaterWatch --
Streamflow conditions,” n.d.). However, to our knowledge, there is no active program pursuing
Lagrangian-based monitoring between sites located along river corridors. Integrating more
traditional Eulerian monitoring sites with Lagrangian capabilities, thus, can help researchers,
consultants, and stakeholders better understand where, how, and why water quality and quantity

change in time and space.

In this chapter, we present the development of an ASV, The Navigator, with sensing
technology to collect and transmit water quality data in real-time over spatial and temporal scales
that are currently uncommon, i.e., at the sub-minute scale and following flow currents or GPS
waypoints. We describe the components and architecture of The Navigator and demonstrate its
applicability in the Lagrangian monitoring of surface water bodies in New Mexico (USA) to: 1)
identify water quality changes associated with land use changes along a 7th-order reach in the
Rio Grande, 2) identify the fate of wildfire disturbances ~175 km downstream of a burned
watershed affected by the largest wildfire ever recorded in the state, 3) monitor the water quality

of a recreational fishing pond in the City of Albuquerque.
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2.2 METHODS

2.2.1 The Navigator: Overview

The Navigator features a GPS tracker to monitor spacetime variations and to allow the
recovery of the vehicle, a thruster and rudder system that can be automated using an autopilot, a
data logger that can be coupled to water quality sensors (i.e., optical, wet chemistry,
fluorometers), and real-time data transmission capabilities through LTE cellular service. The
Navigator is ideal for Lagrangian monitoring applications in river systems without major
obstructions, irrigation and drainage channels, and lentic systems (e.g., lakes, reservoirs,
estuaries). The Navigator can monitor water quality parameters over longer durations than other
ASVs commercially available, is lighter than other alternatives (2.5-5x lighter), and can be
coupled to different sensor heads, offering high versatility. Figure 1 and Table 1 present all parts
included in The Navigator and their assemblage to make the system work. Supplementary

Information A1 provides access to a 3D-CAD view of The Navigator.

2.2.2 Structure and Hardware Design

We used a catamaran (i.e., twin hulls) framework to create a small-size vehicle with
minimum flow resistance, better stability, and higher payload (Ferri et al., 2015). Each hull (C1
in Table 1) is made of expanded polystyrene (XPS) foam and has three layers of fiberglass
outside. The two hulls are connected by a carbon fiber rod structure using 3D-printed brackets
attached to the hulls (C2 in Table 1). A Pelican box (C3) houses electronics and batteries and is
fastened to the front two carbon rods (C1). The thruster (C4) and servo (C5) with rudder are

mounted on the back rods (C1). Since the vehicle’s weight is distributed over two hulls, The
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Navigator has a shallow draft of 125 mm.

g 700mm e H

650mm

500mm |

=
]23mm¢ ﬁf T T —U“—/ I Y

TOP VIEW SIDE VIEW

Dry weight: 10.5 kg

PERSPECTIVE

C3,C7-Cl14,
C18-C19

EXPLODED DIAGRAM

Figure 2.1. Figure 1: The Navigator: parts, design and exploded diagram. The dimensions
and 3D printed models in CAD can be accessed here: The Navigator CAD model. Part descriptions
are available in Table 1.
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Table 2.1: The Navigator component description and costs in USD, as of December 2022.

S Cost
Part Name Image Description (YY 2022 USD)
An insulation foam sheet with a
. . thickness of 5.1 cm is used for the hull's
Hull: Fiberglass with .
shape. Three layers of fiberglass cloth
Cc1 Foam and carbon o X ) $110
fiber rods e 3 (50 m?) were coated outside using epoxy
resin and hardener (250 ml). Carbon
rods are used as beams.
Approximately 1 kg of acrylonitrile
butadiene styrene (ABS) filament was
3D printed used for 3D printing the rudder and
C2 . . $22
components carbon rod connections to provide
durability and UV resistance to The
Navigator.
J—— This rugged case features an automatic
purge valve that equalizes air pressure
3 Protector case: and a watertight silicone O-ring lid. This $80
Pelican case protects all the hardware in The
Navigator from impacts and water
splashes.
The T200 thruster is a popular
underwater thruster used for The
ca Thruster: Blue Navigator. Its flooded motor design $236
Robotics T200 makes it powerful, efficient, compact,
and affordable.
This Annimos 20KG digital servo with
Digital Servo: high torque and full metal gear is
c5 Annimos 20KG with waterproof and helps control the $16
5V power converter steering of The Navigator with a control
angle of 270°.
. . A 2.4GHz dual band antenna radio
Radio Transmitter: .
C6 transmitter features an 8 channel RF $59
Emax E8
module.
c7 Wing Receiver: 2.4GHz radio receiver for remote $20
RadioMaster R88 control, with a range of ~1 km.
This autopilot is designed to control
Autopilot: Cube boats, cars, or rovers. It provides
c8 purple with mini hardware and an embedded software $340

carrier

ecosystem to automate autonomous
maneuvering in The Navigator.




Part

Name

Image

Description

Cost
(YY 2022 USD)

Cc9

GPS: Here 3

This GPS is a high-precision global

navigation satellite system (GNSS) that
supports real time kinematic (RTK)

positioning and is built with controller
area network (CAN) protocol. It is also
designed to be dust-proof and splash-
proof, which is ideal for The Navigator.

$125

C10

Telemetry Radio
Transmitter and
Receiver: 3DR

915MHz transmitter and receiver,
responsible for relaying images between
the ASV and ground station computer
with a range of 3-5km.

$88

C11

Lithium polymer
battery: Ovonic

Set of 4 Lithium polymer batteries,
Voltage: 11.1V, Cell: 3S, Capacity:
5500mAh, Discharge: 50C. These
batteries power every component of
The Navigator.

$55

C12

Solar panel: Eco
Worthy 25W 12V

Waterproof solar panel 41.9 cm x 32 cm
capable of providing 25W. This panel
helps extend battery life.

$36

C13

Solar Charge
Controller:
GV-5

This controller acts as an interface
between the solar panel and the
batteries, preventing them from
overcharging.

$99

C14

Microcontroller:
Raspberry Pi 4

The Raspberry Pi 4 is a powerful, user-
programmable microprocessor board
that can be easily programmed with
several popular IDE software programs
like Linux. It includes LTE and Bluetooth
communications for The Navigator.

$100

C15

Multiparameter
sonde: Yosemitech
Y4000

The Yosemitech Y4000 multiparameter
sonde is one of the most comprehensive
and affordable water quality monitoring
products available to monitor dissolved
oxygen, conductivity, turbidity, pH,
chlorophyll, blue-green algae, and
temperature.

$3,100

Cle

Spatial Al stereo
camera: OAK-D Lite

The OAK—D Lite is a spatial Al
powerhouse, capable of simultaneously
running advanced neural networks while
providing depth from two stereo
cameras.

$149

C17

Ping Sonar: Blue
Robotics

The Ping Sonar is a single-beam
echosounder that measures distances of
up to 50 meters underwater. A 30°
beam width and an open-source
software interface make it a powerful
tool for The Navigator.

$360
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Cost

Part Name Image Description (VY 2022 USD)

% 4G LTE USB modem dongle provides a

LTE modem dongle: mobile internet connection to the $50

Cc18

ZTE MF833V - Raspberry Pi and real-time data transfer.
This item is used to seal electrical cables
c19 Penetrator: Blue ‘ as they pass into a component or $56
Robotics WetLink . - through a pelican case. Each set includes
L a bulkhead, seal, plug, O-ring, and nut.

Total cost (YY 2022 USD) $5,101

The thruster (C4) can provide a thrust force of ~3 kg providing a cruise velocity of
~0.8m/s. The digital servo (C5) controls the steering, using a dual rudder design capable of
providing sharp turns (0.75m turning radius). The servo’s maximum torque is up to 21.5 kg/cm
@6.8V. The dual rudder system (C2) connected to the servo was designed and manufactured by
us and is 3D printable. The thruster is fixed, while the rudder is mounted directly behind the
thruster.

The Navigator has two maneuvering modes: 1) drift mode, controlled by the operator,
and 2) autonomous mode, following GPS waypoints. For drift mode, the operator controls a
radio transmitter (C6). The commands sent by the operator are received by the radio control
receiver (C7).

During autonomous mode, the autopilot (C8) gets continuous geolocation, roll, pitch, and
heading data from GPS data (C9). This allows it to hold the course and follow GPS waypoints.
The user can change between autonomous and drift modes using a switch on the controller (C6).
The geolocation, depth, roll, and pitch information are transferred continuously to the user using
a telemetry transmitter with a range of ~5km (C10) on The Navigator and a matching receiver
(C10) attached to a field laptop can be affected by terrain factors. Power is supplied to The
Navigator through four packs of lithium polymer batteries (C11). In our tests, this power

provided a range of ~30 km in autonomous mode. A small solar panel (C12) and a controller
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(C13) were added to extend the battery’s capacity. Lithium batteries (C11) were selected because
they provide a better weight-energy density ratio, high performance, and longevity. A 12V power
converter is used to supply the sonde, and a 5V power converter is used to power the servo (C5)
and the microcontroller board Raspberry Pi (C14).

The Navigator includes a multiparameter water quality sonde Yosemitech - Model Y4000
(C15). We chose this sonde due to its compact size, low cost, and ease of integration. The Y4000
monitors dissolved oxygen, conductivity, turbidity, pH, chlorophyll, and temperature. An
integrated wiper system can prevent biofouling, air bubbles, and debris, thus reducing erroneous
data. The multiparameter sonde is controlled using the Raspberry Pi board (C14) to define
temporal resolution, deploy the sensor heads, and save data files. The sonde can be calibrated
using the multi-sensor PC tool by Yosemite Technologies.

The Navigator features an OAK-D Lite 13MP depth camera (C16) to collect field
photographs and a 30-degree single-beam echosounder ping sonar (C17) to measure depth. The
camera is connected to the Raspberry Pi board (C14) and the sonar is connected to the autopilot
(C8). The Navigator has an LTE modem with a cellular SIM card (C18) connected to the
Raspberry Pi (C14) to transfer real-time data that can be shared worldwide. Finally, penetrators
(C18) are used to have watertight seal electrical cables as they pass into the pelican case (C3).

2.2.3 Software Design

The Navigator software provides easy-to-replicate and customized monitoring solutions
to a broad range of users, and all our code is publicly hosted on GitHub (see Supplementary
Information A2). The Navigator uses an Ubuntu Desktop 22.04.1 LTS Linux operating system
running on the Raspberry Pi 4 4GB (C14). The software is designed as a set of Robot Operating

System 2 (ROS2) nodes. To understand the architecture of our software, it is necessary to
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understand the ROS2 ecosystem it is built on. When using ROS2, the code is organized into
packages containing nodes based on their function, and those nodes communicate with each
other through messages. The nodes create and observe such messages by publishing and
subscribing to specific topics. This provides flexibility, as users can integrate additional ROS2
packages to fit their needs without modifying already integrated nodes. Within the code
developed for The Navigator, we have several nodes responsible for a task onboard the vehicle.
Figure 2 presents the architecture of our software, with representative titles for the roles of the
nodes and connections showing the topics that the nodes communicate through publishing and
subscription.

The Autopilot system uses ArduPilot’s ArduRover version 3.5.2 firmware. The Autopilot
requires setup and calibration tasks, which are well-documented on the ArduPilot website. The
operator needs to install a ground station on their field laptop to communicate with the Cube
autopilot (C8) through the telemetry radio (C10). The data transmitted include GPS waypoints,
battery health, the autopilot’s sensor health, etc. We used ArduPilot’s Mission Planner software
because it is the most popular and has an extensive database with community support and
documentation. Other options include APM Planner and QGroundControl, among others. No
modification of The Navigator source code is required to switch between ground stations
software.

The ground station, which may be housed at an onshore building, a mobile unit, or a boat,
is crucial for deploying The Navigator. The ground control station’s primary equipment is a
laptop with ground control software installed. Additional components are a USB telemetry
transmitter (C10) connected to the computer and an RC transmitter (C6). Wireless

communication methods via telemetry transmitters are generally used to assign missions to The

17



Navigator. The ground station keeps track of the status of The Navigator and its onboard

hardware and sends control instructions to remotely operated missions.

We used Ubidots to create a website to communicate with The Navigator and visualize

and download data. Ubidots provides a free tier for educational use and is easy to set up. We

created a simple interface for viewing previous data over a wide time range, visualizing real-time

updates when data are received, and restricted viewing access as specified by the user. Any

website using HTTP could be used to communicate with The Navigator, but some slight

modification of The Navigator source code would be necessary. The data sent to the website

includes sonde readings, camera status, and GPS locations. Data are displayed as time-series

plots with colored ranges and a map with pinpoints. The data are sent through the onboard USB

LTE modem (C18).

We used the Luxonis Depth Al platform to save images taken from the Oak D lite camera

(C16) in The Navigator. This platform combines artificial intelligence, computer vision, depth

perception (Stereo, ToF), and segmentation. We programmed Luxonis Depth Al to save images

for our initial field tests.
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1](C6) perator computer receiver (C10)
1 =
oo 1] oo ecener|[Teemery |
[ adio receiver|| Telemetry
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: (c9) (€7) transmitter (C10)
1
' sonar (€17) ‘ Stereo camera
! || 1| (c16)
' Autopilot Compat"'on
1 .
X T(r;;'uster || Cube e > ;ompbu e | | |TE modem (C18)
| (C4) Purple (C8) aspberry
1 Pi (C14)
' - | Multiparameter
: Servo (C5) ‘ % sonde (C15)
1
1 n
! L 5V Adapter | | LiPobattery | f 45y Adapter J
' (€11)
1

_______________________________________
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(Mission Planner) g (Cube Purple)
y . A
ELJEKOJ[:':\I _L Image Sonde | | Multiparameter
Pt 1| saver interface |1 | sonde
publisher 1 1
1 y 1
ROS : Autopilot :
! interface !
1 1
: Data I—» Data : Website dash-
| saver handler [} | board (Ubidots)

_______________________
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Figure 2.2: The Navigator hardware (left) and software schematic (right).
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2.3 VALIDATION AND FIELD TESTING

We tested The Navigator in three applications. First, the Lagrangian monitoring of a 7th-
order river reach in the Rio Grande using the drifting mode to understand where, how, and why
water quality changes. Second, we monitored Santa Rosa Lake following GPS waypoints to
characterize post-fire disturbances from the largest recorded wildfire in New Mexico, i.e., the
Hermits Peak-Calf Canyon wildfire that occurred in the spring of 2022. Third, we monitored a
small urban detention pond in the City of Albuquerque using the autonomous mode to collect

high spatial resolution water quality data and depth along a grid path.

Before each field day, we calibrated each sensor following the manufacturer’s
recommendations. With the field information collected from water quality sensors and GPS data,
we generated heatmaps using R's spacetime and trajectories package (Pebesma, 2016). These
heatmaps (KMZ graphic format) were later imported into Google Earth to create layered water

quality maps to display water quality data in a longitudinal framework.
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Figure 2.3: A Map of New Mexico, USA, with red boxes enclosing the study sites. A) 7th-order
study reach along the Rio Grande where The Navigator was used in drifting mode on day 1 (May
19th, 2022) and day 2 (May 20th, 2022). B) Hermit’s Peak-Calf Canyon Fire perimeter in red and

boundaries of the impacted watershed draining to Santa Rosa Lake. The Navigator was deployed in
autonomous mode to follow a waypoint path across the lake on August 19th, 2022. C) Recreational
fishing pond in the City of Albuquerque, where The Navigator was deployed in autonomous mode

following a grid pattern on November 11th, 2022.
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2.3.1 The Navigator: Drifting Mode Operation

On May 19 (day 1) and May 20, 2022 (day 2), we monitored 28.43 km of the Rio Grande
near the City of Albuquerque in drifting mode, i.e., moving with the river’s current. The
watershed draining area is ~37,221 km? and features ~55% shrub and grassland, 36% forest, and
~2.8% developed land (“Model My Watershed,” n.d.). The study reach starts ~58 km
downstream of Cochiti Lake, a flood and flow control reservoir that removes sediment from the
river (Massong et al., 2010). This section of the river features the City of Rio Rancho’s
wastewater treatment plant (WWTP) return effluent, the City of Albuquerque’s water intake for
drinking supply, storm and agricultural return flow channels, and the City of Albuquerque’s
WWTP return effluent. Due to low flow conditions, i.e., 21.8 m*/s compared to a 30-year median
of 70 m*/s (USGS gage 08330000), we were not able to collect data along a 15.3 km reach
between Montafio Bridge and Rio Bravo Bridge (Figure 3A) because the flow was too shallow
and unsuitable for The Navigator. The United States Geological Survey (USGS) operates several
stream gages in this reach, i.e., USGS 08329918 at Alameda Bridge, USGS 08329928 near
Paseo Del Norte Bridge, and USGS 08330830 at Valle de Oro, which we used to report flow

data.

We collected data every 2-min for 5 h and 48 min on day 1 and for 4h and 52 min on day
2. This corresponded to an average of one sampling event every 114 m on day 1 and every 80 m
on day 2. The Navigator collected GPS, turbidity, pH, temperature, dissolved oxygen (DO), and
specific conductivity (SC) data (Figure 4 and Figure S1). We activated the remote steering
controller only when the vehicle was drifting near thick riparian vegetation and near the

diversion dam used by the water treatment plant's intake facility. We followed The Navigator
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using a kayak through the study reaches and verified the functioning of real-time data telemetry

with the Ubidots website dashboard.

The data collected by The Navigator revealed spatial and temporal changes in water
quality parameters (Figure 4). On day 1, we observed an increase in water temperature from 17.0
to 22.6 °C (Figure 4), which may be due in part to daily changes in air temperature over the
monitoring period. We also observed a longitudinal increase in specific conductivity from 273.3
to 291.7 uS/cm, with abrupt changes near releases from the WWTP of the City of Rio Rancho
(i.e., 273.8 t0 299.6 uS/cm) and runoff outlets from unlined channels or arroyos (i.e., 281.3 to
290.4 uS/cm). These changes were local as lateral discharges were orders of magnitude smaller
than that from the Rio Grande, e.g., ~0.3 m®/s in the Rio Rancho WWTP and 23.4 m?/s in the
river. During our monitoring, the inflatable diversion dam controlling the water intake from the
Rio Grande into the water treatment plant of the City of Albuquerque was raised and created
water stagnation upstream and high turbulence downstream. To avoid the dam, we directed The
Navigator to the fish bypass channel and detected changes in turbidity from 33-37 FNU upstream

to 40-49 FNU downstream.

On day 2, The Navigator registered drastic water quality changes as it passed through the
Albuquerque WWTP outfall, which has a maximum capacity of 76 MGD (i.e., 3.3 m?/s), making
it the largest in New Mexico. That day, the Rio Grande’s average flow was 18.9 m?/s, and the
ABQ WWTP effluent discharge was 2.3 m*/s. We recorded specific conductivity values
increasing from 276.1 to 689.8 uS/cm and temperatures rising from 18.7 to 22.9°C (Figure 4).
The temperature and conductivity values gradually decreased downstream of the WWTP point
source for ~ 4 km and then rose gradually as a part of a diel cycle. Similarly, The Navigator

registered changes in DO from 6.5 to 5.3 mg/L, turbidity from 53.1 to 8.8 FNU, and pH from 8.1
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to 7.1. These values also gradually rose to those upstream of the Albuquerque WWTP. This
study shows how The Navigator can monitor water quality parameters at higher spatial and
temporal resolutions, supporting identifying sources and assessing their impacts at spatial scales

unattainable by Eulerian monitoring or grab sampling.

Rio Rancho wastewater
treatment plant outfall

pH Day1

79 8.3

i Albuquerque water treatment
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Figure 2.4: Longitudinal heatmap profile of water quality parameters collected by The Navigator
along the Rio Grande River near Albuquerque, NM. The blue dots indicate USGS flow gages, green
shade indicates low values and red indicates high values. Clock time is indicated in hh: mm.
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2.3.2 The Navigator: Autonomous Mode Operation
Following GPS waypoints

The Navigator is equipped with an autopilot system capable of following GPS waypoints
to track water quality changes autonomously. With support for site access from the US Army
Corps of Engineers (USACE) Albuquerque District, we conducted a high-resolution Lagrangian
monitoring of water quality changes associated with the mobilization of wildfire disturbances
after the Hermit’s Peak-Calf Canyon Fire (Figure 2.3 B). To contextualize, as of early 2023, this
wildfire is the largest ever recorded in New Mexico and burned 138,188 hectares between April
and June 2022. The fires began from out-of-control prescribed burns (“Hermit Peaks Fire,”
2022) and expanded aggressively due to sustained high-wind and dry conditions that are part of a
climate change-induced megadrought gripping vast areas of the western United States (Freedman
and Fears, 2020). Postfire, after the storms from the monsoon season started to mobilize burned
materials from the burned area into Gallinas Creek and into the Pecos River, we monitored water
quality from Santa Rosa Lake and its upstream delta, which are located ~175 km downstream

from the burn scar perimeter.

Since our goal was to determine how the discontinuity of a river system brought by a
flow-regulating dam impacts the propagation of wildfire disturbances in a fluvial network, we
monitored the Pecos River Delta-Santa Rosa Lake transition for ~8 km at a fine sampling spatial
scale of about one sample every 64 m. The study was conducted on August 19, 2022, after a
precipitation event of 9.4 mm fell over the burn scar on August 17-18, 2022 (USGS Atmosphere
gage 354150105275301) and mobilized debris and sediments. The longitudinal monitoring
followed the direction of the flow, which was 13.1 m%/s, exceeding the median of 1.0 m?/s

between 1977-2022 (USGS gage 08382650) (“USGS WaterWatch -- Streamflow conditions,”.).
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The Navigator’s data revealed drastic changes in the spatial patterns of water quality
parameters (Figure 5). DO transitioned from ~ 6 mg/L in the Pecos River upstream of the delta,
to anoxic conditions (~0 mg/L) near the delta, and then rose as the water reached the dam. The
DO sag and recovery patterns were inversely proportional to the turbidity values, suggesting that
microbial respiration or chemical oxygen demands (DO sink) and photosynthesis (DO source)
were largely controlled by sediment fluxes from the wildfire (Ball et al. 2021; Smith et al. 2011;
Reale et al. 2015). pH values were lower in zones with low DO, suggesting increased aerobic
microbial metabolism and CO; releases associated with the high influx of sediment from wildfire
material (Chapra, 2008). Specific conductivity and temperature increased along the flow path
following the DO trend. During the monitoring activity, high sediment loads come from Gallinas
Creek and the Pecos River sinking along the delta due to the reduced flow velocity. We also saw

floating debris and bubbles from wildfire disturbances remaining near the surface of the lake.

Our monitoring with The Navigator indicated drastic changes in water quality parameters
over short distances along the lake in response to post-wildfire rainfall-runoff events occurring
hundreds of kilometers upstream. This allowed us to identify hotspots and plausible sources and
sinks of physicochemical parameters. Since the monitoring lasted <2h, our data from the lake are
not as affected by diel cycles as those from the Rio Grande. This study with The Navigator
helped us understand how lakes affect the longitudinal propagation of wildfire disturbances
along fluvial networks, acting as sinks and resetting the mobilization of wildfire material that
becomes part of the lakebed. Our results bring into focus the importance of longitudinal
monitoring and highlight the importance of selecting adequate sampling locations and spatial

coverages.
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Figure 2.5: The Navigator is monitoring Santa Rosa Lake, NM, to understand the water quality
impact of monsoon runoff on the reservoir from the Hermit peaks/ Calf Canyon wildfire. The blue
dot indicates USGS flow gages for Pecos River below the dam; green indicates low values, and red
indicates a high value for water quality parameters. Clock time is in hh: mm.
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Following a grid path.

On November 11, 2022, we deployed The Navigator in a recreational fishing pond in the
City of Albuquerque (Figure S3). We used a GPS grid path mission of 400 m to monitor the
north side of the pond using Mission Planner. This monitoring activity lasted 25 min, was
completed at an average speed of 0.27 m/s, and used a sampling frequency of one sample per
minute, amounting to about one sample every 16 m. The Navigator monitored turbidity, pH,
temperature, DO, conductivity, oxygen reduction potential (ORP), and chlorophyll-A. We also
added the depth sonar and an Oak D-lite camera. We chose a zig-zag grid path to gather high

spatial resolution of water quality parameters and test the vehicle's maneuverability.

As expected, we observed minimum changes in surface water quality parameters due to
the small size of the pond and the short duration of our test (Figure 6). Even though the pond is
relatively deep with respect to its surface area, the sensors in The Navigator cannot reach deeper
layers to detect vertical heterogeneities. The values observed in this short study fall within
expectations for low sediment, small ponds. Logistically, this test is analogous to monitoring a
point source or the confluence of two streams. Thus, the autonomy of The Navigator would
allow researchers and practitioners to monitor wide water bodies from a single location while

collecting high spatial resolution data on water quality parameters and depth.
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Figure 2.6: a) The Navigator monitoring the Bob Gerding catch and release pond, Albuquerque,
NM. b1-b5) Images captured by The Navigator while monitoring. ¢) Heatmap of the water quality
parameters and depth data collected by The Navigator.
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2.4 THE NAVIGATOR: COMPARISON WITH EXISTING TECHNOLOGY

While numerous ASVs have been developed, most have focused on oceanography and
only a few on freshwater applications. We compared the performance of The Navigator with
three other monitoring platforms that were designed for longitudinal monitoring of freshwater
systems: 1) the Xylem HYCAT, 2) the Teledyne Z-Boat 1800RP, and 3) the Oak Ridge National
Laboratory (ORNL) AquaBOT (Griffiths et al., 2022). The spider map in Figure 7 represents a
qualitative comparison because a quantitative comparison would disregard the fact that they were
built for different applications and can be custom-made. For example, the AquaBOT is designed
specifically for the water quality monitoring of low-mid order streams and is ~2.5x times larger
than The Navigator. The Teledyne Z-Boat 1800 is designed for hydrographic surveys that require
higher payloads and is ~4-7x heavier (38-78 kg) and ~5x larger than The Navigator. The Xylems
HYCAT can monitor bathymetry and water quality and is ~5x (53kg) heavier than The

Navigator.
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Figure 2.7: Comparison spider map of three autonomous surface vehicle platforms and The

Navigator.

2.5 CONCLUSIONS
The Navigator is a do-it-yourself (DIY), innovative, cost-effective (USD 5,101 in 2022),
easily adaptable solution for Lagrangian monitoring of surface waters that can support progress
in hydrologic sciences, watershed management, health, and wellbeing efforts worldwide. The

Navigator can generate and share high spatial- and temporal-resolution water quality parameters,
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site photos, and depth surveys using off-shelf technologies that are affordable, open source, and
easy to integrate with other sensor platforms. The off-shelf emerging technologies used are
cutting-edge, making The Navigator smarter, cheaper, smaller, lighter, and more reliable than
other ASV systems. The Navigator can generate and share data in real-time to help make
informed decisions leading to improved environmental and human health outcomes, supporting

the development of more sustainable and resilient societies.

Our field test data prove that The Navigator can help researchers, consultants, and
stakeholders better understand the coupling of aquatic and human systems. This system provides
tools to assist in planning, restoration, mitigation, enforcement, and disaster response efforts. The
emphasis of this technology on understanding local-to-watershed scale spatial variations of
natural and anthropogenic stressors can better inform holistic approaches for freshwater resource
management. The Navigator allows for sampling spatial heterogeneities in water quality
parameters at sub-hour to multi-day resolutions, providing data-rich solutions with minimum

upfront (Table 1), maintenance, and operational costs.

The Navigator facilitates the linkage between Eulerian datasets collected at a site (e.g.,
USGS stream flows and water quality data) and Lagrangian-based monitoring to provide a better
understanding of where, how, and why spatiotemporal variation in water chemistry and
biogeochemical processing occurs. This technology has numerous critical applications, primarily
in the water technology and energy and food sectors (i.e., across the food-energy-water FEW
nexus). The technologies like the Navigator can help develop holistic strategies to manage FEW
resources as it provides high spatiotemporal resolution capturing the impacts of land use
changes, point and diffuse sources, and climate variability on freshwater systems. It can help

identify risks relevant to the water supply for drinking, industrial, and agricultural activities and
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address concerns from the associated return flows (e.g., combined sewer overflows, thermal
pollution, excess nutrients, etc.). This system can inform agencies about water quality issues
related to excess loads, dilution requirements, unwanted leakages to aquatic ecosystems, and
gaining and losing conditions in rivers and lakes. The spatiotemporal water quality data
generated by this development can support the development of regulation and enforcement of
environmental flows, thermal pollution, and mitigation and restoration efforts post-disturbance
(e.g., wildfires, spills, land use changes, etc.). Overall, The Navigator can help address questions
involving mass and energy balances in surface water ecosystems and support evidence-based

decision-making.
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3.1 INTRODUCTION

Globally, large volumes of untreated and treated wastewater generated by domestic,
industrial, and commercial sources are discharged into rivers, lakes, and marine systems,
typically as point sources (Rice, Wutich, and Westerhoff 2013; UNESCO 2020). According to
the United Nations, the global volume of treated wastewater generated in 2018 was
approximately 340 billion cubic meters, and it is projected to increase by 51% to 574 billion
cubic meters by the year 2050 (United Nations Environment Programme 2021). While
technological advances have played a significant role in increasing the capacity to treat
wastewater and improve its quality (Angelakis and Snyder 2015), multiple contaminants of
concern, such as microplastics, pharmaceuticals, and per- and polyfluoroalkyl substances (PFAS)
remain largely untreated (Aymerich et al. 2017; Podder et al. 2021; Tiwari et al. 2017; Meng,
Kelly, and Wright 2020). Given the urgent need to increase water supply through water reuse of
partially and fully treated wastewaters for landscaping (Baawain et al. 2020), irrigation

(Mortensen et al. 2016), and human consumption (Mizyed 2013), the interest in understanding
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environmental mixing, dilution, and overall wastewater management in fluvial systems is

reemerging (Antweiler, Writer, and Murphy 2014; Aymerich et al. 2017; Kraus et al. 2017).

There are best practice guidelines for establishing mixing zones, i.e., areas where active
mixing and dilution of effluents occur (EPA 305(b) report 2009). In these mixing zones,
pollutant concentrations can temporarily exceed water quality standards until contaminants are
mixed and diluted by receiving water bodies. Near wastewater treatment plant (WWTP) outfalls,
mixing zones are primarily influenced by the orientation of the outfall, its size, and the
differences in flow and densities between the river and the effluent. Farther downstream, mixing
is more influenced by the river’s geomorphology (i.e., width, depth, sinuosity) and dilution
capacity (G. H. Jirka, Doneker, and Hinton 1996; Campos, Morrisey, and Barter 2022). In
practice, mixing zones (a 2D problem) are estimated through mixing lengths (1D solutions), i.e.,
the distance downstream from a point source over which the concentration of solutes in a
receiving river are heterogenous vertically or laterally (Rutherford 1994). Mixing lengths are
typically computed using empirical formulas derived from one-dimensional solute transport
models and consider physical and hydraulic parameters describing the river’s potential for
dispersion and mixing through turbulence (Table 1) (Chapra 1997; Fischer 1979; Ward 1973; G.
Jirka and Weitbrecht 2005; Rup 2006; Cleasby and Dodge 1999). However, most of those
equations have not been tested in the field with high-resolution techniques and under various

flow conditions but remain in use as standard practice.

Conceptually, 1D mixing length equations assume that water is mixed vertically and
laterally relatively quickly (Ward 1973; Fischer 1979). Most of those equations do not explicitly
account for water temperature and density differences between the river and the effluent, even

though temperature-related stratification affects mixing in lentic (e.g., lakes) and lotic systems
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(e.g., streams). Understandably, the technology and resources available to derive empirical
mixing length equations in the 1970s did not allow for multi-flow verification or realistic tests
under different conditions imposed by the dynamics of the river (i.e., sediment, temperature, and
solute concentrations along the hydrograph) and its interaction with a much more constant
effluent. However, these unaccounted-for considerations are highly relevant in arid and semi-arid
regions, where WWTP effluents can be dominant sources of water in rivers during dry periods
(Mortensen et al. 2016; Hur et al. 2007), and where the continuously dwindling rivers flows are
the primary source of water for multiple users and uses (Cooke, Rutherford, and Milne 2010).
There, WWTP effluents may cause sustained water quality deterioration under drought
conditions (Murphy et al. 2018; Hur et al. 2007; Kamjunke et al. 2022), and the correct
estimation of mixing lengths becomes more imperative to protect communities (Campos,

Morrisey, and Barter 2022).

Recent technological advances offer alternatives to refining the estimation of mixing
lengths and zones. Through high-resolution in-situ monitoring, water quality parameters such as
temperature, dissolved oxygen, pH, and turbidity can be tracked to detect where they become
homogenous across transects downstream of point sources (Cleasby and Dodge 1999). Also,
remote sensing using satellite imagery can provide spatially distributed information on some
water quality parameters, such as temperature, chlorophyll-a, and turbidity (Gholizadeh,
Melesse, and Reddi 2016). However, their information's temporal and spatial resolution are
typically inadequate to support local-scale and dynamic decision-making for managing surface
water resources. Drone-based infrared and photogrammetric surveys have also gained popularity
as they can provide better spatial resolution. Still, short battery lives, low payload capacity, high

costs, and overwhelming regulatory restrictions severely limit the area they can cover. An
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alternative to overcoming these challenges is using Lagrangian monitoring (i.e., as the flow
goes), where water parcels are tracked, and mixing lengths are quickly established where and

when the homogeneity of water quality parameters is detected.

In this study, we quantified experimental mixing lengths downstream of a WWTP
discharge in the Rio Grande near Albuquerque, NM, and compared our results against six
commonly used empirical equations. Our experimental fieldwork was done under six different
river flow conditions, generating river to WWTP discharges ranging from 1 to 33. Therefore, our
study site provided unique opportunities to investigate how mixing lengths vary as a function of
flow dynamics in shallow, wide river reaches. We quantified experimental mixing lengths
monitoring the two banks of the river using Lagrangian sampling with The Navigator
(Khandelwal et al., in review) and an instrumented kayak, and also used Eulerian monitoring
across river transects when navigating the river was impossible due to low flows. From our
results, we discuss the challenges associated with erroneous estimates of mixing lengths and

opportunities to develop improved estimates.
3.2 METHODS
Study area

We studied a ~9 km reach of the Rio Grande near Albuquerque under six flow conditions
ranging from 3.7 m*/s to 50.9 m%/s, with a mean discharge of 16.7 m*/s. This reach is located ~55
km downstream from Cochiti Lake, a large flood control reservoir maintained by the U.S. Army
Corps of Engineers, which receives most of the flow from snowmelt and removes most of the
sediments from the river. The reach is also located near the City of Albuquerque, where the
treated effluent of the Southside Water Reclamation Plant is discharged. This wastewater

treatment plant (WWTP) serves over 600,000 people and has an average daily effluent discharge
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of 2.6-3.2 m*/s (Brown and Caldwell 2011). The WWTP outfall features a rock-lined channel
merging into the left bank of the river at an angle of 45°. Our study reach starts 1.2 km upstream
of the outfall of the wastewater treatment plant of the City of Albuquerque and ends 7.8 km

downstream of the point source.

The United States Geological Survey (USGS) operates gage USGS08330000 at Central
Bridge, ~8.0 km upstream of the start of the reach, and gage USGS08330830 at Valle De Oro,
~4.7 km downstream of the outfall. We obtained discharge values from these gages upstream
(Qup) and downstream of the WWTP (Q4own). The Albuquerque Bernalillo County Water
Utility Authority monitors the effluent coming from the WWTP, providing discharge (Quwp)
and water quality data at an hourly resolution (Figure 1). The effluent from the WWTP is
relatively constant with respect to the Rio Grande, and in some dry periods, it may make up most
of the flow in the river (Figure 2). In 2022 more than 40% of the Rio Grande
watershed experienced exceptional drought in early summer (Pratt 2022) and, in consequence,
the Rio Grande ran dry near Albuquerque for the first time in 40 years, and the WWTP effluent
supplied all the discharge in the river. Since Qyp: Quwep ranges between 1-33.3, our study site
provides unique opportunities to investigate how mixing lengths vary as a function of flow in

shallow, wide river reaches.
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Figure 3.1: (A and B) Study reach location and (C) satellite photo of the area near the
outfall of the City of Albuquerque’s wastewater treatment plant.
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Figure 3.2: Rio Grande discharge (blue) for the USGS08330000 at Central Bridge (Q,;),
Southside Water Reclamation Plant outfall flow (Q,,,; grey), and daily mean @, values (black).

Red dotted lines indicate fieldwork days, and the red rectangle represents the period when the river
ran dry, and the WWTP provided all the river flow downstream of the WWTP.

Field Measurements

Infrared imagery: We used a drone equipped with a thermal imaging infrared camera
(FLIR Vue Pro R 640) and an RGB camera (20 MP 1" CMOS) to visualize the mixing of WWTP
effluent and river water with surface water temperature profiles. This fieldwork was completed
on Nov 11, 2021, when Qyp: Quwep= 6.21 (Figure 3). Although the collected imagery was ideal
for visualizing mixing patterns near the WWTP-river confluence, the technology only monitors
temperature, is costly, and drone flying restrictions near the Albuquerque International Airport
restricted its use in our area of interest. Thus, we only used the information collected from

thermal imagery to design our Lagrangian and Eulerian monitoring.
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Figure 3.3: Drone-based infrared imaging showing the higher temperature plume from the
WWTP effluent (light grey, ~20-25 °C) hanging on the left bank of the Rio Grande (black, ~15 °C).

High-resolution Lagrangian monitoring: We monitored the spatiotemporal variability of

multiple water quality parameters along our study's left and right banks reach to characterize
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mixing lengths. These data were collected on the left bank using The Navigator, an autonomous
surface vehicle (ASV) instrumented with a GPS tracker and multiparameter sondes that monitor
temperature, dissolved oxygen, pH, and specific conductivity at a depth of 0.2 m (Khandelwal,

Gonzalez-Pinzén, and Castillo 2023 under review). On the right bank, we used a kayak carrying
a multiparameter YSI EXO2 sonde and a handheld GPS tracker to monitor the same parameters.
The monitoring was completed under four different flow conditions, i.€., Qup: Quwep 0f 5.5, 7.3,
12.5, and 22.1. On average, the data were collected at a spatial resolution of 72-102 m, over 2hr

16min - 3hr 48min of navigation.

Eulerian monitoring: In low flows with Qy,: Qyw¢p 0f 3.6 and 2.4, we could not navigate
the study reach and used Eulerian monitoring. We used the same multiparameter YSI EX0O2
sondes along 11 transects spaced 200 m-2 km apart, depending on site access to the river. Before
each Lagrangian or Eulerian monitoring field day, we calibrated each sensor following the

manufacturer’s recommendations.

Estimation of mixing lengths and comparison with existing models

We generated heatmaps for water quality parameters using the spacetime and trajectories
package from R (Pebesma 2016) and the sondes and GPS data. We estimated experimental
mixing lengths (L,,,) for each parameter as the distance required for left and right bank values to
become +5% equal or uniform downstream of the WWTP outfall (Fisher, 1979). Using this
criterion, we confirmed that water quality parameter values upstream of the WWTP outfall were

uniform.
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The heatmaps (KMZ files) were arranged next to one other and imported into Google
Earth to create layered water quality maps to display water quality data under different dilution
ratios. The resolution of the Eulerian monitoring was increased using linear interpolation

between transects to generate a higher resolution heatmap.

Existing mixing length models

We compare our experimental estimates of mixing lengths (L,,,) with multiple empirical
equations (L; Table 1). The reach characteristics required to populate those equations include
average velocity, depth, width, channel irregularity, and longitudinal slope values. The hydraulic
parameters velocity, depth, and width were obtained from USGS data from the upstream station.
Onsite observations of channel meandering and inspection of satellite imagery were used to

determine a qualitative measure of channel irregularity (sinuosity) and longitudinal slopes.

Table 3.1: Empirical formulas used to compare mixing lengths.

Source Equation

Mixing length zone kb2U

(Fischer 1979) ~ Ru (1)

Length of the longitudinal mixing zone U s?

(Rutherford 1994) L= 0536? (2)

Mixing length equation L =04 U s2 3

(G. Jirka and Weitbrecht 2005; Skorbitowicz et al. 2017) ~ "o, (3)

Mixing length equation U s?

(Rup 2006; Skorbitowicz et al. 2017) L =029~ (4)

One half width mixing equation. 0.4(b/2)% U
L=—— (5)

(Cleasby and Dodge 1999) Dy

European Union rule of thumb for river mixing zone.

(Environmental Quality Standards 2008) L=10b (6)

In Table 1, L is the empirical mixing length, b is the channel width, U is the mean

velocity, R is the hydraulic radius, u, is the shear velocity, s is the linear transverse scale, D,, is
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the transverse dispersion coefficient (D,,~ 0.3 m?/s for the Rio Grande), and k is a channel type

constant (k~10 for the Rio Grande).

3.3 RESULTS AND DISCUSSION

Flow conditions and historical drought

The Rio Grande is a highly managed arid river system, providing water for 6 million

people and irrigating 2 million acres of land. Drought years strain water operations, making flow

management complex. Nearly 75% of the river's water is used for agriculture, and managing low

flows represent an environmental concern for endangered species native to the Rio Grande,

particularly the Rio Grande Silvery Minnow (Pratt 2022). In 2022, 40% of the Rio Grande

watershed experienced exceptional drought, resulting in record-low flows during the summer and

fall. In 2022, near Albuquerque, New Mexico, the river faced ~19.5% lower flows than the

average flow since 1970. During the fieldwork days of this study, the river flow at Q,,,, ranged

from 50.9 m’/s to 3.74 m’/s, and the wastewater flow at Q¢ ranged from 3.01 m?/s to 1.56

m?>/s. These flow values generated dilution ratios between 22.1 and 2.4. Also, river depths ranged

from 0.2- 0.9 m (Table 2).

Table 3.2: Hydrologic characteristics of the Rio Grande near Albuquerque, NM.

Qup Qup | Quwep | Quown | Depth | Width, b |  Area Hydraulic Mean Linear
watp (m3s) | (m/s) | (m/s) (m) (m) (m?) radius, R velocity, U transverse
(m) (m/s) scale, s (m)
2.4 3.74 1.6 5.4 0.2 18 0.2 0.9 12.6
3.6 7.0 2.0 8.5 0.3 27 0.3 0.9 18.9
5.5 15.0 2.7 15.6 0.5 38 17 0.4 0.9 26.6
7.3 22.1 3.0 19.0 0.6 44 25 0.6 0.9 30.8
12.5 33.4 2.7 32.0 0.7 53 37 0.7 0.9 37.1
22.1 50.9 2.3 50.7 0.9 65 59 0.9 0.9 45.5
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Experimental mixing lengths

The experimental mixing lengths observed from our datasets follow a bell-shaped pattern
with river flows and dilution ratios Q,,: Quwep, 1.€., low and high flows have smaller mixing
lengths and intermediate flows have greater magnitudes (Figures 4-6). Multiple mixing lengths
were obtained from each water quality parameter tracked for a specific river flow or dilution
ratio, even though they all followed the same bell-shaped patterns (Figures 4-6). This suggests
that contrasting phenomena at low and high flows may affect mixing length patterns similarly.
Noticeably, all the empirical equations used to compare our experimental observations (Table 1)
predicted a monotonically increasing mixing length with discharge and misrepresented our data

(Figure 6).

As river flows decrease, the outfall effluent has a higher depth and momentum,
supporting a relatively fast and expansive mixing driven by kinetic energy in a process analogous
to jet diffusion (Gomolka, Twarog, and Zeslawska 2022). The reduced river depth limits vertical
spreading, causing the negatively buoyant effluent to rise rapidly, contributing to horizontal
mixing (Pouchoulin et al. 2020). Additionally, the shallow depth of the river increases the
relevance of shear stresses on stirring and mixing, enhancing the dispersion of the effluent and,

thus, reducing mixing lengths (Chen et al. 2013).

We observed increased mixing lengths at intermediate river flows. Experimental
observations with air and water have shown that fluids tend to remain attached to surfaces at
increased flow velocities, a phenomenon known as the Coanda effect (Lalli et al. 2010). This
attachment is due to pressure differences caused by differential flow velocities and contributes to
“bank-hugging” of effluent plumes. Also, as river flows increase, river temperatures decrease,

and the difference in water densities between the river and the WWTP increase, creating water
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stratification, which results in reduced mixing (El¢i 2008; Buxton et al. 2022). The EPA
regulations under Clean Water Act recommend avoiding bank-hugging plumes or dominance of
the Coanda effect in receiving water bodies that are used for irrigation, that host migrating and
endangered fish, or where recreational activities can be impacted by non-mixing plumes (Clean

Water Act Section 316(a) 2007).

At higher flows, mixing lengths consistently decreased due to increased turbulent mixing,
which overcame the dominance of Coanda and water stratification effects (Campos, Morrisey,
and Barter 2022). Since the wastewater temperature was consistently higher than that of the
river, effluent plumes rose, contributing to faster vertical mixing. Combined with increased
turbulent and vertical mixing, the higher dilution potential under high flows shortened mixing

lengths (Lewis et al. 2020).
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Figure 3.4: Longitudinal profiles of dissolved oxygen and temperature observed upstream
and downstream of the Albuquerque wastewater treatment plant (WWTP) effluent during
different flow conditions (Q,,;: Qww:p)- Left bank (outfall side) data are on top of right bank data.
Dash lines indicate the experimental mixing lengths (L,,), where left and right bank data are within
5% difference downstream of the WWTP.
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Figure 3.5: Longitudinal profiles of pH and specific conductivity observed upstream and
downstream of the Albuquerque wastewater treatment plant (WWTP) effluent during different
flow conditions (Q,,: Quw:p)- Left bank (outfall side) data are on top of right bank data. Dash lines
indicate the experimental mixing lengths (L,,,), where left and right bank data are within 5%
difference downstream of the WWTP.

49



Experimental mixing lengths vs. empirical mixing lengths

We compared our experimental mixing lengths with the one-dimensional empirical
equations from Table 1 (Figure 5). Notably, none of the empirical equations can reproduce the
bell-shaped mixing length pattern observed for all water quality parameters using Lagrangian
monitoring. Those empirical equations are monotonically increasing and vary from simple to
intermediately complex considerations derived from one-dimensional transport models.
Generally, the shortest mixing length prediction was obtained with Equation 6, which only uses
width to predict mixing (Environmental Quality Standards 2008), and the longest prediction was
obtained with Equation 1 (Fischer 1979) which, unlike the others tested, accounts for shear
stresses. Also, generally, the discrepancy between the predictions with empirical equations grew
with river discharge, as all are proportional to flow velocity. In low flows with

2.4<Qup: Quwip<3.6, our experimental mixing lengths were 1.5x to 7.5x longer than the

predictions with empirical equations. In the intermediate flow region where the Coanda effect
dominated, experimental mixing lengths were 2.5x-13x greater. In the highest Qyp: Quwip=22.1,

experimental mixing lengths were 3x-7.5x smaller.

While empirical equations have found widespread use in engineering practice for
analyzing mixing phenomena, their derivation disregarded complexities that may be relevant in
real-world practice. For example, most equations assume straight channel geometries, uniform
cross-sections, and steady flow conditions. However, streams and rivers undergo highly dynamic
flow and sediment transport processes, making vertical, lateral, and longitudinal mixing highly
dynamic. In this context, our field observations based on Lagrangian monitoring have revealed
shifting mechanisms dominating mixing, i.e., jet diffusion, Coanda effect, and turbulent mixing

(Figure 6).
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Figure 3.6: Experimental (L,,) and empirical (L) mixing lengths as a function of the dilution ratio
(Qup: Quwip)- Empirical equations 1-6 are described in Table 1.

Impacts of mixing lengths on ecosystem services

Mixing lengths are relevant in water quality assessments and studies of ecosystem
dynamics in streams and rivers. In water resource management, mixing lengths help assess risk
and mitigation strategies that communities downstream of point and distributed sources should
have to reduce pollution exposure when streams or rivers are used for irrigation, fishing,
ceremonial uses, groundwater recharge, and drinking water purposes. Regions located between a
contaminant source and the mixing length are prone to undergo pollution issues as water
properties (e.g., temperature, solutes, and sediments) are not homogenized and could overwhelm

ecosystems (Campos, Morrisey, and Barter 2022; Skorbitowicz et al. 2017).
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In most cases, the effluent discharged from a WWTP contains higher levels of
contaminants than the receiving stream or river, which can negatively impact ecosystem health
and functioning (Marti, Riera, and Sabater 2009; Pascual-Benito et al. 2020; Castelar et al.
2022). For example, the slow mixing of warmer plumes from WWTP can lead to reduced
oxygen levels, impacting fish communities (Caissie 2006; Isaak et al. 2010; Perkins et al. 2012).
Also, concentrated pharmaceutical and personal care products can be toxic to fish, amphibians,
and invertebrates, disrupting hormone systems, impairing reproductive functions, and causing
behavioral changes in these organisms (Wang et al. 2021; Issac and Kandasubramanian 2021;

Ding et al. 2022; Adegoke et al. 2023; Hernando et al. 2000).

While longer mixing length predictions generate more conservative and cautious
estimates to help protect downstream water users, our results indicate that commonly used
empirical equations may consistently underpredict mixing lengths in intermediate flow regimes,
where the Coanda effect controls mixing. This underprediction could result in higher pollution

risks for human populations capturing water from the same bank of upstream effluent discharges.

Besides water quality issues, relatively high-velocity effluents discharging from WWTPs
may cause erosion problems which, over time, can destabilize riverbanks and changes the river's
geomorphology (Dur6 et al. 2020). Between 1996-2023, the erosion occurring near the
Albuquerque WWTP outfall resulted in a ~9400 m? area lost on the left bank side (Figure 7),
affecting vegetation recruitment, which promotes even more erosion. To tackle these long-
standing problems, the City of Albuquerque initiated a $4.7 million restoration project in 2022 to
realign the outfall, facilitate mixing with river water during low flow conditions, and restore
crucial habitats for endangered fish and birds (Davis 2022). For that, the restoration project used

root wads, which are clusters consisting of logs, roots, and boulders strategically placed along
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the riverbank to create suitable fish habitats and mitigate streambed erosion. It is worth noting
that the bank upstream of the outfall has exhibited consistent vegetation cover over the same

period.

Figure 3.7: Bankline evolution downstream of the Albuquerque WWTP outfall. The bank history
has been obtained with satellite images from Google Earth.

3.4 CONCLUSIONS

Using high-resolution Lagrangian and Eulerian monitoring, our study assessed the impact
of flow dynamics on mixing lengths downstream of a WWTP effluent discharge in the Rio
Grande near Albuquerque, NM. The Lagrangian reference frame was critical to visualizing

mixing lengths from the perspective of four different water quality parameters (i.e., dissolved
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oxygen, temperature, pH, and specific conductivity). The Eulerian reference frame allowed us to
continue our experimental work under the extremely low flow conditions that halted our use of
Lagrangian equipment flowing down the river. Both Lagrangian and Eulerian monitoring designs
were initially informed by infrared imagery. Our results show that the empirical equations
traditionally used to estimate mixing lengths did not describe our experimental dataset correctly.
While our experimental data revealed “bell-shaped” mixing lengths as a function of river:WWTP
discharges, all empirical equations predicted monotonically increasing mixing lengths. Those
mismatches between experimental and empirical mixing lengths are likely due to the existence of
threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the
Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are

unaccounted for by the one-dimensional empirical formulas.

The successful use of The Navigator and an instrumented kayak (since we had one
prototype of The Navigator available) to monitor both banks of the Rio Grande and test
empirical equations commonly used in a problem long-thought to be well understood calls for
increased use of Lagrangian monitoring to better understand environmental dynamics. With the
advent of real-time telemetry and high-resolution sensors, Lagrangian monitoring can rapidly
and cost-effectively generate datasets that can more accurately describe flow and transport
dynamics. Our findings also highlight the importance of combining Eulerian and Lagrangian
efforts to provide a more robust understanding of the dynamics of mass and energy fluxes and

how they affect coupled human-environment systems.
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4.1 INTRODUCTION

Forested watersheds play a critical role as the world's primary source of freshwater
(Pringle 2001; Ice 2004; Sun et al. 2002). However, the frequency and extent of devastating
wildfires are increasing (Ball et al. 2021b; Robinne et al. 2021; Gannon, Wei, and Thompson
2020). Increased wildfire activity is closely tied to increasing aridity and variability in
precipitation patterns, which are manifestations of global climate change (Macias Fauria,
Michaletz, and Johnson 2011). When wildfires occur, the burning of tree canopies, understory
vegetation, and soil layers impact the quantity and quality of water resources due to the
intensification of overland flow, the release of ash and debris, and the disruption of soil
processes (Reale et al. 2015; Mishra, Alnahit, and Campbell 2021; Bladon et al. 2014; Chen,
McGuire, and Stewart 2020). The impacts of wildfires extend beyond terrestrial ecosystems,

property, and infrastructure, as new evidence reveals that wildfires trigger cascading effects that

59



propagate through fluvial networks, affecting hydrologic and environmental processes, as well as
ecosystem services (Murphy et al. 2018; McGuire and Youberg 2019; Dahm et al. 2015). In light
of these concerns, it is essential to understand the impacts of wildfires on forested watersheds to

develop effective management strategies and safeguard the integrity of ecosystems (Hohner et al.

2019; Floyd et al. 2019).

Post-fire precipitation events on burned soil can generate significant changes in runoff
patterns (Wibbenmeyer, Sloggy, and Sdnchez 2023) and mobilize sediments, ash, and debris
through fluvial networks (Murphy et al. 2018). The new influx of sediments can alter the
geomorphology and hydrodynamics of river channels and floodplains (Malmon et al. 2007;
Barnard et al. 2023), and collapse water intake infrastructure, affecting water supply systems
(Robinne et al. 2021). Also, the transport of ash, increased nutrients, and organic matter can

change water chemistry and stream metabolism (Sankey et al. 2017).

The impact of wildfire disturbances on fluvial networks is primarily driven by watershed-
related factors associated with fire severity and extent and post-fire dynamics of rainfall-runoff
processes. However, flow and erosion control infrastructure can also play a key role (Floyd et al.
2019). Near burned areas, erosion control structures such as gabions can help mitigate debris and
sediment transport into fluvial networks (Callegary et al. 2021; deWolfe et al. 2008). Farther into
the network, flow-control reservoirs can also play a crucial role in controlling the longitudinal
propagation of disturbances due to their considerable size, the reduction of flow velocities, and
the increase in residence times (Stone et al. 2021; Bonansea and Fernandez 2013). Since low
flow velocities induce particle deposition, including sediments and particulate nutrients, and
organic matter (Bonansea and Fernandez 2013; Goode, Luce, and Buffington 2012), their

settling into reservoir beds and the increased contact times with biomass are potential pathways
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for the removal and attenuation of wildfire disturbances. While post-wildfire disturbances have
been associated with the deposition of increased amounts of inorganic sediment in reservoirs
used for water supply (Emelko et al. 2016), jeopardizing the effectiveness of water treatment for
drinking purposes, flow control reservoirs may attenuate the propagation of wildfire disturbance

with less immediate impacts for society (Basso et al. 2021).

This study combines datasets from Eulerian monitoring (i.e., at a site) of water quality
parameters upstream and downstream of Santa Rosa Lake (Nichols et al.; in review) with
Lagrangian monitoring (i.e., following flow paths) along the lake (Khandelwal et al.; in review)
to quantify lake-induced changes and determine their role in attenuating the propagation of
wildfire disturbances at the fluvial network scale. To achieve this, we established a rapid
response team (Tunby et al., in review) dedicated to monitoring water quality dynamics along the
Gallinas Creek-Pecos River-Santa Rosa Lake network (190 km) after the Hermit's Peak - Calf
Canyon (HPCC) wildfire, the largest recorded fire in New Mexico. We seek to address how far
downstream wildfire disturbances from the HPCC wildfire propagated in the fluvial network and

the role of Santa Rosa Lake in that propagation.
4.2 METHODS
Study Site

The HPCC wildfire, which started on April 6th, 2022, and was contained on August 21st,
2022, became the largest recorded wildfire in New Mexico after burning 1,382 km?. The fire
significantly affected the Gallinas Creek watershed, where most of the affected population live
(Figure 1). Approximately 87% of its area was burned, with 19% experiencing high-severity,
25% moderate severity, and 43% low severity burns. Gallinas Creek is a perennial stream that

relies on snowmelt during spring and monsoonal storms in summer and fall. It originates near
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Hermit's Peak and serves as a drinking water source for 7,200 residents in the City of Las Vegas,
NM, located approximately 25 km downstream from the headwaters of Gallinas Creek. Further
downstream, Gallinas Creek flows through canyons and farmlands before joining the Pecos
River, around 128 km from its headwaters. The Pecos River flows into Santa Rosa Lake, located

~40 km downstream of the confluence of Gallinas Creek.
Monitoring Description

Eulerian monitoring: Within two weeks from the beginning of the fire, our rapid
response team installed YSI EXO multiparameter water quality sondes at three locations along
the Gallinas Creek watershed. These sites include the La Placita fire station in Gallinas, NM
(referred to as GFT22 km, because it is located 22 km from the headwaters of Gallinas Creek, our
reference point at 0 km), near Montezuma, NM (GMZ39 km), and near Lourdes, NM (GL5s6 km).
Two additional sondes were deployed on the Pecos River (PSR 170 km and PBS190 km) in late 2020
as part of a collaborative effort between the US Army Corps of Engineers (USACE) and the
University of New Mexico (Figure 1). The EXO sondes recorded water temperature, specific
conductivity, dissolved oxygen (DO), turbidity, and pH at 15-minute intervals. Each sonde
underwent monthly cleaning and calibration, following the guidelines set by the U.S. Geological
Survey (Wagner et al. 2006). In addition to the sondes data, discharge and reservoir data were
gathered at 15-min intervals by USGS stream gages 08382650, 08382830, and 08382810,
located near the PSR170 km, PBS190 km, and Santa Rosa Lake, respectively (U.S. Geological

Survey, 2022). Figure S1 presents the Eulerian data.

Lagrangian monitoring: Between July 15, 2022, and October 12, 2022, we carried four
repetitions of Lagrangian monitoring following ~30 km along the transition between the Pecos

River (a lotic system) and Santa Rosa Lake (a lentic system) to determine the impacts of wildfire
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disturbances on water quality parameters (Figure 1). These Lagrangian monitoring campaigns
lasted 2-3 hours to minimize the influence of diurnal variations on the water quality datasets and
featured a sampling frequency of one recording every two minutes. After the first campaign, we
avoided a reach consisting of rapids and a waterfall due to safety concerns between the 178-179
km section. At the time of sampling, discharges in the Pecos River above Santa Rosa Lake
(USGS gage 08382650) were above median historical values from 1977-2022 (Table 1). These
higher discharge values were due to post-wildfire runoffs and the historically high monsoon

precipitation falling in 2022. Similar trends were observed at GLsekm (USGS gage 08382500).

Our Lagrangian monitoring was completed with The Navigator (Khandelwal et al. 2023,
under review), an autonomous surface vehicle made of fiberglass, instrumented with a GPS
tracker to monitor space-time positioning, a thrust and rudder system to follow a preplanned GPS
waypoint, and a Raspberry Pi microcontroller coupled to multiparameter sondes to monitor
temperature (temp), optical dissolved oxygen (DO), turbidity (turb), pH and conductivity (Sp
Cond). The Navigator features real-time data transmission through cellular service, enabling
real-time tracking and easy retrieval when the survey is completed. To avoid data losses from
any potential misfunctioning of The Navigator, we also used a kayak carrying a multiparameter

YSI EXO2 sonde and a GPS (Figure S2).
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Figure 4.1: Eulerian and Lagrangian monitoring of the Hermit’s Peak-Calf Canyon wildfire. The
red line represents the burn perimeter. The red area represents the burn scar boundary of the
Gallinas Creek watershed. GFT2; km, Gallinas Creek near La Placita fire station, 22 km
downstream from the headwaters of Gallinas Creek; GMZ,9 xm, Gallinas Creek near Montezuma;

GLs6 km, Gallinas Creek near Lourdes; PSR;7) km, Pecos River upstream of Santa Rosa Lake; PBS;9
xm, Pecos River downstream of Santa Rosa Lake.
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Table 4.1: Lake conditions during the Lagrangian monitoring with The Navigator. Discharge
values are contextualized with records.

Comparable Gallinas
Pecos River Comparable median
Transect Lake median Pecos Creek
Date discharge Gallinas Creek
length elevation River discharge | discharge
08382650 discharge (1951-2022)
(1977-2022) 08382500
Unit km m m?/s m?/s m’/s m’/s
7/15/2022 11.60 1433.68 5.10 0.82 0.85 0.05
7/29/2022 3.36 1434.77 8.69 1.93 1.56 0.23
8/19/2022 7.89 1432.51 13.08 0.99 4.13 0.20
10/12/2022 7.62 1435.83 4.59 0.57 0.08 0.00

We established three distinct analysis periods based on flow time-series analyses
(Nichols et al. 2023 under review), we established three distinct analysis periods. The pre-
monsoon period spanned from the start of our monitoring on April 25th, 2022, to June 26th,
2022. The monsoon period, characterized by high precipitation-runoff, lasted from June 26th,
2022, to September 13th, 2022. The post-monsoon period extended from September 13th, 2022,

to December 1st, 2022.
Estimation of changes in sediment transport

The magnitude of turbidity in streams, lakes, and estuaries is often proportional to total
suspended solids (T'SS) and can be quantified through linear regression analysis (Rasmussen et
al. 2011). The turbidity-TSS relation is more reliable than sediment transport curves using
streamflow (Lee, Rasmussen, and Ziegler 2008) and computational methods (Porterfield 1972).
The USGS collected samples between June 2022 and October 2022 near GMZ29km to estimate
TSS as part of their mission to identify and mitigate chronic stresses on water resources post-fire

(USGS n.d.):
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TSS = 2.028 (Turb) + 26.03 (1),
where Turb is the turbidity in FNU measured in the field using sonde (Figure S3).

We determined bulk or suspension densities following the approach proposed by

Mccullough (1999). Bulk density (p, kg/m?) was determined as:

Priver or lake = 19S5 + prw(l - TSS)/ps (2),

where p,, is the density of water at a given temperature (kg/m?) and p; is the density of

the sediments, assumed as 2.5 kg/m® based on the USGS samples.

We used the approach that Bates (1953) introduced to classify deltas and their deposits
based on the differences in bulk density between a flowing river and a lake. When the river’s
bulk density is higher than the lake’s, hyperpycnal or stratified jet flows occur. In such scenarios,
the river flow plunges beneath the lake's water surface and continues its course along the
lakebed. After wildfires, river bulk densities increase primarily due to increased loads of fine-
grained sediments and ash (Kim 2002; Turner and Huppert 1992). Kim (2002) introduced a non-

dimensional density parameter, R, expressed as:

R = plake - priver/plake - prw (3)

R considers the buoyancy effect of the incoming freshwater into the lake. A critical value
R.= -2 was proposed by Kim (2002) to separate weak plunging jets (R,< R <0) from strong
plunging jets (R <R, <0). In weak plunging jets, the flow originally plunges, but the density
difference between the incoming flow and the lake water is not enough to produce a substantial

shear and further propagation of the river flow along the lakebed.
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Data quality control and assurance:

Raw and converted data were processed for outliers and sensor drift with Aquarius
Timeseries 21.1. Erroneous outliers were eliminated using a moving average filter targeting
points deviating more than 20% from a two-hour moving window. We corrected sensor drift and
biofouling by comparing pre- and post-cleaning and calibration values and applied a linear
correction from the date of the previous maintenance (Wagner et al. 2006). Lastly, we performed

a final visual inspection of data quality before statistical analyses.
4.3 RESULTS
Flow Dynamics

During the pre-monsoon period, there were no significant high-flow events. Discharges
upstream of Santa Rosa Lake, at PSR170 km, reached their lowest values during this period, with
average values ranging from 0.02 to 0.17 m?/s. In mid-June, a block release from Santa Rosa
Lake caused the average discharge at PBS 90 km to increase to 2.81 m*/s for approximately eight
days (Figure 3). This event resulted in the lake level dropping from 1436.3 m to 1429.8 m, the

lowest level in 2022.

In the monsoon period, 243 mm of precipitation occurred on the burn scar, with the
majority falling between July 26th-30th (70 mm) and August 17th -18th (42 mm). During this
period, there was one high flow event at PSR70 km With a discharge of 68.0 m?/s, i.e., 11x greater
than the mean flow for the past 47 years (USGS n.d.), matching similar trends observed across
the sites along Gallinas Creek (i.e., GFT22 km, GMZ29 km, and GLse km ) (Nichols et al. 2023 under

review). The high flow observed at PSR170 km resulted in a surface level of 1438.5 m on August
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11th, the highest in 2022. The level fell again to 1431.3 m due to another block release from
Santa Rosa Lake, which lasted for approximately ten days (Figure 2)

In the post-monsoon period, 110 mm of precipitation was recorded within the burn scar.
The majority of this precipitation occurred between October 3rd-8th and October 16th, with 57

mm and 34 mm of rainfall, respectively. The peak discharge value during this period was 15.1

m?>/s at PSR170 km (Figure 2) and the lake level gradually increased from 1435.2 m to 1436.8 m.
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Figure 4.2: Discharges observed near PSR17 km Pecos River upstream of Santa Rosa Lake and
PBS190 km, Pecos River downstream of Santa Rosa Lake. Lake levels for Santa Rosa Lake during the

study period in 2022.

Water quality dynamics from Eulerian monitoring

During the pre-monsoon period, there was an increase in specific conductivity from the
headwaters to the lower sites, with a 1,870 uS/cm difference between GFT22 km and PBS190 km
(Figure S2). Turbidity values were at their lowest during the fire year at all sites upstream of
Santa Rosa Lake, with average values ranging from 5.9 to 62.7 FNU (Figure S2). On the
contrary, PBS190 km had the highest turbidity values of the fire year, with an average of 26.3
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FNU. All other water quality parameters were similar between the PSR 170 km and PBS190 km

(Figures 3-4).

With respect to the pre-monsoon, most water quality parameters significantly changed at
the stations upstream of Santa Rosa Lake (i.e., GFT22 kxm, GMZ29 km, GLs6 km, and PSR170 km)
during the monsoon period, and only a few changed downstream of the lake at PBS190 km
(Figures 3 and S1). Turbidity experienced a significant increase at the monitoring sites, including
PSR170 km upstream of Santa Rosa Lake (Figures 3 and S1), with period averages ranging from
149 to 574 FNU. However, unlike observed values at locations upstream of the lake, PBS190 km
experienced minimal reductions in turbidity, with a period average of 16 FNU (Figures 3 and
S1). Specific conductivity significantly decreased at monitoring sites upstream of Santa Rosa
Lake, with average ranges of 172 to 442 uS/cm, while it remained relatively high at PBS190 km,

averaging 2087 uS/cm (Figures 3 and S1).
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Figure 4.3: Split violin plots showing the variations in water quality at PSR;7 xm, Pecos River
upstream of Santa Rosa Lake, and PBSi99 xm, Pecos River downstream of Santa Rosa Lake, grouped
by analysis period.

Water quality changes from Lagrangian monitoring

At the time of sampling, discharges in the Pecos River above Santa Rosa Lake (USGS
gage 08382650) were above median historical values from 1977-2022 (Table 1). The Lagrangian
data showed a noticeable transition in water quality parameters between the lotic and lentic
systems. Moreover, the data showed that the location and timing of such transition regions were
dynamic (Figure 4.4 & 4.5). Between 7/29/2022 and 10/12/2022, we observed a shift of the delta

positioning of ~ 1.2 km as the lake's elevation rose by 3.3 m.

In July, we observed higher turbidity levels in the Pecos River, ranging from 368.5 to

881.9 FNU, compared to the surface of Santa Rosa Lake, which ranged from 6.24 to 52.9 FNU.
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The river's temperature was colder, ranging from 23.5 to 26 °C, while the lake recorded
temperatures of 25.8 to 27.11 °C (Figures 4-5). Additionally, the river's specific conductivity was
lower than at the lake's surface. These findings suggest that the incoming flow into the river had
a higher bulk density than the water near the lake’s surface. As there was no water released from
the dam during this month, there was a steady increase in the lake’s level. No significant
differences were observed in the levels of dissolved oxygen and pH during this month. Due to

logistical challenges, we do not have any data for the delta region during this period.

Similar turbidity, specific conductivity, and temperature trends were observed for both
the river and lake surface water in August (Figures 4-5), with a significant change occurring in
the delta region. The delta region experienced dissolved oxygen levels reaching anoxic
conditions (~0 mg/L) on 8/19/2022 (Figure 4). This suggests that drops in dissolved oxygen were
triggered by runoff draining from the Gallinas Creek watershed, which accounted for
approximately 31% of the total discharge near the lake, and the Pecos watershed, which
contributed ~ 69% of the total discharge (refer Table 1). During this period, we observed floating
debris and foamy water in the delta sections following monsoon precipitation events on the burn
scar (see Figure S3). There was a block release during this month between August 11%-21%,

which resulted in a drop in the lake’s elevation from 1438.5 m to 1431.3 m.

For the October run, we no longer recorded the presence of an anoxic zone in the delta
region, as the runoff draining from the Gallinas Creek watershed decreased (~14% of the total
discharge near the lake) compared to the Pecos watershed (~ 86% of the total discharge). All
other parameters followed a similar trend observed during the monsoon, with significant changes
occurring in the delta regions (Figures 4-5). No water was released from the dam this month,

resulting in no current due to intake and a steady increase in the lake level.
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Figure 4.5: Split violin plots showing the variations in water quality from the incoming Pecos River
upstream of Santa Rosa Lake and along Santa Rosa Lake.

Changes in sediment transport along the transition between the Pecos River and

Santa Rosa Lake

The non-dimensional R parameter (Kim 2002) quantifies buoyancy effects due to density
differences when an incoming river merges with a lake. We compared R values with the critical
R, =-2. This critical R, separates weak plunging jets (R, <R <0) from strong plunging jets (R
<R, <0) (Zavala 2020). We observed R values dropping below R, (Figure 6) during the
monsoon, suggesting strong plunging induced by high incoming sediment loads that develop
hyperpycnal subaqueous deltas (Zavala et al. 2021). These high-density hyperpycnal discharges
typically consist of suspended sediment loads and may include a bedload component due to its

high erosive nature (Lamb et al. 2010). Before and after those strong plunging jets, there were
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weaker ones under which the river flow plunges, but the density differences were not enough to
produce a substantial shear and erosion at the lake bottom (Lai and Capart 2009). Those weak
plunges are referred to as hyperpycnal littoral deltas and are associated with river flows that
remain stratified and suspended (Zavala et al. 2021). If they grow enough, hyperpycnal littoral

deltas can eventually transport sediments deep into the lakebed.
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Figure 4.6: To gain insights into hyperpycnal delta dynamics, we examined the seasonal regimes of
the non-dimensional density parameter R.

Table 4.2: Average turbidity, temperature, total suspended sediments (TSS), and density of river
water and lake water for different Lagrangian monitoring days and the corresponding non-
dimensional density parameter R.

River Lake
Date Turbidity | Temperature TSS Driver Drw Turbidity | Temperature TSS Diake R ()
(FNU) (°C) (kg/m?) | (kg/m?) | (kg/m?) | (FNU) (°C) (kg/m?) | (kg/m?)
7/15/2022 390 24.8 0.81 997.1 997.9 53 26.5 0.13 996.7 | -1.4
7/29/2022 870 225 1.85 997.7 999.4 7 26.4 0.04 996.7 | -2.0
8/19/2022 470 221 0.98 997.8 998.7 42 26.7 0.11 996.6 | -2.2
10/12/2022 307 13.99 0.65 999.3 999.9 40 18.34 0.11 9985 | -1.7
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4.4 DISCUSSION
Wildfire disturbance propagation: Eulerian monitoring

The most significant changes to water quality parameters observed in our study occurred
during the monsoon period. We observed high-flow events coupled with a rapid increase in
turbidity from GFT22 km to PSR170km. Due to the low probability nature of these flows with
respect to historical records (Nichols et al. 2023 under review), they are likely associated with
altered hydrologic processes within the burn scar. Turbidity concentrations increased by 25x, 3x,
11x, and 20x at GFT22 km, GMZ29 km, GL56 km, and PSR170 km, respectively, with respect to the pre-
monsoon period. Despite all these consistent turbidity changes upstream of Santa Rosa Lake,
there were no changes in turbidity downstream of the lake at PBS190 km. With respect to the pre-
monsoon period, all sites except PBS190 km showed changes in stream metabolism during the
monsoon season, indicating that Santa Rosa Lake buffered wildfire disturbances originating from

the HPCC wildfire burn scar (Nichols et al. 2023 under review).

Transition zones along Santa Rosa Lake’s delta: Lagrangian monitoring

While Eulerian monitoring provided important insights into the generation and
propagation of disturbances from the HPCC fire along 190 km, including the role of the lake in
buffering those disturbances, this latter understanding comes from a black-box analysis between
input signals from PSR70okm and output signals from PBSi90km. Thus, gaining a mechanistic

understanding linking what happened along the lake and why remains elusive with Eulerian data.

Our Lagrangian data from The Navigator provided insights into the processes affecting
the propagation of water disturbances from burned areas into the Pecos River and Santa Rosa

Lake. These insights cannot be fully resolved with Eulerian monitoring or coarse synoptic
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profiling. We observed the formation of hyperpycnal flows when high turbidity and lower
temperature flow propagating along the river forced denser waters to plunge below the lake's
surface. As a result, on 8/19/2022, for example, we observed a significant drop in turbidity
values from around 700 FNU (22°C) to approximately 60 FNU (26°C) along the lake’s delta,
within merely 250 m (Figure 5). These turbidity changes were also accompanied by increases in
dissolved oxygen from ~0 mg/L to ~4 mg/L. Similarly, on 10/12/2022, within 300 m, the
turbidity along the delta changed from approximately 300 FNU (14°C) to ~100 FNU (18°C); in

this event, however, there was a slight drop in oxygen from ~8 mg/L to ~ 6 mg/L.

Our Lagrangian monitoring with The Navigator indicated drastic changes in water quality
parameters over short distances along the lake in response to post-wildfire rainfall-runoff events
occurring hundreds of kilometers upstream. The dissolved oxygen sag and recovery patterns
observed were inversely proportional to turbidity, suggesting that oxygen removal from
respiration and chemical demands and additions from photosynthesis were out of balance and
most likely controlled by sediment fluxes from the wildfire. While reaeration could have played
a more significant role in incorporating oxygen into the river, oxygen removal pathways
dominated until the delta induced hyperpycnal flows which sank the sediments. pH values were
lower in zones with low dissolved oxygen, which could be associated with increased aerobic
microbial metabolism and CO; releases from increased respiration due to the mobilization of
sediments with increased carbon and nutrients (Chapra, 2008). Together, our results bring into
focus the importance of Lagrangian monitoring to move beyond black-box analyses and improve

mechanistic understanding of hydro biogeochemical processes (Figure 7).
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Figure 4.7: Conceptual diagram comparing monsoon and post-monsoon hyperpycnal flows based
on Lagrangian monitoring data.

4.5

CONCLUSIONS

The HPCC wildfire was the largest recorded in New Mexico, leaving a burn scar of 1,382 km?.

Eulerian monitoring with five instrumented sites along the 190 km Gallinas Creek-Pecos River-

Santa Rosa Lake fluvial network revealed high flow and turbidity events during the monsoon

period. While sites located upstream of Santa Rosa Lake had turbidity increases of 25x, 3x, 11x,

and 20x at GFT22 km, GMZ29 km, GL56 km, and PSR170 km during the monsoon with respect to the

pre-monsoon period, the PBS190 km site showed no changes, indicating that Santa Rosa Lake

buffered wildfire disturbances originating from the HPCC wildfire burn scar.

We combined Eulerian data from PSR 170 km and PBS190 km With Lagrangian data from The

Navigator to move beyond black-box analyses and pinpoint where the buffering effects happened

and why. From this, we identified the existence of hyperpycnal flows that plunged high turbidity
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and colder water from the river into the lakebed, creating contrasting ecotones in short distances
(~300 m) along the lake’s delta. The simultaneous measurement of spatial and temporal
dynamics reduced the need for interpolating data between Eulerian stations to estimate within-
lake and highly dynamic processes. Therefore, the availability of The Navigator, an easy-to-
deploy, autonomous, and affordable technology to conduct Lagrangian monitoring, was key to
providing high-resolution data to resolve mechanistic processes that would be otherwise

unobservable.
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4.7 SUPPLEMENTAL INFORMATION
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3 GL monitoring site: upstream of Santa Rosa Lake
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5 PBS monitoring site: downstream of Santa Rosa Lake
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Figure 4.S1) Sonde time series of QA/QC data from monitoring sites

Figure 4.S2: The Navigator monitoring water quality in Santa Rosa Lake (left), and the kayak with
the multiparameter sonde monitoring the Pecos River (right).
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Chapter 5: Summary

This dissertation focused on the design and development of a Lagrangian (i.e., along a
flow path) monitoring system that offers cost-effective solutions for in-situ and real-time data
collection. The Navigator was then applied to understand water quality changes associated with

lateral effluents and wildfire disturbances.
5.1 CHAPTER SUMMARIES

Chapter 2 of this dissertation focuses on the design, development, and field validation of
The Navigator, an autonomous surface vehicle (ASV) for Lagrangian monitoring in freshwater
ecosystems. The Navigator offers cost-effective solutions for in-situ, real-time data collection by
incorporating various technologies such as GPS, LTE connectivity, water quality sensors, depth
sonar, a camera, and a webpage dashboard for data visualization. Multiple field tests were
conducted in freshwater bodies in New Mexico, including the Rio Grande, Santa Rosa Lake, and
a recreational fishing pond in Albuquerque. The successful tests confirmed the affordability and
effectiveness of The Navigator in monitoring water quality parameters at high spatial-temporal
resolution, enabling the identification of water quality changes associated with land use changes,
the assessment of the fate of wildfire disturbances, and the monitoring of recreational fishing

ponds.

Chapter 3 describes the application of The Navigator for the Lagrangian-based
quantification of mixing lengths downstream of a wastewater treatment plant discharging into the
Rio Grande. We tested and evaluated the accuracy of long-standing empirical equations used to
predict mixing lengths in the field. Despite advances in wastewater treatment plant efficiencies,

multiple contaminants of concern, such as microplastics, pharmaceuticals, and per- and
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polyfluoroalkyl substances (PFAS) remain largely untreated near discharge points and can be
highly concentrated before they are fully mixed within the receiving river. Environmental
agencies enforce mixing zone permits for the temporary exceedance of water quality parameters
beyond targeted control levels under the assumption that contaminants are well-mixed and
diluted downstream of mixing lengths, which are typically quantified using empirical equations
derived from one-dimensional transport models. Most of these equations were developed in the
1970s and have been assumed to be standard practice since then. However, their development
and validation lacked the technological advances required to test them in the field and under
changing flow conditions. While new monitoring techniques such as remote sensing and infrared
imaging have been employed to visualize mixing lengths and test the validity of empirical
equations, those methods cannot be easily repeated due to high costs or flight restrictions. Our
data spans river to WWTP discharges ranging between 1-33x, thus providing a unique dataset to
test long-standing empirical equations in the field. Our results consistently show empirical
equations could not describe our experimental mixing lengths. Specifically, while our
experimental data revealed “bell-shaped” mixing lengths as a function of increasing river
discharges, all empirical equations predicted monotonically increasing mixing lengths. Those
mismatches between experimental and empirical mixing lengths are likely due to the existence of
threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the
Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are

unaccounted for by the one-dimensional empirical formulas.

In Chapter 4, we used The Navigator to investigate the role of Santa Rosa Lake in
attenuating the propagation of wildfire disturbances from the Hermit's Peak-Calf Canyon

wildfire, which had propagated 170 km along the Gallinas Creek-Pecos River-Santa Rosa Lake
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fluvial network. Eulerian monitoring through a network of sensors identified discharge and
turbidity increases during high-precipitation monsoon periods. In the lake, Lagrangian
monitoring revealed sudden changes to turbidity and dissolved oxygen levels along the delta.
Our data suggest that the formation of hyperpycnal flows sink highly turbid and colder waters
from the river into the lakebed, inducing fast sedimentation of wildfire disturbances. The study
concludes that hyperpycnal flow formation acts as the primary mechanism responsible for the

buffering capacity that halted the propagation of disturbances from the wildfire.

5.2 PATENT

We submitted the work behind The Navigator to get a US provisional patent on November 17th,
2022, titled "Lagrangian Smart Sensing System for Characterizing Aquatic Resources," through UNM
Rainforest Innovations (UNM Rainforest Innovations Portfolio 2022). This patent introduces significant

advancements over the previous technologies, including:

1. Integrated Hardware and Software System: The Navigator incorporates a seamlessly integrated
hardware and software system that combines water quality sensors with autopilot systems. This
integration enhances the overall functionality and performance of the device.

2. Active and Passive Navigation: The Navigator is designed to autonomously switch between
active navigation, which relies on the propulsion system, and passive navigation, which utilizes
the natural currents of the aquatic resource. This dynamic navigation approach enhances the
vehicle's adaptability and efficiency in different environmental conditions.

3. Real-time Data Transmission: The Navigator is equipped with a radio frequency transmitter and a
cellular modem that are connected to the electronic controller. This configuration enables the
device to transmit data in real-time. By leveraging these communication technologies, data

collected by the Navigator can be instantly shared and accessed remotely.
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4. Camera-Assisted Obstacle Avoidance: The Navigator includes a camera that is connected to the
electronic controller. The electronic controller is specifically programmed to analyze camera data,
identify obstacles, and maneuver around them using the propulsion system. This feature ensures

improved safety and navigation capabilities.

These advancements enable the solar-powered autonomous surface vehicle to combine current-
driven and on-demand maneuvering with water sensors and a camera system. This integration empowers
The Navigator to perform autonomous, long-range data collection missions in rugged environments.
Furthermore, these improvements facilitate the quantification of water quantity and quality through a
web-integrated platform. Users can access real-time visualization of the collected data and remotely

control monitoring flow paths and routines via a user-friendly interface.
5.3 COMMERCIALIZATION EXPLORATION

We conducted a comprehensive market analysis through UNM's Rainforest Accelerator Program
in Fall 2021 and MIT Water Innovation in Spring 2022 to identify target industries and sectors that can
benefit from the Lagrangian Smart Sensing System. Our analysis revealed potential customers, including
environmental monitoring agencies, research institutions, water resource management organizations, and
industries reliant on accurate water quality data through 150+ industry interviews. The Navigator offers a
wide range of critical applications primarily in the water technology sector, as well as the energy and food

sectors.

The smart sensors and Al analytics of the Navigator enable timely and spatially informed water
management practices. It can be utilized by water and wastewater utilities for quantifying point and
nonpoint sources and watershed preservation, sedimentation, seawater intrusion, algae bloom, wildfire
impacts and wet carbon monitoring to understand aquatic ecosystems sources and sinks. Researchers,
practitioners, and third-party contractors can leverage The Navigator for quantifying mass and energy

balances and assessing spatial and temporal trends in variability.
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Moreover, the spatiotemporal water quality data generated by the Navigator proves valuable for
governmental agencies and NGOs in quantifying and addressing pollution dynamics, enforcing
regulations, and evaluating restoration and post-disturbance solutions. Various industries, including
governmental agencies, city water authorities, mines, power plants, carbon markets, aquaculture, and
manufacturing plants, have shown interest in utilizing The Navigator to address similar issues. Its
affordability compared to existing alternatives opens market opportunities in multiple countries
worldwide. In 2021 and 2022, I won two pitch contests describing The Navigator and its potential

applications for Lagrangian monitoring in freshwater systems.

The Total Available Market (TAM) for Water Quality Monitoring Devices was estimated at US
$3.4 billion in 2022 and is projected to reach US $4.3 billion by 2027, with a compound annual growth
rate of 5%. The US market alone was $728.4 million in 2021, leading to a serviceable and attainable
market size of $728 million in 2022 (Sushant C 2018). While brand recognition poses a barrier to entry
for The Navigator, we are actively addressing this challenge through our current investor. Our focus
extends beyond competition to improving water equity, resilience, and mitigating the impact of water
shortage and quality issues. Through potential customer outreach, we are refining our pricing strategy and
product offerings, ensuring alignment with customer needs and pain points. The primary revenue streams
for the Navigator will be licensing and subscriptions across three product segments: the Autonomous

Surface Vehicle (ASV), the Real-time Intelligent Analytics platform, and the Dataset.

5.4 CHAPTER REFRENCES:

Sushant C. 2018. “Water Quality Monitoring Systems Market by Component (PH Sensors, DO Sensors,
Temperature Sensors, Turbidity Sensors, and Others) and Application (Utilities, Industrial,
Commercial, and Residential): Global Opportunity Analysis and Industry Forecast, 2018 - 2025.”
Market Overview.

UNM Rainforest Innovations Portfolio. 2022. “2023-005 - The Navigator: A Lagrangian Smart Sensing
System to Characterize Aquatic Ecosystems.” November 2022.
https://innovations.unm.edu/technologies/technology-portfolio/.
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Appendix A: Participation in peer-reviewed manuscripts

During my Ph.D. training, I participated in the following peer-reviewed manuscripts:

Nichols, Justin., Khandelwal, Aashish Sanjay., Regier, Peter., Summers, Betsy., Van Horn,
David J. and Gonzalez-Pinzén., Ricardo 2022. “The Understudied Winter: Evidence of
How Precipitation Differences Affect Stream Metabolism in a Headwater.” Frontiers in

Water https://doi.org/10.3389/frwa.2022.1003159.

Abstract

Climate change is causing pronounced shifts during winter in the US, including shortening the
snow season, reducing snowpack, and altering the timing and volume of snowmelt-related
runoff. These changes in winter precipitation patterns affect in-stream freeze-thaw cycles,
including ice and snow cover, and can trigger direct and indirect effects on in-stream physical,
chemical, and biological processes in ~60% of river basins in the Northern Hemisphere. We used
high-resolution, multi-parameter data collected in a headwater stream and its local environment
(climate and soil) to determine interannual variability in physical, chemical, and biological
signals in a montane stream during the winter of an El Nifio and a La Nina year. We observed
~T77% greater snow accumulation during the El Nifio year, which caused the formation of an ice
dam that shifted the system from a primarily lotic to a lentic environment. Water chemistry and
stream metabolism parameters varied widely between years. They featured anoxic conditions
lasting over a month, with no observable gross primary production (GPP) occurring under the ice
and snow cover in the El Nifio year. In contrast, dissolved oxygen and GPP remained relatively
high during the winter months of the La Nifia year. These redox and metabolic changes driven by

changes in winter precipitation have significant implications for water chemistry and biological
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functioning beyond the winter. Our study suggests that as snow accumulation and hydrologic
conditions shift during the winter due to climate change, hot-spots and hot-moments for
biogeochemical processing may be reduced, with implications for the downstream movement of

nutrients and transported materials.

Regier, Peter J., Gonzalez-Pinzon, Ricardo., Van Horn, David J., Reale, Justin K., Nichols,
Justin and Khandewal, Aashish. 2020. “Water Quality Impacts of Urban and Non-Urban
Arid-Land Runoff on the Rio Grande.” Science of The Total Environment 729 (August):

138443. https://doi.org/10.1016/j.scitotenv.2020.138443.

Abstract

Urban surface runoff from storms impacts the water quality dynamics of downstream
ecosystems. While these effects are well-documented in mesic regions, they are not well
constrained for arid watersheds, which sustain longer dry periods, receive intense but short-lived
storms, and where stormwater drainage networks are generally isolated from sewage systems.
We used a network of high-frequency in situ water quality sensors located along the Middle Rio
Grande to determine surface runoff origins during storms and track rapid changes in physical,
chemical, and biological components of water quality. Specific conductivity (SpCond) patterns
were a reliable indicator of source, distinguishing between runoff events originating primarily in
urban (SpCond sags) or non-urban (SpCond spikes) catchments. Urban events were
characterized by high fluorescent dissolved organic matter (fDOM), low dissolved oxygen
(including short-lived hypoxia <2 mg/L), smaller increases in turbidity and varied pH response.
In contrast, non-urban events showed large turbidity spikes, smaller dissolved oxygen sags, and

consistent pH sags. Principal component analysis distinguished urban and non-urban events by
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dividing physical and biogeochemical water quality parameters, and modeling of DO along the
same reach demonstrated consistently higher oxygen demand for an urban event compared to a
non-urban event. Based on our analysis, urban runoff poses more potential ecological harm,
while non-urban runoff poses a larger problem for drinking water treatment. The comparison of
our results to other reports of urban stormwater quality suggests that water quality responses to

storm events in urban landscapes are consistent across a range of regional climates.
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