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ABSTRACT 
 
The utilization and integration of unmanned aerial vehicles (UAVs) and computer vision 
technologies in recent automated bridge inspection methodologies has shown advancement in 
capturing and analyzing images to enhance the efficiency and safety of bridge inspection. 
However, information extraction from inspection images collected on-site remains challenging. 
First, although extensive research efforts have focused on segmenting defects from images, the 
localization and segmentation performance is limited due to complex backgrounds and irregular 
defect shapes in images. Second, precise pixel-level annotation of defect masks is labor-intensive 
and time-consuming, which underscores the need for a label-efficient method for defect 
segmentation. To address these gaps, this paper proposes a deep learning-based method to extract 
and segment different types of bridge defects from on-site inspection images using a label-efficient 
way, which leverages corresponding text descriptions, the Grounding DINO (DETR with 
Improved deNoising anchOr boxes) object detection model, and the segment anything model 
(SAM). This paper discusses the proposed method and its performance results. The experimental 
results show that the method can efficiently extract and segment various bridge defects, which 
would support automated bridge inspection. 
 
INTRODUCTION 
 
Transportation agencies in the United States face the challenge of proactively managing the 
nation’s aging civil infrastructure. Meanwhile, a growing concern for bridges is marked by 
declines in operational efficiency, delays in recovery operations, and deterioration. The United 
States has over 617,000 bridges, of which nearly half are older than 50 years. Given the current 
pace of funding, it would take 50 years to cover the $125 billion needed for rehabilitation (ASCE 
2021). These statistics underscore the need for more efficient bridge inspection and maintenance 
systems to ensure safety and optimal use of the limited resources.  

Recently, unmanned aerial vehicles (UAVs) and computer vision inspection have been 
utilized and integrated to detect defects from bridge inspection images, ranging from traditional 
approaches (e.g., statistical methods, binarization methods, machine learning-based models) to 
deep learning techniques (Hüthwohl et al. 2019, Munawar et al. 2021, Zheng et al. 2022). 
However, there are two major knowledge gaps that exist. First, current techniques have limitations 
when applied to an automated bridge inspection environment because irregular shapes, lighting 
conditions during image capturing, or different backgrounds can affect the performance of the 

mailto:shengyi4@illinois.edu
mailto:gohary@illinois.edu


results (Kang et al. 2020). Second, there is a lack of a label-efficient method for defect 
segmentation. Current deep learning-based defect segmentation relies on supervised learning, 
which requires extensive and accurate pixel-level labeled images (Bianchi and Hebdon 2022, 
Savino and Tondolo 2023, Wang and El-Gohary 2024). The image labeling process is time-
consuming and labor-intensive. Besides that, the model trained on labeled data may not perform 
well on previously unseen data.  

To address these challenges, this paper proposes a deep learning-based method to extract 
and segment different types of bridge defects from on-site inspection images using a label-efficient 
way, which leverages corresponding text descriptions, the Grounding DINO (DETR with 
Improved deNoising anchOr boxes) (Liu et al. 2023) object detection model, and the segment 
anything model (SAM) (Kirillov et al., 2023). This paper discusses the image data acquired for 
evaluation, the proposed method, and its performance results on segmenting spalling and exposed 
rebar. To the best of the authors’ knowledge, it is the first attempt to segment bridge defects 
leveraging text prompts. 
 
BACKGROUND 
 
Grounding DINO. Unlike traditional object detection algorithms which can only detect 
predefined object classes, Grounding DINO is the state-of-the-art model for open-set object 
detection. Grounding DINO utilizes the shifted windows (Swin) transformer (Liu et al. 2021) as 
the image feature extraction backbone and bidirectional encoder representations from transformers 
(BERT) (Devlin et al. 2019) for textual feature embedding. It also performs multi-stage multi-
modal fusion. Such strategies effectively improve its performance on object detection on rare (i.e., 
few-shot) or unseen (i.e., zero-shot) object classes.   
 
SAM. The development of large language models has changed the field of natural language 
processing significantly. Parallel to this, the recent development of SAM has marked a milestone 
in computer vision. SAM introduces a prompt-based mechanism, where the prompt can be several 
points, bounding boxes, and so on. The model can provide a segmentation mask based on the 
prompts. SAM employs the vision transformer (ViT) (Dosovitskiy et al. 2020) as the backbone 
and was pretrained on a large dataset, the Segment Anything 1 Billion (SA-1B), which contains 
11M images and 1.1 billion masks. It demonstrated great success in various tasks in the general 
domain, including image annotation, image inpainting, and object tracking (Zhang et al. 2023). 
However, the potential of SAM remains unexplored in the civil infrastructure domain. 
 
PROPOSED DEEP LEARNING-BASED METHOD FOR LABEL-EFFICIENT BRIDGE 
DEFECT SEGMENTATION 
 
This paper proposes a deep learning-based label-efficient method to automatically identify and 
segment bridge defects from bridge inspection images. The proposed method includes three 
primary steps: (1) data collection and annotation; (2) method framework; and (3) evaluation. 
 
Data Collection and Annotation. A total of 3,000 image-text pairs were collected from the 
Washington Department of Transportation (WSDOT) (Wang and El-Gohary 2023), and 20 images 
were randomly selected where their corresponding text descriptions contained spalling or exposed 
rebar. The ground truth masks for those images were annotated for evaluation.  



Method Framework. This study utilized an approach combining the capabilities of the Grounding 
DINO and the SAM models. Fig. 1 illustrates the framework of this proposed method. The 
Grounding DINO model, pretrained on the Object365 dataset, was employed for localization. 
SAM, having been pretrained on an extensive dataset of one billion masks, was leveraged for 
detailed object segmentation. SAM only focuses on segmentation based on prompts without 
predicting semantic labels to the identified objects. The Grounding DINO model provides a prompt 
in the form of a bounding box, which is coupled with class information derived from textual input.  
 

 
       Figure 1. Proposed method framework for bridge defect segmentation. 

 
Model Evaluation. The evaluation of bridge defect segmentation was conducted by comparing 
the segmentation results to the ground truth using four key metrics: precision, recall, F-1 measure, 
and Intersection-over-Union (IoU). Precision is defined as the correctly segmented pixels over the 
total predicted pixels, indicating the accuracy of positive predictions. Recall measures the 
proportion of correctly identified pixels against the total pixels that should have been identified, 
representing the model’s ability to find all relevant cases. The F-1 measure, or Dice score, is the 
harmonic mean of precision and recall. The IoU metric measures the overlap between the predicted 
and ground truth segmentation. 
 
PRELIMINARY EXPERIMENTAL RESULTS AND DISCUSSION 
 
The proposed method was evaluated using a testing dataset of 20 annotated images. The 
performance results are summarized in Table 1. Fig. 2 shows some examples of predicted 
segmentation output and ground truth annotation, where the text prompt of the first row is 
“spalling”, and the rest are “exposed rebar”. Overall, the model achieved mean precision, recall, 
F-1 measure, and IoU of 0.565, 0.833, 0.603, and 0.495, respectively, on the testing dataset. As 
per Table 1 and Fig. 2, the model showed good performance in identifying and segmenting spalling 
areas (row 1). However, for exposed rebar, it showed high recall (0.949) but low precision (0.397), 
suggesting that many non-rebar pixels were incorrectly identified as exposed rebar. As shown in 
Fig. 2, although the Grounding DINO model provides a relatively accurate bounding box, the SAM 
model also segments rust (row 2), pipes, and spacing area (row 3) surrounding them as part of the 
exposed rebar. The experiments were carried out on a Windows 11 system with the Intel(R) 11th 
Gen Intel(R) Core (TM) i9-11900KF @ 3.50GHz CPU, 32.0 GB RAM, and NVIDIA GeForce 
GTX 3090 GPU (Graphics Processing Unit). 
 

Table 1. Model performance on bridge defect segmentation. 
Class Precision Recall F-1(Dice) IoU 

Spalling 0.733 0.717 0.694 0.606 
Exposed rebar 0.397 0.949 0.513 0.384 

Mean 0.565 0.833 0.603 0.495 



Figure 2. Examples of (a) original images, (b) predicted masks, and (c) ground truth masks. 
 
CONCLUSION AND FUTURE WORK 
 
In this paper, a deep learning-based method for segmenting bridge defects (i.e., spalling and 
exposed rebar) leveraging text descriptions was proposed. The proposed method was evaluated on 
a testing dataset of 20 images with ground truth annotation. The method achieved a mean precision, 
recall, F-1 measure, and IoU of 0.565, 0.833, 0.603, and 0.495, respectively, which indicates its 
potential in supporting label-efficient automated bridge defect segmentation. Two main limitations 
of the work are acknowledged. First, the number of images and classes for evaluation is limited, 
which cannot represent all the cases in bridge inspection. Second, there is a need for improvement 
to enhance the accuracy of detection and segmentation. In their future work, the authors plan to 
address the aforementioned limitations by expanding the size of the data, extending the work to 
more classes, performing additional experiments on other pretrained models, and exploring more 
advanced model architectures.  
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