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ARTICLE INFO ABSTRACT

Keywords: Coincident crack and corrosion pose risks to pipelines and challenges for condition monitoring. This paper

D1str1b}1ted fiber optic sensors (DFOS) presents a machine learning-empowered approach for automatically analyzing strain data measured from
Sorris“’n distributed fiber optic sensors for monitoring coincident cracks and corrosion, which simultaneously influence
raci

distributed sensor data. This approach has been implemented to detect, locate, and discriminate coincident
cracks and corrosion. The performance of the approach has been evaluated through laboratory experiments using
steel pipelines equipped with distributed fiber optic sensors, considering factors such as spatial resolution and
sensor deployment methods. The experimental results showed that the proposed approach achieved high
mAP@0.5 (0.935) and F1 score (0.920) in detecting and locating coincident cracks and corrosion, and less than
0.009 s in analyzing a strain profile with more than 500 data. This research provides valuable insights into real-
time monitoring of interacting anomalies and addresses the practical data analysis challenges associated with
massive sensor data analysis.

Machine learning
Interacting anomalies
Structural health monitoring

1. Introduction

Pipelines form the backbone of critical infrastructure networks,
transporting vital resources like oil and gas across vast distances [1]. In
the United States, over a million miles of natural gas pipelines connect
production areas to distribution networks, ensuring a steady flow of
energy [2]. Maintaining pipeline integrity is paramount for public
safety, environmental protection, and uninterrupted delivery of essen-
tial services. Pipelines are susceptible to various anomalies such as
corrosion, cracks, and dents [3]. Anomalies that occur at the same
location in a pipeline are called interacting anomalies, which have a
higher likelihood of causing a failure than a single anomaly. The United
States Pipeline and Hazardous Materials Safety Administration
(PHMSA) highlighted the heightened risk posed by combined threats
compared to individual ones, as different anomalies can accelerate
anomaly development [3]. Notably, coincident corrosion and cracks can
lead to catastrophic pipeline failures [4]. Therefore, the ability to pro-
actively detect and analyze anomalies, particularly interacting anoma-
lies, plays a pivotal role in risk assessment, maintenance planning, and
optimizing pipeline service life.

Pipeline inspection and monitoring tasks have been conducted based
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on ground penetrating radars [5], magnetic flux leakage [6-8], eddy
current [9], acoustic emission [10], and ultrasonic testing [11,12].
Ground penetrating radars have been used to detect underground
pipelines [13], exhibiting a tradeoff between spatial resolution and in-
spection depth [14]. Magnetic flux leakage has been applied to detect
cracks and debonding of coatings [6]; eddy current methods have been
applied to identify and locate cracks in pipelines [9]; and acoustic and
ultrasonic techniques have been applied to detect cracks [11,12]. These
traditional techniques are effective for specific cases.

Meanwhile, distributed fiber optic sensors (DFOS) have shown
unique advantages in pipeline monitoring [15,16], such as the immunity
to electromagnetic interference, high sensitivity, high accuracy, small
size, light weight, distributed sensing ability, and long operating dis-
tance. Due to these advantages, DFOS have been used to monitor pipe-
line conditions based on the measurement of strain and temperature
distributions. For example, DFOS were deployed on the external surface
of pipelines to measure strain distributions [16-20], and the strain
distributions were utilized to analyze deformations [15], cracks [17],
buckling [18], and corrosion [19,20], showing high spatial resolution
and high sensitivity simultaneously. Recently, DFOS have been utilized
to monitor interacting bending and corrosion in pipelines [21]. In
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addition, DFOS have been applied to monitor steel-concrete composite
cracks [22], and steel corrosion [23,24], and coincident crack and
corrosion [25] in a broader spectrum of civil structures and materials
[26,27], showing important advantages.

However, analyzing DFOS data is challenging because DFOS usually
provides a large volume of data given the long sensor length. In an
DFOS, measurements are continuously made along the length of the
DFOS, different from discrete sensors that only provide measurements at
individual spots where sensor nodes are deployed. When the sampling
resolution is set to 0.65 mm [28], a meter-long sensor will produce more
than 1500 data points per measurement. If the sampling frequency is set
at 1 Hz, the meter-long sensor will produce more than 5.5 million data
points per hour. In civil infrastructure applications, the length of DFOS
can be 100 km or longer. Although the spatial resolution can be reduced
in some applications, the data volume is still large, posing challenges to
data analysis. Recent research has shown that the reduction in spatial
resolution may result in missing information about anomalies, such as
cracks [29].

A practical approach to reduce data volume is to use decimation
techniques like data down-sampling when high-frequency data are un-
necessary. However, those techniques do not overcome the challenges
related to data analysis and interpretation. Identifying anomalies such as
cracks and corrosion from DFOS data is still challenging, and manual
analysis of data does not support real-time monitoring because manual
data analysis is time-consuming. To overcome this challenge, machine
learning techniques have been utilized to enable automatic analysis of
DFOS data in monitoring cracks [17,30-32] and corrosion [20].

Motivated by the recent advances in machine learning approaches
for automatic analysis of DFOS data, this research was conducted to
achieve the ability to automate the analysis of DFOS data for monitoring
interacting cracks and corrosion for pipelines, aiming at overcoming the
challenge of analyzing massive DFOS data for real-time monitoring and
management of pipelines. To this end, this research aims at: (1) devel-
oping a machine learning-based approach for analyzing DFOS data to
determine crack and corrosion conditions in pipelines with coincident
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anomalies; and (2) discriminating strain changes caused by coincident
cracks and corrosion for quantitative evaluation of pipeline conditions.

This research has three primary objectives: (1) enabling automatic
analysis of DFOS data for monitoring coincident cracks and corrosion in
pipelines through the development of a machine learning-based
approach that considers the different spatial and temporal features of
strain distributions related to cracks and corrosion; (2) understanding
the effect of key variables of DFOS measurement and deployment
pattern on the performance of the machine learning approach through a
parametric study on the variables; and (3) understanding the perfor-
mance of different versions of YOLO models via comparing a modified
YOLOv8 model with other widely used machine learning models,
including YOLOv3, YOLOv4, YOLOV5, and regular YOLOv8 models.

The remainder of the paper is organized as follows: Section 2 pre-
sents the machine learning approach developed in this research. Section
3 introduces the laboratory experiments designed to implement the
approach and evaluate the performance of the approach. Section 4
presents and discusses the experimental results. Section 5 summarizes
the new findings of this research.

2. Methodology
2.1. Framework

The framework of the machine learning approach is shown in Fig. 1,
consisting of four main steps: (1) Strain distributions are measured using
DFOS (Section 2.2). (2) Strain distributions are converted into graphs
(Section 2.3). (3) Graphs are analyzed using a machine learning model
to determine cracks and corrosion (Section 2.4). (4) Strain signatures of
corrosion and cracks are decoupled (Section 4.5).

2.2. Data acquisition

A single-mode fiber optic cable, such as Corning® SMF-28e+® [33],
can be utilized as both a distributed sensor and transmission line. The
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Fig. 1. Framework of the proposed machine learning-based approach for sensor data analysis.
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fiber optic cable was composed of a glass core (diameter: 8.2 ym), a glass
cladding (outer diameter: 125 um), a dual-layer coating (outer diameter:
245 pym), and a tight buffer (outer diameter: 900 um) for mechanical
protection. The selection of this type of fiber optic cable was primarily
based on its wide availability, high cost-effectiveness, and high perfor-
mance in structural health monitoring (SHM) applications [20]. Light
waves propagate along the fiber optic cable through total internal
reflection at the core-cladding interface. Various distributed sensing
technologies have been developed based on light scatterings in fiber
optic cables. For example, optical frequency domain reflectometry
(OFDR) has been developed to measure strain and temperature distri-
butions with high spatial resolution and sampling frequency. Strain and
temperature changes can be determined according to the following
equation [17]:

ATf — krATorpr

k. (€8]

Aégoppr =
where Aeoppr and ATompr are the strain and temperature changes,
respectively; Af and f are the frequency shift and average optical fre-
quency, respectively; kr and k, are the temperature and strain sensitivity
coefficients, respectively, which are calibrated prior to applications.

In this study, a Luna ODiSI 6120 instrument was used to measure
strains based on OFDR [34]. The measurement accuracy specified by the
manufacturer is + 5 pe for strain [34]. The range of spatial resolution
was 0.65 mm to 10.4 mm. The maximum length of fiber optic cable used
as a sensor to obtain the strain profiles was 100 m [38], and the length of
the stand-off cable was 200 m. This sensor length is sufficient for labo-
ratory experiments and field testing of critical parts such as the con-
nections of pipelines. When a longer sensor length is needed, alternative
distributed sensing technologies like Brillouin scattering-based tech-
nologies can be considered [35]. Brillouin scattering-based technologies
like Brillouin Optical Time Domain Analysis (BOTDA) can achieve a
sensing distance longer than 100 km, but the spatial resolution is usually
limited to a meter scale. High-resolution BOTDA technologies like Pulse-
Pre-Pump BOTDA (PPP-BOTDA) have been developed, but the spatial
resolution is still limited to 20 mm [35]. A high spatial resolution is
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necessary for accurate measurement of cracks [29]. The frequency of
data acquisition was set to 2 Hz in this research. This high frequency was
unnecessary for this research, but the data were also used in another
research which required high frequency. More details about OFDR are
available in the reference [36].

2.3. Graphic representation

The strain distributions measured from DFOS are presented as strains
versus the distance along DFOS in a scattered plot with lines. The scat-
tered plot is converted into graphs to facilitate sensor data interpretation
using machine learning models. The primary procedure of generating a
graph for representing DFOS data is illustrated in Fig. 2. First, an arbi-
trary strain distribution in time-domain and spatial-domain can be
expressed using a two-dimensional matrix:

@

where M is the sampling number of a specific time period (i.e., time-
domain), and N is the number of data points of the strain distribution (i.
e., spatial domain). Second, in each row of the matrix, a total of Q strain
values are inserted between each pair of adjacent data points through
linear interpolation [37], as shown in Eq. (3). This interpolation step
enhances the resolution of strain distribution, ensuring a smooth and
detailed representation within the generated graph.

3)

Third, the elements in matrix €, are mapped to red (R), green (G),
and blue (B) components for each pixel in the graph, following the
relationship defined in Eq. (4) to Eq. (6). The most used color gradient is
usually shown in Fig. 3(a). Blue represents low values, green represents
medium values, and red represents high values. The exact mapping
process is shown in the cube of Fig. 3(b). Simply calculate where the

Raw distributed fiber optic sensor (DFOS) strain distribution data €4

Step 1:
Time 1 6 10 0
domain
1 6 10 0
Spatial domain ﬂ Linear interpolation
Step2: | 1 2 (13| 4 516 1081|6420
&p 1 2 34| 5] 6 10| 864|210
1 2131415 6 1086|4210
1 213|415 6 10 | 8 (Z P 2|0
RGB galculation using Interpolated new strain
Equations (5), (6), and (7)
Steps 3: Steps 4: Resize the

~ i

image

Fig. 2. Flowchart of generating intuitive contour images using distributed fiber optic sensor data.
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Fig. 3. Converting a number into a color gradient: (a) a common color gradient; and (b) RGB value mapping relationship cube.

RGB values appear on the folded lines in Fig. 3(b) to get the corre-
sponding color values. More details about the equations for generating
RGB graphs using numeric data are elaborated in reference [38].

0,& < €min + 0.5A¢
4(e — €min — 0.5A¢)

R(e) = 255 v Emin + 0.5A¢ < £ < &min + 0.75A¢
1,e > emin + 0.75A¢
@
He—emn) o 0.5
Ae
G(e) = 255¢ 1, €min + 0.25A¢ < € < €min + 0.75A¢ 5)
4+ Ae —
M,e > emin + 0.75A¢
Ae
1,6 < €min + 0.25A¢
. 5Ae —
B(e) = 255 %:88), emin +0.25A¢ < & < emin + 0.5A¢
0,€& > emin + 0.5A¢
(6)

where ¢ is an arbitrary strain, and Ae = €mgy —Emin, Where €pq, and
€min are the maximum and minimum values, respectively. The RGB
values are put into three matrices, respectively, which have the same

dimensions as €.

Fourth, the RGB matrices are converted into a graph, which is a
colored strain contour image (Fig. 2). Each contour image is sized into
640 x 640 pixels, which is the default resolution of input images for
YOLOvV8 [39]. The effect of image sizes was investigated in previous
research [17].

2.4. Proposed machine learning model

The YOLOVS algorithm was selected to develop the baseline model
because of its exceptional performance in object detection tasks [40,41].
The architecture of YOLOv8 comprises three key components, which are
an enhanced backbone network for feature extraction, a neck structure
for efficient feature aggregation, and a detection head responsible for
bounding box predictions and class probabilities [42]. The backbone
component is based on the Cross Stage Partial (CSP) network [43],
serving as the primary feature extractor to process the input strain
contour image and generate a rich set of feature maps at various reso-
lutions. The neck component collects feature maps from the backbone
component [44]. The neck combines and refines these features across
different scales, enhancing the ability to detect objects of varying sizes.
The head in YOLOV8 takes the processed features from the neck and
makes the final predictions [45]. The head is responsible for generating
bounding boxes (locations and dimensions) and assigning different
anomaly probabilities to each detected anomaly in the strain contour
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images.

It is worth noting that an attention mechanism is added to the
YOLOv8 model for improving object detection performance in this
research. The original feature extraction network of YOLOv8 depends on
the convolution layers, which extracts features from the input images
but lacks the ability to handle massive measurements from DFOS used in
large-scale structures such as pipelines [17]. In the proposed approach, a
lightweight and efficient attention block, called convolutional block
attention module (CBAM) [46], is added to the neck component to
extract the features of strain contour images, as shown in Fig. 4.

This modification aims to guide the YOLOv8 model to focus on the
most informative regions within feature maps, improving its ability to
discriminate subtle details associated with corrosion, cracks, and coin-
cident anomalies. The CBAM comprises both channel attention (C-
Attention) and spatial attention (S-Attention). Given an intermediate
feature map denoted as F € RE™W CBAM sequentially infers a channel
attention map M, € R°*1*! and a 2D spatial attention map M, € RV*F*W
through the following equations:

F=M,/(F)®F (@]

F =M,(F)®F (8)

where ® is the element-wise multiplication, F is the channel refined
feature, and F’ is the final refined feature. In multiplication, the atten-
tion values are broadcasted (copied) accordingly: channel attention
values are broadcasted along the spatial dimension, and vice versa [46].

2.5. Evaluation metrics

The performance of the proposed machine learning approach has
been evaluated using four popular metrics, which are precision [47],
recall [47], F1 score [47], and mean average precision (mAP) [48]. The
mathematical definitions of precision, recall, and F1 score are expressed
using the following equations:

.. TP
Precision = TP 1P (C)]
TP
Recall = m (10)

2 x Precision x Recall
F1 = 11
score Precision + Recall an

where TP is the number of true positives (i.e., successful detection), FP is
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the number of false positives (i.e., false alarm), FN is the number of false
negatives (i.e., miss), and TN is the number of true negatives (i.e., cor-
rect rejection). More details are elaborated in references [44,45].

Fig. 5 shows how the deep learning model detects anomalies and
how accuracy is evaluated. When machine learning models are used to
detect anomalies, anomalous areas are usually marked using anchor
boxes, as shown in Fig. 5(a), where the yellow boundaries represent
anchor boxes serving as candidates for potential targets, and the red
boundary represents the true anomaly area (ground truth box). The aim
is to identify the yellow boundary that best represents the anomalous
area. Intersection over union (IOU) is often used to evaluate the yellow
candidate boxes [49]. IOU is the ratio of the overlap and union between
the generated candidate bounding box and the ground truth bounding
box, which measures the intersection of these two bounding boxes, as
shown in Fig. 5(b). The performance of the model improves as the IOU
value increases, with higher IOU values indicating less difference be-
tween the generated candidate and ground truth bounding boxes.

The mAP is determined based on the IOU results, and both mAP@0.5
and mAP@0.5:0.95 have been considered: The mAP@0.5 is the mAP
value when the IOU is higher than 0.5, and the mAP@0.5:0.95 is the
average of mAP values when the IOU is from 0.5 to 0.95 with an interval
of 0.05. IOU is a classical metric for evaluating the performance of the
model for object detection.

3. Experimental program
3.1. Specimens

Experimental testing was conducted using steel pipe specimens
subjected to coincident effects of corrosion and crack at the same posi-
tions. The specimens were made using carbon steel, which is commonly
used for transmission pipelines transporting natural gas and hydraulic
fluid according to ASTM 513 [50]. The length, diameter, and wall
thickness of the pipe specimens were 250 mm, 38.1 mm, and 1.65 mm,
respectively.

The pipe specimens were pre-processed using a saw to create notches
in the middle section, as shown in Fig. 6. The notches were utilized to
simulate the effect of cracks and control the positions of crack sections in
the pipe specimens. The notch width was measured to be about 1.214
mm using a crack scope. The primary purpose of creating a notch is to
enhance stress concentration in the pipe specimen and thus facilitate the
initiation of a crack when the pipe specimen is loaded. Otherwise,
without the notch, the pipe specimen would not crack and would fail
with a dent at the loaded section [51].

Input feature
I

v
[ Channel refined feature J
I

| Global max pooling | | Global average pooling I

| Global max pooling | | Global average pooling |

Shared multi-layer perceptron

S

Sigmoid

C-Attention
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!

Sigmoid

S-Attention
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Fig. 4. Architecture of the convolutional block attention module integrating C- and S-Attention.
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Fig. 5. Detection of anomaly areas using the deep learning method: (a) candidate boxes, and (b) the definition of IOU.
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Fig. 6. Photos of pipeline specimens prepared through pre-crack tests for generating notches.

After the pipe specimens were notched, DFOS were attached to the
surface of pipe specimens, passing over the notch, following the
designed layout. Specifically, DFOSs were attached to the specimens
following three steps. First, the fiber was held in place using paint tape at
discrete spots along the length. Second, a fast-setting glue was applied at
discrete points between the taped sections. After the glue set, the tape
was carefully removed to avoid damaging the optical fibers or the newly
applied adhesive. Before immersing the specimens, a low-viscosity two-
part epoxy was applied to cover the fiber, creating a strong bond be-
tween the specimen and the fiber. The details about the specimens and
sensor deployment schemes are shown in Table 1.

A total of 14 different cases were investigated, as listed in Table 1.
These investigated cases were categorized into four groups, designated
as CO to C3. Group CO only has one case, which was used as the reference
case, and the specimen did not have a notch. Group C1 includes one
specimen which was designed to investigate the effect of five measure-
ment spatial resolutions of DFOS, which are 0.65 mm, 1.30 mm, 2.60
mm, 10.40 mm, and 20.80 mm. Group C2 includes four specimens that
were designed to investigate the effect of four crack widths, which are
0.369 mm, 0.480 mm, 0.608 mm, and 0.762 mm. Group C3 consists of
five specimens designed to investigate four sensor deployment schemes,
which include four helix patterns with different spacings (30 mm, 60
mm, 90 mm, and 120 mm) and a straight-line pattern. The “crack width
increase” in Table 1 refers to the difference between the crack with after
loading and the original width of crack notches. The loading process is
described in detail in Section 3.2.

Table 1
Investigated cases for combination effect of crack and corrosion.
Group  Cases  Spatial Sensor Adjacent Crack width
resolution deployment helix increase
(mm) pattern spacing (mm)
(mm)
Cco 1 0.65 Helix 30 0
C1 2 0.65 Helix 30 0.608
3 1.3 Helix 30 0.608
4 2.6 Helix 30 0.608
5 5.2 Helix 30 0.608
6 10.4 Helix 30 0.608
7 20.8 Helix 30 0.608
Cc2 8 0.65 Helix 30 0.369
9 0.65 Helix 30 0.480
10 0.65 Helix 30 0.762
C3 11 0.65 Helix 60 0.608
12 0.65 Helix 90 0.608
13 0.65 Helix 120 0.608
14 0.65 Straight line - 0.608
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3.2. Experiments

The experiments were conducted in three main steps. First, the steel
pipe specimens were loaded under three-point bending to increase the
crack width at the mid-span section using a universal load frame (brand:
Instron), as shown in Fig. 7. The distance between the two supports was
210 mm. The bending experiment was conducted under the displace-
ment control mode with a displacement rate of 1 mm/min. The applied
load was recorded by the load cell of universal testing machine, and an
extensometer was instrumented to record the mid-span deflection of
pipe specimens. The specimens were loaded under three-point bending
to different displacements for generating different crack widths, as
shown in Fig. 7(b). In Fig. 7(b), all load-displacement curves consist of
the loading part and the unloading part. All curves showed similar
curves with three stages: (1) Stage 1: from “O” to “A”, where the bending
load approximately linearly increases with the displacement. (2) Stage
2: from “A” to “B”, where the bending load increases with the
displacement with a decreasing slope until reaching the peak load at
point B. Both Stages 1 and 2 belong to the loading part. (3) Stage 3: from
“B” to “C” belonging to the unloading part, where the unloading force
decreases with the unloading displacement. Strain distributions were
measured from the DFOS throughout the loading process. This step was
to create realistic crack widths that could simulate field conditions,
where pipelines often experience mechanical stress and cracks before
being subjected to corrosion.

Second, a two-part epoxy was applied to the pipe specimens to
simulate the effect of coatings of real pipelines on corrosion protection.
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The application of epoxy isolated the surface of the pipe specimens from
the atmosphere at both ends within a length of 115 mm, aiming to
concentrate steel corrosion in the segment near the mid-span section of
the specimen. Then, waterproof duct tapes were applied to the surface of
epoxy for further corrosion protection, as shown in Fig. 8(a).

Finally, the pipe specimens were put in a plastic container filled with
a sodium chloride (NaCl) solution (concentration: 3.5 % by mass) for
corrosion tests at room temperature (25 + 2 °C). The test setup is shown
in Fig. 8(b) and Fig. 8(c). Each pipe specimen was supported by two
plastic blocks at the two ends to expose the bottom of the pipes to the
sodium chloride solution. The fiber optic cable was connected to the
ODISI instrument for data acquisition. Each measurement took about 20
s, and the measurement frequency was 2 Hz. The total immersion time
was 290 h. No substantial impact of the sodium chloride solution on the
material and functional integrity of the fiber was identified. The fiber’s
coating material and adhesive do not react with sodium chloride.
Further research is needed to understand the long-term durability.

4. Results and discussion
4.1. Strain distributions

Representative visual inspection results for each group of specimens
are shown in Fig. 9(a). Rust was generated on the external surfaces of
pipes in groups CO to C3. As the immersion time increased, the thickness
of rust increased. Most rust concentrated to the notches, and only a small
volume of rust fell off the pipes. The strain distributions measured from

——0.369 mm crack width increase
——0.480 mm crack width increase
——(0.608 mm crack width increase
——(0.762 mm crack width increase

Load force (kN)

R W s h O 1 0 O

(=2

o=

B

C

00511

5225335445555

T T T T

6

Displacement (mm)

(b)

Fig. 7. Three-point bending test: (a) photograph for specimen preparation, instrumentation, and test set-up of the pre-dent test; and (b) load-displacement of the

pipe specimens for generating different crack widths.
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Fig. 8. Corrosion test of steel pipe specimens: (a) a notched pipe instrumented with distributed sensors; (b) the pipe specimens immersed in salt water; and (c) test

set-up.

DFOS before the corrosion test were adopted as the reference for each
specimen. According to previous research [36], when corrosion
occurred, the pipe diameter increased due to the production of porous,
expansive rust, thereby increasing tensile strains in the pipe.

Fig. 9 shows the strain distributions measured from DFOS at different
time instants (24 h, 51 h, 94 h, 120 h, 144 h, 192 h, 240 h, and 290 h) in
the corrosion test. The control specimen CO exhibited minimal strains, as
shown in Fig. 9(b), which is consistent with visual inspection. The small
strain changes are attributed to the combined effect of residual strain
and corrosion of steel pipes, with safe corrosion levels evaluated in
accordance with the ASME B31G [52]. High peaks are observed from the
other strain distributions due to the notches, and the peak magnitude
increases with time due to the growth of rust. In group C1, the strain
peaks increased from 100 to 1,000 pe over the entire immersion period,
as shown in Fig. 9(c). Similarly, in group C2, the magnitude of the strain
peaks increased with crack width, as shown in Fig. 9(d) to 9(f). Addi-
tionally, in group C3, the strain peaks decreased from 1,000 to 700 pe as
the adjacent helix spacing of the fiber optic cables increased, as shown in
Fig. 9(g) to 9(j). While the straight-line deployment achieved similar
strain peaks, it requires prior knowledge of the crack location, as sensors
that do not pass through cracks will fail to detect significant strain
changes. This limitation makes helix deployment patterns more versatile
and effective for identifying anomalies in the absence of pre-existing
information about their locations. The results demonstrate the rela-
tionship between crack width and changes of strain peak magnitude, as
well as the influence of fiber optic cable spacing.

4.2. Datasets

The experimental data in Fig. 9 and previous experimental data were
utilized to generate a dataset for developing a machine learning model.
The dataset has been derived from three sources: (1) A total of 1,000
contour images that represent cracks from previous research [30]. (2) A
total of 1,000 contour images representing corrosion from previous
research [20]. (3) A total of 1,000 contour images representing coinci-
dent corrosion and crack from the experiments in this research. Fig. 10
shows representative contour images. A total of 3,000 strain contour

images were manually labelled using labelme [53]. As shown in Fig. 10
(d), the labelled regions were used as the ground truth values to evaluate
the performance of the machine learning model. The metrics in Section
2.5 were employed for performance evaluation. The dataset was
randomly divided into training (80 %) and validation (20 %) sets.

4.3. Training process

The machine learning model was coded in Python 3.8 and trained on
the Google Colaboratory platform with powerful computational re-
sources, including a 2.30-GHz Intel Xeon (R) CPU, 13-GB RAM, and a 15-
GB Tesla K80 GPU. In the training task, a pretrained model based on
transfer learning was employed to accelerate the training process and
potentially improve generalization. The training process included 100
epochs for iterative model refinement and a 640-pixel image size to
balance detail and computational efficiency. The batch size was auto-
matically determined to optimize the training process based on available
memory and the characteristics of the dataset. The Adam optimizer with
a learning rate of 0.00125 and a momentum of 0.937 was used, which is
suitable for small customized datasets [44]. The training progress is
shown in Fig. 11, with the x-axis representing the epoch number and the
y-axis indicating the training loss, showing desired converging perfor-
mance. The trained machine learning model was then used to detect
corrosion, cracks, and coincident anomalies from strain contour images
unseen in the training process.

4.4. Identification of cracks and corrosion

After 100 epochs, the precision, recall, F1 score, mAP@0.5 and
mAP@0.5:0.95 reached 0.912, 0.929, 0.920, 0.935, and 0.872, respec-
tively. The detailed results of the detection and localization accuracy for
each condition (normal condition, corrosion, cracks, coincident corro-
sion and cracks) are shown in Table 2. Overall, the accuracy for coin-
cident corrosion and cracks is lower than the accuracy for the other
conditions due to the complexity of coincident corrosion and cracks.

Three representative examples of ground truth and detection results
are shown in Fig. 12. The results demonstrate that the proposed method
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Fig. 9. Strain distributions measured from the distributed fiber optic strain sensors deployed along the pipe specimens: (a) visual inspection results; (b) Control case
in group CO; (c) Cases 2-7 in group C1; (d) Case 8 in group C2; (e) Case 9 in group C2; (f) Case 10 in group C2; (g) Case 11 in group C3; (h) Case 12 in group C3; (i)
Case 13 in group C3; and (j) Case 14 in group C3. The details of the cases can be found in Table 1.

has a good ability to detect and locate corrosion, cracks, and coincident
corrosion and cracks.

The performance of the proposed machine learning method has been
compared with other machine learning models, as listed in Table 3.
These models were trained and evaluated using the same dataset. The
modified YOLOv8 model achieved the highest accuracy. The compari-
son also reflects the benefits of the modifications of the YOLOv8 model.
The YOLOv8 model achieved higher accuracy than the original YOLOv8
model. For example, the mAP@0.5:0.95 was increased from 0.837 to
0.872 (by 4.18 %). The computational efficiency of the different algo-
rithms has been evaluated using the time required to analyze a contour

image. The results show that YOLOv8-based models all run in less than
0.009 s per image, running faster than YOLOv3, YOLOv4 and YOLOvV5
models, enabling real-time monitoring of pipeline conditions.

4.5. Discrimination of cracks and corrosion

The experimental data in Fig. 9(c) to Fig. 9(j) show pronounced
interaction between cracks and corrosion. The presence of cracks
accelerated the development of corrosion, and both cracks and corrosion
affected the measured strained distributions. In this paper, an approach
to decouple the contributions of crack and corrosion is presented. The
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Fig. 9. (continued).

(a) (b) (©)

(d)

Fig. 10. Examples for the generated datasets: (a) corrosion image, (b) crack image, (c) image representing coincident corrosion and crack, and (d) labeled con-

tour image.

development of this approach has been motivated by the distinct fea-
tures of cracks and corrosion in strain distributions, as shown in Fig. 10.
Cracks are abrupt localized events that cause sharp peaks in strain dis-
tributions measured from DFOS. More detailed information about the
mechanical principles and the generation of sharp peaks caused by
cracks are available in references [17,30,54].

Compared with cracks, corrosion is either a localized or a global
event, and corrosion causes gradual strain changes often without sharp
peaks. More detailed information about the mechanical principles and
the development of strain changes caused by corrosion are available in
references [36,55,56]. When cracks and corrosion coincide, the strain
distribution measured from a distribution strain sensor is a combination
of strains caused by cracks and corrosion, posing challenges in assessing
pipeline conditions. The approach proposed to separate the

10

contributions of cracks and corrosion has four primary steps:

1. The anomaly region representing coincident cracks and corrosion in
a strain distribution is identified and located using the trained
YOLOvV8 model. A representative result of strain distribution is
shown in Fig. 13(a). The contour image of this strain distribution is
shown in Fig. 13(d). To highlight the coincident anomaly region, a
contrast stretching algorithm [57] was applied to enhance the
contrast of the intact region (Good) and anomaly region with both
cracks and corrosion (Both), as shown in Fig. 13(e).

2. In the anomaly region identified and located in step (1), the region is
further divided into non-interactive and interactive regions, as
shown in Fig. 13(a). In a non-interactive region, either cracks or
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Fig. 11. Loss curves of the training and validation process of the proposed
machine learning model.

Table 2
Performance of the proposed method for each type of anomaly.
Conditions Precision Recall F1 mAP@0.5 mAP@0.5:0.95
score
Normal condition ~ 0.895 0.939 0.916 0.979 0.863
Corrosion 0.931 0.938 0.934 0.931 0.931
Cracks 0.914 0.964 0.938 0.935 0.804
Coincident 0.910 0.876 0.893 0.892 0.888
corrosion and
cracks
All 0.912 0.929 0.920 0.935 0.872

corrosion exists; and in an interactive region, both of them exist and
interact with each other.

3. The average strain value caused by corrosion in each non-interactive
region is calculated to estimate the contribution of corrosion to strain

o (a) - (b) (©)
(e) (f)

(d)

Fig. 12. Representative examples of the detection results for different anomalous conditions: (a) corrosion, (b) crack, and (c) coincident corrosion and crack.
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changes, assuming that the strain change caused by corrosion is
uniform, consistent with previous research [36]. The average strain
is used to estimate the strain distribution within the adjacent inter-
active region, as shown in Fig. 13(b). The red line indicates the
average strain.

. In the interactive region, the strain distribution is divided into the
components standing for cracks and corrosion, separating the con-
tributions of cracks and corrosion to the strain changes, as shown in
Fig. 13(c).

Following the above four steps, the strain distributions measured
from DFOS can be analyzed to discriminate the contributions of cracks
and corrosion for pipelines subjected to coincident anomalies. The
cracks and corrosion conditions can then be utilized to guide the oper-
ation and maintenance efforts for pipelines.

4.6. Limitations and future work

Although this research proves the feasibility of using machine
learning models for automatic analysis of DFOS data involving coinci-
dent cracks and corrosion, the proposed approach has not been validated
using field tests. Additionally, more robust optical fiber sensors with
reinforced or polyimide-coated fibers will be investigated, along with
more complex mechanical states of pipelines to further evaluate the
generalization performance of the proposed approach. Comprehensive
field tests are necessary in future research. In field applications, pitting
corrosion is common, and further research is necessary to distinguish
between pitting corrosion and cracks. It should be noted that the strain
distributions associated with pitting corrosion have slower growth rates
compared with the strain distributions associated with cracks because
corrosion is a slower process than cracking. The difference in time
domain can be utilized to distinguish between cracks and pitting
corrosion. Quantifying corrosion, such as through percent mass loss, will

A
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Table 3
Performance comparison of different methods.

Measurement 247 (2025) 116805

Algorithms Precision Recall F1 score mAP@0.5 mAP@0.5:0.95 Computation time (ms)
YOLOv3 0.857 0.868 0.862 0.856 0.649 28.2
YOLOv4 0.830 0.871 0.850 0.909 0.783 18.0
YOLOvV5 0.868 0.873 0.870 0.875 0.811 9.1
YOLOVS8s 0.883 0.878 0.880 0.920 0.837 8.6
YOLOVS8s + SimAM 0.878 0.926 0.901 0.924 0.829 8.7
YOLOVS8s + hyperparameter tunning 0.912 0.894 0.903 0.933 0.859 8.6
YOLOvVS8s + CBAM 0.897 0.937 0.917 0.929 0.865 8.7
YOLOVS8s + CBAM + hyperparameter tunning 0.912 0.929 0.920 0.935 0.872 8.7
° Corrosion
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Fig. 13. Discrimination of strain changes caused by coincident cracks and corrosion: (a) a strain distribution involving coincident cracks and corrosion; (b)
determination of the average strain; (c) discrimination of strains caused by cracks and corrosion; (d) a contour image; (e) an enhanced contour image after contrast

stretching; and (f) a contour image after removal of the crack effect.

also be a priority in future studies to address the concern of varying
corrosion levels.

The proposed method relies on the direct detection of strain changes
by the DFOS. If the crack does not intersect with the sensor, the strain
variations caused by the crack will not be captured, limiting the ability
to detect the crack. Helix optimized deployment patterns can improve
coverage to mitigate the limitation in crack detection. Another limita-
tion is that the proposed method does not quantify cracks and corrosion.
It will be useful to develop advanced methods for quantifying corrosion
and cracks in future research.

In addition, in long-term monitoring of civil engineering structures,
managing large volumes of DFOS data is a key challenge. A common
approach is to use data decimation techniques, where the incoming data
is down-sampled or selectively logged to reduce the data volume in
applications where high-frequency sampling is not required, such as in
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static or slowly evolving conditions. However, in cases where real-time
monitoring of dynamic events is critical such as sudden crack propa-
gation or rapid corrosion onset, data decimation may risk missing key
anomalies. In such scenarios, machine learning techniques offer a more
robust and flexible solution. By analyzing the complete data set in real-
time, machine learning algorithms can detect and differentiate between
multiple types of anomalies, even in highly dynamic environments.

5. Conclusions

This paper presents a machine learning approach to automatically
analyze strain distributions measured from DFOS used for monitoring
pipelines subjected to coincident cracks and corrosion. The performance
of the approach has been evaluated through laboratory experiments
using pipeline specimens equipped with DFOS. The effects of spatial
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resolution and sensor deployment schemes on the sensing performance
have been evaluated. Based on the above investigations, the following
conclusions are drawn:

e DFOS can be used to monitor coincident cracks and corrosion via
measuring strain distributions of pipelines, because both cracks and
corrosion can affect the strains in DFOS, enabling the detection and
characterization of anomalies associated with the combined effects
of cracks and corrosion.

The proposed machine learning approach is effective in automati-
cally analyzing the strain distributions measured from DFOS for
detecting and locating coincident cracks and corrosion in pipelines.
The experimental results showed that the proposed approach effec-
tively detected and located cracks and corrosion, achieving the
mAP@0.5 and F1 score of 0.935 and 0.920, respectively.

The proposed approach for discriminating strain changes caused by
coincident cracks and corrosion is useful for quantitative evaluation.
With the discrimination approach, the strain distributions associated
with cracks and corrosion can be determined and used for assessing
pipeline conditions.

Further research is necessary to evaluate the generalization perfor-
mance of the proposed approach. It is useful to re-train the machine
learning model using field test data to improve the accuracy and
generalizability of the model.
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