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Abstract 
 
Traditional bridge inspection methods rely on manual visual inspection, which is time-consuming, 
labor-intensive, and potentially dangerous. Automated inspection approaches, which use unmanned 
aerial vehicles (UAVs) and computer vision, aim to address this issue. However, three knowledge gaps 
remain. First, although considerable research has been conducted on defect detection and segmentation 
in bridge inspection, there has been limited focus on segmenting and characterizing specific bridge 
components that contain defects. Such segmentation provides essential contextual information for 
understanding the importance of defects for maintenance decision making. Second, existing bridge 
component recognition approaches face challenges in generalizing across various scenarios, especially 
in close-range inspections where contextual information is often missing. Third, current developments 
in the foundation models in the computer vision, such as the segment anything model (SAM), remain 
unexplored for bridge component segmentation from inspection images due to its lack of domain-
specific knowledge and unable to assign semantic labels to multiple segmented components. To 
address these limitations, this paper proposes a SAM-based image segmentation method for multi-
class bridge component segmentation from diverse bridge inspection images. This method leverages 
the SAM architecture and pre-training from Segment Anything 1 Billion (SA-1B) to enhance feature 
extraction and improve generalizability. The method also integrates a U-Net decoder to address the 
challenges of multi-class bridge component segmentation. The proposed method was trained and tested 
end-to-end on seven classes based on the FHWA’s Bridge Inspector’s Reference Manual. The results 
demonstrate promising performance, indicating the potential of this SAM-based approach for efficient 
and accurate bridge component segmentation. 
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1 Introduction 

Bridges are crucial transportation infrastructures connecting regions, which require extensive 
inspection to ensure safety and functionality. However, the traditional manual inspection method is 
time-consuming, labor-intensive, and potentially hazardous. Recent advancements in automated 
bridge inspection leverage unmanned aerial vehicles (UAVs) and computer vision techniques to 
enhance the inspection process. These techniques enable efficient collection and analysis of bridge 
images, allowing for detailed bridge condition assessment. Numerous research efforts have focused on 
extracting defect information from civil infrastructure inspection images using deep learning-based 
methods (Spencer et al. 2019; Bai and Sezen 2021, Zhang et al. 2023), including image classification 
(Cha et al. 2017; Xu et al. 2019; Amirkhani et al. 2024), object detection, and semantic segmentation 
(Xu et al. 2022). For example, Cha et al. (2018) employed fast region-based convolutional network 
(Fast R-CNN), a region-based object detection algorithm, to identify concrete cracks, corrosion, and 
steel delamination. Truong et al. (2023) used UAVs with high-resolution cameras and CNN-based 
method to identify cracks in concrete bridges. Gao et al. (2023) applied a few-shot learning approach 
with ProtoNet and transfer learning to detect bridge damage. Song et al. (2024) proposed a lightweight 
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CNN-based method to segment cracks from bridge images and achieved a high (93.3%) intersection 
over union (IoU) score. 

Despite the significance of these efforts, three primary knowledge gaps remain. First, there is a lack of 
research on segmenting and characterizing bridge components that may contain defects (Wang and El-
Gohary 2024), which is important to link the context of the defects for informed maintenance decision 
making. Second, there is a lack of pixel-level annotated bridge component segmentation datasets that 
comply with the FHWA’s inspection manual, which limits the development and evaluation of 
computer vision algorithms for bridge component segmentation (Liu and El-Gohary 2020; Wang and 
El-Gohary 2024). Furthermore, existing bridge component recognition approaches (Narazaki et al. 
2020; Narazaki et al. 2021; Bianchi and Hebdon 2022; Yu and Nishio 2022; Flotzinger et al 2024) are 
limited in generalizability when applied to diverse bridge types and background scenes, especially for 
close-range bridge inspection images, where lack some context information (Wang and El-Gohary 
2024). These factors introduce challenges and variations for the bridge component segmentation task. 
Third, while foundational models in computer vision, such as the segment anything model (SAM), 
represent a significant advancement in general-purpose segmentation tasks, they remain largely 
unexplored within the bridge inspection domain. Despite their capabilities, large vision foundation 
models lack the domain-specific training required to accurately interpret bridge component features 
and cannot assign semantic labels to segmented components, limiting their utility in real-world bridge 
inspection applications. In addition, multi-class segmentation of bridge components demands that the 
model differentiate among various visually similar components, each representing a distinct class. 
Bridge images contain different components with small visual differences, which poses more 
challenges for SAM to differentiate. 

To address these gaps, this paper proposes a segment anything model (SAM)-based image 
segmentation method to segment bridge components, which leverages SAM and the extensive pre-
training of Segment Anything 1 Billion (SA-1B) to improve feature extraction and generalizability, 
and integrates a U-Net decoder to address the challenges of multi-class bridge component 
segmentation. The proposed method was trained and tested on seven classes, according to the Federal 
Highway Administration (FHWA) Bridge Inspector’s Reference Manual (Hartle et al. 2002). 

2 Literature Review 

2.1 Image Segmentation 
Unlike other tasks in computer vision (e.g., image classification, object detection), image segmentation 
poses a greater challenge due to its requirement for pixel-level accuracy, meaning that each pixel must 
belong to one and only one class. Therefore, annotating a segmentation dataset is demanding, time-
consuming, and costly. With advancements in deep learning, several powerful models have been 
developed to solve segmentation tasks. U-Net (Ronneberger et al. 2015) is a U-shaped encoder-
decoder network architecture that comprises four encoder blocks and four decoder blocks connected 
through a bridge. This model is particularly effective when working with limited amounts of data and 
delivers precise segmentation results. DeepLabv3+ (Chen et al. 2018) employs an encoder-decoder 
structure along with atrous convolutions to complex features, enabling it to perform semantic 
segmentation on images with high resolution. Mask R-CNN (He et al. 2017) utilizes a backbone to 
extract feature maps and employs region proposal networks to scan these maps for regions that are 
likely to contain objects. Additionally, it includes a mask head to predict a segmentation mask for each 
object. Vision transformer (ViT) (Dosovitskiy et al. 2020) introduces a novel approach by applying 
transformers to image segmentation, where images are divided into patches that are processed 
sequentially to capture the global context of the image. 
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2.2 SAM 
The SAM model (Kirillov et al. 2023), developed by Meta, marks a significant advancement in the 
field of computer vision. This state-of-the-art instance segmentation model demonstrates a remarkable 
capacity for executing complex image segmentation tasks with unmatched accuracy and flexibility. 
SAM’s innovative design enables it to adapt to new image distributions and tasks without any prior 
training, a feature referred to as zero-shot transfer. It was pre-trained on a large dataset, the Segment 
Anything 1 Billion (SA-1B), which contains 11M images and 1.1 billion masks. Based on the 
generalization capabilities of SAM, several studies explored its application in the construction domain. 
For instance, Ye et al. (2024) introduced two novel SAM-based instance segmentation methods aimed 
at automating masonry crack detection. Similarly, Ahmadi et al. (2024) applied SAM for crack 
detection in concrete. 

2.3 Transfer Learning 
Transfer learning is a widely adopted approach in deep learning, enabling a model trained on a large-
scale dataset in a source domain to serve as the foundation for a model developed on a downstream 
task within a target domain (Iman et al. 2023). This process leverages the broad, generalized data 
representations learned from extensive datasets, such as ImageNet (Deng et al. 2009), to facilitate 
effective model adaptation in more specialized domains. It is commonly utilized in deep learning to 
tackle challenges associated with limited data availability, as deep learning models typically require 
substantial amounts of data for training, which can be both costly and difficult to obtain. Transfer 
learning can be classified into two main categories: pre-training and finetuning. Pre-training involves 
initializing the model with weights from a previously trained, general-purpose model by providing 
foundational knowledge into a new domain (Hou et al. 2020). Finetuning involves refining the model’s 
parameters with labeled data from the target domain, allowing it to adapt more precisely to the specific 
features of a task (Wang et al. 2023). This refinement significantly enhances the model’s performance 
for that task compared to a general-purpose pre-trained model. 

3 Proposed SAM-based Method for Bridge Component Segmentation 

This paper proposes a SAM-based image segmentation method for recognizing and segmenting bridge 
components from bridge inspection images. The proposed method includes three primary steps: (1) 
data collection and annotation: the dataset was collected and annotated for developing and evaluating 
segmentation models that can perform multi-class recognition of seven bridge components; (2) bridge 
component segmentation: this paper employs a transfer learning strategy using a SAM model 
integrated with a U-Net decoder, pre-trained on the extensive Segment Anything 1 Billion (SA-1B) 
dataset; and (3) evaluation. 

3.1 Data Collection and Preprocessing 
The study utilized image data collected from the Washington Department of Transportation (WSDOT) 
and the Ohio Department of Transportation (ODOT) through web scraping systems developed by the 
author. After filtering out low-resolution images and those that do not contain classes of interest, the 
combined dataset contains 1,000 bridge inspection images. The images feature complex backgrounds 
and varied environmental contexts, which introduce additional challenges for segmentation. The 
dataset also includes a range of shot types, from wide-angle views that capture entire bridge spans to 
close-up images focusing on specific components. This diversity helps in training and evaluating the 
model’s ability to generalize across different bridge structures, backgrounds, and image scales. To 
meet the input size requirements of the SAM-based segmentation method, all images were resized to 
a uniform resolution of 1024×1024 pixels. 
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3.2 Bridge Component Categories and Data Annotation 
The FHWA’s Bridge Inspector’s Reference Manual (Hartle et al. 2002) provides detailed and 
standardized instructions for inspecting and evaluating bridges. It covers eight types of bridge 
components, including backgrounds, bearings, abutments, decks, piers/bents, primary superstructure 
members, and secondary superstructure members. Typical primary members are responsible for 
carrying primary live loads from vehicles. They include girders, floorbeams, stringers, trusses, 
spandrel girders, spandrel columns or bents, arch ribs, rib chord bracing, hangers, frame girders, frame 
legs, frame knees, and pin and hanger links (Hartle et al. 2002). In contrast, secondary members do 
not typically bear traffic loads directly. They include elements such as diaphragms, cross or X-bracing, 
lateral bracing, sway-portal bracing, and assemblies (e.g., through bolts, pin caps, nuts, cotter pins on 
small assemblies, spacer washers, doubler plates) (Hartle et al. 2002). The images utilized in this study 
were annotated at a per-pixel level using the Labelme tool (Russell et al. 2008). Figure 1 shows 
examples of these annotated images. 

 
Figure 1. Examples of original images and annotated bridge components. 

3.3 Model Architecture 
In this study, the SAM was adapted with a custom U-Net decoder to address challenges in bridge 
component segmentation, where SAM’s original prompt-driven architecture falls short. The original 
SAM architecture comprises three components: an image encoder, a prompt encoder, and a mask 
decoder. The image encoder, which serves as the core of the model, employs a base ViT model for 
enhanced scalability. This base ViT model consists of 12 transformer layers, each containing a multi-
head self-attention block and a multilayer perceptron (MLP) block that incorporates layer 
normalization (Ma et al. 2024). The output from this encoder is a feature embedding that is a 16× 
downscaled representation of the original image. The model takes input with a resolution of 
1024×1024×3, and transforms it into a dense embedding of size 64×64×256. 

While SAM’s prompt encoder and mask decoder are effective for general segmentation, they lack 
domain-specific understanding of bridge components and are unable to assign semantic labels 
independently, limiting their effectiveness in inspection tasks that demand class-specific pixel-level 
prediction. To address this, a U-Net decoder was selected for its hierarchical upsampling structure, for 
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restoring spatial detail and resolving class boundaries in pixel-level segmentation. The custom U-Net 
decoder consists of four bilinear upsampling layers progressively increasing resolution. Each 
upsampling layer is followed by convolution, layer normalization, and ReLU activation to refine 
features, stabilize training, and introduce non-linearity as SAM’s feature embeddings are expanded. 
Additionally, dropout (with a drop rate of 0.2) is applied to improve generalization, and the final output 
is a 1024×1024×7 tensor, where each channel represents a distinct bridge component class. This design 
enhances SAM’s capability, making it suitable for multi-class bridge inspection images. 

3.4 Training Strategy 
Transfer learning was employed, with the model’s optimal performance achieved by freezing 
parameter layers. In the parameter layer freezing approach, the entire encoder layer was frozen, except 
for the encoder neck, which consists of several convolutional layers and normalization techniques for 
feature extraction. The weights of the encoder neck and decoder parameters were updated during the 
training process.  

Minimizing focal loss was set as the training objective to handle class imbalance issues encountered 
in bridge inspection images. Focal loss modulates the standard cross-entropy loss by emphasizing 
harder-to-classify examples, thereby reducing the relative loss contribution from well-classified 
examples. This approach helps the model focus on misclassified examples, which is useful in datasets 
where certain bridge component classes may be underrepresented. The focal loss function applies a 
scaling factor of (1 −  𝑝𝑝)𝛾𝛾 to the cross-entropy loss, where 𝑝𝑝 is the predicted probability for the true 
class. α is a weighting factor that adjusts the importance of the minority classes, and 𝛾𝛾 is a focusing 
parameter that adjusts the rate at which easy examples are down-weighted (Ross and Dollár 2017). In 
this implementation, α is set to 0.75, to provide additional weight to less frequent classes. 𝛾𝛾 is set to 5, 
making the model more sensitive to difficult, low-confidence predictions. 

The formula for focal loss used in training is as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  − α ×  (1 −  𝑝𝑝)𝛾𝛾 ×  y ×  log (𝑝𝑝)                                                   (1) 

where y represents the target label, and 𝑝𝑝 is the predicted probability, smoothed with a small constant 
(1e-8) to avoid undefined behavior in log operations. This setup ensures robust performance on class-
imbalanced datasets, improving the model’s ability to segment and classify various bridge components 
accurately. 

3.5 Model Evaluation 
The performance of bridge component segmentation was assessed by comparing it with the ground 
truth labeling masks using four metrics: precision (P), recall (R), F-1 measure, and Intersection-over-
Union (IoU). Precision is the proportion of correctly segmented and classified pixels to all predicted 
pixels. Recall is calculated as the ratio of the number of segmented and classified pixels to the total 
number of pixels that should be segmented and classified. The harmonic mean of them is known as 
the F-1 measure, also called the Dice score. To address data imbalance among different classes, 
performance was assessed using a macro average of accuracy, recall, and F-1 measure in order to 
prevent the majority classes (those with more occurrences) from misrepresenting the results. 

Intersection over Union (IoU), also known as the Jaccard index, is a widely used metric to assess the 
effectiveness of semantic segmentation. It calculates the ratio of the overlapping pixels between the 
ground truth and predicted masks to the total number of pixels in both masks. The IoU value ranges 
from 0 to 1, with 0 indicating no overlap and 1 indicating complete overlap. The mean Intersection 
over Union (mIoU) is calculated as the macro average of the IoU values for each class.   
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4 Preliminary Experimental Results and Discussion 

The experiments were carried out on the University of Illinois Urbana-Champaign’s National Center 
for Supercomputing Applications (NCSA) Delta GPU through advanced cyberinfrastructure 
coordination ecosystem: services & support (ACCESS), which consists of a single AMD 64-core 2.45 
GHz Milan processor, and one NVIDIA A100 GPU with 40 GB HBM2 RAM (Boerner et al. 2023). 
The random seed and PyTorch manual seed were both set to 0. The cuDNN.deterministic option was 
enabled to ensure that cuDNN uses deterministic convolution algorithms while cuDNN.benchmark 
was disabled to prevent the dynamic selection of cuDNN. The dataset was then divided into training 
and testing sets using a 9:1 ratio, resulting in 900 training and 100 testing images. Additionally, the 
Adam optimizer was employed with a learning rate of 0.0001. The model was trained for 25 epochs.  

The performance results are summarized in Table 1. The results demonstrate that the proposed SAM-
based method performed better on certain categories, such as bearing, primary members, and 
secondary members. These classes showed higher precision, recall, F-1 score, and IoU, with precision 
scores over 85%. Specifically, the background class achieved a recall of 94.0%, while bearing achieved 
a relatively balanced precision and recall, resulting in an F-1 score of 80.9% and an IoU of 68.0%. 
This indicates that the model accurately captured these components, with sufficient distinction between 
the classes. However, the model struggled with other classes, such as abutment, deck, and pier/bent, 
where precision was relatively high, but recall was considerably lower. For example, abutment showed 
a high precision of 89.6% but a low recall of 33.6%, resulting in an F-1 score of 48.9% and an IoU of 
30.9%. Similarly, the deck showed a precision of 75.7% but a recall of only 48.7%, with an F-1 score 
of 59.3% and an IoU of 40.3%. This suggests that while the model accurately identified instances 
within these classes, it tended to under-segment and miss some true positives. This issue may be due 
to the visual similarities (both concrete materials), which are particularly challenging for components 
like abutments and pier/bent. Overall, the mean F-1 score is 66.2%, indicating a moderate balance 
between precision and recall across classes. The mean IoU of 49.7% reflects a fair overlap between 
the predicted masks and ground truth masks, suggesting that while the model was effective for many 
classes, it could benefit from further adaptation and enhancement to improve recall for under-
segmented classes and performance in the segmentation of smaller, more visually similar bridge 
components. 

Table 1. Model performance on bridge component segmentation. 

Class Proposed SAM-based method 
Precision Recall F-1  IoU 

Background 77.8% 94.0% 85.1% 75.9% 
Abutment 89.6% 33.6% 48.9% 30.9% 
Bearing 87.2% 75.4% 80.9% 68.0% 
Deck 75.7% 48.7% 59.3% 40.3% 
Pier/bent 90.1% 39.7% 55.1% 33.7% 
Primary member 86.9% 63.2% 73.2% 55.2% 
Secondary member 91.4% 45.5% 60.8% 43.9% 
Mean 85.5% 57.2% 66.2% 49.7% 

 
Figure 2 shows visual examples of the segmentation results of the proposed SAM-based method for 
bridge component segmentation. For the first example, the predicted segmentation mask accurately 
identifies the primary structure components, with piers/bents and bearings, although missing some true 
positives, and misclassifies concrete deck as abutment. For the example in the second row, the 
segmentation mask successfully captures bearing and secondary structure members. The third row 
shows a failure case, illustrating areas where the segmentation model struggles. The predicted 
segmentation mask in the center demonstrates a significant misclassification by recognizing the pier 
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as an abutment and blending into other classes (e.g., primary member) due to visual similarities (both 
concrete). Besides that, secondary structural members are visible but partially occluded, and thus, some 
secondary components are incorrectly labeled in the prediction. This failure case suggests that the 
model encounters challenges when components are visually similar (e.g., same material), thin, or 
partially occluded, leading to confusion between classes. Overall, this example demonstrates the 
model’s strength in segmenting larger, clearly defined components while highlighting limitations in 
accurately distinguishing occluded or visually similar bridge components. 

 
Figure. 2. Visualization of proposed method on some test images: (a) Original Image; (b) Ground Truth Mask; (c) 

Predicted Mask. 

5 Conclusions and Further Work 

In this paper, the authors proposed a SAM-based image segmentation method to recognize and 
segment bridge components, which leverages extensive pre-training of the SAM to improve feature 
extraction and generalizability. To address the challenges of multi-class bridge component 
segmentation, a U-Net decoder was integrated, providing detailed spatial reconstruction for component 
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segmentation. A total of 1,000 bridge inspection images were collected from WSDOT and ODOT and 
precisely annotated. A transfer learning technique was used to transfer visual knowledge from Segment 
Anything 1 Billion (SA-1B), a large-scale dataset, to the domain-specific bridge component 
segmentation problem. The proposed method achieved a mean precision, recall, F-1 measure, and IoU 
of 85.5%, 57.2%, 66.2%, and 49.7%, respectively, which indicates promising performance in semantic 
segmentation of bridge components, on average. However, it has some limitations that need to be 
addressed in future research. First, the dataset used for training and testing the network is relatively 
small. Second, the model suffered from differentiating certain visual similarity classes (e.g., decks, 
piers/bents, and abutments). Third, while SAM demonstrated strong performance in general 
segmentation, it still limits performance and has room to improve in the civil infrastructure domain. 
Moreover, the SAM-based method failed to recognize very thin objects, such as joints, from the bridge 
inspection images due to the small occupancy of their pixels, and they often resemble adjacent 
components (e.g., decks).  

To address these limitations, the authors plan to include additional bridge inspection images from 
diverse sources or regions and employ data augmentation techniques to enhance the model’s 
generalizability. Furthermore, the authors plan to explore more network architectures and techniques 
to effectively handle imbalanced images, which can be modified and tailored to bridge inspection 
images, thereby achieving enhanced accuracy and robustness. 

6 Acknowledgements 

The authors would like to thank the National Science Foundation (NSF). This paper is based on work 
supported by NSF under Grant No. 2305883. This work used NCSA Delta GPU at the University of 
Illinois Urbana-Champaign through allocation CIV230015 from the Advanced Cyberinfrastructure 
Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National 
Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296. Any opinions, 
findings, and conclusions or recommendations expressed in this material are those of the authors and 
do not necessarily reflect the views of NSF. 

7 References 

Ahmadi, M., A. G. Lonbar, H. K. Naeini, A. T. Beris, M. Nouri, A. S. Javidi, and A. Sharifi. 2024. 
Application of Segment Anything Model for Civil Infrastructure Defect Assessment. arXiv. 

Amirkhani, D., Allili, M. S., Hebbache, L., Hammouche, N., and Lapointe, J. F. (2024). Visual 
Concrete Bridge Defect Classification and Detection Using Deep Learning: A Systematic Review. 
IEEE Trans. Intell. Transp. Syst. 

Bai, M. and Sezen, H. 2021. Detecting cracks and spalling automatically in extreme events by end-to-
end deep learning frameworks. Proc., ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., XXIV 
ISPRS Congress, International Society for Photogrammetry and Remote Sensing. 

Bianchi, E. and Hebdon, M. 2022. Visual Structural Inspection Datasets. Autom. Constr., 139, 104299. 
Boerner, T., S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns. (2023). “ACCESS: Advancing 

Innovation: NSF’s Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support.”  
In Proc., Practice and Experience in Advanced Research Computing (PEARC ’23), July 23–27, 
2023, Portland, OR, USA. ACM, New York, NY, USA, 4 pages.  

Cha, Y.-J., Choi, W. and Büyüköztürk, O. 2017. Deep Learning-Based Crack Damage Detection Using 
Convolutional Neural Networks. Comput.-Aided Civ. Infrastruct. Eng., 32(5), 361-378. 

Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S. and Büyüköztürk, O. 2018. Autonomous Structural 
Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. 
Comput.-Aided Civ. Infrastruct. Eng., 33(9), 731-747. 



 

Proc. of the 23rd CIB World Building Congress, 19th – 23rd May 2025, Purdue University, West Lafayette, USA 9 

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. 2018. Encoder-decoder with atrous 
separable convolution for semantic image segmentation. Proc., European conference on computer 
vision (ECCV). 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. 2009. ImageNet: A large-scale 
hierarchical image database. Proc., 2009 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. 
Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. 2021. An Image is Worth 16x16 
Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv: 2010.11929. 

Flotzinger, J., Rösch, P. J., and Braml, T. 2024. dacl10k: benchmark for semantic bridge damage 
segmentation. Proc., IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 8626-
8635). 

Gao, Y., Li, H., and Fu, W., 2023. Few-shot learning for image-based bridge damage detection. Eng. 
Appl. Artif. Intell., 134, 107078. 

Hartle, R. A., Ryan, T. W., Mann, E., Danovich, L. J., Sosko, W. B., & Bouscher, J. W. 2002. Bridge 
Inspector’s Reference Manual: Volume 1 and Volume 2. United States Department of 
Transportation. https://rosap.ntl.bts.gov/view/dot/54492 [Accessed 13Nov.2024] 

He, K., G. Gkioxari, P. Dollár, and R. Girshick. 2017. Mask R-CNN. Proc. IEEE Int. Conf. Comput. 
Vision. 

Hou, S., B. Dong, H. Wang, and G. Wu. 2020. Inspection of surface defects on stay cables using a 
robot and transfer learning. Autom. Constr., 119: 103382.  

Iman, M., H. R. Arabnia, and K. Rasheed. 2023. A Review of Deep Transfer Learning and Recent 
Advancements. Technol., 11 (2): 40. 

Kirillov, A., E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, 
W.-Y. Lo, P. Dollár, and R. Girshick. 2023. Segment Anything. Preprint, submitted Apr 5, 2023. 

Liu, P. C.-Y. and El-Gohary, N. 2020. “Semantic Image Retrieval and Clustering for Supporting 
Domain-Specific Bridge Component and Defect Classification.” Proc., Construction Research 
Congress 2020: Infrastructure Systems and Sustainability, American Society of Civil Engineers 
Reston, VA. 

Ma, J., Y. He, F. Li, L. Han, C. You, and B. Wang. 2024. Segment anything in medical images. Nat 
Commun, 15 (1): 654. Nature Publishing Group. 

Narazaki, Y., Hoskere, V., Hoang, T. A., Fujino, Y., Sakurai, A. and Spencer, B. F. 2020. Vision‐
Based Automated Bridge Component Recognition with High ‐ Level Scene Consistency. 
Comput.-Aided Civ. Infrastruct. Eng., 35(5), 465-482. 

Narazaki, Y., Hoskere, V., Yoshida, K., Spencer, B. F. and Fujino, Y. 2021. Synthetic Environments 
for Vision-Based Structural Condition Assessment of Japanese High-Speed Railway Viaducts. 
Mech. Syst. Signal Process., 160, 107850. 

Ohio Department of Transportation. State of Ohio Bridge Photos. https://brphotos.dot.state.oh.us/ 
Russell, B. C., Torralba, A., Murphy, K. P. and Freeman, W. T. 2008. “LabelMe: a database and web-

based tool for image annotation.” Int. J. Comput. Vis., 77(1), 157-173. 
Ronneberger, O., P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for Biomedical Image 

Segmentation.  Med. Image Comput. Comput.-Assisted Intervention–MICCAI 2015: 18th 
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, Springer. 

Ross, T.Y. and Dollár, G.K.H.P., 2017, July. Focal loss for dense object detection. Proc., IEEE 
conference on computer vision and pattern recognition (pp. 2980-2988). 

Song, F., Sun, Y. and Yuan, G., 2024. Autonomous identification of bridge concrete cracks using 
unmanned aircraft images and improved lightweight deep convolutional networks. Struct. Control 
Health Monit., 2024(1), p.7857012. 

Spencer, B. F., Hoskere, V. and Narazaki, Y. 2019. Advances in Computer Vision-Based Civil 
Infrastructure Inspection and Monitoring. Engineering, 5(2), 199-222. 

https://rosap.ntl.bts.gov/view/dot/54492


 

Proc. of the 23rd CIB World Building Congress, 19th – 23rd May 2025, Purdue University, West Lafayette, USA 10 

Truong, C. T., Dang, M. Q., Pham, T. P., Do, P. V., and Tran, H. Q., 2023. A novel automated crack 
identification method for concrete bridge structure using an unmanned aerial vehicle, In: IOP 
Conference Series: Materials Science and Engineering, August 1, Tran Phu Bridge. IOP 
Publishing, 1289(1), 012037. 

Wang, S., and El-Gohary, N. 2024. Semantic Segmentation of Bridge Components from Various Real 
Scene Inspection Images. Proc., 2024 ASCE CI & Construction Research Congress (CRC) Joint 
Conference, Des Moines, IA, March 20-23, 2024. 

Wang, T., and V. J. L. Gan. 2023. Automated joint 3D reconstruction and visual inspection for 
buildings using computer vision and transfer learning. Autom. Constr.,149: 104810.  

Xu, X., Zhao, M., Shi, P., Ren, R., He, X., Wei, X. and Yang, H. 2022. Crack Detection and 
Comparison Study Based on Faster R-CNN and Mask R-CNN. Sensors, 22(3), 1215. 

Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. 2019. Surface fatigue crack identification in steel box 
girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera 
images. Struct. Health Monit., 18(3), 653-674. 

Ye, Z., L. Lovell, A. Faramarzi, and J. Ninić. 2024. Sam-based instance segmentation models for the 
automation of structural damage detection. Adv. Eng. Inf., 62: 102826. 

Yu, W. and Nishio, M. 2022. Multilevel Structural Components Detection and Segmentation toward 
Computer Vision-Based Bridge Inspection. Sensors, 22(9), 3502. 

Zhang, C., Karim, M. M., and Qin, R. 2023. A multitask deep learning model for parsing bridge 
elements and segmenting defect in bridge inspection images. Transp. Res. Rec., 2677(7), 693-704. 


	1 Introduction
	2 Literature Review
	2.1 Image Segmentation
	2.2 SAM
	2.3 Transfer Learning

	3 Proposed SAM-based Method for Bridge Component Segmentation
	3.1 Data Collection and Preprocessing
	3.2 Bridge Component Categories and Data Annotation
	3.3 Model Architecture
	3.4 Training Strategy
	3.5 Model Evaluation

	4 Preliminary Experimental Results and Discussion
	Table 1. Model performance on bridge component segmentation.

	5 Conclusions and Further Work
	6 Acknowledgements
	7 References

