
1 
 

Design And Analysis of Longitudinal Multisite Randomized Trials: Estimation, Statistical 
Power, and Optimal Sample Size 

 
Wei Li, University of Florida, wei.li@coe.ufl.edu  

Spyros Konstantopoulos, Michigan State University, spyros@msu.edu  
Zuchao Shen, University of Georgia, zuchao.shen@gmail.com  

 
 
Background 
 
Longitudinal multisite experimental designs are commonly employed in educational 
interventions, where, for example, students from the same schools are randomly assigned to 
either a treatment or control group and subsequently followed and measured over time. One 
objective of longitudinal studies is to examine how treatment effects evolve over time. 
Considering the typical nested data structure in multisite longitudinal studies (e.g., repeated 
measures nested within students nested within schools), multilevel models (MLM) with site 
random effects have been traditionally used to estimate the treatment effects on the linear or 
nonlinear rates of change (e.g., Raudenbush & Liu, 2001). Recent discussions on the design and 
analysis of multisite experimental studies (e.g., Miratrix, Weiss, & Henderson, 2021) suggested 
setting site effects fixed (e.g., site dummy variables) because of the concerns about potential 
correlations between treatment indicator and the site random effect. For example, the demand for 
a particular treatment might be higher for some schools than others, in which case the treatment 
is correlated with site characteristics represented by the site random effects in MLMs (Miratix et 
al., 2021).    
 
A crucial consideration in designing longitudinal experiments is determining the sample size 
allocation across levels and treatment conditions to ensure sufficient power to detect the effect of 
interest. Researchers typically plan their longitudinal studies with budget constraints in mind, as 
different sampling plans under the same budget can yield varying levels of statistical power. 
Prior studies have developed statistical power computation formulas to detect the main effects 
for three-level longitudinal multisite experiments using MLMs with random site effects (e.g., Li 
& Konstantopoulos, 2019). However, similar methods for the models with fixed site effects are 
lacking. Additionally, the optimal sample size computation methods under budget constraints for 
longitudinal multisite experiments have not been developed.  

 
Purpose and Significance  
 
This study contributes to the literature by providing methods of computing the statistical power 
and optimal sample sizes for longitudinal three-level multisite experiments (e.g., repeated 
measures, students, and schools) and implementing these methods into an R package to assist 
applied researchers in planning longitudinal experiments. 
 
Research Design  
 
Following prior literature in cross-sectional designs, this study considers three alternative 
methods to estimate the treatment effect on the linear rate of change: three-level growth model, 
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constant effect model, and  fixed effect model. Specifically, the three-level random effect model 
is  

 
Level 1 (repeated measures): 

𝑌𝑔𝑖𝑗 = 𝛼0𝑖𝑗 + 𝛼1𝑖𝑗𝑐1𝑔 + 𝑒𝑔𝑖𝑗, 𝑒𝑔𝑖𝑗~𝑁(0, 𝜎𝑒
2),                                                       (1) 

                                                                                              
 Level 2 (students): 

𝛼0𝑖𝑗 = 𝛽00𝑗 + 𝛽01𝑗𝑇𝑖𝑗 + 𝐗𝑖𝑗𝚩01 + 𝜉𝐴0𝑖𝑗, 𝜉𝐴0𝑖𝑗~𝑁(0, 𝜏0|𝑇,𝐗
2 ),                              (2) 

  𝛼1𝑖𝑗 = 𝛽10𝑗 + 𝛽11𝑗𝑇𝑖𝑗 + 𝐗𝑖𝑗𝚩11 + 𝜉𝐴1𝑖𝑗, 𝜉𝐴1𝑖𝑗~𝑁(0, 𝜏1|𝑇,𝐗
2 ),                              (3) 

 
Level 3 (schools):  

𝛽00𝑗 = 𝛾000 + 𝐙𝑗𝚪001 + 𝑢𝐴00𝑗, 𝑢𝐴00𝑗~𝑁(0, 𝜔00|𝐙
2 ),                                            (4) 

𝛽01𝑗 = 𝛾010 + 𝐙𝑗𝚪011 + 𝑢𝐴01𝑗, 𝑢𝐴10𝑗~𝑁(0, 𝜔10|𝐙
2 ),                                            (5) 

𝛽10𝑗 = 𝛾100 + 𝐙𝑗𝚪101 + 𝑢𝐴10𝑗, 𝑢𝐴00𝑗~𝑁(0, 𝜔01|𝐙
2 ),                                            (6) 

𝛽11𝑗 = 𝛾110 + 𝐙𝑗𝚪111 + 𝑢𝐴11𝑗, 𝑢𝐴10𝑗~𝑁(0, 𝜔11|𝐙
2 ),                                            (7) 

 
where 𝑐1𝑔 is a measure of time centered at the mid-timepoint, 𝑇𝑖𝑗 is a binary treatment indicator, 
𝐗𝑖𝑗 is a vector of student-level covariates, 𝐙𝑗 is a vector of school-level covariates. The 
parameter of interest is 𝛾110, representing the treatment effect on the linear rate of change that is 
randomly varying among schools.  
 
For the constant effect, the level-1 and level-2 models are the same as Equations 1-3, and the 
level-3 equations are:  
 
Level 3 (schools):  
 

𝛽00𝑗 = 𝛾000 + ∑𝑠𝑖𝑡𝑒𝑗,                                                                                        (8) 
𝛽01𝑗 = 𝛾010,                                                                                                        (9) 
𝛽10𝑗 = 𝛾100 + ∑𝑠𝑖𝑡𝑒𝑗,                                                                                       (10) 
𝛽11𝑗 = 𝛾110,                                                                                                       (11) 

 
where 𝑠𝑖𝑡𝑒𝑗 represents the site dummy variable that are grand centered. This model assumes the 
treatment effect on the linear rate of change is a constant (𝛾110) across sites.  
 
The fixed model also has the same level-1 and level-2 equations as Equations 1-3, and the level-
3 equations become:  
   
Level 3 (schools):  
 

𝛽00𝑗 = 𝛾000 + ∑𝑠𝑖𝑡𝑒𝑗,                                                                                        (12) 
𝛽01𝑗 = 𝛾010 + ∑𝑠𝑖𝑡𝑒𝑗,                                                                                        (13) 
𝛽10𝑗 = 𝛾100 + ∑𝑠𝑖𝑡𝑒𝑗,                                                                                         (14) 
𝛽11𝑗 = 𝛾110 + ∑𝑠𝑖𝑡𝑒𝑗,                                                                                         (15) 
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This model assumes the treatment effects non-randomly vary across sites and each site has its 
specific treatment effect.  
 
Results:  
 
Power Computation. We can test whether 𝛾110 = 0 using a t-test. Assuming the alternative 
hypothesis is true, the test statistic follows a non-central t-distribution, 𝑻′, with a non-centrality 
parameter:        
 

λ̂ =
𝛾̂110

√𝑉𝑎𝑟(𝛾̂110)
.                                                                                                                   (16) 

 
Under these specifications, the statistical power of a two-tailed test is (note 𝑡0 = 𝑡1−

𝛼

2
,𝑑𝑓) 

 
Power = 1 – P [𝑇′(𝑑𝑓, λ̂) < 𝑡0] + P [𝑇′(𝑑𝑓, λ̂) ≤  −𝑡0].                                              (17)     

           
where df is the degrees of freedom for the test.  
 
Table 1 summarizes the formulas of 𝑉𝑎𝑟(𝛾110), the non-standardized non-centrality parameters 
and degrees of freedom (DF) for three models. We omit the procedure of standardizing the non-
centrality parameters because of the word limit. As shown in Table 1, the non-centrality 
parameters for constant effect model and fixed effect model are the same, but their DFs are 
different. We will implement the formulas in Table 1 into a R package for applied researchers to 
plan longitudinal multisite experiments.  
 
Optimal Sample Sizes. Suppose there are J level-3 units, n level-2 units within each level-3 units, 
and G repeated measures within each level-2. Let p represent the proportion of level-2 units in 
the treatment group. Then, the budget to collect data is  
 

𝐵 = 𝐽[𝑃(𝑏1
𝑇𝑛𝐺 + 𝑏2

𝑇𝑛) + (1 − 𝑃)(𝑏1𝑛𝐺 + 𝑏2𝑛) + +𝑏3
𝑇],                                              (18) 

 
where the superscript T represents the treatment; 𝑏1

𝑇, 𝑏2
𝑇, 𝑏3

𝑇, 𝑏1, 𝑏2, and 𝑏3 represent the budget 
to collect the data for one additional level-1, level-2, or level-3 unit in the treatment or control 
group, respectively. We can minimize 𝑉𝑎𝑟(𝛾110) under a budget constrain (e.g., equation 18) 
with respect to J, G, n, and P, using the method of Lagrange Multiplier (Cochran, 1977) to 
compute the optimal sample size allocation:  

 
𝐿(𝐽, 𝑛, 𝐺, 𝑃) = 𝑉𝑎𝑟(𝛾110) + Λ(𝐵 − 𝐵𝑐𝑎𝑝),                                                          (19) 

 
where Λ is the Lagrange Multiplier and 𝐵𝑐𝑎𝑝 represents the budget limit. The derivatives result in 
no-closed-form solutions, as presented by Shen & Kelcey (2020). However, we can further solve 
the numerical problems through the uniroot function in R along with iterations (Shen & Kelcey, 
2020). Illustrative examples will be provided to demonstrate the applicability of the methods and 
tools in power and optimal sampling computations. 
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Table 1. Summary of the Standardized Noncentrality Parameter, MDES, and Degrees of Freedom 
 

Model 𝑉𝑎𝑟(𝛾110) 
Non-Standardized Non-Centrality 

Parameter () Degree of Freedom 

Three-level growth 
model 

𝑉𝑎𝑟(𝛾110) =
1

𝐽𝑛
(𝑛𝜔11|𝐙

2 + 𝜙𝜏1|𝑇,𝐗
2 + 𝜙𝜎1

2) 𝜆 = 𝛾110√
𝐽𝑛

𝑛𝜔11|𝐙
2 + 𝜙𝜏1|𝑇,𝐗

2 + 𝜙𝜎1
2 𝐽 − 𝑔3 − 1 

Constant effect model 𝑉𝑎𝑟(𝛾110) =
𝜙

𝐽𝑛
(𝜏1|𝑇,𝐗

2 + 𝜎1
2) 𝜆 = 𝛾110√

𝐽𝑛

𝜙𝜏1|𝑇,𝐗
2 + 𝜙𝜎1

2 𝐽𝑛 − 𝐽 − 𝑔2 − 1 

Fixed effect model 𝑉𝑎𝑟(𝛾110) =
𝜙

𝐽𝑛
(𝜏1|𝑇,𝐗

2 + 𝜎1
2) 𝜆 = 𝛾110√

𝐽𝑛

𝜙𝜏1|𝑇,𝐗
2 + 𝜙𝜎1

2 𝐽𝑛 − 2𝐽 − 𝑔2 − 1 

Note: (1) 𝜙 =
1

𝑝(1−𝑝)
. (2) 𝜎1

2 =
𝜎𝑒

2

∑𝑐1𝑔
2 . (3) 𝑔3 represents the number of covariates at level 3 and 𝑔2 represents the number of covariates at 

level 2.  


