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Background

Longitudinal multisite experimental designs are commonly employed in educational
interventions, where, for example, students from the same schools are randomly assigned to
either a treatment or control group and subsequently followed and measured over time. One
objective of longitudinal studies is to examine how treatment effects evolve over time.
Considering the typical nested data structure in multisite longitudinal studies (e.g., repeated
measures nested within students nested within schools), multilevel models (MLM) with site
random effects have been traditionally used to estimate the treatment effects on the linear or
nonlinear rates of change (e.g., Raudenbush & Liu, 2001). Recent discussions on the design and
analysis of multisite experimental studies (e.g., Miratrix, Weiss, & Henderson, 2021) suggested
setting site effects fixed (e.g., site dummy variables) because of the concerns about potential
correlations between treatment indicator and the site random effect. For example, the demand for
a particular treatment might be higher for some schools than others, in which case the treatment
is correlated with site characteristics represented by the site random effects in MLMs (Miratix et
al., 2021).

A crucial consideration in designing longitudinal experiments is determining the sample size
allocation across levels and treatment conditions to ensure sufficient power to detect the effect of
interest. Researchers typically plan their longitudinal studies with budget constraints in mind, as
different sampling plans under the same budget can yield varying levels of statistical power.
Prior studies have developed statistical power computation formulas to detect the main effects
for three-level longitudinal multisite experiments using MLMs with random site effects (e.g., Li
& Konstantopoulos, 2019). However, similar methods for the models with fixed site effects are
lacking. Additionally, the optimal sample size computation methods under budget constraints for
longitudinal multisite experiments have not been developed.

Purpose and Significance

This study contributes to the literature by providing methods of computing the statistical power
and optimal sample sizes for longitudinal three-level multisite experiments (e.g., repeated
measures, students, and schools) and implementing these methods into an R package to assist
applied researchers in planning longitudinal experiments.

Research Design

Following prior literature in cross-sectional designs, this study considers three alternative
methods to estimate the treatment effect on the linear rate of change: three-level growth model,
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constant effect model, and fixed effect model. Specifically, the three-level random effect model
is

Level 1 (repeated measures):
Ygij = Qoij + @1ijC1g + €gij» €4ij~N(0,08), (1)

Level 2 (students):

@oij = Booj + Bo1jTij + XijBo1 + $a0ij> $a0ij~N (0, Tg|T,X)a (2)

a1ij = Proj + B11;Tij + XijBu1 + Eanij» Ea1ij~N (0, T5ir.%), 3)
Level 3 (schools):

ﬁooj = Yooo + Z;jTo01 + Uaooj> quoj“'N(O: C0(2)0|z)a 4)

Bo1j = Yo1o + ZjTo11 + Uap1j> Ua10;~N (O, w%o|z): (%)

B1oj = Y100 + Z;iT101 + Ua10j5 Uaooj~N (0, wguz)a (6)

,311j = Y110 + Z;jT111 + Ugq4js uAleNN(O' w%uz)a (7

where ¢, 4 1s a measure of time centered at the mid-timepoint, T;; is a binary treatment indicator,
X;; is a vector of student-level covariates, Z; is a vector of school-level covariates. The

parameter of interest is y;1, representing the treatment effect on the linear rate of change that is
randomly varying among schools.

For the constant effect, the level-1 and level-2 models are the same as Equations 1-3, and the
level-3 equations are:

Level 3 (schools):

Booj = Yooo + LSite;, (8)
:301j = Yo10> ©)
B1oj = Y100 T+ XSite;, (10)
:Bllj = Y110, (11)

where site; represents the site dummy variable that are grand centered. This model assumes the
treatment effect on the linear rate of change is a constant (1) across sites.

The fixed model also has the same level-1 and level-2 equations as Equations 1-3, and the level-
3 equations become:

Level 3 (schools):

Booj = Yooo + LSite;, (12)
Bo1j = Yo10 + LSite;, (13)
B1ioj = Y100 T+ XSite;, (14)
B11j = Y110 T+ 2Site;, (15)



This model assumes the treatment effects non-randomly vary across sites and each site has its
specific treatment effect.

Results:

Power Computation. We can test whether 7;,, = 0 using a z-test. Assuming the alternative
hypothesis is true, the test statistic follows a non-central z-distribution, T’, with a non-centrality
parameter:

o Y110
AN = (10)

Under these specifications, the statistical power of a two-tailed test is (note ty =t _a df)
>

Power=1-P[T'(df, X) < to] + P[T'(df, X) < —to]. (17)
where df‘is the degrees of freedom for the test.

Table 1 summarizes the formulas of Var(y;1,), the non-standardized non-centrality parameters
and degrees of freedom (DF) for three models. We omit the procedure of standardizing the non-
centrality parameters because of the word limit. As shown in Table 1, the non-centrality
parameters for constant effect model and fixed effect model are the same, but their DFs are
different. We will implement the formulas in Table 1 into a R package for applied researchers to
plan longitudinal multisite experiments.

Optimal Sample Sizes. Suppose there are J level-3 units, n level-2 units within each level-3 units,
and G repeated measures within each level-2. Let p represent the proportion of level-2 units in
the treatment group. Then, the budget to collect data is

B = J[P(bTnG + bIn) + (1 — P)(binG + b,yn) + +b1], (18)

where the superscript T represents the treatment; bl , bT, bl b;, b,, and b represent the budget
to collect the data for one additional level-1, level-2, or level-3 unit in the treatment or control
group, respectively. We can minimize Var(7;10) under a budget constrain (e.g., equation 18)
with respect to J, G, n, and P, using the method of Lagrange Multiplier (Cochran, 1977) to
compute the optimal sample size allocation:

LU, n, G, P) = Var(?ll()) + A(B - Bcap)s (19)

where A is the Lagrange Multiplier and B4, represents the budget limit. The derivatives result in
no-closed-form solutions, as presented by Shen & Kelcey (2020). However, we can further solve
the numerical problems through the uniroot function in R along with iterations (Shen & Kelcey,
2020). Illustrative examples will be provided to demonstrate the applicability of the methods and
tools in power and optimal sampling computations.
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Table 1. Summary of the Standardized Noncentrality Parameter, MDES, and Degrees of Freedom

Non-Standardized Non-Centrality

Model Var(yi10) Parameter (1) Degree of Freedom
Three-level growth _ l 2 2 2 — Jn
model Var(y110) ~In (na)11|z + PTirx t ¢U1) A =Y110 "‘U%uz n ¢T12|T,x + po? J—g;—1
Constant effect model Var(yi10) = f (T2 + 0'2) Jn
Y110 n 1|T.X 1 A =7Y110 W Jn-J—-g,—1
Fixed effect model Var(yi10) = 2 (tZrx + 0F) 1= Jn
10) = 77 (Tryrx + 0 = Y110 W n=2]-g,—-1
1 . ;
Note: (1) ¢ = i) (2) o2 = Z”C—ezz (3) g5 represents the number of covariates at level 3 and g, represents the number of covariates at
— Z

level 2.




