Learned Shields for Multi-Agent Reinforcement Learning

Daniel Melcer
Northeastern University
Boston, MA, USA
melcer.d@northeastern.edu

ABSTRACT

Shielding is an effective method for ensuring safety in multi-agent
domains; however, its applicability has previously been limited
to environments for which an approximate discrete model and
safety specification are known in advance. We present a method
for learning shields in cooperative fully-observable multi-agent
environments where neither a model nor safety specification are
provided, using architectural constraints to realize several impor-
tant properties of a shield. We show through a series of experiments
that our learned shielding method is effective at significantly re-
ducing safety violations, while largely maintaining the ability of an
underlying reinforcement learning agent to optimize for reward.

CCS CONCEPTS

+ Theory of computation — Multi-agent reinforcement learn-
ing.

KEYWORDS
Multi-Agent, Shielding, Safety

1 INTRODUCTION

Reinforcement learning (RL) has gained prominence as a method
for optimizing an agent’s behavior to achieve a high reward in a
variety of tasks [15, 21, 25]. Various extensions of RL to the multi-
agent setting [20, 26] have enabled RL to succeed in domains such
as decentralized traffic light control [4], cooperative control of a
robot [16], and expert-level play of multiplayer video games [23].

However, a poorly understood reward function may lead to unex-
pected, undesired, or unsafe behavior [5]. A large body of research
has focused on safe reinforcement learning methods, to ensure that
a given safety specification is enforced, regardless of the reward
function [27]. One approach, shielding [2, 3], focuses not on learn-
ing a single safe policy, but on determining the set of all safe actions
that agents may take. We find this approach appealing because it
allows for the use of any underlying method. A RL method that sup-
ports enabled and disabled actions at each state may be protected
with pre-posed shielding, where the RL agent receives a set of safe
actions and must choose from this set. Even if the method requires
a fixed set of enabled actions, it may be protected with post-posed
shielding, where the agent is initially oblivious to the set of safe
actions, but upon selecting an unsafe action, the agent’s selection
is blocked and it receives negative feedback.

However, existing shielding methods are limited to domains in
which a model of the environment, or at least a sufficiently detailed
approximation, is provided in advance. This is a much stronger

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Miiller, Mohammedalamen (eds.), May 19 — 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

Christopher Amato
Northeastern University
Boston, MA, USA
c.amato@northeastern.edu

Stavros Tripakis
Northeastern University
Boston, MA, USA
s.tripakis@northeastern.edu

assumption than is typically required for reinforcement learning,
where the agent learns strictly through environment interaction.

While some domains require avoiding actions that lead to dead-
lock states where no safe actions are available, many domains, such
as those without momentum, generally do not contain deadlock
states. As we will also discuss later, we believe that shield learning
in deadlock-free domains is a useful subproblem that may lead to
a solution for shield learning in domains that contain deadlocks.
In the single-agent deadlock-free domain, shield learning may be
a straightforward supervised learning problem, after collecting a
replay buffer containing safe and unsafe transitions. However, the
presence of multiple agents significantly complicates the issue, as
each agent must be able to independently select an individual action,
with a safe joint action as the result. Furthermore, without a careful
design of the learning process, algorithms that operate over the
agents’ joint action space often require computation exponential
in the number of agents [20].

We therefore contribute a method for efficiently learning the set
of safe actions available to each agent in a multi-agent setting with
safety constraints, without any human-provided information about
the environment or its safety specification. We discuss how the pres-
ence of a learned shield impacts the underlying training process,
and introduce an optimization to avoid inducing a potential insta-
bility. We show through a series of experiments that our method
is able to effectively learn a safety specification in environments
where deadlock states are not a concern, and allow the underlying
reinforcement learning agent to safely achieve a high reward in
such tasks. Finally, we discuss considerations for extending learned
shielding to environments with potential deadlock states.

1.1 Related Work

Shielding in single-agent domains [2, 3] descends from the field
of reactive synthesis [6] as a method for ensuring safety while al-
lowing for any underlying learning method to succeed, assuming
that a model of the environment is available. While the problem of
reactive synthesis is generally undecidable in multi-agent domains
[22], it is possible to still use reactive synthesis tools to implement
shielding in such domains under the assumption of local communi-
cation [7] or full observability [13]. In partially observable domains,
decentralized shields can be synthesized on a best-effort basis by en-
coding the safety constraints as a boolean formula and using a SAT
solver [14]. However, while these methods are able to guarantee
zero safety violations, they require a human provided abstraction
of the environment and safety specification.

There exist other methods for enforcing safety in multi-agent
environments; for example, methods such as PPO-Lagrangian [18]
and CPO [1] have been extended into the multiagent setting [10],
and safe policies may be learned through a sequential agent iter-
ation scheme [12]. While these methods may learn a safe policy,

we are interested in learning a shield that returns a variety of safe
actions, rather than a single safe policy.

Regardless of safety, multi-agent reinforcement learning is gen-
erally accomplished via a centralized training and decentralized
execution (CTDE) paradigm. For example, MAPPO [26] is a natural
extension of PPO [19] that maintains decentralized actors, but uses
a centralized critic for more accurate advantage calculations. Sev-
eral extensions of Q-learning to multi-agent settings use individual
utility values for each agent, and introduce a constrained mixing
function to combine these into a centralized Q-value such that the
best joint action corresponds to the collection of each agents’ best
individual actions [17, 20, 24].

2 PRELIMINARIES

2.1 Notation

For set X, let A(X) be the set of distributions over X. For distribution
x € A(X), let supp(x) C X be its support; i.e. the set of all values
X with nonzero probability in x. 2% is the powerset of X.

Given joint action a, we index individual actions as aj, .. ., a.

2.2 SMMDPs

Cooperative fully observable multiagent environments are often
characterized as a Multiagent Markov Decision Process (MMDP).
We extend its description to include a binary safety specification:!

DEFINITION 1 (SMMDP). A Safety Multiagent Markov Decision
Process (SMMDP) is a tuple M = (I = [1..k], S, So, A = (A1 X ... X
Apr), T,R,y,U) wherel is a set of agents, S is a state space, Sy € A(S)
is a distribution over initial states, A represents the joint action space,
composed of the product of k individual action spaces, T : S X A —
A(S) represents the state transition function, R : SX AXS — R is the
reward function, y is the reward discount factor, andU : SX A — B
denotes if a state-action pair causes a safety violation.

The aim of multi-agent reinforcement learning is to find a set of
individual policies—functions 7; : S — A(A;)—that maximizes the
expected sum of discounted rewards; i.e. the expected return:

DEFINITION 2 (EXPECTED RETURN). Given SMMDP M and a set
of policies 7r; : S — A(A;) fori € I, the expected return of a taking
action a in state s is:

Q" (s,a) = Esi=s:a0=a.ani~i (sn):sni1~T (sn.an) [Z }/tR(st’ ast41)
=0
Where a, = (ap,1, . . .,ank). Finally, a set of individual policies

is safe if they collectively only choose safe actions:

DEFINITION 3 (SAFE PoLicy). A set of policies 1, . . ., 7y is safe in
SMMDP M ifVs € S, a € (supp(r1(s))X...Xsupp(ry(s))), U(s,a) =

L; i.e. the policies never choose a violating action

2.3 Mixing Functions

Given a function Q : S X A — R, a common task in reinforcement
learning involves computing maxge4 Q(s, a) for some s € S [21].
However, if A is large—for example, if it is the product of sets
A1 X...XAr—then the maximization may be expensive to compute.

1We contrast this with Constrained MMDPs, where the sum of real-valued costs must
remain below a threshold.

One common approach in MARL is to introduce individual func-
tions Q; : S X A; — R fori € I, and to constrain Q such that it
satisfies the Individual-Global Max principle with respect to the
collection of each agents’ Q;:

DEFINITION 4 (INDIVIDUAL-GLOBAL MAX). Function Q satisfies
the Individual-Global Max (IGM) principle with respect to Q1, . . ., Qk

ifVs € S, {argmax,, c 4,Qi(s, ai) }iel = argmax,c 4Q(s, a).

Most implementations realize the IGM constraint by mixing the
outputs of each individual Q;—a mixing architecture as simple as
Q(s,a) = 2 ;e1 Qi(s, a;) is sufficient to satisfy this constraint [20],
but more complex mixing architectures allow for a more general
realization of the function class [17, 24].

Using any architecture that satisfies IGM, the maximization may
be completed in O(};¢y |Ai|) operations, rather than O(|A|) =
O(IT;er |Ail) operations—each agent may iterate over its individual
action space to obtain the maximum, rather than needing to iterate
over the joint action space.

2.4 Shielding

Shielding [2, 3] is a class of methods for safe reinforcement learning.
Agents are equipped with a shield:

DEFINITION 5 (SHIELD). A shield is a function H : S — 24 such
thatVs € S, H(s) # 0.

We focus on pre-posed shielding, in which the shield provides
a set of actions at each state, such that some desired safety speci-
fication is maintained if the agent selects an action from this set.
When at state s, shield H is applied to policy & by setting the prob-
ability 7 (a|s) for all actions a ¢ H (s) to 0, and renormalizing the
remaining probabilities.

In the multiagent setting [7, 13], a decentralized shield is a set
of individual shields H; : S — 24¢ such that each agent can select
any individual action from its shield, and the resulting joint action
maintains the safety specification; in other words, that each indi-
vidual shield applied to its respective policy results in a safe set of
policies for the environment.

3 PROBLEM STATEMENT & METHOD
OVERVIEW

Our safe multiagent reinforcement learning problem may be sum-
marized as follows:

ProBLEM 1. Given a SMMDP M, find a safe policy for each agent
7+ S — A(A;) that maximizes the expected return.

Our approach uses the basic structure of shielded multiagent
reinforcement learning:
(1) Construct a decentralized shield that constrains the agents’
action spaces such that they can only choose safe actions.
(2) Given a decentralized shield, learn a decentralized policy
that maximizes the expected return under this shield.
When the environment specification and safety constraint are
known in advance, a shield may be constructed ahead of time using
a reactive synthesis tool [2]. However, because these inputs are not
available in our case, we must instead learn the shield by interacting
with the environment. As the shield is learned at the same time as

the policy, several new optimizations must be made to the policy
learning step as well.

We focus on the case where Vs € S,3a € A, U(s,a) = L—there
exists some non-violating action at every state—and discuss envi-
ronments in which this does not hold in Section 6.

3.1 Shield Construction

To act safely, agents must be restricted such that in state s, they may
only select joint actions a where U (s, a) = L. It may not be efficient
to simply learn and use a function that approximates U directly—
during action selection, agents will be required to iterate over joint
actions until they find a safe action. The number of possible joint
actions grows exponentially with the number of agents, leading to
scalability challenges. Additionally, if communication is restricted
after training is complete, each agent must be able to select its set
of safe individual actions independently from other agents.

Therefore, we learn individual safety functions 7; : S X A; —
[0,1] for i € I. As these are learned functions and must have a
continuous output to enable gradient descent, we use threshold
t € (0,1) to ultimately determine if an action is allowed by the
shield or not. We obtain individual shields by collecting all actions
above the threshold: H;(s) = {a|Fi(s,a) > t}. We find that t = 0.5
works well empirically.

The safety functions ¥; must satisfy two constraints. First, as
long as each agent selects any action allowed by its individual
shield—any action where the individual safety function’s output is
above the threshold—a violating joint action is not selected.

VseS,VaeA,/\‘ﬁ(s,ai)>t = U(s,a) = L (1)
i€l
Second, as each individual shield must have a nonempty set of
actions at each state, there must be some action for which each
individual safety function returns a value above ¢:

Vs € S,Vi € I,3a; € Aj, Fi(s,ai) > t)

PROBLEM 2. Given SMMDP M, find a set of individual shields
Fi : Sx Aj — [0,1] fori € I such that constraints 1 and 2 hold.

3.1.1 Constraint (1)—Only Safe Actions Selected. Recall that, as
described in Section 2.3, a set of functions that satisfy IGM may be
used to avoid iterating over a joint action space, and enable agents
to independently select from their individual action spaces.

Inspired by the IGM constraint, we define the Individual-Global
Safe (IGS) principle:

DEFINITION 6 (IGS PRINCIPLE). Joint safety function ¥ : SXA —
[0, 1] satisfies the Individual-Global Safe (IGS) principle with respect
to individual safety functions ¥; : S X A; — [0,1] fori € I if
VseS,a=(a,...,a;) € A, Ti € ,Fi(s,a;) < F(s,a).

1 U(s,a)=L1
0 U(s,a)=T
If we construct individual functions 77, . . ., i such that 5} sat-

isfies IGS with respect to them, then each agent’s local decision
making will ensure safety:

Let the safety indicator function F (s,a) = {

TuEOREM 1. If F satisfies IGS with respect to 71, . .., i, then
F1, ..., Fr satisfy constraint (1).

Proof. By cases on U(s,a); if U(s,a) = T, 9;7(3, a) = 0, and thus
di € ILFi(s,a;) <0.Ast € (0,1), Fi(s,a;) < t, and constraint (1)
is satisfied. If U (s, a) = L, constraint (1) is trivially satisfied.

While we cannot directly construct the individual safety func-
tions so that IGS holds with respect to F, we can create a function
¥ that is structurally constrained to satisfy IGS with respect to
F1s ..., Tk, and then train ¥ end-to-end to approximate F. If this
approximation is succesfully learned, then the learned 77, . .., F
are guaranteed to satisfy constraint (1).

We realize the IGS principle with the following mixing architec-
ture:

F(s,a) = max | D(s, a),mi}l Fi(s, ai)
i€

Where D : S X A — R is an unconstrained learned function.
THEOREM 2. The proposed mixing architecture satisfies IGS.

Proof. Due to the outer maximization, min;e 7 (s, a;) < F (s, a).
The minimization then ensures that 3i € I, (s, a;) = F (s, a), and
therefore 3i € I, Fi (s, a;) < F (s, a).

3.1.2 Constraint (2)—Some Action Always Available. We have pre-
viously treated 7; as a black box; however, to enforce constraint
(2), we impose an internal structure on this function. We structure
F; as follows:?

Posact(F;* (s, a;))

maxg e 4, PosacT(F; (s, a}))

Fi(s,ai) =

where 7'!* : S X A; — Ris an unconstrained learned function for
i € I, and PosAcT refers to any activation function whose range is
the positive reals. We observe that the softplus activation function
works well for this. The maximization only occurs over the set
of individual actions, and is therefore more efficient to compute
compared to an operation that acts over the entire joint action space.
This can further be improved by designing #;* such that it outputs
values for all individual actions in one pass; for example, if 7—’1* is
implemented as a neural network, by using a last layer of size |A;|.

Regardless of the output of 7" itself, there will always be some
action at each state for which F;(s,a) = 1, and is thus above the
threshold. Importantly, though not strictly necessary to satisfy
the constraint, the structure that we present has the capacity to
represent cases where several or all individual actions are enabled.

3.2 Learning With a Shield

ProBLEM 3. Given SMMDP M and individual shields Hy, . .., Hy,
find individual policies 1, . . ., my that are optimal in M, such that
Vs € S,i € L supp(mi(s)) € Hi(s).

We use the learned Hj, . . ., H to implement pre-posed shielding
[2] as described in Section 2.4; the shield provides action masks that
may be used with any reinforcement learning method that supports
enabled and disabled actions. We choose MAPPO [26] as our base
RL method; after evaluating the underlying policy for agent i on
a given state s, the probabilities of any actions not in H;(s) are
zeroed out, and the remainder is re-normalized.?
2We additionally stop gradient propagation in the denominator for improved stability.

3This is implemented as setting the logits of unsafe actions to —co prior to the log-
sumexp normalization.

Alshiekh et al. [2] show that shielded reinforcement learning
exhibits the same convergence guarantees as the underlying RL
method; however, if our shield and agent are trained together in a
bootstrapping scenario, the shield changes as the agent is trained.
This effectively creates a nonstationary environment, loosening the
convergence guarantees. We discuss several mitigations for this
nonstationarity in Section 4.2.

4 METHOD DETAIL

While we use the basic individual components discussed in Sec-
tion 3, integration of these into a complete reinforcement learning
system requires some additional work.

4.1 Shield learning

The mixed shield function is trained end-to-end using a standard
MSE loss:

L% (s,a0) = (7"(3, a) — F (s, a))2

Where ¥ is the safety indicator function, defined in Section 3.1.

Due to the softplus activation within 77, the outputs of ;" may
become extremely negative while training in domains where vi-
olations are relatively uncommon at first; for example, if agents
must perform some amount of exploration prior to encountering
an unsafe state. This may lead to floating point numerical issues.
Therefore, we instead use a training target of F(s,a) = €g=0.01
when U(s, a) = T; our method only requires that t > e¢.

We additionally note two auxiliary loss functions that empiri-
cally aid the training process. First, due to the network architecture,
gradients do not propagate to all individual shields for every train-
ing example, leading to “floating” values of #;. We counteract this
with the following determinism loss.

L7 (5,a) = 3" (Fils, i) — ROUND e, (Fi(s, @)
i€l

Where ROUND; ¢~ rounds values greater than ¢ to 1, and values
less than t to ef.

Finally, we would like to discourage the network from learning
Vs € S,a€ A D(s,a) = 7~'(s, a), as otherwise there is little incentive
for Fi(s, a;) = 1 for more than one individual action per state. We
accomplish this by adding a nonredundancy loss:

LT_HI(S, a) —
2
CLAMP |1 o0) (STOPGRAD(mi?Ti(s, a;)) + D(s,a)) — 1)
i€

Note that STOPGRAD acts as the identity, with the anomalous
behavior that SSTOFCRAD(Y) _

Intuitively, if both min;e; Fi(s,a;) = 1 and D(s,a) = 1, the
D(s,a) =1 is redundant. The above loss function pushes D(s, a) to
be decreased, without affecting F; (s, a;).

Our final loss function for training ¥ is as follows:

L F—complete _

E(s,a)~B LT(s, a) + adetL‘F—det (s,a) + aan¢-nr(s’ a)

Where B is a replay buffer containing encountered states and
actions, as well as the necessary information to compute ¥ (s, a).

det — o = 0,01, We perform gradient-based optimization

4

We use a
on this loss function, as described in the Hyperparameters section.

4.2 MAPPO

Action masking while learning a shield complicates the underlying
reinforcement learning process, as the environment appears nonsta-
tionary from the agent’s perspective due to the continually evolving
shields, in addition to any nonstationarity from the perspective of
each agent due to the other agents’ evolving policies.

In particular, when one action is favored during MAPPO train-
ing, its probability continually increases in the policy; after many
training steps, we have observed the favored action being on the
order of 102%° times more likely than the next action. If the shield
later learns that this action is unsafe, the effect of selecting an ac-
tion that was previously so unlikely causes catastrophic gradient
magnitudes and floating point errors.

We protect against this by preventing the action probabilities
from becoming so imbalanced in the first place. The usual method
of adding an entropy loss does not fully protect against this; two
actions may be relatively likely, leading to a substantial amount
of entropy despite the presence of other actions with infinitesimal
probability. When both relatively probable actions are marked as
unsafe, the catastrophic update problem will still manifest.

Therefore, in addition to the entropy loss, we add a new clipping
operation to the training objective. Let 7;(aj|s) = SOFTMAXy, e 4,
7} (ai|s) be the policy probabilities, obtained using the softmax
activation function on unconstrained neural network 7; .

Let £FFO(s, a) be the standard PPO loss function [19]. We trun-
cate the loss to limit the imbalance in the policy logits to A.>

LPPO—A (S, ai) —
A(als) >0 A
StopGRAD[LTO(5,a)] 7} (ails) > min 7 (ajls) + A
a.
A(als) <O A
7 (ails) < max 7} (dfls) — A

i

SToPGRAD[LFPO (5, 0)]

LFFO(5,q) otherwise

We use A = 20 in our experiments.®
Finally, we add a loss to train the logits of unsafe actions to equal
that of the worst safe action:

LUS(S) _

Z 7} (ajls) — STOPGRAD
i€l a;eA;\H;(s)

5 EXPERIMENTS

We implemented our method for two domains, as shown in Fig-
ure 1—a cooperative gridworld navigation task, and a more com-
plex soup preparation task based on the game “Overcooked”. In

2
. %7/
rr(;_l{n()n'i (ai|s)})

,
ajeH;(s

4Gradients are not propagated through the non-differentiable function Rounp. For
min and max, gradients are passed through to the extreme element.

SSimilarly to £PPO, this may be written with min and CrLamp; we use an explicit
piecewise version here for clarity.

“We speculate that such a modification is likely unnecessary if a method based on
Q-learning is used, as all actions’ Q-values are trained to a specific target, rather than
continually pushed in one direction as in policy-gradient methods. Existing shielding
work [7, 14] uses Q-learning with little modification.

|
1
1
]

:HI_I

Figure 1: Evaluation environments. (Left) Gridworld naviga-
tion domain; agents start in random positions and must reach
their respective goals. (Right) Overcooked domain; agents
must cooperate to cook an onion soup dish in a cramped
kitchen.

both cases, the agent is not given any model of the environment,
and must learn the safety specification of collision avoidance from
scratch, only receiving feedback when it violates the specification.

In the navigation task, agents receive a modest negative reward
when bumping into a wall, a large negative reward when colliding
into each other, a large positive reward when both agents reach the
goal, and a small negative reward if none of these actions occur.
The episode ends upon colliding with the other agent or reaching
the goal. In the Overcooked task, agents receive rewards when
they perform actions that contribute to order fulfillment, such as
putting onions on the stove or plating a complete dish. There is
no reward as a result of a collision. Both tasks are undiscounted
and use a horizon of 500 time steps. The Overcooked task uses two
layouts—the “Cramped Room” layout in which agents are in a 2x3
cell area, and the “Coordination Ring” layout in which agents share
a 3x3 area with a counter in the middle.

We compare our method to unshielded MAPPO. Theoretically,
agents should learn to avoid unsafe actions in both domains even
without shielding—the navigation task imposes a large negative
reward for unsafe actions; in Overcooked, colliding with the other
chef accomplishes nothing and thus decreases the total reward
that may be achieved in the limited time. We also compare to the
baseline of reward augmentation, where a large negative reward is
added when an unsafe action occurs.

All domains were run with 10 trials; extended hyperparameters
are described in the Appendix. The results are shown in Figures
2 and 3. As the results demonstrate, in all domains, our learned
shielding method converges to zero unsafe actions per episode.

In the gridworld domain, our method outperforms the other
methods for learning the task-specific reward function; because of
the small negative reward at each timestep, agents initially learn the
local optimum where they collide with each other to immediately
end the episode. Our method quickly learns that this is unsafe, and
“kicks out” the agents from this local optimum, while the other
methods must find the global optimum by chance before they stop
taking unsafe actions.

In Overcooked, there is much less of a reward incentive to act
safely, so the unshielded agents continually collide late into the
training process. Agents with an augmented reward signal fail to
learn a useful policy, illustrating the challenge of attacking safety
using only reward shaping—too strong a reward signal, and agents
are “afraid” to move at all. Finally, the learned shielding method is

Unsafe Actions Per Episode
= Unshielded = Reward Augmentation arned Shield

Step Count

500k M 1.5M

Episode Reward
— Unshielded — Reward Augmentation — Learned Shield

N e

100

200

300

Step Count
400

500k M 1.5M

Figure 2: Average number of unsafe actions and reward per
episode, and standard error over 10 trials for the gridworld-
collision domain, “ISR” layout. Episode reward represents
the original reward from the environment, prior to augmen-
tation. Values are smoothed using a moving window average
of 10K steps.

able to achieve substantial reward in this domain, nearly matching
the reward obtained by the unshielded agent—it may act slightly too
conservatively to achieve the full reward potential. Nevertheless,
our method achieves a balance of maintaining safety without acting
so conservatively that it fails to achieve reward.

6 DISCUSSION & FUTURE WORK

As discussed in Section 3, our method is designed for environments
where for every state, there exists some safe action. This assump-
tion does not necessarily apply to all environments; for example,
in some domains with momentum, no action can prevent the agent
from violating a safety specification in some states. In particular,
many larger or continuous state-space environments require con-
sideration of this. We believe that our method may still be able to
work in such domains, by changing ¥, the learning target of 7,
such that actions that transition to deadlock states—states with no
safe actions available—are themselves unsafe. This could be accom-
plished by separately learning a safety value function to predict
such states; in the multiagent setting, this could be implemented
with a sequential update procedure [12], or through an adaptation
of a QPLEX-like structure [24]. Given this modified ¥, it may be
possible to re-use the remainder of our shield learning method to
solve the shield learning problem in more general domains. We
leave further study of this to future work.

Unsafe Actions Per Episode
— Unshielded — Reward Augmentatior cal

10
L Step Count
0

500k M 1.5M

Episode Reward
— :safety_method: Unshielded — Reward Augmentation — Learned Shield

Step Count,,

500k M 1.5M

(a) “Cramped Room” layout

Unsafe Actions Per Episode

— Unshielded — Reward Augmentation — Learned Shield

Episode Reward

= :safety_method: Unshielded — Rewar

100 \/./—//V\/ﬂ
_~

80

Eoun

~

500k M 1.5M

(b) “Coordination Ring” layout

Figure 3: Results for Overcooked over 10 trials.

Similarly, our implementation requires full observability in coop-
erative environments. We are not confident that a naive extension to
partially observable domains through the use of recurrent networks
would be theoretically justified, as this would imply a more complex
relationship between individual and joint safety values. Despite the
undecidability of decentralized reactive synthesis in general [22],
prior work has synthesized shields in a useful subset of partially
observable environments, with an available model [14]. Similarly,
we believe that there may be a useful subset of partially observable
environments where it is possible to learn a shield without a model.
Further work is required to create a well-grounded method for
handling partial observability or mixed cooperative-competitive
environments.

7 CONCLUSION

We have presented, to our knowledge, the first method that extends
shielding to multi-agent domains where no model of the environ-
ment is provided. We introduce a method of constraining a set of
function approximators to follow the IGS principle, and demon-
strate several optimizations that allow policy gradient methods to
handle the nonstationary effects of a learned shield. Our shield
learning method performs well on several domains, learning to
safely obtain high task-specific performance.

HYPERPARAMETERS

We further describe the hyperparameters for our training process.

For both environments, all function approximators are instanti-
ated as neural networks with three hidden layers of size 1024, 1024,
and 256, with relu activations [9] and Xavier normal initializations
[8]. We maintain a replay buffer with all observed transitions, up
to the 2 x 10° step limit. Every 1000 steps, we perform 10 shield
training steps with a minibatch size of 160 (16 sequences of length
10 each). Every 16 episodes, we perform 32 MAPPO training steps
with a minibatch size of 320 (32 sequences of length 10 each). We
use a PPO clipping parameter of 0.1, GAE A = 0.95, entropy loss
coefficient of 0.1, and A = 20. All other losses, besides £% and
LPPO=A haye a coefficient of 0.01. We use the Adam optimizer [11]
with a learning rate of 107* for both the learned shielding module
and the policy module.

No formal search procedure was utilized to obtain these hyper-
parameters; they were selected for the gridworld domain based on
observed stable training and adequate performance for all agents,
and re-used for Overcooked without further tuning. The sole mod-
ification for Overcooked is that all neural networks for the grid-
world domain use a one-hot transformation of several state vari-
ables as input, while the state provided by Overcooked is passed
to all networks without transformation. However, other domains
that are more complex, or distinct from each other, may require
environment-specific tuning.

REFERENCES

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained
Policy Optimization. In Proceedings of the 34th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and
Yee Whye Teh (Eds.). PMLR, Sydney, NSW, Australia, 22-31. https://proceedings.
mlr.press/v70/achiam17a.html

[2] Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Kénighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe reinforcement learning via shielding. In

https://proceedings.mlr.press/v70/achiam17a.html
https://proceedings.mlr.press/v70/achiam17a.html

3

=

=

&

[9

=

[10]

[11

[12]

(13

[14

[15]

[16

[17]

[18]

[19

[20]

[21]

[22

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. AAAI Con-
ference on Artificial Intelligence, New Orleans, LA, 10.

Roderick Bloem, Bettina Kénighofer, Robert Kénighofer, and Chao Wang. 2015.
Shield synthesis: Runtime enforcement for reactive systems. In Tools and Algo-
rithms for the Construction and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21. Springer,
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, London, UK, 533-548.

Tianshu Chu, Jie Wang, Lara Codeca, and Zhaojian Li. 2020. Multi-Agent Deep
Reinforcement Learning for Large-Scale Traffic Signal Control. IEEE Transactions
on Intelligent Transportation Systems 21, 3 (2020), 1086-1095. https://doi.org/10.
1109/TITS.2019.2901791

Jack Clark and Dario Amodei. 2016. Faulty reward functions in the wild. https:
//openai.com/research/faulty-reward-functions

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem
(Eds.). 2018. Handbook of Model Checking. Springer International Publishing,
New York, NY. https://doi.org/10.1007/978-3-319-10575-8

Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Riidiger Ehlers, Ufuk
Topcu, and Lu Feng. 2021. Safe Multi-Agent Reinforcement Learning via Shield-
ing. In Proceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems (Virtual Event, United Kingdom) (AAMAS °21). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 483-491.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). PMLR, Chia Laguna
Resort, Sardinia, Italy, 249-256. https://proceedings.mlr.press/v9/glorot10a.html
Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier
Neural Networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 15), Geoffrey Gordon, David Dunson, and Miroslav Dudik (Eds.). PMLR, Fort
Lauderdale, FL, USA, 315-323. https://proceedings.mlr.press/v15/glorot11a.html
Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois
Knoll, and Yaodong Yang. 2023. Safe multi-agent reinforcement learning for
multi-robot control. Artificial Intelligence 319 (2023), 103905. https://doi.org/10.
1016/j.artint.2023.103905

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization.

Zeyang Li and Navid Azizan. 2024. Safe Multi-Agent Reinforcement Learning
with Convergence to Generalized Nash Equilibrium. arXiv:2411.15036 [cs.LG]
https://arxiv.org/abs/2411.15036

Daniel Melcer, Christopher Amato, and Stavros Tripakis. 2022. Shield Decen-
tralization for Safe Multi-Agent Reinforcement Learning. Advances in Neural
Information Processing Systems 36 (2022), 13.

Daniel Melcer, Christopher Amato, and Stavros Tripakis. 2024. Shield Decomposi-
tion for Safe Reinforcement Learning in General Partially Observable Multi-Agent
Environments. In Reinforcement Learning Conference. RL], Amherst, MA, USA, 8.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529-533. https://doi.org/10.1038/nature14236

Bei Peng, Tabish Rashid, Christian A. Schroeder de Witt, Pierre-Alexandre Kami-
enny, Philip H. S. Torr, Wendelin Bshmer, and Shimon Whiteson. 2021. FACMAC:
Factored Multi-Agent Centralised Policy Gradients. arXiv:2003.06709 [cs.LG]
https://arxiv.org/abs/2003.06709

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. j. Mach. Learn. Res.
21, 1, Article 178 (jan 2020), 51 pages.

Alex Ray, Joshua Achiam, and Dario Amodei. 2017. Benchmarking Safe Explo-
ration in Deep Reinforcement Learning. https://cdn.openai.com/safexp-short.pdf
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]
https://arxiv.org/abs/1707.06347

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl
Tuyls, and Thore Graepel. 2017. Value-Decomposition Networks For Cooperative
Multi-Agent Learning. arXiv:1706.05296 [cs.AI] https://arxiv.org/abs/1706.05296
Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

Stavros Tripakis. 2004. Undecidable Problems of Decentralized Observation and
Control on Regular Languages. Inform. Process. Lett. 90, 1 (April 2004), 21-28.
https://doi.org/10.1016/j.ipl.2004.01.004

[23] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaél Mathieu, An-

[24

[25

[26

]

]

drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury
Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wiinsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Has-
sabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature 575, 7782 (Nov. 2019), 350-354.
https://doi.org/10.1038/s41586-019-1724-z

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. arXiv:2008.01062 [cs.LG]
https://arxiv.org/abs/2008.01062

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik
Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eck-
ert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih
Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D.
Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead,
Peter Diirr, Peter Stone, Michael Spranger, and Hiroaki Kitano. 2022. Outracing
champion Gran Turismo drivers with deep reinforcement learning. Nature 602,
7896 (Feb. 2022), 223-228. https://doi.org/10.1038/s41586-021-04357-7

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent
Games. arXiv:2103.01955 [cs.LG] https://arxiv.org/abs/2103.01955

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. 2023. State-
wise Safe Reinforcement Learning: A Survey. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, Edith Elkind
(Ed.). International Joint Conferences on Artificial Intelligence Organization,
Macao, 6814-6822. https://doi.org/10.24963/ijcai.2023/763 Survey Track.

https://doi.org/10.1109/TITS.2019.2901791
https://doi.org/10.1109/TITS.2019.2901791
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://doi.org/10.1007/978-3-319-10575-8
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1016/j.artint.2023.103905
https://doi.org/10.1016/j.artint.2023.103905
https://arxiv.org/abs/2411.15036
https://arxiv.org/abs/2411.15036
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2003.06709
https://arxiv.org/abs/2003.06709
https://cdn.openai.com/safexp-short.pdf
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/2008.01062
https://arxiv.org/abs/2008.01062
https://doi.org/10.1038/s41586-021-04357-7
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://doi.org/10.24963/ijcai.2023/763

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 SMMDPs
	2.3 Mixing Functions
	2.4 Shielding

	3 Problem Statement & Method Overview
	3.1 Shield Construction
	3.2 Learning With a Shield

	4 Method Detail
	4.1 Shield learning
	4.2 MAPPO

	5 Experiments
	6 Discussion & Future Work
	7 Conclusion
	References

