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From motivic Chern classes of Schubert cells to their
Hirzebruch and CSM classes

Paolo Aluffi, Leonardo C. Mihalcea, Jorg Schiirmann, and Changjian Su

ABSTRACT. The equivariant motivic Chern class of a Schubert cell in a com-
plete flag manifold X = G/B is an element in the equivariant K-theory ring
of X to which one adjoins a formal parameter y. In this paper we prove
several folklore results about motivic Chern classes, including finding special-
izations at y = —1 and y = 0; the coefficient of the top power of y; how
to obtain Chern-Schwartz-MacPherson (CSM) classes as leading terms of mo-
tivic classes; divisibility properties of the Schubert expansion of motivic Chern
classes. We collect several conjectures on the positivity, unimodality, and log
concavity of CSM and motivic Chern classes of Schubert cells, including a
conjectural positivity of structure constants of the multiplication of Poincaré
duals of CSM classes. In addition, we prove a ‘star duality’ for the motivic
Chern classes, showing how they behave under the involution taking a vec-
tor bundle to its dual. We use the motivic Chern transformation to define
two equivariant variants of the Hirzebruch transformation, which appear nat-
urally in the Grothendieck-Hirzebruch-Riemann-Roch formalism. We utilize
the Demazure-Lusztig recursions from the motivic Chern class theory to find
similar recursions giving the Hirzebruch classes of Schubert cells, their Poincaré
duals, and their Segre versions. We explain the functoriality properties needed
to extend the results to partial flag manifolds G/P.
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1. Introduction

Let X be a quasi-projective complex algebraic variety and denote by K (var/X)
the Grothendieck motivic group consisting of equivalence classes of morphisms
[f : Z — X] modulo the usual additivity relations. Also, denote by K(X) the
Grothendieck ring of vector bundles on X. The motivic Chern transformation de-
fined by Brasselet, Schiirmann and Yokura [BSY10] is the assignment for every
such X of a group homomorphism

MC, : Ko(var/X) — K(X)[y],

uniquely determined by the fact that it commutes with proper push-forwards and
that it satisfies the normalization condition

MC,fidx : X — X] = \,(Tx) = Y _¢'[N'T*X] € K(X)[y]

if X is nonsingular. If Z — X is a locally closed subset, the motivic Chern class
of Z (regarded in X) is defined by

MC,(Z) := MC,[Z — X] € K(X)[y];

here y is a formal indeterminate.

If X admits a torus action, there is an equivariant version MCZ KT (var/X) —
Kr(X)[y] defined in [FRW21||AMSS24|. We will work in this context, and omit
the superscript T from the notation to increase legibility.

Our main object of study in this paper will be the classes MC, (X (w)®), the
(torus equivariant) motivic Chern classes of Schubert cells X (w)° in the flag man-
ifolds G/B, for G a complex, semisimple, Lie group, and B C G a Borel subgroup.
By functoriality, these determine the motivic Chern classes in the ‘partial’ flag
manifolds G/P, with P O B a standard parabolic subgroup.

The motivic classes MC, (X (w)°®) are closely related to the study of represen-
tation theory of the Hecke algebra of GG, and through this connection they play a
prominent role in several related topics: (K-theoretic) stable envelopes and inte-
grable systems [RTV15|[AMSS24|FRW 21|, Whittaker functions from p-adic rep-
resentation theory [MS22|, characteristic classes of singular varieties [FRW17|. In
interesting situations they recover point counting over finite fields [MS22] (see also
§431below), and are closely related to the study of the intersection (co)homology
and the Riemann-Hilbert correspondence for arbitrary complex projective manifolds
ISch09]. In Schubert Calculus, the motivic Chern classes, and their (co)homological
counterparts, the Chern-Schwartz-MacPherson (CSM) classes, provide deforma-
tions of the usual Schubert classes, which, provably or conjecturally, satisfy re-
markable positivity, unimodality, and log-concavity properties; see 8 below.

Among the main goals of this paper is to gather in a single place several folklore
results concerning properties of (torus equivariant) motivic classes MC, (X (w)®).
These include results on the specializations at y = —1 and y = 0 of the parameter
y; the coefficient of y3™ X () in MC, (X (w)°); how to recover the CSM classes as
the initial terms of the motivic Chern classes; divisibility properties of Schubert
expansions. We also state several conjectures and prove a new duality for motivic
Chern classes.

Our main new contribution is a treatment of the (torus equivariant) Hirze-
T
Yo

Tdi*(X (w)®) of Schubert cells, as an application of properties of motivic Chern

bruch transformation Td and in particular a study of the Hirzebruch classes
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classes. Similarly to the motivic Chern transformation, the Hirzebruch transfor-
mation Tdi* : KT (var/X) — HT(X;Q[y]) is a functorial transformation defined
uniquely by a normalization property, with values in a completed (Borel-Moore or
Chow) homology group; see 6] In the non-equivariant context this transformation
was defined in [BSY10], and it arises naturally in the context of the Grothendieck-
Hirzebruch-Riemann-Roch (GHRR) formalism. The ‘unnormalized’ variant of this
transformation was studied by Weber [Web16/[Web17]. As in the case of MC, we
will omit the superscript 7' from the notation, since all the classes considered in
this paper are equivariant by default.

In this paper we extend the definition of the Hirzebruch transformation to the
equivariant context, for arbitrary quasi-projective complex algebraic varieties X
with a torus action. As hinted above, there are two variants of the Hirzebruch
transformation. The ‘unnormalized’ variant is defined in[Theorem 6.1] as the com-
position

Td, .. := td, oMC,, : KI (var/X) — HT (X;Q[y))
of the (equivariant) Todd transformation td, constructed by Edidin and Gra-
ham with the motivic Chern transformation. The ‘normalized’ version
of [Definition 6.4]is the composition

Td,,. == 1Y o Td,,. : KI (var/X) — HT (X;Qly]) € HT (X;Qly, (1 +y) "))

of a certain Adams operator with the unnormalized transformation. The Adams
operator acts by multiplying by powers of 1+ y (see §6). A technical subtlety is
that a priori Td, . requires coeflicients in Qy, (1 4+ y)~'], but it can be shown
that Q[y] suffices. In fact, an important property of Td, . is that the special-
ization at y = —1 is well-defined. This specialization recovers the (equivariant)
MacPherson’s transformation [Mac74/[Ohm06)| ¢! : F7(X) — HI(X) from the
group of (equivariant) constructible functions to homology; see and
also §3.2] for a summary of Ohmoto’s definition and a discussion of
alternative (equivalent) definitions.

We cover general preliminaries in §2|and then focus on the case of flag man-
ifolds. In §3]we recall the definition of the Demazure-Lusztig (DL) operators de-
termining recursively the motivic Chern classes MC, (X (w)°) of Schubert cells in
flag manifolds. We show how one can recover the cohomological
DL operators as initial terms of the Chern character applied to the K-theoretic
DL operators; in other words, how one recovers the action of the degenerate Hecke
algebra as a limit of the action of the Hecke algebra. In 4] we investigate several
properties of the motivic Chern classes, including a divisibility property by pow-
ers of 1 + y of the coefficients arising in their Schubert expansions (illustrated in
, and the fact that the integral of a motivic Chern class of a Schubert
cell is equal to the number of points over the finite field F, with ¢ = —y elements,
see|Proposition 4.13|and [Remark 4.14] In §5]we study the effect of specializing the
parameter y on motivic Chern classes. In a nutshell, y = —1 recovers the fixed
point classes, and y = 0 the ideal sheaf classes, see

In §6lwe obtain ‘Hirzebruch operators’ calculating recursively the (equivariant)
Hirzebruch classes ﬁly*(X(w)o) and Td,.(X(w)°) (see [Theorem 6.11)),
their Poincaré duals (see [Theorem 6.12), and the Segre-Hirzebruch classes (see
[Theorem 6.13). Our treatment in is particularly extensive, so we summarize

some of our results here for the convenience of the reader.
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Let P; be the minimal parabolic group associated to the i-th simple root, and
denote by p; : G/B — G/P; the natural projection. The BGG operator 9/ is
defined as (p;)*(p;)«. Define the unnormalized and the normalized variants of the
Hirzebruch operators

T T B (X, Q)] - Hi (X, Q)ly)
by
TH = Td, (T, )07 —id; T :=Td,(T,,)0F —id.
We prove in that these operators determine recursively the
(un)normalized Hirzebruch classes of Schubert cells. More precisely,

Tdy (X (id)°?) = Tdy . (X (id)?) = [X(id)]r

and B . .

T (Tdy (X (w)?)) = Tdy . (X (ws;)°),

T (Tdy, (X (w)?)) = Tdy (X (ws;)°)
for all w € W and all simple reflections s; such that ws; > w in the Bruhat
ordering. In|Theorem 6.13|we prove analogous statements for the ‘Segre-Hirzebruch
3 Ty (X (w)°) nd Tdux(X(w)°)

Td, (T X) Tdy (TX)

along with the appropriate version of the DL operators which determine them; see
Perhaps not surprisingly, the theory we find is essentially equivalent
to that of motivic Chern classes. For instance, the Hirzebruch operators are images
of the DL operators in K-theory via a Todd transformation. In particular, the
Hirzebruch operators satisfy the same relations as the DL operators in K-theory
(see[Lemma 6.9]and [Remark 6.10]), implying that they give an action of the Hecke
algebra on the equivariant (co)homology of G/B.

In 6.3l we study the specializations at y = 0 and y = —1 of the Hirzebruch
classes and operators, and we recover from this point of view the Todd transforma-
tion td,(ZI) of the boundary ideal sheaves Z of Schubert varieties, respectively the
CSM classes cgy (X (w)®) of Schubert cells. Furthermore, we recover the DL opera-
tors giving recursions for these classes. To illustrate, the Grothendieck-Hirzebruch-
Riemann-Roch implies that

<td* (I};), Ch(OuT» = 6u,va

where ch denotes the (equivariant) Chern character. The specialization y = 0 in
gives the operators, listed in [Proposition 6.14] which determine the
classes td,(Z1) and ch(O?T) recursively.

In {7] we revisit the procedure giving the degenerate Hecke algebra action as a
limit, in order to explain how CSM classes may be computed directly as the leading
terms of the motivic Chern classes, in the case of Schubert cells; see[Theorem 7.1
The CSM and motivic classes give bases of the (equivariant) cohomology and K
theory rings of flag manifolds.

Based on computational evidence, in we discuss several conjectural prop-
erties of CSM and motivic classes, concerning positivity and log-concavity of the
coefficients of their Schubert expansions and the positivity of their structure con-
stants.

Finally, in {9] we prove a new ‘star duality’ for motivic Chern classes, for
the duality x : Kp(X) — Kp(X) which sends the class [E] of a vector bun-
dle to [EV] = [Home, (F,Ox)]. The duality for the motivic classes, stated in

classes . We find the Poincaré duals of these classes,
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MC, HIRZEBRUCH, AND CSM CLASSES OF SCHUBERT CELLS 5

Theorem 9.1 generalizes a known relation between ideal sheaves and duals of struc-
ture sheaves of Schubert varieties proved by Brion [Bri05| Prop. 4.3.4].

2. Preliminaries

2.1. Equivariant (co)homology. Let X be a quasi-projective complex al-
gebraic variety. In this paper we will deal with the Borel-Moore homology group
H.(X) of X and the cohomology ring H*(X), with rational coefficients. As an al-
ternative, one could use Chow (co)homology; there is a homology degree-doubling
cycle map from Chow to Borel-Moore, and our constructions are compatible with
this map. This map is an isomorphism in some important situations, such as
the complex flag manifolds studied later in this note. We refer to |Ful84) §19.1]
and [Gin98!| §2.6] for more details about Borel-Moore homology and its relation
to the Chow group. In case we speak of (co)dimension we always assume that
our spaces are pure dimensional; in addition, by (co)dimension we will mean the
complez (co)dimension. Any subvariety Y C X of (complex) dimension k has a
fundamental class [Y] € Hok(X). Whenever X is smooth, we can and will identify
the Borel-Moore homology and cohomology via Poincaré duality.

Let T be a torus and let X be a variety with a T-action. Then the equivariant
cohomology H7(X) is the ordinary cohomology of the Borel mixing space Xp :=
(ETxX)/T, where ET is the universal T-bundle and T  acts by ¢-(e,z) = (et™1, tz).
The ring H7(X) is an algebra over H7(pt), the polynomial ring Symg X(7') =~
Q[t1, ..., ts] in the character group X(7T') (written additively) and with t; € H2(pt);
see e.g., [KumO02| §11.3.5]. One may also define T-equivariant Borel-Moore homol-
ogy and Chow groups, related by an equivariant cycle map; see e.g., [EG98|. Every
k-dimensional subvariety Y C X that is stable under the T" action determines an
equivariant fundamental class [Y]r in HL (X).

As in the non-equivariant case, whenever X is smooth, we will identify H! (X)
and H}.(X). In particular, when X = pt is a point, the identification sends a €
Hi(pt) to a N [pt]r. If X is smooth and proper, then there is an H7(pt)-bilinear
Poincaré (or intersection) pairing H}(X) ® Hy(X) — Hy(pt) defined by

(a,b)z/Xa-b )

where the integral stands for the push-forward to a point. Equivariant vector
bundles have equivariant Chern classes ¢ (=), such that ¢] (E) N — is an operator
HI(X) — Hl ,;(X); see [And12] §1.3], [EG98] §2.4].

We address the reader to [And12|Knu|AF23| for background on equivariant

cohomology and homology.

2.2. Equivariant K theory. For any T-variety X, the equivariant K theory
ring K7 (X) is the Grothendieck ring generated by symbols [E], where F — X is a
T-equivariant vector bundle, modulo the relations [E] = [F1] + [E2] for any short
exact sequence 0 — E; — E — F; — 0 of equivariant vector bundles. For any
proper morphism f : X — Y there is a functorial push-forward f, : Kp(X) —
Kr(Y) defined by f.([E]) = Y. (=1)![R'f.(E)]. The ring K7(X) is an algebra over
Kr(pt) = R(T), the representation ring of 7. This may be identified with the
Laurent polynomial ring Z[e*?, ..., et ] where e* are characters corresponding
to a basis of the character lattice in the Lie algebra of T. We will often denote
the tuple (e*?',... e**) simply by e’. An introduction to equivariant K theory
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6 P. ALUFFI, L. C. MIHALCEA, J. SCHURMANN, AND C. SU

may be found in [CG09| Chapter 5]. The equivariant K ring of X admits a ‘vector
bundle duality’ involution x : K7(X) — Kr(X) mapping the class [F] of a vector
bundle to the class [E"] of its dual. This is not an involution of Kr(pt)-algebras;
it satisfies (¢*)¥ = e~*. Under mild hypotheses (e.g., X projective) there is also
a ‘Serre duality’ involution D : Ky (X) — Kp(X) inherited from (equivariant)
Grothendieck-Serre duality and defined by

D([F]) := [RHom(F,w%)] = [wk] @ [F]" € Kr(X)

for [F] € Kp(X), where w% ~ wx[dim X] is the (equivariant) dualizing complex
of X. Thus if X is nonsingular, [w%] = (=1)9™X[wx] with wx the equivariant
canonical bundle of X. Observe the multiplicativity

D([E] @ [F]) = D([E]) ® [F]".

In later sections of this paper we will primarily be concerned with flag manifolds
X = G/B, with T acting on X by left multiplication. In this case X is a smooth
projective variety and the ring K7 (X) is naturally isomorphic to the Grothendieck
group Ko(coh” (Ox)) of T-linearized coherent sheaves on X. This follows from the
fact that every such coherent sheaf has a finite resolution by T-equivariant vector
bundles. There is a Ky (pt)-bilinear pairing

(—, =) Kr(X) @ Kr(X) = Kr(pt) = R(T)

<WHﬂ%:AE®F:MXE®F%

where x(X; E) is the (equivariant) Euler characteristic, i.e., the virtual representa-
tion
W(XsE) = [ [B)= 31 H (X D).

Note that
(DIE], [F]Y) = /XD([E®FD =x(X;E®F)” = (([E],[F]),

by equivariant Grothendieck-Serre duality (the corresponding result [Har77, Chap-
ter I1I, Theorem 7.6] also holds equivariantly, e.g. as a very special case of [LHQ9,
Part II, Theorem 25.2 and Theorem 28.11]).

Let y be an indeterminate. The Hirzebruch \y-class of an equivariant vector
bundle E is the class

N(B) =Y [\Ely" € Ke(X)[y)-
k

The Ay-class is multiplicative, i.e., for any short exact sequence 0 — £y — E —
E5 — 0 of equivariant vector bundles there is an equality Ay (E) = Ay (E1)Ay(E2)
in Kr(X)[y]. (As pointed out in |[Nie74} §1.2], this is part of the A-ring structure
of Kp(X), cf. [SGAT1 6.V.2.4].)

2.3. The Chern character. For a pure-dimensional T-variety X, Edidin and
Graham [EGO0] defined an equivariant Chern character

chy : Kp(X) = HI (X):= [[ HH(X)
1<dim X

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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such that:

e If V C X is a T-invariant subvariety, then chp[Oy] = [V]r+l.0.t. (lower
order terms). (Non-equivariantly, see [Ful84| Theorem 18.3(5)].)

e If £ is an equivariant line bundle with first Chern class ¢/ (£), then
chr[L] = et (©) n [X]7. In particular, chp(e}) = e* € HE*(pt) for all
characters \.

e chpy commutes with pull-backs.

e If X is smooth, then after identifying H! (X) ~ HZ%(X) via Poincaré
duality, chy is a ring homomorphism.

We will generally omit the subscript T in the notation, since the equivariant
context is assumed throughout the paper. A fundamental result is the Grothendieck-
Hirzebruch-Riemann-Roch (GHRR) theorem. In the equivariant case, this was
proved in [EG00]. For now we state the following particular form; in {6] below we
will need more general versions. Let f : X — Y be a smooth proper T-equivariant
morphism of smooth T-varieties, and let a € Ky (X). Then

ch f.(a) = fi(ch(a) - Td(Ty)).

where Td(Ty) is the equivariant Todd class of the relative tangent bundle of f.
Recall that if F — X is an equivariant vector bundle with Chern roots x1, ..., Z.,
then

€ €

xZ; 1
i=1 i=1

see e.g., [Ful84| Example 3.2.4].

3. Operators in equivariant cohomology and K-theory of flag manifolds

The goal of this section is to introduce the Schubert basis in the equivariant K
ring of flag manifolds and recall the definition and basic properties of the Demazure
and (cohomological and K-theoretic) Demazure-Lusztig (DL) operators acting on
the K-theory ring. An important fact which we will use later, and for which we
could not find a reference, is that the cohomological DL operators may be recovered

from certain initial terms of the K-theoretic ones; cf. [Proposition 3.5

3.1. Schubert data. Let G be a complex semisimple, simply connected, Lie
group, and fix a Borel subgroup B with a maximal torus T' C B. Let B~ denote the
opposite Borel subgroup. Let W := Ng(T)/T be the Weyl group, and £: W — N
the associated length function. Denote by wgy the longest element in W:; then
B~ = woBwy. Let also A := {aj,...,a,} € R* denote the set of simple roots
included in the set of positive roots for (G, B). Let p denote the half sum of the
positive roots. The simple reflection for the root a; € A is denoted by s; and the
corresponding minimal parabolic subgroup is denoted by P;, containing the Borel
subgroup B.

Let X := G/B be the (complete) flag variety. It has a stratification by Schubert
cells X(w)® := BwB/B and opposite Schubert cells Y(w)® := B~wB/B. The
closures X (w) := X(w)° and Y(w) := Y(w)° are the Schubert varieties. With
these definitions, dim¢ X (w) = codim¢ Y (w) = ¢(w). The Weyl group W admits
a partial ordering, called the Bruhat ordering, defined by v < v if and only if
X(u) C X(v).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8 P. ALUFFI, L. C. MIHALCEA, J. SCHURMANN, AND C. SU

Let O := [Ox ()] € Kr(G/B) be the Grothendieck class determined by the
structure sheaf of X (w) (a coherent sheaf), and similarly 0" := [Oy(,,]. The
equivariant K-theory ring has Kz (pt)-bases {OL},,cw and {071}, ey forw € W.
Let 0X (w) := X(w) ~ X (w)° be the boundary of the Schubert variety X (w), and
similarly dY (w) the boundary of Y (w). It is known that the dual bases of {OT}
and {O""T} are given by the classes of the ideal sheaves T := [Oy () (—0Y (w))],
respectively ZD = [Ox () (—0X (w))]. Le.,

(3.1) (O 701y = (0“1, I1) = 6,,.,.

See e.g., |Bri05, Proposition 4.3.2] for the non-equivariant case; the same proof
works equivariantly. See also |GKO8| Proposition 2.1]. It is also shown in [Bri05|
that

(3.2) OL=>"1] and IJ=> (-1l

v<w v<w

(Again, Brion’s argument also works in the equivariant context.) For any weight
(character) A of T', we denote by £ the G-homogeneous line bundle

£)\ :GXB(C)\.

Let P be a standard parabolic subgroup of G, i.e., B C P C G. Such a
subgroup is determined by a subset Ap C A; for instance, Ag = ). Denote by Wp
the subgroup of W generated by the simple reflections s; such that a; € ANAp. Let
WP denote the subset of minimal length representatives of W/Wp. By definition,
l(wWp) = l(w) for w € WF. Similarly to G/B, the partial flag manifold G/P
has finitely B and B~ many orbits — the Schubert cells — indexed by the elements
we Wr:

X (wWp)® = BwP/P; Y (wWp)® =B wP/P;
as before dim X (wWp)°® = codim Y (wWp)°® = £(wWp). The Schubert varieties
X (wWp), Y(wWp) in G/P are the closures of the corresponding Schubert cells.

3.2. BGG, Demazure, and Demazure-Lusztig operators. Fix a simple
root a; € A and denote by P; C G the corresponding minimal parabolic subgroup.
Consider the fiber diagram:

pri

G/B i G/ P

The Bernstein-Gelfand-Gelfand (BGG) operator [BGGT73| is the H(pt)-linear
morphism 97 : Hi.(X) — HE?(X) defined by 9} := (p;)*(pi)+. The same geo-
metric definition gives the Demazure operator 9; : Ky (X) — Kp(X) in the (equi-
variant) K-theory, linear over Kr(pt); see [Dem74|. These operators satisfy

0 otherwise . O otherwise .

(X (wsy)]r i ws; > w; Oor — if ws; > w;
09) ofixtolr - { (0% = | %%
From this, one deduces that both operators satisfy the same commutation and
braid relations as those for the elements of W. In cohomology, (91)% = 0, while in

K-theory 0? = 0.
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MC, HIRZEBRUCH, AND CSM CLASSES OF SCHUBERT CELLS 9

The relative cotangent bundle of the projection p; is T,; = L,,. Define the
H.(pt)-algebra automorphism s; : H3(G/B) — Hx(pt) by

(3.4) si = id+c] (T7)0f =id+c] (Lq,)0] .

It was proved by Knutson [Knu| that this is an automorphism induced by the
right Weyl group action on G/B; see |[AM16| and also |[MNS22|, where both
left and right actions are studied. Using this automorphism, the cohomolog-
ical Demazure-Lusztig (DL) operators are H}.(pt)-linear endomorphism of
H(G/B) defined by

(3.5) TH =00 —s;; TV =0F +5,.

These operators satisfy the same braid and commutation relations as the BGG op-
erators, and, in addition (7;7)% = (T,;”¥)? = id; see [AMT186)} Proposition 4.1]. In
other words, these give a twisted representation of the Weyl group W on H3(G/B).
This representation was studied earlier by Lascoux, Leclerc and Thibon [LLT96],

and by Ginzburg |Gin98| in relation to the degenerate Hecke algebra. The opera-
tors are adjoint to each other, in the sense that for any a,b € Hy(G/B),

(T (@), b) = (a, T (1)).

It is convenient to consider a homogenized version of this operator. Add a formal
variable & of cohomological complex degree 1. Then the homogenized operators are

(3.6) T =noft — s, TV =hof + s,

The variable & will arise geometrically from the C*-action by dilation on T*(G/B).

The restriction of this action to the zero-section G/B «— T*(G/B) is trivial, and

H%. - (G/B) = H;(G/B)[h], where h is interpreted as a generator of HZ. (pt).
We define next the K-theoretic version of the DL operator. Fix an indetermi-

nate y; later, we will set y = —e~". Define the K-theoretic Demazure-Lusztig
(DL) operators
(3.7 Ti = MN(T5)0 —id; T, = 9ixy(Ty) —id.

The operators 7; and T;* are Kz (pt)[y]-module endomorphisms of Kz (X)[y].

REMARK 3.1. The operator 7;” was defined by Lusztig [Lus85] Eq. (4.2)] in
relation to affine Hecke algebras and equivariant K theory of flag varieties. The
‘dual’” operator 7; arises naturally in the study of motivic Chern classes of Schubert
cells AMSS24| (where the operators are denoted R;, R)). In an algebraic form, 7;
appeared recently in [BBL15|LLL17,MS22|, in relation to Whittaker functions.
The left versions of these operators are studied in [MNS22]|.

As in the cohomological case, the Demazure and Demazure-Lusztig (DL) op-
erators are adjoint to each other and 9; is self-adjoint: for any a,b € K (X),

(Tia),b) = (a,7:"(b)) and (9(a),b) = (a,0i(b))-
See JAMSS24| Lemma 3.3] for a proof.

PROPOSITION 3.2 (|[Lus85|). The operators T; and T, satisfy the usual com-
mutation and braid relations for the group W. For each simple root a; € A the
following quadratic formula holds:

(Ti +id)(Ti +y) = (.Y +1d)(T:" +y) = 0.
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An immediate corollary of the quadratic formula is that for y # 0, the operators
T; and T;" are invertible. In fact,
_ 1 1+
7;' 1 — __7; _ Yy
Y Y
as operators on K7 (X)[y,y~!]. The same formula holds when 7; is exchanged with
T,
Consider next the localized equivariant K theory ring
K1 (G/B)oc :=Kr(G/B) @k (pt) Frac(Kr(pt))
where Frac denotes the fraction field. The Weyl group elements w € W are in
bijection with the torus fixed points e,, € G/B. Let 1y, := [O.,] € Kr(G/B)ioc be
the class of the structure sheaf of e,,. By the localization theorem, the classes i,

form a basis for the localized equivariant K theory ring; we call this basis the fized

point basis.
We need the following lemma, whose proof can be found e.g., in [AMSS24|
Lemma 3.7].

LEMMA 3.3. The following formulas hold in Kp(G/B)ioc:
wA
L

id

(a) For any weight X\, Ly -1y, =€
(b) For any simple root «;,
ai w) —
(1) .

(¢) The action of the operator T; on the fized point basis is given by the fol-
lowing formula

w

1

1 — ewai

Ly Lws;s

14y 14 ye v
7;(%0) = - 1_ e—wo Ly + 1 — e—wa lws; -
(d) The action of the adjoint operator T," is given by
1+y 14 yeve
T () = =m0 T g b

e) The action of the inverse operator (T,Y) lis given by
3

1+y71 y71+6wai

- 1 — ewes w 1 — e—wa;

(7)) =

L .
WSa,

We also record the action of several specializations of the Demazure-Lusztig

operators, see Lemma 3.8].
LEMMA 3.4. (a) The following specializations hold:
(Ti)y=0 = 0; —id;  (T;)y=0 = 0; — id;
Further, for any w € W, the following hold:

7 if ws; ; T if ws; )
0 —id)(@T) = {Twss Twsizwi g ory O W wsi > w
~IT  ifws; < w. or if ws; < w.

(b) Let w € W. Then the specializations at y = —1 satisfy
(To)y=-1(tw) = tws,-

In other words, this specialization is compatible with the right Weyl group
multiplication.
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3.3. Leading terms of DL operators. Next we use the grading induced
by the equivariant Chern character to identify the ‘initial terms’ of the Demazure-
Lusztig operators as certain operators on equivariant (co)homology related to the
degenerate Hecke algebra. These operators appear as convolution operators in
|Gin98| and determine the Chern-Schwartz-MacPherson classes of Schubert cells
[AM16].

As usual, X = G/B but we consider the extended torus A := T x C* where C*
acts trivially. (This is the restriction of the action of A on T*(X), where C* acts
by dilation. The CSM and motivic Chern classes considered later in this paper are
naturally C*-equivariant; this justifies the use of the extended torus.) We now set
y = —e " and therefore (cf. §2.3)

che-(y) = —e " = 1+ hi+ O(h?) € HE- (pt).
We analyze the relation between the cohomological and K-theoretic DL operators.

PROPOSITION 3.5. Let w € W and consider the Grothendieck class O €
K4 (X) for the Schubert variety X (w). Then

cha(T3(02) = T, X (w)]a + Lot
and
cha(TV(02)) = T,V X (w)] 4 + Lot

where Lo.t. are terms in [,y H3 (X).

PROOF. Since X = G/B is non-singular, the Chern character is a ring homo-
morphism, thus for any invariant subvariety Z C X and any equivariant line bundle
L,

ChA([Oz]A . [,) = [Z]A + C‘{l(ﬁ) . [Z]A + Lo.t.
We take Z = X (w), and we have two cases: either w < ws; or w > ws;. If w < ws;
then §;(0;) = Oz, . Using this, we obtain

cha(Ti(03)) = cha(Op,, + yLa, - Ofs, — Oi)
= chA(Ojﬁsi) — e et (La) ChA(Oési) — [X(w)]a +1Lo.t.
=cha(0g,,) = (1= A)(1 + i (La,)) cha(Oy,) — [X(w)]a + Lot
=h[X (ws;)]a — N (La,)[X (ws:)]a — [X(w)]a + Lo.t.

=hdf X (w)]a — (id+¢i' (La,)0)[X (w)]a + Lo.t.
where Lo.t. €[],y HA(X). By [AM16] (3)] (which uses a different sign con-
vention) the last expression equals

(hOF — 5)[X (w)]a + Lo.t. = T, X (w)] 4 + Lo.t.

and we are done in this case. If w > ws; then 9;(0%) = 04, 9;[X(w)]a = 0 and
si[X(w)]a = [X(w)]a by [AM16] (4)]. Then a similar, but simpler calculation
proves the first part of the proposition.

For the second statement we start by observing that for a € K¢ (X), by the
Grothendieck-Hirzebruch-Riemann-Roch (GHRR)

(38)  chadi(a) = chapi(pi)«(a) = p} cha((pi)«(a) = 8ff (cha(a) TdN(T},))-
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Then the second statement can be proved as follows. By the GHRR theorem,
cha(T:(05)) = cha 9;(Of + yLa, - Op) — cha(Oy)

= <chA(o;‘ +yLa, - OX) TdA(Tpi)> — chs (02
=l (Chw:;‘) Td(T,,)(1 — e-“cf*““”)) — ch(04)

Observe that Td*(T},)(1 — e~"ei' (£a)) = h 4 ¢ (L_,,)+ (terms of degree > 2)
in cohomology. Then the last expression equals

o <(h + c‘f(ﬁai)[X(w)]A) — [X(w)]a + Lot

=hoJ' X (w)]a + (id +¢f (Lo, )0 ) [X (w)] 4 + Lo.t.
=(hdf + 5;)[X (w)]a + Lo.t.
= ‘H’v’h[X(w)]A + Lo.t.

7

Here the third equation follows from the definition of s; from (34), and the second
from the general fact that for every weight \, cf(£))0F = 0Hc(Lq,0) — (N, ).
This can be proved by e.g., adapting parts (a) and (b) of[Lemma 3.3]to the coho-
mological context. |

4. Equivariant motivic Chern classes

The aim of this section is to introduce and recall the basic properties of the
motivic Chern classes - one of the main objects in this note. In the second part of
the section we focus on the motivic Chern classes of Schubert cells in flag manifolds.
Aside from recalling results proved in e.g., [AMSS24], we prove a new divisibility
property of the coefficients in the transition matrix from motivic classes to the
Schubert basis (Proposition 4.15). In §4.3]we discuss the relation to point counting
over finite fields; this was mentioned briefly in [AMSS24] and [MS22].

4.1. Preliminaries about motivic Chern classes. We recall the defini-
tion of the motivic Chern classes, following |[BSY10|. For now let X be a quasi-
projective, complex algebraic variety, with an action of T. First we recall the
definition of the (relative) motivic Grothendieck group K{ (var/X) of varieties over
X, mostly following Looijenga’s notes [Loo02|; see also Bittner |Bit04]. For sim-
plicity, we only consider the T-equivariant quasi-projective context (replacing the
‘goodness’ assumption in [Bit04)]), which is enough for all applications in this pa-
per. The group KI'(var/X) is the quotient of the free abelian group generated by
symbols [f : Z — X] where Z is a quasi-projective T-variety and f: Z — X is a
T-equivariant morphism modulo the additivity relations

f:Z->X]|=[fU—=X]+[f:Z~U = X]

for U C Z an open invariant subvariety. For every equivariant morphism
g : X — Y of quasi-projective T-varieties there are well-defined push-forwards
g Kl(var/X) — KZ(var/Y) (given by composition) and pull-backs
g* : Kf(var/Y) — Kl'(var/X) (given by fiber product); see [Bit04, §6]. There
are also external products

x + Kg (var/X) x Kg (var/X") = Kg (var/X x X'); - [f] < [f'] = [f x f'],
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which are K¥ (var/pt)-bilinear and commute with push-forward and pull-back. If
X = pt, then K (var/pt) is a ring with this external product, and the groups
KT (var/X) also acquire by the external product a module structure over KZ (var/pt)
such that push-forward ¢ and pull-back g* are K& (var/pt)-linear.

REMARK 4.1. For any variety X, similar functors can be defined on the ring of
constructible functions F(X), and the Grothendieck group Ko(var/X) may be re-
garded as a motivic version of F(X). In fact, there is a map e : Ko(var/X) — F(X)
sending [f : Y — X| — fi(1y), where fi(1y) is defined using compactly supported
Euler characteristic of the fibers. The map e is a group homomorphism, and if
X = pt then e is a ring homomorphism. The constructions extend equivariantly,
with FT(X) C F(X) the subgroup of T-invariant constructible functions.

The following theorem was proved in the non-equivariant case by Brasselet,
Schiirmann and Yokura [BSY10, Theorem 2.1]. Minor changes in the argument
are needed in the equivariant case — see also |[FRW21||AMSS24]. In future work
we will reprove the theorem below and relate equivariant motivic Chern classes to
certain classes in the equivariant K-theory of the cotangent bundle as defined by
Tanisaki [Tan87| with the help of equivariant mixed Hodge modules.

THEOREM 4.2. |[AMSS24| Theorem 4.2] Let X be a quasi-projective, non-
singular, complex algebraic variety with an action of the torus T. There exists
a unique natural transformation MC, : K&'(var/X) — Kp(X)[y] satisfying the
following properties:

(1) It is functorial with respect to push-forwards via T -equivariant proper mor-
phisms of non-singular, quasi-projective varieties.
(2) It satisfies the normalization condition

MC,fidx : X = X] = A (T"X) = >y [NT*X] € K (X)[y].

The transformation MC,, satisfies the following properties:

(3) It is determined by its image on classes [f : Z — X| = filidz] where Z
is a non-singular, irreducible, quasi-projective algebraic variety and f is a
T-equivariant proper morphism.

(4) It satisfies a Verdier-Riemann-Roch (VRR) formula: for every smooth,
T-equivariant morphism 7 : X — Y of quasi-projective and non-singular
algebraic varieties, and every [f : Z — Y] € K& (var/Y), the following
holds:

MCy[n*f: Z xy X = X] = \y(T7) N7T*MC,[f : Z = Y.

If one forgets the T-action, then the equivariant motivic Chern class above
recovers the non-equivariant motivic Chern class from [BSY10] (either by its con-
struction, or by the properties (1)—(3) from Theorem [£.2] and the corresponding
results from [BSY10]).

REMARK 4.3. [Theorem 4.2]and its proof work more generally for a possibly sin-
gular, quasi-projective T-equivariant base variety X, using the Grothendieck group
of T-equivariant coherent Ox-sheaves in the target (cf. [FRW21l Remark 2.2]),
i.e.,

MC,, : KI (var/X) — Ko(coh™ (Ox))[y]-
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Moreover, MC, commutes with exterior products:
MCy[f x f':ZxZ' - X xX'|=MC,[f: Z - X|KMC,[f : Z' — X'].

This follows as in the non-equivariant context [BSY10, Corollary 2.1] from part
(3) of Theorem[4:2]and the multiplicativity of the equivariant \,-class for smooth
and quasi-projective T-varieties X, X'

A (TH(X x X)) = A(T*X) RN, (T*X') € Kp(X x X')[y].
REMARK 4.4. The equivariant x,-genus of a T-variety Z is by definition
Xy(Z) = MCy([Z — pt]) € Kz (pt)[y].

By rigidity of the x,-genus (see [FRW21] §2.5] and [Web16| Theorem 7.2]), it
contains no information about the action of T'; it is equal to the non-equivariant
Xy-genus under the embedding Z[y] — Kr(pt)[y].

In what follows, the variety X will usually be understood from the context. If
Y C X is a T-invariant subvariety, not necessarily closed, we set
MCy(Y) :=MCylY — X].
If i : Y C X is closed nonsingular subvariety and Y’ C Y, then by functoriality
MC,[Y' = X] = i.MC,[Y' — Y]
(K-theoretic push-forward). For instance if Y/ =Y then
MCyli : Y = X] =i.(\(T"Y) @ [Oy])

as an element in Kr(X). We will often abuse notation and suppress the push-
forward notation. Similarly for the other transformations discussed in later sections.

4.2. Motivic Chern classes of Schubert cells. Assume now that
X = G/B. The following result from [AMSS24| Corollary 5.2, cf. Remark 5.4],
allows us to calculate recursively the motivic Chern classes of Schubert cells.

THEOREM 4.5. Let w € W. Then the motivic Chern class MC, (X (w)°) is
given by
MG,y (X (w)°) = Ty-1(Oj).-

Here, Ty-1 = T, -+ Tiy if w = s;,---s;, is a reduced decomposition. This

operator is well-defined by [Proposition 3.2}
Following [AMSS24| Remark 6.4], we introduce an operator which will yield

the (Poincaré) duals of motivic Chern classes. For each simple root a; € A, define
(4.1) L =0 +y(0iLa, +id) = —y(T) ™' =T + (1 +y)id.
Since 7;" satisfy the usual braid and commutativity relations, so do these operators.
Hence, £,, is well-defined for all w € W, where £, = &;, --- &;, f w=35s;,---5;, is
a reduced decomposition. Define the following elements in the equivariant K theory
ring:

MG, (Y (w)°)) 1= Ly14 (O™ T); - MCy (X (w)°) = Ly-1(Oj).
By definition MC, (Y (w)°)) and MC, (X (w)°) are elements in KT(X)[y]

LIf wl denotes the left Weyl group action by wo, as in [MINS22], then w(’;“.lvréy(X(w)o) =
I\Z—éy (Y (wow)®). This generalizes the more familiar formula from Schubert calculus:
wf (X (w)]r = [Y (wow)] 7
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THEOREM 4.6. [AMSS24/| Theorem 6.2] The classes my(Y(w)O)) are orthog-
onal to the motivic Chern classes: for any u,v € W,

(MC, (X ()°), MC, (Y (v)°)) = buo [T (1 +ye™),
a>0
where the pairing on the left hand side is the intersection pairing defined in
Note that [],.q(1+ye™) = Ay (T, X).
REMARK 4.7. Another family of classes dual to motivic Chern classes is given
by a certain Serre dual variant of Segre motivic classes. Combining [AMSS24

Theorem 8.11] and [MINS22| Theorem 7.1]) (see also [FRW21|), one obtains the
remarkable equality:

MCy(Y(v)°)  _  dima/B—t@w) PIMCy (Y (v)?)) -1
Ha>0(1 +y€7a) - ( y) )\y(T*X) € KT(X)[@/]S[Q ]
Here D denotes the (Grothendieck-Serre) duality, extended to the parameter y via
y" =y~ ", and Kp(X)[y|s is appropriately localized so that A, (7T*X) is invertible
(see |AMSS24| Remark 8.9]). We note that one may define these ‘Serre-Segre’
motivic classes for any partial flag manifold G/P, and they are always dual to mo-
tivic Chern classes of Schubert cells; see [MINS22| Theorem 7.2]. Geometrically,
the duality above is expected to arise from a transversality formula, generalizing
to K-theory the results from [Sch17]. In cohomology, this is explained in

§7.

Consider the expansions of the equivariant motivic Chern classes,

(4.2) MCy (X (w)°) = > cuul(y:e)OL.

u<w

The equivariant K-Chevalley formula, used to multiply a Schubert class by the

line bundle £, [LPO7IPR99], and [Theorem 4.5 gives a recursive procedure to

calculate the motivic Chern classes of Schubert cells. The recursion also implies
that the coefficients are polynomials ¢, ,(y; €!) € ZeT, ..., e |[y] C Kr(pt)[y]
in the characters associated to the simple roots. Note that the inclusion may be
strict, reflecting the fact that the root lattice is in general strictly included in the
weight lattice. Also, recall that e stands for the tuple (e*'t,... ettr).

We provide next a few calculations for the motivic Chern classes of the flag
manifolds P! and F1(3).

ExAMPLE 4.8 (F1(2) = P!). The equivariant motivic Chern classes for P! are:
MG,y (X (id)) = Ofg; - MCy(X()°) = (1 +e )07 = (1+ (1+ e )y)Of.

EXAMPLE 4.9 (The Schubert cell X (s152)°). The equivariant motivic Chern
classes for larger flag manifolds are much more complicated. For instance, the
equivariant motivic Chern class of the Schubert cell X (s1s2)° C F1(3) is

MC, (X (s152)°) =(1 + e~ y)(1+ e~ (F2)y)OF
(1+e ™y)(1+ (1 + e (ate2))yyoT

I+ (1+e ) (1+e )y+e (1+e ™ +e 2M)y*)OL
(14 2+ e ™ e 4 ety OF
+(14 e 4 72 4 g7 (1Fa2) 4 o= (artaz)) 20T
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The expressions above encode a remarkable amount of information. For in-
stance, a simple verification in shows that the expression for the
sum of the coefficients simplifies dramatically and equals y2, reflecting the geo-
metric fact that we deal with a cell of dimension 2. We will prove this and more
in |Proposition 4.13| and [I'heorem 5.1] below. For now, we also provide some ex-
amples of non-equivariant motivic Chern classes. These are obtained from the
equivariant ones by making the substitution e* — 1 for each weight \.

EXAMPLE 4.10. The following are the non-equivariant motivic Chern classes of
Schubert cells in F1(3). (Recall that we use the notation MC,, for both the notion
in ordinary and in equivariant K-theory.)

MC, (X (id)) =Oi4;
MCy(X(51)°) =(1+4)Os; — (14 2y)Oiq;
MCy (X (52)°) =(1 + 1)Ouy — (1 + 2y)Oia;
MCy (X (s152)°) =(1+4)*Osy65 — (1 +4) (1 +29)Os; — (14 y)(1 4 3y)Os,

+ (5y” + 5y + 1) Oia;
MCy (X (s251)°) =(1 +9)*Osasy — (1 + ) (1 +29)Osy — (L +y)(1 +3y)Os,
+ (59" + 5y + 1) Oia;
MCy (X (w0)°) =(1 + )’ Ouwy — (1 +1)*(1 + 29)(Osy 55 + Osysy )+
(1+9)(5y° + 4y + 1)(Os, + Os;) — (8y” + 11y* + 5y + 1) Osa.
The classes MC y(Y(w)°) for the Schubert cells in F1(3) are:

y(y( )) =0"";
MC, (Y (s152)°) =(1 + )07 + yO™°;
MG,y (Y (5251)°) =(1 + )0 +yO™;
MCy (Y (51)°) =(1 +9)20% + y(1+ )02 + 2y(1 + ) 0% + 20"
MCy (Y (52)°) =(1 4 9)20™ + 2y(1 + )0 + y(1 4 ) O™ + 320",
MC, (Y (id)°) =(1 + )20 + y(1 4 1)2(O** + O*)+

2y (1+y) (077 + 077 440"
An algebra check together with fact that (O,,O%) = 1 if and only if u > v,
shows that -
(MCy (X (1)°), MCy (Y (v)°)) = (1 +9)*bu,0
as stated in[Theorem 4.6l

On the basis of these (and other) examples, we can conjecture that the mo-
tivic Chern classes and their duals satisfy a certain positivity property. This is
discussed in sectionlﬂ At this time we note that the positivity of the dual classes
1n 'Example 4.10| does not extend nd beyond small cases. For instance, the coefficient
of 035152 iy the expansion of MC »(Y(1d)°) € K(F1(4)) equals y2(4y — 1)(1 + y)3.

The ‘top’ Schubert coefficient is calculated in the following result.

LEMMA 4.11. The coefficient cy ., (y; €') is given by
cow(e) = J]  (L4ye®) =M\ (T2, X (w)).

a>0,wa<0
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PROOF. The localization MC,(X(w)°)], equals cyw(y,€)(OL)|,. By
Lemma 3.3[c) and [Theorem 4.5 we get

o 1 + yewa
MCy (X (w)°)|w = H 1_ owa Lo -
a>0,wa<0
However, (OL1)|,, = tuly = twlw The claim follows. O

W AA(TEX (W) T Tas0wa<co(1=€¥*)"

We end this section with an analogue of for the Segre motivic
classes (X (w)%)
MC, (X (w)°
SMC, (X (w)°, X) = —4 27

These classes live in a localization K7 (X)s where the element [],. (1 + ye®)(1 +
ye~ %) € Kp(pt)[y] is invertible; see |[AMSS24| Remark 8.9]. We recall [MS22

Theorem 4.2], which will be used below when discussing the Hirzebruch version of
the Segre classes.

THEOREM 4.12. For any w € W one has in Kp(X)[yls:
MCy(X(w)*) _ T, (0h) ( Oia )
Ay(T*X) Moo +ye®) 7 \Iasoll +ye)

and

MO, (Y (@)°) Ty (O™ ( o >
1

4.3 = =7 .
U3 = Tx) T MayGrge ™ e (o 4 ye ™)

Note that J],o(1+ye®) = A\, (T3, X) and [[,~ (1 +ye™®) = A\ (T, X).

[T

4.3. Integrals of motivic Chern classes and point counting. By functo-
riality of motivic Chern classes, the integral of the motivic Chern class of a Schubert
cell equals

MC, (X (w)°) := MC, [X (w)® — pt] = MC, [A/) — pt]
G/B

The last equality uses the fact the the map MC, : K (var/pt) — K (pt) is a
ring homomorphism, with the product given by exterior product of varieties; see

BSY10| Corollary 2.1] extended equivariantly in [AMSS24| Theorem 4.2]. One
can calculate MC,[A' — pt] directly from [Example 4.8

MC,[A' — pt] = | MC,(A') = —y.
Pt
Combining all these, we deduce:

PROPOSITION 4.13. Recall the Schubert expansion ([£2). Then the following
hold:

(a) fG/B MC, (X (w)°) = >~ cwul(y, e') = (_y)é(w)‘
(b) The xy-genus of G/B equals

xy(G/B)=/ A(T*(G/B)) = > (=)™,

G/B weWw
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PROOF. Part (a) follows from the considerations above and because [, /B or =

1, since H(X(w),Og/p) = 0 for i > 0, as Schubert varieties are rational with
rational singularities. Part (b) follows from (a), using the fact that A, (T*(G/B)) ®
Oc/p =MCy(G/B) =3, ey MCy (X (w)°). O

If one specializes y = —q, this proposition shows that the x,-genus of a Schubert
variety X (w) is equal to the number of points of X (w) over Fy, the field with ¢
elements. This type of arguments are discussed more generally for any G/ P, or for
smooth, projective T-varieties with finitely many fixed points in [MS22| Theorem
A 1]; see[Remark 4.14]below for a further generalization.

Utilizing again the specialization y = —q and taking G/B = Fl(n), one recovers
in a natural way g¢-analogues of classical formulae. In this case, W = S, (the

symmetric group) and
Ya(FI() = 3 gt®),

weS,
It is known that this sum equals the g-analogue of the factorial,
S "™ =l =0+ +q+¢) ... (A+g+...+¢").

wES,

In fact, it is fun to work out a geometric interpretation of this formula. The natural
projection p, : Fl(n) — Gr(n — 1,n) sending a flag (F; C ... C F, = C") to
F,,_1 C C" is a G-equivariant Zariski locally trivial fibration, with fiber isomorphic
to Fl(n — 1). By additivity and multiplicativity of motivic Chern classes over a
point, it follows that

X—q(F1(n)) = x—¢(Fl(n — 1)) - x—¢(Gr(n — 1,n))
=X—¢Fln—1))- L+qg++¢+...+¢"").

The last equality follows from the fact that the (dual) projective space Gr(n—1,n)
is the disjoint union of Schubert cells, each of which with contribution gdm(cel)
to the x_4 genus. Then the equality follows by induction on n. A more detailed
analysis of this geometric argument is carried out in

REMARK 4.14. This relation between F, point count and the x,-genus of a
complex algebraic variety X holds more generally for X of strongly polynomial-
count in the sense of Katz [HRV 08| 6 Appendix]|. By Theorem 6.1.2 in loc. cit. one
obtains the relation Px(q) = E(x,y) for ¢ = zy, with Px(q) the polynomial point
count over F, and E the corresponding E-polynomial of X defined in terms of the
mixed Hodge numbers of the compactly supported cohomology of X. By forgetting
the weight filtration one gets in these cases E(y,1) = x—,(X) by [BSY10| (5.3)
and (5.5), p. 43-44].

4.4. Divisibility properties. Consider now the expansions of the non-
equivariant motivic Chern classes,

(4.4) MC,y (X (w)°) = > cuw(®)Ou € K(X)[y)-

u<w

The coefficients ¢, ,,(y) from (£4) are polynomials in Z[y|. [Example 4.10|suggests

a divisibility property of these coefficients.
PROPOSITION 4.15. The coefficient c, ., (y) is divisible by (14 y)*().
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PROOF. We prove the statement by induction on ¢(u). If v = w,|[Lemma 4.11
gives cyw(y) = (1 4+ ). Now assume u < w and that the statement is true
for any v < w with £(v) > ¢(u). Arguing by contradiction, suppose that (1 + y)* |
Cuw(y) and (1 + y)**! 1 cyw(y) for some ¢ < £(u). We use the hypotheses of
where we only keep the action of C*. In particular y = —e™",
therefore the initial term of 1 + y is h. Consider the expansion:

(4.5)

cher(MC_o-n(X(w)°)) = > cou(—€ ") che (0)

z<w,l(z)<l(u)

+ Z Ca(—e ") che- (0,) + Z Co(—e ") che-(0,).

z<w, (z)>4(u) z<w,l(z)=0(u)

Theorem 4.5|and|Proposition 3.5|imply that the part with the highest homological
degree in che (MC_—n (X (w)°)) lies in HS (X). (In below we will
show this is the homogenized Chern-Schwartz-MacPherson class cfy (X (w)°), in
particular it is nonzero.) Since £ < £(u), it follows that the coefficient of h’[X (u)] €
Hg(u)—z ,(X) in the left-hand side of ([L5) is equal to 0. We analyze this coefficient
on the right-hand side. The first summand has no contribution because £(z) < £(u).
By induction, every term in the second summand is divisible by A"+ thus again
it does not contribute to the coefficient of A*[X (u)]. In the last summand, only
the term with z = u can contribute. Its contribution equals the coefficient of i’
in cmw(—e’h). This coefficient is non-zero, by the hypothesis on ¢, and it gives a

non-zero coefficient of 2°[X (u)], contradicting the previous conclusion. O

We end with the following corollary.
COROLLARY 4.16. Consider the non-equivariant motivic Chern class
MC, (X ()%) = 3 o (4)Ou:
Then ciqw(—1) = 1.
PRrROOF. By the divisibility property, ¢, ,(—1) =0 for £(u) > 0. Then

1= MC_1(X(w)°) = ¢iqw(—1)
G/B

by [Proposition 4.13| O

We invite the reader to verify this corollary for the motivic Chern classes in

F1(3) from[Example 4.10|above.

4.5. The parabolic case. Consider the (generalized) partial flag manifold
G/P, and let 7 : G/B — G/P be the natural projection. This is a G-equivariant
locally trivial fibration in the Zariski topology, with fiber F' := 7~(1.P) = P/B.
This fiber is the flag manifold L/(B N L), where L is the Levi subgroup of P.
The Schubert varieties in F' are indexed by the elements in Wp. Furthermore, the
image 7(X (w)°) equals X (wWp)°, and the restriction of m to X (w)° is a trivial
fibration, showing that X (w)° ~ X (wWp)° x (w.F'NX (w)®). It follows that in the
Grothendieck group Ko(var/(G/P)),

(4.6) [X(w)° = G/P]=[w.FNX(w)° = wP|X[X(wWp)® = G/P].
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The intersection w.F' N X (w)® is the Schubert cell in w.F indexed by wy €
Wp, where w = wjwsy is the parabolic factorization of w with respect to P;
cf. [ BCMP22| Theorem 2.8]. This argument allows us calculate the push-forwards
of motivic Chern classes.

PROPOSITION 4.17. The following hold:

(8) MO, (X (w)°) = (=)@~ HWRINC, (X (wWp)°) in Kr(G/P).
(b) More generally, let P C Q be two standard parabolic subgroups, and 7' :
G/P — G/Q the natural projection. Then
TMC, (X (wWp)°) = (—y) WP =HTVIMC, (X (wWg)°).
PROOF. Equation (6] and functoriality of motivic Chern classes imply that
T MCy (X (w)°) = MCy[w.F N X (w)® = wP] - MC, (X (wWp)°),

Then the claim follows from [Proposition 4.13[a). Part (b) may be obtained by
applying (a) to the composition of projections G/B — G/Q — G/P. O

We end this section by pointing out that the argument from |Proposition 4.13|
extends verbatim to the parabolic case. One obtains:

PROPOSITION 4.18. Let w € WP and consider the Schubert expansion
MC, (X (wWp)°) = 3 cwr ucw Cuw(y, € )MCy (X (uWp)°®). Then the following
hold: a

(a) fG/p MC(X('LUWP)O) = ch,u(yv et) = (_y)é(w)‘
(b) The xy-genus of G/P equals x,(G/P) = Zwewp(—y)g(“’),

To illustrate, let G/P = Gr(k,n) be the Grassmann manifold of subspaces of
dimension k in C". The set W corresponds to partitions A = (\q,. .., \x) included
in the k x (n — k) rectangle such that dim X (A\) = |A\| = A1 + ...+ \¢. For ¢ = —y,

the x_, genus is
- A ("
XealGrhm) = 3% = (k)

the g-analogue of the binomial coefficient.

5. The parameter y in motivic Chern classes

In this section we discuss some key combinatorial properties of the Schubert
expansion of the motivic Chern classes, including specializations of the parameter
y and their geometric interpretation.

THEOREM 5.1. Let P be a parabolic subgroup of G, X = G/P, and w € WT,
Then the following hold:

(a) The specialization y = —1 gives MC_1(X (wWp)°®) = tuw,, the equivari-
ant class of the unique torus fized point in X (wWp)°.

(b) The specialization y = 0 gives MCo(X (wWp)°) = Iy, , the class of the
ideal sheaf Ox (wwp)(—0X(wWp)).

(c) The degree of MC, (X (wWp)°) with respect to y is equal to ¢(w), and
the coefficient of y**) in MC, (X (wWp)°) is the class of wx(wwy), the
dualizing sheaf on X (wWp).
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PRrOOF. We first prove all the statements for P = B. Parts (a) and (b) follow
from [Theorem 4.5]and the specializations at y = —1 and y = 0 of the operator T;,
from [Lemma 3.4] Let 6 : Z — X (w) denote the Bott-Samelson resolution of the
Schubert variety X (w) used, e.g., in [AM16]. By functoriality,

MC,[X (w)° — G/B] = 0. MC,[X (w)® — Z].

The restriction of 6 to ~(X (w)°) is an isomorphism, and it is known that
the complement of 071 (X (w)®) in Z is a simple normal crossing divisor. Since Z
is smooth, by inclusion-exclusion it follows that the term with highest power of y
in MCy(Z \ 67(X (w)®)) is the same as the one in MC,(Z) = A, (T*(Z)), namely
Y W A Z (7)) = (W), a multiple of the canonical bundle of Z. This finishes
the proof of (c), since 6.(wz) = wx(w) as X(w) has rational singularities; see e.g.,
(BKOS).

We now turn to the general G/P situation. Since w € W, the projection 7 :
G/B — G/ P restricts to a birational map 7 : X (w) — X (wWp) which is an isomor-
phism over the Schubert cell X (wWp)°. By [Proposition 4.17] 7, MC, (X (w)°) =
MC, (X (wWp)°). Then each claim follows from the corresponding statement for
G/B, taking into consideration that 7, (tw) = twwp, Ty, = Ly, (cf.
Proof of Lemma 4]), and T.wx (w) = Wx(wwp) (since X (wWp) has rational singu-
larities; see [BKO5]). O

REMARK 5.2. In the non-equivariant case, the result in (b) can also be proved
using the fact that, for the Schubert wvariety, we have MCq(X (w)) = OI since
X (w) has rational, hence DuBois, singularities Example 3.2]. The equi-
variant generalization of this argument would use either an equivariant version of
the DuBois complex, which is not available at this time in the literature, or a
corresponding equality in Ko (coh” (Ox)).

~__The duality in allows us to calculate the specializations of
MC, (Y (w)°).

COROLLARY 5.3. Let w € W. Then the following hold:

(a) The specialization y = —1 gives

A1 (T, (G/B))

. a>0(1 — 670‘)
A(Ty(G/B))

1\,/[\671(}/(11))0) = 0(1 _ ewa)

bw-

I
Il

(b) The specialization y = 0 gives 1\7[60(5/(11;)0) =owT,

Proo¥. [Theorem 4.6] and [Thecrem 5.1] imply that x = MC_; (Y (w)°) is a
class in K7(G/B) with localizations

K|u - 6u,w)\71(T:;0 (G/B))

Then (a) follows from the injectivity of the localization map, see [Nie74, Theo-
rem 3.2], and the fact that (i, ty) = duwA-1(T (G/B)). Part (b) is a consequence
of the duality between the ideal sheaves and structure sheaves recalled in (3.1)),
combined with [Theorem 5.1|(b). O
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6. Equivariant Hirzebruch classes

6.1. The equivariant Hirzebruch transformation. In the non equivariant
case, it is useful to define and study several transformations associated with motivic
Chern classes. These transformations provide a unified point of view from which, for
instance, the classical Chern-Schwartz-MacPherson (CSM) classes may be obtained
as a subproduct of a ‘normalized’ Todd transformation together with Grothendieck-
Riemann-Roch. This process is explained in [BSY10] §0 and §3]. In this paper we
use the equivariant Riemann-Roch theorem proved by Edidin and Graham [EGOO!
Theorem 3.1] to explain the equivariant counterparts of these ‘unnormalized’ and
‘normalized’ transformations. We note that Weber [Web16,Web17] first studied
the equivariant unnormalized Hirzebruch class we will consider below.

Since many of the results explained here are not available in this generality in
the literature, we find it useful to recall the precise hypotheses we utilize. We hope
this section may be used as a reference in the future. We will consider more in
detail the case of (equivariant) CSM classes in {7l There we will also provide an
alternative way to obtain CSM classes from motivic Chern classes.

By X we denote a complex algebraic variety. For a commutative ring R,
the completions AT (X, R), HT (X, R) denote the product of the equivariant Chow
groups [EG98], respectively the equivariant Borel-Moore homology groups (where
the degree is doubled), with coefficients in R:

Al x,R)= J] AT(X)®@R o HI(X R)= [] HLX
i<dim X i<dim X

The Chow and Borel-Moore homology are related by a cycle map cl : AT(X) —
HZ(X), and one may work directly in the Chow context, or in the image under this
map; cf. [EG98| §2.8]. In what follows we have chosen to work in the Borel-Moore
context. The coefficients ring R will be mostly Z, Q, Q[y] or Q[y, (1 +y)~]. In case
no coefficients are mentioned, we are using R = Q (as before).

For a T-variety X let

td, : Ko(coh” (Ox)) — HT(X)

be the equivariant Todd class transformation to the completion Vil T(X), constructed
in [EGO00| §3.2]. Then td, is covariant for proper T-equivariant morphisms. Also
note that
(6.1) td«(Ox) = Td(TX) N [X]r
for X smooth by [EG00| Theorem 3.1(d)(i)] and [EG05| Remark 6.10 and Lemma
A.1], since T is abelian so that the adjoint action of T' on its Lie algebra is trivial
(see also [MS15| p. 2218-2219] and compare with [AMSS17} Proof of Theorem 3.3]
for the counterpart of Ohmoto’s equivariant Chern class transformation). We also
have the equivariant Chern character (§2.3)

ch: Kp(X) — HE(X).
This is a contravariant ring homomorphism for T-equivariant morphisms. Then the
Todd transformation satisfies the module property
(6.2) td. ([E]lr ® [Flr) = ch([E]r) Ntd. ([F]7)

for [E]r € Kr(X) and [Flr € Ko(coh” (Ox)) (JEG00, Theorem 3.1]). Recall
that for a T-equivariant vector bundle E, the cohomological Todd class Td(FE) :=

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



MC, HIRZEBRUCH, AND CSM CLASSES OF SCHUBERT CELLS 23

Td([E]r) is multiplicative in short exact sequences, and for an equivariant line
bundle £ it is defined by

Ta() = — L)

1T

Define the unnormalized (respectively normalized) cohomological Hirze-
bruch class Td, (resp., Td,) by

(L) (1 +ye= 8
1—eci(0)

Tdy(£) := ch(Xy(£Y)) T(L) =

and

Tay(0) = T+ D) _ (L)1 +ye et O

Y ' 1+vy 1 — e~ (B)(1+y)
Then extend these definitions to any equivariant vector bundle using the splitting
principle, by requiring that they be multiplicative on short exact sequences. Note

the specializations:

(6.3) Tdy—o(£L) = Tdy—(£L) = Td(L),
and
(6.4) Tdy—1(£) = [ (£) , Tdye (L) = "(£) = 1+ ] (£).

The power series Td,(£) = 1+ ... has constant coefficient 1, whereas Td, (L) =
1+ y+ ... has constant coefficient 1 + y, explaining the name ‘unnormalized’.

Combining with the equivariant Riemann-Roch theorem proved
by Edidin and Graham Theorem 3.1] one obtains the following results
about the unnormalized equivariant Hirzebruch class transformation.

THEOREM 6.1. Let X be a quasi-projective, mon-singular, complex algebraic
variety with an action of the torus T. The unnormalized (equivariant) Hirzebruch
transformation

Tdy . = td MG, : K{ (var/X) — H]'(X)[y] € A (X;Qly. (1 +9) 7))
is the unique natural transformation satisfying the following properties:
(a) It is functorial with respect to T-equivariant proper morphisms of non-

singular, quasi-projective varieties.
(b) It satisfies the normalization condition

Td,.(lidx]) = Td,(TX) N [X]r.

(¢c) It is determined by its image on classes [f : Z — X]| = fi[idz] where Z
is a non-singular, irreducible, quasi-projective algebraic variety and f is a
T-equivariant proper morphism.

(d) It satisfies a Verdier-Riemann-Roch (VRR) formula: for any smooth, T-
equivariant morphism 0 : X — Y of quasi-projective and non-singular
algebraic varieties, and any [f : Z — Y] € KT (var/Y),

Td,(T§) N1 6" Tdy[f : Z — Y] = Tdy[67f : Z xy X = X].

If one forgets the T-action, then the unnormalized equivariant Hirzebruch
transformation above recovers the corresponding non-equivariant transformation

Ty« from [BSY10] (either by its construction, or by the properties (a)—(c) from
Theorem 6.1]and the corresponding results from |BSY10].)
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REMARK 6.2. |[Theorem 6.1 and its proof work more generally f for a possibly

singular, quasi-projective T-equivariant base variety X. Moreover, Td, , commutes
with exterior products:

Tdy[f x /1 Z % Z' = X x X'] = Tdy.[f : Z = X]RTdy.[f : 2/ — X].

This follows as in the non-equivariant context [BSY10l Corollary 3.1] from part
(3) of [Cheorem 6.1] and the multiplicativity of the corresponding equivariant coho-
mological class for smooth and quasi-projective T-varieties X, X':

Td,(T*(X x X')) = Td,(T*X) R Td, (T*X") € Hx:(X x X')[y].

One can also define a normalized equivariant Hirzebruch class transforma-
tion. With this aim, we introduce the following functorial Adams operations
(in (co)homology):

Uiy s Hp(X,Qly]) = Hr (X, Qly))
and R R
oY HI (X, Qly]) = H (X, Qly, (1 +y)7')
given by multiplication with (1 + y)? on H2(X,Q[y]) respectively (1 + y)~7 on
Hg; (X, Q[y]), and satisfying the module and ring properties
(6.5)
i—w(_ N _) = 1/’;-1-1/(_) N wi”(—) and ¢f+y(— U _) = ¢T+y(—) U ¢I+y(_)
(In the Chow context, the (co)homological grading will not be doubled.)

REMARK 6.3. These module and ring properties also hold for the functorial
(co)homological duality transformations

vy HA(X,Q) = Hi(X,Q) and ¢ ':HT(X,Q) = HT(X,Q)

given by multiplication with (—1)" on H7/(X,Q) resp. (—1)7 on Hy;(X,Q). If
X is smooth, these are consistent with the corresponding duality involutions in
K-theory:

cho(—)Y =v¢*, och(-) : Kr(X) = H:(X,Q),

since ¢I'(LY) = —cI'(L) for a T-equivariant line bundle £. Similarly, for the

Grothendieck-Serre duality D,
td oD(=) = ¢y ! o td. (=) : Ky (X) — H (X, Q),
since
tds(wx) = ch(wx) TA(TX) N [X]r = TAT*X) N [X]p
— (—D)I XY (TATX) A [X] ).
By definition, the (co)homological Adams operations satisfy
Vi, (e (0) = A+ y)el (L) 14, (Tdy (L)) = (14 y) Tdy (L)
and 1Y ([X]r) = (1 +y) "4 X]r for X of pure dimension d. It follows that
(6.6) 1™ (Tdy (TX)N[X]r) = ¥4, (Tdy(TX) N ([X]r) = Tdy (TX) N[ X
for X smooth and pure dimensional. In particular,
(67) (T, (TX)N[X]r) € HI(X,Qly)) € AT (X, Qly, (1+y)7).

This motivates the following:
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DEFINITION 6.4. The normalized equivariant Hirzebruch transforma-
tion Td, . is defined by:
(6.8)
Tdy,. = 1" 0 Td,,. : K{ (var/X) — HI (X, Qly)) € B (X, Qly, (1+y)7"]).
This transformation satisfies the same properties listed in and
with unnormalized classes replaced throughout by normalized classes.
Furthermore, the normalized transformation has values in f[f (X,Q[y]), by

Theorem 6.1(c) and [Equation (6.6)|above, cf. (6.7).

REMARK 6.5. The equivariant x,-genus of a T-variety Z may be calculated by

Xy(Z) = Tdy([Z — pt]) € H(pt)[y].
By rigidity of the x,-genus (see [Web16, Theorem 7.2]), these quantities contain
no information about the action of 7', i.e., both are equal to the non-equivariant

Xy-genus under the embedding Z[y] — Q[y] — fl}(pt)[y] (Cf. Remark 4.4] where
the same conclusion is reached in K-theory.) In particular one also gets

Xy(Z) = Tdy([Z — pt]) € Hj(pt)[y].

The definition of the Hirzebruch classes implies that
Tdy—1(TX) N [X]r = (TX)N [X]r
and
Td,—o(TX)  [X]r = TA(TX) 1 [X]r
for X smooth and pure dimensional. As in the non-equivariant context of

(for the non-equivariant normalized Hirzebruch class T, ) this implies the following:

COROLLARY 6.6. The equivariant Hirzebruch transformation Td, . fits into the
following commutative diagram of natural transformations:

FI(X) «+°— Kl(var/X) Ko(coh” (Ox))

CZ®Ql Tdy,*J( ltd*

BT(X) £ AT(X,QWy) %  HT(X).

MCy:[)
e

Here ¢! is the equivariant Chern class transformation defined by Ohmoto

, cf. {T11 We note that ¢! has values in the integral homology, and
also the completion is not needed, i.e., ¢ : FT(X) — HT(X,Z) C HT(X,Z). The
rational coefficients are needed due to the use of the Chern character. Finally
e([idx]) = 1x even for X singular, so that the equivariant normalized Hirze-
bruch class Td, .(X) := Td,.([idx]) specializes for y = —1 also for a singu-
lar X to the (rationalized) equivariant Chern-Schwartz-MacPherson (CSM) class
cI'(X) = cI'(1x) of X, and similarly for a locally closed T-invariant subvariety
7 C X:

(6.9) Tdy——1.[Z = X]=cl'(1z)®Q.

Note that if HX' (X, Z) is torsion free, no information about ¢'(1z) is lost by switch-
ing to rational coefficients; this is the case for the flag manifolds X = G/P. In
we will explain a more direct procedure yielding the equivariant CSM classes as the
leading terms of motivic Chern classes of Schubert cells.
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If Z C X we will refer to the classes ﬁy*[z — X] and Tdy«[Z — X] in

HT(X,Q[y]) as the unnormalized, respectively the normalized Hirzebruch
class of Z in X.

6.2. Hirzebruch classes for flag manifolds. We turn now to the study of
the Hirzebruch transformation in the case when X = G/B. There is the following
commutative diagram:

Ko (X) x Ko(cohT(Ox)) —2— Ko(cohT(Ox)) —2s Kn(pt)

ch ®td. l td. l lch:td*

Bp(X) < AT(X)  —"  AT(x)  —P Ap(pn).

Since X is smooth, from (6.I) and (6:2) we have that
tdi(—) = ch(—) TA(TX) N [X]r.

The functoriality of td, gives the equivariant version of the Grothendieck-
Hirzebruch-Riemann-Roch theorem for an equivariant morphism of smooth T-
varieties; cf. [EGO0Q| Theorem 3.1]. In particular, the GHRR theorem and (3:1)
imply that

(6.10) (td(OL), ch(Z9T)) = 6, = (tdu(ZL), ch(O”T))

As a consequence of the fact that {[X (w)]r }wew is a Hiy(pt)-basis of Hy(X),
it is not difficult to show that the Todd classes td.(X(w)) := td.(OL) of the
Schubert varieties X (w), respectively the Todd classes of the corresponding ideal
sheaves td, (Z,), give two bases of HY(X) as a ﬁ}(pt)—module. The key point is
that the corresponding coefficient matrix is triangular with respect to the Bruhat
ordering, with units on the diagonal; this follows from the functoriality of td, for a
closed inclusion X (w) < X. The corresponding dual bases are given by the Chern
characters ch(Z"7T), respectively ch(O"7T) of the opposite Schubert varieties for
v € W. Specializing all the equivariant parameters to 0, one recovers the natural
map HY (X) — H,(X) forgetting the T-action and mapping the equivariant Todd
transformation to the ordinary one. In this case td.(O,) = [X(w)] + Lo.t. and
td«(Zy) = [X (w)] + Lo.t. (lower order terms).

Recall from that the Demazure and BGG operators are related
by
(6.11) ch(9i(-)) = 0 (TA(T},) ch(-)) : Kp(X) — Hp(X).

Similarly, the equivariant Verdier-Riemann-Roch theorem (VRR) of [EG00, The-
orem 3.1(d)] implies

(6.12) td. (8(—)) = Td(T, )0 (td.(—)) : Ko(coh" (Ox)) — HE (X).

Then identities and (6.12), combined with (3.3), translate into

ch(OL,) if ws; > w;

(6.13) 31H(Td(Tpi) ch(0})) = {Ch(05) otherwise.

and
td. (OL,,)  if ws; > w;

Td(Tpi)aiH(td*(OlTv)) = {td*(OT) otherwise
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Similarly, Lemmal[3.4]a) translates into

. h(ZL,)  if ws; > w;
6.14 6H Td(7T.,.) — id)(ch IT — c ws; ) 5
( : & () = id)(ch (L)) {—Ch(Ifg) otherwise.
and

. tdo(ZL, ) if ws; > w;
6.15 Td(T. . 8H —id td* IT — ws,; 7 5
(6.15) (Td(T},)0;" —id)(td.(Z,,)) {—td*(zg) otherise

The specializations from |Corollary 6.6| and the last two equations motivate the
definition of the unnormalized (ordinary and dual) Hirzebruch operators

T T By (X, Q)ly) = Hi (X, Q)ly) by

ﬁHir = ﬁy(Tpi)azH —id; ff;Hir,\/ = aiH ° (ﬁy(Tpi) U(-)) —id.
Similarly we define the normalized Hirzebruch operators
T T H (X Qly] = Hi (X, Q)] by

7;Hir = Tdy(Tpi)azH —id; 7;Hir,\/ = aiH ° (Tdy(Tpi) U (_)) —id.
All these operators are }AI;(pt)—linear. In the statements that follow we explain in
detail their relation to the K-theoretic Demazure-Lusztig operators 7;, T;".

LEMMA 6.7. The Hirzebruch operators satisfy the following commutativity re-
lations:

(a) As operators Kr(X)[y] — ﬁ;i(X, Q)[yl,
(6.16) td, T; = 7, td,  and ch T, =T,V ch.
(b) As operators Kr(X)[y] — ]—7;()(7(@[% 1+1y)-1)),
(6.17) P, T = ﬁHirwi+y td, and why hTY = 7-iHir,V¢>1k+y oh.

PRrROOF. The first commutativity relation in part (a) follows from the following
sequence of equalities:

TH td, = Td,(T,,)0 td, — td,
= ch(Ay(T3)) TA(T},, )0 td. — td,
= ch(A\y(T},)) tds 0; — td.
= td. (A (T},)0; — id)
= td T;.
Here the third equality follows from (6.12), and the fourth from the module property

(62) of the Todd transformation. The second commutativity relation in (a) follows
from

THRY ¢h = 92 (Td, (T},) ch) — ch
= 0/ (TA(Ty,) ch(Ay(T},) U (-))) — ch
= ch 9;(\y(T,,) U (~)) —ch
= ch(9i\,(T},) — id)
=chT;".
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In this case, the second equality follows since ch is a ring homomorphism, the third
from (6.11), and the rest from the definitions. Part (b) follows from (a) and the
identities in below. |

LEMMA 6.8. As operators ﬁ[}(X)[y] — ff}(X,Q[y, (1+y)~ 1),
d]i-{—yﬁHir _ ﬁHirwi-&-y and d]rJﬂJﬁHir,\/ _ 7;Hir,\/¢1«+y.

PROOF. The first commutativity relation follows similarly to the proof of
a) above from the following sequence of equalities:

ST = I (TA,(T, )0l ~id)
= i, (T, (T7))pitvol — ity

- WaHWW —opity
I+y o ’

= Td, (T} ) p1+v — it

— THiI‘wl"ry.

Here the second equality follows from the module property (G.5) of the Adams
transformation, and the third uses the property

U o0l = (L+y) 710 o™,

since 9 shifts the complex homological degree by one. The second commutativity
relation follows similarly from:

¢T+y7~;Hir’v = ¢T+y(5zH Tdy(sz) - 1d)
Q/Jik"r T A *
= o ({52 Fa,5) v ) - i,
Uiy Ty (T,)
_ aH + y\Ipi) .
=0 (led)ler(_) — Pl
= 0/ (Tdy (T, )14, (5)) — Y1y,
Hir, *
=T; vlery‘
In this case, the second equality uses the property
Uiy 00 =07 o ((L+y) "1y,

since 9 shifts the complex cohomological degree by minus one. The third equality
follows since 97, is a ring homomorphism. (|

LEMMA 6.9.
(a) The ordinary (normalized/unnormalized) Hirzebruch operators are adjoint
to the dual operators, i.e. for any a,b € H3(X,Q)lyl,

(T (@), 0) = {a, TV ()5 (T (a),B) = {a, TV (1),
where the pairing is extended by Q[y}—lineam’ty

2Later in the context of Segre classes, we will tacitly extend this pairing by linearity from
coefficients in Q[y] to Q[y, (1 +y)~1].
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(b) Each family of the (ordinary / dual / (un)normalized) Hirzebruch op-
erators satisfies the same relations as the K-theoretic Demazure-Lusztig

operators; cf.|Proposition 3.2

PROOF. Part (a) can be proved by using the self-adjointness of 7 and the
operators of multiplication by Td, (T},), as follows. By definition,
(T (a),0) =((Tdy(T},)0]" —id)(a),b)
:<av (azH Tdy (qu‘,) - id)b>

=(a, ;" (b)).

3

A similar proof works for the unnormalized operators.

We turn to the relations in (b). First, we deduce from (a) that it suffices to
prove the statements for the ordinary operators. Then we use a) again
to show that for ¢’ € Ky(G/B),

THE T T (4 (a) = td, T T, - Ty (@),
Since td, is surjective (after appropriately extending the coefficients
via ch : Kr(pt) — HZ}(pt)), this implies the claim for the unnormalized Hirze-

bruch operators. The same proof works for the normalized operators, using classes

of the form yit¥ tds(a’), [Lemma 6.71b) and [Lemma 6.81 We also note that in or-
der to prove the statement for the dual operators, instead of adjointness, one may
alternatively work with classes of type ch(a’) and ¥y, ch(a’). O

REMARK 6.10. The results of [Lemma 6.9]b) also follow from the following ar-
gument. Regard fl}(pt)[y] as a Kr(pt)[y]-algebra via the (injective) equivariant
Chern character map. Then the transformations td, and ch induce injective homo-
morphisms of K¢ (pt)[y]-algebras

T, - Endie, oy (Kr(X)[o]) = Endg, o (H7(X)[y).

The injectivity part follows by using suitable bases, such as images of Schubert
classes O,, under the Todd or Chern character maps. Then [Lemma 6.7] may be
interpreted as giving the identities

E(’E) — ff;Hir and 6(7;\/) _ ffiHir,v.

Since td,, ch are algebra homomorphisms, they will preserve relations satisfied by
T:,T.Y, proving the claim for the unnormalized operators.

y fg 9
One may argue similarly in the case of normalized operators. Start by changing
the coefficient ring using the algebra isomorphism

(X)) @1, oy o (04, Qly, (1 9) 1) — H3(X,Qly. (1 +9)~)).
Then the Adams operations
iy - HE O] = Hi(pt)ly] and 9172 B (pt)ly] — HI (08, Qly. (1 +) "))
induce algebra isomorphisms
Vi Endfi%(pt,@[y,(lﬁ»y)*l](f;{;(X7 Qly, (1+y) ') —
Endg, o 000,011 (B (X, Qly, (14 9) 7))
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and
7T —1
}(+y : Endﬁ%(pt’(@[y’(1+y)*l])(H* (X7Q[y7 (1 + y) D) -
Endg. o0 01, (1y)-1) (H+ (X, Qly, (1+3) 7))
which by satisfy

ier(ﬁHir) _ 7;Hir and Wﬂ( NiHir,v) _ ,EHir,v.

Therefore the relations satisfied by the unnormalized operators are the same as
those for the normalized ones.

As a consequence of [Lemma 6.9] (b), we can set ’7:?“ = ’7;?“ e 7~?:ir, THir —
T THIE for w = sy, - - 55, areduced decomposition in W. We now come to the
main results about equivariant Hirzebruch classes of Schubert cells, starting with
their recursion.

THEOREM 6.11. Let w € W and s; a simple reflection such that ws; > w.

(a) The unnormalized Hirzebruch operators satisfy:
T (Tdy, (X (w)?)) = Tdy (X (wsi)°);
(b) The normalized Hirzebruch operators satisfy:
THH(Tdy, (X (w)°)) = Tdy (X (ws;)°).
(¢) In particular, for w € W, the Hirzebruch classes of Schubert cells are
given by:
Tdy«(X(w)?) = Ty ez and  Tdy (X (w)*) = T feialr

PROOF. Part (a) follows from[Theorem 4.5|(more specifically Corol-
lary 5.2]) together with the commutation relations (6.16). The same argument
applies to (b), using the definition of the normalized Hirzebruch transformation
from (6.8)), [Theorem 4.5]again, and the commutation relations (6.17). Part (c) is a

consequence of (a) and (b), taking into account that, by functoriality, Td, .(eiq) =
Tdy«(eia) = [eia]r- O

Next we formulate the corresponding orthogonality results for the equivariant
Hirzebruch classes of Schubert cells. In analogy with the definition of the operators
£, giving the dual classes of the motivic Chern classes, define the operators £
and :thr by

S,IL‘-HY — _y(ﬁHir,\/)—l _ 7;Hir7V + (1 + y) id
S = =T =T 4 (L y)id.

THEOREM 6.12. For any u,v € W,

(6.18) (Tdys (X (u)°), £ ([ewo))) i = duw Tdy Ty X)
and
(6.19) (Tdys (X (0)°), £ ([ewo)7)) i = S0 Ty (Toy X).
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ProOOF. We apply the equivariant Todd class transformation to both sides in
the expression from|Theorem 4.6|to obtain

O by (H(l +ye_°‘)> =td, (<Mcy(X(u)°)7l\//féy(Y(U)O»K)

a>0

K —
=td, (/X MC, (X (u)°) .Mcy(Y(v)"))

H* —
- /X 6. (MC, (X (1)°)) - ch(MC, (Y (1)°))

H*
- /X Tdy,« (X (u)°) - Ch(’gv*wo(owovT))

H* . .
- /X Tdy . (X(u)°) - 8 (ch(O%0T))

=(Tdy . (X (w)°), T, (ch(O" 1)) 1.
Here we use K and H* to indicate where the operation is taken, and the fifth

equality follows from [Lemma 6.7| Given this, the claim in (6.18) follows because

wo,Ty _ _Lewplr _ [ewy]r
h(O") = yirx) = Td(Tw, X])’

Tdy (T, X) = ch (H (1+ yeo‘)> Td(T,, X),

a>0

and the fact that E?ir is ff}(pt)[y}—linear. The equality from (G.19) follows from
(6.18) by application of the Adams operation t; :

Bty (T Ty X)) =0 (T (X (1)), B, ([ew 1))
= (Tdye (X ()°)) 010, (B0, (ewnlr) ))n
:<Tdy* (X(u)o)7 Sgirlwgwary([ewo]T»H‘
Then the claim follows because

Uiy (Tdy(Te,, X)) = (14 9™ X Ta(T,,,, X)

Cwq

and

¢T+y([€wo]T) = (1 + y)dlmX[ewo]Tv
with [ey,]r viewed as an equivariant cohomology class of complex degree dim X
(by equivariant Poincaré duality). (Il

We finish this section with the counterpart of |Theorem 4.12| using now the
(un)normalized Segre version of the Hirzebruch classes:
Ty (X)) Tdy(X()°)
Td,(TX) Td,(TX)
Observe that for any smooth X, the class ﬁy(X ) is invertible in the completed

ring fI}(X, Qly, (1 +y)~1]), since its leading term is the invertible element 1 + y.
Similarly Td,(X) is invertible in H7; (X, Qly]), as its leading term is 1.
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THEOREM 6.13. For any w € W one has in I/i\';(X,Q[y,(l +y)7 1)), resp.,
(X, Q): N
Tdy (X (w)°) JHir v ( leia] T >

Tdy(TX) " \Tdy(Z, X)
and

Tdy(T'X) wh \Tdy(Tey X))’
as well as .

Tdy(TX) 7 \Tdy(Te,, X)
and

Td, (TX) (wou) ™! \ Tdy(Te,,, X))

PROOF. We only explain the proof for the opposite Schubert cells Y (w)®, since
the result for the Schubert cells X (w)° are shown in exactly the same way. (Al-
ternatively, one may apply the automorphism wf obtained by left multiplication
by the longest element wy € W; see §5.2] or §3.1].) We
start with the unnormalized classes. The application of ch to together with
a) imply:

ch(MC, (Y (w)°)) _%Hir,v( ch(0"T) )

ch(\,T*X) o)™\ ch (], 0(1 +ye=®))

_gmiey  lewolr )

(wow) =1 (Tdy (Teon)

with the last equality as in the proof of [Theorem 6.12] Then the result follows from
Ty (Y (w)°) = 1, (MCy (¥ (w)°)) = ch(MC, (Y (w)°)) TA(TX)

and .

Td,(TX) = ch(AT*X) Td(TX).
To deduce the result for the normalized classes, we further apply the Adams trans-
formation 7, ,, with td.(MC, (Y (w)°)) and [e.,]r viewed as an equivariant co-
homology class as before (by equivariant Poincaré duality, with [e,,]7 of complex
degree dim X):

. (Tdy.(Y(w)°) (¢ AHIrV [ew, |7
wl“’( Td,(TX) >_(¢1+yﬁg°w)_l) (ﬁiy(Teon)>

_ ([ FHir,V * [ewo]T
= (i) (ﬁﬂ 0X>>

Cw

~Hir,v ( (14 )™ X ey, ]r )
1k

(14 y)dmXTd, (T, X
Then the result follows from
b (T(T0) = 85 a7
and s
Uhey (Tdye (Y (w)%)) = (14 5) 5 X Tdy (Y (w)°),
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since
Uiy (5) N [X] 7 = ¥14, (5) N (1 + )™ X [X]7)
= (L+y) ™ Xy (=0 [X]r).
by the module property (G.5). O
6.3. Specializations of (dual) Hirzebruch operators and Hirzebruch
classes of Schubert cells. We take this opportunity to record the specializa-
tions at y = —1 and y = 0 for the (un)normalized Hirzebruch operators 'EH“ and
TH and their (shifted) dual operators 7,7, 7Y and gl ¢Hir These follow
from the definitions of these objects, using the corresponding specializations of the
Hirzebruch classes from (6.3) and (6.4]), and are stated in the next proposition.
PROPOSITION 6.14. The following hold:
(a) The specializations at y = 0 of the (un)normalized Hirzebruch operators
are given by
(IiHir)yZO = (’EHir)y:O = Td(Tpi)azH —id,
and for their duals by
(%Hir’v)yzo =( 'Hir’v)yzo = 8@‘H Td(Tp,) —id

K3 3

so that B
(E?ir)yzo = (E?ir)yZO = 81H Td(T,).
(b) The specializations at y = —1 of the (un)normalized Hirzebruch operators
s given by:

(ﬁHir)yzfl = —S5i; ('EHir)y:71 = ,EH’
and for their (shifted) duals by

(THYY ey = (1) = —sY =55 (T = (£1), = T,

where the operators s; and T;7, T, are defined in (34), respectively (33).

Using these specializations of the (shifted dual) Hirzebruch operators, we can
specialize in a similar way the corresponding results from the Theorems[6.11] [6.12]
and toy = 0 and y = —1. First we consider the case y = 0. We obtain:

(6:20)  Tdy—o,(X (w)°) = Tdy=o« (X (w)°) = td(MCo (X (w)°)) = td.(Z})
by [Theorem 5.1(b). Then [Theorem 6.11]specializes for y = 0 to the recursion
(TA(T},)0]" —id)(td.(Zyy)) = tdi(Zos,) for ws; > w

from (6.15) for w € W and s; a simple reflection. Similarly[Theorem 6.12[specializes
for y =0 to

(6.21) (T (Z), (&, y=0([ewo] 7)) or = Oup TA(Te,, X)
for u,v € W. Since ch(Owo-T) = %, this translates into
ewp
(Tdu(Z), (L4 )y=0(ch(O™ 1)) it = b,
from which we deduce by (6.10) (for v € W) that:
(6.22) ch(0”T) = (&%, )y=o(ch(O">T)),
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with (€H), g = 07 Td(T,,). This recovers|Equation (6.13)|

Finally, since td.(—) = ch(—) Td(TX) for y = 0,[Theorem 6.13]specializes to

ch(z]) = (T10)  (eh(Z)

and
Ch(Iw’T)) _ <7-(Hir,v )y:O (Ch(IwO’T))

wow) 1

for w € W, with (ﬁHir’v)yzo = 9 Td(T,,) — id, consistent with [Equation (6.14

Next we record the specializations of Theorems and for y = —1.
For simplicity we only consider the more interesting case of normalized classes and
operators. Note that

Tdy 1 (X(w)°) = ¢ (Lxuye) = (X (w)°) € H(G/B.2)

by (6.9), since HI'(G/B,Z) is torsion free. Recall that cly(X(w)°) is Chern-
Schwartz-MacPherson (CSM) class of the Schubert cell X (w)°; this class is dis-
cussed in more detail in the next section. [Theorem 6.11|b) for the normalized
Hirzebruch classes implies for y = —1 the following recursion from [AM16] Theo-

rem 6.4] (formulated in [Equation (7.1)|in the next section in terms of homogenized

classes):
(623) T (X ()7) = (T (T, )0 — id) (el (X (w)%)) = ey (X (ws:)°)

for w € W and s; a simple reflection, with ws; > w.

Similarly, [Theorem 6.12]for the normalized Hirzebruch classes implies for y =
—1 the corresponding Hecke orthogonality of Theorem 7.2] (with
their equivariant parameter i € HZ. (pt, Z) specialized here to h = 1):

(6:24)  (cdu(X(w)°), (€1, )y=—1([ews]7)) = duve” (Te,, X) = 60 [J (1 + )
a>0

for u,v € W. Here

(L5 y=—1([ewo]r) = T, (lewolr) = c&if (Y (0)°)

is the dual Chern-Schwartz-MacPherson class from |[AMSS17| Equation (14)].
Note that, in terms of the duality operators fromm

csat (Y (0)°) = (=) X0y (e (Y (0)°),

since the homogenized operators satisfy

(6.25) TV = ol + s, = —(—hoF — 51) = =T, Mnes .
Finally for the normalized Hirzebruch classes implies for y = —1:
(6.26) (X (®)°) _ ay ( [e1a]r ) _ e (X))
. =T =
(TX) [Toso(l—a) [Toso(l—a)

and

SV (@)°) _ v < [T ) _ g (Y(w)°)
cT(TX) (wow) =1 Ha>0(1 + «) Ha>0(1+a)'
This recovers [AMSS17] Theorem 7.5], which is one of the main results of that
paper (again with the equivariant parameter i € Hé* (pt, Z) specialized to h = 1).
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6.4. Parabolic Hirzebruch classes. We now consider the (generalized) par-
tial flag manifold G/P, and we let m : G/B — G/P be the natural projection. The
Schubert varieties X (wWp)° in G/ P are indexed by the elements in w € W%, with
the image 7(X (w)°) = X (wWp)° for w € W. Applying td, and ¢+ td, to the
equalities from [Proposition 4.17|implies by functoriality the following counterpart
for the Hirzebruch classes.

PROPOSITION 6.15. The following hold for w € W:
(a) For P parabolic:

2 Tdye (X (w)°) = (=) = @WP) T, (X (wWp)°) € HY (G/P)[y]
and
T Tdy (X (w)°) = (=) @)= @Wr) T, (X (wWp)°) € HT (G/P)[y).

(b) More generally, let P C Q be two standard parabolic subgroups, and 7' :
G/P — G/Q the natural projection. Then

7, Tdye (X (wWp)°) = (—y) W)= Wal e T, (X (wWo)°) € HY (G/Q)]y)
and
7, Tdy (X (wWp)°) = (—y) @WPI=Walr Td,, (X (wWg)°) € HI (G/Q)[y].
Specializing to y = 0 (with the convention 0° = 1), we get by [Theorem 5.1{b):

Td.(Zhy,) if {(w) = L(wWp);

. Td.(2T) = { .
0 otherwise.

Similarly, specializing the normalized classes to y = —1, we get for w € W:
(6.27)
e (X (0)°) = ey (X (wWp)°®) and 7}y (X (wWp)°®) = egu (X (wWq)°).

These equalities hold in HI (G/P,Z) and HI (G/Q,Z), since these are torsion free.

7. The Chern-Schwartz-MacPherson classes as leading terms

We have seen in the that the Chern-Schwartz-MacPherson (CSM)
classes may be recovered from the Hirzebruch transformation by specializing at
y = —1. In this section we take a different route, and recover the CSM classes
directly, by identifying them as the leading terms of the motivic Chern classes;
cf. We will illustrate this process for complete flag varieties, since
these are the main object of study in this paper.

7.1. Chern-Schwartz-MacPherson classes. We first recall the context
leading to the definition of CSM classes. According to a conjecture attributed to
Deligne and Grothendieck, there is a unique natural transformation ¢, : F(—) —
H,.(—,Z) from the functor of constructible functions on a complex algebraic variety
X to homology (i.e., even degree Borel-Moore homology, or Chow groups), where all
morphisms are proper, such that if X is smooth then ¢,(1x) = ¢(TX) N [X]. This
conjecture was proved by MacPherson |Mac74]; the class ¢, (1 x) for possibly sin-
gular varieties X was shown to coincide via Alexander duality with a class defined
earlier by M.-H. Schwartz [Sch65al|Sch65blBS81|. For any constructible subset
W C X, the class csm(W) = c.(lw) € H.(X,Z) is called the Chern-Schwartz-
MacPherson (CSM) class of W in X. If X is a T-variety, an equivariant version
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of the group of constructible functions F7(X) and a Chern class transformation
' FT(X) — H.(X;Z) were defined by Ohmoto [OhmO06]; see [AMSS17] §3.2]
for a summary of Ohmoto’s definition and a discussion of alternative (equivalent)
definitions. This is the notion we consider in this paper.

7.2. The homogenized CSM class via the motivic Chern class. We
now consider the case of flag varieties, so X = G / B. If

CSM ZCSM i € HT(G/B Z)
where ¢t (X (w)°); € HQTZ-(G/B 7Z), the homogenized CSM class is defined to be

csan (X ZFLZCSM w)°*); € Hy *“ (G/B, 7).

Here C* acts trivially on G/B and h € HZ.(pt,Z) is a generator. Consider the
Schubert expansion of the homogenized CSM class:

CSM Zcuw ht )] EHgXC*(X)7
u<w

where ¢, ,,(h,t) € H}c.(pt, Z) is a homogeneous polynomial of degree £(u). As
usual ¢ = (t1,...,ts) stands for a sequence of variables corresponding to a basis of
the character group of T'; see §2.11 We also recall that «; denote the simple roots,
regarded as elements of H2(pt). With 7;H " as in (3.6), we have

(7.1) T (i (X (w)%) = egin (X (wsi)°);

this is the homogenized version of (6.23) above. We will now verify that, combined
with (7.I) implies that the CSM class of the Schubert cell is the
‘initial term’ of the motivic Chern class MC, (X (w)°), where y = —e~".

THEOREM 7.1. Let w € W and consider the Schubert expansions

MC Zcuw y,e OTGKT(G/B)[ ]
u<w
and
ca(x = ¢ wht)[X(w)r € H *C (G/B,Z),
u<w
where ¢, ,,(h,t) € H%éx(fé)*(pt). With y = —e™" (and hence che-(y) = —e ™"

cf. 23), the following hold:
(a) The image chrxc+(Cuw(y, €')) of the coefficient ¢y, ., (y, €') under the Chern

character belongs to [[;> ., HZ .. (pt).
(b) The coefficient ¢, ,,(h,t) equals the term of degree £(u) in cy.w(y,€'), i.e.,
C/u,w (hr t) = (ChTX(C* (Cuﬂu (yv et)))l(u)'
Equivalently,
Cérl\?(X(w)o) = degree 0 component of ch(MC, (X (w)?)).
PRrOOF. Both parts follow by induction on ¢(w), using the recursion calculating

MC, (X (w)°) from [Theorem 4.5| combined with [Proposition 3.5| in part (b) we
utilize the recursion for Cgl\/)} (X (w)°®) from (7.1). O
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EXAMPLE 7.2. Consider the equivariant motivic Chern class in Kz (P!)[y]:
MCy (X (51)°) = (L+e *y)OL — (1 + (1+e *)y)On.
The specialization y = —e~" in the coefficient c;, s, (y, €!) gives:
Cops(—e ey =1—e " =h+ta; +hot.
(higher order terms). The term of degree 1 is ¢, ,, = h+ ;. Similarly, the
specialization of ciq s, (y, ') gives
Cds (y,6) = —(1—(1+e ™)e ™M) =1 +e e ™ =142+ hot.
By [Theorem 7.11
csin(X(51)°) = (A+ a1)[X (s1))r + [X (id)]r,
consistent with a positivity property from[Conjecture 1| below.

Consider now the non-equivariant case, i.e., in the expansions from|Theorem 7.1
we set a = 0, so e* — 1. In this case we denote the coefficients in the two expansion
by cuw(y) respectively c;, ,(h). Note that c,.(y) € Zly] and ¢, (k) € Z[h].
Furthermore, by homogeneity,

&y w(h) =y ph ™,

u,w
where ¢, ,, € Z is an integer. Next we give a more direct relation between these coef-
ficients, using that the polynomial c,.(y) is divisible by (1 + y)“*) by
[Proposition 4.15|

COROLLARY 7.3. The coefficient €, ., equals the specialization at y = —1 of
Cuw(y) .
(I4y)ew

z _ ( Cu,w(Y) )
) (1_|_y)2(u) 1

PROOF. Let Quu(y) = > a;y® in Z[y] be the quotient (f:;)(;{?” By

Theorem 7.1} the coefficient €, equals the term of degree 0 in the specializa-

tion Quw(—e"). Since —e™" = —1+ higher order terms, ¢, ., = Quw(—1) as

claimed. O

EXAMPLE 7.4. Consider the non-equivariant version of|Example 7.2
MCy(X(S1)O) = (1 + y)(’)sl — (1 + 2y)01d.

According to[Corollary 7.3] we need to divide each coefficient c, s, (y) by (1+1)*™

and then specialize at y = —1. We obtain:
(X (51)°) = B[X (s1)] + [X (id)].
The non-homogenized class is obtained by setting A to 1.
EXAMPLE 7.5. Consider the motivic Chern class in K(F1(3))[y]:
MCy (X (5152)°) =(1 +9)Osy, — (1 +y) (1 +29)Os,
— (L+y)(1+ 3y)Os, + (59> + 5y + 1)Oia.

As before, we need to divide each coefficient ¢, s 4,(y) by (1 + 3)*™ and then
specialize at y = —1. We obtain:

csm(X (s152)°) = [X(s152)] + [X(s1)] + 2[X (s2)] + [X (id)].
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8. Positivity, unimodality, and log-concavity conjectures

In this section we record several conjectures involving Schubert expansions of
the motivic Chern and CSM classes and about the structure constants of the CSM
classes. Some of these conjectures have been made by other authors; our goal is to
collect all these statements in a single place.

We start with the CSM classes, since this is the case when we have the most
(partial) results.

8.1. Positivity of Schubert expansions of CSM classes. Consider the
(non-equivariant) CSM class of a Schubert cells in a generalized flag manifolds

G/P:

CSM(X(wWP)O) = Z Cv7w[X(UWP)]a
vWp<wWp

with ¢, € Z. For G/P = Gr(k;n), it was conjectured in [AMO9] that the coef-
ficients c,.,, are nonnegative; this was proved in some special cases in loc.cit. and

n [Mih15/[Jon10l[Str11], and in full generality (for Grassmannians) by J. Huh
[Huh16|. The recursive algorithm from [AMTI16] yielded calculations of CSM
classes of Schubert cells in any G/P, and provided supporting evidence that the
CSM classes of Schubert cells in all flag manifolds are effective. This conjecture

was proved in [AMSS17) Corollary 1.4].

Equivariantly, the numerical evidence supports the following conjecture.

CONJECTURE 1 (Equivariant Positivity). Let X(wWp)° C G/P be any Schu-
bert cell and consider the Schubert expansion of the equivariant CSM class:

e (X (wWp)° Z Cow(Q)[ X(WWp)|lr € HY(G/P).

v<w
Then ¢y (@) s a polynomial in positive roots a with non-negative coefficients.

In the non-equivariant case, while we have proved in AMSS17| that c, ., > 0,
the evidence suggests a stronger result.

CONJECTURE 2 (Strong positivity). Let X (wWp)° C G/P be any Schubert cell
and consider the Schubert expansion:

csm(X(WWp)°) =Y cow[X(WWp)] € Ho(G/P;Z).

v<w
Then ¢y > 0 for all v < w.

Huh'’s result for Grassmannians in shows that each homogeneous com-
ponent csy (X (wWp)©)g of the CSM class is represented by a non-empty irreducible
variety. This is slightly weaker than the requirement in On the other
hand, if this variety may be chosen to be T-stable, then Huh’s result and the posi-
tivity results of Graham would imply Conjecture[I] for Grassmannians.

For any parabolic subgroup P, let 7 : G/B — G/P be the natural projec-
tion. Since 7. (cgm(X (w)°)) = csm(X (wWp)°) (see e.g., (6.27)) it follows that if
[Conjecture 1] or [Conjecture 2| holds for cells in G/B, then it also holds in G/P.
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8.2. Positivity of CSM/SM structure constants. The CSM classes
csm(X (w)°®) may be viewed as deformations of the fundamental classes [X (w)];
we consider analogues of the Littlewood-Richardson coefficients in the context of
these classes. Since cgy (X (w)°) is naturally a homology class, we focus on struc-
ture constants for their Poincaré duals, the Segre-MacPherson (SM) classes. In
this section we only consider the non-equivariant context. In general, if Z
is a subvariety of a nonsingular variety X, we set

CSM(Z)

ss(ZX) = Tz

in the homology or Chow group of Z; see e.g., [AMSS22]. We will implicitly
push-forward this class to H,(X).

Since ¢(T(G/B)) - ¢(T*(G/B)) = 1, as proved in [AMSS17| Lemma 8.2], in
G/B we have

csm (Y (w)°)

ssm(Y(w)®,G/B) = c(T(G/B))

— o(T*(G/B)) Nesu(Y (w)°).
We also proved that
ssm(X (ws;)°, G/B) = T ssm(X (w)°, G/B)

(cf. (6.26]) above for the equivariant version of this equality). Poincaré duality states
that for any parabolic P D B,

(81) <SSM(Y(UWP)O,G/P),CSM(X(’LUWP)O)> = 5’[},71)7

cf. [AMSS17] Theorem 7.1]. This can be proved using a transversality formula
due to Schiirmann [Sch17], extended equivariantly in [AMSS17| Corollary 10.3].

As a consequence of (cf. [AMSS17] Eq. (36)]), the Schubert expansions
of csm (X (w)®) and sgm (X (w)°, G/B) in G/B are related by changing signs. More
precisely, if

SSM( G/B vaw U EH*(G/B),

then with notation as above f,,,, = (—1) (“’)*e(”)cv w- This follows because the
homogenized operator ’EH’h = ho;—s;, giving CSM classes, and its adjoint TH Vi —
hd; + s;, giving SM classes, differ by a sign; see also - for the more general
equivariant statement.

Consider now the structure constants
(8.2) ssu(Y(w)°,G/B) - ssu(Y (0)°,G/B) = > et ssm(Y (w)°,G/B).
Schiirmann’s transversality theorem [Sch17| shows that

wo = X(@1Y (1)° N g2Y (v)° N gz X (w)°),

the topological Euler characteristic of the intersection of three Schubert cells trans-
lated in general position via g1,¢2,93 € G. This interpretation of the structure
constants holds for any G/P, although the relation between the Schubert expan-
sions of CSM and SM classes does not extend beyond G/B. (Still, the SM classes
are known to be Schubert alternating; see [AMSS22].)

Due to its statement involving only ‘classical’ objects, perhaps the most re-
markable positivity conjecture in this paper is the next.

(&
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CONJECTURE 3 (Alternation of Euler characteristic). The Euler characteristic
of the intersection of three Schubert cells in general position in G/P is alternating,
i.e., for any u,v,w € WP,

(—1)e(“)+€(”)+€(w)x(glY(qu)° Ng2Y (vWp)° N g3 X (wWp)°) > 0.

Utilizing deep connections between SM classes to the theory of integrable sys-
tems, this was proved by Knutson and Zinn-Justin for d-step flag manifolds with
d < 3, and it was conjectured to hold for d = 4; cf. [KZJ21] p. 43]. Independently,
and based on multiplications of SM classes from [AMSS17], the authors of this
paper stated this conjecture in several conference and seminar talks, for partial flag
manifolds G/P in arbitrary Lie typ.

S. Kumar conjectured that the CSM class of the Richardson cells are
Schubert positive, that is, if

csm(Y(w)° NX(0)°) = 3 fir, [Y (w)),

then f’, > 0. (We also learned about this conjecture independently from Rui
Xiong, and it is now stated in [FGX22| Conjecture 9.2].) It is shown in [Kum22
that this implies|Conjecture 3| Note that the Segre class of the Richardson cell

ssm(R™°, G/B) = ssm(Y (u)° N X (v)°, G/B)

is Schubert alternating by Theorem 1.1], since the inclusion of ¥ (u)° N
X (v)° is an affine morphism.

For G/ B, the absolute value of the structure constants e;;, from give the
structure constants to multiply CSM classes of Schubert cells. This generalizes the
positivity in ordinary Schubert Calculus: if ¢(uWp) 4+ £(vWp) = £(wWp), then the
intersection in question is 0 dimensional and reduced, and the Euler characteristic
counts the number of points in the intersection. A different algorithm to calculate
the SM structure constants is given in [Su21].

We end this section by proving a property of the sum of the coefficients e;; .

PROPOSITION 8.1. Consider the multiplication

SSM(Y(UWP)O, G/P) . SSM(Y(UWP)O, G/P) = Z eg)vSSM(Y(pr)O, G/P)

Then 3, Cun = OwouWp,oWp -

PROOF. By the transversality formula from [Sch17], and omitting the ambient
G/ P for short,

SSM(Y(UWP)O) . SSM(Y(’UWP)O) = SSM(X(wQUWP)O) : SSM(Y(UWP)O)
= ssm(X (wouWp)° NY (vWp)°).

3 After this paper was submitted, a proof of the conjecture was given in [SSW23].
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By Poincaré duality and the equality ¢(T'(G/P)) = _,, csm(X(wWp)®), the
sum of the coefficients e;; , equals

/C;/P ssm (Y (uWp)°) - ssm(Y (vWp)°) - ¢(T(G/P))
= / ssm(X (wouWp)° NY (vWp)°) - ¢(T(G/P))
G/P

= // CSM(X(U)()UWP)O N Y(DWP)O) = 5w0qu,va-
G/P

Here the last equality follows because the Richardson cell X (woulWp)° NY (vWp)°
is torus-stable, therefore its Euler characteristic equals the Euler characteristic of
the fixed locus; see [BB73| Corollary 2], applied for a general C* C T'. In this case
the fixed locus is empty or one point, giving dwuwp,oWwp - O
EXAMPLE 8.2. Take G is Lie type G5 and write sgy(—) for ssym(—, G/B). Then
ssm (Y (id)°) - ssm (Y (id)?) = ssm (Y (id)?) — ssm (Y (51)°) — ssm(Y (52)°)

+ QSSM(Y(5251)O) + 4SSM(Y(5152)0)

— 9ssm (Y (s15251)°) — 1lsgm(Y (s25152)°)

+ 2255Mm (Y (82815251)°) + 34ssm (Y (51528182)°)

— 57ssm(Y (5182818281)°) — Blssm (Y (s251825152)°)

+ 67ssm(Y (s25182815251)°).

Observe that these structure constants are alternating, and add up to 0, confirming
[Conjecture 3|and [Proposition 8.1|in this case.

8.3. Unimodality and log-concavity for CSM polynomials. Following
[Sta89], a sequence ayg, . .., a, is unimodal if there exists iy such that

ap < a1 <. < Qi 2 Qjg41 = -+ 2 A
The sequence is log-concave if for any 1 <i <mn—1,
al > a;i_1ai41.

A log-concave sequence of nonnegative integers with no internal zeros is unimodal.
A polynomial P(x) = Y a;x' is unimodal, resp., log-concave, if its sequence of
coeflicients satisfies the corresponding property.

Consider any class k = > ¢,[X(wWp)] in H.(G/P). We define the H-
polynomial associated to k by

H(k):= chxz(w) = Zcixi,
determining the coefficients ¢;. For w € W¥ we denote by
Hy(x) = H(csm(X (wWp)))
the H-polynomial of the CSM class of the corresponding Schubert variety.

CONJECTURE 4 (Unimodality and log-concavity). Let X(w) C G/P be any
Schubert variety. Then the following hold:

(a) The polynomial H,, is unimodal with no internal zeros.
(b) If G is of Lie type A (i.e., G/P = Fl(iy,...,ig;n) is a partial flag mani-
fold) then H,, is log-concave.
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A similar conjecture for Mather classes can be found in [MS20].

ExaMPLE 8.3. Consider the Grassmannian Gr(3,6) and the Schubert variety
X(2,1) of dimension 3. Then

esm(X(2,1)) = [X(2,)] + 3[Xa] 4 3[X1,1] 4 8[X4] + 5[Xo].
Its H-polynomial is
z3 + 622 + 8z + 5,

which is log-concave.
For the 5-dimensional quadric Q°, the H-polynomial of ¢(TQ?) is

25 + 52 + 1123 + 2622 + 182 + 6
which is unimodal, but not log-concave.

8.4. Conjectures about the motivic Chern classes. Given the (proved
and conjectural) positivity properties of the CSM classes of Schubert cells, it is
natural to conjecture analogous properties for the motivic Chern classes of Schubert
cells. The following conjecture was stated by Fehér, Rimdnyi, and Weber FRW 17|
in type A, and in Conjecture 1] for arbitrary Lie type.

CONJECTURE 5 (Positivity of MC classes). Consider the Schubert expansion:

MCy (X (w)°) = Y cuw(y, e")OL € Kp(G/B)[y).

u<w

Then for any u < w € W, we have
(=)= ey, (y, ) € Zxolylle™ ™, ..., e” ] € Ko (pt)[y],

i.e., the coefficients (—1)XW)=We, . (y,e') are polynomials in the variables y and
characters e~ ... e~ in simple roots with non-negative coefficients.

The conjecture implies that the coefficients of the non-equivariant motivic
Chern classes of Schubert cells are sign-alternating:

(71)Z(w)7z(u)cu,w(y) € ZZO[?J]'

Conjecture[5]holds after specializing y = 0, as a consequence of[Theorem 5.1{b) and
the fact that the ideal sheaves are alternating in Schubert classes; see above,
and e.g., Proposition 4.3.2]. More evidence for Conjecture[5] is available,
since some particular coefficients ¢, ., (y, €') are known to be positive. For instance,
the coefficient
conlye) = T (L+ye™)
a>0,w(a)<0

calculated in Lemma [£.I1] is positive. The specialization at y = —1 gives the equi-
variant class ¢,, of the structure sheaf of the fixed point of w as in[Theorem 5.1]above
(see Proposition [5.1). This is consistent with the conjecture; the class ¢,, is known
to be Schubert alternating, by e.g., the positivity in equivariant K-theory proved by
Anderson, Griffeth and Miller [AGM11]. Finally, we verified [Conjecture 5| for flag
manifolds of type A,, for n <5 (i.e., up to F1(5)), and for the Lie types By, Cy, D3
and G2, by means of a computer calculation.

Fehér, Rimanyi, and Weber also observed a conjectural log-concavity
property for motivic Chern classes in Lie type A. We confirmed their observations
in many examples, and also checked additional examples in other Lie types.
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CONJECTURE 6 (Log concavity for MC classes). Let X (w)® C G/B and con-
sider the Schubert expansion of the non-equivariant motivic Chern class:

MC(X(’[U)O) = Z Cv;w(y)ov~

Then ¢y (y) is log-concave.

ExaMPLE 8.4. Consider G of Lie type G3. The coefficient of Oiq in the expan-
sion of MC, (X (w)°®) is
64y° + 141y° + 125y* + 69y° + 29y* + 8y + 1.

This is a log-concave polynomial. Its specialization at y = —1 gives 1, reflecting
the fact that it calculates the Euler characteristic of the big cell in G2/B.

REMARK 8.5. To simplify the notation, we only stated in the
non-equivariant case. As pointed out in [FRW17|, the conjecture has a natural

extension to the equivariant setting.

8.5. An interpretation in the Hecke algebra. We can use Hecke algebra
to give a combinatorial interpretation of the coefficients c, ,(y) in
For the cohomology case, see Theorem 6.2].

Recall the K-theoretic BGG operator 9; satisfies 81-2 = 9; and the braid re-
lations. The operators 7; (and 7;¥) satisfy the finite Hecke algebra relation, see
Proposition [3.2] Besides, we also have:

LEMMA 8.6. For any simple root o and torus weight X,

Ly—L
Do o3 = LarOs, = =7 — 1% € Bndicy ooy Kr(G/B) ),
Lo x— L
Tsoln = LsanTso = (14 y) 75— € Endry oy Kz (G/B)[Y]
and
VLN — Lo T = Lsad —£3 g K7 (G/B
T £x — Lo AT, = (1+y)ﬁ € Endk, (p)y) K (G/B)l[y]-
Here Lﬁ:—ﬁ:* is defined as follows. Suppose ekliffk =), ¢", then
LA—Ls
e =3 Ly

PrOOF. We can check the equalities on the fixed point basis. Then all of them
follow from Lemma[3:3]and the equality £y ® tyy = € iy. a

Let us recall the definition of the K-theoretic Kostant-Kumar Hecke algebra
KK90| and the affine Hecke algebra. Let P denote the weight lattice of G.

DEFINITION 8.7.

(1) The Kostant-Kumar Hecke algebra H is a free Z module with basis
{Dye*w € W, \ € P}, such that

For any \, i € P, etet = e MH,

For any simple root «, Dga =D,_.

For any w,y € W such that (wy) = {(w) + {(y), DywDy = Dy

For any simple root o and A € P,

e)\ _ esi)\

1—ev

°
°
°
°

6>\Di — Diesl)\ =
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(2) The affine Hecke algebra H is a free Z[g, ¢ ] module with basis {T},e*|w €
W, A € P}, such that
e For any A\, € P, elet = i,
e For any simple root o, (Ts_, + 1)(Ts, —¢q) = 0.
e For any w,y € W such that {(wy) = l(w) + £(y), TwTy = Twy
e For any simple root o and A € P,
A SaA
Tye®o? — e T, = (1 — q)%.

It follows from Lemma that the Kostant-Kumar Hecke algebra H acts on
Kr(G/B) by sending D; to 9; and e* to Ly, see [KK90]; the affine Hecke algebra
H acts on K7 (G/B)[y,y~ ] by sending q to —y, T} to T; (or T,"), and e* to Ly, see
[Lus85|. In the rest of the section, we always identify q with —y.

For any simple root «;, let

Ti=(14ye*)D; =1 =Dj(1+ye ™) — (1 +y+ye ™) € Hyl.

Then these T; and e* satisfies the relations in the affine Hecke algebra H. Therefore,
T, is well-defined for all w € W.
For any w, we can expand T,,-: as a linear combination of terms D, -1,

(8.3) Ty = Z Dy-1ay(y;e'),

u<w

for some ay ., (y, ') € C[T][y]. It is easy to compute

aww(yie) = [ (+ye*),

a>0,wa<0

which equals the coefficient ¢, (y; ') by[Lemma 4.11] In fact, we have the follow-
ing more general relation.

PROPOSITION 8.8. For any u < w € W, we have

(Y5 €') = cuw(ys ).

PRrROOF. Under the action of the Kostant-Kumar Hecke algebra H on K1 (G/B),
T; is sent to the DL operator 7; from (3.7). By Theorem [45] Equation (3.3) and
the equality £, ® OL = e*OL, applying 83) to tiq € K7 (G/B) we get

MC, (X (w)°) = Y auw(y.e")OL.

u<w

Therefore, ay ., (y; ') = cuw(y; e'). -

Proposition[]:8]provides a purely combinatorial way to compute the coefficients

Cuw(y;€'). In particular, we can check [Conjecture 5|in the case when ¢(w) < 2 as

follows:

(1) l(w) =1. From T; = D;(14+ye~ %) —(14+y+ye %), we get cig,s;, = —(1+
y+ye ) and ¢y, 5, = 1 +ye . (This is consistent with[Example 4.8])
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(2) ¢(w) = 2. Pick two simple roots a;,a;. We calculate
T,T; = (Di(1+ye ) = (L+y+ye ™)) (Dj(1+ye ) = (L +y+ye ™))
=D;iDj(1+ye ™) (1+ye ") = Dij(L+ye ") (1 +y +ye ¥)

—Q

e o g €T — TS
—Di<(1+y€ Dl +y+ye ) —y(l+ye ’)W)

—Qy e—SjOéi

) —o; —a;\ €
+ Ly +ye )Ly +ye™™) —y(l+ye ) ——r

where
1—e%
This verifies[Conjecture 5| when /(w) = 2.
To illustrate this, consider G = SL(3,C), i = 2, and j = 1. Then

15Ty = DaDy (1 +ye V) (1+ye ***?) — D1(1+ye ™) (1 +y + ye *1%2)

—85Q; —sjaita; —Qi— Qg

=—e —e o—e

e—az _ 6—81042
— Dy <(1 +ye )1 +y+ye ™) —y(l +y€_m)ﬁ>

Q2 _ pTS1042

e
+ 4y +yem )Lty +yem™) —y(l+ye ™) —F—

= DyDy(L+ye ) (1+ye ") = Dy(L+ye *)(1L+y+ye *2~)
— Dy (14 ye ) (1 4y +ye ) +y(1 + ye ) 1702)
+(14+y+ye ) 1+y+ye *)+y(l+ye “)e 172,

Under the above ‘dictionary’ between the Hecke algebra elements and operators,

this recovers |Example 4.9
9. Star duality

Recall that by ‘star duality’ we mean the involution % : K7 (X) — K¢ (X) which
sends (the class of) a vector bundle [E] to [EY] = [Home, (F,Ox)]. This is not
an involution of Kr(pt)-algebras, but it satisfies x(C,) = C_,, where C, denotes
the trivial line bundle with weight A. We extend x to K7(X)[y,y '] by linearity,
requiring x(y*) =y’ for i € Z.

The goal of this section is to study the effect of this duality on the motivic
Chern classes for Schubert cells in X = G/B. We are motivated by a result of
Brion Proposition 4.3.4] who proved that in K(G/B),

E—p QRL, = (_l)codimX(w) * (Ow)

where (recall) p denotes the half sum of the positive roots. (See also
below.) We will upgrade this to the (equivariant) motivic Chern classes MC,, (X (w)®)
and the (equivariant, normalized) classes Méy(x (w)®). The reason behind this
choice is that (non-equivariantly) the specialization y = 0 gives the ideal sheaves
T, respectively the structure sheaves /\(’zw; cf. [Theorem 5.1| and |Theorem 4.6}
(By [Theorem 4.6] the opposite classes MC, (Y (w)®) are orthogonal to the motivic
classes.)

Recall the DL operators 7; and £; from (3.7) respectively (4.1). These de-
termine recursively the motivic Chern classes MC, (X (w)°®) = To-1(OL) (Theo-

rem[4.5) and the (normalized) classes l\/my(X(w)o) = £,-1(0L).
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We state next the main result in this section.

THEOREM 9.1. Let w € W. Then the following hold:
(a) C_, ®L_, @ MCy(X(w)°) = (—1)cdimXw) o (MC, (X (w)°)).
(b) Consider the Schubert expansions
MC, ( =3 cuwly;e)OL; MC,y( = duw(yie’)
u<w u<w
Then cyw(y;et) = (=1) =) 5 (d, . (y; €')), or, equivalently,
(MC, (X (w)°), T) = (=1) )0+ (MC, (X (w)°), 0" T).
(c) Consider the Schubert expansions
MC,( =Y auwye)Il MC,(X(w)°) = > buw(yie)OL.
u<w u<w
Then ay o (y;et) = (1) =Wy, . (y;et), or, equivalently,
(MC, (X (w)°), 0"T) = (=)= MC, (X (w)®), T7).

Before we give the proof of this theorem, we recall that the y = 0 specialization
recovers a known relation between the ideal sheaves and structure sheaves; see
below and compare to Proposition 4.3.4]. Brion proves the
result in the non-equivariant case, and for completeness we sketch a proof for the

equivariant generalization. Aside from the intrinsic interest, we also note that we
use this result in the proof of|[Theorem 9.1

PROPOSITION 9.2 (Brion). Let w € W. Then the following holds in Kp(X):
C_ ,® L , ®IT ( )codlmX(w) * (OT)
PRrOOF. Following Brion’s proof, as equivariant sheaves,
HOD) = (~1)= X W w3

this uses the fact that Schubert varieties are irreducible and Cohen-Macaulay - see
§3.3]. The difference in the equivariant case is that the canonical sheaf of
X (w) needs to be twisted by a trivial bundle:

wWx(w) = Ox(w)(—0X(w)) ® L, ® C_,.

This follows from [BKO05| Proposition 2.2.2] to which one applies the projection
formula. (Note that our convention defining £ is opposite to the one from [BKO05].)
If X(w) = G/B, then wx = Ly, (see e.g., |BKO05| (8) in §2.1]). The result follows
from this. O

Define the Z-linear endomorphism
U:Kp(X) = Kp(X); [Elr—C,®L,@[E]r.
The previous proposition shows that
(9.1) U(LT) = (~1)eodim X ) O
We need the following lemma.

LEMMA 9.3. Let w e W. Then

_1\dimG/B
\I,(Lw):( 1)

— lw-
ew(P)—P w
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PrOOF. We start by observing that
(<(tw)) e = *((tw)lu) = Su,wA-1Tw(G/B).

Then
lI/(Lw)|u = ((Cp ® ‘Cp Y *(Lw))|u
= buwue’ PN (T,,(G/B))
= 6w7uep+“’(p) H (1—e""%)
a>0
- (_1)dimG/B wa
= 6w’um go(l — e )
(_1)dim G/B

= WLW‘U.

The claim follows from the injectivity of the localization map. O

The map V¥ intertwines with the Hecke algebra action in the following way.
THEOREM 9.4. For any a € Kp(X),
U(7i(a)) = —L£:i(¥(a)).
In particular, if w € W, then
V(8 —id)(Zy)) = (=L)< X IH,(0F).
PrOOF. The last statement follows from the first after specializing at y = 0 and
using (9.1) and Therefore it suffices to prove the first statement. By

localization, it suffices to prove this for the fixed point basis elements a := t,,. Let
n = dim G/B. We use the formulae from [Lemma 3.3] and [Lemma 9.3]to calculate:

—(1+y)
ew(P)=p(1 — ewla))

14 yew(ai)
ewsi(p)=p(1 — ewlei)

(9-2) (Ti(ww)) = (=1)"

By definiton of £;,

L + (=1)"

] Lws; -

(~1)"

—Li¥ () = =(T7 + (L4 9) i)V ((w)) = "=

(73 (1) + (L + y)tw).

Using now the action of 7;" from|Lemma 3.3|we calculate the last term as

(-1)" 1 1+ yew(@)
O3 o \ U (T ) e T Tt e )
A simple algebra calculation shows that the coefficients of ¢,, in both ([@:2)) and (3:3)

are equal. The equality of the coefficients of iy, is proved similarly, using in
addition that s;(p) = p — «;. O

REMARK 9.5. has a particularly natural interpretation in terms
of the Kostant-Kumar Hecke algebra H. We keep the notation from 85 There is
a Hecke algebra automorphism A : # — H sending D; — 1 — D; and e — e~
Let L; := D;(1 + ye®) +y. Then it follows from the definition that

A(TZ) = A((l + ye‘”)Di — 1) =—-L,;.

Therefore,[Theorem 9.4|shows that ¥ : K7 (X) — K¢ (X) commutes with the Hecke
automorphism A.
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PROOF OF Observe first that Of = I, = 1;q, and that
() = (—1)8G/B 1y, Then, by heorem 8.1

U(Ty-1 (08) = (1) D8, W (sg) = (1) X 1 (19)
_ (_1)codimX(w)1\//[\éy(X(w)o).

Since Tp-1(OL) = MC, (X (w)°) by[Theorem 4.5 this proves (a).
The equality

Cuw(yse’) = (1) 70 s (dyu (ys €)),
which, by (31)), is equivalent to
(MCy(X (w)°), Z%7) = (=1)*t =0 4 (MC,y (X (w)°), 0™T),
follows by applying ¥ to both sides of

MCy (X (w)°) = Y cuuly;e)OTL

u<w

and using [Proposition 9.2] Finally, for part (c) we use that O*T = 3 _ 7v7

(proved by Mobius inversion). Then:

(M, (X (1)), 0*T) =(MC, (X (w)?), 3 77)
= 3 A ¢ (NG, (X)), 0"

v>u

=(—1)“ =T, (X (w)°), 7).

This finishes the proof. ([
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