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Abstract

When applied to open-domain question answer-

ing, large language models (LLMs) frequently

generate incorrect responses based on made-up

facts, which are called hallucinations. Retrieval

augmented generation (RAG) is a promising

strategy to avoid hallucinations, but it does

not provide guarantees on its correctness. To

address this challenge, we propose the Trust-

worthy Retrieval Augmented Question Answer-

ing, or TRAQ, which provides the first end-to-

end statistical correctness guarantee for RAG.

TRAQ uses conformal prediction, a statistical

technique for constructing prediction sets that

are guaranteed to contain the semantically cor-

rect response with high probability. Addition-

ally, TRAQ leverages Bayesian optimization

to minimize the size of the constructed sets.

In an extensive experimental evaluation, we

demonstrate that TRAQ provides the desired

correctness guarantee while reducing predic-

tion set size by 16.2% on average compared to

an ablation. The implementation is available:

https://github.com/shuoli90/TRAQ.

1 Introduction

Large Language Models (LLMs) have achieved

State-Of-The-Art (SOTA) results on many ques-

tion answering (QA) tasks (OpenAI, 2023; Tou-

vron et al., 2023a,b). However, in open-domain

QA tasks where candidate answers are not pro-

vided, LLMs have also been shown to confi-

dently generate incorrect responses, called hallu-

cinations (Ouyang et al., 2022; Kuhn et al., 2023).

Hallucinations have already led to real-world con-

sequences when end users rely on the correctness

of the generated text. As a consequence, there is an

urgent need for techniques to reduce hallucinations.

We propose a novel framework, Trustworthy Re-

trieval Augmented Question Answering (TRAQ),

summarized in Figure 1, that combines Retrieval

Augmented Generation (RAG) (Guu et al., 2020;

Lewis et al., 2021) with conformal prediction (Vovk

Figure 1: Comparison of the standard RAG pipeline

with TRAQ on a practical illustration reveals a signifi-

cant difference. With the standard retrieval augmented

generation (RAG) approach, there is a possibility that

the retrieved passage may lack relevance in addressing

the given question. On the contrary, TRAQ leverages

conformal prediction to ensure that the retrieved set in-

cludes the relevant passage with a high probability and

that the LLM set contains a semantically correct answer

with a high probability. Through the aggregation of

these prediction sets, TRAQ provides a guarantee that

a semantically correct answer is contained in its set of

answers with a high probability.

et al., 2005; Shafer and Vovk, 2007; Park et al.,

2020; Angelopoulos and Bates, 2022) to provide

theoretical guarantees on question answering per-

formance.

RAG reduces hallucinations by retrieving pas-

sages from a knowledge base such as Wikipedia

and then using an LLM to answer the question.

If the retrieved passages are relevant to the ques-

tion, the LLM can use this information to generate

correct answers. However, RAG can fail for two

reasons: either the retrieved passage is not relevant

to the question, or the LLM generates the incorrect

answer despite being given a relevant passage.

To avoid these issues, TRAQ uses conformal

prediction, an uncertainty quantification technique
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that modifies the underlying model to predict sets

of outputs rather than a single output. These predic-

tion sets are guaranteed to contain the true output

at a user-specified rate, e.g., at least 90% of the

time. In particular, TRAQ applies conformal pre-

diction separately to the retrieval model (to obtain

sets of retrieved passages guaranteed to contain

the relevant passage with high probability) and the

generator (to obtain sets of answers that contain

the true answer with high probability, assuming the

relevant passage is given). Then, TRAQ aggregates

the two sets for the RAG task, as demonstrated in

Figure 2a. By a union bound, retriever sets contain

relevant passages, and generator prediction sets

contain true answers with high probability, estab-

lishing that the aggregated set by TRAQ contains

the ground truth answer with high probability.

A major challenge to this basic pipeline is that

there may be many different ways of expressing

the correct answer in natural language. For ex-

ample, the responses deep learning is a subset of

machine learning and machine learning is a super-

set of deep learning are different ways of express-

ing the same meaning (Kuhn et al., 2023; Lin and

Demner-Fushman, 2007). This diversity of possi-

ble responses also makes prediction probabilities

less reliable since if an answer can be expressed

in many different but equivalent ways, then the

probabilities may be divided across these differ-

ent responses, making them all smaller even if the

model is confident it knows the correct answer.

TRAQ addresses this challenge by modifying the

notion of ground-truth coverage in conformal pre-

diction to focus on semantic notions of uncertainty.

In particular, TRAQ aggregates semantically equiv-

alent answers across a large number of samples

from the LLM and uses the number of clusters of

non-equivalent answers as a measure of uncertainty.

This measure is used as a nonconformity measure

to construct prediction sets. Finally, the predic-

tion sets are over clusters of equivalent answers

rather than individual answers. This strategy also

enables TRAQ to work on black-box APIs such as

GPT-3.5-Turbo, where the predicted probabilities

for individual tokens are not available.

A second challenge is that the prediction sets

can become very large since we are aggregating

uncertainty across multiple components. This com-

plexity introduces hyperparameters into TRAQ;

while TRAQ guarantees correctness regardless of

the choice of these hyperparameters, they can af-

fect the performance of TRAQ in terms of the aver-

age prediction set size. To address this challenge,

TRAQ uses Bayesian optimization to minimize the

average size of the prediction sets it generates.

We evaluate TRAQ in conjunction with several

generative LLMs, including both GPT-3.5-Turbo-

0613 (Ouyang et al., 2022) and Llama-2-7B (Tou-

vron et al., 2023b); and on four datasets, includ-

ing a biomedical question answering dataset. Our

experiments demonstrate that TRAQ empirically

satisfies the coverage guarantee (i.e. the prediction

sets outputs contain semantically correct answers

with the desired probability), while reducing the

average prediction set size compared to an ablation

by 16.2%. Thus, TRAQ is an effective strategy for

avoiding hallucinations in applications of LLMs to

open domain question answering.

Contributions. We offer the first conformal pre-

diction guarantees for retrieval augmented gener-

ation (RAG) targeted question answering. Our

framework, TRAQ, introduces a novel nonconfor-

mity measure that estimates the uncertainty for

each semantically distinct meaning and obtains a

coverage guarantee at the semantic level. Further-

more, TRAQ leverages Bayesian optimization to

minimize the average size of the generated pre-

diction sets. Finally, our experiments demonstrate

that TRAQ is effective at avoiding hallucinations

in open-domain question answering.

2 Background

Retrieval for Open-Domain QA. A two-stage

approach is often used for open-domain question

answering (QA): first, a retriever is used to ob-

tain informative passages; and second, a genera-

tor produces answers based on the retrieved pas-

sages. A popular choice for the retriever is the

Dense Passage Retriever (DPR) (Karpukhin et al.,

2020b), which measures similarity by taking the

inner product of the BERT (Devlin et al., 2019;

Reimers and Gurevych, 2019) embeddings of the

question and passage (Devlin et al., 2019; Reimers

and Gurevych, 2019). Other works (Lin and Lin,

2022; Salemi et al., 2023; Lin et al., 2022; Zhang

et al., 2021) have improved the performance of

DPR and extended it to more diverse settings. Re-

trieval Augmented Generation (RAG) (Lewis et al.,

2021) proposes to jointly fine-tune the retriever and

the generator for QA tasks.

Conformal Prediction. Conformal predic-

tion (Vovk et al., 2005; Papadopoulos, 2008) is a



general distribution-free approach to quantifying

uncertainty for machine learning (ML) models.

Let X be the input space, and Y be the output

space. Conformal prediction first assumes that a

nonconformity measure (e.g., negative probabilities

predicted by an ML model) s : X × Y → R is

given. Lower values of s(x, y) indicate better

agreement between x and y. Given a held-out cali-

bration set B = {(xi, yi)}
N
i=1 sampled i.i.d. from

the data distribution D, as well as a user-specified

error level α, conformal prediction constructs a

prediction set for a testing data point Xtest by

C(Xtest) = {y ∈ Y | s(Xtest, y) f τ}, (1)

where τ is the
+(1−α)(N+1),

N
-th smallest score in

{s(xi, yi)}
N
i=1. Conformal prediction guarantees

that the true labels are contained in the constructed

prediction sets with probability at least 1− α:

Theorem 1. Conformal Prediction Guarantee (An-

gelopoulos and Bates, 2022; Shafer and Vovk,

2007; Vovk et al., 2005). Suppose that

{(xi, yi)}
N
i=1 and (Xtest, Ytest) are i.i.d. from D,

and C(Xtest) is constructed by (1); then, we have

the following.

Pr
(Xtest,Ytest)∼D

(Ytest ∈ C(Xtest)) g 1− α. (2)

We call this guarantee a coverage guarantee. An

extension of conformal prediction is Probably Ap-

proximately Correct prediction sets (Park et al.,

2019) (PAC prediction set) or training-conditional

conformal prediction (Vovk, 2012). Compared

with vanilla conformal prediction, where the cov-

erage guarantee holds on average, PAC prediction

sets guarantee that coverage is satisfied with high

confidence given the current calibration set:

Theorem 2. PAC Guarantee (Park et al.,

2019; Vovk, 2012). Suppose {(xi, yi)}
N
i=1 and

(Xtest, Ytest) are sampled i.i.d. from D, given user-

specified error and confidence levels α and δ, and

C(Xtest) is constructed via (5) in the Appendix;

then, we have

Pr
B∼Dn

[ Pr
(X,Y )∼D

(Ytest ∈ C(Xtest)) g 1−α] g 1−δ.

Further details on conformal prediction and PAC

prediction sets are in Appendices A.1 & A.2, re-

spectively; a brief comparison between the two is

given in Appendix A.3. Both vanilla conformal pre-

diction and PAC prediction sets have been applied

to deep learning (Park et al., 2019; Angelopoulos

et al., 2020; Bates et al., 2021).

Uncertainty Quantification for LLMs. Uncer-

tainty quantification for Large Language Models

(LLMs) has been gaining attention due to LLM

hallucinations. A recent study (Kuhn et al., 2023)

combined confidence calibration with Natural Lan-

guage Inference model to measure the certainty of

LLMs in responding to an input question. However,

this work does not guarantee the accuracy of the

responses. Other studies have applied conformal

prediction to LLM predictions, focusing mainly on

the multiple choice question answering problem

and using vanilla conformal prediction to ensure

correctness (Kumar et al., 2023; Ren et al., 2023).

However, these methods necessitate a finite set of

labels, such as {True, False} or {A, B, C}, and can-

not be used for open-domain question answering.

A related work concurrent with ours is Quach et al.

(2023), which applies conformal prediction to open-

domain QA. However, they only consider the gen-

erator, whereas our approach provides conformal

guarantees for RAG. Furthermore, their approach

requires the generation probability from the LLM,

which is not available in many blackbox APIs.

3 The TRAQ Framework

TRAQ is composed of two steps. The first is the

Prediction Set Construction step, where a ques-

tion q is used to create a retrieval set CRet(q) for

the retriever and a LLM set CLLM(q, p) for each

pair (question q, passage p). These sets are ag-

gregated into an Aggregation Set CAgg(q). The

second step is the Performance Improvement step,

where promising error budgets αRet and αLLM are

sampled from a Bayesian model. Using these bud-

gets, the prediction sets are constructed on the op-

timization set and evaluated for their performance.

This process is repeated T times, and the final out-

put is the error budgets αRet and αLLM with the

highest performance. The chosen hyperparameters

are used to construct prediction sets as in the first

step using a separate held-out calibration set. The

TRAQ framework is summarized in Figure 2.

3.1 Assumptions

To construct provable prediction sets, we first make

three necessary assumptions:

Assumption I.I.D. For both the retrieval and LLM

tasks, the examples are drawn independently and

identically from the data distribution D.

Assumption Retriever Correctness. Given a ques-

tion q, the underlying retriever is able to retrieve



(a) Prediction Set Construction (b) Performance Improvement

Figure 2: Given a question, TRAQ first constructs the retriever prediction; then, for every (question, contained

passage) pair, TRAQ constructs a LLM prediction on the LLM generated responses. Finally, the LLM prediction sets

are aggregated as the final output. In Figure 2b, TRAQ takes candidate error budgets from Bayesian optimization; it

then constructs aggregated prediction sets on the optimization set. Next, the average semantic counts in constructed

sets are computed to update the Gaussian process model in Bayesian optimization.

the most relevant passage p∗ within the top-K re-

trieved passages.

Assumption LLM Correctness. Given a question

q and its most relevant passage p∗, the LLM is able

to generate a semantically correct response within

the top-M samples.

Assumption I.I.D is a standard assumption from

the conformal prediction literature and is needed

to apply conformal prediction algorithms (it can be

slightly relaxed to exchangeable distributions, but

we make the i.i.d. assumption for simplicity).

Assumptions Retriever Correctness and LLM

Correctness are needed to ensure that the most rel-

evant passages and semantically correct answers

can be contained in the prediction sets if the pre-

diction sets are sufficiently large. In principle, we

can use very large values of K and M to satisfy

this assumption, though there are computational

and cost limitations in practice. We discuss ways

to remove these assumptions in Limitations.

3.2 Prediction Set Construction

Retriever Set: To construct the retriever sets

CRet, we use the negative inner product between the

question q and the annotated most relevant passage

p∗, denoted as −Rq,p∗ , as the nonconformity mea-

sures (NCMs). Given N such NCMs {s1, . . . , sN}
in the calibration set and the error budget αRet for

the retriever set, we construct the retriever set by

CRet(q) = {p | −Rq,p f τRet}, (3)

where

τRet = Quantile

(

{sn}
N
n=1;

+(N + 1)(1− αRet),

N

)

.

Given this construction and Assumptions I.I.D and

Assumption Retriever Correctness, the retriever

sets are guaranteed to contain the most relevant

passage with probability at least 1− αRet:

Lemma 2.1. Suppose the questions q and their

corresponding most relevant passage p∗ are sam-

pled from the distribution Dpassage. Given the error

budget αRet, the retriever sets satisfy

Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q)) g 1− αRet.

This result follows straightforwardly from Theo-

rem 1 and Assumptions I.I.D & Retriever Correct-

ness. We give a proof in Appendix B.

LLM Set: We utilize Monte Carlo sampling to

approximate confidences for different semantic

meanings; then, we use the negative approximated

confidences as the NCMs to construct LLM sets.

Specifically, for each (question, passage) pair, we

ask the LLM to generate M responses (M = 30 in

our experiments). Given two responses r and r′, we

cluster them together if they have high similarity,

which is measured by Rouge score (Lin, 2004) or

Natural Language Inference (NLI) model (Kuhn

et al., 2023; He et al., 2021). We consider the two

responses to be semantically similar if they have

a Rouge score greater than 0.7 or are deemed to

entail each other by the NLI model. After clus-

tering, for each cluster i, let Ni be the number of

responses in the cluster; we approximate the con-

fidence of a response r by Ni/M if r belongs to

the i-th cluster. Finally, given the error budget for

LLM αLLM, we can utilize a similar process to that

in (3) to construct LLM sets. The constructed sets

satisfy the following:



Lemma 2.2. Suppose the questions q, their cor-

responding most relevant passage p∗, and seman-

tically correct responses r∗ are sampled from dis-

tribution DResponse. Given error budget αLLM, if

Assumptions I.I.D & LLM Correctness hold, the

LLM sets satisfy

Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CLLM(q, p
∗)) g 1− αLLM.

The proof of Lemma 2.2 is similar to that of

Lemma 2.1; we give it in Appendix B.

Note that since the uncertainty score can be arbi-

trary in conformal prediction, the lemma 2.2 holds

regardless of the chosen heuristic measures (e.g.,

Rouge score or BERT embedding). If the chosen

heuristic underperforms, conformal prediction will

simply construct large prediction sets to compen-

sate. We validate this claim in Section 4.

Aggregated Set: To obtain an overall correctness

guarantee, we construct an aggregated set CAgg by

constructing an LLM set CLLM for each passage q
contained in the retriever set; and take the union of

the CLLM’s, i.e.

CAgg(q) = ∪p∈CRet(q)CLLM(q, p). (4)

Then, the resulting Aggregated set CAgg satisfies

the following:

Theorem 3. Suppose the questions q and seman-

tically correct responses r∗ are sampled from the

distribution D, and a user-specified error level α
is given. By aggregating retriever sets with error

budget αRet by (4) with LLM sets with error budget

αLLM, with α = αRet + αLLM, the aggregated sets

satisfy

Pr
(q,r∗)∼D

(r∗ ∈ CAgg(q)) g 1− α.

We give a proof in Appendix B. After taking the

union, we remove duplicated responses and re-

cluster semantic meanings. Given that this post-

processing phase solely eliminates duplicate re-

sponses, it will not remove correct semantic mean-

ings, and Theorem 3 remains valid.

Note that this aggregation process is actually a

global hypothesis testing method called the Bonfer-

roni correction. Lemmas 2.1 & 2.2 and Theorem 3

can be straightforwardly extended to the proba-

bly approximately correct (PAC) guarantee by con-

structing PAC prediction sets; see Appendix B.1

for details.

Algorithm 1 Prediction Set Optimization

Input: Optimization set BOpt, performance

metric f , error level α
1: Initialize Gaussian process G
2: for t ∈ {1, ..., T} do

3: Sample αRet and αLLM basing on G
4: Normalize αRet and αLLM so that

αRet, αLLM ∈ (0, 1), and αRet + αLLM = α
5: Compute τRet and τLLM on BOpt

6: Construct CAgg on BOpt

7: Evaluate performance of the CAgg using f
8: Update G using the evaluation results

9: end for

10: return: the best error budgets αRet and αLLM

3.3 Performance Improvement

By Theorem 3, we can guarantee that semantically

correct responses are included in the aggregated

set with a probability of at least 1 − α, assuming

α = αRet + αLLM. This theorem is valid for any

combination of the two error budgets. However, the

predictive performance of the aggregation sets is in-

fluenced by the specific choice of the error budgets.

This issue has been discussed in the Bonferroni cor-

rection and the global testing literature (Neuwald

and Green, 1994; Wilson, 2019; Poole et al., 2015).

Therefore, we optimize the error budgets using

Bayesian optimization, a sampling-based global

optimization technique suitable for non-convex,

non-closed-form problems; see Appendix A.4 for

details. In TRAQ, Bayesian optimization first mod-

els the underlying performance landscape using a

Gaussian process; then, it samples error budgets

(i.e., αRet and αLLM) based on the Gaussian pro-

cess, and identifies τRet and τLLM on a held-out

optimization set BOpt. After assessing the perfor-

mance of the sampled error budgets on BOpt, the

Gaussian process is modified to more accurately

reflect the performance landscape. This process is

repeated T times. The pseudocode for this proce-

dure is shown in Algorithm 1.

4 Experiments

Experiment Setup. We evaluate TRAQ on four

datasets, including three standard QA datasets (Nat-

ural Question (Kwiatkowski et al., 2019), Trivi-

aQA (Joshi et al., 2017), SQuAD-1 (Rajpurkar

et al., 2016)), and one biomedical QA dataset

(BioASQ (Tsatsaronis et al., 2012)). On each

dataset, we collect 1,000 samples that met the crite-



ria of Assumptions Retriever Correctness & LLM

Correctness. We divide each dataset into calibra-

tion, optimization, and testing sets, with 300, 300,

and 400 data points, respectively.

We employ two fine-tuned DPR models,

one (Karpukhin et al., 2020a) trained on the Natural

Question, TriviaQA, and SQuAD-1 datasets, and

the other fine-tuned on BioASQ (see Appendix D.2

for training details). Furthermore, we use two

generative large language models (LLMs): GPT-

3.5-Turbo-0613 (GPT-3.5), whose internal embed-

ding and prediction probabilities are not accessi-

ble, and Llama-2-7B (Llama-2). We separately

fine-tune Llama-2 on Natural Question, TriviaQA,

and SQuAD-1, with hyperparameters given in Ap-

pendix D.1.

For each question, we retrieve the top-20 pas-

sages; for each (question, passage) pair, we sample

30 responses, with a temperature of 1.0.

We evaluate using coverage levels 50%, 60%,

70%, 80%, and 90%. For the PAC guarantee, we

use confidence level 90%. We use five random

seeds for each experiment. To investigate the influ-

ence of prompt design, we design two prompts, one

zero-shot and one few-shot prompt; the few-shot

prompt includes two demonstrations. The prompt

templates are provided in Appendix D.3. Unless

otherwise specified, the zero-shot prompt is used

for both GPT-3.5 and Llama-2.

We evaluate the performance of our approach

using two metrics. The first metric is coverage rate,

which is the rate at which the correct responses are

contained in the constructed sets. We consider the

responses to be correct if their Rouge-1 (Lin, 2004)

scores with the annotated answers are greater than

0.3. The coverage rate is expected to be no less

than the desired level on average across different

random seeds. The second metric is the average

prediction set size. Specifically, we consider two

size measures: (i) the average number of semantic

clusters and (ii) the average number of unique an-

swers. Lower values indicate better performance.

We compare our approaches, TRAQ and TRAQ-

P (the PAC version), to several baselines, including

Vanilla, Bonf, and Bonf-P. Vanilla is a baseline that

does not construct prediction sets and only uses the

top retrieved passage and generated answers. Bonf

and Bonf-P are ablations that omit Bayesian opti-

mization. In all plots, we also show the Reference

line indicating the desired coverage level.

We report both quantitative and qualitative re-

sults. Our quantitative experiments aim to answer

75 80 85 90 95
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LLM
Ret-P
LLM-P

Figure 3: Retriever and generator coverage rates on the

BioASQ dataset.

the following.

(Q1) Do the coverage guarantees hold for the re-

triever and the generator?

(Q2) Does the overall coverage guarantee hold?

(Q3) How do Bayesian optimization and the cover-

age level affect prediction set sizes?

(Q4) Does TRAQ work for different semantic clus-

tering methods and performance metrics?

(Q5) How does prompt affect results?

Q1: Do the coverage guarantees hold for the re-

triever and generator? To validate the coverage

guarantees of the retriever and generator, we con-

sider the coverage rates of retriever and LLM sets

(named Ret and LLM), and with the PAC guarantee

(named Ret-P and LLM-P). We report results on

BioASQ using GPT-3.5 in Figure 3; Results for

other datasets and different LLMs are reported in

Figure 10, and are qualitatively similar. As shown

in Figure 3, the empirical coverage levels of the

retrieval and QA prediction sets are close to the

desired coverage levels. Thus, the coverage guar-

antees hold for individual components, as desired.

We also report empirical coverage rates with 20

random seeds in Figure 11. Compared to results

with 5 random seeds, empirical coverage with more

random seeds become closer to the desired level.

Furthermore, when using the PAC prediction sets,

the empirical coverage levels were almost always

above the expected coverage levels across all ran-

dom seeds, as desired.

Q2: Does the end-to-end coverage guarantee

hold? To verify the end-to-end guarantees from

TRAQ, we report two rates. The first is the rate at

which the correct responses are covered consider-
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Figure 4: End-to-end guarantee considering only the

most relevant passage on BioASQ Dataset.
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Figure 5: End-to-end coverage guarantee considering

all passages on the BioASQ dataset.

ing only the annotated most relevant passages:

Pr(p∗ ∈ CRet(q))× Pr(r∗ ∈ CLLM(q, p∗)).

These results are shown in Figure 4. They show

that the rates on average satisfy the desired cov-

erage levels when using conformal prediction. In

addition, the rates are mostly above the desired

coverage levels when using PAC prediction sets.

Second, we report the rate at which the correct re-

sponses are covered in the aggregated prediction

set.

Pr(r∗ ∈ CAgg(q)).

The results are shown in Figure 5. Different from

Figure 4, empirical levels of both conformal predic-

tion and PAC prediction sets are above the expected

coverage levels most of the time. This is because

the generator might output the correct response

even if it is not given a relevant passage.

Q3: How do Bayesian optimization and the

coverage level affect prediction set sizes? To

TRAQ Bonf TRAQ-P Bonf-P
Method

10

15

20

Av
er

ag
e 

Se
m

an
tic

Figure 6: Prediction set sizes according to the average

number of semantic clusters.

demonstrate the advantages of incorporating

Bayesian optimization, we evaluate the average pre-

diction set sizes (in terms of the number of semantic

clusters) across different approaches. We first show

results across different coverage levels and random

seeds using different methods on BioASQ dataset

Figure 6. It shows that TRAQ and TRAQ-P are

able to construct smaller prediction sets than their

counterparts without Bayesian optimization (Bonf

and Bonf-P). Furthermore, we report the average

semantic counts on different datasets and coverage

levels using GPT-3.5 in Table 1 and using Llama-2

in Table 2. As can be seen, Bayesian optimization

is especially effective in reducing prediction set

size when higher coverage rates are desired (80%

and 90%). In these cases, both TRAQ and TRAQ-P

are able to construct significantly smaller predic-

tion sets, reducing their size by 16.2% on average

(18.1% in Table 1 and 14.2% in Table 2). Impor-

tantly, even though the prediction sets are smaller,

the desired overall coverage guarantees still hold.

These tables also show that higher coverage lev-

els tend to result in larger prediction set sizes; this

trade-off is expected since stronger statistical guar-

antees require more conservative prediction sets.

Q4: Does TRAQ work with different seman-

tic clustering methods? We evaluate whether

TRAQ remains effective with different seman-

tic clustering methods and performance metrics.

We use the semantic clustering method proposed

by Kuhn et al. (2023), which is based on BERT (De-

vlin et al., 2019; Reimers and Gurevych, 2019), and

specified the performance metric as the average

number of unique answers in the aggregated pre-

diction sets. We evaluate this setup on the SQuAD-

1 dataset using GPT-3.5. The results, shown in



Task Cov(%) TRAQ Bonf TRAQ-P Bonf-P

BIO 50 2.50.1 2.40.1 2.90.1 2.90.2
60 2.90.2 2.90.2 3.40.1 3.60.2
70 3.50.2 3.60.2 4.00.3 4.60.1
80 4.40.2 5.00.2 5.80.6 7.20.5
90 8.92.0 10.31.1 16.34.9 21.30.8

NQ 50 3.00.3 3.20.2 3.60.2 3.70.1
60 3.70.1 3.70.1 4.50.2 4.40.1
70 4.60.3 4.60.2 5.70.5 5.70.2
80 6.10.5 6.40.2 7.30.6 9.31.1
90 10.32.7 12.21.5 16.74.6 23.60.6

Trivia 50 2.00.2 2.00.1 2.40.4 2.40.1
60 2.50.3 2.40.1 2.90.4 2.70.2
70 3.00.4 2.90.2 3.50.3 3.40.2
80 3.70.3 3.80.3 4.60.3 4.60.3
90 5.90.6 5.80.4 7.20.9 7.80.3

SQuAD1 50 3.60.1 3.50.0 4.10.2 4.00.1
60 4.10.2 4.10.1 4.60.1 5.00.1
70 4.80.2 5.20.2 5.50.3 7.40.2
80 6.20.6 8.20.3 8.91.3 11.00.2
90 12.62.1 14.10.4 21.35.6 25.90.5

Table 1: Average semantic counts using GPT-3.5.
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Figure 7: Coverage rate using BERT embeddings on

SQuAD-1 dataset.

Figures 7 & 8, demonstrate that TRAQ remains

successful. Specifically, Figure 7 shows that the

overall coverage guarantee holds, and Figure 8

demonstrates that TRAQ and TRAQ-P reduce pre-

diction set sizes compared to their ablations Bonf

and Bonf-P, respectively.

Q5: How does prompt engineering affect re-

sults? We investigate how prompt engineering af-

fects TRAQ performance using a few-shot prompt

with two demonstrations. The prompt template is

provided in Appendix D.3. We evaluate TRAQ

on Natural Question using GPT-3.5. The end-to-

end coverage rates and prediction set sizes using

different methods are shown in Figure 16. TRAQ

with a few shot prompt achieves the desired cover-

age rate on average and reduces prediction set size
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Figure 8: Prediction set size according to average num-

ber of unique answers.
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Figure 9: Comparison between zero-shot and few-shot

prompts on prediction set size.

compared to its ablation. In Figure 9, we also com-

pare the zero-shot and few-shot prompts in terms

of performance. Interestingly, zero-shot prompt-

ing mostly yields better efficiencies. This could

be because zero-shot prompting generated more di-

verse answers and had lower confidence in wrong

answers. An example of the comparison between

responses using different prompts is given in the

Appendix D.3.

Qualitative Analysis. By constructing prediction

sets, TRAQ guarantees that it includes correct re-

sponses with high probability. For example, we

consider the following question: Who played in the

movie a star is born with Judy Garland?, where

James Mason is a correct answer. The responses of

different methods are shown below. While standard

RAG fails to return the correct answer, TRAQ and

Bonf output sets containing the correct answers;

and TRAQ obtains a smaller set.

Question: who played in the movie a star is born

with judy garland



True Answers: {'James Mason', 'Charles Bickford',

'Jack Carson'}

Standard: {'Gary Busey', 'Judy Garland', 'Barbra

Streisand'}

TRAQ: {'Judy Garland', 'James Mason', 'Lady Gaga

', 'Sid Luft', 'Danny Kaye'}

Bonf {'Gary Busey', 'Judy Garland', 'James Mason

', 'Lady Gaga', 'Bradley Cooper', 'Sidney

Luft', 'Danny Kaye'}

We show additional examples in Appendix C.6.

5 Conclusion

We propose an algorithm, called Trustworthy Re-

trieval Augmented Question Answering (TRAQ),

which applies conformal prediction to construct

prediction sets for Retrieval Augmented Genera-

tion (RAG). TRAQ first constructs prediction sets

for the retriever and generator and then aggregates

these sets. TRAQ guarantees that for each question,

a semantically correct answer is included in the

prediction set it outputs with high probability. To

the best of our knowledge, this guarantee is the first

conformal guarantee for retrieval augmented gener-

ation. Additionally, to minimize prediction set size,

TRAQ leverages Bayesian optimization to identify

optimal hyperparameters. In our comprehensive

experiments, we demonstrate that TRAQ provides

an overall semantic level coverage guarantee across

different tasks, and that Bayesian optimization ef-

fectively reduces prediction set size.

6 Broader Impacts

The need for trustworthy AI algorithms has recently

become paramount due to the risks of spreading

misleading information (Biden, 2023; Commission,

2023). We propose TRAQ, a framework that aims

to address the hallucination problem by using con-

formal prediction to provide probabilistic guaran-

tees for retrieval augmented generation (RAG). In

addition, TRAQ leverages novel techniques to im-

prove performance that may be useful more broadly

in conformal prediction.

7 Limitations

TRAQ makes three assumptions: that the data is

independent and identically distributed (I.I.D), that

the retriever has good performance (Retriever Cor-

rectness), and that the language model can generate

a response to the input question (LLM Correctness).

Our experiments have verified I.I.D, but Retriever

Correctness and LLM Correctness may not be valid

if the underlying retriever and language model do

not perform well. To relax Retriever Correctness,

we can select more passages than the top-20 used in

our experiments. To remove LLM Correctness, we

propose providing a guarantee of including I do not

know in the aggregation set if the language model

cannot answer the input question. We describe how

TRAQ can be modified to provide such guarantees

in Appendix E.

TRAQ is a post-hoc method, so its prediction

sets may be larger than necessary if the underlying

models, such as the retriever and large language

model, do not work properly. Additionally, if the

semantic clustering techniques (Rouge score based

or BERT-based) are invalid, then some semantically

unrelated answers may be aggregated.

Finally, TRAQ can reduce inference speed due

to the need for multiple retrievals, each of which

needs to be embedded separately by the LLM. In

our current setup, the computational complexity of

the retrieval phase increases linearly with the num-

ber of retrievals (typically around 15). Avoiding

this overhead is a key direction for future research.
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A Conformal Prediction and PAC Guarantees

A.1 Conformal Prediction and Hypothesis Testing

Conformal prediction is a distribution-free uncertainty quantification technique that constructs provable

prediction sets for black-box models. Specifically, let X and Y be the input and label spaces, respectively,

and (x, y) be an input-label pair. Conformal prediction assumes given a calibration set B = {xi, yi}
N
i=1

with N input-label pairs, along with a nonconformity measure s : X ×Y → R that measures how different

a pair (x, y) is from the examples sampled from the distribution D. Given a new input xtest, conformal

prediction constructs a prediction set C(xtest) ⊆ Y using Algorithm 2. Intuitively, for each label y ∈ Y ,

this algorithm checks whether (xtest, y) is similar to the examples in B according to the nonconformity

measure s(xtest, y). If s(x, y) is low enough, then y is included in the prediction set C(xN+1); otherwise,

y is excluded from C(xN+1).

Algorithm 2 The Conformal Algorithm

Input: Nonconformity measure s, significance level α, calibration st B = {xn, yn}
N
n=1, a new input

xtest, label space Y

Compute the threshold τ as the
+(1−α)(N+1),

N
-th smallest score in {s(xi, yi)}

N
i=1.

Construct prediction set for xtest by

C(xtest) = {y | s(xtest, y), y ∈ Y}

Return: C(xtest).

A.2 PAC Prediction Set

PAC prediction sets (Vovk, 2012; Park et al., 2021) are a variant of conformal prediction approach that

satisfies stronger PAC-style guarantees. Let D be the distribution of samples, and B = {xn, yn}
N
n=1

be a held-out calibration set of i.i.d. data points from D of size N . We denote the joint distribution on

N samples by DN . The goal is to find a set of a small size satisfying the PAC property, that is, given

α, δ ∈ (0, 1),

Pr
Z∼Dn

[LD(C) ≤ α] ≥ 1− δ,

where the PrZ∼Dn refers to the chances of calibration succeeding. In this case, we say C is (α, δ)-
probably approximately correct (PAC). To construct (α, δ)-PAC sets, the PAC prediction set considers the

following one-dimensional parameterization of the prediction sets:

Cτ (x) = {y ∈ Y | g(x, y) ≥ τ},

where τ ≥ 0 and g : X ×Y → Rg0 is any given scoring function (e.g., the label probabilities output by a

deep neural network). The threshold τ is computed by solving the following optimization problem:

τ̂ = argmax
τg0

τ subj. to
∑

(x,y)∈Z

I[y /∈ Cτ (x)] ≤ k∗, (5)

where

k∗ = argmax
k∈N∪{0}

k subj. to F (k;N,α) ≤ δ,

where F (k;N,α) is the cumulative distribution function of the binomial random variable Binomial(N,α)
with N trials and success probability α. Maximizing τ corresponds to minimizing the prediction set size.

We have the following theorem:

Theorem 4 ((Vovk, 2012; Park et al., 2021)). Cτ̂ is (α, δ)-correct for τ̂ as in (5).



A.3 Conformal Prediction and PAC Prediction Set Comparison

Conformal Prediction Guarantee Formally, we can write the conformal prediction guarantee as

Pr(X,Y )∼D(Y ∈ C(X)) ≥ 1− α.

In other words, the prediction sets constructed by conformal prediction guarantee that over the whole

distribution D, the probability that the true label is contained in the set is at least 1− α. Note that this

coverage probability is marginalized over all possible calibration sets. On the other hand, for a specific

calibration set B, this guarantee might not hold. For example, the guarantee will not hold if the samples

in B are concentrated in a small region of the joint distribution and therefore are not representative of the

joint distribution D.

PAC Prediction Set Guarantee Formally, we can write the guarantee of the PAC prediction set

guarantee as

Pr
B∼DN

(Pr(X,Y )∼D ≥ 1− α) ≥ 1− δ.

Compared to the conformal prediction guarantee, the difference is the outer probability, which is on the

given calibration set B. Intuitively, the guarantee of the PAC prediction set says that conditioning on the

given calibration set B, we can say with high confidence (at least 1− δ) that the true label is contained in

the constructed set C(X) with high probability (1− α). As a result, the PAC prediction set guarantee is

stronger than the conformal prediction guarantee, as the PAC prediction set guarantee is over an individual

calibration set, while the conformal prediction guarantee is marginalized over all possible calibration sets.

A.4 Bayesian Optimization

Bayesian optimization (BO) is a technique to find the global optimum of a potentially nonconvex, nonlinear,

or nonclosed-form objective function f with decision variables {b1, . . . , bM}. It builds a probabilistic

model of the objective function and then selects parameters that could maximize it. The model is then

refined using the chosen parameters. This process is repeated until an iteration budget T is reached,

as shown in Algorithm 3 (Frazier, 2018). Our implementation of Bayesian optimization is based on

scikit-optimization (Head et al., 2021).

Algorithm 3 Bayesian Optimization

1: Place a Gaussian process prior g on f .

2: Observe f at t0 points according to an initial space-filling experimental design. Set t = t0.

3: while t ≤ T do

4: Update the posterior probability distribution on g using all available data.

5: Let bt be a maximizer of the acquisition function over b, where the acquisition function is

computed using the current posterior distribution.

6: Observe f(bt).
7: Increment t.
8: end while

9: Return: either the point evaluated with the smallest f(b) or the point with the smallest posterior.

B Proofs

Proof of Lemma 2.1. First, based on Assumption I.I.D, samples collected for the construction of the

retrieval prediction set are i.i.d. with unobserved samples, satisfying the i.i.d. (exchangeability) assumption

required by conformal prediction (PAC prediction set).

Second, based on Assumption Retriever Correctness, for each input question q, since its relevant

passage can be retrieved, the prediction set can contain the relevant passage if the threshold τRet is

appropriately set. (Otherwise, the prediction set cannot contain the relevant passage even if all retrieved

passages are included.)



Third, since we construct the retriever set following conformal prediction with the error level being

αRet, the resulting retriever sets satisfy:

Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q)) ≥ 1− αRet.

Proof of Lemma 2.2. First, based on Assumption I.I.D, samples collected for the construction of the

LLM prediction set are i.i.d. with unobserved samples, satisfying the i.i.d. (exchangeability) assumption

required by conformal prediction (PAC prediction set).

Second, based on Assumption LLM Correctness, for every input question and its most relevant passage

q∗, since its semantically correct responses can be retrieved, the prediction set can contain correct

responses if the threshold τLLM is appropriately set. (Otherwise, the prediction set cannot contain correct

responses even if all responses are included.)

Third, since we construct the LLM prediction set following conformal prediction with the error level

being αLLM, the resulting retriever sets satisfy:

Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CLLM(q, p∗)) ≥ 1− αLLM.

Proof of Theorem 3. We prove this theorem by union bound. Specifically, given two event A and B, we

have the following inequality:

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B) ≤ Pr(A) + Pr(B).

In TRAQ, let event A be

{p∗ /∈ CRet(q)};

and event B be

{r∗ /∈ CLLM(q, p∗)}.

By Lemma 2.1 and 2.2, we have

Pr(p∗ /∈ CRet(q)) = 1− Pr(p∗ ∈ CRet(q)) ≤ αRet

Pr(p∗ /∈ CLLM(q, p∗)) = 1− Pr(r∗ ∈ CLLM(q, p∗)) ≤ αLLM.

Then, we have the following inequalities

Pr(r∗ /∈ CAgg(q))

= Pr(r∗ /∈ ∪p∈CRet(q)CLLM(q, p))

= Pr(r∗ /∈ ∪p∈CRet(q)CLLM(q, p), A) + Pr(r∗ /∈ ∪p∈CRet(q)CLLM(q, p), AC)

= Pr(r∗ /∈ ∪p∈CRet(q)CLLM(q, p)|A) Pr(A) + Pr(r∗ /∈ ∪p∈CRet(q)CLLM(q, p)|AC) Pr(AC)

≤ Pr(A) + Pr(r∗ /∈ ∪p∈CRet(q)CLLM(q, p)|AC) Pr(AC)

≤ Pr(A) + Pr(r∗ /∈ CLLM(q, p∗))

≤ αRet + αLLM = α.



B.1 PAC Prediction Set Construction

To construct prediction sets with probably approximately correct (PAC) guarantees, we use the same

nonconformity measures states in 3.2 for retrieval and LLM tasks, respectively. Also, we will assign the

error budgets αRet and αLLM with αRet + αLLM = α. Additionally, we need to specify confidence levels

for PAC prediction set. In our work, we specify 1− δ
2 to the retriever and LLM PAC prediction set. Then,

we have the following Corollaries:

Lemma 4.1. Suppose the questions and their corresponding most relevant passage p∗’s are subject to the

distribution Dpassage. Given the error budget αRet and confidence level 1− δ
2„ the constructed retriever

sets satisfy the following inequality:

Pr
B∼DPassage

[ Pr
(q,p∗)∼DPassage

(p∗ ∈ CRet(q)) ≥ 1− αRet] ≥ 1−
δ

2
. (6)

Lemma 4.2. Suppose the questions, their corresponding most relevant passage p∗’s, and semantically

correct responses r∗ are subject to the distribution DResponse. Given the error budget αLLM and confidence

level 1− δ
2 , if Assumption I.I.D and Assumption LLM Correctness hold, the LLM sets using PAC prediction

set satisfy the following inequality:

Pr
B∼DResponse

N

[ Pr
(q,p∗,r∗)∼DResponse

(r∗ ∈ CLLM(q, p
∗)) ≥ 1− αLLM] ≥ 1−

δ

2
. (7)

Theorem 5. Suppose the questions q’s, and semantically correct responses r∗’s are subject to the

distribution D; a user-specified error level α is given. By aggregating retriever sets with error budget

αRet with LLM sets with error budget αLLM and confidence levels 1 − δ/2, with α = αRet + αLLM, the

aggregation sets satisfy the following inequality:

Pr
B∼D

[ Pr
(q,r∗)∼D

(r∗ ∈ CAgg(q)) ≥ 1− α] ≥ 1− δ.

Proof of Theorem 5. Given Lemmas 4.1 & 4.2 and αRet + αLLM = α, we can prove the end-to-end

guarantee in the following way: the 1− α coverage guarantee can be proved as the proof of Theorem 3.

The confidence bound holds (1− δ) by taking a union bound over the outer probabilities of Equation (6)

and (7).



C Additional Results

C.1 Individual Coverage
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Figure 10: Individual coverages on all datasets using GPT-3.5 (first row) and Llama-2 (second row).

C.2 Individual Coverage with More Random Seeds

(a) BioASQ (b) Natural Question (c) TriviaQA (d) SQuAD-1 using GPT-3.5

(e) Natural Question (f) TriviaQA (g) SQuAD-1

Figure 11: Individual coverages on all Datasets using GPT-3.5 (first row) and Llama-2 (second row) with 20 random

seeds.



C.3 End-to-end Coverages
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Figure 12: End-to-end coverage considering only the most relevant passage on all datasets using GPT-3.5 (first row)

and Llama-2 (second row).

C.4 End-to-end Coverages
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Figure 13: End-to-end coverage considering all passages on all datasets using GPT-3.5 (first row) and Llama-2

(second row).



C.5 Performance

Most of the results are similar to those in Figure 6. The results on TriviaQA using Llama-2 have a

relatively large prediction set size. This could be explained by the fact that the true scores on this task have

a large variance. Therefore, the identified threshold τLLM was relatively low (as in Figure 15a compared

to other tasks (as in Figure 15b).
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Figure 14: Average prediction set sizes on all datasets using GPT-3.5 (first row) and Llama-2 (second row).

(a) True Scores on TriviaQA using Llama-2 (b) True Scores on Natural Question using Llama-2

Figure 15: True scores collected on TriviaQA and Natural Question using Llama-2.

C.6 Additional Qualitative Results

C.6.1 All Covered

As shown in the example below, when the first retrieved passage is sufficiently informative, the LLM

can probably generate correct responses for the question. In this case, TRAQ and Bonf can also include

semantically correct responses in the aggregated sets. Again, TRAQ included less semantic meanings

than Bonf did.

Query: who plays zack and cody in the suite life



Task Cov(%) TRAQ Bonf TRAQ-P Bonf-P

NQ 50 4.80.7 5.00.7 6.50.9 6.60.9
60 6.11.0 6.11.0 8.31.2 8.50.9
70 8.00.9 7.91.0 10.61.2 10.71.2
80 10.61.1 10.71.2 13.51.8 14.71.3
90 14.21.9 15.61.7 21.51.6 25.06.5

Trivia 50 4.30.5 4.51.2 5.71.4 6.51.2
60 5.81.1 6.81.2 7.71.4 9.22.2
70 8.61.6 10.21.9 13.42.0 18.56.2
80 15.12.1 19.16.2 29.32.6 71.360.7
90 117.951.2 122.653.4 145.28.0 157.27.7

SQuAD1 50 4.50.4 5.10.4 5.20.6 6.40.5
60 5.70.4 6.50.6 6.90.8 7.70.7
70 7.60.6 8.10.9 8.60.6 10.20.6
80 9.50.7 11.41.1 11.81.2 14.42.0
90 15.11.9 18.02.0 21.92.7 23.72.2

Table 2: Average semantic counts using Llama-2.

True answer: ['Dylan and Cole Sprouse']

Standard: {'Dylan and Cole Sprouse', 'Dylan and Cole Sprouse.'}

TRAQ: {'Dylan and Cole Sprouse', 'Dylan Sprouse', 'Phill Lewis'}

Bonf: {'Dylan and Cole Sprouse', 'Cole Sprouse', 'Dylan Sprouse'}

C.7 Miscovered

If the first retrieved passage lacks information, the standard RAG pipeline may struggle to provide the

correct answer. However, in such scenarios, TRAQ and Bonf can construct prediction sets that contain the

correct response with high probability, with TRAQ constructing smaller prediction sets.

Query: who sang i love rock and roll original

True Answer: ['Alan Merrill']

Standard: {'Joan Jett'}

TRAQ: {'Joan Jett', 'Elvis Presley', 'Lou Reed', 'Joan Jett \& the Blackhearts', 'Alan Merrill', '

Chuck Berry', 'Donna Summer', 'Kevin Johnson', 'Joan Jett and The Arrows'}

Bonf: {'Joan Jett', 'Elvis Presley', 'The Velvet Underground', 'Lou Reed', 'Joan Jett & the

Blackhearts', 'Alan Merrill', 'Chuck Berry', 'Donna Summer', 'Bobby Vee', 'Buddy Holly', 'Kevin

Johnson', 'Mac Davis', 'The original version of "I Love Rock and Roll" was sung by The Arrows.',

'The Runaways', 'The answer to the question is not provided in the given context.', 'The

Runaways sang the original version of "I Love Rock and Roll".', 'Joan Jett and The Arrows'}

D Implementation Details

D.1 Llama-2 Fine-tune Hyperparameters

We use 4-bit QLoRA (Dettmers et al., 2023) to fine-tune the Llama-2 (Touvron et al., 2023b) models on

Natural Question, TriviaQA, and SQuAD-1 datasets separately. The hyperparameters used for QLoRA

are listed in Table 3; and the fine-tuning parameters are listed in Table 4.



Name Value Name Value

r 64 alpha 16

dropout 0.1 precision 4bit

Table 3: QLoRA hyperparameters.

Name Value Name Value

batch_size 16 learning rate 2e-4

weight_decay 0.001 lr scheduler constant

warmup ratio 0.03 epoch 3

Table 4: Fine-tuning hyperparameters.

D.2 Fine-tune Dense Passage Retriever (DPR) on the Biomedical Dataset (BioASQ)

We collect our dataset for DPR fine-tuning by using the collection of all the passages mentioned in

BioASQ as our knowledge corpus, resulting in 56,795 passages. Following the method in (Karpukhin

et al., 2020a), we create negative contexts for each sample in BioASQ by first retrieving the top-20

passages; and labeling contexts that did not contain the golden answers as the negative passages. We

then divide the original BioASQ dataset into training, validation, and testing sets, with 3,775, 471, and

469 data points, respectively.

We fine-tune the DPR model (Karpukhin et al., 2020a) using the Haystack framework (Haystack),

adjusting key hyperparameters to epochs=5 and batch size=16. Other hyperparameters are left at their

default values. To evaluate the performance of the fine-tuned DPR, we use hit rate, which is the rate of

relevant passages included in the top k retrieved passages. With k set to 20, the fine-tuned DPR achieves

hit rates of 77.2% on the training set, 72.8% on the validation set, and 75.7% on the testing set.

D.3 Different Prompts

Zero-shot Prompt

Answer the following question based on the given context; Answer the question shortly.

Question: {question}

Context: {context}

Answer:

Few-shot Prompt

Answer the following question based on the given context; Answer the question shortly.

Question: {question 1}

Context: {context 1}

Answer: {answer 1}

Question: {question 2}

Context: {context 2}

Answer: {answer 2}

Question: {question}

Context: {context}

Answer:



['The Great Lakes do not meet the ocean.',

'The Great Lakes meet the ocean at the Saint Lawrence River.',

'The Great Lakes meet the ocean through the Saint Lawrence River.',

'The Great Lakes do not meet the ocean.',

'The Great Lakes do not directly meet the ocean.',]

['There is no specific answer given in the provided context about where the Great Lakes meet the

ocean.',

'Atlantic Ocean',

'Saint Lawrence River',

'The Great Lakes do not meet the ocean.',

'The Great Lakes do not meet the ocean. They are primarily connected to the Atlantic Ocean through

the Saint Lawrence River.',

'The Great Lakes do not meet the ocean. They connect to the Atlantic Ocean through the Saint Lawrence

River.',

'The Great Lakes meet the ocean through the Saint Lawrence River.',

'They do not meet the ocean.']
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Figure 16: Results using a few-shot prompt on Natural Question using GPT-3.5.

D.4 Main Packages

Package Version Package Version

transformer (Wolf et al., 2020) 4.32.1 nltk (Bird et al., 2009) 3.8.1

spacy (Honnibal and Montani, 2017) 3.6.1 torch (Paszke et al., 2019) 2.0.1

rouge-score (Lin, 2004) 0.1.2 scikit-optimize (Head et al., 2021) 0.9.0

D.5 Artifact License and Terms

Our implementation is based on haystack, transformers and DPR (Karpukhin et al., 2020a). The first

two are licensed under Apache License 2.0, the third is licensed under Attribution-NonCommercial

4.0 International. We used four datasets, namely BioASQ, Natural Question, TriviaQA, and SQuAD-1.

BioASQ is licensed under the CC BY 2.5 license, Natural Question is under CC BY-SA 3.0 license,

TriviaQA is under the Apache License 2.0, and SQuAD-1 is under the CC BY-SA 4.0 license. We used

two LLMs, namely GPT-3.5 and Llama-2. GPT-3.5 usage is subject to OpenAI’s Sharing & Publication

Policy and Usage Policies. Llama-2 is licensed under the Llama-2 Community License (Meta, 2023). Our

implementation and the data collected are under the MIT License.

Our use of the existing artifacts is consistent with their original intended use. Our created artifacts intend

to verify our proposed method in our submission, which is consistent with original access conditions.

E Removing Assumption LLM Correctness

In certain scenarios, even if the most pertinent passage is identified and given to the language understanding

model (LLM), the LLM is still unable to answer the question with accurate answers. This could be due

to a variety of reasons, such as the passage not being sufficiently specific or the LLM not being able to



extract enough information from the passage. If the LLM is unable to generate correct responses even

when the most pertinent passage is provided, our guarantee regarding the LLM and end-to-end pipeline

may not hold. This problem can be alleviated by annotating better passages or using more powerful

LLMs.

To address the issue with existing datasets and language models, we offer the guarantee of claiming

I do not know if the language model is unable to generate a correct response to a question and its most

relevant passage. We collect questions and their most relevant passages, and also labels that indicate

whether GPT-3.5 could generate a correct response. We then divided the dataset into training, validation,

and testing sets, with 6,899, 1,725, and 1,725 data points, respectively. We label True if the language

model could generate a correct response and False otherwise. We then train a BERT-based text classifier,

which takes in the questions and their most relevant passages, and predicts whether GPT-3.5 can generate

a correct response. We name the trained classifier Conf-Classifier. Surprisingly, the Conf-Classifier

achieves an accuracy of 95% on the testing set. To provide guarantees, we apply conformal prediction to

the outputs of the Conf-Classifier. We include I do not know in the LLM set if the constructed prediction

set contained False.

To construct the calibration set, we collect estimated confidences on not being able to answer the

question on input questions in which the LLM fails to generate the correct response. We denote these

estimated confidences as {s1, . . . , sN}. Given a user-specified coverage level, we then use conformal

prediction to identify the
+(N+1)(1−α),

N
quantile as the threshold τIgn to construct the set. Given an input

question q, we then include I do not know in the aggregation set CAgg(q) if the estimated confidence

nK+1 is above τIgn. Then we can guarantee the following:

Lemma 5.1. Given an input question q that the LLM cannot correctly answer and a user-specified

error level α, if αIgn is used to decide whether to include I do not know, the aggregation set satisfies the

following property:

Pr
q∼D

[I do not know ∈ CAgg(q)]

This result follows straightforwardly from Theorem I.I.D.

We validate our guarantee using five distinct random seeds and five different coverage levels. The results

are shown in Figure 17. As the figure illustrates, our method can include I do not know at various required

coverage levels. By combining this with our guarantee on the LLM, we can guarantee all questions.

Theorem 6. Given a user-specified error level α, if aggregation is constructed with error level α, the

resulting prediction sets contain true answers (i.e. semantically correct responses if the input question is

answerable; or I do not know if the input question is unanswerable) with probability at least 1− α, i.e.

Pr
q∼D

[True answer ∈ CAgg(q)] ≥ 1− α.

Proof. Suppose we construct the aggregation set and ignorance set both with coverage level 1− alpha;

then we have the following inequalities:

Pr
q∼D

[True answer in the resulting set]

= Pr
q∼D

[Correct response ∈ CAgg(q)]× Pr[q is answerable]

+ Pr
q∼D

[I do not know ∈ CAgg(q)]× Pr[q is unanswerable]

≤ (1− α)× Pr[q is answerable] + (1− α)× Pr[q is unanswerable]

= 1− α.

F AI Assistant Usage

We used Copilot to assist our coding.



(a) Coverage Rate on I do not know. (b) False Positive Rates (claiming I do not
know but actually being able to answer.

(c) The distribution of confidence on
claiming I do not know using the train-
ing classifier.

Figure 17: Results on identifying whether a given prompt is answerable or not.
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