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Abstract— Real-world robotic tasks stretch over extended
horizons and encompass multiple stages. Learning long-horizon
manipulation tasks, however, is a long-standing challenge,
and demands decomposing the overarching task into several
manageable subtasks to facilitate policy learning and gener-
alization to unseen tasks. Prior task decomposition methods
require task-specific knowledge, are computationally intensive,
and cannot readily be applied to new tasks. To address these
shortcomings, we propose Universal Visual Decomposer (UVD),
an off-the-shelf task decomposition method for visual long-
horizon manipulation using pre-trained visual representations
designed for robotic control. At a high level, UVD discovers
subgoals by detecting phase shifts in the embedding space
of the pre-trained representation. Operating purely on visual
demonstrations without auxiliary information, UVD can effec-
tively extract visual subgoals embedded in the videos, while
incurring zero additional training cost on top of standard
visuomotor policy training. Goal-conditioned policies learned
with UVD-discovered subgoals exhibit significantly improved
compositional generalization at test time to unseen tasks.
Furthermore, UVD-discovered subgoals can be used to con-
struct goal-based reward shaping that jump-starts temporally
extended exploration for reinforcement learning. We extensively
evaluate UVD on both simulation and real-world tasks, and
in all cases, UVD substantially outperforms baselines across
imitation and reinforcement learning settings on in-domain
and out-of-domain task sequences alike, validating the clear
advantage of automated visual task decomposition within the
simple, compact UVD framework.

I. INTRODUCTION

Real-world household tasks, such as cooking and tidying,

often stretch over extended horizons and encompass multiple

stages. In order for robots to be deployed in realistic environ-

ments, they must possess the capability to learn and perform

long-horizon manipulation tasks from visual observations.

Learning vision-based complex skills over long timescales,

however, is challenging due to the problem of compounding

errors, the vastness of the action and observation spaces, and

the difficulty in providing meaningful learning signals for

each step of the task.

Given these challenges, it is necessary to decompose a

long-horizon task into several smaller subtasks to make

learning manageable. Beyond improving the efficiency of

learning, task decomposition facilitates learning reusable

skills, promotes data-sharing across different trajectories,

and further enables compositional generalization to unseen

sequences of the learned subtasks. Despite its usefulness, task
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Fig. 1: Universal Visual Decomposer uses off-the-shelf pre-

trained visual representations to find subgoals from video

demonstrations by recursively computing embedding dis-

tances from the target goal and setting the first plateau as

the new target goal.

decomposition is difficult to perform in practice, and most

existing approaches require strong assumptions about tasks,

datasets, or robotic platforms [3,12,13,20,21,34,37,43,49–

51,61]. These methods cannot be used in common settings

where the agent only has access to video demonstrations of

desired behavior on their robotic hardware and little else,

motivating the need for an off-the-shelf approach that can

readily decompose any visual demonstration out-of-the-box.

In order to decompose any long-horizon task using vi-

sion, general knowledge about visual task progression that

can discern embedded subtasks in long, unsegmented task

videos must be acquired. In this work, we propose Universal

Visual Decomposer (UVD), an off-the-shelf unsupervised

subgoal decomposition method that re-purposes state-of-the-

art pre-trained visual representations [24,31–33,38,42,60] for

automated task segmentation. To motivate our approach, we

observe that several pre-trained visual representations, such

as VIP [32] and R3M [38], are trained to capture temporal

task progress on diverse, short videos of humans accomplish-

ing goal-directed behavior [7,15]. These representations have

acquired well-behaved embedding distances that can progress

near monotonically along video frames that depict short-

horizon, atomic skills. Our key insight is that when applied

to long videos consisting of several subtasks, their training
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on short atomic tasks makes these representations no longer

informative about subtask membership. That is, they are

not trained to capture whether an earlier frame, which may

very well belong to a different subtask, is making progress

towards a subtask that appears later in the video, even if

the subtasks are related to one another. As a consequence,

when the robot task is extended, the embedding distances

will deviate from monotonicity and exhibit plateaus around

frames that correspond to phase shifts in the overall task; this

provides an unsupervised signal for detecting when subtasks

have taken place in the original long, unsegmented task

video. UVD instantiates this insight and proposes an out-

of-the-box subgoal discovery procedure that can iteratively

extract subgoals using the embedding distance information

from the end to the beginning; notably, UVD does not require

any domain-specific knowledge or incur additional training

cost on top of standard visuomotor policy training. Given

its off-the-shelf nature, UVD can be readily applied to a

variety of unseen robot domains. See Fig. 1 for a conceptual

overview of our approach.

We apply UVD to long-horizon, multi-stage visual manip-

ulation tasks in both simulation and real-world environments.

Across these tasks, UVD consistently outputs semantically

meaningful subgoals which are used for policy training and

evaluation. We consider both in-domain (IND) and out-of-

domain (OOD) task evaluations. In IND evaluation, the agent

is evaluated on long-horizon tasks for which it has been

explicitly trained whereas in OOD evaluation, the agent is

evaluated to generalize to new tasks unseen during training.

Using UVD-discovered subgoals, we demonstrate substantial

policy improvements across these evaluation settings. Firstly,

when training agents with reinforcement learning (RL), we

show that UVD-subgoals can be used to perform reward

shaping for each of the intermediate subtasks. Using this

approach, we demonstrate that the resulting rewards can

successfully guide a vision-based reinforcement learning

agent to learn long-horizon tasks in the FrankaKitchen [16]

environment. Secondly, when training agents with imitation

learning (IL), by virtue of discovering semantically meaning

subgoals, our policies can compositionally generalize to

OOD task sequences unseen during training; this capability

greatly reduces the burden of manual data collection for

every desired task. Finally, in IND evaluation, we also

demonstrate performance improvement on several real-world

multi-stage tasks that stretch over several hundred timesteps

and exhibit sequential dependency among the subtasks.

In summary, our contributions include:

1) Universal Visual Decomposer (UVD), an off-the-shelf

visual decomposition method for long-horizon manip-

ulation using pre-trained visual representations.

2) A reward shaping method for long-horizon visual re-

inforcement learning using UVD-discovered subgoals.

3) Extensive experiments demonstrating UVD’s effective-

ness in improving policy performance on IND and

OOD evaluations across several simulation and real-

robot tasks.

II. RELATED WORK

Learning long-horizon skills has been a long standing

challenge in robotic manipulation [16,19,26,34]. Hierarchi-

cal reinforcement learning [1,2,4,6,11,16,35,36,39,50,54,64]

enables temporally extended exploration by discovering sub-

skills and planning over them. However, these algorithms

learn subskills and overall policies from scratch, which is

computationally expensive and less suitable for real-world

robotics use cases.

When provided with task demonstrations, there are many

prior efforts on using subgoal decomposition as a means to

break up the long task in order to provide intermediate learn-

ing signals and to mitigate compounding action errors. These

prior decomposition strategies, however, require task-specific

knowledge and cannot be easily applied to new tasks. For

example, several approaches use the robot’s proprioceptive

data within the task demonstrations [3,21,49,51] or explicit

knowledge about subtask structure [20,61] to guide decom-

position; this limits the types of tasks that can be solved and

precludes learning from observed videos. Other works learn

latent generative models over subgoals [12,13,22,34,37,43],

but demand compute-intensive training on large datasets that

cover diverse behavior.

To the best of our knowledge, Universal Visual Decom-

poser is the first “off-the-shelf” visual task decomposition

method that does not require any task-specific knowledge

or training. In addition, it demonstrates a novel use case of

pre-trained visual representations. While some prior works

have considered using pre-trained visual representations to

generate rewards [32,47], we are the first to demonstrate

that they can also be re-purposed to perform hierarchical

decomposition; furthermore, this capability can be combined

with the reward specification capability to solve long-horizon

tasks using visual reinforcement learning.

III. PROBLEM SETTING

Unsupervised Subgoal Discovery (USD). Our goal is to

derive a general-purpose subgoal decomposition method that

can operate purely from visual inputs on a per-trajectory ba-

sis. That is, given a full-task demonstration τ = (o0, ..., oT ),

USD((o0, ..., oT )) → τgoal := (g0, ..., gm), (1)

where (g0, ..., gm) are the subset of τ that are selected as

subgoals; m may vary across trajectories.

Policy Learning. We provide demonstrations D := {τ}ni=1

for the learning tasks; in the reinforcement learning setting,

we assume that there is one task and have n = 1 to specify

the overall task to be achieved. The evaluation tasks can be

both in-domain (IND), the ground-truth sequences of tasks

captured in D, or out-of-domain (OOD), consisting of unseen

combinations of the subtasks in D.

We assume access to a pre-trained visual representation φ :
R

H×W×3 → R
K that maps RGB images to a K-dimensional

embedding space. Given φ and D, our goal is to learn a

goal-conditioned policy π : R
K×R

K→∆(A) that outputs

an action based on the embedded observation and goal, a ∼
π(φ(o), φ(g)). In the RL setting, the agent is not provided



with reward information, so the agent must also construct

rewards using φ and D.

Policy Evaluation. For OOD eval., we provide one demon-

stration τ specifying the subtask sequence to be performed.

IV. METHOD

We first present Universal Visual Decomposer, the core

algorithm that powers our off-the-shelf subgoal discovery

approach. Then, we discuss various ways we perform policy

training as well as goal selection during policy inference.

A. Universal Visual Decomposer

Given an unlabeled video demonstration τ = (o0, ..., oT ),
how might we discover useful subgoals? The key intuition of

Universal Visual Decomposer is that, conditioned on a goal

frame ot, some n frames (ot−n, ..., ot−1) preceding it must

visually approach the goal frame; once we discover the first

frame (ot−n) in this goal-reaching sequence, the frame that

precedes it (ot−n−1) is then another subgoal. From ot−n−1,

the same procedure can be carried out recursively until we

reach o0. There are two central questions to address: (1) how

to discover the first subgoal (last in terms of timestamp),

and (2) how to determine the stopping point for the current

subgoal and declare a new frame as the new subgoal.

The first question is simple to resolve by observing that

in a demonstration, the last frame oT is naturally a goal.

Now, conditioned on a subgoal ot, we attempt to extract the

first frame ot−n in the sub-sequence of frames that depicts

visual task progression to ot. To discover this first frame, we

exploit the fact that several state-of-the-art pre-trained visual

representations for robot control [31,32,38] are trained to

capture temporal progress within short videos depicting a

single solved task; these representations can effectively pro-

duce embedding distances that exhibit monotone trend over

a short goal-reaching video sequence τ = (ot−n, ..., ot):

dφ(os; ot) g dφ(os+1; ot), ∀s ∈ {t− n, . . . , t− 1}, (2)

where dφ is a distance function in the φ-representation space;

in this work, we set dφ(o; o
′) := ∥φ(o)− φ(o′)∥

2
because

several state-of-the-art pre-trained representations use the L2

distance as their embedding metric for learning. Given this,

we set the previous subgoal to be the temporally closest

observation to ot for which this monotonicity condition fails:

ot−n−1 := argmax
oh

dφ(oh; ot) < dφ(oh+1; ot), h < t . (3)

The intuition is that a preceding frame that belongs to the

same subtask (i.e., visually apparent that it is progressing

towards ot) should have a higher embedding distance than the

succeeding frame if the embedding distance indeed captures

temporal progression. As a result, a deviation from the

monotonicity indicates that the preceding frame may not

exhibit a clear relation to the current subgoal, and instead

be a subgoal itself. Now, ot−n−1 becomes the new subgoal,

and we apply (3) recursively until the full sequence τ is

exhausted. For instance, in Figure 1, conditioned on the last

frame, g3 is the first preceding frame that produces an inflec-

tion point in the embedding distances and hence selected as

a subgoal; then, conditioned on g3, g2 is selected, and so on;

see Alg. 1 for high-level algorithm and Psuedocode A.1 for

low-level implementation. In practice, (2) may not hold for

every step due to noise in the embedding and pixel space, and

we find that a simple pre-set minimal time interval between

each decomposed subgoal to ensure they aren’t too close

together and a low pass filter procedure to first smoothen the

embedding distances make the subgoal criterion (3) effective;

see Appendix. A for more details.

Algorithm 1: Universal Visual Decomposer

Init: frozen visual encoder φ, τ = {o0, · · · , oT }
Init: set of subgoals τgoal = {}, t = T

while t not small enough do
τgoal = τgoal ∪ {ot}
Find ot−n−1 from Eq. 3

t = t− n− 1
end

In Fig. 2, we visualize UVD’s iterative decomposition

process, showcasing the embedding distance curves (left)

and the resulting decomposed subgoals (right). The featured

videos are sourced from FrankaKitchen for the simulation

task, Fold-cloth for the real-robot task, and a real-

world sequence that includes: opening a drawer, picking

the charger, plugging it in, activating the power strip, and

partially closing the drawer. The black dotted lines indicate

the timesteps where UVD identifies a monotonic break,

taking into account the minimal interval mentioned earlier.

More visualizations can be found in Appendix F.

Computational Efficiency. We highlight that our entire

algorithm does not require any additional neural network

training or forward computations on top of the one forward

pass required to encode all observations for policy learning.

We further provide the decomposition and inference runtime

for our UVD implementation in Appendix. 4. The results

indicate that UVD introduces negligible costs (< 0.1 sec. in

total) when compared to standard policy learning methods.

B. UVD-Guided Policy Learning

Now, we discuss several ways UVD-discovered subgoals

can be used to supplement policy learning.

Goal Relabeling. As UVD is performed on a trajectory

basis, we can relabel all observations in a trajectory with

the closest subgoals that appear later in time. In particular,

for an action-labeled trajectory τ = (o0, a0, ..., oT , aT ) and

UVD-discovered subgoals τgoal = (g0, ..., gm), we have that

Label(ot) = gk where gk is the first subgoal occurring after

time t. This procedure leads to an augmented, goal-relabeled

trajectory τaug = {(o0, a0, g0), ..., (oT , aT , gm)}. Now, as

all transitions are goal-conditioned, we can learn policies

using any goal-conditioned imitation learning algorithm;

for simplicity, we use goal-conditioned behavior cloning

(GCBC) [10,14].

Reward Shaping. The above goal relabeling strategy ap-

plies to the imitation learning (IL) setting. Collecting the

demonstrations needed for IL is, however, expensive. Instead,
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Fig. 2: Illustrations of UVD’s iterative decomposition, showcasing embedding distance curves (left) and decomposed

subgoals (right). The videos come from FrankaKitchen for the simulation task, Fold-cloth for the real-robot task, and

a real-world video depicting the sequence: opening a drawer, picking the charger, plugging it in, activating the power strip,

and partially closing the drawer.

a reinforcement learning paradigm is feasible with much

fewer demonstrations and comes with other ancillary benefits

such as learned error recovery. This raises the question of

how UVD-subgoals might be used with an RL paradigm.

In particular, how can UVD help overcome the exploration

challenge in long-horizon RL? Given that UVD selects

subgoals so that the embedding distances in-between any two

consecutive subgoals exhibit monotone trends, we define the

UVD reward to be the goal-embedding distance difference

computed using UVD goals:

R(ot, ot+1;φ, gi) := dφ(ot; gi)− dφ(ot+1; gi) . (4)

where gi ∈ τgoal, and gi will be switched to gi+1 automat-

ically during training when dφ(ot+1; gi) is small enough.

More details can be found at Appendix. 2.. This choice

of reward encourages making consistent progress towards

the goal and has been found in prior work [8,32,57,59] to

be particularly effective when deployed with suitable visual

representations.

C. UVD Goal Inference

When deploying our trained subgoal-conditioned policies

at inference time, we must determine what subgoals to

instruct the policy to follow at each observation step. We

study two simple strategies that work well in practice; we

describe the high-level approaches here, and include more

details on Appendix. 2..

Nearest Neighbor. First, when there is only one fixed

sequence of subtasks to be learned (i.e., IND), we employ

a simple nearest neighbor goal selection strategy. That is,

for a new observation, we compute the observation in the

training set that has the closest embedding (judged by dφ)

and use its associated sub-goal. This can be interpreted as a

non-parameteric high-level policy that outputs observation-

conditioned goal for the low level policy, π(φ(o), φ(g)).
Goal Relaying. When performing OOD or multi-task IND

evaluation, the agent must complete a user-instructed task.

In these settings, the above nearest neighbor approach may

no longer apply as the subgoals seen in training may not be

valid for the current, potentially unseen, task. Instead, we

propose to relay the currently instructed goals based on em-

bedding distance. Specifically, given a sequence of instructed

subgoals g = (g0, ..., gm), the policy will condition on the

first remaining subgoal until the embedding distance between

the current observation and the subgoal is below a certain

threshold, at which point the policy will be conditioned on

the next subgoal in the sequence.

V. EXPERIMENTS

We study the following research questions:

1) Does UVD enable compositional generalization in

multi-stage and multi-task imitation learning?

2) Can UVD subgoals enable reward-shaping for long-

horizon reinforcement learning?

3) Can UVD be deployed on real-robot tasks?

A. Simulation Experiments

FrankaKitchen Environment. We use the FrankaKitchen

Environment [16] for simulation experiments. In the environ-

ment, a Franka robot with a 9-DoF torque-controlled action

space can interact with seven objects: a microwave, a kettle,

two stove burners, a light switch, a hinge cabinet, and a

sliding cabinet. We refined the dataset from [16] to include

only successful trajectories, yielding a total of 513 episodes

gathered from humans using VR headsets. For each episode,

four out of the seven objects are manipulated in an arbitrary

sequence, leading to 24 unique completion orders; see Fig. 3.



Representation Method IND success IND completion OOD success OOD completion

VIP (ResNet50) [32]
GCBC 0.736 (0.011) 0.898 (0.006) 0.035 (0.014) 0.236 (0.057)

GCBC + Ours 0.737 (0.012) 0.903 (0.009) 0.188 (0.024) 0.566 (0.020)

R3M (ResNet50) [38]
GCBC 0.742 (0.026) 0.856 (0.006) 0.014 (0.007) 0.223 (0.029)

GCBC + Ours 0.738 (0.024) 0.879 (0.000) 0.084 (0.045) 0.427 (0.002)

LIV (ResNet50) [31]
GCBC 0.608 (0.068) 0.816 (0.046) 0.008 (0.008) 0.116 (0.082)

GCBC + Ours 0.649 (0.013) 0.868 (0.007) 0.066 (0.025) 0.496 (0.033)

CLIP (ResNet50) [25]
GCBC 0.391 (0.017) 0.692 (0.008) 0.005 (0.001) 0.119 (0.017)

GCBC + Ours 0.394 (0.036) 0.701 (0.012) 0.073 (0.003) 0.403 (0.01)

DINO-v2 (ViT-large) [41]
GCBC 0.329 (0.025) 0.654 (0.019) 0.012 (0.01) 0.261 (0.213)

GCBC + Ours 0.322 (0.053) 0.669 (0.037) 0.055 (0.025) 0.446 (0.034)

VIP (ResNet50) [32]
GCBC-GPT 0.702 (0.029) 0.841 (0.02) 0.039 (0.027) 0.302 (0.028)

GCBC-GPT + Ours 0.708 (0.056) 0.897 (0.024) 0.213 (0.054) 0.600 (0.038)

TABLE I: IND and OOD IL Results on FrankaKitchen. We report the mean and standard deviation of success rate

(full-stage completion) and the percentage of the completion (out of 4 stages), evaluated over diverse existing pretrained

visual representations trained by GCBC with three seeds. Highlighted scores represent improvements in OOD evaluations

and IND results with gains exceeding 0.01.
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Fig. 3: Frank Kitchen environment and an example of

random training-evaluation partition. In each demonstra-

tion episode, 4 out of 7 objects are manipulated in an

arbitrary order. We show an example of 16 completion orders

for training and IND evaluation chosen randomly, while the

rest of 8 are for OOD generalizations.

Visual and Policy Backbones. As UVD is designed to

utilize pre-trained visual representations that capture visual

task progress, we adopt R3M [38], VIP [32], and LIV [31],

three Resnet50-based representations trained with temporal

objectives on video data; in particular, VIP and LIV are

trained to explicitly encode smooth temporal task progress

in their embedding distances. We also consider general

vision models trained on static image datasets such as CLIP

(ResNet50) [44] and DINO-v2 (ViT-large) [41] to assess

the importance of training on temporal data. As our goal

is to study the merit of the pretrained representations, as in

prior works [32,38], we keep the policy architecture simple

and employ a multi-layer perception (MLP) as the policy

architecture; More details in Appendix. B.

Baselines. We compare with goal-conditioned behavior

cloning (GCBC) baselines to demonstrate the value of UVD.

Fixing a choice of visual representation, the only difference

of GCBC to ours is the how the goals are labeled at training

time. For each observation, GCBC labels the final frame in

the same trajectory as its goal.

IL Evaluation Protocol. Our training and evaluation design

for FrankaKitchen is structured as follows: we train on

n combinations of object sequences with IND evaluation,

reserving the remaining 24−n task sequences for evaluation

of unseen OOD scenarios. We use n = 16 by default unless

otherwise mentioned. For a fair comparison, we utilize the

same 3 random seen-unseen partitions, generated by 3 unique

pre-defined seeds, for every set of runs.

To evaluate policy performance, we consider both the

success rate on the overall task (success) as well as the

number of subtasks accomplished (completion). The success

criterion for each subtask is determined by the simulation

ground-truth state; this is used solely during evaluations and

is not provided to the agent during training. Results are

presented in Table I.

Results. Remarkably, by using UVD, all pre-trained

visual representation show significant improvement in

OOD sequential generalization, despite their varying

IND performances. VIP and LIV, the two representations

explicitly trained to learn monotone embedding distances,

demonstrate higher comparative gains compared to the

other representations, despite similar or even lower

performances when the representations are not used to

decompose subgoals (i.e., GCBC-MLP); this validates

our hypothesis that representations capturing visual task

progress information are more suited for off-the-shelf

subgoal discovery.

InD success OoD success InD completion OoD completion
0.0

0.5

1.0

S
co

re

UVD UVD (5 demos) UVD (8 seen - 16 unseen)

Fig. 4: Ablations on dataset size and composition.

Ablations. We present several ablations studying whether

UVD remains effective when varying training settings. As

VIP stands out as the most promising candidate for UVD-



Method Success Completion

GCRL-VIP 0.0 / 0.0 0.09 / 0.25
GCRL-VIP + Ours 0.65 / 1.0 0.75 / 1.0

GCRL-R3M 0.0 / 0.0 0.09 / 0.25
GCRL-R3M + Ours 0.649 / 1.0 0.82 / 1.0

TABLE II: RL results on FrankaKitchen. Full-stage suc-

cess rate and the percentage of full-stage completion are

reported in the format of (average performance with 3

random seeds) / (max performance).

based imitation learning, we perform all ablations using

VIP as the backbone representation. First, we ablate the

MLP policy architecture with a GPT-like causal transformer

policy [45]. As shown in the last row of Table I, this more

powerful, history-aware, policy is insufficient to achieve the

same level of generalization; UVD again provides sizable

generalization improvement.

Beyond policy architecture, we also study the effect of

dataset size and diversity. To this end, we consider (1)

reducing the training dataset size to 5 demonstrations per

training task, and (2) reducing the number of training tasks

to 8 but keeping the full number of demonstrations per task.

Both IND and OOD performance remains similar, confirming

that UVD enables OOD generalization that is robust to the

varying sizes and diversity of the training data.

InD success OoD success InD completion OoD completion
0.0

0.5

1.0

S
c
o
r
e

UVD Uniform Random

Fig. 5: Comparison with heuristic goal-labeling methods.

Finally, we study whether UVD is necessary to achieve

strong OOD generalization and investigate alternative ways

of generating subgoals. We consider Uniform and Random;

Uniform randomly selects a frame within a fixed size win-

dow after the observation; this strategy has been employed

in many prior works [16,30]. Random randomly selects 3

to 5 frames within the demonstration as subgoal frames. As

shown in Fig. 5, the alternatives uniformly hurt performance

on all settings and metrics. This is to be expected as these

alternatives introduce redundant and less semantically mean-

ingful subgoals; as a result, they may perform comparably

IND, but their OOD generalization suffers.

UVD-Guided Reinforcement Learning. We investigate

whether UVD can also enhance reinforcement learning by

providing goal-based shaped rewards for subtasks (4). Re-

call that in this setting, only a single video demonstration

(without action labels) is given to the agent to specify

the learning task. Within the FrankaKitchen environment,

we examine a specific task sequence: open microwave,

move kettle, toggle light switch, and slide

cabinet. We select VIP and R3M as candidate represen-

tations as they performed best for IL IND evaluations. We

Task Method IND S. IND C. OOD S. OOD C.

Apple-in-Oven
GCBC 0.50 0.438 0.0 0.500

GCBC + Ours 0.60 0.750 0.25 0.625

Fries-and-Rack
GCBC 0.30 0.567 0.0 0.0

GCBC + Ours 0.35 0.750 0.25 0.500

Fold-Cloth
GCBC 0.05 0.100 0.0 0.0

GCBC + Ours 0.15 0.483 0.15 0.425

TABLE III: IND and OOD Results on Real-World Tasks.

S-success, C-completion.

consider a goal-conditioned RL baseline, which constructs

goal-based rewards by uniformly using the last demonstration

frame as goal in (4). We use PPO [46] as the RL algorithm

and report the average and the max success rate and per-

centage of completion over 3 random seeds in Table II; see

Appendix. 2. for more details.

We see baselines fail to make non-trivial task progress with

either visual backbone, confirming that goal-based rewards

with respect to a distant final goal are not well-shaped to

guide exploration. In contrast, UVD-rewards consistently ac-

celerate RL training and achieve high overall success on the

task, validating UVD’s utility in not only task generalization

but also in task learning.

B. Real-World Experiments

We introduce 3 real-world multi-stage tasks on a real

Franka robot. These tasks contain daily household manip-

ulation skills, such as picking, pouring, folding, and manip-

ulating articulated objects. See Fig. 7 for a detailed break-

down of the subtasks in each task. For each task, we have

collected about 100 demonstrations via teleoperation; for

each trajectory, the positions of relevant objects in the scene

are randomized within a fixed distribution. The policies are

learned via GCBC with MLP architecture as in simulation;

see Appendix. E.4 for more real-robot details.

OOD Evaluation. On our real-world tasks, the subtasks are

sequentially dependent and cannot be performed in arbitrary

orders. To test compositional generalization, we evaluate

whether the policies can skip intermediate tasks when their

effects in the environment are already achieved. For example,

on the Fries-and-Rack task, we evaluate on initial states

in which the fries are already placed on the plate. In this

case, a policy trained with semantically meaningful subgoals

should be able to directly proceed from picking up the

bowl to racking the bowl. This is because the post-condition

of pouring the fries is semantically identical to the pre-

condition of racking the bowl – both have the bowl picked

up mid air and the fries on the plate. Similarly, on the

Apple-in-Oven task, we test generalization by having

the apple directly placed on the plastic plate, and on the

Fold-Cloth task, we have the cloth folded diagonally

already; see Figure 6 for an illustration of these OOD initial

observations. While these OOD tasks are shorter than the

training tasks, the exact sequences are still unseen during

training and they contain unseen initial state configurations.

As before, we test these OOD as well as IND task sequences;



Fig. 6: Example Sub-Sampled Rollouts on Real-World OOD Tasks. The initial frame in each sequence is a representative

OOD initial observation. The inset image in each frame is the conditioned UVD-discovered goal for that frame.

   
   

   
A

p
p

le
-i

n
-O

v
e

n
F

ri
e

s
-a

n
d

-R
a

c
k

F
o

ld
-C

lo
th

Pick up bowl Pour fries Rack bowl

Pick up apple Place apple Push bowl Close oven

Diagonal Fold Quarter  Fold Eighth  Fold

Fig. 7: Real-World Tasks. The first picture in each row

depicts a representative initial observation, and the following

frames are the distinct subtasks.

for each task sequence, we evaluate on 20 rollouts using the

same set of object configurations for every compared method.

Results are presented in Table III. As shown, on all tasks,

UVD methods can solve OOD tasks whereas the baseline

completely fails, despite their comparable performance on

IND tasks. These results corroborate our findings in simula-

tion and make a strong case for the effectiveness of UVD’s

subgoals and its applicability to challenging real-world tasks.

In addition to introducing OOD for initial states, we also

show in Appendix 2. that our plug-and-play can recover

from unexpected human interference in intermediate states.

In contrast, GCBC struggles significantly in these situations.

This underscores the ability of UVD’s subgoals to guide the

agent effectively in challenging OOD situations.

In Figure 6, we visualize UVD policy rollouts by display-

ing sub-sampled frames and their conditioned subgoals (the

inset frame) on the OOD tasks. In all cases, UVD retrieves

meaningful subgoals from the training set and the policy can

successfully match the depicted semantic subtask.

VI. LIMITATION AND FUTURE WORKS

While UVD offers the advantage of not necessitating

any task-specific knowledge or training, its efficacy is well-

demonstrated across both simulated and real-robot environ-

ments. However, as we only validate on fully observable

manipulation tasks, direct application to navigation tasks, es-

pecially those embodied tasks involving partial observations,

may not yield intuitive or explainable subgoals (even though

representations are pretrained with temporal objective using

egocentric datasets [31,32,38]).

Looking ahead, we are eager to broaden the applications

of UVD, diving deeper into its capabilities within egocen-

tric scenarios, and even the key-frame extraction for video

understanding and dense video caption tasks. On another

front, while task graphs are widely used in Reset-Free

RL [17,62], acquiring milestones as subgoals is resource-

intensive and lacks scalability. By integrating our off-the-

shelf UVD subgoals into the task-graph, we are interested in

seeing agents that, with minimal resets, can adeptly handle

a wide range of tasks across various sequences and horizons

in the wild.

VII. CONCLUSION

We have presented Universal Visual Decomposer, an off-

the-shelf task decomposition method for long-horizon visual

manipulation tasks using pre-trained visual representations.

UVD does not require any task-specific knowledge or train-

ing and effectively produces semantically meaning subgoals

across both simulated and real-robot environments. UVD-

discovered subgoals enable effective reward shaping for

solving challenging multi-stage tasks using RL, and policies

trained with IL exhibit significantly superior compositional

generalization at test time.
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APPENDIX

A DETAILS ON UVD

1. Decomposition

As we show in Algo. 1, UVD preprocesses the demonstra-

tion or user-provided raw video offline. We further provide

low-level pseudocode in Python of UVD in Pseudocode. A.1.

In practice, when identifying the temporally nearest obser-

vation where the monotonicity condition is not met, as per

Eq. 3, it is equivalent to locating the most recent local

maximum of the embedding distance curves. This is because

the distance curve is anticipated to show an almost mono-

tonically decreasing trend towards the final frame in each

recursive iteration, as shown in Eq. 2. Due to the small-scale

noise in pixel and high-dimensional feature space, we apply

Nadaraya-Watson Kernel Regression [55] to first smooth

the embedding curves before calculating the embedding

distances. We benchmark our UVD implementation runtime

in Appendix. A4., which shows a negligible time span,

even when handling high-resolution videos with substantial

duration in the wild.

from scipy.signal import argrelextrema

def UVD(

embeddings: np.ndarray | torch.Tensor,

smooth_fn: Callable,

min_interval: int,

) -> list[int]:

# last frame as the last subgoal

cur_goal_idx = -1

# saving (reversed) subgoal indices (timesteps)

goal_indices = [cur_goal_idx]

cur_emb = embeddings.copy() # L, d

while cur_goal_idx > min_interval:

# smoothed embedding distance curve (L,)

d = norm(cur_emb - cur_emb[-1], axis=-1)

d = smooth_fn(d)

# monotonicity breaks (e.g. maxima)

extremas = argrelextrema(d, np.greater)[0]

extremas = [

e for e in extremas

if cur_goal_idx - e > min_interval

]

if extremas:

# update subgoal by Eq.(3)

cur_goal_idx = extremas[-1] - 1

goal_indices.append(cur_goal_idx)

cur_emb = embeddings[:cur_goal_idx + 1]

else:

break

return embeddings[

goal_indices[::-1] # chronological

]

Pseudocode A.1: UVD implementation in Python

In all of our simulation and real-world experiments, we

use min interval = 20, and Radial Basis Function

(RBF) with the bandwidth of 0.08 for Kernel Regression,

to eliminate most of the visual and motion noise in the

video. We provide UVD decomposition qualitative results

in Appendix. F.

2. Inference

We now elucidate the specifics of applying UVD subgoals

in a multi-task setting during inference. Remember that given

a video demonstration represented as Ä = (o0, · · · , oT ) and

UVD-identified subgoals Ägoal = (g0, · · · , gm), we can ex-

tract an augmented trajectory labeled with goals, represented

as Äaug = (oa, a0, g0), · · · , oT , aT , gm. This is useful for

goal-conditioned policy training, as discussed in Sec. IV-B.

For inference, we can similarly produce an augmented

offline trajectory without the necessity of ground-truth ac-

tions, i.e., Äaug,infer = {(o0, g0), · · · , (oT , gm)}. In the

online rollout, after resetting the environment to o0, the

agent continuously predicts and enacts actions conditioned

on subgoal g0 using the trained policy. This continues until

the embedding distance between the current observation and

the subgoal surpasses a pre-set positive threshold ϵ at a

specific timestep i, i.e. dϕ(oi; g0) < ϵ, where ϕ is the same

frozen visual backbone used in decomposition and training.

Following this, the subgoal will be seamlessly transitioned

to the next, continuing until success or failure is achieved.

In practice, the straightforward goal-relaying inference

method might face accumulative errors during multiple sub-

goal transitions, especially due to noise from online rollouts.

However, when an agent is guided explicitly by tasks de-

picted in a video, incorporating the duration dedicated to

each subgoal can help reduce this vulnerability. To clarify,

once we’ve aligned subgoals with observations from the

video, we also draw a connection between the timesteps of

observations and their corresponding subgoals. We denote

the subgoal budget for subgoal gi = ot as Bgi := n + 1
where gi−1 = ot−n−1 based on Eq. 3. Building on this, we

propose a secondary criterion for switching subgoals: verify

if the relative steps completing the current stage are in the

neighborhood of the subgoal budget. This measure ensures

timely transitions: it avoids prematurely switching before

completing a sub-stage or delaying the transition despite

accomplishing the sub-stage in the environment. To sum up,

given an ongoing observation ot and subgoal gi at timestep

t, and considering the preceding subgoal gi−1 at timesteps

t− h, the subgoal will transition to gi+1 if

dϕ(ot; gi) < ϵ and |h− Bgi | < ¶ (5)

We use ϵ = 0.2 and ¶ = 2 steps for all of our experiments,

except in baseline tests that are conditioned solely on final

goals.

3. Feature Continuity

We then visualize 3D t-SNE in feature space from different

frozen visual backbones in Fig. A.1. We include VIP [32],

R3M [38], CLIP [44], and ResNet [18] trained for ImageNet-

1k classification [9]. As shown in Fig. A.1, representa-

tions pretrained with temporal objectives, e.g. VIP [32] and

R3M [38], provide more smooth, continuous, and monotone

clusters than other vision foundation models. In practice,

those representations with more smooth and continuous

embedding curves provide better UVD decomposition as

well as better performance in downstream control.

4. Runtime of UVD

Finally, We present the average runtime of UVD for

preprocessing and decomposing trajectories. We break the
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Fig. A.1: UVD subgoals and 3D t-SNE visualizations of different frozen visual embeddings. t-SNE colors are labeled

by UVD subgoals. Representations pretrained with temporal objectives like VIP [32] and R3M [38] provide more smooth,

continuous, and monotone clusters in feature space than others, whereas the ResNet trained for supervised classification on

ImageNet-1k [9] provide the most sparse embeddings.

runtime by: 1) load from raw video file into an array; 2)

preprocess the video array by the frozen visual encoder

(including the tensor and device conversions); and 3) apply

UVD to the preprocessed embeddings. In addition to the

FrankaKitchen dataset and real-world data used for our

experiments, we assessed the decomposition capabilities on

a 720P MOV video. The video has a frame rate of 30 fps,

contains 698 frames (equating to a duration of 23.3 seconds),

and is decomposed into 16 subgoals. Visualizations can be

found in Fig. F.15. Runtimes were calculated based on an

average of 513 episodic data from the FrankaKitchen dataset

and 100 trials for the in the wild video, all processed

on an RTX A6000 GPU. Preprocessing is required only once

offline before the policy training. As indicated in Tab. A.1,

UVD operates in a negligible time span, even when handling

high-resolution videos with substantial duration in the wild.

# frames Load Preprocess UVD

FrankaKitchen 226.9 0.023 0.155 0.0023
In the wild 698 1.011 0.450 0.011

TABLE A.1: UVD offline preprocess runtimes (in sec-

onds).

B MODELS

1. Policies

To underscore that our method serves as an off-the-shelf

method that is applicable to different policies, we ablate with

a Multilayer Perceptron (MLP) based single-step policy and a

GPT-like causal transformer policy. We summarize the MLP

and GPT policies hyperparameters in Tab. C.4 C.5. The MLP

policy, akin to the designs in [32,38] for downstream control

tasks, employs a 3-layer MLP with hidden sizes of [1024,

512, 256] to produce deterministic actions. This MLP ingests

a combination of the frozen visual embeddings from step-

wise RGB observations and goal images followed by a 1D

BatchNorm, as well as the 9D proprioceptive data encoded

through a single layer complemented by a LayerNorm.

Our GPT policy removes the BatchNorm and replaces the

MLP with the causal self-attention blocks consisting of 8

layers, 8 heads, and an embedding dimension of 768. We

set an attention dropout rate of 0.1 and a context length of

10. The implementation is built upon [23,56]. We transition

from the conventional LayerNorm to the Root Mean Square

Layer Normalization (RMSNorm) [63] and enhance the

transformer with rotary position embedding (RoPE) [53].

Actions are predicted via a linear similar to [5]. In practice,

we generally found this recipe has more stable training

and better performance than the original implementation

from [23,48]. At inference time, we cache the keys and



values of the self-attention at every step, ensuring that there’s

no bottleneck as the context length scales up. Nevertheless,

in the FrankaKitchen tasks, we observed that a longer context

length tends to overfit and performance drop. Therefore, we

consistently use a context length of 10 for all experiments.

Policy MLP MLP + UVD GPT GPT + UVD

Episodic Runtime 6.03 6.17 7.43 7.50

TABLE B.2: Benchmark the inference runtime (in sec-

onds). Runtimes are averaged across 100 rollouts with one

GPU process and episodic horizon 300.

C TRAINING DETAILS

1. Imitation Learning

We summarize the hyperparameters of imitation learning

in Tab. C.3. In the simulation, we conduct an online eval-

uation every 100 epochs using 10 parallel environments for

each GPU machine. We choose the best checkpoints based on

the combined IND and OOD performance, averaged across

all multi-task training scenarios. For benchmarking inference

time, we employ a single GPU, comparing our approach

with the GCBC baseline as shown in Tab. B.2. This further

underscores that UVD incurs negligible overhead throughout

the preprocessing, training, and inference stages.

2. Reinforcement Learning

All RL experiments are trained using the Proximal Policy

Optimization (PPO) [46] RL algorithm implemented within

the AllenAct [58] RL training framework. We summarize the

hyperparameters of reinforcement learning in Tab. C.6.

In our RL setting, the configurations for both training

and inference remain consistent. This is analogous to the

inference for IL as detailed in Appendix. A2.. Specifically,

the task is also specified by an unlabeled video trajectory

Ä . Given the initial observation o0 and UVD subgoal g0 ∈
Ägoal, the agent continuously predicts and executes actions

conditioned on subgoal g0 using the online policy with frozen

visual encoder ϕ, until the condition dϕ(ot; g0) < ϵ satisfied

for some timestep t and positive threshold ϵ.
As shown in Eq. 4, we provide progressive rewards

defined as goal-embedding distance difference using UVD

subgoals. Recognizing that the distance between consecutive

subgoals can vary, we employ the normalized distance func-

tion: d̄ϕ(ot; gi) := dϕ(ot; gi)/dϕ(gi−1; gi). This ensures that

d̄ϕ(ot−h; gi) ≈ 1 for some timestep t − h that the subgoal

was transitioned from gi−1 to gi. Additionally, we provide

modest discrete rewards for encouraging (chronically) sub-

goal transitions, and larger terminal rewards for the full

completion of task sub-stages, which is equivalent as the

embedding distance between the observation and the final

subgoal becomes sufficiently small. To sum up, at timestep

t, the agent is receiving a weighted reward

Rt = ³ ·
(

d̄ϕ(ot−1; gi)− dϕ(ot; gi)
)

+ ´ · 1d̄φ(ot;gi)<ϵ

+ µ · 1d̄φ(ot;gm)<ϵ

(6)

based on the RGB observations ot, ot−1, corresponding

UVD subgoal gi ∈ Ägoal, and final subgoal gm ∈ Ägoal.
While similar reward formulations appear in works such

as [27,28,32,40,65], we are the first in delivering optimally

monotonic implicit rewards unsupervisedly by UVD, derived

directly from RGB features. In our experiments, we use

³ = 5, ´ = 3, µ = 6, ϵ = 0.2, and confine the first term

within the range [−³, ³] in case edge cases in feature space.

For the final-goal-conditioned RL baseline, it is equivalent

as gi = gm = oT ∈ Ä = {o0, · · · , oT } and ´ = 0 in Eq. 6.

Tab.II illustrates that the simple incorporation of UVD-

rewards greatly enhances performance. We also showcase a

comparison of evaluation rewards between GCRL and GCRL

augmented with our UVD rewards. This is done using the

R3M [38] and VIP [32] backbones, as seen in Fig. C.2.

This highlights the capability of our UVD to offer more

streamlined progressive rewards. This capability is pivotal

for the agent to adeptly manage the challenging, multi-

stage tasks presented in FrankaKitchen. To the best of our

knowledge, ours is the first work to achieve such a high

success rate in the FrankaKitchen task without human reward

engineering and additional training. Notably, our RL agent,

trained with the optimally monotonic UVD-reward, can

complete 4 sequential tasks in as few as 90 steps — a stark

contrast to the over 200 steps observed in human-teleoperated

demonstrations. This further illustrates the UVD-reward’s

potential to encourage agents to accomplish multi-stage goals

more efficiently. The videos of rollouts can be found on our

website.
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Fig. C.2: RL evaluation cumulative rewards. Note that

different visual backbones may not be comparable due to dif-

ferent representation spaces, but we show significant progres-

sive signals in comparison with the final-goal-conditioned

baseline.

Failures in the GCRL baselines predominantly stem from

the agent’s tendency to get trapped in local minima, usually

when it achieves a task sub-stage that results in the most

significant visual changes in the feature space, e.g. sliding

the cabinet in this case. Since it causes the most noticeable

shifts both in pixel and feature representations, the baseline

agent often fixates on this subtask alone, making no further

progress. Conversely, when employing UVD subgoals and

rewards, we have observed a marked difference during train-

ing. The agent incrementally learns to navigate the entire

task, approaching it stage by stage. These stages are not



Hyperparameter/Value MLP-Policy GPT-Policy

Optimizer AdamW [29] AdamW [29]
Learning Rate 3e-4 3e-4

Learning Rate Schedule cos decay cos decay
Warmup Steps 0 1000
Decay Steps 150k 200k

Weight Decay 0.01 0.1
Betas [0.9, 0.999] [0.9, 0.99]

Max Gradient Norm 1.0 1.0
Batch Size 512 128

TABLE C.3: IL training hyperpa-

rameters

Hyperparameter Value

Hidden Dim. [1024, 512, 256]
Activation ReLU

Proprio. Hidden dim. 512
Proprio. Activation Tanh

Visual Norm. Batchnorm1d
Proprio. Norm. LayerNorm

Action Activation Tanh
Trainable Parameters 3.3M

TABLE C.4: MLP pol-

icy hyperparameters

Hyperparameter Value

Context Length 10
Embedding Dim. 768

Layers 8
Heads 8

Embedding Dropout 0.0
Attention Dropout 0.1

Normalization RMSNorm [63]
Action Activation Tanh

Trainable Parameters 58.6M

TABLE C.5: GPT policy hyperpa-

rameters

Hyperparameter Value

GPU instances 8x RTX A6000
Environments per GPU 8

Optimizer AdamW [29]
Learning rate 3e-4

Learning rate schedule linear decay
Max gradient norm 0.5
Discount factor γ 0.99

GAE τ 0.95
Value loss coefficient 0.5

Normalized advantages True
Entropy coefficient 0.001

Rollout length 200
PPO epochs 10

Number of mini-batches 1
PPO Clip 0.1

TABLE C.6: RL hyperparameters.

isolated, as they share pertinent information. For example,

UVD breaks down task sequences into phases characterized

by nearly monotonic motions. These can be categorized as

the “hand reaching” or “object interaction” phases. This

shared knowledge framework means that once the agent

masters the initial “hand reaching” phase, subsequent similar

hand-reaching motions become more intuitive to learn and

execute. Nevertheless, we do occasionally observe instances

where applying UVD results in failure. In these cases, the

agent often oscillates its gripper back and forth, seemingly

hacking the reward shaping, which in turn leads to an

irreversible state. We speculate that incorporating supervised

human intervention [52] or unsupervised near-irreversible

detection [65], could address this issue and further enhance

performance.

D EXTENDED EXPERIMENTS AND ABLATIONS

1. Simulation

We present numerical results for ablations from Sec. V-A

in Tab. D.7, with extended comparison with GCBC baselines.

Without surprise, our method consistently outperforms base-

lines in compositional generalization settings, when varying

the dataset size to 5 demonstrations for each FrankaKitchen

task, or adjusting the seen-unseen partitions, which doubles

the count of unseen sequences while halving the number of

seen ones.

In the FrankaKitchen demonstrations, there are 24 task

sequences encompassing 4 subtasks each, translating to 4 or-
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Fig. D.3: Comparison with the decomposition from hu-

man pre-defined

dered object interactions. We further compare GCBC+UVD

with GCBC conditioned on the final frames of each

human-defined subtask in FrankaKitchen, utilizing both MLP

and GPT policies. The main distinction between UVD-

decomposed subgoals and the subgoals for each subtask

is that UVD furnishes milestones emphasizing monotone

motions, while subtasks yield subgoals with oracle semantic

meanings. Both methodologies employ the identical infer-

ence approach as described in Appendix 2., and share

the same tasks partitions from three distinct seeds. The

average successes and subtask completion rates are shown

in Fig. D.3. Surprisingly, even when subgoals from sub-

tasks offer ground-truth semantic meaning (and, notably,

share identical conditioned subgoal frames across different

task sequences), only GPT policy allows for performance

surpassing our method in the OOD setting. In the IND

setting, however, using subgoals from pre-defined sub-tasks

leads to a substantial performance drop for MLP policies.

This decline might be due to potential confusion (e.g. mis-

manipulated top and bottom burners) arising from similar

subgoals when jointly training multiple multi-stage tasks

when utilizing a lightweight, single-step MLP policy.

2. Real-Robot

In the OOD settings, even though we have not achieved

exceptionally high success rates for all of the tasks, we still

managed a completion rate of around or above 50%. This

outcome can be attributed to the fact that policies trained

using our method consistently exhibit the right intent. Instead

of overfitting to the IND settings, they tend to successfully

complete intermediate steps and occasionally face challenges

only at later stages. In contrast, the GCBC baseline always

overfits the IND initial state. For example, in Fold-Cloth

generalization experiments, the baseline still goes to the

corner that is already folded. For more rollout visualizations,



Representation Method IND success IND completion OOD success OOD completion

VIP (5 demos)
GCBC-GPT 0.409 (0.102) 0.702 (0.066) 0.005 (0.005) 0.285 (0.024)

GCBC-GPT + Ours 0.419 (0.027) 0.763 (0.016) 0.13 (0.033) 0.533 (0.026)

VIP (5 demos)
GCBC-MLP 0.668 (0.024) 0.82 (0.035) 0.016 (0.016) 0.208 (0.006)

GCBC-MLP + Ours 0.643 (0.058) 0.848 (0.028) 0.104 (0.048) 0.458 (0.038)

VIP (8 seen - 16 unseen)
GCBC-MLP 0.724 (0.057) 0.851 (0.036) 0.001 (0.001) 0.102 (0.020)

GCBC-MLP + Ours 0.717 (0.051) 0.853 (0.048) 0.084 (0.007) 0.497 (0.055)

VIP (8 seen - 16 unseen)
GCBC-GPT 0.602 (0.114) 0.554 (0.48) 0.003 (0.003) 0.143 (0.124)

GCBC-GPT + Ours 0.587 (0.049) 0.558 (0.483) 0.037 (0.040) 0.307 (0.268)

TABLE D.7: Ablations on dataset size and compositions, with comparisons with GCBC baselines and UVD

please refer to the videos available on our website.

We further extend our OOD setting, which aimed for

unseen initial states in Sec. V-B, also encompass more

diverse intermediate states. Our objective during deployment

is to ensure the agent remains resilient to tasks, even in

the presence of human interference. In Apple-in-Oven

and Fries-and-Rack tasks, we introduce two more OOD

scenarios. In the first, we revert the scene by placing the

apple back to its original position, challenging the agent

to recover from this change. In the second, we manually

circumvent an intermediate step. For instance, after the robot

has grasped the bowl of fries, we manually transfer all the

fries to the plate. This alteration means the agent should

subsequently place the bowl directly on the rack without the

need for pouring.

Method Apple-in-Oven Fries-and-Rack

GCBC 0.0 0.2
GCBC + Ours 0.5 0.9

TABLE D.8: Success rate over 10 rollouts with human

interference.

E REAL-WORLD ROBOT EXPERIMENT DETAILS

The robot learning environment is illustrated in Fig. E.4.

We use a 7-DoF Franka robot with a continuous joint-control

action space. A Zed 2 camera is positioned on the table’s

right edge, and only its RGB image stream—excluding depth

information—is employed for data collection and policy

learning. Another Zed mini camera is affixed to the robot’s

wrist. For the Apple-in-Oven task, we utilize the right

view from both cameras, while for the Fries-and-Rack

and Fold-Cloth tasks, we rely on their left views.

1. Task Descriptions

EL # demos

Apple-in-Oven 197.5 105
Fries-and-Rack 170.1 110

Fold-Cloth 246.8 105

TABLE E.9: Real Tasks average episode length (EL) and

the number of demos (# demos).

We specify the average episode lengths and the number

of demonstrations we used for experiments for each task in

Fig. E.4: Real robot experiments setup.

Tab. E.9. The criteria for successful task completion are as

follows:

• Apple-in-Oven: pick up the apple on the table;

place the apple in the bowl without tipping it over; push

the bowl into the oven; close the oven door.

• Fries-and-Rack: pour fries onto the plate, ensure

at least half of them are on the plate; place the bowl on

the rack without causing any collisions.

• Fold-Cloth: grasp the corner of the cloth and fold

the cloth in the directions shown in the demonstrated

video multiple times.

During evaluation, we assess the successful completion of

each sub-stage over 20 rollouts to determine the overall

success and completion rates. To evaluate our policy’s

compositional generalization abilities, we introduce unseen

initial states for each task. While the success criteria remain

consistent with prior assessments, the initial step has been

pre-completed by humans. The extended OOD setting, which

includes human interference in intermediate states, is detailed

in Appendix 2..

2. Training and evaluation details

UVD in training: As with our simulation experiments, we

preprocess all the demos using UVD. The behavior cloning

policy further incorporates the view from the wrist camera

besides the view from the side camera and decomposed



Fig. E.5: Raw observations from two different cameras for three tasks. Three (No.1, 3, 5 from the left) are from the

side-view Zed2 camera and the others (No.2, 4, 6) are from Zed mini on the wrist.

subgoals during training. Operating under velocity control,

our robot’s action space encompasses a 6-DoF joint velocity

and a singular dimension of the gripper action (open or

close). Consequently, the policy produces 7D continuous

actions. The robot control frequency is set as 15 Hz.

UVD in evaluating: In the training stage, we save the set

of subgoals and corresponding observations over all demos

in a task. During inference, every time the robot gets a pair

of observations, we retrieve the subgoal that has the nearest

observation (l2 norm over observation embeddings) with the

current one as the current subgoal. Then we concatenate the

current observation with the retrieved subgoal together as

input then get real-time joint velocity action.

Our method frequently results in the development of

more robust policies, enabling recovery actions when ini-

tial attempts fail. For example, in the failure scenario

of Apple-in-Oven and one of the successful cases in

Fold-Cloth as showcased on our website, the policy opts

for a reattempt, pushing the bowl further if not adequately

placed inside the oven, or re-folding if the cloth’s corner is

not grasped properly. In contrast, such recovery behaviors

are conspicuously absent in the GCBC baselines, further

highlighting its propensity to overfit to IND training setting.

BC Model details: We train our policy on a laptop with RTX

3080 GPU. For both the baseline policy and our method,

we add proprioception to help learning and augment each

training dataset by randomly cropping the input images.

Since we have limited demonstrations in the real world, we

only set MLP size to be [256,256]. Please refer to Tab. E.10

for details.

Hyperparameter Value

GPU Instances RTX 3080 Ti Laptop GPU
MLP Architecture [256, 256]

Non-Linear Activation ReLU
Optimizer AdamW [29]

Gradient Steps 10k
Batch Size 64

Learning Rate 1e-3
Proprioception Yes
Augmentation Random crop

TABLE E.10: Real robot BC hyperparameters.

F QUALITATIVE SUBGOAL DECOMPOSITION RESULTS

We show decomposition results with UVD on simulation

videos in Fig. F.6 F.7, real robots videos in Fig. F.8, F.9, F.10,

and wild videos in Fig. F.11, F.12, F.13, F.14, F.15. From

the subgoal decomposition results, we can have a clear

overview of the key frames within a video. For instance,

in Fold-Cloth video, UVD precisely catches the picking

and placing key frames for three times.

Fig. F.6 F.7 are from our simluation experiments,

Fig. F.8, F.9, F.10 are from real robot experiments. Fig. F.11

video depicts a human opening a cabinet and rearranging

items, while Fig. F.12 video showcases unlocking a computer

in an office. Furthermore, Fig. F.13 demonstrates the process

of opening a drawer and charging a device, and Fig. F.14

illustrates washing and then wiping hands in a bathroom.

Lastly, Fig. F.15 presents activities shot in the kitchen with

relatively longer duration. Based on the analysis of all video

decomposition results, it is evident that UVD extends beyond

robotic settings, proving to be highly effective in household

scenarios captured in human videos.

G LIMITATION AND FUTURE WORKS

While UVD offers the advantage of not necessitating

any task-specific knowledge or training, its efficacy is well-

demonstrated across both simulated and real-robot environ-

ments. However, as we only validate on fully observable

manipulation tasks, direct application to navigation tasks, es-

pecially those embodied tasks involving partial observations,

may not yield intuitive or explainable subgoals (even though

representations are pretrained with temporal objective using

egocentric datasets [31,32,38]).

Looking ahead, we are eager to broaden the applications

of UVD, diving deeper into its capabilities within egocen-

tric scenarios, and even the key-frame extraction for video

understanding and dense video caption tasks. On another

front, while task graphs are widely used in Reset-Free

RL [17,62], acquiring milestones as subgoals is resource-

intensive and lacks scalability. By integrating our off-the-

shelf UVD subgoals into the task-graph, we are interested in

seeing agents that, with minimal resets, can adeptly handle

a wide range of tasks across various sequences and horizons

in the wild.



Fig. F.6: Video sequence: moving a kettle, turning on light switch, operating slide cabinet, operating hinge cabinet.

Fig. F.7: Video sequence: rotating bottom burner, rotating top burner, turning on light switch, operating slide cabinet.

Fig. F.8: Video sequence: picking apple, placing apple in the bowl, pushing the bowl into the oven, closing the oven.

Fig. F.9: Video sequence: picking a bowl, pour fries out of the bowl, placing the bowl on the rack.
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Fig. F.10: Video sequence: diagonal fold, quarter fold, eighth fold.

Fig. F.11: Video sequence: picking upper white box, placing white box, picking upper black box, closing the cabinet.



Fig. F.12: Video sequence: grabbing a chair, moving the keyboard towards human, typing password, unlocking a computer.
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Fig. F.13: Video sequence: opening a drawer, picking the charger, plugging the charger, turning on the power strip, closing

the drawer partially.
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Fig. F.14: Video sequence: lathering hands, washing hands, turning off the tap, wiping hands with towel, placing back the

cloth.
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Fig. F.15: UVD decomposes long video into subgoals. The video sequence demonstrates: opening the microwave, placing

a bowl with rice inside the microwave, closing the microwave, activating the microwave to heat the rice, placing the cutting

board onto its rack, opening the oven, and putting the baking tray on the burner.


