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Abstract

Off-policy evaluation, and the complementary
problem of policy learning, use historical data col-
lected under a logging policy to estimate and/or
optimize the value of a target policy. Methods
for these tasks typically assume overlap between
the target and logging policy, enabling solutions
based on importance weighting and/or imputa-
tion. Absent such an overlap assumption, existing
work either relies on a well-specified model or
optimizes needlessly conservative bounds. In this
work, we develop methods for no-overlap policy
evaluation without a well-specified model, rely-
ing instead on non-parametric assumptions on
the expected outcome, with a particular focus on
Lipschitz smoothness. Under such assumptions
we are able to provide sharp bounds on the off-
policy value, along with asymptotically optimal
estimators of those bounds. For Lipschitz smooth-
ness, we construct a pair of linear programs that
upper and lower bound the contribution of the no-
overlap region to the off-policy value. We show
that these programs have a concise closed form
solution, and that their solutions converge under
the Lipschitz assumption to the sharp partial iden-
tification bounds at a minimax optimal rate, up to
log factors. We demonstrate the effectiveness our
methods on two semi-synthetic examples, and ob-
tain informative and valid bounds that are tighter
than those possible without smoothness assump-
tions.
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1. Introduction
Off-policy evaluation (OPE) is the task of estimating the
value of an evaluation/target policy using data from a be-
havior/logging policy, and arises naturally in many settings
(Li et al., 2010; 2011; Bottou et al., 2013; Swaminathan
et al., 2017; Liao et al., 2021; Chin et al., 2022). The two
standard approaches to off-policy evaluation are reweight-
ing and imputation. Reweighting methods, as the name
suggests, reweight outcomes observed under the behavior
policy to obtain unbiased estimates of the evaluation policy.
Imputation methods, on the other hand, model the expected
outcome of taking an action as a function of covariates, and
then use this model to estimate the off-policy value. Finally,
doubly-robust methods combine these two approaches to ob-
tain better theoretical guarantees (Dudı́k et al., 2011). Once
an estimator of the off-policy value is available, the esti-
mated policy value can be optimized over a policy class to
select an optimal policy, which is the task of policy learning.

All of these methods for policy evaluation and learning
generally rely on an overlap assumption, which ensures that
any action with positive probability under the evaluation
policy also has positive probability under the behavior policy.
If the overlap assumption is not satisfied, the weights used
by reweighting methods will be infinite, and the models used
by imputation methods will only be valid under strong well-
specification assumptions. In both cases, overlap violations
lead to biased estimates of the off-policy value and sub-
optimal choices of learned policy (Sachdeva et al., 2020).

This state of affairs raises the question: if we do not have
overlap and are unwilling to assume a well-specified model,
can we say anything about the off-policy value? In such
a case, the off-policy value is not point-identified, so we
cannot provide a point estimate, but can still provide partial
identification bounds on the off-policy value.

In this work, we propose new estimators and resolve open
questions in the policy evaluation and learning literatures
by identifying tight bounds on the off-policy value in the
presence of overlap violations under modest non-parametric
assumptions on the expected outcome function, and give
rate-optimal estimators of these bounds (up to log-factors).
We focus on smoothness assumptions that constrain the
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Figure 1. Visualization of our approach on a problem with four
data points.

conditional outcome to be L-Lipschitz, and briefly discuss
other assumptions such as monotonicity. These smoothness
assumptions are generalizations of the classical bounded
response assumption for partial identification proposed
by Manski (1990).

The spirit of our approach is visualized in Figure 1, which
shows a toy policy problem with a single real-valued covari-
ate. For small values of the covariate, we have overlap and
so the behavior policy has a positive probability of assigning
units to treatment. For those treated units, we observe their
outcomes (shown as black dots). On the other hand, for large
values of the covariate, we do not have overlap (indicated
by red), and so units in this region are never treated and
we never observe any responses. We can fit a model µ̂(x)
(shown as a dashed black line) to the observed responses,
but because this model has not been trained on observations
in the no-overlap region, there is no way to guarantee that
its predictions there are remotely accurate.

Rather than directly using a model µ̂, in this work we make
the weaker assumption that the true conditional mean func-
tion µ is L-Lipschitz. Under this assumption, if the model
µ̂ is consistent in the overlap region, we can give bounds
(shown in blue) on the conditional mean in the no-overlap
region. We emphasize that we assume smoothness with
respect to a particular covariate space and metric; as such,
the covariate space and metric should be chosen based on
domain knowledge about which covariates and metric the
outcome is plausibly smooth in.

2. Related Work
The overlap assumption is standard in off-policy evaluation
literature (Bottou et al., 2013; Swaminathan and Joachims,
2015; Thomas and Brunskill, 2016; Wang et al., 2017) and
we focus our discussion on the emerging literature on policy
evaluation and learning in the no-overlap setting.

Well-specified outcome models. One strand of this liter-
ature relies on access to a well-specified outcome model.
For example, Mou et al. (2023) assume that the reward func-
tion lies within a reproducing kernel Hilbert space and use
this assumption to extrapolate into the no-overlap region,
thus effectively assuming a well-specified outcome model.
Additionally, their method requires the action probabilities
to be positive, albeit potentially arbitrarily small, while our
results allow for action probabilities that are exactly zero.
On the policy learning side, Sachdeva et al. (2020) first
show that a policy learned using inverse-propensity scoring
is sub-optimal, and then consider several remedies based
on restricting the set of policies that are optimized over or
using a well-specified model. In contrast to these works, we
require no such extrapolation and allow for evaluation of
arbitrary policies.

Learning by optimizing lower bounds. Another strand
of the no-overlap literature develops methods for policy
learning by optimizing lower bounds on the off-policy value
over some class of outcome functions. This is the approach
taken by Higbee (2022) and Ben-Michael et al. (2021), al-
though in both cases the bounds they optimize are poten-
tially quite loose and are thus inappropriate for providing in-
formation about the value of a particular policy; we demon-
strate this looseness in simulations in Section 6. Of these
two works, Higbee (2022) is slightly further from ours, in
that they make assumptions on the expected outcome as a
function of action rather than as a function of covariates,
and Ben-Michael et al. (2021) is slightly closer to ours, in
that they make a similar Lipschitz assumption on the ex-
pected outcome as a function of covariates. In both cases,
our estimators are different and the theoretical optimality
results we obtain for our estimators go beyond the results
found in these works and more completely develop the par-
tial identification framework for off-policy evaluation under
smoothness; see Appendix E for further details.

Reinforcement learning. In the reinforcement learning
literature, Jiang and Huang (2020) propose a “minimax
value interval” that is valid even under no-overlap. How-
ever, their method relies on a well-specified outcome model,
requires solving a challenging min-max optimization prob-
lem, and is more relevant when both the outcome model and
behavior policies are unknown. In our setting, the behavior
policy is known, and so our methods, which also come with
optimality guarantees, are preferable.

There are also proposals in the reinforcement learning liter-
ature to learn a policy by optimizing a lower bound, such
as that of Xie et al. (2021). This work requires knowledge
of a model class F that is known to contain good approxi-
mations of the true value function, and which can be taken
to be the class of Lipschitz functions in our setting. There

2



Off-policy Evaluation Beyond Overlap

are two differences between this work and ours. First, Xie
et al. (2021) require access to an empirical risk minimization
oracle over the class F , which is computationally expensive
when F is a non-parametric class like the class of Lipschitz
functions. Thus the methods of Xie et al. (2021) are better
suited to parametric F .

Second, the lower bound that Xie et al. (2021) optimize
is the worst-case off-policy value over value functions in
F that have small sample error. Rather than working over
this subset of F , we impose an additional “consistency”
assumption on F (see Section 4 for details) that ensures that
the functions in F have zero population error, and then find
worst-case bounds on the off-policy value over the entirety
of F . When the true value function is contained in F and
the number of samples is large, the bounds obtained by our
approach and their approach will be nearly equal.

Peer-review applications. Finally, Saveski et al. (2023)
deploy methods based on partial identification under smooth-
ness assumptions in an off-policy evaluation problem arising
in the context of matching reviewers to papers at academic
conferences. However, they combine the steps of fitting
a model µ̂ and estimating bounds on the off-policy value
into a single linear program, leading to sub-optimal bounds.
Their work highlights the importance of the no-overlap set-
ting, and thus of the potential for our methods and results to
provide stronger conclusions on existing data sets.

3. Model and Notation
We consider the problem of off-policy evaluation of stochas-
tic policies that select an action from an action space based
on covariates Xi. The covariates Xi take values in a metric
space X with metric d(·, ·). The actions are random vari-
ables Ai that takes values in a setA. Each action a ∈ A has
a corresponding potential outcome Yi(a), and we assume
that tuples (Xi, {Yi(a)}a∈A) are i.i.d. from a distribution
P0 on X ×R|A| for some covariate space X . The actionsAi
are such that P(Ai = a | Xi = x) = πb(x, a) for a behav-
ior policy πb : X ×A → [0, 1] that satisfies the constraint∑
a∈A πb(x, a) = 1, for all x ∈ X .

In this set-up, we observe {(Xi, Ai, Yi(Ai))}ni=1 under the
behavior policy πb and would like to estimate the value of a
different policy πe. That is, we would like to estimate the
functional ψ(P0) = E(Xi,Yi)∼P0, Ai|Xi∼πe

[Yi(Ai)], where
Ai|Xi is drawn according to πe. It is convenient to de-
compose this functional across the actions and write it as
ψ(P0) =

∑
a∈A E(Xi,Yi)∼P0

[Yi(a)πe(Xi, a)].

Critically, in this work we allow there to exist x ∈ X and
a ∈ A such that πb(x, a) = 0. We refer to {x : πb(x, a) =
0} as the no-overlap region and to {x : πb(x, a) > 0} as
the overlap region.

The model described thus far corresponds to a general multi-
action off-policy evaluation problem. However, by virtue
of the decomposition across actions given above, we can
naturally reduce any multi-action OPE problem to a bi-
nary action OPE problem. For any action a ∈ A, we can
define the binary action Ãi = 1{Ai = a} and binary eval-
uation policy π̃e(Xi) = πe(Xi, a). Then, if we can esti-
mate the functional ψ̃(P0) = EP0 [Yi(a)π̃e(Xi)], from data
(X1, Ã1, Y1(a)Ã1), · · · , (Xn, Ãn, Yn(a)Ãn), we can com-
bine these estimates across all a ∈ A to estimate ψ(P0).

With this in mind, when developing our methods and the-
oretical results, we consider binary off-policy evaluation
problems with action space A = {0, 1} and Yi(0) = 0.
Since there is only one action with non-zero reward, we
suppress the dependence on the action in our notation,
writing Yi for Yi(1), πb(Xi) for πb(Xi, 1), and πe(Xi)
for πe(Xi, 1). Further, in the binary problem, we write
µP (x) = EP [Yi(1) | Xi = x] for the conditional mean
function under a distribution P and µ̂P for an estimate of
µP learned from the observed data through empirical risk
minimization.

4. Nonparametric Partial Identification
In this section, we describe our framework for OPE without
overlap and then provide several specific instantiations. We
work in the setting where Ai is binary; by the reduction of
Section 3, our results extend naturally to the multi-action
setting. For an OPE problem with binary actions we show
how to partially identify the off-policy value ψ(P0) using
the assumption that P0 ∈ P for a family of distributions P .
This family P encodes the nature of our assumptions on P0

and may take several forms, but one crucial feature that P
has to satisfy is that it must only contain distributions that
are consistent with the true distribution P0. This means that
each P ∈ P must have the same marginal distribution of
Xi as P0, and the same joint distribution of (Xi, Yi) in the
overlap region as P0.

We describe our approach for a generic family P . The first
step is to write ψ = ψ1 + ψ2 where

ψ1(P ) = EP [Yiπe(Xi)1{πb(Xi) > 0}],
ψ2(P ) = EP [Yiπe(Xi)1{πb(Xi) = 0}], (1)

so that ψ1 is the contribution of the overlap region and ψ2 is
the contribution of the no-overlap region. The first term, ψ1,
is identifiable, so we can estimate it, e.g., using an inverse-
probability weighted (IPW) estimator ψ̂1 (a self-normalized
or doubly-robust estimator can also be used to estimate ψ1

without any modifications to our results (Dudı́k et al., 2011;
Swaminathan and Joachims, 2015)).

The second term, ψ2, however is not identified. Our ap-
proach is to bound its contribution to (1) using the as-
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sumption that P0 ∈ P for some family P . Under this
assumption, the tightest possible bounds we could obtain
are infP∈P ψ2(P ) and supP∈P ψ2(P ), which we denote by
ψ−2 and ψ+

2 respectively. So to bound ψ2, we must construct
estimators ψ̂−2 and ψ̂+

2 of ψ−2 and ψ+
2 , respectively.

Once we have such estimators, we can set ψ̂− = ψ̂1 +
ψ̂−2 , ψ̂

+ = ψ̂1 + ψ̂+
2 , and use [ψ̂−, ψ̂+] as an interval esti-

mate of ψ(P0). The following result, whose proof appears
in Appendix A, guarantees the validity of this interval under
conditions on ψ̂1, ψ̂

+
2 , and ψ̂−2 .

Theorem 4.1. Suppose that ψ̂1 is a consistent estimator
of ψ1(P0), and that ψ̂−2 and ψ̂+

2 are consistent estima-
tors of ψ−2 and ψ+

2 respectively. Then, for any ε > 0,
limn→∞ P(ψ̂− − ε ≤ ψ(P0) ≤ ψ̂+ + ε) = 1.

Thus, if we construct bounds ψ̂−2 , ψ̂
+
2 satisfying the con-

ditions of Theorem 4.1, the interval [ψ̂−, ψ̂+] will be con-
sistent for ψ(P0). Next, we consider specific choices of P
that arise from different assumptions on P0, and construct
such an estimator ψ̂−2 . We focus throughout on the infimum,
but all of our discussion holds mutatis mutandis for the
supremum.

Boundedness assumptions. As a first example, we con-
sider the following simple choice of P , corresponding to
the assumption that the response Yi must lie in the interval
[`, u]:

Pbdd
`,u = {P consistent w. P0 : ` ≤ Yi ≤ u a.s.} . (2)

The assumption that ` ≤ Yi ≤ u implies that ` ≤ µP (x) ≤
u for all x as well, and a natural choice of ψ−2 is ψ̂−2 =
`
n

∑n
i=1 πe(Xi)1{πb(Xi) = 0}. Then, by the law of large

numbers, ψ̂−2
P−→ `E[πe(Xi)1{πb(Xi) = 0}], and we can

verify that this is also the value of ψ−2 . Thus the consistency
conditions of Theorem 4.1 hold and the interval [ψ̂−, ψ̂+]
is consistent for ψ(P0).

The interval [ψ̂−, ψ̂+] is an analogue of the so-called Man-
ski bounds (Manski, 1990), and so our framework gener-
alizes this well-established practice. As such, we can also
obtain confidence intervals for the partial identification re-
gion of ψ(P0) using the methods of Imbens and Manski
(2004) and Stoye (2009).

Smoothness assumptions. Next, we move on to our main
focus: Lipschitz assumptions on µP (x). Formally, this
corresponds to the family

PLip
L = {P consistent w. P0 : µP is L-Lipschitz} ,

where by L-Lipschitz we mean that |µP (x1)− µP (x2)| ≤
Ld(x1, x2) for some metric d on X . By restricting µP to be
L-Lipschitz, we can draw conclusions about the behavior

≥ µ̂(X1)− Ld(X1, X2)

≥ µ̂(X1)− Ld(X1, X3)

≥ µ̂(X1)− Ld(X1, X2)
−Ld(X2, X3)

•µ̂(X1)

•
t2

•t3

Figure 2. An illustration of the no-interaction property for Lips-
chitz constraints. At the optimal solution of (3), constraints (blue)
between pairs of points in the no-overlap region (red) are not active
(light blue).

of µP in the no-overlap region based on our observations in
the overlap region and thus estimate infP∈PLip

L
ψ2(P ).

We propose to construct the estimator ψ̂−2 in this setting by
solving the following linear program:

min
t1, · · · , tn

1

n

n∑
i=1

tiπe(Xi)1{πb(Xi) = 0} (3)

s.t. |ti − tj | ≤ Ld(Xi, Xj), 1 ≤ i < j ≤ n,
ti − µ̂(Xi) = 0, ∀i s.t. πb(Xi) > 0.

The problem (3) is an approximation of the population prob-
lem infP∈PLip

L
ψ2(P ) in three ways: (i) it averages over

sample points in the objective rather than over P0; (ii) it only
enforces the Lipschitz constraint between pairs of observed
data points Xi, Xj rather than between all pairs x1, x2; and
(iii) it sets points in the overlap region to have value µ̂ rather
than µ. We will see shortly that all of these approximations
are asymptotically negligible.

We now characterize the solution to (3) and its properties
under assumptions. The key to our results is the surprising
fact that (3) can be solved in closed-form whenever d is a
metric, even though this is not generally the case for linear
programs. We are able to obtain a closed-form solution
to (3) because its constraints satisfy what we refer to as a
no-interaction property, by which we mean that points in
the no-overlap region do not place sharp bounds on each
other.

To see why, consider an example with n = 3, where the
i = 1 point is in the overlap region and the other two
points are in the no-overlap region (Figure 2). We must
have t1 = µ̂(X1). We must also have t2 ≥ µ̂(X1) −
Ld(X1, X2), and since the objective is non-decreasing in
the ti, we set t2 = µ̂(X1)−Ld(X2, X1). Then, consider t3.
The lower bound on t3 coming directly from t1 is µ̂(X1)−
Ld(X3, X1), while the lower bound coming indirectly from
t2 is µ̂(X1)− Ld(X2, X1)− Ld(X3, X2).

The key point is that d(X2, X1) + d(X3, X2) > d(X3, X1)
by the triangle inequality, and so the bound from the overlap
region is always sharper than the bound from the no-overlap
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region. We emphasize that this no-interaction property is
non-trivial and does not hold in general, e.g., it does not
hold for an α-Hölder continuity assumption.

Based on this intuition, we expect that constraints between
points in the no-overlap region in (3) are redundant, and
the optimal solution to (3) will simply set each ti in the
no-overlap region to the tightest lower bound obtained from
a point in the overlap region. We state this precisely in our
next theorem, which requires the following assumptions.
Assumption 4.2. The estimated µ̂ satisfies |µ̂(Xi) −
µ̂(Xj)| ≤ Ld(Xi, Xj) for all Xi, Xj such that
πb(Xi), πb(Xj) > 0.

Assumption 4.3. The estimated µ̂ is consistent, so that
supx:πb(x)>0 |µ̂(x)− µP0

(x)| P−→ 0.

Assumption 4.2 is necessary for (3) to be feasible. To satisfy
this assumption for moderate values of L, we recommend
estimating µ̂ with smooth approximations such as paramet-
ric models, splines, or kernel methods (Hastie et al., 2009).
Assumption 4.3 requires consistency in the overlap region;
note that we make no assumptions on the behavior of µ̂ in
the no-overlap region.

Our next assumption is on the marginal distribution P0,X

of Xi. This assumption ensures that the marginal distribu-
tion of Xi does not have any “holes” that prevent us from
observing parts of the overlap region.
Assumption 4.4. For every x such that πb(x) > 0, either
(a) the distribution P0,X has an atom at {x} or (b) for every
ε > 0, there exists δ > 0 such that P(d(Xi, x) ≤ ε) > δ.

Under these assumptions, we have the following result,
whose proof appears in Appendix A. In this result, we write
1i as shorthand for 1{πb(Xi) = 0}.
Theorem 4.5. Suppose that P0 ∈ PLip

L . Then, for ψ̂−2 and
ψ−2 , we have that:

(a) under Assumption 4.2, the problem (3) is feasible and
has value ψ̂−2 , which is

1

n

n∑
i=1

πe(Xi)

(
max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)

)
1i,

(b) the population bound is ψ−2 , which is

EP0

[
πe(Xi)

(
sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)
1i

]
,

(c) under Assumptions 4.3 and 4.4, we have ψ̂−2
P−→ ψ−2 .

Theorem 4.5(a) establishes a closed-form solution to (3),
i.e., we do not need to solve it numerically. This is im-
portant even for moderate values of n, since (3) has O(n2)

constraints. The fastest known algorithms for solving a
general linear program with d constraints have complexity
O(d2.5) (Lee and Sidford, 2015), and so solving (3) has
worst-case complexity O(n5). In contrast, computing the
closed-form given in (12) requires only O(n2) operations,
which is of the same order as computing all pairwise dis-
tances d(Xi, Xj). In cases where even O(n2) operations
are too expensive, we can construct conservative approxi-
mations of ψ̂−2 by building on recent advances in efficient
exact and approximate nearest neighbor search; we discuss
such tools further in Appendix B.

The results in Theorem 4.5(b,c) are of a different flavor,
and characterize the statistical properties of solutions to
(3). Specifically, they show that three approximations we
made in constructing ψ̂−2 are asymptotically negligible, and
we recover infP∈PLip

L
ψ2(P ) in large samples. Thus the

consistency conditions of Theorem 4.1 are satisfied and our
bounds are the best possible under the given assumptions.

Further assumptions. The framework we present cap-
tures many other potentially interesting assumptions. For
example, we can combine the two assumptions presented
here, and assume that P ∈ PLip

L ∩ Pbdd
`,u , to obtain tighter

bounds than either assumption alone would give. In fact, the
no-interaction property discussed after (3) continues to hold
in this case, and our results then extend naturally; we present
these more general results in Theorem A.1 of Appendix A.

A variety of other assumptions are also possible, includ-
ing monotonicity of µ with respect to a partial order on
the covariates Xi, convexity of µ, smoothness of higher
derivatives of µ, α-Hölder continuity of µ, and composi-
tions of these assumptions. Interestingly, these assump-
tions and their compositions do not necessarily satisfy the
no-interaction property: for example, if we assume both
Lipschitz smoothness and monotonicity, the no-interaction
property no longer holds, as we show in Appendix D. As
such, our results on smoothness, boundedness, and their
composition, are both non-trivial and surprising.

In summary, we derive bounds on the off-policy value un-
der smoothness or smoothness and boundedness assump-
tions without assuming overlap. Unlike previous work, our
bounds are provably sharp—that is, they allow an analyst to
make the strongest conclusions possible about a particular
policy under the given assumptions—and can be computed
efficiently even for large datasets owing to our careful analy-
sis and closed-form solution of the linear programs involved.

5. Rates of Convergence
In this section, we precisely characterize the asymptotics of
ψ̂−2 by identifying the rate at which it converges to ψ−2 and
showing that this rate is optimal up to log factors. We first
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upper bound the mean-squared error (MSE) of ψ̂−2 , with
a proof given in Appendix A. Recall that we write 1i for
1{πb(Xi) = 0}.
Theorem 5.1. Let ψ̂−2 , ψ

−
2 be as in Theorem 4.5. Then, if

Xi has a density that is lower bounded by a constant b then
the mean-squared error E[(ψ̂−2 − ψ−2 )2] is upper bounded
by

2E[‖(µ̂(x)−µ(x))1i‖2∞]+4L2(cdbn)−2/d+σ2n−1, (4)

where cd is the volume of a d-dimensional unit ball,

σ2 = var

(
πe(Xi)[ sup

x:πb(x)>0

µP0(x)− Ld(Xi, x)]1i]

)
.

The bound (4) contains three terms: one corresponding to
error from the estimation of µ; one corresponding to the
error from approximating a supremum by a maximum; and
one that is noise.

Classical results on non-parametric regression show that the
minimax rate for estimating an L-Lipschitz function in d
dimensions in the sup-norm is of order (log n/n)−2/(d+2),
and that this rate is obtained by a kernel estimator (Stone,
1982). Thus, the dominant term of (4) is the first one, and
the MSE of ψ̂−2 is O((log n/n)−2/(d+2)) when using an
appropriate kernel estimator. With this in mind, we caution
against using our methods in extremely high-dimensional
settings, since rates of convergence will be slow.

Next we present a nearly matching lower bound, proven
in Appendix A through a LeCam two-point argument that
extends lower bound constructions for estimating Lipschitz
functions at a point to the off-policy evaluation setting
(Wainwright, 2019).

Theorem 5.2. Let ψ−2 be as in Theorem 4.5, suppose that
the covariates Xi takes values in [−1, 1]d, and that the sup-
port of the policy πb is [−1/2, 1/2]d. Then, if n ≥ 21−dL2,

the minimax risk inf ψ̂−2
supP∈PLip

L
EP
[
(ψ̂−2 − ψ−2 )2

]
is at

least

1

16
E[πe(Xi)1{πb(Xi) = 0}]2(2n)−2/(d+2)(4L)−2d/(d+2).

The assumption on the support of πb simplifies the lower
bound construction; we expect similar rates in other ge-
ometries. The lower bound of Theorem 5.2 shows that
any estimator must have an MSE that is at least of order
n−2/(d+2), and so the rate achieved by ψ̂−2 is optimal up to
log-factors. To see why we obtain this rate, note that ψ−2
depends on a supremum of µ over the overlap region. Thus,
we need to be able to estimate the value of µ at a particular
point, namely the point at which the supremum is attained.
The minimax lower bound for estimating an L-Lipschitz
function in d dimensions at a point is n−2/(d+2), and so we
inherit this rate for this estimation of ψ−2 .

Table 1. Coverage percentage (as in Theorem 4.1 with ε = 0.01)
of partial identification intervals for the value of πe on the Yeast
dataset at a range of samples sizes n and smoothness parameters
L. In parentheses are the percent rates at which Assumption 4.2
is satisfied. Results are averaged over 10,000 replications. We
see that the Lipschitz assumption with L = 1, 2 likely does not
hold, since Assumption 4.2 is not satisfied in larger sample sizes,
while the Lipschitz assumption for larger values of L seems to
hold, since Assumption 4.2 is satisfied and coverages approach the
desired 100% rate.

L n = 1000 n = 2000 n = 3000 n = 4000 n = 5000 n = 10000

1 40.8 (78.5) 0.03 (2.0) 0.0 (0) 0.0 (0) 0 (0) 0 (0)
2 59.7 (100) 72.5 (100) 78.9 (100) 82.7 (100) 85.9 (99.5) 9.5 (10.6)
3 64.6 (100) 77.2 (100) 82.8 (100) 86.9 (100) 89.7 (100) 96.9 (100)
4 68.2 (100) 80.2 (100) 85.3 (100) 89.1 (100) 91.9 (100) 98.0 (100)
5 70.6 (100) 82.0 (100) 86.8 (100) 90.7 (100) 93.1 (100) 98.4 (100)
∞ 75.0 (100) 86.1 (100) 90.7 (100) 93.5 (100) 95.6 (100) 99.2 (100)

Based on this intuition, we expect that similar lower bounds
will continue to hold for any non-parametric assumption
that requires estimation of µ in the overlap region, such
as monotonicity assumptions or higher-order smoothness
assumptions. In contrast, we do not need to estimate µ when
making the boundedness assumption of Pbdd

`,u , and so the
resulting bounds will converge at a faster n−1 rate. As a
consequence, the inferential methods of (Imbens and Man-
ski, 2004) under the boundedness assumption do not extend
to more complex smoothness assumptions; developing infer-
ential methods under smoothness assumptions is therefore
an interesting direction for future work.

6. Experiments
We now demonstrate our methods in two semi-synthetic set-
tings. In the first setting, we study the coverage guarantees
of Theorem 4.1 and compare the width of our intervals to
the width of the intervals of Ben-Michael et al. (2021); in
the second, we demonstrate the utility of our methods in a
real-world setting.
1

For another example of how our methods perform on real
data, we refer interested readers to Saveski et al. (2023),
which takes a partial identification approach to evaluating
policies in peer review management systems.

Yeast dataset: coverage analysis. Following prior work
on OPE, we convert a classic multi-class classification
dataset into an off-policy evaluation dataset (Dudı́k et al.,
2011; Wang et al., 2017; Wu and Wang, 2018; Su et al.,
2020; Zhan et al., 2021). Like those prior works, we use
the Yeast data set from the UCI repository (Dua and Graff,

1Code for replicating our results is available at
https://github.com/skhan1998/lipschitz-ope.
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2017), which consists of n = 1, 484 observations of data
points (Xi, Ỹi), where Xi ∈ [0, 1]8 is a covariate vector of
length d = 8 and Ỹi is a class label indicating one of 10
classes. We remove 6 rare classes from the data, leaving
n = 1, 299 observations distributed among 4 classes.

We sample with replacement from the observed data to gen-
erate samples of different sizes, n (so P0 is the empirical
distribution of the data). The action set A is the set of 4
classes in the data, and the evaluation policy, πe, samples
actions from the fitted probabilities of a logistic regression.
The behavior policy, πb, samples actions from the fitted
probabilities of the same logistic regression, but with proba-
bilities below 0.05 set to zero. This configuration leads to an
overlap violation between the behavior and evaluation poli-
cies. The outcomes Yi are 1 when the action taken matches
the true class label Ỹi, and 0 otherwise.

We investigate the guarantees of Theorem 4.1 and the role
of the parameter L. We can generate partial identification
intervals for the value of πe under the assumption that P0 ∈
PLip
L ∩ Pbdd

0,1 using the methods of Section 4, where the
Lipschitz assumption is made with respect to Euclidean
distance. We fit µ̂ using a regularized logistic regression.
Table 1 shows the coverage rates of these intervals, in the
sense of Theorem 4.1 with ε = 0.01, for a range of values
of L. In parentheses are the fraction of times that µ̂ is L-
Lipschitz in the overlap region, i.e., the fraction of times
that Assumption 4.2 is satisfied. When Assumption 4.2 is
not satisfied, the partial identification bounds are undefined,
and so we never cover the off-policy value. Note that L =
∞ corresponds to pure Manski bounding, or equivalently
to assuming only that P0 ∈ Pbdd

0,1 , an assumption that is
satisfied by construction in this example. We provide a plot
of the results of Table 1, as well as results with ε = 0.005,
in Appendix C.

In Table 1, we see a distinction between L = 1, 2 and L > 2.
For the small values of L, the problem gradually ceases to
become feasible for larger values of n, and so the resulting
intervals are undefined and rarely cover the off-policy value.
For larger values of L, the problem is always feasible at all
values of n, and the coverage increases with n, approaching
the desired 100% coverage in large sample sizes. In par-
ticular, the fact that the coverage of intervals constructed
assuming, for example, that L = 4 or L = 5 (an assumption
that is not satisfied by construction) is close to the coverage
of intervals satisfied by the L = ∞ boundedness assump-
tion (which is satisfied by construction), suggests that the
smoothness assumption for these larger values of L is quite
plausible. As a point of reference, the L = 5 assumption
on these covariates in the Euclidean metric implies, for ex-
ample, that if two units agree in all but one covariate, and
disagree by 0.2 in that covariate, their expected outcome can
differ by 1, so they do not place any bounds on each other.

Table 2. Average width of the intervals obtained using the pro-
posed method in semi-synthetic experiments on the Yeast dataset.
We compare to the intervals of a baseline method proposed by
Ben-Michael et al. (2021) and compute the ratio between the width
of the two intervals. We set L = 1, average over 1000 trials, and
scale the results by 103 for readability. We find that the intervals
of baseline method are 40-50% wider than the proposed method.

Sample size, n

Method 500 1000 1500 2000 2500 3000

Proposed 4.37 3.09 2.59 2.15 1.80 1.68
Baseline 6.57 4.89 3.89 3.18 2.64 2.41

Ratio 1.50 1.58 1.50 1.48 1.47 1.43

Yeast dataset: interval width analysis. We now study
the width of our intervals, using the intervals proposed by
Ben-Michael et al. (2021) as a baseline, on the Yeast data.
This baseline method constructs lower bounds on the off-
policy value using a simultaneous confidence interval for µ̂,
rather than the fitted µ̂ itself. We use the same dataset and
construct the behavior and evaluation policies in the same
way as in the previous section, but discretize the original
covariates Xi according to the map Xi 7→ 1{Xi < 0.5}.
We discretize since, as the authors descibe, constructing
the simultaneous confidence interval needed by the baseline
method is challenging in the case of continuous covariates.

Table 2 shows the results for L = 1 and a range of sample
sizes. We find that the intervals obtained using the baseline
methods are, in this setting, consistently 40-50% wider than
those obtained using the proposed method. This conserva-
tiveness is induced by the simultaneous confidence interval
construction, which the baseline method relies on to ob-
tain better theoretical guarantees for policy learning, but is
needlessly loose for policy evaluation.

Yahoo! Front Page Today dataset. Our second experi-
ment uses the Yahoo Webscope’s featured news dataset, a
standard benchmark for OPE algorithms (Yahoo!, 2011; Li
et al., 2010; 2011). This dataset was collected over 10 days
in May 2009, and consists of observations of user visits and
actions on the front page of the Yahoo! web portal. Each
observation is a tuple (Xi, Ai, Yi), where Xi ∈ [0, 1]5, Ai
is an article shown to the user in a featured position on the
page, and Yi is a binary indicator whether the user clicked.
EachAi is accompanied by a 5-dimensional covariate vector
Vi. The articles Ai are chosen from a hand-curated pool of
articles that is updated every hour. We restrict our focus to a
single hour of data so that the articles are drawn from a fixed
pool of articles A, considering n = 16, 628 data points.
This problem thus has the form of a multi-armed bandit
problem, as described in Section 3, with action space A.
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The architects of this dataset sampledAi ∼ Unif(A), which
guarantees overlap, but requires taking many sub-optimal
actions. A tuned, non-uniform logging policy would clearly
be preferable. With our methods, we show that it is possible
to run a non-uniform policy and yet still evaluate other
policies that do not satisfy overlap.

We consider the following scenario: from historical data,
we know that the user covariate Xi,3 is positively correlated
with the response Yi and that the article covariate Vi,0 is
positively correlated with Yi. Based on this, we believe that
we should avoid showing articles with low values of Vi,0 to
users with low values of Xi,3. Thus we consider the family
of policies

π(T )(Xi, a) =

{
1/|A| if Xi,3 > T,

1{a ∈ A∗}/|A∗| if Xi,3 ≤ T,

where A∗ is a subset of articles we expect to perform well
and T is a cut-off that identifies users who are unlikely to
click. Here, we take A∗ to be the set of articles with above
median values of Vi,0.

We suppose that we have deployed π(0.5) (and simulate
this by subsampling), and are interested in exploring other
values of T . The subsampled dataset contains n = 10, 086
data points. For values of T ≥ 0.5, the behavior policy
provides full support for the evaluation policy, and no partial
identification is required. For values of T < 0.5, there
is an overlap violation, since π(T ) can show users with
Xi,3 ∈ (T, 0.5) articles a ∈ A \ A∗, an action that π(0.5)

assigns zero probability.

We use the estimators of Section 4 to construct interval
estimates under the assumption that P0 ∈ PLip

L ∩ Pbdd
0,1 ,

where the Lipschitz assumption is made with respect to
Euclidean distance. Our results are in Figure 3, which plots
the interval estimators [ψ̂−, ψ̂+] of the value of π(T ) under
Lipschitz assumptions for T = 0.25, 0.3, 0.35, 0.4, with µ̂
fit using a regularized logistic regression (which leads to
smooth µ̂), for a range of L. Results with larger values of L
and T can be found in Appendix C. As a point of reference,
the L = 1 assumption on this data implies, for example,
that if two units agree in all but one covariate, and differ
by the maximum possible value of 1 in that covariate, their
expected outcome can differ by the maximum possible value
of 1, so they place no bounds on each other.

Also shown are the point estimates obtained by using model
predictions without any partial identification, as well as an
infeasible sample estimate (and accompanying confidence
intervals) of the value of π(T ) as estimated on data from a
uniform policy. This infeasible sample estimate corresponds
to the results of the experiment we would run (at consider-
able cost) if unwilling to rely on smoothness assumptions.
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Figure 3. Partial identification bounds assuming that P0 ∈ PLip
L ∩

Pbdd
0,1 (black), Manski bounds assuming that P0 ∈ Pbdd

0,1 (red), and
pure imputation estimates (blue) of the value of π(T ) estimated
using data from the behavior policy π(0.5) for a range of T and
L. The point estimate and confidence intervals from an infeasible
sample dataset from the uniform behavior policy are in orange.
Imputation overestimates the value of π(T ), and our bounds correct
for this—the correction is more aggressive as the model estimate
and infeasible sample estimate diverge, meaning we correctly
adjust for the model’s extrapolation power. There are overlap
violations for 16.8%, 10.8%, 7.0%, and 4.3% of the points when
T = 0.25, 0.3, 0.35, and 0.4 respectively.

The key takeaway from Figure 3 is that, as T increases, and
the imputation estimate and infeasible sample estimate grow
closer, the width of our partial identification interval de-
creases. This is because, as T becomes smaller, the number
of units in the no-overlap region {Xi : T ≤ Xi,3 ≤ 0.5}
increases, and the maximum distance between the over-
lap region the no-overlap region increases. Our method
accounts for this, and correctly distinguishes cases where
the model needs to be corrected only slightly from cases
where it must be corrected substantially. Furthermore, for
larger values of L, our intervals consistently overlap with
the 95% confidence interval from the alternative (“costly”)
experiment under a uniform policy.

We also compare to the Manski partial identification re-
gions obtained solely from the assumption that P ∈ Pbdd

0,1 ,
shown in red. One may be concerned that the intersection
between our intervals and the 95% confidence interval is
not large, but because this is true for the Manski intervals
as well (whose non-parametric assumption holds exactly),
we conclude that the small intersection is due to error in the
estimation of ψ̂1. More importantly, we see that our inter-
vals are much narrower than the Manski intervals for small
L and converge to them as L → ∞. For example, when
L = 1, our intervals are 73.5%, 79.1%, 83.7%, and 91.5%
narrower than the Manksi intervals for T = 0.25, 0.3, 0.35,
and 0.4 respectively.
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7. Conclusion
We have developed partial identification results for off-
policy evaluation under smoothness assumptions, shown
that our bounds have favorable asymptotics, and demon-
strated their value in experiments. We emphasize that our
methods are tied to a choice of covariate space and met-
ric, and so it is crucial to evaluate the reasonability of the
smoothness assumption with regard to those choices. The
bounds we give are only as useful as the underlying assump-
tions are plausible, and thus it is essential to combine our
methodological proposals with thoughtful application.

The proposed methods open many avenues for future work.
One promissing direction is extending our methods to as-
sumptions made in action covariate space rather than user
covariate space and to other kinds of nonparametric as-
sumptions such as monotonicity, convexity, other kinds of
smoothness, or combinations of these. In such cases, the no-
interaction property may no longer hold (see Appendix D
for such an example), necessitating solving a linear program
numerically. Such numerical solutions could potentially
still be analyzed using results on perturbations of linear
programs, similar to the approach of Kallus et al. (2022).

It would also be of interest to study a setting in which there
are points for which πb(Xi) is extremely small but non-zero.
In this setting, treating such points as though they are in
fact no-overlap and partially identifying their contribution
to the off-policy value (rather than point identifying it us-
ing inverse-propensity based methods) may lead to tighter
bounds on the off-policy value. The main challenge here
is selecting a cut-off at which πb(Xi) should be treated
as “effectively zero,” possibly in a data-adaptive way, and
accounting for this choice in the resulting intervals.
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Off-policy Evaluation Beyond Overlap:
Sharp Partial Identification Under Smoothness

Supplemental material

A. Proofs of results
A.1. Proof of Theorem 4.1

Proof of Theorem 4.1. We begin by writing

P(ψ̂− − ε ≤ ψ(P0) ≤ ψ̂+ + ε) = 1− P(ψ(P0) < ψ̂− − ε or ψ(P0) > ψ̂+ + ε), (5)

≥ 1− P(ψ(P0) ≤ ψ̂− − ε)− P(ψ(P0) > ψ̂+ + ε), (6)

by the union bound. We now show that P(ψ(P0) > ψ̂+ + ε) → 0. An analogous argument shows that P(ψ(P0) <

ψ̂− − ε)→ 0 as well, and these two facts along with (6) imply the result.

We have

P(ψ(P0) > ψ̂+ + ε) = P(ψ1(P0) + ψ2(P0) > ψ̂1 + ψ̂+
2 + ε), (7)

≤ P(ψ1(P0) > ψ̂1 + ε/2) + P(ψ2(P0) > ψ̂+
2 + ε/2), (8)

≤ P(ψ1(P0) > ψ̂1 + ε/2) + P
(

sup
P∈P

ψ2(P ) > ψ̂+
2 + ε/2

)
, (9)

≤ P(|ψ1(P0)− ψ̂1| > ε/2) + P
(∣∣∣∣ sup

P∈P
ψ2(P )− ψ̂+

2

∣∣∣∣ > ε/2

)
. (10)

Both terms of (10) are o(1) under the given consistency assumptions, so we conclude that P(ψ(P0) > ψ̂+ + ε) = o(1) as
desired.

A.2. Proof of Theorem 4.5

We in fact prove a generalization of Theorem 4.5 that is based on the assumption that P0 ∈ PLip
L ∩ Pbdd

`,u . In particular,
consider the optimization problem

min
t1, · · · , tn

1

n

n∑
i=1

tiπe(Xi)1{πb(Xi) = 0}

s.t. |ti − tj | ≤ Ld(Xi, Xj), 1 ≤ i < j ≤ n,
ti − µ̂(Xi) = 0, 1 ≤ i ≤ n s.t. πb(Xi) > 0,

` ≤ ti ≤ u, 1 ≤ i ≤ n

(11)

Then we have the following result.

Theorem A.1. Suppose that (11) is feasible, that P0 ∈ PLip
L , and that Assumptions 4.3 and 4.4 hold. Then:

(a) the problem (11) has value

ψ̂−2 =
1

n

n∑
i=1

πe(Xi)

(
` ∨ max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)

)
1{πb(Xi) = 0}; (12)

(b) we have ψ̂−2
P−→ ψ−,∞2 where

ψ−,∞2 = E

[
πe(Xi)

(
` ∨ sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

]
; (13)

(c) the bound ψ−,∞2 is sharp in the sense that infP∈PLip
L ∩Pbdd

M
ψ2(P ) = ψ−,∞2 .
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Theorem 4.5 from the main text follows from sending `→ −∞ in Theorem A.1. We now prove each part of the theorem in
turn. In our proofs, we assume for the sake of convenience that the supremum in (13) is attained. This will be the case if, for
instance, {x : πb(x) > 0} is compact. If the supremum is not attained, slight modifications of our proofs can be used to
obtain the result.

Proof of Theorem A.1(a). To show the result, we must do two things: show that the objective of (3) is bounded below by
ψ̂−2 , and show that this bound is attained.

For the bound, observe that, for each ti, we have

ti ≥ tj − Ld(Xi, Xj) for 1 ≤ j ≤ n, (14)
≥ max
j:πb(Xj)>0

tj − Ld(Xi, Xj), (15)

≥ max
j:πb(Xj)>0

tj − Ld(Xi, Xj), (16)

= max
j:πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj), (17)

where the first bound is the Lipschitz constraint and the last equality is the equality constraint. We also have ti ≥ ` for all i,
and thus we must have

n∑
i=1

tiπe(Xi)1{πb(Xi) = 0} ≥
n∑
i=1

πe(Xi)

(
` ∨ max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)

)
1{πb(Xi) = 0} = ψ̂−2 , (18)

as desired.

Next we will show that there exist a set of feasible ti for which the objective of (3) is equal to ψ̂−2 . The construction is

t∗i = ` ∨ max
j:πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj). (19)

This construction clearly has objective value ψ̂−2 , so we need only check that it is feasible.

For the equality constraint, note that if πb(Xi) > 0, then the maximum in (19) includes j = i, and thus is at least µ̂(Xi).
But for any j 6= i, we have |µ̂(Xj)− µ̂(Xi)| ≤ Ld(Xi, Xj) by the feasibility of (3), and so µ̂(Xi) ≥ µ̂(Xj)−Ld(Xi, Xj).
Since µ̂ is range-bounded, we also have µ̂(Xi) ≥ `, and so

` ∨ max
j:πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj) = µ̂(Xi), (20)

for i in the overlap region, and the equality constraint is satisfied.

Next we check the Lipschitz constraint. To do this, we define

f(i) = argmin
j:πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj) (21)

so that t∗i = ` ∨ (µ̂(Xf(i))− Ld(Xi, Xf(i))). We consider any two t∗i , t
∗
j , and distinguish three cases.

First, if µ̂(Xf(i))− Ld(Xi, Xf(i)) < ` and µ̂(Xf(j))− Ld(Xj , Xf(j)) < `, then |t∗i − t∗j | = 0 and the Lipschitz condition
is satisfied.

Second, if µ̂(Xf(i))−Ld(Xi, Xf(i)) > ` and µ̂(Xf(j))−Ld(Xj , Xf(j)) > `, we may assume without the loss of generality
that t∗i > t∗j , and compute

|t∗i − t∗j | = t∗i − t∗j , (22)

=
(
µ̂(Xf(i))− Ld(Xi, Xf(i))

)
−
(
µ̂(Xf(j))− Ld(Xj , Xf(j))

)
, (23)

≤
(
µ̂(Xf(i))− Ld(Xi, Xf(i))

)
−
(
µ̂(Xf(i))− Ld(Xj , Xf(i))

)
, (24)

= L
(
d(Xj , Xf(i))− d(Xi, Xf(i))

)
, (25)

≤ Ld(Xi, Xj), (26)

12
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where the first inequality uses the maximality (by definition) of f(j), and the second inequality is the triangle inequality
d(Xj , Xf(i)) ≤ d(Xi, Xf(i)) + d(Xi, Xj). Thus the Lipschitz constraint is satisfied in this case.

Finally, if µ̂(Xf(i))− Ld(Xi, Xf(i)) > ` and µ̂(Xf(j))− Ld(Xj , Xf(j)) < `, then

|t∗i − t∗j | = µ̂(Xf(i))− Ld(Xi, Xf(i))− (`), (27)

≤ µ̂(Xf(i))− Ld(Xi, Xf(i))− (µ̂(Xf(j))− Ld(Xj , Xf(j))) (28)

and (28) is bounded by Ld(Xi, Xj) by the arguments of (26).

Thus we see that the t∗i defined in (19) are feasible, and conclude that the value of (3) is ψ̂−2 .

Before proceeding to the proof of Theorem A.1(b), we present two helpful lemmas. The first of these controls the difference
between the suprema of interest in terms of the difference in conditional mean functions, and will essentially be used to
replace the estimated µ̂ in ψ̂−2 with the true µ.

Lemma A.2. For any conditional mean functions µ1, µ2, we have∣∣∣∣ max
j:πb(Xj)>0

µ1(Xj)− Ld(Xi, Xj)− max
j:πb(Xj)>0

µ2(Xj)− Ld(Xi, x)

∣∣∣∣ ≤ sup
x:πb(x)>0

|µ1(x)− µ2(x)|. (29)

Proof of Lemma A.2. We have

max
j:πb(Xj)>0

µ1(Xj)− Ld(Xi, Xj) ≤ max
j:πb(Xj)>0

µ1(Xj)− µ2(Xj) + max
j:πb(Xj)>0

µ2(Xj)− Ld(Xi, Xj), (30)

≤ sup
x:πb(x)>0

|µ1(x)− µ2(x)|+ max
j:πb(Xj)>0

µ2(Xj)− Ld(Xi, Xj), (31)

(32)

The same bounds hold with the roles of µ1 and µ2 reversed, completing the proof.

The next two lemmas will allow us to replace the maximum in ψ̂−2 by a supremum by controlling the difference between the
maximum and supremum.

Lemma A.3. Let x∗ be the point at which supx:πb(x)>0 µP0
(x)− Ld(Xi, x) is attained and let

j∗ = argmin
j:πb(Xj)>0

d(Xj , x
∗) (33)

be the observed point that is closest to x∗. Then∣∣∣∣∣ max
j:πb(Xj)>0

µP0
(Xj)− Ld(Xi, Xj)− sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

∣∣∣∣∣ ≤ 2Ld(x∗, Xj∗). (34)

Proof. We have

µP0(Xj∗)− Ld(Xi, Xj∗) ≥ µP0(x∗)− Ld(Xj∗ , x
∗)− Ld(Xi, Xj∗), (35)

≥ µP0(x∗)− Ld(Xi, x
∗)− 2Ld(x∗, Xj∗), (36)

= sup
x:πb(x)>0

µP0(x)− Ld(Xi, x)− 2Ld(x∗, Xj∗), (37)

where the first inequality uses the fact that µP0
is L-Lipschitz and the second is the triangle inequality. Since the supremum

is greater than the maximium, the result follows.

Lemma A.4. Fix a point x such that πb(x) > 0 and let

j∗ = argmin
j:πb(Xj)>0

d(Xj , x) (38)

be the index of the closest observation to x in the overlap region. Then, under either of Assumption 4.4(a) or Assump-
tion 4.4(b), we have P(d(x,Xj∗) > ε)

n→∞−−−−→ 0 for any ε > 0.

13
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Proof. We analyze P(d(x,Xj∗) > ε) under each of the two possibilities in Assumption 4.4. If Assumption 4.4(a) holds and
there is an atom at x so that P(Xi = x) = p for some p > 0, we have

P(d(x,Xj∗) > ε) ≤ P(Xi 6= x for 1 ≤ i ≤ n), (39)
= (1− p)n, (40)

which goes to 0 as n→∞. Next, if Assumption 4.4(b) holds, let δ be such that P(d(x,Xj∗) ≤ ε) > δ. Then

P(d(x,Xj∗) > ε) = P(d(x,Xi) > ε for 1 ≤ i ≤ n), (41)
≤ (1− δ)n (42)

which again goes to 0 as n→∞.

With these lemmas in hand, we begin the main proof.

Proof of Theorem A.1(b). We begin by defining

ψ̂−,oracle
2 =

1

n

n∑
i=1

πe(Xi)

(
` ∨ sup

x:πb(x)>0

µP0(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}. (43)

The main idea is to show that
|ψ̂−2 − ψ̂−,oracle

2 | = oP (1), (44)

and then since ψ̂−,oracle
2 is a sum of i.i.d. terms, the desired result follows by the law of large numbers.

To show (44), we show that for any fixed i,∣∣∣∣∣` ∨ max
j:πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj)−
(
` ∨ sup

x:πb(x)>0

µP0(x)− Ld(Xi, x)

)∣∣∣∣∣ = oP (1). (45)

Indeed, we have by the triangle inequality that∣∣∣∣∣` ∨ max
j:πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj)−
(
` ∨ sup

x:πb(x)>0

µP0(x)− Ld(Xi, x)

)∣∣∣∣∣ (46)

≤
∣∣∣∣` ∨ max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)−

(
` ∨ max

j:πb(Xj)>0
µP0

(Xj)− Ld(Xi, Xj)

)∣∣∣∣ (47)

+

∣∣∣∣∣` ∨ max
j:πb(Xj)>0

µP0
(Xj)− Ld(Xi, Xj)−

(
` ∨ sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)∣∣∣∣∣ , (48)

and now we analyze (47) and (48) separately. In both cases, we will show that if one of the terms is smaller than `, the other
must be as well with high probability, and then work on the event that they are both smaller than `.

For (47), we first consider the event

E =

{
max
j
µ̂(Xj)− Ld(Xi, Xj) > `,max

j
µP0(Xj)− Ld(Xi, Xj) < `

}
. (49)

On the event E, there must exist some j and ε > 0 such that µ̂(Xj)− Ld(Xi, Xj) > `+ ε. Then,

P(E) ≤ P(µ̂(Xj)− Ld(Xi, Xj) > `+ ε, µP0(Xj)− Ld(Xi, Xj) < `), (50)

≤ P

(
sup

x:πb(x)>0

|µ̂(x)− µP0
(x)| > ε

)
, (51)

= o(1), (52)
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by Assumption 4.3.

Since P(E) = o(1), it is sufficient to work on the event Ec. On this event, there are two possibilities. Either

µP0
(Xj)− Ld(Xi, Xj) < ` and sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x) < `, (53)

or
µP0

(Xj)− Ld(Xi, Xj) > ` and sup
x:πb(x)>0

µP0
(x)− Ld(Xi, x) > `. (54)

If (53) holds, then (47) is 0. On the other hand, if (54) holds, then (47) is oP (1) by Lemma A.2 and Assumption 4.3. Thus
we conclude that (47) is oP (1) on the event Ec.

For (48), we distinguish cases. For the first case, if

sup
x:πb(x)>0

µP0
(x)− Ld(Xi, x) ≤ `, (55)

then we must have
max

j:πb(Xj)>0
µP0

(Xj)− Ld(Xi, Xj) ≤ `, (56)

as well, and so (48) is 0.

Thus it suffices to consider the case where

sup
x:πb(x)>0

µP0
(x)− Ld(Xi, x) > `. (57)

In this case, suppose that the supremum is attained at x∗, and that µP0(x∗)− Ld(Xi, x
∗)− ` = ε for some ε > 0, and let

j∗ = argmin
j:πb(Xj)>0

d(Xj , x
∗) (58)

be the index of the observed data point that is closest to x∗.

Then, consider the event

E =

{
max

j:πb(Xj)>0
µP0(Xj)− Ld(Xi, Xj) < `

}
. (59)

Since we are working in the case where (57) holds, by Lemma A.3, if the event E occurs as well, we must have
2Ld(x∗, Xj∗) > ε. Thus P(E) ≤ P(2Ld(x∗, Xj∗) > ε), and P(2Ld(x∗, Xj∗) > ε) = o(1) by Lemma A.4, so we
see that P(E) = o(1).

Thus it suffices to work on the event Ec. On Ec, we have

max
j:πb(Xj)>0

µP0
(Xj)− Ld(Xi, Xj) ≥ sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)− 2Ld(x∗, Xj∗), (60)

by Lemma A.3. Applying Lemma A.4 again, we see that (48) is oP (1).

Since (47) and (48) are both oP (1), we conclude that (45) holds, implying (44) and finishing the proof.

Proof of Theorem A.1(c). The proof of this result is essentially a continuous version of the proof of Theorem A.1(a). We
would like to show that

inf
P∈PLip

L

EP [Yiπe(Xi)1{πb(Xi) = 0}] = EP0

[
πe(Xi)

(
` ∨ sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

]
. (61)

To do this, we must first show that each for each P ∈ PLip
L ∩ Pbdd

M , ψ2(P ) is greater than ψ−,∞2 , and then show that ψ−,∞2

is attained.
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For the lower bound, note that for any Xi and x such that πb(Xi) = 0 and πb(x) > 0, we must have µP (Xi) ≥
µP (x)− Ld(Xi, x) since µP is L-Lipschitz. Furthermore, since P is consistent with P0 for x such that πb(x) > 0, we in
fact have µP (Xi) ≥ µP0(x)− Ld(Xi, x) for all such x. Lastly, since µP is bounded, we also have µP (Xi) ≥ `. Thus,

EP [Yiπe(Xi)1{πb(Xi) = 0}] = EP [πe(Xi)µP (Xi)1{πb(Xi) = 0}], (62)

≥ EP

[
πe(Xi)

(
` ∨ sup

x:πb(x)>0

µP0(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

]
, (63)

= EP0

[
πe(Xi)

(
` ∨ sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

]
, (64)

where the first equality is the tower rule, the second inquality follows from the arguments of the preceeding paragraph, and
the third equality uses the fact that P is consistent with P0. Since (64) is exactly ψ−,∞2 , this shows the lower bound.

To show that this bound is attained, let P ∗ be a distribution that has the same marginal Xi distribution as P0, the same
conditional distribution of Yi | Xi = x for x such that πb(x) > 0, and has

µP∗(x) = ` ∨ sup
x′:πb(x′)>0

µP0
(x′)− Ld(x, x′), (65)

for x such that πb(x) = 0. Furthermore, we assume that, for x such that πb(x) = 0 the distribution Yi | Xi = x is a point
mass at µP∗(x). This ensures that P ∗ ∈ PMbdd. This P ∗ clearly attains the bound of ψ−,∞2 so it is sufficient to check that it
is consistent with P0 and L-Lipschitz to show that P ∗ ∈ PLip

L .

The distribution P ∗ is consistent with P0 by construction, but we must still check that µP∗ defined in (65) agrees with µP0

for x in the overlap region. To verify this, note that for any x such that πb(x) > 0, the supremum in (65) is attained at
x′ = x, since µP0

(x)− Ld(x, x) = µP0
(x) and µP0

(x) ≥ µP0
(x′)− Ld(x, x′) for any other x′ since µP0

is L-Lipschitz.
So the supremum is in fact equal to µP0

(x), and ` ∨ µP0
(x) = µP0

(x), which is consistent with P0.

To check that µP∗ is L-Lipschitz, let f(x) be the value attaining the supremum in (65), so that µP∗(x) = `∨ (µP0(f(x))−
Ld(x, f(x))). Then, consider any pair of points x1, x2. We distinguish three cases.

First, if µP0(f(x1))−Ld(x1, f(x1)) < ` and µP0(f(x2))−Ld(x2, f(x2)) < `, we have µP∗(x1)−µP∗(x2) = 0 and the
Lipschitz condition is satisfied.

Second, if µP0(f(x1))− Ld(x1, f(x1)) > ` and µP0(f(x2))− Ld(x2, f(x2)) > `, assume without the loss of generality
that µP∗(x1) > µP∗(x2). Then we have

|µP∗(x1)− µP∗(x2)| = µP∗(x1)− µP∗(x2), (66)
= (µP0(f(x1))− Ld(x1, f(x1)))− (µP0(f(x2)− Ld(x2, f(x2))) , (67)
≤ (µP0(f(x1))− Ld(x1, f(x1)))− (µP0(f(x1)− Ld(x2, f(x1))) , (68)
= L (d(x1, f(x1))− d(x2, f(x1))) , (69)
≤ Ld(x1, x2), (70)

where the first inequality uses the fact that f(x2) attains the supremum and the second uses the triangle inequality.

Finally, if µP0
(f(x1))− Ld(x1, f(x1)) > ` and µP0

(f(x2))− Ld(x2, f(x2)) < `, we have

|µP∗(x1)− µP∗(x2)| = (µP0(f(x1))− Ld(x1, f(x1)))− (`) , (71)
≤ (µP0(f(x1))− Ld(x1, f(x1)))− (µP0(f(x2)− Ld(x2, f(x2))) , (72)
≤ Ld(x1, x2), (73)

by the same arguments as above.

This shows that µP∗ is L-Lipschitz, and so P ∗ ∈ PLip
L . Thus the bound of ψ−,∞2 is attained, completing the proof.

16



Off-policy Evaluation Beyond Overlap

A.3. Proof of Theorem 3

Proof. We follow the approach of the proof of Theorem A.1(b), and begin by defining

ψ̂−,oracle
2 =

1

n

n∑
i=1

πe(Xi)

(
sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}. (74)

We then decompose

E[(ψ̂−2 − ψ−,∞2 )2] = E[(ψ̂−2 − ψ̂−,oracle
2 + ψ̂−,oracle

2 − ψ−,∞2 )2], (75)

≤ 2E[(ψ̂−2 − ψ̂−,oracle
2 )2] + 2E[(ψ̂−,oracle

2 − ψ̂−,∞2 )2]. (76)

The second term of (76) is the variance of an i.i.d. sum, and is thus equal to C/n for some constant C. The remainder of the
proof focuses on the first term of (76).

The first term of (76) is

E

( 1

n

n∑
i=1

πe(Xi)

(
max

j>πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)− sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

)2
 , (77)

≤ 1

n

n∑
i=1

E

( max
j>πb(Xj)>0

µ̂(Xj)− Ld(Xi, Xj)− sup
x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)2
 , (78)

by the Cauchy-Schwarz inequality and the fact that 0 ≤ πe,1{πb(Xi) = 0} ≤ 1. A single term of (78) is

≤2E

[(
max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)− max

j:πb(Xj)>0
µP0

(Xj)− Ld(Xi, Xj)

)2
]

(79)

+ 2E

( max
j:πb(Xj)>0

µP0
(Xj)− Ld(Xi, Xj)− sup

x:πb(x)>0

µP0
(x)− Ld(Xi, x)

)2
 , (80)

≤2E[‖(µ̂(x)− µ(x))1{πb(x) > 0}‖2∞] + 2E[L2d(x∗, Xj∗)
2], (81)

≤2E[‖(µ̂(x)− µ(x))1{πb(x) > 0}‖2∞] + 4L2(cdbn)−2/d. (82)

where the second inequality uses Lemmas A.2 and A.3 (here x∗ and Xj∗ are as defined in Lemma A.3), and the third
inequality uses Lemma A.6 (proven in Section A.4).

Proof. Our proof relies on LeCam’s two point method (LeCam, 1973; Wainwright, 2019), which states that if we can find
distributions P1 and P2 in PLip

L with |ψ−,∞2 (P1)− ψ−,∞2 (P2)| ≥ 2δ, then

inf
ψ̂−2

sup
P∈PLip

L

EP
[
(ψ̂ − ψ−,∞2 (P ))2

]
≥ δ2

2
(1− ‖Pn1 − Pn2 ‖TV) , (83)

where by a slight abuse of notation we write Pn1 for the joint distribution of (X1, A1, A1Y1), · · · , (Xn, An, AnYn) when
(Xi, Yi) are drawn from P1, and similarly for P2. We construct P1 and P2 as follows:

(i) under P1, the marginal distribution of Xi is uniform on [−1, 1]d, and Yi | Xi = x is N(µ1(x), 1) where µ1(x) = 0
identically

(ii) under P2, the marginal distribution of Xi is uniform on [−1, 1]d, and the distribution of Yi | Xi = x is N(µ2(x), 1)
where

µ2(x) =


0 if x ∈ [−1/2 + Lε, 1/2− Lε]d,
µ̃2(x) if x ∈ [−1/2− Lε, 1/2 + Lε]d \ [−1/2 + Lε, 1/2− Lε]d,
0 if [−1, 1]d \ [−1/2− Lε, 1/2 + Lε]d,

(84)
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where ε < 1/(2L) is arbitrary and µ̃2(x) is a function that is equal to ε for x on the boundary of the set [−1/2, 1/2]d,
and is equal to 0 on the boundaries of [−1/2− ε, 1/2 + ε]d and [−1/2 + ε, 1/2− ε]d, and linearly interpolates between
these values.

Essentially, the distribution of Yi | Xi under P2 has a bump of size ε at the boundary of the support of πb that decays to zero
as fast as the Lipschitz assumption will allow.

We now proceed in two steps: first, we verify the separation condition of LeCam’s lemma; second, we upper bound the
distance between Pn1 and Pn2 .

For the separation condition, we begin by noting that

ψ−,∞2 (P1) = E

[
πe(Xi)

(
sup

x:πb(x)>0

µ1(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

]
, (85)

= E

[
πe(Xi)

(
sup

x:πb(x)>0

−Ld(Xi, x)

)
1{πb(Xi) = 0}

]
. (86)

Suppose that for each Xi, supx:πb(x)>0−Ld(Xi, x) is attained at a point f(Xi) and note that f(Xi) must lie on the
boundary of the cube [−1/2, 1/2]d (since it is the projection of Xi onto the support of πb). Then,

ψ−,∞2 (P2) = E

[
πe(Xi)

(
sup

x:πb(x)>0

µ2(x)− Ld(Xi, x)

)
1{πb(Xi) = 0}

]
, (87)

≥ E [πe(Xi) (µ2(f(Xi))− Ld(Xi, f(Xi)))1{πb(Xi) = 0}] , (88)
= εE[πe(Xi)1{πb(Xi) = 0}] + E [πe(x)(−Ld(Xi, f(Xi)))1{πb(Xi) = 0}] , (89)

= εE[πe(Xi)1{πb(Xi) = 0}] + ψ−,∞2 (P1), (90)

where the first inequality bounds the supremum by a particular point, the second equality uses the fact that µ2 is equal to ε
on the boundary of [−1/2, 1/2]d, and the third uses the fact that f attains the supremum in (86). Then, it follows from (90)
that the separation condition is satisfied with δ = εE[πe(Xi)1{πb(Xi) = 0}]/2.

It remains to bound ‖Pn1 − Pn2 ‖TV. By Pinsker’s inequality, we have

‖Pn1 − Pn2 ‖TV ≤
√

1

2
DKL(Pn1 ‖Pn2 ), (91)

≤
√
n

2
DKL(P1‖P2), (92)

(93)

Now, letting p1 and p2 be the densities of P1 and P2 respectively, we have

DKL(P1‖P2) =

∫
[−1,1]d

∫ ∞
−∞

∑
a∈{0,1}

p1(x, a, y) log
p1(x, a, y)

p2(x, a, y)
dy dx. (94)

Note that ∑
a∈{0,1}

p1(x, a, y) log
p1(x, a, y)

p2(x, a, y)
=p1(x)(1− πb(x))p1(y | x) log

p1(x)(1− πb(x))p1(y | x)

p2(x)(1− πb(x))p2(y | x)
(95)

+ p1(x)πb(x)p1(y | x) log
p1(x)πb(x)p1(y | x)

p2(x)πb(x)p2(y | x)
, (96)

=
1

2d
p1(y | x) log

p1(y | x)

p2(y | x)
, (97)
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since p1(x) = p2(x) = 1/2d for all x. Thus, (94) is

=

∫
[−1,1]d

∫ ∞
−∞

2−dp1(y | x) log
p1(y | x)

p2(y | x)
dy dx (98)

=

∫
[−1,1]d

DKL(N(0, 1)‖N(µ2(x), 1)) dx, (99)

=

∫
[−1,1]d

1

2
µ2(x)2 dx, (100)

=

∫
[−1,1]d

µ̃2(x)21{x ∈ [−1/2− Lε, 1/2 + Lε]d \ [−1/2 + Lε, 1/2− Lε]d} dx, (101)

≤ ε2((1 + 2Lε)d − (1− 2Lε)d), (102)

≤ ε2(4Lε)d, (103)

where the last line uses Lemma A.5, proven in Section A.4.

The calculations above show that ‖Pn1 − Pn2 ‖2TV ≤ n
2 (4L)dεd+2. If we set ε = (2n)−1/(d+2)(4L)−d/(d+2), this gives the

bound ‖Pn1 − Pn2 ‖ ≤ 1/2. This choice of ε then gives the lower bound

inf
ψ̂−2

sup
P∈PLip

L

EP
[
(ψ̂−2 − ψ−,∞2 (P ))2

]
≥ δ2

4
, (104)

=
1

16
E[πe(Xi)1{πb(Xi) = 0}]2ε2, (105)

=
1

16
E[πe(Xi)1{πb(Xi) = 0}]2(2n)−2/(d+2)(4L)−2/(d+2), (106)

as long s the condition that ε < 1/(2L) is satisfied. We can check that this condition holds whenever n ≥ 2−d+1L2,
completing the proof.

A.4. Technical lemmas

In this section, we collect several lemmas used in the main proofs.

Lemma A.5. For any 0 < x < 1, we have that (1 + x)d − (1− x)d ≤ (2x)d.

Proof. We have

(1 + x)d − (1− x)d ≤ (1 + x)d =
d∑
k=0

(
d

k

)
xk ≤ xd

d∑
k=0

(
d

k

)
= (2x)d. (107)

Lemma A.6. Let x∗ and Xj∗ be as in Lemma A.3 and let b be a lower bound on the density of Xi. Then E[d(x∗, Xj∗)
2] ≤

2(cdbn)−2/d, where cd is the volume of the unit ball in n-dimensions, n is the sample size, and d is the dimension of the
covariate space.
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Proof. Let cd be the volume of the unit ball in d dimensions. We compute

E[d(x∗, Xj∗)
2] =

∫ ∞
0

P(d(x∗, Xj∗) ≥
√
t) dt, (108)

=

∫ ∞
0

P(d(x∗, Xj) ≥
√
t)n dt, (109)

≤
∫ ∞

0

(1− cdtd/2b)n+, (110)

= (cdb)
−2/d

∫ ∞
0

(1− ud/2)n+ du, (u = t(cdb)
2/d)

= (cdb)
−2/d

∫ 1

0

(1− ud/2)n du. (111)

If d = 1, we can manually compute that (111) is

2(cdb)
−2/d

n2 + 3n+ 2
≤ 2(cdb)

−2/d

n2
= 2(cdbn)−2/d, (112)

and the result of the lemma is satsified. We now assume that d > 1, and continue bounding by

≤ (cdb)
−2/d

∫ 1

0

exp(−ud/2n) du, (113)

≤ (cdbn)−2/d

∫ n2/d

0

exp(−vd/2) dv, , (v = un2/d)

= (cdbn)−2/d

∫ n2/d

0

exp(−vd/2), (114)

= (cdbn)−2/d

(∫ 1

0

exp(−vd/2) dv +

∫ n2/d

1

exp(−vd/2) dv

)
, (115)

≤ (cdbn)−2/d

(
1 +

∫ n2/d

1

exp(−v) dv

)
, (116)

≤ (cdbn)−2/d(1 + e−1), (117)

≤ 2(cdbn)−2/d. (118)

So, in all cases, E[d(x∗, Xj∗)
2] ≤ 2(cdbn)−d/2.

B. Computational improvements on ψ̂−
2

In this section, we discuss approximations of

ψ̂−2 =
1

n

n∑
i=1

πe(Xi)

(
max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj)

)
1{πb(Xi) = 0} (119)

with favorable computational properties. The idea is to bound the maximum in (119) by the value of µ̂(Xj)− Ld(Xi, Xj)
for some particular j. A natural choice of j is the index of the nearest neighbor of Xi in the overlap region,

nn(i) = argmin
j:πb(Xj)>0

d(Xi, Xj). (120)

Then, we define

ψ̂−,cons
2 =

1

n

n∑
i=1

πe(Xi)
(
µ̂(Xnn(i))− d(Xi, Xnn(i))

)
1{πb(Xi) = 0}, (121)
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as a conservative approximation of ψ̂−2 . By conservative, we mean that ψ̂−2 ≥ ψ̂−,cons
2 , so that the bounds obtained by using

ψ̂−,cons
2 are always wider than those obtained by using ψ̂−2 . This ensures that the interval [ψ̂−, ψ̂+] constructed using ψ̂−,cons

2

will still be consistent for ψ(P0) in the sense of Lemma 4.1.

However, computing ψ̂−,cons
2 will typically be much faster than computing ψ̂−2 . This is because computing ψ̂−,cons

2 only
requires finding the nearest overlap neighbor of each point in the no-overlap region, and then evaluating µ̂(Xnn(i)) −
d(Xi, Xnn(i)) for that nearest neighbor, rather than evaluating over all points in the overlap region and taking the maximum.
This means that, once we have found the nearest overlap neighbor of each point in the no-overlap region, we need only O(n)

further computations to compute ψ̂−,cons
2 .

We now consider the complexity of nearest-neighbor search problem. To find an exact nearest-neighbor for each point in
the no-overlap region generally requires computing all of the pairwise distances d(Xi, Xj), and thus will still take time
O(n2). However, we find in practice that since only O(n) further computation is required to compute ψ̂−,cons

2 , this approach
is still faster than exactly computing ψ̂−2 . Furthermore, there exist data structures for exact nearest-neighbor search which
use various heuristics to improve performance, and these can be leveraged for further computational gains (Bentley, 1975;
Omohundro, 1989).

For settings that require a method that is faster than O(n2), there are two possibilities depending on the dimensionality of
the covariates. If the covariates Xi are one-dimensional, methods based on Voronoi diagrams can be used to compute exact
nearest neighbors for all points in the overlap region in O(n) time (Har-Peled, 2011; Preparata and Shamos, 2012). In higher
dimensions, we can instead use approximate nearest-neighbor search algorithms. For example, if the covariates Xi lie in Rp,
and the metric d is Euclidean distance, there exist algorithms that return a point j∗ such that d(Xi, Xj∗) ≤ cd(Xi, Xnn(i))

in time O(n1/(2c2−1−o(1) + pno(1))) (Andoni et al., 2018). For a moderate value of c, such as c = 2, this gives a runtime of
O(n1/(7−o(1) + pno(1)) for each point in the no-overlap region. Since there are O(n) points in the no-overlap region, this
leads to a total runtime of O(n8/7+o(1) + pn1+o(1)), improving significantly on the O(n2) time required when using exact
nearest neighbors. Appealingly, even if we use an approximate nearest neighbor rather than an exact one, we will still obtain
a conservative estimate of ψ̂−2 , and thus retain statistical validity.

Finally, another computational advantage of ψ̂−,cons
2 is that once we have identified the nearest-neighbor of each point in the

overlap region, we can compute ψ̂−,cons
2 for any value of L with only O(n) operations. This makes search over a large range

of values of L, as is done for sensitivity analyses like those shown in Section 6, quite efficient as well.

C. Additional experimental results
C.1. Additional results for Yeast dataset

In Figure 4, we plot the results from Table 1 for L = 3, 4, 5,∞, since these were the values for which we determined (based
on the feasibility of the optimization problem) that the smoothness assumption was plausible. We see that, for these values
of L, the coverage as defined in Theorem 4.1 with ε = 0.01 approaches 100%.

In Table 3, we show the results of Table 1 when defining coverage as in Theorem 4.1 with ε = 0.005 rather than ε = 0.01,
as in the main text. We see that coverage rates are lower, but still approach 1 as the sample size increases. Crucially, the
coverage for large values of L remains comparable to the coverage of the Manski intervals, suggesting that the Lipschitz
smoothness assumptions for those values of L are plausible.

C.2. Additional results for Yahoo! Front Page Today dataset

In Figure 5, we repeat the experiment on the Yahoo! Front Page Today dataset described in Section 6 for a wider range of
smoothness parameters L and cutoffs T . With this range of values, we make two new observations: first, the convergence
of our interval to the Manski interval in the upper endpoint was not apparent for small values of L, but is apparent for the
values of L considered here. Second, when T = 0.5, there are no longer any overlap violations, and our partial identification
intervals have length zero and recover the IPW estimator ψ̂1.
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Figure 4. Visualization of results from Table 1 for the values of L for which the optimization problem is consistently feasible and thus the
smoothness assumption is plausible. We see that as n→∞, the coverage (as defined in Theorem 4.1 with ε = 0.01) approaches 100%.

Table 3. The same experiment as in Table 1, but with coverage defined using ε = 0.005 in Theorem 4.1 rather than ε = 0.01. With the
smaller value of ε, coverage rates are lower, but still approach 1 as the sample size increases. Furthermore, the coverage of the Manski
intervals is comparable to the coverage of the Lipschitz intervals for large values of L, indicating that those smoothness assumptions are
plausible.

L n = 1000 n = 2000 n = 3000 n = 4000 n = 5000 n = 10000

1 0.238 (0.785) 0.0002 (0.002) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
2 0.392 (1.00) 0.493 (1.00) 0.543 (1.00) 0.576 (1.00) 0.603 (0.995) 0.060 (0.106)
3 0.450 (1.00) 0.561 (1.00) 0.613 (1.00) 0.643 (1.00) 0.676 (1.00) 0.766 (1.00)
4 0.498 (1.00) 0.6057 (1.00) 0.657 (1.00) 0.685 (1.00) 0.723 (1.00) 0.810 (1.00)
5 0.528 (1.00) 0.632 (1.00) 0.687 (1.00) 0.716 (1.00) 0.752 (1.00) 0.841 (1.00)
∞ 0.591 (1.00) 0.706 (1.00) 0.757 (1.00) 0.789 (1.00) 0.819 (1.00) 0.895 (1.00)

D. Counterexample for no-interaction under smoothness and monotonicity
In this section, we present an example showing that the no-interaction property fails if we make both smoothness and
monotonicity assumptions.

To construct our example, we consider a problem with n = 3 points with two-dimensional covariates Xi such that
X1 = (0, 0) is the origin, X2 lies in the first quadrant, and X3 lies in the fourth quadrant. We assume that X1 is in the
overlap region, and that X2 and X3 are not. This configuration is illustrated Figure 6.

We will assume both that the conditional mean µ is L-Lipschitz and that it is monotone with respect to the dictionary order
≺. That is, we have (x1, y1) ≺ (x2, y2) if x1 ≤ x2 and y1 ≤ y2.

With this set-up, we have that t1 = µ̂(X1) since X1 lies in the overlap region. The constraints induced on the t2 point by t1
are

t2 ≥ µ̂(X1)− Ld(X1, X2) and t2 ≥ µ̂(X1), (122)

since X1 ≺ X2. The latter of these is always tighter, and so to minimize the objective we set t2 = µ̂(X1). With this choice
of t2, the bounds induced on t3 by t1 and t2 are

t3 ≥ µ̂(X1)− Ld(X1, X3) and t3 ≥ µ̂(X1)− Ld(X2, X3), (123)

respectively. If we select X2 and X3 so that d(X2, X3) < d(X1, X3), then the bound induced on t3 by t2 will be tighter
than the bound induced on t3 by t1, and so we see that the constraints in the no-overlap region do interact with each other in
this case.
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Figure 5. The same experiment as in Figure 3 over a wider range of values of T and L. With this range of values, we see convergence
of our bounds to the Manski bounds as L grows large, and also that when T = 0.5 and there are no longer any overlap violations, our
intervals have width zero as expected.
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Figure 6. Counterexample showing that the no-interaction condition fails when making both a Lipschitz smoothness assumption and a
monotonicity assumption. Here, X1 lies in the overlap region, but X2 and X3 do not, and the only ordering between the points is that
X1 ≺ X2. Thus, the tight bound that the i = 1 unit implies on the i = 2 unit is t2 ≥ µ̂(X1), and propagating this to the i = 3 unit gives
that t3 ≥ µ̂(X1)− Ld(X2, X3). This will be tighter than the bound directly coming from the i = 1 unit, t3 ≥ µ̂(X1)− Ld(X1, X3),
whenever we have d(X2, X3) < d(X1, X3), as in the figure, and so there is interaction between points in the no-overlap region.

This example thus highlights that our results in Section 4 are non-trivial and highlight special properties of the smoothness
assumption that have not been previously observed; further characterization of what kinds of assumptions and combinations
satisfy the no-interaction property is an interesting direction for future work.

E. Connections to results of Ben-Michael et al. (2021)
In this section, we describe how our results build on and extend the work of Ben-Michael et al. (2021). In our notation, the
procedure of Ben-Michael et al. (2021) for policy learning with no overlap is given by the max-min optimization problem

argmax
π∈Π

min
P∈PLip

L

1

n

n∑
i=1

µP (Xi)π(Xi)1{πb(Xi) = 0}, (124)
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for some policy class Π. To solve this problem, Ben-Michael et al. (2021) observe that

min
P∈PLip

L

1

n

n∑
i=1

µP (Xi)π(Xi)1{πb(Xi) = 0} ≥ 1

n

n∑
i=1

π(Xi)

(
max

j:πb(Xj)>0
µ̃(Xj)− Ld(Xi, Xj

)
1{πb(Xi) = 0}, (125)

where µ̃ is a simultaneous lower confidence bound on the conditional mean function µP0
, and then solve the more

conservative problem

argmax
π∈Π

1

n

n∑
i=1

π(Xi)

(
max

j:πb(Xj)>0
µ̃(Xj)− Ld(Xi, Xj

)
1{πb(Xi) = 0} (126)

to learn a policy.

For the purposes of policy learning, such a conservative lower bound is sufficient—indeed, if we were to subtract a large
constant, say 100, from the right-hand side of (125), the solution to (126) would remain unchanged. However, for policy
evaluation, such conservative bounds are not acceptable: we would like to use the exact value of the left-hand side of (125)
as a lower bound, and not incur needlessly wide bounds.

The calculation of this exact value is the contribution of our Theorem 4.5(a), which shows that

min
P∈PLip

L

1

n

n∑
i=1

µP (Xi)π(Xi)1{πb(Xi) = 0} =
1

n

n∑
i=1

π(Xi)

(
max

j:πb(Xj)>0
µ̂(Xj)− Ld(Xi, Xj

)
1{πb(Xi) = 0}, (127)

where µ̂ is an estimate of µP0
. Thus, the right-hand side of the previous display, which is exactly our ψ̂−2 , is the correct

estimator of a bound on the off-policy value. This result, along with its proof based on the no-interaction property, is novel
to our work, and guides practitioners on dealing with overlap violations in a policy evaluation problem while ensuring tight
bounds.
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