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Abstract

Multilayer networks describe the rich ways in which nodes are related by accounting for
different relationships in separate layers. These multiple relationships are naturally repre-
sented by an adjacency tensor. In this work we study the use of the nonnegative Tucker
decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that
naturally generalizes existing stochastic block models of multilayer networks. Quantifying
interdependencies between layers can identify redundancies in the structure of a network,
indicate relationships between disparate layers, and potentially inform survey instruments
for collecting social network data. We propose definitions of layer independence, depen-
dence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker
decompositions. Using both synthetic and real-world data, we evaluate the use and inter-
pretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that
using expectation maximization (EM) to maximize the log-likelihood under the NNTuck
is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL
loss, extending a previously known equivalence from nonnegative matrices to nonnegative
tensors.

Keywords: multilayer networks, social networks, stochastic blockmodels, Tucker decom-
position, link prediction

1. Introduction

Multilayer networks capture the many ways that a set of units can be connected: through
different types of relationships in a social network (Banerjee et al., 2013; Power, 2017;
Breiger et al., 1975; Sampson, 1969); at different time steps (Carlen et al., 2022; Finn et al.,
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Figure 1: Multilayer networks account for the reality and variety of ways in which nodes
interact in a system. In this example, a social network is complexly defined by
three different types of social interaction and is represented by a tensor with three
frontal slices. In this example, the process generating the “spend time with” layer
is a linear combination of those processes generating the “family” and “friends”
layers. On the right, we see a visual representation of the nonnegative Tucker
decomposition of this network and how the third factor matrix accounts for these
linearly dependent layers.

2019; Taylor et al., 2021); through different types of interactions between genes or proteins
(De Domenico et al., 2015; Larremore et al., 2013); or by different modes of transit in a
transportation network (De Domenico et al., 2014; Gallotti and Barthelemy, 2015). For
more examples see Kiveld et al. (2014) or Boccaletti et al. (2014). As more and more data
take on a multilayer network form, tools for network analysis are being steadily adapted to
multilayer contexts.

Recent work has productively cast the study of multilayer community structure in the
language of multilinear algebra (Wu et al., 2019), furnishing tensor-based definitions of
multilayer stochastic block models (SBMs) (Schein et al., 2016; De Bacco et al., 2017; Gauvin
et al., 2014; Carlen et al., 2022; Tarrés-Deulofeu et al., 2019). We extend and generalize these
efforts, connecting the tensorial nonnegative Tucker decomposition (NNTuck) with KL-
divergence to the statistical inference of multilayer SBMs. We show that minimizing the KL-
divergence of the NNTuck is exactly equivalent to maximizing the log-likelihood of observing
a multilayer network assumed to have been generated from a Poisson model with parameters
defined by the NNTuck. In this sense the NNTuck identifies a natural generalization of
existing multilayer SBMs, and as such, can be used for community detection and link
prediction.

We investigate the use of the nonnegative Tucker decomposition to identify and sta-
tistically define layer interdependence. The vocabulary around assessing interdependence
amongst the layers of a multilayer network is scattered across the literature (Battiston
et al., 2014; De Domenico et al., 2015; Stanley et al., 2016). In this work, we use the term
interdependence colloquially, to refer to the concept of dependence between layers in an
abstract way without specificity about how the layers are dependent. Conversely, we use
and define the terms of layer dependence, independence, and redundance in specific ways,
as defined either by a model or by a statistical test. These terms all specify what type of
interdependence is present in a multilayer network.
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The ability to quantify and identify interdependencies between layers has the potential
to inform survey instruments for collecting social network data, identify redundancies in
the structure of a network, and indicate relationships between disparate layers. Reducing a
multilayer network through identifying layer interdependence is both theoretically and prac-
tically appealing; although there are likely many situations where it is specifically useful,
we highlight three. First, and as noted in De Domenico et al. (2015), basic structural prop-
erties of multilayer networks—Ilike centrality, clustering coefficient, and distance—“scale
superlinearly or even exponentially with the number of layers.” Second, in addition to this
compelling computational motivation to identify layer redundancies, there is practical mo-
tivation as well. As discussed in De Bacco et al. (2017), understanding layer redundancies
in terms of social connections can help in data collection, as well as analysis. For example,
if layers of a social network are identified as redundant, it could justify the choice to not
collect those layers for future data collection in similar settings. Third, identifying redun-
dant layers, and aggregating those layers, can help enhance structural features of networks
(Nayar et al., 2015; Taylor et al., 2016, 2017).

We build upon these motivations from previous work (Schein et al., 2016; De Domenico
et al., 2015; Stanley et al., 2016; De Domenico and Biamonte, 2016; De Bacco et al., 2017;
Kao and Porter, 2018) and develop the NNTuck as a natural way to identify a latent space
in the dimension of the layers. Analogous to how the factor matrices in the single layer
SBM identify node communities, the additional third factor matrix in the NNTuck identifies
layer communities (see Figure 1 for a visualization). As such, the third factor matrix of the
NNTuck allows for the adjacency tensor to be low rank in the layer dimension.

Analyzing the third factor matrix is a significant focus of our work, and we propose
three methods for interpreting it to quantify layer interdependence based on its structure.
Furthermore, we propose definitions of layer interdependence based on likelihood ratio tests
(LRTSs) between different models of the data differing in the structure of that third factor
matrix. To address concerns with using the traditional LRT in latent factor models, we
also implement the split-LRT from Wasserman et al. (2020), which requires no regularity
conditions. We use these models and tests to classify a variety of empirical networks as
layer independent, dependent, or redundant, and find layer independence in a biological
multilayer network, layer dependence in a cognitive social structure, and layer redundance
in a collection of multilayer social support networks.

The structure of this work is as follows. In Section 2 we discuss and define the notation of
stochastic block models (SBMs), multilayer networks, and previous and related approaches
to multilayer SBMs. In Section 3 we define the nonnegative Tucker decomposition (NNTuck)
and its notation, discuss the connection of its definition under KL-divergence to stochastic
block models, motivate estimation using the multiplicative updates algorithm from Kim
and Choi (2007), and offer an interpretation of the low-dimensional third factor matrix as
describing the dependence between the layers of a multilayer network. In Section 4 we
discuss the use of the NNTuck to empirically validate layer interdependence and define
likelihood ratio test-based definitions.

In Section 5 we use cross-validation to select the NNTuck’s hyper-parameters K and C.
We discuss cross-validation based on two link prediction tasks: independent link prediction,
in which elements of the adjacency tensor are missing independently and according to an
identical uniform distribution, and tubular link prediction, in which entire tubes of the
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A The (N x N) adjacency matrix of a single-layer network
with N nodes.
A The (N x N x L) adjacency tensor of a multilayer network

with N nodes and L layers. The Tucker Decomposition
of Aisgiven by A=G x1 U x5V x3Y.

U The (N x K) outgoing community membership matrix
in an SBM for directed networks, where K is the number
of communities generating the network. For an undirected
networks U = V (see below) and we simply call U the
community membership matrix.

|4 The (N x K) incoming community membership ma-
trix in an SBM for a directed network. For an undirected
network, U = V.

Y The third factor matrix in the Tucker Decomposition,
also referred to as the layer interdependence matrix.

G The (K x K) affinity matrix describing the rate at which
nodes in different communities form edges with one another
in an SBM.

g The core tensor in the Tucker Decomposition.

Table 1: The notation and definitions for vocabulary that will be used throughout this
paper.

adjacency tensor (see Fig. 13 for a visualization of tube fibers in a third-order tensor) are
missing (i.i.d.). In Section 6 we use the NNTuck to analyze layer dependence in practice
for: two synthetic networks; the cognitive social structure dataset from Krackhardt (1987);
a biological multilayer network from Larremore et al. (2013); a social support multilayer
network from Banerjee et al. (2013); and 113 other multilayer social support networks from
Banerjee et al. (2013, 2019). We conclude in Section 7 by discussing our work and indicating
future directions of research.

2. Background

In this section we discuss related work and define notation and vocabulary. For easy ref-
erence, the primary notation is organized in Table 1. We present stochastic block models
(SBMs) in Section 2.1 and nonnegative matrix factorization (NMF) in Section 2.2. In Sec-
tion 2.3 we introduce tensor vocabulary and notation used throughout the work and review
the Tucker decomposition. In Section 2.4 we discuss multilayer networks and in Section 2.5
we present a brief survey of related work, summarized in Table 2.

2.1 Stochastic Block Model (SBM)

Stochastic block models (SBMs) identify latent groups of nodes and the density of connec-
tions between nodes in these groups as a descriptive and/or generative tool for analyzing
networks. Introduced by White et al. (1976) and expanded by Holland et al. (1983), SBMs
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decompose a network into factors that aim to uncover group structure, identify to which
groups each node belongs, and describe how nodes in these groups form connections with one
another. Beyond these context-specific questions, SBMs identify low-dimensional structure
in a network by grouping nodes into latent communities. Extensions of the original SBM
have allowed for the model to account for heterogeneous degree distributions (Karrer and
Newman, 2011), nodes belonging to multiple overlapping communities (sometimes referred
to as mized-membership) (Ball et al., 2011), and Bayesian approaches (Airoldi et al., 2008).
Here, we focus on generalizing the degree-corrected, mized-membership SBM (dc-mm-SBM)
(Ball et al., 2011) to multilayer networks. Since we use much of the same framework to
build our model for multilayer networks, we begin by describing the dec-mm-SBM in depth.

For a network with adjacency matrix A € Z6V+XN , the de-mm-SBM assumes that each
node 7 has outgoing and incoming nonnegative membership row vectors of dimension K,
u; and v; respectively, describing node ¢’s membership to K different groups when forming
outgoing and incoming edges (u; = v; when the network is undirected). A nonnegative
affinity matriz G describes the rate at which nodes in different groups form edges with one
another. Given U,V € Ri\_’ *K and G e Rf *K the de-mm-SBM assumes each edge is an

independent realization of the Poisson distribution,
ajj ~ Poisson(uinjT), foralli,7=1,...,N.

For a more detailed discussion on the common modeling choice to use the Poisson distribu-
tion (as opposed to, e.g., a Bernoulli distribution), see Zhao et al. (2012). Written this way,
we see that uiGVf must be positive in order to specify a valid Poisson rate. By requiring all
the elements u;, G, v; to be independently nonnegative, the parameters are all interpretable
as membership weights and affinities. In matrix form, we then have,

A ~ Poisson(UGV ). (1)

We estimate U, V', and G by maximizing the log-likelihood of observing A under this model.
Note that both weighted and unweighted networks can be described using this model and
the likelihood maximized all the same.

The formulation given by (1) incorporates both the degree-corrected SBM (dc-SBM)
(Karrer and Newman, 2011) and the mixed-membership SBM (mm-SBM) (Ball et al., 2011).
In the de-SBM each node may only belong to one of K groups but may have heterogeneous
degree distribution. In the mm-SBM each node may belong, in part, to each of K groups
but their memberships must sum to one. To account for both, the dc-mm-SBM assumes
that each node has a scalar parameter 6; > 0 describing its gregariousness. Equivalently,
each node’s membership vector absorbs this degree parameter such that u; = 6;s; and
v; = 6;t; for normalized membership vectors ), s, = 1 and >, t; = 1 for sg,t;, > 0. We
will henceforth describe this type of community membership as soft membership. Such an
approach allows nodes to have membership across multiple groups while also allowing for a
heterogeneous degree distribution across nodes.

There is a direct connection between the de-mm-SBM and Poisson matrix factorization
(PMF) (Gopalan et al., 2013). PMF assumes that the entries of A are realizations of
a Poisson distribution with rate parameters given by the product of W € ]R{j\_[ *K and
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H ¢ RN That is, a;; ~ Poisson (3, wirhkj) . Dropping the constant term, the log-
likelihood of observing A under this distribution is given by,

K(A‘W, H) = Z Qg longikhkj — Z wikhkj. (2)
i k k

The factors U, G, and V' can be grouped together such that we can consider the dc-mm-
SBM as equivalent to the Poisson matrix factorization (e.g., if we define W = UG and
H = VT, then the nonnegative factors of the de-mm-SBM also describe the nonnegative
factors of a Poisson matrix factorization).

2.2 Nonnegative Matrix Factorization (NMF)

A related approach for finding latent structure in a matrix, nonnegative matrix factorization
(NMF) (Paatero and Tapper, 1994; Lee and Seung, 1999), aims to factor nonnegative matrix
A into two nonnegative factor matrices, W and H, for W & Riv *K and H € Rf XN

Not every matrix can be exactly factorized in this way, and although for such cases it
is more accurately described as nonnegative matrix approzimation, we will henceforth refer
to both problems as NMF. When estimating the NMF of a matrix A there are many loss
functions with respect to which the factorization may be optimized. For reasons that will
be clearly motivated in the following sections, we focus on minimizing the KL-divergence
between the matrix and its factorization, defined as

KL(A|WH) =" (aij log——d— _ g, + (WH)Z]> : (3)
= (WH);;
An algorithm based on multiplicative updates for minimizing KL-divergence was developed
by Lee and Seung (2000) and is widely used to find local optima of the non-convex op-
timization problem given by Eq. (3). This algorithm guarantees that, given nonnegative
initializations, factor matrices W and H remain nonnegative throughout the optimization.
Furthermore, the algorithm guarantees monotonic convergence to a local minimum.
It is known that mazimizing the log-likelihood in PMF Eq. (2) is equivalent to mini-
mizing the KL-divergence in NMF:

minimize KL(A||W H)
W, H

= mi‘I}[I}IIILIIiZG (aij logaij — Q45 log(WH)ij — ai; + (WH)H)

o (4)
4 ml‘al/lg;lze — Z (aijlog(WH)ij — (WH)U)
ij

< maximize L(A|W, H).
W.H

Furthermore, as was first noted in Févotte and Cemgil (2009), using expectation maximiza-
tion (EM) to find a local maximum of the log-likelihood for PMF is step-by-step equivalent to
using the multiplicative updates given in Lee and Seung (2000) to minimize KL-divergence.
This equivalence does not hold when comparing EM updates under a Gaussian generative
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model to the multiplicative updates under a Frobenius loss. This observation, in combi-
nation with the equivalence in Eq. (4), gives NMF with KL-divergence a strong statistical
foundation. Specifically, there are two important connections to be made: (i) to factorize
matrix A into a product of two nonnegative matrices by maximizing log-likelihood in PMF
and minimizing KL-divergence in NMF are equivalent optimization problems, and (ii) the
algorithms (Lee and Seung’s multiplicative updates and EM) by which to find the model
associated with a local minimum of the shared loss function are the same for PMF and
NMEF.

2.3 Tensor Notation and Tucker Decomposition

To facilitate a clear analysis and discussion of the tensor-based model in Section 3, we
now define the tensor-specific vocabulary and notation that we will use throughout this
paper. For a more thorough overview of tensor vocabulary, methods, decompositions, and
definitions, see Kolda and Bader (2009) for an excellent review. We focus notation and
terms to third-order “frontally square” tensors X of dimension N x N x L.

Frontal slices The frontal slices of X are the L matrices of size N x N that, when stacked
together, form the N x N x L tensor. A depiction of frontal slices can be found at the bottom
left of Fig. 12. We denote the ¢th frontal slice of X as X,. The frontal slice of an adjacency
tensor A corresponds to the adjacency matrix Ay of a particular layer ¢ of the multilayer
network, and thus we will make frequent references to it.

Tensor fibers Analogous to rows and columns in matrices, third-order tensors have what
are called row, column, and tube fibers, denoted X.i, X;.;, and X;j., respectively. See
Figure 13 for a visualization of each.

Unfoldings A third-order tensor has three unfoldings: the 1-unfolding, 2-unfolding, and
3-unfolding. These are higher-dimensional equivalents to wvectorizing a matrix. The n-
unfolding of a third-order tensor stacks its column, row, or tube fibers to form a matrix,
and is denoted by X(,. See Figure 12 and Section 2 of Kolda and Bader (2009) for helpful
visualizations.

The tensor n-mode product (x,) A third-order tensor can be multiplied by a matrix
through a 1-, 2-; or 3-mode product. Dimensionally, for an N x N x L tensor X one can
take the 1-mode product with a P x N matrix, the 2-mode product with a @ x N matrix,
and the 3-mode product with a R x L matrix. The resulting dimensions of these mode
products would be P x N x L, N x ) x L, and N x N x R, respectively. Elementwise, the
1-mode product gives (X x1 B)ijr = >, Thjkbin-

Tucker decomposition Although the most prominent of the many tensor decomposi-
tions are the CP decomposition (Carroll and Chang, 1970; Harshman, 1970) and the Tucker
decomposition (Tucker, 1966), other notable decompositions include RESCAL (Nickel et al.,
2011), DEDICOM (Harshman, 1978), and PARATUCK2 (Harshman and Lundy, 1996),
where both the CP and RESCAL decompositions are special cases of the Tucker decom-
position. The Tucker decomposition decomposes an nth-order tensor X into an nth-order
core tensor G and n factor matrices. The Tucker decomposition of a third order N x N x L
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tensor X is

X:gxlUXQVX3Y. (5)

Here Gis PXQ xR, Uis Nx P, Vis NxQ,and Y is L x R. A nonnegative Tucker
decomposition is one where all elements of the factor matrices U, V', and Y and core tensor
G are nonnegative. When fitting a nonnegative Tucker decomposition to a data tensor X,
two common notions of approximation are the Frobenius loss and the KL-divergence, where
the latter is given by

KL(X |G x1U %3V x3Y) ;:Z:cijklogg}"—?k—xijﬁxijk, (6)
ijk 1

for;t\':gxlUXQVx;;Y.

2.4 Multilayer Networks

Multilayer networks consist of a set of different network ‘layers’ which each encode differ-
ent types of edges (sometimes called intralayer edges). These types of edges can repre-
sent, for example, different types of relationships in social networks (Banerjee et al., 2013;
Power, 2017; Banerjee et al., 2019), different shared genetic subsequences in biological net-
works (Larremore et al., 2013), or different time steps in temporal networks (Gallotti and
Barthelemy, 2015). In general, the node set can differ across layers, however we focus on
a subclass called multiplez networks in which the nodes are identical in each layer (Mucha
et al., 2010).

Distinct from heterogeneous networks (e.g., Dong et al., 2020), wherein there are different
categories of nodes and edges, multilayer networks have only one type of node and only
distinguish between different types of edges. Similarly, multigraphs allow for multiple edges
to exist between nodes and labels corresponding to nodes and/or edges identify the different
types of relationships. For a more comprehensive survey of related terminologies, see Kivela
et al. (2014).

Although some work about multilayer networks also models connections between layers
using interlayer edges, we do not assume or model the coupling of layers. In this case, there
exists a one-to-one alignment of layers, allowing them to be encoded in a 3-dimensional
adjacency tensor A € RNXNXL where N and L are the numbers of nodes and layers,
respectively, and where each frontal slice Ay is the adjacency matrix of a particular layer ¢
of the multilayer network. Here, a;j, > 0 if an only if there is an edge from ¢ to j in layer
£, and is otherwise zero.

Multilayer networks can be either directed or undirected. In this work we assume that
all layers within a given network are either directed or undirected. Extending our approach
to networks that have a mixture of directed and undirected layers would be straightforward.
We also assume that all edges are unweighted, a;j, € {0,1}, but this assumption can easily
be relaxed. For a more comprehensive review of multilayer networks, see Kiveld et al.
(2014); Boccaletti et al. (2014)
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2.5 Related Work

We now discuss related work as categorized by previous approaches for (i) tensor methods for
multilayer networks, (ii) stochastic block models for multilayer networks, and (iii) addressing
layer interdependence in multilayer networks.

Tensor methods for multilayer networks Multilayer networks have been studied since
as far back as 1939 (Roethlisberger and Dickson, 1939), and they have been mathemati-
cally represented by tensors since at least 1987, when Krackhardt introduced the concept
of cognitive social structures (Krackhardt, 1987). In fact, one of the foundational tensor
decomposition papers by Carroll and Chang (1970), although not a multilayer network,
was a study of multilayer relational data. Since then, tensor methods have become more
prominent in analysing multilayer networks (Bader et al., 2007; Kolda and Bader, 2009;
Nickel et al., 2011), and De Domenico et al. (2013) formalized this tensorial framework by
generalizing many network analysis tools to the multilayer setting.

The CP tensor decomposition (Carroll and Chang, 1970; Harshman, 1970) and the
Tucker decomposition (Tucker, 1966), have been implemented for their use in analyzing
multilayer networks. The CP decomposition, for example, is implemented to interpret a
fourth-order tensor of multilayer network data in Schein et al. (2015), for community de-
tection and analysis of activity patterns in a temporal network in Gauvin et al. (2014), and
to assess centrality of nodes in multilayer networks Wang and Zou (2018). The Tucker de-
composition is used for community detection in a temporal multilayer network representing
brain dynamics in Al-Sharoa et al. (2018) and to cluster keywords and communities in a
multilayer email network in Sun et al. (2009).

Stochastic block models for multilayer networks There have been a wide range of
approaches to generalize the SBM to multilayer networks. In Valles-Catala et al. (2016) a
multilayer SBM is developed by fitting a new SBM to each layer, assuming that neither
node-membership nor group-to-group connectivity is fixed across layers. Stanley et al.
(2016) develop a related model that assumes layers are sampled from a small set of SBMs
and the set of layers generated from the same SBM are referred to as belonging to the same
strata. In Carlen et al. (2022) and De Bacco et al. (2017), a node’s membership vectors are
held fixed across layers, but a new affinity matrix is fit for each layer. A similar model is
proposed in Paul and Chen (2016) but with node membership vectors constrained to take on
binary values and with a Bernoulli distribution assumption instead of Poisson. Conversely,
in Tarrés-Deulofeu et al. (2019) a Tucker decomposition accounting for layer community
structure is fit with the aim to predict types of links in a multilayer network. To do so, a
new core tensor is fit for each type of link. Although layer community structure is addressed
in Tarrés-Deulofeu et al. (2019), the number of node-communities is always fixed to equal
the number of layer-communities: a missed opportunity to examine layer interdependence
by examining the optimal number of layer-communities.

In Wang and Zeng (2019), the authors propose using a Tucker decomposition as a
multilayer SBM, but limit their factor matrices to only take on binary values. Thus, the
extent to which layer dependence is addressed is limited to the binary clustering of layers
and is more similar to the strata work of Stanley et al. (2016). Furthermore, the core tensor
is not constrained to be nonnegative, and the proposed algorithm focuses on minimizing
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the Frobenius norm of the difference between the tensor and the approximation given by
the Tucker decomposition.

Previous work explicitly using the full nonnegative Tucker decomposition as a multilayer
extension of the SBM to study layer dependence is limited to that of Schein et al. (2016),
wherein the authors propose the use of a Bayesian Poisson Tucker Decomposition (BPTD)
as a generalization of the de-mm-SBM to study a multilayer network. They highlight the
BPTD using a fourth-order tensor to study international relations between countries over
time, and show how the BPTD can group together countries, actions, and time periods
into communities. Our work extends this modeling framework by introducing a technical
approach to studying layer dependence. We build upon Schein et al. (2016)’s work to sig-
nificantly expand the motivation, estimation, and interpretation of the nonnegative Tucker
decomposition as a sensible extension of the SBM to multilayer networks. Distinct from their
work, we aim to motivate the nonnegative Tucker decomposition as a model for understand-
ing layer dependence in general, and we do so through extensive examples (see Section 3.1).
Furthermore, departing from their MCMC algorithm, we justify the use of an algorithm
for estimating a nonnegative Tucker decomposition by minimizing the KL-divergence with
multiplicative updates (Kim and Choi, 2007) by connecting it to the pointwise maximum
likelihood estimate of the log-likelihood using expectation maximization—the estimation
method proposed in De Bacco et al. (2017).

Because we will often reference the work and the multilayer SBM model MULTITEN-
SOR (MT) built in De Bacco et al. (2017), we define and discuss the work in more detail
here. Consider a multilayer network with N nodes and L layers represented by adjacency
tensor A € Zé\chN *L " Assume each node 4 in the network has outgoing and incoming non-
negative membership vectors u; and v;, respectively, representing their soft assignment to
K groups. The densities with which nodes in each community interact in layer £ is given
by nonnegative affinity matrix Gy. The MT model then assumes the generative process
whereby

A ~ Poisson(A), where Ay = UG,V " for £ € [1, L]. (7)

Written this way we see that MT fits an SBM to each layer of the network, holding fixed
the outgoing and incoming group memberships across layers. Parameters U,V, and Gy
are estimated by maximizing the log-likelihood of observing A via an EM algorithm.

Layer interdependence Understanding how the layers of a multilayer network interact
with, represent, or are different from one another has been a relevant question ever since
multilayer networks started being studied. As such, there have been a multitude of proposed
methods to study and assess layer interdependence. Krackhardt (1987) suggested differen-
tiating layer similarity by comparing individual layers to a consensus structure. Battiston
et al. (2014) introduce the measure of edge overlap which they propose to use for determin-
ing similarity between layers. This measure is built upon in Kao and Porter (2018) which
uses a similarity measure based on edge overlap to identify layer communities. The authors
construct a single layer network where each node is a layer and each edge is weighted by
the similarity measure, and then find layer communities by doing community detection on
this new network. De Domenico et al. (2015) and De Domenico and Biamonte (2016) de-
velop information-theoretic tools to identify layer dependency and cluster similar layers. In
Stanley et al. (2016), the authors study layer interdependence by categorizing layers into

10
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groups such that all layers were drawn from the same SBM. In the MULTITENSOR (MT)
work of De Bacco et al. (2017), layer interdependence is studied through building multiple
MT models using different subsets of the layers, and the models’ performance (measured by
test-AUC) on a link prediction task is used to determine if there is layer interdependence in
the model. In this setting, layer interdependence can be viewed as a specific application of
transfer learning which assesses how a model built in one setting performs in an alternative
one (Torrey and Shavlik, 2010; Altenburger and Ugander, 2021). Finally, while not explic-
itly developed for use in the multilayer setting, tools to compare similar structures across
graphs such as those developed in Wills and Meyer (2020) and Racz and Sridhar (2021)
could be used to compare layers in a multilayer network.

These various approaches to studying layer interdependence have been applied to various
disciplinary contexts, and have resulted in varying discipline-specific conclusions, as well.
In particular: De Domenico et al. (2015) identifies and interprets layer dependence in vary-
ing contexts—from the worldwide food import/export multilayer network to the London
metropolitan public transportation multilayer network; Battiston et al. (2014) interprets
the dependencies between trust and communication, business, and operating partnerships
within an Indonesian terrorist network; Kao and Porter (2018) interprets the dependencies
between different research areas in the American Physical Society’s collaboration network,
the regional dependencies in an airline network, and the distinction between positive rela-
tionships, negative relationships, and temporally distinguished esteem in a social network;
Stanley et al. (2016) and De Domenico and Biamonte (2016) both discuss the interpretation
of layer dependence in the context of the human microbiome, and the ability to use layer
interdependence methods to identify similarly functioning regions within the body. Over-
all, previous work on studying layer interdependence in multilayer networks identifies many
disciplines and contexts within which such methods have the potential to corroborate or
identify socially, scientifically, or theoretically interesting findings. We aim to add to this
body of work.

In contrast to these previous approaches to identify layer interdependence, we propose
that the nonnegative Tucker decomposition does so by identifying which layers can be
described by shared generative stochastic block models. As we will discuss in Section 3.2,
the NNTuck is a generalization of the strata SBM model from Stanley et al. (2016) that is
similar to moving from fixed- to mixed-membership assignments in the single layer SBM.

2.6 Contributions

Situated in this related work, the contributions of our work are as follows: (i) we use and
expand the motivation of the nonnegative Tucker decomposition with KL-divergence as a
natural extension of the dc-mm-SBM to multilayer networks by allowing for distinct latent
structure in the nodes and layers; (ii) we propose the NNTuck as a generalization of many
prior models and approaches for extending the SBM to multilayer networks (see Table 2 to
see how the NNTuck generalizes related work); (iii) we propose the inspection of the third
factor matrix in the NNTuck for quantifying and assessing layer interdependence and discuss
three specific methods for doing so; (iv) we show the equivalence in model, loss function, and
algorithm between Poisson Tucker decomposition and nonnegative Tucker decomposition;
(v) we propose definitions of layer interdependence based on the likelihood ratio test; (vi) we
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define two link prediction tasks for multilayer networks to use cross-validation as a tool for
model selection; and (vii) we use the NNTuck to study layer interdependence in a variety of
empirical multilayer networks: one biological, one cognitive social structure, and 113 social
support networks.

3. Nonnegative Tucker Decomposition (NNTuck)

We begin this section by outlining our approach to a multilayer SBM that corresponds to
a nonnegative Tucker decomposition with KL-divergence. We will henceforth refer to the
multilayer SBM developed here as just the nonnegative Tucker decomposition (NNTuck),
although it’s important to note that the SBM interpretation only corresponds to the non-
negative Tucker decomposition estimated with KL-divergence loss as in Equation (6), not
Frobenius loss. We present the model of the NNTuck as a multilayer SBM in Section 3.1,
and discuss deflation and layer dependence in the NNTuck in Section 3.2. We present an
algorithm for estimating the NNTuck of a multilayer network and discuss the algorithm’s
limitations in Section 3.3.

3.1 The Model

Consider a multilayer network with /N nodes and L layers represented by adjacency tensor
Ae Zév +XN *L We assume that each node i has nonnegative membership vectors u; € Rf
and v; € Rf representing its soft assignment to K < N groups. Moreover, we assume
that each layer ¢ has nonnegative vector y, € RE describing the layer’s soft membership
to each of C' < L layer communities. Just as matrices U and V in the SBM describe
latent community structure in the nodes of single-layer networks, the factor matrix Y in
the NNTuck describes latent structure in the layers of a multilayer network. Finally, we
assume tensor G € ]Rf *EXC Jefines C different affinity matrices. Let u;, v;,y, be the rows
of nonnegative matrices U,V , and Y, respectively. The NNTuck multilayer SBM assumes

A ~ Poisson(G x1 U x5V x3Y). (8)

For an undirected network, we set U := V and constrain the frontal slices of G to be
symmetric. Maximizing the log-likelihood of observing A under the model given by (8) is
equivalent to minimizing the KL-divergence between A and A = G x, U x5V x3Y. This
is a tensorial generalization of the connection between PMF and NMF with KL-divergence
referenced in (4) and motivates the use of the KL-divergence for determining the NNTuck.

We now define vocabulary for three types of NNTucks, each based on different assump-
tions of the structure and dimension of Y € REXC,

Definition 1 (Layer independent NNTuck) A layer independent NN Tuck is a non-
negative Tucker decomposition where C = L and Y has the constraint’Y = 1.

Definition 2 (Layer dependent NNTuck) A layer dependent NN Tuck is a nonneg-
ative Tucker decomposition where'Y has the constraint C' < L.

Definition 3 (Layer redundant NNTuck) A layer redundant NNTuck is a non-
negative Tucker decomposition where C = 1 and we constrain Y to be the ones vector,
Y =11,...,1]".
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Citation

Approach

Schein et al. (2016)

Valles-Catala et al. (2016)

Stanley et al. (2016)

Paul and Chen (2016)

De Bacco et al. (2017) and
Carlen et al. (2022)

Tarrés-Deulofeu et al. (2019)

Wang and Zeng (2019)

The same model as the nonnegative Tucker decompo-
sition. The factor matrices and core tensor are esti-
mated using an MCMC inference algorithm.

A separate SBM is estimated for each layer.

The model assumes a Bernoulli distribution and K is
not fixed across layers. Layers within the same strata
s are drawn from the same SBM with U® := V*® con-
strained to only take on binary values.

U =V constrained to only take on binary values, Y
is constrained so that Y := I, and the model assumes
a Bernoulli distribution.

Y is constrained so that Y := I.

U,V, and Y have constraint C' = K and a new core
tensor G is estimated for each type of link in the net-
work.

U,V , and Y are constrained to only take on binary
values.

Table 2: Previous approaches to multilayer SBMs. Excepting the first citation, we write
these approaches in relation to the nonnegative Tucker decomposition (NNTuck)
which assumes A ~ Poisson(G x1U x2 V x3Y) for G € RfXKXC, U,V e ]RfXK,
and Y € RJLFXC. For descriptions of our novel contributions situated in this work
see Section 2.6 and for more details on the NNTuck see Section 3.
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G3 =a Gl +p G2

Figure 2: If one or more of the frontal slices of the core tensor are linear combinations of
another, there is a deflation of the core tensor. In this example, we show how a
layer independent NNTuck (left) can be equivalently written as a layer dependent
NNTuck (right). This figure shows how layer dependence is stored in the factor
matrix Y.

3.2 Deflation and Layer Interdependence

In this section we discuss layer dependence in the NNTuck through three examples and
discuss how deflation of the core tensor allows for latent structure to be identified in the
layers of a multilayer network.

Definition 4 (Deflation) We say there is a deflation of the core tensor G € RfXKXL of
a layer independent NNTuck if there exists a tensor G e RfXKXC and a factor matriz
Y € Rixc for C < L such that,

Gx1Uxs V=6 x1Ux3V x3Y. (9)

When the core tensor can be deflated the factor matrix Y in the NNTuck captures the
interdependence between layers. We examine deflation and the Y factor matrix through
the three example model instances below, respectively depicted in Figures 2, 3, and 4.

Example 1 (Linearly dependent core tensor) For a three-layer adjacency tensor A €
{0, 1}NVXNX3 consider the layer independent NN Tuck given by A= G x1U x5V x3T where
the frontal slices of core tensor G € REXKX?’ are as follows:

0.2 0.1 0.3 0.01 0.35 0.105
G1= {0.1 0.2] G2 = {0.01 0 ]G3 - [0.105 0.2 ] '

As may be evident, G's is a linear combination of G; and G5. Specifically, G3 = G| +
%GQ. In the same sense that a rank-deficient matrix has one or more columns which are
a linear combination of others, we can consider the inclusion of G5 in the core tensor
redundant. If we have a limited data source from which we are estimating our model,
“wasting” information to fit this redundant frontal slice could lead to a less efficiently
estimated model. Instead, consider tensor G’ whose frontal slices are G} = G1 and G/, =
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G5, and define
1 0
Y =0 1],
1 0.5

where the third row contains the respective weights of G; and G4 that sum to G3. Then
g><1U><2VX3I:g/><1U><2V><3Y.

Note that whereas these two models are mathematically equivalent, the deflated model
allows for latent structure in the layers to be more efficiently identified.

Example 2 (strata SBM) For A € ZéV+XNX4 consider the nonnegative Tucker-2 model
given by A =G x1 U X9V x31. Assume that the core tensor G € RfXKﬂl has frontal

slices G := G1 and G4 = Go, for the same G1 and Go in the previous example. For
G' = REXEX2 with frontal slices G4 = Gy and G = G and factor matriz

O = O =
— O = O

thengxlUXQVX;gI:g/><1U><2VX3Y.

The interpretation of this example is that layers 1 and 3 in the multilayer network were
drawn from the same SBM, one distinct from that which generated layers 2 and 4. Because
node-membership matrices U and V are held to be fixed across layers, this means that
communities interact with the same rates in layers 1 and 3, although these rates are different
from those which determine interaction in layers 2 and 4. This example clusters layers
generated from the same SBM. This example is generatively equivalent to the strata SBM
(Stanley et al., 2016) if, in the example we fix U := V, and if, in the strata SBM K and
node-membership are fixed across layers.

Example 3 (repeated SBMs) For A € {0,1}V*N*4 consider the layer independent
NNTuck given by A =G x1 U xoV x31. In this example, consider that all of the frontal
slices of G are equal: Gy = Gy for £ = 1,2,3,4. Define G' € RfXK“ = G1 and factor
matric’ Y =1 = [1,1,1,1]T. Then G ><1U><2V X31:G1 ><1U ><2V ><3Y.

This deflated model is a layer redundant NNTuck and can be interpreted by considering
that all layers of the network are different realizations of the exact same SBM. That is,
the underlying process which is assumed to have generated the structure observed in layer
1 is the same as that which generated the structure observed in all other layers. In this
sense, a multilayer network with this multilayer SBM does not need to be represented as a
multilayer network. However, see Taylor et al. (2016) for a discussion of the detectibility
limit when a multilayer network’s layers are generated from a repeated SBM.

The following final example serves as a warning of the limitations of assessing layer
interdependence using the NNTuck model.
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.............

Figure 3: This figure shows how the NNTuck generalizes the strata multilayer stochastic
block model (SBM) of Stanley et al. (2016). If, for example, all layers in a
multilayer network are drawn from one of two SBMs (with the same U and V'
across layers), the factor matrix Y has only zeros and ones.

S‘n
g

o0
5

VT VT

Figure 4: A visualization of a layer redundant NNTuck. This figure shows how NNTuck can
model a multilayer network wherein each layer was drawn from the same SBM.
In such a case, the factor matrix Y is a vector of all ones and the core tensor G
is of dimension K x K x 1.

16



A TENSOR FACTORIZATION MODEL OF MULTILAYER NETWORK INTERDEPENDENCE

Example 4 (Linear basis as a cause for deflation) Consider a network for which K =
2, L >4, and a layer independent NNTuck with 2 X 2 affinity matrices Gy for { =1,...,L
for each layer of the network.

Note that there is a natural linear algebraic (as opposed to sociological or contextual) reason
why this NNTuck can be deflated, or more generally why an estimated model may perform
well when C < L without necessarily exhibiting contextually relevant layer dependence.
Specifically, any 2 x 2 matrix can be written as a linear combination of the following bases:

10 0 1 0 0 0 0
i Rl O R o B

G = |:CCL Z:| =aBi + bBy + cB3 + dBy.

For the NNTuck where all matrices G, have nonnegative entries, coefficients a, b, ¢, d above
will also be nonnegative. Thus for this K = 2 case, any core tensor G € RiXQXL can be
deflated to core tensor B € Ri““ whose /' frontal slice is By. In this sense, we can only
hope to interpret deflation as a characteristic of the network (as opposed to a characteristic
of the linear algebra) when C' < K?2. For an undirected network, where we constrain the
frontal slices of the core tensor to be symmetric, this constraint is C' < w

For the empirical examples we consider in the next section (where there are between
L = 7 and L = 21 layers), we will need to consider this issue only in the case where
K =2,3,4, depending on the network, because L < K? for all larger K, and thus C < K?
as well. As broader context, for the over 45 datasets provided in De Domenico’s multilayer
network database (De Domenico, 2022), only two datasets have more than 16 layers. This,
however, is not always the case, and especially not so when considering temporal multilayer
networks wherein a network is captured at many time steps. In such situations, one must

bear in mind the constraint of C' < K? for the purposes of interpreting the NNTuck.

For example,

Remark 5 (Relationship to MULTITENSOR (MT)) If we collect the affinity ma-
trices Gy from the MT model to be the frontal slices of tensor G € RfXKXL, then (7) is
equivalent to

A ~ Poisson(G x1 U x5 V). (10)

Note that G x1 U x9 V. = G x1 U xo V x31. This model is what we define as a layer
independent NN Tuck in Theorem 1 above and is sometimes called a Tucker-2 decomposition
(see Kolda and Bader, 2009). Since all factors are nonnegative, the MT model seeks to find
the nonnegative Tucker-2 decomposition by maximizing the log-likelihood through EM. Given
that the interpretation of the Y factor matrix is that it describes layer communities in the
network, constraining Y = I as is done in MT assumes that each layer of the multilayer
network was drawn from a distinct SBM, albeit with common membership matrices U and
V. That is, MT assumes that there is no latent structure in the layers of the network.

3.3 Algorithmic Approach

Kim and Choi (2007) extend the multiplicative updates for NMF from Lee and Seung (2000)
to the nonnegative Tucker decomposition for minimizing both KL-divergence and Frobenius
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loss. We reproduce the updates for minimizing KL-divergence in Algorithm 1. The updates
in Kim and Choi (2007) are written for a general, n-th order tensor, so we rewrite them here
for a 3rd order tensor in a setting wherein some data is masked as specified by a masking
tensor M € {0, 1}V*N*L Note that if the data is not masked, the all-ones masking tensor
M = 1VXNXL yecovers the original multiplicative updates. As we’ll see in Section 5, the
masking tensor allows for cross-validation wherein the NNTuck is only estimated from a
portion of the network. Note that these updates are done sequentially, not in parallel. See
the URL in Appendix A for a python implementation.

Algorithm 1 Multiplicative Updates for minimizing KL-Divergence in the NNTuck (Kim
and Choi, 2007)

Input: A, K,C, Symmetric, Masked, M, Independent, Redundant

Initialize U,V € RY*X Y ¢ Rixc, and G € RfXKXC to have random, nonnegative
entries. Initialize A = G x1U x9V x3Y.

if Symmetric: V «— U, Gy < G;Ge for £=1,...,C, and skip each V update step below.
if Independent: Y < I and skip each Y update step below.

if Redundant: Y < ones(C) and skip each Y update step below.

if not Masked: M = 1VXNxL

KL(A||A:)~KL(A|| A1)

K LA A < rel_tol:

while

[M1)0 Ay/A)][G %2 V x3 Y]],

1)
M(l)[g X9V X3 Y}(Tl)

[M(Q) o A(z)/A(Q)Hg X1 U X3 Y]T

(2)
M 9)[G x1 U x3 Y}(TZ)

Ve ve [Mis) 0 As)/A@)][G x1U x2 V],

M3)[G x1 U x2 V]

GeGo Mo A/A x 1 U xo VT x3Y T
M UT xa VT x3YT

A%gxlUXQVX:;Y

U<+Uo

VVo

Return U,V.Y ,G.

Because these updates are derived from the multiplicative updates for NMF from Lee
and Seung (2000), they come with guaranteed monotonic convergence to a local minima.
In practice, we declare that the algorithm has found a local minima if the KL-divergence
has not decreased by more than a relative tolerance of 107 in ten steps. For the case
of an undirected network, we initialize the core tensor to have symmetric frontal slices
(G; = G}), and initialize and fix U = V throughout the updates. We then follow the
multiplicative updates above by only making updates to U,Y, and G. Doing so maintains
the guaranteed monotonic convergence to a local minima while preserving the symmetric
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structure in G, and ensures the constraint for the undirected case that U = V. A proof of
the following Proposition appears in Appendix B.

Proposition 6 Determining factor matrices U,V , and Y and the core tensor G in the
NNTuck by mazimizing the log-likelihood using expectation mazimization (EM) is equiva-
lent to using the multiplicative updates given in Kim and Choi (2007) to minimize KL-
divergence.

The significance of this proposition is noticing that not only is minimizing KL-divergence
equivalent to maximizing log-likelihood, but also that the algorithm by which to find a local
minimum of the KL-divergence is the exact same as that to find a local maximum of the
log-likelihood. Moreover, using EM to maximize the log-likelihood of observing A under
the De Bacco et al. (2017) MULTITENSOR (MT) model is equivalent to minimizing the
KL-divergence between A and a layer independent NNTuck. That is, the EM steps given in
De Bacco et al. (2017) are equivalent to the multiplicative updates in Kim and Choi (2007),
where at initialization Y = I is fixed and at each step Y is not updated. The algorithmic
equivalence between EM for a Poisson model and multiplicative updates has been noted for
NMF in Févotte and Cemgil (2009) and for the CP decomposition in Chi and Kolda (2012).

Algorithmic limitations It is important to emphasize that the the KL-divergence given
by (6) (and thus the log-likelihood of observing A under (8)) is non-convex. Therefore,
although the multiplicative updates discussed above guarantee monotonic convergence, it
is only to local optima. In practice, we use a multistart approach: run the algorithm
multiple times with different initial conditions and select the NNTuck with the maximal
log-likelihood over these runs. See Appendix A for details in choosing the number of random
initializations. Going forward, we use hat notation to denote the NNTuck factors and core
tensor estimated by Algorithm 1 using a multistart approach.

Although not strictly algorithmic, as we note in the next section, the nonnegative Tucker
decomposition is non-identifiable. However, we note that in practice when we compare
multiple decompositions of the same multilayer network, there is little to no interpretable
difference in the factors associated with the estimation with the maximal log-likelihood over
20 random initializations. Although recent work by Sun and Huang (2023) has proposed
conditions for ensuring identifiability, implementing and altering these conditions in the
context of multilayer networks, is subject for future work. The non-identifiability of the
NNTuck is one reason why, as we’ll see in the next section, we emphasize the use of the
split likelihood ratio test Wasserman et al. (2020) to test for interdependent structure in
multilayer networks.

The algorithmic details and implementation of the NNTuck (outside of its application
to multilayer networks) is a rich field with many future work directions. For example,
future work could explore an evaluation of alternative optimization methods for nonneg-
ative matrix and tensor factorizations, including mirror descent (Hien and Gillis, 2021),
projected gradient descent (Cichocki and Zdunek, 2007), and stochastic gradient descent
(Kasai, 2018). Furthermore, Chi and Kolda (2012) propose a related algorithm for nonneg-
ative Poisson CP decomposition using multiplicative updates and discuss conditions under
which the algorithm converges to KKT points. A similar analysis of the nonnegative Tucker
decomposition would be intriguing but is again outside the scope of this work.
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4. Statistical Tests for Validating Layer Interdependence

In this section we introduce formal definitions of layer interdependence by defining corre-
sponding likelihood ratio tests (LRTs). We conclude with a presentation of three methods
by which to interpret Y of an NNTuck estimated for an empirical multilayer network.

4.1 Layer Interdependence and Likelihood Ratio Tests

Likelihood ratio tests can be used to assess the performance of two models, where one
model is nested within the other. In the context of evaluating different NNTuck models we
compare the layer independent NNTuck to the nested models of layer dependent NNTucks
or a layer redundant NNTuck. The null hypothesis of the LRT is that the two models fit
the data equally well, and the alternative hypothesis is that the richer model fits the data
significantly better. If the resulting p-value rejects the null hypothesis, then the full model
should be used. Otherwise, the nested model should be used. We use this framework to
define three tests for multilayer networks.

Definition 7 (Layer independence) For a multilayer network let model I be the layer
independent NNTuck and let model II be the layer dependent NNTuck. A multilayer network
has layer independence at level o if the likelihood ratio test with (L —C)K? — LC' degrees
of freedom is significant at level .

Definition 8 (Layer dependence) A multilayer network has layer dependence at level
a if the LRT described above is not significant at level o for a pre-specified C.

Definition 9 (Layer redundance) A multilayer network has layer redundance at level
a, if the LRT comparing the layer redundant NNTuck to the C' = 2 layer dependent NN Tuck
with K? + 2L degrees of freedom is not significant at level .

To use these LRTs, one must determine how many parameters are in the full model and
how many are in the nested model. For example, to find the difference in the number of
parameters between the layer dependent and independent NNTuck, consider that the layer
independent NNTuck has N x K parameters in U and N x K parameters in V. There are
K x K x L parameters in G and no free parameters in Y because it is fixed. The layer
dependent NNTuck has N x K parameters in each of U and V', L x C parameters in Y,
and K x K x C parameters in G. Thus the difference in parameters between both models
is 2NK + K?L —2NK — LC — K?C = (L — C)K? — LC. Likewise, when comparing two
layer dependent NNTucks with dimensions C; and C,, for C,, < Cy and fixed K, there is a
difference of (L + K?)(Cy — Cy,) parameters between the two models. When comparing the
layer redundant NNTuck nested under the C = 2 layer dependent NNTuck, the difference
in number of parameters is K2 + 2L.

It is important to note that the theory underlying the likelihood ratio test, Wilks’
theorem (Wilks, 1938), necessarily depends on (i) the maximum likelihood being reached
and (ii) the model being identifiable. These are conditions we cannot guarantee in our
problem context. Moreover, we propose this method for determining layer interdependence
constrained to the classes of models for which the difference in the degrees of freedom
d= (L—C)K?—LC > 0. Because of the non-identifiability, the way by which these models
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are nested is nuanced, and thus this inequality is not always true for certain values of
L, K, and C. Furthermore, Wilks’ theorem gives asymptotic analysis of how the difference
between two likelihoods approaches a x? distribution with degrees of freedom given by the
difference in parameters. To explore how the number of samples—the number of nodes
and layers, in the context of a multilayer network—impacts the power of these LRTs, we
conduct a numerical experiment in Appendix F.

To address both of these issues, we also utilize the split-LRT, developed by Wasserman
et al. (2020), which requires no regularity conditions. The split-LRT, however, still requires
that the estimation of the nested model corresponds to the global maximum of the log-
likelihood. Algorithm 1 only guarantees convergence to a local maxima, so for comparing
models using both the standard and the split LRT, we use the NNTuck corresponding to
the highest log-likelihood over multiple initializations of Algorithm 1. See Figure 11 in
Appendix A to see how the maximal log-likelihood achieved by Algorithm 1 varies across
multiple initializations, and see Appendix G for more details on split-LRT. For the datasets
we discuss below, the layer independence, dependence, and redundancy tests only differ for
one dataset when comparing the regular LRT to the split-LRT. This difference is consistent
with the fact that the split-LRT is lower powered than the regular LRT. The low power of
the split-LRT may be intensified in the context of the NNTuck by the presence of nuisance
parameters, wherein although the LRT is testing for structure in Y, the other factor matrices
and core tensor must be estimated as well. In Tse and Davison (2022), Strieder and Drton
(2022), and Spector et al. (2023), the authors propose methods for improving the power
of the split-LRT in the presence of nuisance parameters, including suggestions for how to
more optimally split the data. An analysis considering how to extend their suggestions to
the setting of three-way tensor data is beyond the scope of this work. Alternative LRTs for
latent variable models have also been proposed (see Chen et al., 2020), and address other
common issues that arise when using the LRT to compare latent variable models.

4.2 Layer Interdependence in an Estimated NNTuck

If the layer dependence test determines that an empirical multilayer network has dependent
layers, it is useful to investigate how they are related. In the examples in Section 3.2 above,
the frontal slices of the deflated core tensor correspond exactly to the affinity matrix of one
or more of the layers. As an example, consider the frontal slices of the deflated NNTuck in
Figure 2. These frontal slices are the affinity matrices for the first and second layer of the
multilayer network (beyond the color coding in the example, we can also see this in the first
two rows of the Y factor matrix, which are [1,0] and [0, 1], respectively). For an NNTuck
estimated for an empirical multilayer network there is no constraint such that this must be
true. As such, one must use certain heuristics to appropriately interpret Y estimated from
empirical data.

The first approach is to row-normalize Y such that yf) = y¢/|lyell1 and inspect the
rows of Y(!) relative to one another. The second approach is to row-normalize Y such that
yf) = y¢/||¥¢l|2 and inspect the entries of similarity matrix given by Y @Y @T, The third
approach uses reference layer bases. In this approach, C' reference layers are chosen, G is
rewritten in the linear bases of those reference layers’ affinity matrices, and corresponding
Y'* is defined in relation to the new core tensor. This last approach has the added benefit
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of interpreting each layer’s dependence with respect to the C reference layers. For specifics
on this process and guidance on choosing the reference layers, see Appendix E.

5. Model Selection Through Cross-Validation

In this section we discuss the use of cross-validation in this work and define two link predic-
tion tasks for tensors. We emphasize that we are more interested in how the cross-validation
highlights interesting model choices than by the actual predictive performance of NNTuck
in these link prediction tasks. Statistical factor models of networks are generally not com-
petitive with machine learning classifiers that use even simple topological features (see, e.g.,
Clauset et al., 2008; Liben-Nowell and Kleinberg, 2007; Ghasemian et al., 2020). As such,
the absolute performance here should not be considered a metric of primary interest, but
as a means of comparative inspection. That said, recall that in the following link predic-
tion tasks the layer independent NNTuck is equivalent to MULTITENSOR from De Bacco
et al. (2017); to compare the performance of NNTuck to other link prediction methods, see
De Bacco et al. (2017).

The construction of the cross-validation approach is as follows. For each link prediction
task we construct five different masking tensors and estimate a model based on only observed
entries of the data tensor. We select the NNTuck with the highest test set log-likelihood
from 50 different runs of the multiplicative updates algorithm with random initializations.
Then, test-AUC is averaged across the five different maskings. This process is repeated for
varying dimensions (K, C) in the NNTuck.

We define the link prediction tasks via the structure of their masking tensors M €
{0, 1}VXNXL where M;;p = 0 indicates that the presence or absence of an edge between
nodes i and j in layer ¢ is missing, and M;;, = 1 otherwise. In undirected networks we
enforce M;;p = Mj;y for both link-prediction tasks.

Independent link prediction In this link prediction task masking is irrespective of
layer. That is, we assume that for b-fold cross-validation, elements in the tensor are missing
with uniform and independent probability 1/b. Specifically, missing entry (i, j) in layer k
does not imply that entry (4, j) is missing in all layers (M, = 0 % M;;; = 0 for £ # k).

Tubular link prediction In this link prediction task edges are always observed or missing
across all layers. That is, we assume that for b-fold cross-validation, tubes (,7,-) in the
tensor are missing with uniform probability 1/b (see Figure 13 for a visualization of tensor
tube fibers). Specifically, missing link (i, 7) in layer k& does imply that link (¢, ) is missing
in all layers (M, = 0 = M;;; = 0, V/). We motivate this tubular task by commenting
that independent link prediction is often “too easy,” in the sense that if many layers are
dependent then missing elements are much easier to impute when other elements from the
same tube are available. Tubular link prediction captures realistic settings where one knows
nothing at all about the relationship between two units ¢ and j in any layer.

Given the structure of an adjacency tensor, there are (at least) two other link prediction
tasks which are representative of true missingness patterns in data: one in which an entire
horizontal slice of data is missing (M;j = 0 = M;,e = 0 for all p,£), and one in which
an entire lateral slice of data is missing (M;;r = 0 = M,y = 0 for all r,¢). We limit our
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scope to the independent and tubular link prediction tasks above, but mention these as
potentially interesting missingness patterns in the context of multilayer networks.

6. Application of the NNTuck to Synthetic and Empirical Networks

In this section we use the cross-validation tools discussed in Section 5, the layer dependence
tests developed in Section 4.1, and the Y interpretability heuristics from Section 4.2 to
use the NNTuck in application. In Section 6.1 we generate a synthetic network example
to exhibit the interpretability of the Y factor matrix when K and C are known. In Sec-
tion 6.2 for each empirical network presented we carry out the following steps: (i) use a
cross-validation approach to determine model hyper-parameter choices K and C, (ii) use
likelihood ratio tests with this (K, C) pair to determine layer independence, redundance,
or dependence, and (iii) if the network is layer dependent at level o, examine the Y factor
matrix.

6.1 Synthetic network examples

In this section we define two different synthetic networks and inspect their estimated Y
factor matrices. For both examples, we let N = 200, K = 2, L = 4, and define affinity

matrices
0.2 0.1

Gi1= [0.1 0.2

} and G — {0.3 0.01}

0.01 O

We set the affinity matrices Go and G4 to be linear combinations of the above affinity
matrices,

Gy = aG1 + bG35 and G4 = ¢G4 + dGs,

for different values of a, b, ¢, and d between the two examples.

In both examples, we generate a multilayer network from an SBM which assumes that
an edge between nodes 7 and j in layer £ is drawn from a Poisson distribution with mean
uivaf. We set u; = v; and assign 100 nodes to the first group (u; = [1,0]) and 100
nodes to the second group (u; = [0, 1]). Generating these synthetic networks in this way is
equivalent to drawing them from A ~ Poisson(G x; U x2 V x3Y) for

o O 9 =
Q= SO

and G € Rf *EX2 with first and second frontal slices Gy and Gi, respectively. For the first
network we define a = 0.5, b = 0.5, ¢ = 0.1, and d = 0.9, and for the second we let a = 1,
b=0,c=0,and d = 1. This second synthetic network is the strata example depicted in
Figure 3 and discussed in Example 2. As an aside, note that whereas in these two networks
the entries of the rows of Y sum to one, this need not be the case. Actually, by allowing
the rows of Y to be unnormalized we can account for heterogeneous degree distributions
across layers, just as the degree-corrected single layer SBM in Karrer and Newman (2011)
accounts for heterogeneous degree distributions across nodes.
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Y Y y® Y+
10 [[0.22616 0.00008] [[0.99967 0.00033] [[1. 0. 1
05 05 [0.11345 0.0996 ] [0.53251 0.46749] [0.50165 0.55057]
0 1 [0. 0.18084] [o. 1. ] [0. 1. ]
01 09 [0.02043 0.171651] [0.10635 ©0.89365]1] [0.09032 0.949141]
Lo [[0.00389 0.2282 ] [0.01678 0.98322] [ 1. 0. ]
10 [0.00061 0.22871] [0.00264 0.99736] [ 1.00222 -0.01712]
01 [0.19255 0.00001] [0.99997 ©.00003] [ o. 1. ]
0 1 [0.19034 0. 1 [0.99999 0.00001]] [-0.00002 ©.98853]]
[[0.00167 0.00613] [0.21378 ©.78622] [[0.17075 0.82925]
o [0.00135 0.00611] [0.18067 ©.81933] [0.1388 0.8612 ]
Gossip village [0.00193 0.00678] [0.22132 0.77868] [0.17817 0.82183]
#48 [0.00276 0.00669] [0.2919 ©.7081 ] [0.25064 0.74936]
K=4C=2 [0.00396 0.00185] [0.68134 ©.31866] [0.77642 0.22358]
[0.00402 0.001 1] [0.80135 0.19865] [1. 0. ]
[0.00007 0.003111] [0.02254 0.97746]] [0. 1. 11

Figure 5: We reproduce the results of the methods for interpreting Y in the NNTuck of
the first and second synthetic network described above as well as for the 48th
village from Banerjee et al. (2019) (labelled “Gossip village 48” in Figure 9). For
the synthetic networks, Y is the true factor matrix from which the network was
generated. For all three, Y has been estimated from the NNTuck with the highest
log-likelihood over 20 runs with different random initializations, Y@ has been
normalized so that the entries of each row sum to one, Y @ has been normalized
so that each row has unit 2-norm. For the synthetic networks, Y'* is the resulting
factor matrix after rewriting G in the basis of layers 1 and 3 (a process which
is described in detail in Appendix C). Note that in the synthetic examples, all
methods for interpreting f’, including simply inspecting Y, accurately represent
how the layers of the network are related to one another. Specifically, note how
Y * almost exactly recovers the ground truth of how the layers are interdependent.
Focusing on Y* matrix for the gossip village, the two reference layers chosen are
“Who asks you for advice?” and “Who are your relatives?”, where the remaining
layers can be understood in terms of a linear combination of these.
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For both networks we estimate the NNTuck with C' = 2 and K = 2 and report the
NNTuck with the highest log-likelihood over 20 runs with different random initializations.
We threshold the values in the resulting membership matrices U and V to reflect the
hard membership of the generative model. Node membershlp is ezxactly recovered for both
networks and thus we focus our attention on interpreting Y. In both networks, Y recovers
the structural dependence between layers and we report the results of all three approaches
for interpreting Y inF igure 5.

6.2 Empirical Multilayer Networks

In this section we use the NNTuck and the tools developed thus far to study several em-
pirical datasets: the cognitive social structure dataset from Krackhardt (1987); a biological
multilayer network from Larremore et al. (2013); a social support multilayer network from
Banerjee et al. (2013); and 112 other multilayer social support networks from Banerjee et al.
(2013, 2019). In Table 3 we include the results from the LRT's for a subset of these empirical
networks and a synthetic network from Section 6.1. Notably, we conclude that the Malaria
multilayer network has layer independence at level a = 0.05, whereas and all of the other
datasets have either layer redundance or layer dependence at the same level a.

Note that for the cross-validation tasks in the following subsections, we report the av-
erage test AUC across 50 different random initializations for each combination of K and
C. We vary K from 2 to 12 in the Krackhardt multilayer network, and from 2 to 20 in
the Malaria and Village multilayer networks. See Appendix D for a discussion of how we
vary K and to see how increasing K to larger values does not impact our model selection.
For the LRT in each application we select the NNTuck (for prespecified (K,C)) with the
highest log-likelihood across 20 random initializations. See Appendix A for computational
experiments testing the variation in maximal log likelihood as a function of the number of
random restarts.
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Dataset Test standard LRT split-LRT
Hjy: Redundant p <le-16 .
Malaria Hy: C=2 reject Hy reject Ho
Hy: Dependent K =5,C =2 | p <le-16 .
H;: Independent reject Hy reject Ho
Hp: Redundant p1l.0 . .
Village 0 Hi: C=2 fail to reject Hy fail to reject Ho
Hy: Dependent K =5,C=2|p1.0 fail to reject H
H;: Independent fail to reject Hy
Ho: Redundant reject Hy reject Hy
Krackhardt H: O =2
Hy: Dependent K =3,C =4 | p 0.451 fail to reject Hy
H;: Independent fail to reject Hy
Hy: Redundant p <le-16 reject Hy
Synthetic Hi: Dependent C = 2 reject Hy
Hy: Dependent K = (C' =2 p1l.0 fail to reject Hy
H;: Independent fail to reject Hy
Hy: Redundant p <le-16 . .
Gossip 48 Hi: Dependent C = 2 reject Hy fail to reject Ho
Hy: Dependent K =4,C=2|p1.0 fail to reject Hy
H,: Independent fail to reject Hy

Table 3: The standard and split-LRT determinations for all datasets explored in the follow-
ing sections. For the standard LRT, the p-values for each test are also reported.
The Village 0 support system network is determined to be layer redundant, the
Malaria network is determined to have layer independence, and the Krackhardt
network is determined to have layer dependence. The layer redundant test for Gos-
sip Village 48 is the only one wherein the standard and split LRTs do not agree,
and the difference is consistent with the split-LRT being lower powered than the
standard LRT. Both the standard and split-LRT determine that Gossip Village 48
is layer dependent at level o = 0.05, and we explore this empirical Y in Figure 5.
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Figure 6: NNTuck performance on independent (left) and tubular (right) link prediction
tasks with varying latent dimensions K and C' for Krackhardt’s CSS multilayer
network. Whereas the layer dependent NNTuck with C' < L has a higher test-
AUC in the independent task, the layer independent NNTuck generally performs
as well as the other models in the tubular task. Recall that in this figure, as
well as in Fig. 7 and Fig. 8, the layer independent NNTuck is equivalent to
MULTITENSOR (De Bacco et al., 2017).

6.2.1 KRACKHARDT’S COGNITIVE SOCIAL STRUCTURES

The Cognitive Social Structures work from Krackhardt (1987) surveys 21 people in the
management team at a tech firm on their perception of the advice network within the
management team. Each of the 21 people were asked to answer the question “Who would
X go to for help or advice at work?” followed by a list of the 21 management employees
(including themselves). The resulting 21 x 21 x 21 multilayer network is what Krackhardt
referred to as a cognitive social structure (CSS), where each layer ¢ represents person £’s
perception of who receives advice from whom in the network. The adjacency matrices for
this advice CSS were transcribed from the original paper for this work, and can be accessed
on GitHub (see Aguiar, 2021) (the CSS for the friendship network is different and can be
accessed in the R package cssTools, see Yenigun et al. (2016)).

Interestingly, the cross-validation observations are different for each link prediction task.
We observe a higher test-AUC associated with the layer dependent NNTuck in the inde-
pendent link prediction task, and becomes more pronounced as K increases. In the tubular
link prediction task, however, the layer independent and layer dependent NNTucks have a
similar test-AUC for nearly all values of K. In both link prediction tasks we observe: vari-
ation in test-AUC for different values of K and C'; the layer redundant NNTuck has a lower
test-AUC than the layer dependent or layer independent NNTucks; neither the independent
nor tubular link prediction task is obviously harder than the other; and the observations
from the independent link prediction task are not the same as those from the tubular link
prediction task. One possible source of this difference is that the tubular link prediction
task is the more difficult one, when compared to the independent task, and thus the results
from this task are more representative of a model’s performance.
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Malaria test AUC for independent fivefold cross-validation 10 Malaria test AUC for tubular fivefold cross-validation

1.0

Figure 7: The test-AUC from the independent and tubular link prediction tasks in the
Malaria multilayer network. The layer independent NNTuck always results in a
higher test-AUC than when allowing for layer dependence or layer redundance.

Based on these results, we choose K = 3 and C' = 4 for the corresponding layer indepen-
dence, redundance, and dependence tests and determine that whereas the network is not
layer redundant, it is layer dependent at significance level a = 0.05 (see Table 3 for details).
For the sake of brevity (and due to its size (21 x 4)), we do not interpret the ¥ matrix here.
We do note that observing layer dependence in this multilayer network suggests there is
latent and shared structure in the various social network perceptions in this company. For
a further exploration of this finding and interpretation in the context of theories of social
network perceptions, see Aguiar and Ugander (2024).

6.2.2 MALARIA DATA

This biological network was originally studied in Larremore et al. (2013). The undirected
network consists of N = 307 malaria parasite virulence genes connected across L = 9 layers.
Two genes are connected if they share a genetic substring of a significant length. Each layer
corresponds to a different Highly Variable Region on the genes. For more information on
the framework or motivating underlying biology, see Larremore et al. (2013).

In this network the test-AUC of the layer independent NNTuck is always higher than
the test-AUC of either the layer dependent or layer redundant NNTuck. This performance
difference indicates that the core tensor cannot be deflated without losing important in-
formation about the network’s layers. Interestingly, we observe that the layer dependent
NNTuck with C' = 9 does not perform as well as the layer independent NNTuck, even
though the core tensor has the same dimension in both models. While this observation
may be an artifact of the underlying optimization landscape, we do not fully understand
the implications or causes and it is an interesting topic for future work. Finally, we do
not observe a gap in test-AUC between the independent and tubular link-prediction tasks:
predicting a missing link with information about that link in other layers is just as difficult
as predicting a missing link with no other information about that link in any layer.

We therefore determine that an appropriate model choice is a layer independent NNTuck
with K = 5 and find that this network is layer independent at significance level o« = 0.05.
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Figure 8: The test-AUC from the independent and tubular link prediction tasks for the
Village 0 multilayer network. In both tasks, both the layer dependent and layer
redundant NNTucks perform just as well as the layer independent NNTuck in
terms of test-AUC.

Therefore, Y = I and thus does not need to be interpreted. Finding evidence of layer
independence in this multilayer network is supported by a biological explanation (Larremore
et al., 2013) and by the findings discussed in De Bacco et al. (2017), namely that the diversity
of Malaria genes helps them to evade the immune system.

6.2.3 VILLAGE SOCIAL SUPPORT NETWORK

The social multilayer network we consider contains different types of social interaction
within a village in Karnataka, India, one of 43 microvinance villages from Banerjee et al.
(2013). We arbitrarily selected the first of the 43 villages and will henceforth refer to this
village as “Village 0”. The directed network consists of N = 843 individuals across L = 12
layers. One individual is connected to another if the first indicated that they would interact
in a specified way with the second. Each layer corresponds to a different type of social
interaction (e.g., “Who are the people who give you advice?” and “Who are your kin?”.
See Appendix H for a full list of the questions.). For more information about the networks,
survey instruments, or context of this data, see Banerjee et al. (2013).

Cross validation results for the Village 0 network are shown in Figure 8. There is a slight
gap in test-AUC across the two link-prediction tasks for this dataset, where the tubular link-
prediction task is more difficult than the independent link-prediction task. However, in both
tasks we observe that the layer redundant NNTuck and the layer dependent NNTucks (for
all C) perform just as well as the layer independent NNTuck in terms of test-AUC.

The layer redundancy test confirms that this network is layer redundant at significance
level o = 0.05, consistent with the notion that the 12 layer network may indeed be such that
all layer models are drawn from the same SBM, as we saw in Example 3. Considering the
efforts made to collect data on these 12 different social support systems, this observation
is surprising. One would expect that the distinct questions generating each layer of the
network capture new information about the social network. This observation suggests
otherwise, at least for the social structures that are well-modeled by stochastic block models.
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Figure 9: Comparing the test-AUC from the layer redundant NNTuck to that from the
layer independent NNTuck with K = 4 (left) and K = 10 (right) for 113 different
village multilayer networks from Banerjee et al. (2013) and Banerjee et al. (2019),
the malaria network from Larremore et al. (2013), the CSS from Krackhardt
(1987), and the first synthetic network from Section 6.1. We discuss the data
point marked “Gossip village 48” in further detail in Section 6.2.4 and Figure 5.

In this context, we echo the motivation of identifying layer interdependence in such social
multilayer networks: that finding layer redundancies could justify a less extensive data-
collection of future social networks in similar settings. We further explore this possibility
with analysis in the next section.

6.2.4 COLLECTION OF VILLAGE SOCIAL SUPPORT NETWORKS

We now turn our attention to two sets of multilayer social networks representing different
types of interaction in 113 villages: 43 microfinance villages from Banerjee et al. (2013) and
70 gossip villages from Banerjee et al. (2019). The intent in studying these large collections
of village networks is to see if the observation from Section 6.2.3, that Village 0 is layer
redundant at level & = 0.05, is common across multiple different networks of the same
type. The survey questions defining each layer for these networks are different for each data
source (see Appendix H): the 12 types of social support defining the layers in the networks
of Banerjee et al. (2013) are different from the social support defining the 7 layers in the
networks of Banerjee et al. (2019).

For each of these 113 villages we fix K = 4 and K = 10 and perform cross-validation
under the independent link prediction task for both the layer independent and layer redun-
dant NNTuck. We plot the test-AUCs of this multi-village link prediction task in Figure 9,
where we also plot the test-AUC of the corresponding models in the Krackhardt, Village 0,
and first synthetic network. Surprisingly, we note that the test-AUC for the layer redundant
NNTuck is nearly equivalent to the test-AUC for the layer independent NNTuck for almost
all of the village networks. We highlight the village network with the biggest difference
between the two test-AUCs, labeled “Gossip village 48”7, and estimate a layer dependent
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NNTuck with K =4 and C' = 2. With this model choice, we find that the network is layer
dependent at level & = 0.05 and interpret the corresponding Y in Figure 5.

Finding evidence of layer redundancy in each of these 113 different village multilayer
networks provides more evidence and motivation for using the NNTuck as a tool for survey
design. Specifically, we see evidence that each of these different types of social affiliation and
support (between 7 to 12 depending on the network, see Appendix H for information on the
different types of relationships in each network) are all well modeled by the same generative
process. If, in a future study, the same evidence was found in initial data collection, then
before scaling the study to more villages a less expensive survey could ask less questions of
the participants. However, even if all layers of data are collected, knowing that they are
redundant could help enhance other structural properties in the network (e.g., Nayar et al.,
2015; Taylor et al., 2016, 2017).

7. Conclusion

In this work we use the nonnegative Tucker decomposition (NNTuck) with KL-divergence
as an extension of the stochastic block model (SBM) to multilayer networks. The NNTuck
allows for layers in the network to have latent structure, just as the SBM allows for latent
structure in the nodes of a single layer network. Using algebraic examples we show that
the third factor matrix of the NNTuck both captures and incorporates information about
layer interdependence in multilayer networks. We show that the multiplicative updates for
minimizing the KL-divergence of the NNTuck are step-by-step equivalent to maximizing
the log-likelihood of observing the network under the NNTuck model using expectation
maximization. This equivalence generalizes a previously known result about matrices and
motivates the use of this algorithm in the context of the NNTuck.

To use the NNTuck to validate layer dependence in empirical multilayer networks, we
define three likelihood ratio tests (LRTS) to test layer independence, layer redundance, and
layer dependence. Furthermore, we propose three methods for interpreting the third factor
matrix of an NNTuck estimated for an empirical network. We propose cross-validation
as a means for model selection and formalize two link prediction tasks for the multilayer
setting. We use cross-validation, the LRTs, and the approaches for interpreting Y to study
a variety of synthetic and empirical multilayer networks. In doing so, we find that the
Malaria multilayer network has independent layers, 113 different social support networks
are layer redundant, and Krackhardt’s cognitive social structure has layer dependence.

This work also lays the groundwork for diverse future work and applications. Given
the observation in Section 6.2.4, that for many of the village multilayer networks we study
the layers seem to be noisy observations from the same SBM, it would be interesting to
explore how other models of network formation (e.g., the choice-based dynamic models
in Overgoor et al. (2019)) uncover different characteristics amongst the layers that the
SBM cannot identify. As discussed in Section 5, the difference in test-AUC between the
layer independent NNTuck and the layer dependent NNTuck with C' = L is not fully
understood and could be addressed in future work. Furthermore, some multilayer graphs
(for instance, the ogbl-wikikg2 multilayer network from Hu et al. (2020), which a reviewer
brought to our attention) have such a structure where an edge in one layer determines the
presence of an edge in another layer. It is unclear if the NNTuck would be well suited, or
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justified, to be used to model such structureed multilayer networks, and inspecting this is an
interesting subject for future work. Finally, an interesting future direction is understanding
how the NNTuck can be made more interpretable under a Varimax rotation, following recent
connections between Varimax and factor model inference in Rohe and Zeng (2020).

Understanding the layer dependencies in a multilayer network can inform the develop-
ment of survey design, identify redundancies, or illuminate contextual connections. More-
over, the usefulness of finding latent structure in the layers motivates the use of latent-
space models as a noise-free smoothing of the observed network, as proposed by Fisher and
Pinter-Wollman (2021). As such, there is potential to use this work to understand layer
dependence in a variety of applications where domain-specific knowledge can make use of
the interpretations that the NNTuck provides.
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Appendix A. Implementation Details

Tools for this work and an example jupyter notebook (all in python) can be found at
https://github.com/izabelaguiar/NNTuck

The implementation of the multiplicative updates algorithm from Kim and Choi (2007),
Algorithm 1, is done in python using the tensorly backend. The tensorly package (Kos-
saifi et al., 2016) already has an implementation of the multiplicative updates algorithm
for estimating the nonnegative Tucker decomposition, although the implementation is for
minimizing the least-squares loss between the tensor and its decomposition. We thus altered
their implementation to include the multiplicative updates for minimizing KL-divergence.
Our implementation uses dense matrix computations, and as such, does not take advantage
of the sparse structure present in multilayer networks. Although the tensorly package does
have a sparse option, their documentation describes that only memory usage is improved
by using the sparse backend, and that using the sparse backend for decompositions actually
takes much longer.

To present a scope of how computation time scales with network size, we plot the
average time Algorithm 1 takes to converge across 20 random initializations for estimating
both the layer redundant and layer independent NNTuck of synthetic multilayer networks
with number of nodes varying from 50 to 10,000 and number of layers varying from 5
to 20. As we see in Figure 10, the average time to convergence for the smallest network
(N =50, L =5) was 0.125 seconds, and for the largest network (N = 10,000, L = 20) the
average convergence time was 8.66 hours. As an upper limit for the computation we were
able to do before running into memory limits, we generated a synthetic multilayer network
with NV = 25,000 nodes and L = 5 layers. Over 20 random initializations of Algorithm 1,
estimating the layer redundant NNTuck and the layer independent NNTuck of this network
took 12.43 hours and 18.044 hours, on average, respectively.

Efficient algorithms for estimating the nonnegative Tucker decomposition, such as those
discussed in Zhou et al. (2015), minimize least-squares loss. Future work in extending the
NNTuck for use in larger networks will necessitate a faster implementation of the algorithm
discussed and used in this work, if not a completely different algorithm for minimizing
KL-divergence.

Another implementation detail, discussed in Section 6.2, is that we select the NNTuck
with the highest log-likelihood across 20 random initializations. In Fig. 11, we show the
variation in maximal log likelihood as a function of number of random restarts and show
that 20 random initializations is sufficient for estimating the NNTuck.

Appendix B. EM and NNTuck multiplicative updates equivalence

In this section we show the equivalence between the expectation maximization (EM) updates
and the multiplicative updates for the nonnegative Tucker decomposition under a KL-
divergence loss.

Recall Theorem 6, restated below,
Proposition 10 Determining factor matrices U, V', and Y and the core tensor G in the
NNTuck by mazimizing the log-likelihood using expectation mazimization (EM) Eq. (12) is
equivalent to using the multiplicative updates Eq. (14) to minimize KL-divergence.
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Figure 10: The time to convergence for estimating the layer redundant (left) and layer
independent (right) NNTuck of synthetic networks of varying sizes, averaged
across 20 random initializations, plotted on a log scale.

Consider using expectation maximization (EM) to reach a local maximum of the log-
likelihood of observing A under the model given by (8),

LIAU, V.Y ,G) =Y |aijalog ¥ wirViehapTtp — O UikVjeYapTrtp | - (11)
7,0 k,Z,P k‘,g,p

in which case the following update equations are used
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Figure 11: We show the log-likelihood of the dependent, independent, and dependent
NNTucks for the Krackhardt multilayer network estimated using Algorithm 1.
For each estimation we vary the number of random initializations on the hori-
zontal axis, and for each we plot the maximal log-likelihood over that set with a
bold point. In the last plot we plot the maximal log-likelihood for each NNTuck
together. The histogram on the right hand side of each plot shows the distri-
bution of the log-likelihood across all 500 random initializations. We see that
the maximal log-likelihood does not vary greatly when using more than 20 ran-
dom initializations, and thus determine that using 20 random initializations to
estimate the NNTuck is appropriate.
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Conversely, the multiplicative updates for nonnegative Tucker decomposition (NNTuck)
under the KL-divergence loss as given by Kim and Choi (2007) are,

[ ] T
A/ (vel))] ey
UcUe -t s :
1z,
[ i T
A/ (V6| eP
Vevelt REA ,
1z,
[ i T
Ag/ (Y6l 6P
Y«~Y®-= T - ’
1z,

A/A) < UT xo VT x3Y T
g<_g®( /A) 1T 2T 3T )
£X1U ><2V ><3Y
Ui = Z(GS)M,
j
2vi= Y (GY)ij,
j

2y = Z(fo’))ij.

J

Above, & is the all ones tensor of the same dimension as A, ® and / denote elementwise mul-
tiplication and division, respectively, and the subscript -(,) denotes the tensor f-unfolding.

Gg), Gg), and Gg?,’) are defined as
Gl = V x3Y],,,,G\? = U x3Y].,GY = U xsV
U [g X2 X3 ](1)7 A% [g X1 X3 ](2); Y [g X1 X2 ](3)-

We will make use of tensor unfoldings and the tensor n-mode product in the following
equivalence proofs. To help guide intuition on how tensor unfoldings are used, we provide
Figure 12 as one visualization of the three unfoldings of a third-order tensor X.

Equivalence of core tensor updates We first show that the updates to G in Eq. (12)
are equivalent to the updates to G in Eq. (14).
Proof The (i,j,«) entry of A:=G x; U X9V x3Y is

Ajja = E Uik Vi Yop! Ik 0! 5
k/é/p/

and therefore the update to ggs, can be rewritten as,

> ija <Aija/121ijo¢> UikVjeYapTkep
(Couie) (X v3e) (o tr)

> ija <Aija/121ijoz> UikVjeYap

(Csuie) (X v1e) (Ca )

Gkep =

= Gktp *
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Figure 12: The k-unfolding of a tensor can be described by vertically stacking vectorizations
of one of its slices. Above, in descending order, we see the horizontal, lateral,
and frontal slices of a tensor. Vectorizing each slice and vertically stacking them
gives the 1-, 2-, and 3-unfolding of tensor X, respectively. For X € RN*MxL
then the dimensions of the three unfoldings are X | € RMX*NL X, € RN*ML,

and X(3> e RLxNM

Note the (a, b, ¢) element of the tensor mode-1 product of the following,

(3) ], -5,

(2

Then,

UG)o]evy -2

(16)

Now, note the (a, b, c) element of the tensor mode-1 product of the following,

[8 X1 UT} e Z Eipettia = Z Uig- (17)
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Then,

{[8 X1 UT} xo VT x3 YT}MP = Z {5 x1UT %o VTLmyap

_ é; e U] i UiV
_ %: (; uzk> VjtYap
() ()

Therefore, focusing on the NNTuck multiplicative update of core tensor G, we see that the
update to the (k, ¢, a) element of the core tensor is,

o ALA) G UT X5 VT,
Tktp = Iktp " [£ 5 UT %3 VT x3 Y gy

zi]’a (Aija/Aija) UikVjtYap (19)
Gkep < Gkep ,
Zi Uzk) (Z] Ujg) (Za yap)
which is equivalent to the update to the (k, ¥, «) element of G in Eq. (12). -

Equivalence of factor matrix U updates For showing the equivalence in updates to
factor matrix U, the following identity is used multiple times. For tensor X,

Z Xijoa = Z X)ij» (20)
Jjo J

where X1y denotes the 1-unfolding of X.
Proof Consider the EM update to u;; from 12. Again,

Ajjo = Z Uik Vot Yop! IE €' 5
k/glp/

and so the EM update to u;; can be rewritten as,

Zja (Aija/Aija) Z(p Uik VjeYapJkep

s, (S) S versin) o
. > ja (Aija/ Aija) > tp VitYapTktp
S (D) Cavensie)
Now note that from the above equation we can identify out
Z VjeYapGkep = |G X2 V X3 Y]jja. (22)

£p
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For vector z such that z; = > ,[G X2 V' x3 Y1), note that
[127] = (W) = 2 = 1 x2 V)3
= Z[g X2 V X3 Y|kja

jo
= Z Z GkepVitYap

joo tp (23)

= Z Z GktpYapUje

lp jo

5 () ()

Substituting (22) and (23) into Eq. (21), we have that

Zja (Aija//iija> (G X2V X3 Y|kja

ik =tk 1z 7]k
Zja (Aija/Aija> [g X2 Vv X3 Y](l)k] (24)
= U, -
[]_ZT]ik
o >ia (Aija/Aija> [G <2V x5 Y]]} 4
- [1z ]k '
Then using Eq. (20) we have that,
Z Ajja = Z Ayijs
Ja J
Z Aijo = Z Aqyi = Z(U[g x2 V' x3Y](1))ij, (25)
jor J j
Z[g X9 1% X3 Y]kja = Z[g X9 Vv X3 Y}(l)k] = Z[g X9 Vv X3 Y](Tl)jk
jor J J

In the second line of Eq. (25) above, we use that
A:gxlUXQVX;;Y
=G xVx3Y x1U
=(Gx2Vx3Y)x1 U,

and thus using the identity ¥ = X x, B = Y{,,) = BX(,,), we get Aj) = U[Gx2V x3Y]y).

Therefore,
> (A/ (UG X2 V x3 Y]1)ylG x2 V xs Yy
Uik = Uik -
[1ZT]ik (26)
[(AU)/(U[Q Xo VX3 Y]|)))G x2 V x3 Y](TUL-k
= Ui, - :
(127 ],

39



AGUIAR, TAYLOR, AND UGANDER

This is equivalent to the ik update of U given by Eq. (14). [ |

Equivalence of factor matrix V updates In connecting the updates to factor matrix
V', the following identity is used multiple times. For tensor X,

Z Xijo = Z X (2)jis (27)
e} %

where X ;) denotes the (1)-unfolding of X’.
Proof Consider the EM update to vj, given by Eq. (12). Because

Ajja = E Uikt Vi Yop Gk 0! 5
k/é/p/

then the EM update to v;, can be rewritten as,

Zm (Aija/ Az‘ja) ka Uik VjeYapGkep
Vjp =
! ka (Zz uzk) (Za yapgkép)

5 (28)
Zia (Aija/Aija> ka UikYapGkep
= ’Ujg . .
i (2 i) (o Yapiay)
Now note that we can again identify out
Z WikYap9kep = |G X1 U X3 Y jq. (29)
kp
And again, for vector z such that z; = ) ,[G x1 U x3 Y](2)j;, note that
127] =W === 306 1 U %2 ¥
=>[6 x1U x3 Y]ita
= Z Z UikYapJklp
i kp (30)
= Z Z UikYapJklp
kp o
= Z (Z uzk) (Z yakaZp) .
kp i a
Substituting together (29) and (30) into the EM updates Eq. (28), we have that
Eia (Ai]'&/Aija) [g x1U X3 Y]iﬂa
'Uj@ = ’Ujg . . (31)

(125
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Then,
Z Ajjo = Z A(2)jis

ZAija = ZA@W = Z(V[g x1U x3Y](9))ji, (32)

)

DG x1U x3Y)ita =D [Gx1U x3 Y2y = > _[G x1U x3Y]

In the second line of 32 above, we use that
A:gX1UX2VX3Y:gX1UX3YX2V:(g ><1U><3Y) XQV,

and thus using the identity Y = X' x,, B = Y(,,) = BX(;), we get A(Q) = VI[Gx1U x3Y(3).

Therefore,
>i(A@)/(VIG x1U x3Y]12));ilG x1U x3 Y]y,
vje = vje - T
[1z '] (33)
(A)/(VIG x1U x3Y](9)))[G x1U x5 Y], i
- [1z 7]
This is equivalent to the j¢ update of V' given by Eq. (14). |

Showing the equivalence for the updates to Y follow exactly as those above, and thus we
do not reproduce it here. Therefore, we have shown that the EM updates given by Eq. (12)
are step-by-step equivalent to the multiplicative updates given by Eq. (14).

Appendix C. Masked updates

In this section we discuss the algorithmic changes to the multiplicative updates from Kim
and Choi (2007) for the nonnegative Tucker decomposition under a KL-divergence loss to
allow for masking, as used during cross-validated model evaluation. This section describes
the tensor completion problem wherein we wish to build the NNTuck using only observed
entries. Consider that some of the entries of adjacency tensor A are unobserved. We wish
to build the NNTuck of A using only the observed entries, but we want the reconstruction
A to predict the unobserved entries. This tensor completion problem is how we train on
80% of the entries of A for the five-fold cross-validation in Section 5. Assume that there is
a set Z such that

T :={(i,7,a) | Ajjq is unobserved}. (34)

We want to rederive the update rules from Kim and Choi (2007) for nonnegative Tucker
decomposition to only account for the observed entries of A. To do so, we introduce a
masking tensor, M such that,

oo {8 HG0IET
1 if (4,4,a) ¢ Z.
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Figure 13: The row, column, and tube fibers of a third-order tensor. This figure has been
adapted from Figure 2 in the tensor review by Kolda and Bader (2009). In the
tubular link prediction task in Section 5, entire tubes of the adjacency tensor
are missing i.i.d. with uniform probability.

Then re-deriving the update rules from the log-likelihood and EM approach, and after re-
tensorizing them, the update rules for factor matrices U,V ,Y and for core tensor G are,

M0 Ay /A[G %2V x3 Y]]
U o Mo An/Awlld x2 V x3 ]<1>7 (35)

M(l)[g X9 Vv X3 Y]Erl)

[Mi2) 0 A)/ Al x1 U x3 Y], (36)
M(Q){g ><1U><3 Y]EB) ’

v _ve [M(z) 0 Az [A)l[G x1 U x2 V] g, (37)

M(3)[g X1 U X9 V]Eg) ’

[MOA/A] X1 UT X9 VT X3 YT

MXlUTXQVTX:gYT '

In all of the above, o denotes elementwise multiplication and / denotes elementwise division.

V=Vo

G=Go (38)

Appendix D. Variation in latent structure parameter K

Here, we discuss in further detail the decisions in varying K as we do in the cross-validation
tasks from main text. The parameter K defines the dimension of the latent structure in the
node set of the network. As such, K can vary from 1 to N, however in the cross-validation
tasks in the main text we only vary it from 2 to 20 (or from 2 to 12 for the Krackhardt
1987 dataset). In interpreting the ends of the possible range of K values, we note that
K =1 assumes that each node in the multilayer network belongs to the same latent space.
Conversely, K = N allows each node to belong to its own latent space (and, therefore,
assumes that there is no latent structure in the node set of the network). To consider how
test-AUC varies with K values beyond those which we considered in the main text, we here
extend the range of K in two of our multilayer network datasets.

First, we consider how test-AUC varies for larger values of K in the Village 0 multilayer
social network. In this dataset, there are 843 nodes, and therefore the largest possible value
of K is 843. However, because it is computationally unreasonable to consider all parameter

42



A TENSOR FACTORIZATION MODEL OF MULTILAYER NETWORK INTERDEPENDENCE

1.0 1.0

0.9

0.8

AUC

0.7

0.6

0.5 0.5

Figure 14: The test-AUC for the fivefold tubular cross-validation task for expanded range
of K for (left) the Village 0 multilayer network from Banerjee et al. (2013) and
(right) the cognitive social structure multilayer network from Krackhardt (1987).

combinations of K and C' for such a large K, and because the model where K is this large
lacks interpretability (in village networks like the one examined here, the latent node space
tends to identify caste membership, see, e.g., De Bacco et al. (2017)), we increase our range
of K to be from K = 2 to K = 50. We plot the test-AUC for the fivefold tubular cross-
validation task for this expanded range of K in Figure 14 (left). We see that test-AUC
improves with increasing K, but that this increase follows the pattern of increase we saw
with the smaller range of K. More importantly, the larger K values do not differentiate
the layer redundant NNTuck from the layer dependent or layer independent NNTuck model
specifications: considering larger values of K does not change the conclusions we draw in
the main text.

Next, we consider extending our range of K to its maximum of K = N for the cognitive
social structure multilayer network from Krackhardt (1987). Although letting K = N
assumes that there is no latent structure in the nodes of the network, we take the opportunity
in this dataset with a relatively small node set to vary K to its maximum. We plot the
test-AUC for the fivefold tubular cross-validation task in Figure 14 (right). Again, we
see that test-AUC doesn’t improve when considering larger values of K and, notably, our
conclusions from the main text do not change with this increased variation.

Appendix E. Interpretability of the Y factor matrix

In this section we show the steps necessary to rewrite the core tensor G € ]Rf XEXC of
the NNTuck in the basis of C unique reference layers, and how to find the corresponding
Y™ matrix, as discussed in Section 4.2. Take as given a set of C' unique reference layers,
denoted 7" = {r1,...,r¢} where r; € {1,...,L}. Define G" whose frontal slices are QZ =
210:1 Yr,,iGe for £ =1,...,C. Define matrix Y " such that rows 7~ of Y™ are identity rows.
Specifically, for row £ of the matrix,

. e iflenr’,
Ye = N .
y;, otherwise.
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Define 7 := {£| £ ¢ r*}. Then row y; for ¢ € 7 satisfies,
C C
Ye1G1 + yr2Go+ - +yrcGo = i, (Z yrl,iGi> + Y2 (Z yrz,iGi>
i=1

i—1
c

+- -+ Yo (Z yrc,iGi> .
i—1

This gives us the system of equations,

Yo = YnYrd + YioYra 1+ YroYre
Ye2 =YpYr 2 + YioYra2 + 1 YicYre 2

Ye.c = YicYr,C + ?JZ2yrz,O + chyrc,C-

Note that the first equation is the inner product between the first column of Y subsetted
to the rows in 7* with the unknown vector y*. That is,

T *T
y@,l = yT*7]_YZ .

Then let Y;+ be the matrix Y subsetted to the rows in r*. Then the fth row of matrix Y *,
denoted yj, satisfies the linear system

Y.yl =y, (39)

Because there are (L — C') unknown rows of matrix Y, there will be (L — C) such linear
systems for each £ € 7.

Let Y be the matrix Y* subsetted to the rows not in r*. Then,
A I R R 2 1) (40)

Note that Y« € RE*C and is invertible if and only if the rows of Y defined by r* are
not linearly dependent. This highlights the importance in choosing the “correct” reference
rows. Even though in practice it’s unlikely that any two rows, even if poorly chosen, will
be exactly linearly dependent, if they are close then Y, will not be invertible and the
transformed Y™ matrix will not be interpretable.

The best reference layers are often determined by domain knowledge. Absent a prin-
cipled approach but seeking to make the matrix interpretable, we propose the following
heuristic for choosing the best reference layers: choose the C layers such that det(Y«)
is furthest from zero. Although searching over the entire space amounts to finding the
determinant of (é) different submatrices and isn’t practical, one can instead compare the
determinant of a handful of different submatrices, where reference layers can be chosen with
a combination of (perhaps weak) domain expertise and by inspection of the Y matrix.
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Appendix F. Likelihood ratio test with varying network size

In this section we explore the relationship between the power of the standard likelihood
ratio test and the number of samples—in our context, the number of nodes and layers in
the network. As discussed in Section 4.1, the analysis of Wilks’ theorem, which provides the
foundation for the LRT, is asymptotic. Thus, it is important to explore how the size of the
multilayer networks we study impact the power of the statistical tests we use to evaluate
layer interdependence.

To explore this, we conduct the following numerical experiment. We generate multiple
layer redundant multilayer networks where we vary the number of nodes from 50 to 1000 and
number of layers from 2 to 20. Each layer of the multilayer network is drawn from the same
K =2 SBM, where the first half of the nodes belong to the first latent node space and the
second half of the nodes belong to the second latent node space. We then estimate a layer
redundant NNTuck and a C' = 2 layer dependent NNTuck, each by using the estimation
with the highest log-likelihood over 20 random initializations. We use the log-likelihoods
from each estimation to conduct a layer redundance LRT. We plot the p-value from each
test in Figure 15.

We see that we (correctly) fail to reject Hy for all of the synthetic networks of varying
L and N. The p-value corresponding to the LRT is consistently far above o = 0.05, with
no discernible pattern corresponding to either the number of nodes N or the number of
layers L. Although the concept of a p-value is not the same for the split-LRT, conducting
the same experiments using the split-LRT we also fail to reject Hy for all of the synthetic
networks.

Appendix G. Likelihood ratio test without regularity conditions

In this section we briefly discuss the split-likelihood ratio test from Wasserman et al. (2020)
as it relates to the LRT for the NNTuck. The split-LRT requires no regularity conditions,
and is thus appealing in the setting at hand, wherein Wilks’ theorem is not satisfied: the
NNTuck is both non-identifiable and has a non-convex log-likelihood.

To describe the split-LRT we first define the following notation. The sets Dy and Dy
split the data into two sets, each roughly equal in size, represented by masking tensors
M, € {0, 1}VXNXL and My € {0, 1}V*N*L where

1 if (iv.jvk)eDO:
0 if (i,4,k) € Dy

Loif (Zajak) € D,

M .’ .,k: — N
o(i, 5, k) { 0 if (i,4,k) € Dy

and M (i, j, k) = {

The hypotheses for the split-LRT are

Hy: The network comes from the nested (layer redundant or dependent) NNTuck,
Hi: The network comes from the full (layer independent) NNTuck.

Parameter §; = [Ql, U, W, I | is any estimator under the layer independent NNTuck es-

timated only on D; using masking tensor Mj. Parameter Oy = [Qo,ﬁo,%,%] is the
mazimum likelihood estimator under the nested NNTuck estimated only on Dy using mask-
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Figure 15: The p-values corresponding to the layer redundance LRT on synthetic, layer
redundant multilayer networks of varying size, both in number of nodes and
number of layers. The dashed grey line corresponds to a p-value of 0.05, at
which we would reject the null (layer redundant) hypothesis with significance
at 0.05. For every p-value above the dashed grey line, we would fail to reject
the null hypothesis. Recall that the layer redundance LRT compares the layer
redundant NNTuck to the layer dependent NNTuck with C' = 2. In this plot we
see that the LRT (correctly) fails to reject the null hypothesis for all synthetic
networks of varying L and N.
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ing tensor M. The null hypothesis is rejected at significance level « if

Lo(61)
log CotGo) > log1/a, (41)
where
£o)= J] po(Air) (42)
(4,5,k)€ Do

is the likelihood associated with 6 only measured over the set Dy. Then, under no regularity
conditions, the probability that we falsely reject the null hypothesis is,

Prpy,(reject) < a. (43)

In applying the split-LRT to testing for layer redundance, dependence, and independence in
multilayer networks, we use the same tests as discussed in Section 4 but using the split-LRT
defined in Eq. (41) to reject or fail to reject the null hypothesis. Our results from both the
standard and split-LRT are in Table 3.

We estimate 6; with the layer independent NNTuck with the highest log-likelihood over
20 random initializations of Algorithm 1 (see Appendix A). We estimate 6o with the redun-
dant or dependent NNTuck with the highest log-likelihood over 50 random initializations
of Algorithm 1. We increase the number of random initializations for estimating the nested
NNTuck because the analysis in Wasserman et al. (2020) requires 0o to be the maximum
likelihood estimator (MLE), something we cannot guarantee due to non-convexity. A more
suitable approach to adapting the split-LRT to this setting would be to instead find éo corre-
sponding to the maximum of a (convex) proper relaxation to the likelihood of the NNTuck.
An interesting topic of future work is finding a multilayer extension of the semidefinite re-
laxation of the MLE for the (single layer) stochastic block model developed by Amini and
Levina (2018).

Appendix H. Questions generating the social multilayer networks

We reproduce the questions generating the multilayer social support networks from the
Banerjee et al. (2013) and Banerjee et al. (2019). For specific information about the context,
original findings, or survey instruments of the research, please refer to the original papers.

Microfinance Villages (Banerjee et al., 2013) The 43 multilayer networks from this
research, representing different villages in Karnataka, India, were the result of asking indi-
viduals about 12 different types of support. Each layer in the resulting network corresponds
to the following relationships.

: Those from whom the respondent would borrow money

: Those to whom the respondent gives advice

: Those from whom the respondent gets advice

: Those from whom the respondent would borrow material goods
: Those to whom the respondent would lend material goods

: Those to whom the respondent would lend money

: Those from whom the respondent receives medical advice

: Non-relatives with whom the respondent socializes

0 ~NO O WN -
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9: Kin in the village

10: Those whom the respondent goes to pray with
11: Those who visit the respondent’s home

12: Those whose homes the respondent visits

Gossip Villages (Banerjee et al., 2019) The 70 multilayer networks from villages in
Karnataka, India, were generated from asking individuals the following seven questions,
each of which corresponds to a layer in the resulting network.

1. Whose house do you go to in your free time?

2. Who comes to your house in their free time?

3. If you urgently needed kerosene, rice other groceries or money, who do you
borrow them from?

4. Who comes to your house if he or she needed to borrow kerosene, rice, other
groceries or money?

5. Who do you ask for advice on matters pertaining to health/finance/farming?

. Who asks you for advice on matters pertaining to health/finance/farming?

7. Besides people living in your household, state names of your relatives who
are living in this village.

(@)
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