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Abstract. For a broad class of models widely used in practice for choice and ranking data
based on the Luce choice axiom, including the Bradley—Terry-Luce and Plackett-Luce
models, we show that the associated maximum likelihood estimation problems are equiva-
lent to a classic matrix-balancing problem with target row and column sums. This perspec-
tive opens doors between two seemingly unrelated research areas and allows us to unify
existing algorithms in the choice-modeling literature as special instances or analogs of Sink-
horn’s celebrated algorithm for matrix balancing. We draw inspirations from these connec-
tions and resolve some open problems on the study of Sinkhorn’s algorithm. We establish
the global linear convergence of Sinkhorn’s algorithm for nonnegative matrices whenever
finite scaling matrices exist and characterize its linear convergence rate in terms of the alge-
braic connectivity of a weighted bipartite graph. We further derive the sharp asymptotic
rate of linear convergence, which generalizes a classic result of Knight. To our knowledge,
these are the first quantitative linear convergence results for Sinkhorn’s algorithm for gen-
eral nonnegative matrices and positive marginals. Our results highlight the importance of
connectivity and orthogonality structures in matrix balancing and Sinkhorn’s algorithm,
which could be of independent interest. More broadly, the connections that we establish in
this paper between matrix balancing and choice modeling could also help motivate further
transmission of ideas and lead to interesting results in both disciplines.
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1. Introduction

complete rankings of objects, or from mixtures of differ-

The modeling of choice and ranking data is an impor-
tant topic across many disciplines. Given a collection of
m objects, a universal problem is to aggregate choice or
partial ranking data over them to arrive at a reasonable
description of the behavior of decision makers, the
intrinsic qualities of the objects, or both. Work on such
problems dates back over a century at least to the work
of Landau (1895), who considered m chess players and a
record of their match results against one another, aiming
to aggregate the pair-wise comparisons to arrive at a
global ranking of all players (Landau 1895, Elo 1978).
More generally, comparison data can result from
choices from subsets of varying sizes, from partial or

ent data types.

The modern rigorous study of comparisons primarily
builds on the foundational works of Thurstone (1927)
and Zermelo (1929). Both proposed models are based
on a numerical “score” for each item (e.g., chess player)
but with different specifications of choice probabilities.
Zermelo (1929) builds on the intuition that choice proba-
bility should be proportional to the score and proposes
a iterative algorithm to estimate the scores from pair-
wise comparison data. As one of the foundational works
in this direction, Luce (1959) formalized the multinomial
logit (MNL) model of discrete choice starting from the
axiom of independence of irrelevant alternatives (IIA).
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It states that the relative likelihood of choosing an item j
over another item k is independent of the presence of
other alternatives. In other words, if S and S’ are two
subsets of the m alternatives, both containing j and k,
and Pr(j,S) denotes the probability of choosing item j
from S, then for Pr(k, S), Pr(k,S’) > 0,

Pr(j,S) _ Pr(j,S")
Pr(k,S) Pr(k,S’)

This invariance property, together with a natural condi-
tion for zero probability alternatives, is often referred to
as Luce’s choice axioms. They guarantee that each alter-
native can be summarized by a nonnegative score s;
such that the probability of choice can be parameterized
by

5j
ks Sk

for any set S that contains j. The parameters s; reflect
the “intrinsic” value of item j and are unique up to a
normalization, which can be set to stj =1. This
general choice model includes as a special case the
Bradley-Terry—Luce model (BTL) for pair-wise compar-
isons (Bradley and Terry 1952) and also applies to rank-
ing data when each k-way ranking is broken down into
k — 1 choice observations, where an item is chosen over
the set of items ranked lower (Plackett 1975, Hausman
and Ruud 1987, Critchlow et al. 1991). The many subse-
quent works that build on Luce’s choice axioms speak
to its fundamental importance in choice modeling.
Other works have also sought to address the limitations
of Luce choice models. Prominent among them are
probit models (Thurstone 1927, Berkson 1944), random
utility models (McFadden and Train 2000), context-
dependent models (Batsell and Polking 1985, Seshadri
et al. 2020), and behavioral models from psychology
(Tversky 1972).

Matrix balancing (or scaling), meanwhile, is a seem-
ingly unrelated mathematical problem with an equally
long history. In its most common form that we study in
this paper, the problem seeks positive diagonal matrices
DY D! of a given (entry-wise) nonnegative matrix A > 0
such that the scaled matrix D’AD! has row and column
sums equal to some prescribed positive marginals p, g:

(D°ADN1 =p,
(D°ADY 1 =4. )

Pr(j,S) = (1)

Over the years, numerous applications and problems
across different domains, including statistics (Yule 1912,
Deming and Stephan 1940, Ireland and Kullback 1968),
economics (Stone 1962, Bacharach 1970, Galichon and
Salanié 2021), transportation networks (Kruithof 1937,
Lamond and Stewart 1981, Chang et al. 2024), optimiza-
tion (Bregman 1967b, Ruiz 2001), and machine learning
(Cuturi 2013, Peyré and Cuturi 2019), have found

themselves essentially solving a new incarnation of the
old matrix-balancing problem, which attests to its uni-
versality and importance.

A major appeal of the matrix-balancing problem lies
in the simplicity and elegance of its popular solution
method, widely known as Sinkhorn’s algorithm (Sink-
horn 1964). Observe that it is easy to scale the rows or
columns of A such that the resulting matrix satisfies one
of the two marginal constraints in (2). However, it is
more difficult to construct scalings D°, D! that simulta-
neously satisfy both constraints. Sinkhorn’s algorithm
(Algorithm 1) simply alternates between updating the
scalings D° and D! to satisfy one of the two marginal
conditions in the hope of converging to a solution, lead-
ing to lightweight implementations that have proven to
be effective for practical problems of massive size. In
particular, Sinkhorn’s algorithm has gained much pop-
ularity in the recent decade thanks to its empirical suc-
cess at approximating optimal transport (OT) distances
(Cuturi 2013, Altschuler et al. 2017), which are bedrocks
of important recent topics in operations research, such
as Wasserstein distributionally robust optimization
(Esfahani and Kuhn 2018; Blanchet et al. 2019, 2022;
Kuhn et al. 2019; Gao and Kleywegt 2023).

Despite the widespread popularity of Sinkhorn’s
algorithm, its convergence behavior is yet to be fully
understood. In particular, although there have been
extensive studies of convergence, many focus on the set-
ting when the matrix A > 0 (i.e., entry-wise strictly posi-
tive), which includes most OT problems. In contrast,
other applications of matrix balancing, particularly
those with network structures, have A > 0 with zero ele-
ments, and are, therefore, potentially sparse. In this set-
ting, quantitative analyses are less common and more
fragmented, employing different assumptions whose
connections and distinctions remain less clear. On one
hand, works such as Kalantari et al. (2008), Chakrabarty
and Khanna (2021), and Léger (2021) have established
global (that is, true for all iterations t>1) sublinear
convergence results (i.e., convergence to an ¢ accuracy
solution requires a total number of iterations that is
polynomial in 1/¢). On the other hand, Knight (2008)
establishes local (and more specifically, asymptotic) lin-
ear convergence for square matrix A >0 and uniform
marginals p, 4. In other words, as t — oo, solution accu-
racy at iteration f +1 improves over that at iteration ¢
with a constant factor. Furthermore, a general result in
Luo and Tseng (1992) implies global linear convergence
of Sinkhorn’s algorithm (i.e.,, convergence to an ¢
accuracy solution requires iterations polynomial in
log(1/¢)). However, their result is implicit and does not
characterize the dependence on problem parameter and
structure as those in the sublinear results.

These results leave open several questions on the con-
vergence of Sinkhorn’s algorithm. First, when does a
quantitative global linear convergence result exist for
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A >0, and how do we characterize the global conver-
gence rate in terms of the problem primitives? Second,
how do we characterize the sharp (i.e., best-possible)
asymptotic linear convergence rate A that is applicable
to general nonnegative A and nonuniform p, g? Third,
how do we reconcile and clarify the linear versus sub-
linear convergence results under different assumptions
on the problem structure? Given that many applications
of matrix balancing with network structures correspond
to the setting with sparse A > 0, such as transportation
and trade, it is, therefore, important to better under-
stand the convergence of Sinkhorn’s algorithm in this
setting.

In this paper, we provide answers to these open ques-
tions in matrix balancing. Surprisingly, the inspirations
for our solutions come from results in the seemingly
unrelated topic of choice modeling. Our main contribu-
tions are summarized below.

Our first set of contributions, which we detail in Sec-
tion 4, is recognizing Luce choice models as yet another
instance where a central problem reduces to that of
matrix balancing. More precisely, we formally establish
the equivalence between the maximum likelihood esti-
mation of Luce choice models and matrix-balancing pro-
blems with an A > 0 with binary elements (Theorem 1).
We also clarify the relations and distinctions between
problem assumptions in the two literatures (Proposition 1).
More importantly, we demonstrate that classic and new
algorithms from the choice literature, including those of
Zermelo (1929), Dykstra (1956), Ford (1957), Hunter
(2004), Maystre and Grossglauser (2017), and Agarwal
et al. (2018), can be viewed as special cases or analogs of
Sinkhorn’s algorithm when applied to various problems
in the choice setting (Theorem 2). These intimate mathe-
matical and algorithmic connections allow us to provide
a unifying perspective on works from both areas. More
broadly, they enable researchers to import insights and
tools from one domain to the other. In particular, recent
works on choice modeling (Shah et al. 2015, Seshadri
et al. 2020, Vojnovi¢ et al. 2020) have highlighted the
importance of algebraic connectivity (Fiedler 1973, Spiel-
man 2007) of the data structure for efficient parameter
learning, which motivates us to also consider this quan-
tity in the convergence analysis of Sinkhorn’s algorithm.

Our next set of contributions, detailed in Section 5, is
establishing novel convergence bounds on Sinkhorn’s
algorithm, drawing from the connections to choice
modeling that we establish. First, we provide a global
linear convergence bound for Sinkhorn’s algorithm
whenever the matrix-balancing problem has a finite
solution pair D°, D! (Theorem 3). We characterize the
global convergence rate in terms of the algebraic connec-
tivity of the weighted bipartite graph whose biadjacency
matrix is precisely A. To our knowledge, this result is
the first to highlight the fundamental role of algebraic
connectivity in the study of matrix balancing with

sparse matrices. In addition, we characterize the asymp-
totic linear rate of convergence in terms of the scaled
matrix DYAD! with target marginals p, g, generalizing a
result of Knight (2008) for uniform marginals and
square matrices (Theorem 4). This result employs a
more explicit analysis that exploits an intrinsic orthogo-
nality structure of Sinkhorn’s algorithm. We also clarify
the convergence behavior of Sinkhorn’s algorithm
under two regimes. When a finite scaling pair D°, D'
exists, Sinkhorn’s algorithm converges linearly; other-
wise, it only converges sublinearly under the minimal
conditions required for convergence (Proposition 3).

Besides the contributions above, we further discuss
connections between Sinkhorn’s algorithm and topics in
optimization and choice modeling in Online Appendix
B. For example, interpreting Sinkhorn’s algorithm as a
distributed optimization algorithm on a bipartite graph
helps explain the importance of the spectral properties
of the graph on its convergence. Inspired by Bayesian
regularization of Luce choice models using gamma
priors, we also design a regularized Sinkhorn’s algo-
rithm in Online Appendix C that is guaranteed to con-
verge even when the standard algorithm does not,
which is not uncommon when the data are very sparse
and there are measurement errors.

We believe that the connections that we establish in this
paper between choice modeling and matrix balancing can
lead to further interesting results in both disciplines and
are, therefore, relevant to researchers working on related
topics. In particular, the fundamental role of algebraic con-
nectivity in the study of matrix balancing for sparse matri-
ces goes beyond quantifying the algorithmic efficiency of
Sinkhorn'’s algorithm. See, for example, Chang et al. (2024),
which quantifies the statistical efficiency of a network traf-
fic model using algebraic connectivity.

2. Related Work

This section includes an extensive review of related
works in choice modeling and matrix balancing. Well-
versed readers may skip ahead to the mathematical pre-
liminaries (Section 3) and our core results (Sections 4
and 5).

2.1. Choice Modeling

Methods for aggregating choice and comparison data
usually take one of two closely related approaches: max-
imum likelihood estimation of a statistical model or
ranking according to the stationary distributions of a
random walk on a Markov chain. Recent connections
between maximum likelihood and spectral methods
have put these two classes of approaches in increasingly
close conversation with each other.

2.1.1. Spectral Methods. The most well-known spectral
method for rank aggregation is perhaps the PageRank
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algorithm (Page et al. 1999), which ranks web pages based
on the stationary distribution of a random walk on a
hyperlink graph. The use of stationary distributions also
features in the work of Dwork et al. (2001); the rank cen-
trality (RC) algorithm (Negahban et al. 2012, 2017), which
generates consistent estimates for the Bradley-Terry-Luce
pair-wise comparison model under assumptions on the
sampling frame; and the Luce spectral ranking (LSR) and
iterative LSR algorithms of Maystre and Grossglauser
(2015) for choices from pairs as well as larger sets. Follow-
ing that work, Agarwal et al. (2018) proposed the acceler-
ated spectral ranking algorithm with provably faster
mixing times than RC and LSR and better sample com-
plexity bounds than Negahban et al. (2017). Knight (2008)
is an intriguing work partially motivated by Page et al.
(1999) that applies Sinkhorn’s algorithm, which is central
to the current work, to compute authority and hub scores
similar to those proposed by Kleinberg (1999) and Tomlin
(2003), although the focus in Knight (2008) is on Markov
chains rather than maximum likelihood estimation of
choice models. For ranking data, Soufiani et al. (2013)
decompose rankings into pair-wise comparisons and
develop consistent estimators for Plackett-Luce models
based on a generalized method of moments. Other notable
works that make connections between Markov chains and
choice modeling include Blanchet et al. (2016) and Ragain
and Ugander (2016).

2.1.2. Maximum Likelihood Methods. Maximum likeli-
hood estimation of the Bradley-Terry—Luce model dates
back to Zermelo (1929), Dykstra (1956), and Ford (1957),
which all give variants of the same iterative algorithm and
prove its convergence to the maximum likelihood estima-
tor (MLE) when the directed comparison graph is strongly
connected. Much later, Hunter (2004) observed that
their algorithms are instances of a class of minorization-
maximization or majorization-minimization (MM) algo-
rithms and developed MM algorithms for the
Plackett-Luce model for ranking data among others.
Vojnovi¢ et al. (2020, 2023) further investigated the conver-
gence rate of the MM algorithm for choice models, quanti-
fying it in terms of the algebraic connectivity of the
comparison graph. Newman (2023) proposes an alterna-
tive to the classical iterative algorithm for pair-wise com-
parisons based on a reformulated moment condition,
achieving impressive empirical speedups. Negahban et al.
(2012) is arguably the first work that connects maximum
likelihood estimation to Markov chains followed by Mays-
tre and Grossglauser (2015), whose spectral method is
based on a balance equation interpretation of the optimal-
ity condition. Kumar et al. (2015) consider the problem of
inverting the stationary distribution of a Markov chain
and embed the maximum likelihood problem of the Luce
choice model into this framework, where the MLEs
parameterize the desired transition matrix. Maystre and
Grossglauser (2017) consider the estimation of a network

choice model with similarly parameterized random walks.
Lastly, a vast literature in econometrics on discrete choice
also considers different aspects of the ML estimation prob-
lem. In particular, the present paper is related to the
Berry—Levinsohn-Pakes (BLP) framework of Berry et al.
(1995), which is well known in econometrics. The matrix-
balancing interpretation of maximum likelihood estima-
tion of choice models that we develop in this paper con-
nects many of the aforementioned works.

Besides optimization problems related to maximum
likelihood estimation, there have also been extensive stud-
ies on the statistical properties of maximum likelihood
estimates themselves (Hajek et al. 2014, Rajkumar and
Agarwal 2014). In particular, a line of recent works has
highlighted the importance of algebraic connectivity—as
quantified by the Fiedler eigenvalue (Fiedler 1973, Spiel-
man 2007)—on the statistical efficiency of the MLEs. Shah
etal. (2015) is the first to recognize this significance of data
structure for the statistical efficiency of the BTL model,
which they refer to as “topology dependence.” As a
by-product of analysis for a context-dependent generali-
zation of the Luce choice model, Seshadri et al. (2020)
obtain tight expected risk and tail risk bounds for the
MLEs of Luce choice models (which they call MNL) and
Plackett-Luce ranking models in terms of the algebraic
connectivity, extending and improving upon previous
works by Hajek et al. (2014), Shah et al. (2015), and
Vojnovi¢ and Yun (2016). Other works with tight risk
bounds on the BIL model include the works of Hen-
drickx et al. (2020) and Bong and Rinaldo (2022), who also
provide the first high-probability guarantees for the exis-
tence of finite MLEs of the BTL model under conditions
on a Fiedler eigenvalue. Interestingly, the statistical signif-
icance of algebraic connectivity has also been highlighted
in models of networks in econometrics and machine
learning by the works of De Paula (2017), Jochmans and
Weidner (2019), and Chang et al. (2024) among others.
Our present work is primarily concerned with the optimi-
zation aspects of the maximum likelihood estimation of
choice models. Nevertheless, the statistical importance
of algebraic connectivity in the aforementioned works
also provides motivation for us to leverage it in our con-
vergence analysis of Sinkhorn’s algorithm for matrix
balancing.

Lastly, a short note on terminology. Even though a
choice model based on (1) is technically a “multinomial
logit model” with only intercept terms (McFadden
1973), there are subtle differences. When (1) is applied to
model ranking and choice data with distinct items, each
observation i usually consists of a possibly different sub-
set S; of the universe of all alternatives so that there is a
large number of different configurations of the choice
menu in the data set. On the other hand, common appli-
cations of multinomial logit models, such as classifica-
tion models in statistics and machine learning (Bishop
and Nasrabadi 2006) and discrete choice models in
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econometrics (McFadden 1973), often deal with  constraints, then
repeated observations consisting of the same number of

b o d(r,p) < A -d(r?, p) 3)

alternatives. However, these alternatives now possess
“characteristics” that vary across observations, which
are often mapped parametrically to the scores in (1). In
this paper, we primarily use the term Luce choice model
to refer to Model (4), although it is also called an MNL
model in some works. We refrain from using the term
MNL to avoid confusion with parametric models for
featurized items used in ML and econometrics.

2.2. Matrix Balancing

Matrix balancing (or scaling) is an important topic in
optimization and numerical linear algebra that under-
lies a diverse range of applications. The particular ques-
tion of scaling rows and columns of a matrix A so that
the resulting matrix has target row and column norms
p, q was studied as early as the 1930s and continues to
interest researchers from different disciplines today.
The present paper only contains a partial survey of the
vast literature on this topic. Online Appendix D pro-
vides a summary of some popular applications to illus-
trate the ubiquity of the matrix-balancing problem.
Schneider and Zenios (1990) and Idel (2016) also pro-
vide excellent discussions of many applications.

The standard iterative algorithm for the matrix-
balancing problem that we study in this paper has been
rediscovered independently quite a few times. As a
result, it has domain-dependent names, including the
iterative proportional fitting procedure (Deming and
Stephan 1940), biproportional fitting (Bacharach 1965),
and the RAS (the origin of the name is unknown) algo-
rithm (Stone 1962), but it is perhaps most widely known
as Sinkhorn’s algorithm (Sinkhorn 1964). A precise
description can be found in Algorithm 1. Sinkhorn’s algo-
rithm is also closely related to relaxation and coordinate
descent-type methods for solving the dual of entropy
optimization problems (Bregman 1967b, Cottle et al.
1986, Tseng and Bertsekas 1987, Luo and Tseng 1992) as
well as message passing and belief propagation algo-
rithms in distributed optimization (Balakrishnan et al.
2004, Agarwal et al. 2018).

The convergence behavior of Sinkhorn’s algorithm in
different settings has been extensively studied by Sink-
horn (1964), Bregman (1967a), Lamond and Stewart
(1981), Franklin and Lorenz (1989), Ruschendorf (1995),
Kalantari et al. (2008), Knight (2008), Pukelsheim and
Simeone (2009), Altschuler et al. (2017), Dvurechensky
et al. (2018), Di Marino and Gerolin (2020), Chakrabarty
and Khanna (2021), Léger (2021), and Carlier (2022)
among many others. For A with strictly positive entries,
Franklin and Lorenz (1989) establish the global linear
convergence of Sinkhorn’s algorithm in the Hilbert pro-
jective metric d (Bushell 1973). More precisely, if
denotes the row sum of the scaled matrix after ¢ itera-
tions of Sinkhorn’s algorithm that enforce column

for some A € (0,1) dependent on A. On the other hand,
works such as Kalantari and Khachiyan (1993), Altschuler
etal. (2017), and Dvurechensky et al. (2018) develop com-
plexity bounds on the number of iterations required for
the ¢! distance |[r") — p||; < « for a given ¢ > 0. Although
these bounds imply a convergence that is sublinear (i.e.,
" — pll; = O(1/t)), their focus is on optimal depen-
dence on problem size and dimension. An important
class of problems with A > 0 is entropy-regularized opti-
mal transport (Cuturi 2013), where A is of the form A =
exp(—c/y) with a finite cost function (matrix) c (i.e., A
strictly positive everywhere). In this setting, convergence
of Sinkhorn’s algorithm in discrete and continuous pro-
blems has been studied by Altschuler et al. (2017), Di
Marino and Gerolin (2020), Léger (2021), and Ghosal and
Nutz (2025) among others. The linear convergence of
Sinkhorn’s algorithm for A > 0 has also been extended to
the multimarginal continuous setting by Carlier (2022),
building on the work of Di Marino and Gerolin (2020).

However, the matter of convergence is more delicate
when the matrix contains zero entries, and additional
assumptions on the problem structure are required to
guarantee the existence of scalings D°, D! and the con-
vergence of Sinkhorn’s algorithm. For nonnegative A,
convergence is first established by Sinkhorn and Knopp
(1967) in the special case of square A >0 and uniform
p =q =1, =1,,. Their necessary and sufficient condition
is that A has support (i.e., there exists a permutation o
such that the “diagonal” (Aisa1), Az()-- -, Anon)) is
strictly positive). Soules (1991) and Achilles (1993) fur-
ther show that the convergence is linear if and only if
the stronger condition of total support holds (i.e., any
nonzero entry of A must be in (A14(1), A202), - - -, Ano(n))
for some permutation o). Knight (2008) provides a tight
asymptotic linear convergence rate in terms of the sub-
dominant (second-largest) singular value of the scaled
doubly stochastic matrix D’AD!. The convergence in
Knight (2008) is measured by some implicit distance to
the target marginals p, . However, no asymptotic linear
convergence rate is previously known for nonsquare
A > 0 and nonuniform marginals.

For general nonnegative matrices and nonuniform
marginals, the necessary and sufficient conditions on A
in the matrix-balancing problem that generalize that of
Sinkhorn and Knopp (1967) have been studied by Thi-
onet (1964), Bacharach (1965), Brualdi (1968), Menon
(1968), Djokovi¢ (1970), Sinkhorn (1974), Balakrishnan
etal. (2004), and Pukelsheim and Simeone (2009) among
others, and convergence of Sinkhorn’s algorithm under
these conditions is well known. Connecting Sinkhorn’s
algorithm to dual coordinate descent for entropy opti-
mization, Luo and Tseng (1992) show that the dual
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optimality gap, defined in Equation (28), converges line-
arly globally with some unknown rate A when finite
scalings D, D! exist. However, their result is implicit,
and there are no results that quantify the global linear
rate A, even for special classes of nonnegative matrices.
When convergence results for A > 0 in previous works
are applied to nonnegative matrices, the bounds often
blow up or become degenerate as soon as min;A;; | 0.
For example, in (3), the contraction factor A — 1 when A
contains zero entries. When min;A; =0, complexity
bounds on [ — p||; and ||r¥) — p||, have been estab-
lished for Sinkhorn’s algorithm (for example, by the
works of Kalantari et al. 2008 and Chakrabarty and
Khanna 2021), with polynomial dependence on 1/« (i.e.,
sublinear convergence). Under the minimal condition
that guarantees the convergence of Sinkhorn’s algo-
rithm, Léger (2021) gives a quantitative global sublinear
bound on the KL (Kullback-Leibler) divergence between
) and p in the continuous setting for general probability
distributions, which include nonnegative matrices A > 0.

It, therefore, remains to reconcile the various results on
Sinkhorn'’s algorithm for A > 0 and characterize the global
and asymptotic linear convergence rates for nonnegative
A. Our results precisely fill these gaps left by previous
works. The global linear convergence result in Theorem 3
establishes a contraction like (3) for the optimality gap
whenever finite scalings D°, D! exist and characterize the
convergence rate A in terms of the algebraic connectivity.
Moreover, the asymptotic linear rate in Theorem 4 directly
extends the result of Knight (2008). See Table 1 for a
detailed summary and comparison of the convergence
results in previous works and this paper. The dependence
of Sinkhorn’s convergence rate on spectral properties of
graphs can be compared with convergence results in the
literature on decentralized optimization and gossip algo-
rithms, where a spectral gap quantifies the convergence
rate (Boyd et al. 2006, Xiao et al. 2007).

Lastly, we note that other algorithms with better com-
plexities have been developed for the matrix-balancing
problem utilizing, for example, the ellipsoid algorithm
(Kalantari and Khachiyan 1996) and geometric pro-
gramming (Nemirovski and Rothblum 1999), interior
point algorithms (Cohen et al. 2017, Chen et al. 2022), or
customized first-/second-order techniques (Linial et al.
1998, Allen-Zhu et al. 2017). However, despite having
better theoretical complexities, most of these algorithms
have yet to be implemented practically. Sinkhorn’s algo-
rithm, on the other hand, remains an attractive choice in
practice because of its simplicity, robustness, and paral-
lelization capabilities.

3. Preliminaries on Choice Modeling and

Matrix Balancing
We start by providing brief but self-contained introduc-
tions to the two main subjects of this paper, choice

modeling and matrix balancing, including their respective
underlying mathematical problems and assumptions.
Then, we formally establish their equivalence in Section 4.

3.1. Maximum Likelihood Estimation of Luce
Choice Models

In the Luce choice-modeling framework, we have n
observations {(j;, S;)};_,, each consisting of a choice set
S;C{1,...,m} =[m] that is a subset of the total m alter-
natives/items/objects and the alternative selected,
denoted by j; € S;. The choice probability is prescribed
by Luce’s axiom of choice given model parameter s €
R, in the interior of the probability simplex A,

S
Pr iy S) = i ,
(I 1 Ekesi Sk
and the likelihood of the observed data is thus given by
n S;
L(s;{(i, Si)}imy) o= LR )
! g > kes, Sk

A popular method to estimate s = {s1, ..., s} is the max-
imum likelihood estimation approach, which maxi-
mizes the log likelihood

£(s) :=logL(s) = z": (logsﬁ — logz sk> (5)

i=1 keS;

over the interior of the probability simplex. Note that
the choice sets S; can vary across i. In other words, in
each observation, the choice is made from a potentially
distinct set of alternatives. This feature of the problem
turns out to be important for both the algorithmic effi-
ciency of computing the maximizers to (5) as well as the
statistical efficiency of the resulting MLEs, which can be
quantified by a measure of connectivity of the data
structure. We will elaborate on these points shortly. For
now, we focus on the existence and uniqueness of MLE.

If we reparameterize exp(u;) = s;, it is obvious that (5)
is concave in u. However, to ensure that the log-
likelihood (5) has a unique maximizer in the interior of
the simplex, additional assumptions on the comparison
structure of the data set {(j;, Si)}/-; are needed. The fol-
lowing classic condition is necessary and sufficient for
the maximum likelihood problem to be well posed.

Assumption 1 (Strong Connectivity). In any partition of
[m] into two nonempty subsets S and its complement SC,
some j € S is selected at least once over some k € S©. Equiv-
alently, the directed comparison graph, with items as verti-
ces and an edge j — k if and only if k is selected in some S;
for which j,k € S;, is strongly connected.

Assumption 1 is standard in the literature (Hunter
2004, Noothigattu et al. 2020) and appeared as early as
the works of Zermelo (1929) and Ford (1957) for pair-
wise comparisons. Hunter (2004) shows that Assump-
tion 1 is necessary and sufficient for the upper
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Table 1. Summary of Some Convergence Results on Sinkhorn’s Algorithm

Relevant work Convergence statement A A P q
Franklin and Lorenz (1989) duitbert (MY, p) < Adpgitpen (r?, p) K2(A) A >0, rectangular Uniform
Luo and Tseng (1992) g —g <A —¢) Unknown A >0, rectangular General
Knight (2008) [P —pll /IFD — pll, — A a3(A) A >0, square Uniform
A
Altschuler et al. (2017) IF — pll; < 2\/% log <I§{f/ Af/) A >0, rectangular General
Léger (2021) D (r9lp) <2 Dxi(AllA) A >0, continuous General
. #t+1) PG ~T ~
Current work, asymptotic II% —+pl/ II% — Pl — A A(ATA) A >0, rectangular General
Current work, global g —g <A (g0 —¢) 1—cgAo(L)/1 A 20, rectangular General

Notes. Throughout, assume that ||p|; = [|g]l; = 1. Define ¥ := A®1,,, where A® is the scaled matrix after  Sinkhorn iterations. In Franklin and

Lorenz (1989), k(A) = %, where 0(A) is the diameter of A in the Hilbert metric. The norm in Knight (2008) is not explicitly specified, and

02(A) denotes the second-largest singular value of the scaled doubly stochastic matrix A. The bound in Altschuler et al. (2017) is originally stated

min;Aj

Ajj
as the complexity bound that I — plh<eint=0 (gzlog(z‘/ >) iterations, whereas the original result in Chakrabarty and Khanna (2021)

is |jr — plli<eint= (9<£’210g <m?n';‘ij”jj’4q>> iterations, where A :=max;|i € [1] : A;; > 0|. The result in Léger (2021) applies more generally to
couplings of probability distributions. In our asymptotic result, A»(A TA) is the second-largest eigenvalue of A := D(1/ \p) -A-DQ1/ v4). In our
global bound, g® = ¢(d"?,d'"), whereas g* is the minimum value of (16). A_5(£) is the second-smallest eigenvalue of the Laplacian of the

bipartite graph defined by A, [ = min{maxj(ATl,, )]-,max,-(Alm),-}, cp = exp(—4B), and B is a bound on the initial sublevel set, which is finite if and

only if Assumption 3 holds.

compactness of (5), which guarantees the existence of a
maximizer in the interior of the probability simplex. In
fact, when an interior maximizer exists, it is also unique
because Assumption 1 implies the following weaker
condition, which guarantees the strict concavity of (5).

Assumption 2 (Connectivity). In any partition of [m] into
two nonempty subsets S and S, some j € S and some k €
SC appear in the same choice set S; for some i.

The intuitions provided by Ford (1957) and Hunter
(2004) are helpful for understanding Assumptions 1 and 2.
If items from some S C [m] are never compared with
those in S (i.e., never appeared together in any choice
set S;), it is impossible to rank across the two subsets. In
this case, we can rescale the relative weights of S and S¢
of an interior maximizer and obtain another maximizer.
On the other hand, if items in S are always preferred to
those in S¢, we can increase the likelihood by scaling s;
for items j € S¢ toward zero, and no maximizer in the
interior of the probability simplex exists. Nevertheless, a
boundary solution can still exist. This case turns out to
be important in the present work; in the equivalent
matrix-balancing problem, it corresponds to the slow-
down regime of Sinkhorn’s algorithm, where scalings
diverge but the scaled matrix converges (Section 5).

Assumption 2 also has a concise graph-theoretic inter-
pretation. Define the weighted undirected comparison
graph G, on m vertices with adjacency matrix A° given by

c_J0 -
A= { Hieln]ljkeSi} j#k (6)

In other words, there is an undirected edge between j
and k if and only if they are both included in some

choice set S;, with the edge weight equal to the number
of their co-occurrences, which could be zero. We can
verify that Assumption 2 precisely requires G. to be
connected.

Remark 1 (Importance of Graph Connectivity). Under the
standard Assumptions 1 and 2, previous works have
studied the statistical efficiency of the MLE (Hajek
et al. 2014, Shah et al. 2015, Seshadri et al. 2020) as
well as the computational efficiency of the MM algo-
rithm for computing the MLE (Vojnovi¢ et al. 2020). In
both cases, the algebraic connectivity of G. (Fiedler
1973), quantified by the second-smallest eigenvalue of
the graph Laplacian of G, plays an important role.
See Online Appendix A for more details. The impor-
tance of spectral properties for parameter learning in
data with graph or matrix structures has appeared as
early as Kendall and Smith (1940) and in the classic
work of Keener (1993) on ranking sports teams as well
as in works in economics (Abowd et al. 1999, Joch-
mans and Weidner 2019). These results, together with
the connections that we establish in this paper between
choice modeling and matrix balancing, inspire us to
also quantify the convergence of Sinkhorn’s algorithm
using the algebraic connectivity of a bipartite graph
defined in (7).

3.2. The Canonical Matrix-Balancing Problem
Matrix balancing is a classic problem that shows up in a
wide range of disciplines. See Online Appendix D for a
short survey on some applications. The underlying
mathematical problem can be stated concisely in matrix
form as follows.
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Given positive vectors p € R"},,g € R} with > p, =
>_4; = ¢ > 0, which without loss of generality, can be set
to ¢ =1, and a nonnegative matrix A € R?", find posi-
tive diagonal matrices D!, D° satisfying the conditions
D'AD®-1,,=pand D’ATD' -1, = 4.

We, henceforth, refer to the above as the “canonical”
matrix-balancing problem. Other variants of the problem
replace the row and column sums (the 1-norm) with
other norms (Bauer 1963, Ruiz 2001). Note that for any
¢>0,(D%/c,cD") is also a solution whenever (D%, D!) is.
A finite positive solution (D, D) to the canonical matrix-
balancing problem is often called a direct scaling.

The structure of the matrix-balancing problem suggests
a simple iterative scheme; starting from any initial positive
diagonal D°, invert D'AD"1,, = p using p/(AD"1,,) to
update D'. Then, invert D°ATD'1,, = q using q/(A"D'1,,)
to compute the new estimate of DY, and repeat the proce-
dure, leading to a solution if it converges. Here, divisions
involving two vectors of the same length are entry wise.
This simple iterative scheme is precisely Sinkhorn’s algo-
rithm, described in Algorithm 1, where vectors d° d' are
the diagonal elements of D°, D'.

An important dichotomy occurs depending on
whether the entries of A are strictly positive. If A con-
tains no zero entries, then direct scalings and a unique
scaled matrix D'AD® always exist (Sinkhorn 1964).
Moreover, Sinkhorn’s algorithm converges linearly
(Franklin and Lorenz 1989). On the other hand, when A
contains zero entries, the problem becomes more com-
plicated. Additional conditions are needed to guarantee
meaningful solutions, and the convergence behavior of
Sinkhorn’s algorithm is less clearly understood. Well
posedness of the matrix-balancing problem has been
studied by Brualdi (1968), Sinkhorn (1974), and Pukel-
sheim and Simeone (2009) among others, who charac-
terize the following equivalent existence conditions.

Assumption 3 (Strong Existence). (a) There exists a non-
negative matrix A’ € R with the same zero patterns as
A and with row and column sums p and q. Or, equiva-
lently, (b) for every pair of sets of indices NC[n] and
MC[m] such that A;=0 for i¢ N and je M, >, .\p; >
>_jemd;, with equality if and only if Ay =0 for all ie N
and j & M as well.

It is well known in the matrix-balancing literature
that the above two conditions are equivalent and that a
positive finite solution (D°, D') to the canonical problem
exists if and only if they hold. See, for example, Pukel-
sheim and Simeone (2009, theorem 6). Assumption 3
also guarantees the convergence of Sinkhorn’s algo-
rithm. However, it is not a necessary condition. In other
words, Sinkhorn’s algorithm could converge even if the
matrix-balancing problem does not admit a direct scal-
ing. This phenomenon turns out to be important in char-
acterizing the convergence rate, which we study in
Section 5.

Clearly, Assumption 3(a) is the minimal necessary
condition when a solution to the matrix-balancing prob-
lem exists and trivially holds when A >0 (take, for
example, A’ as the Kronecker product of p, ). Assump-
tion 3(b) is closely connected to conditions for perfect
matchings in bipartite graphs (Hall 1935, Galichon and
Salanié 2021). In flow networks (Ford and Fulkerson
1956, 1957; Gale 1957), it is a capacity constraint that
guarantees that the maximum flow on a weighted bipar-
tite graph is equal to > p,=>_q; and with positive
flow on every edge (Idel 2016). The weighted bipartite
graph, denoted by Gy, is important in this paper. Its
adjacency matrix A? € RO*™*+M) can be represented
concisely using A as

0 A
Ab = [AT 0:|r (7)

and A is sometimes called the biadjacency matrix of Gy.
See Online Appendix A for more information. Just like
in the choice setting, where the connectivity of the undi-
rected comparison graph G, plays an important role, the
connectivity of G;, turns out to be important for the
linear convergence rate of Sinkhorn’s algorithm (see
Section 5).

Lastly, the necessary and sufficient condition for the
uniqueness of finite scalings essentially requires that A
is not block diagonal and precisely guarantees that G, is
connected.

Assumption 4 (Uniqueness). D° and D' are unique mod-
ulo normalization if and only if A is indecomposable (i.e.,
there does not exist permutation matrices P, Q such that
PAQ is block diagonal).

Algorithm 1 (Sinkhorn’s Algorithm)

Input: A, p, g, €401

initialize d° € RY,

repeat
d' —p/(Ad’)
& —q/(ATd))
€ « maximal update in (d°,d") or distance between
D'Ad’ and p

until € < €

With a proper introduction to both problems, we are
now ready to establish the equivalence between Luce
choice model estimation and matrix balancing. In Section 5,
we return to Sinkhorn’s algorithm for the matrix-
balancing problem and provide answers to open pro-
blems concerning its linear convergence for nonnegative
Aby leveraging the connections that we establish next.

4. Connecting Choice Modeling and
Matrix Balancing

In this section, we formally establish the connections

between choice modeling and matrix balancing. We

show that maximizing the log-likelihood (5) is equivalent
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to solving a canonical matrix-balancing problem. We
also precisely describe the correspondence between
the relevant conditions in the two problems. In view of
this equivalence, we show that Sinkhorn’s algorithm,
when applied to estimate Luce choice models, is in fact
a parallelized generalization of the classic iterative
algorithm for choice models dating back to Zermelo
(1929), Dykstra (1956), and Ford (1957) and also stud-
ied extensively by Hunter (2004) and Vojnovi¢ et al.
(2020, 2023).

4.1. Maximum Likelihood Estimation of Luce
Choice Models as Matrix Balancing

The optimality conditions for maximizing the log-

likelihood (5) for each s; are given by

Ils)= > 1 ! o

ienl[G,5) % ielnlljes: 2_kes, Sk

Multiplying by Sj and dividing by 1/n, we have
W, 1 S
7] n > : i’ ®)
ie[n][jes; £~keS; %k

where W; := |{i € [n]|(j, S;)}| is the number of observa-
tions where j is selected.

Note that in the special case where S; = [1] (i.e., every
choice set contains all items), the MLE simply reduces to
the familiar empirical frequencies §; = W;/n. However,
when the choice sets S; vary, no closed-form solution to
(8) exists, which is the primary motivation behind the
long line of works on the algorithmic problem of solving
(8). With varying S;, we can interpret the optimality con-
dition as requiring that the observed frequency of j
being chosen (left-hand side) be equal to the average or
expected probability of j being selected (right-hand
side), which conditional on choice set S;, is ﬁ ifjes;

keS;

and zero otherwise. In addition, note that because the
optimality condition in (8) only involves the frequency
of selection, distinct data sets could yield the same opti-
mality conditions and hence, the same MLEs. For exam-
ple, suppose that two alternatives j and k both appear in
choice sets S; and Sy, with j selected in S; and k selected
in Sy. Then, switching the choices in S; and S; does not
alter the likelihood and optimality conditions. This fea-
ture holds more generally with longer cycles of items
and choice sets, and it can be viewed as a consequence
of the context-independent nature of Luce’s choice
axiom (i.e., IIA). In some sense, it is also the underpin-
ning of many works in economics that estimate choice
models based on marginal sufficient statistics. A promi-
nent example is Berry et al. (1995), which estimates con-
sumer preferences using data on aggregate market
shares of products.

Remark 2 (Reduction to Unique Choice Sets). In practice,
the choice sets of many observations may be identical

to each other (i.e., S; =Sy for some i,i’ € [n]). Because
(8) only depends on the total “winning” counts of
items, we may aggregate over observations with the
same S;:

S; s;
j j
> Rt
Zkes;, Sk

iefnTTjes: 2kes; & peliTlies,

where each Sj, is a unique choice set that appears in
Ry >1 observations for i =1,...,n" < n. By construc-
tion, Z?zl R; = n. Note, however, that the selected item
could vary across different appearances of S;, yet the
optimality conditions only involve each item’s winning
count W;. From now on, we will assume this reduction
and drop the * superscript. In other words, without loss
of generality, we assume that we observe n unique
choice sets, and choice set S; has multiplicity R; (Shah
et al. 2015). The resulting maximum likelihood problem
has optimality conditions

W= 3 Rl )

ielles,  Dkes, S

We are now ready to reformulate (9) as a canonical
matrix-balancing problem. Define p € R" as p, = R; (i.e.,
the number of times that choice set S; appears in the
data). Define g € R" as q; = W; (i.e, the number of times
that item j was selected in the data). By construction, we
have } .p, =>4, and p;, q; > 0 whenever Assumption
1 holds.

Now, define the n X m binary matrix A by A; =1{j €
S;} so that the ith row of A is the indicator of which items
appear in the (unique) choice set S; and the jth column
of A is the indicator of which choice sets item j appears
in. We refer to this A constructed from a choice data set
as the participation matrix. By construction, A has dis-
tinct rows but may still have identical columns. We may
also remove repeated columns by “merging” items and
their win counts. Their estimated scores can be com-
puted from the score of the merged item proportional to
their respective win counts. We do not require this
reduction in our results. Figure 1 provides an illustra-
tion of the matrix-balancing representation of the Luce
choice-modeling problem with (A,p,q) defined as
above.

Let D° € R"*" be the diagonal matrix with DY = s; and
D' € R™" be the diagonal matrix with D} = R;/> cs ks
and define the scaled matrix

A:=D'AD. (10)

The matrices D! and D° are scalings of rows and col-
umns of A, respectively, and

~

A,‘]' =

R; .
-147€ S5t s
Zkesi Sk {] } ]
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Figure 1. (Color online) Representation of Luce Choice Data
with Participation Matrix A, R; as the Frequency of Appear-
ances of Choice Set i, and W; as the Frequency of Choices of
Item j as a Matrix-Balancing Problem (A,p,q) with Target
Marginals p; = R; and g, = W;
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The key observation is that the optimality conditions (9)
can be rewritten as

A1, =q. 1)
Moreover, by construction, A also satisfies
Al, =p. (12)

Therefore, if s;’s satisfy the optimality conditions for
maximizing (5), then D°, D! defined above solve the
matrix-balancing problem in Equations (10)—(12). More-
over, the converse is also true, and we thus establish the
equivalence between choice maximum likelihood esti-
mation and matrix balancing. All omitted proofs appear
in Online Appendix F.

Theorem 1 (Equivalence of Problems). Let (A,p,q) be
constructed from a choice data set as follows: p € R" with
p; =Ri, the multiplicity of choice set S;; q€R"™ with
q; = Wi, the total number of times that item j is chosen in
the choice data set; and A € R™™ with Aj=1{jeS;} (ie.,
the ith row of A is a one-hot encoding of the choice set S;).

Then, D°,D! >0 with Z]D? =1 solves the matrix-
balancing problem

D'AD’ = A
A1, =p
A'1,=q (13)

if and only if s € Ay, with s; = D]Q satisfies the optimality con-
ditions (9) of the maximum likelihood estimation problem of a
Luce choice model given the choice data set.

Theorem 1 implies that (5) has a unique maximizer s
in the interior of the probability simplex if and only if
(13) has a unique normalized solution D? as well. The
next question, naturally, is then how Assumption 1 and
Assumption 2 for choice modeling are connected to
Assumption 3 and Assumption 4 for matrix balancing.

Proposition 1 (Equivalence of Assumptions). Let (A, p, q)
be constructed from the choice data set as in Theorem 1,
with p,q > 0. Assumption 2 is equivalent to Assumption 4.
Furthermore, Assumption 1 holds if and only if (A,p,q)
satisfy Assumption 3 and A satisfies Assumption 4.

Thus, when the choice maximum likelihood estima-
tion problem is cast as a matrix-balancing problem,
Assumption 3 exactly characterizes the gap between
Assumption 2 and Assumption 1. We provide some
intuition for Proposition 1. When we construct a triplet
(A,p,q) from a choice data set, with p the numbers of
appearances of unique choice sets and g the winning
counts of each item, Assumption 4 precludes the possi-
bility of partitioning the items into two subsets that
never get compared with each other (i.e., Assumption 2).
Then, Assumption 3 requires that whenever a strict sub-
set MC[m] of objects only appears in a strict subset
NC[n] of the observations, their total winning counts are
strictly smaller than the total number of these observa-
tions (i.e., there is some object j ¢ M that is selected in S;
for somei € N, which is required by Assumption 1).

Interestingly, although Assumption 1 requires the
directed comparison graph, defined by the m X m matrix
of counts of item j being chosen over item k, to be strongly
connected, the corresponding conditions for the equivalent
matrix-balancing problem concern the 1 X m participation
matrix A and positive vectors p, g, which do not explicitly
encode the specific choice of each observation. This appar-
ent discrepancy is because of the fact that (4, p, ) form the
sufficient statistics of the Luce choice model. In other
words, there can be more than one choice data set with the
same optimality condition (9) and (A,p,q) defining the
equivalent matrix-balancing problem (see Figure 1).

Remark 3 (Aggregate Data as Sufficient Statistics). The
feature where “marginal” or aggregate quantities con-
stitute the sufficient statistics of a parametric model is
an important characteristic that underlies many works
in economics and statistics (Stone 1962, Birch 1963,
Good 1963, Theil 1967, Fienberg 1970, Berry et al. 1995,
Kullback 1997, Fofana et al. 2002, Maystre and Gross-
glauser 2017, Chang et al. 2024). It makes the task of
estimating a joint model from marginal quantities feasi-
ble and is very useful because in many applications,
only marginal data are available because of high sam-
pling cost or privacy-preserving considerations.

Having formulated a particular matrix-balancing
problem from the estimation problem given choice
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data, we may ask how one can go in the other direction.
In other words, when/how can we construct a “choice
data set” whose sulfficient statistics are a given triplet
(A, p,q)? First off, for (A, p, q) to be valid sufficient statis-
tics of a Luce choice model, p, g need to be positive inte-
gers. Moreover, A must be a binary matrix with unique
rows, each containing at least two nonzero elements
(valid choice sets have at least two items). Given such an
(A,p,q) satisfying Assumptions 3 and 4, a choice data
set can be constructed efficiently. Such a procedure is
described, for example, in Kumar et al. (2015), where A
is motivated by random walks on a graph instead of
matrix balancing (Online Appendix B). Their construc-
tion relies on finding the max flow on the bipartite
graph G;. For rational p, g, this max flow can be found
efficiently in polynomial time (Balakrishnan et al. 2004,
Idel 2016). Moreover, the maximum flow implies a
matrix A’ satisfying Assumption 3(a), thus providing a
feasibility certificate for the matrix-balancing problem
as well.

We have thus closed the loop and fully established
the equivalence of the maximum likelihood estimation
of Luce choice models and the canonical matrix-
balancing problem.

Corollary 1. There is a one-to-one correspondence between
classes of maximum likelihood estimation problems with the
same optimality conditions (9) and canonical matrix-bal-
ancing problems with (A,p,q), where A is a valid binary
participation matrix and p,q > 0 have integer entries.

Connections to discrete choice modeling have also
been established for the related problem of regularized
semidiscrete optimal transport (Taskesen et al. 2023),
although the problem setting and results are distinct
from the ones studied in this paper. We next turn our
attention to the algorithmic connections between choice
modeling and matrix balancing.

4.2. Algorithmic Connections Between Matrix
Balancing and Choice Modeling

Given the equivalence between matrix balancing and

choice modeling, we can naturally consider applying

Sinkhorn’s algorithm to maximize (5). In this case, one

can verify that the updates in each full iteration of Algo-

rithm 1 reduce algebraically to

(t+1) _ R;
sawy S R ay
ielnTTjes: 2okes, Sk
in the tth iteration. Comparing (14) with the optimality
condition in (9), which we recall is given by
R;

W; = S s
ie[n]|jeS; £~keSi 7k

> R
i~ =8
T, 2kes, Sk

we can, therefore, interpret the iterations as simply
dividing the winning count W; by the coefficient of s; on

the right repeatedly in the hope of converging to a fixed
point. A similar intuition was given by Ford (1957) in
the special case of pair-wise comparisons. Indeed, the
algorithm proposed in that paper is a cyclic variant of
(14) applied to pair-wise comparisons. However, this
connection is mainly algebraic as the optimality condi-
tion in Ford (1957) does not admit a reformulation as the
matrix-balancing problem in (13).

In Online Appendix B, we provide further discus-
sions on the connections of Sinkhorn’s algorithm to
existing frameworks and algorithms in the choice-
modeling literature and the optimization literature. We
demonstrate that many existing algorithms for Luce
choice model estimation are in fact special cases or ana-
logs of Sinkhorn’s algorithm. These connections also
illustrate the many interpretations of Sinkhorn’s algo-
rithm (e.g., as a distributed optimization algorithm as
well as a minorization-maximization or MM algorithm)
(Lange 2016). However, compared with most algo-
rithms for choice modeling discussed in this work, Sink-
horn’s algorithm is more general as it applies to
nonbinary A and noninteger p, g, and it has the addi-
tional advantage of being parallelized and distributed
and hence, more efficient in practice. To highlight the
ubiquity of Sinkhorn’s algorithm in the choice setting,
we summarize these algorithmic connections below.

Theorem 2 (Equivalence of Algorithms). Sinkhorn’s algo-
rithm, when applied to matrix-balancing formulations of
various choice-modeling problems, is equivalent to the fol-
lowing algorithms:

o the iterative algorithms of Zermelo (1929), Dykstra
(1956), and Ford (1957) for the BTL model of pair-wise com-
parison data;

o the MM algorithm of Hunter (2004) for the Plackett—Luce
model of ranking data;

o the unregularized version of the ChoiceRank algorithm
of Maystre and Grossglauser (2017) for their proposed net-
work choice model; and

o the BLP algorithm of Berry et al. (1995) in a logit ran-
dom utility model with only intercepts.

Moreover, Sinkhorn’s algorithm can be viewed as a gen-
eral MM algorithm as well as a message-passing algorithm,
and in the latter case, it is a variant of the accelerated spec-
tral-ranking algorithm of Agarwal et al. (2018) for Luce
choice models based on a different moment condition.

The mathematical and algorithmic connections
between matrix balancing and choice modeling that we
establish in this paper allow for the transmission of
ideas in both directions. For example, inspired by regu-
larized maximum likelihood estimation (Maystre and
Grossglauser 2017), we propose a regularized version
of Sinkhorn’s algorithm in Online Appendix C, which
is guaranteed to converge even when the original
Sinkhorn’s algorithm does not converge. Leveraging
optimization connections between maximum likelihood
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estimation of choice models and matrix balancing,
Chang et al. (2024) propose a statistical framework for
network traffic that justifies the popular use of Sink-
horn’s algorithm to infer detailed dynamic networks
from aggregate node-level activities. In the rest of the
main text, we focus on resolving some interesting open
problems on the convergence of Sinkhorn’s algorithm
motivated by results in choice modeling on the impor-
tance of algebraic connectivity in quantifying statistical
and computational efficiencies.

5. Linear Convergence of Sinkhorn’s

Algorithm for Nonnegative Matrices

In this section, we turn our attention on matrix balanc-
ing and study the global and asymptotic linear conver-
gence of Sinkhorn’s algorithm for general nonnegative
matrices A > 0 and positive marginals p, g > 0. We first
present the relevant optimization principles behind
matrix balancing and discuss some existing results in
Section 5.1, and then, we present the convergence
results in Sections 5.2-5.4. Throughout, we use super-
script (f) to denote quantities after ¢ iterations of Sink-
horn’s algorithm with normalized columns, described
in Algorithm 1.

5.1. Preliminaries

We start with the optimization principles associated
with matrix balancing and Sinkhorn’s algorithm. Given
a matrix-balancing problem with A >0, ,A; =1 and
target marginals p, g with } jp, = > _,q; =1, consider the
following KL divergence (relative entropy) minimiza-
tion problem:

min D (A]|A)

AER’_:_XW
ATln =q.

It is well known that when scalings D°, D! solve the
matrix-balancing problem with (A,p,q), the scaled
matrix A =D'AD? is the unique minimizer of (15)
(Bregman 1967a, Ireland and Kullback 1968). Moreover,
vector representations d°,d' of the optimal scalings
D?, D! precisely minimize the following (negative) dual
objective of (15):

g(d’,d'):= (@) Ad’ = > p,logd; — > g;logd), (16)
i=1 j=1

and Sinkhorn’s algorithm is a block coordinate descent-
type algorithm (Tseng 2001) applied to minimize (16).
Luo and Tseng (1992) study the linear convergence of
block coordinate descent algorithms for a general class

of objectives that include (16). In particular, their result
implies that the convergence of Sinkhorn’s algorithm,
measured in terms of the optimality gap of g, is linear
with some unknown rate as long as finite positive scal-
ings DY, D! exist that satisfy (2). The function g, some-
times referred to as the potential function of Sinkhorn’s
algorithm, also turns out to be crucial in quantifying the
global linear convergence rate in the present work.

Remark 4 (Optimization Connections). Interestingly, min-
imizing (16) is in fact equivalent to maximizing the log-
likelihood function €(s) in (5) for valid (A, p, q) because
min g(do,dl) = —{(d°) +c for some c¢>0. Moreover,
the optimality condition of minimizing g with respect to
d" reduces to the optimality condition (9). A detailed dis-
cussion can be found in Online Appendix B.4. This con-
nection relates choice modeling and matrix balancing
from an optimization perspective.

Although convergence results on Sinkhorn’s algo-
rithm are abundant, they are often stated in different
forms, are developed under different assumptions, and
apply to settings of varying degrees of generality. Next,
we briefly discuss some existing works to clarify their
connections and distinctions, which also help motivate
the technical results in this paper. They are summarized
in Table 1.

First and foremost, how to define and measure the
convergence of Sinkhorn’s algorithm is not entirely triv-
ial. Because of the indeterminacy of scalings under the
transformation (D°,D') — (D°/c,c-D'), most works
define convergence using quantities that are invariant
under this transformation. Let D°®), D'®) be the scalings
obtained after ¢ iterations of Sinkhorn’s algorithm, and
let A®) := D' AD® be the scaled matrix based on these
scalings. Because A" is invariant under the transforma-
tion, some earlier works, such as Franklin and Lorenz
(1989) and Soules (1991), measure convergence in terms
of A® to the optimally scaled matrix A = D'AD? that
has the target row and column sums p, q. Most later
works focus instead on the convergence of the marginal
quantities

A=A, .= A0T7,

to the target row and column sums p, q. Because after
each iteration in Algorithm 1, the column constraint is
always satisfied (A1, = g), it suffices to focus on the
convergence of ") to p. For example, Léger (2021) uses
the KL divergence Dy (r”||p), whereas Altschuler et al.
(2017) and Chakrabarty and Khanna (2021) use the ¢!
distance [[r*) — p||;, which is upper bounded by the KL
divergence via Pinsker’s inequality. Given the entropy
optimization perspective of matrix balancing and Sink-
horn’s algorithm in (15) and (16), it is also possible to
measure convergence in terms of the dual optimality
gap g(d"",d"") — ¢(d°,d"), which in turn, bounds KL
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divergences via

g(d®,d"M) — ¢(d°,d") = Dy (D' AD||AD)

=Y Dx(plr®) + Dxe(glle®).

s=t

17)

Luo and Tseng (1992) show that this dual optimality
gap converges linearly, but how the convergence rate
depends on problem structure has been an open ques-
tion. Our global linear convergence result in Theorem 3
is the first to characterize this rate.

Next, we note the distinction between global and local
(particularly asymptotic) convergence results. Global
results hold for all iterations f > 0. For example, Léger
(2021) shows Dy (r||p) < Dy, /t for all t, where Dy, is
the optimal value of the relative entropy minimization
Problem (15). On the other hand, local convergence
results pertain to the behavior of an algorithm in a
neighborhood of the optimal solution, whereas asymp-
totic results only hold in the limit as t— oco. For
example, Knight (2008) characterizes the asymptotic
rate limy_,o|[r"*V — pl,/|l*®) — pl|, of linear convergence
for Sinkhorn’s algorithm, where |-, is an implicitly
defined norm. When A >0, Knight (2008) is the only
work on the exact asymptotic convergence rate for
square A and uniform p, q. Theorem 4 is the first asymp-
totic result for general A >0 and nonuniform p, g, with
an explicit norm (|| -||,). Although asymptotic results
provide a more precise description of an algorithm’s
behavior near the optimal solution, global results are
useful for obtaining complexity bounds on the number
of iterations required to obtain ¢ accuracy solutions. In
fact, global results are often stated directly as complexity
bounds. For example, the result in Altschuler et al.
(2017) is that for A >0, t = 4(e) *log(3_;A;;/min;A;) itera-
tions of Sinkhorn’s algorithm guarantee [[r*) — p||;, < e.

Lastly, we note the distinction between (global) linear
and sublinear convergence results. Linear convergence
is often understood as successive improvements of the
convergence metric by a constant factor. For example,
Franklin and Lorenz (1989) show that for A > 0 and the
Hilbert metric d, d(#**V,p) < A-d(r®),p) for all t > 0 for
some A€(0,1). As a result, d(r®,p) < A'-d(r?,p)
decreases exponentially in t so that d(r®),p) < ¢ in
O(log(1/¢)) iterations. In contrast, in sublinear results,
such as Léger (2021), the convergence metric Dy (r?||p)
only decreases polynomially in ¢, requiring O(1/¢) itera-
tions to guarantee Dy (r'”||p) < e. Although sublinear
complexity bounds have worse (polynomial) depen-
dence on 1/¢, they often focus on optimizing the depen-
dence on problem size and dimension. Our main focus
in this paper is on understanding the linear convergence
behavior of Sinkhorn’s algorithm when A>0 (ie.,
O(log(1/¢)) iteration complexity). Nevertheless, we also

provide refined complexity bounds in Proposition 2
that optimize dependence on problem constants.

As discussed before, when A >0, only sublinear
convergence results with explicit rates are known
(Kalantari et al. 2008, Chakrabarty and Khanna 2021,
Léger 2021), whereas Luo and Tseng (1992) implies
global linear convergence with an unknown rate. We
now characterize this global linear rate of convergence
in terms of the algebraic connectivity of the bipartite
graph defined in (7).

5.2. Global Linear Convergence
Our analysis starts with the following change of vari-
ables to transform the potential function (16):

u:=logd’, wv:=—logd', (18)

resulting in the reparameterized potential function g(u, v)
of (16):

n m
Q(u,v):= ZAi]-e’””"/ + Zpl.v,- — Z q;1;. (19)
i i=1 j=1

Note first that g(u,v) = g(u+a,v +a) for any constant
a € R. We can verify that Sinkhorn’s algorithm is equiva-
lent to the alternating minimization algorithm (Bertse-
kas 1997) for (19), which alternates between minimizing
with respect to # and v, holding the other block fixed:

u — argming(u,v* ), v argming(u®,v) (20)
u v

or written more explicitly element wise,

u]( vgt) — 1og¢ (21)

0

Zinje l

t)
— log 7

j
> Aje
A main reason to focus on (19) instead of the log-
barrier form (16) is that (19) has a Hessian with desirable
properties for proving linear convergence. The Hessian
of g(u,v)is

D(A1,) —A

T

Vie(u,v) = . .
_A" p@',)

, (22)

where D converts a vector to a diagonal matrix and A =
D(d")AD(d") = D(exp(—v))AD(exp(u)) is the matrix
scaled by u, v. Note that the Hessian V?g¢(u,v) always
has 1,4, in its null space. On the surface, it may seem
that standard linear convergence results for first-order
methods, which require strong convexity (or the
Polyak-t.ojasiewicz condition) of the objective function,
do not apply to g(u,v). However, we will show that
whenever the matrix-balancing problem has finite scal-
ing solutions, g(u,v) is in fact strongly convex when
restricted to bounded subsets of the subspace

1t ={ueR"veR": (0,0) 1,,.,=0}. (23)

m+n

Moreover, the invariance of g(u,v) and its gradient and
Hessian under constant translations of (#,v) by 1,4,
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guarantees that the strong convexity constant of g(u,v)
on 1., in fact quantifies the linear convergence of Sink-
horn’s algorithm, even if the iterates u¥),9® are not in
14y Similar types of “restricted strong convexity”
properties have been studied by, for example, Agarwal
et al. (2010). It also shares similarities with the exp-
concavity property popular in online learning (Hazan
2016, Orabona 2019), which implies the strong convexity
of a function in the direction of the gradient evaluated at
any point. In contrast, g(u,v) is strongly convex along
any direction orthogonal to 1,,,,,, but its gradient evalu-
ated at any (u,v) is not necessarily orthogonal to 1,,4y.
However, the key is that along the trajectory of iterates
(u®),v9) obtained by running Sinkhorn’s algorithm, the
gradients of g evaluated at ("), v'")) are indeed orthogo-
nal to 1,,1,, which is sufficient to guarantee the linear
convergence of Sinkhorn’s algorithm.

We now introduce the key quantities and defini-
tions used in our result. Let Sinkhorn’s algorithm ini-
tialize with a (¥, with v® given by (21). Define the
constant B as

B :=sup||(u,9)ll
(u,v)

subject to (u,v)T1m+,, =0, (24)

g(u,v) < g(u(o), 20).

In other words, B is the diameter of the initial normal-
ized sublevel set. We will show that B is finite and that it
bounds normalized Sinkhorn iterates |[|(u*),v")||.,
because under Assumption 3, the function g(u,v) is
coercive on the subspace 1., . Coercivity is an impor-
tant property, and we define it below following Bertse-
kas (2016).

Definition 1 (Coercivity). A function f(x): RY SR is
coercive on a subspace V C RY if

f(x®) — +c0 whenever x € V and ||x"]|,, — +c0.
(25)

Next, define the Laplacian matrix £ := £(A) of the
bipartite graph Gy, (see (7)) as

. D(Al,) —A -
L —AT DAL (26)

and refer to the second-smallest eigenvalue A_»(L)
as the Fiedler eigenvalue. A_»(£)>0 if and only if
Assumption 4 holds and it quantifies “connectivity” of
the data structure (Spielman 2007). Although an impor-
tant quantity in the choice-modeling literature, algebraic
connectivity has not been previously used in the analy-
sis of Sinkhorn’s algorithm. For details on the graph
Laplacian and the Fiedler eigenvalue, see Online

Appendix A. Finally, define the smoothness parameters
lp := max (A1, i, 1= max(Aly);, (27)
] 1

which are used to quantify the smoothness of g(u, v).

We can now state one of our main contributions to
the study of Sinkhorn’s algorithm.

Theorem 3 (Global Linear Convergence). Suppose Assump-
tion 3 and Assumption 4 hold. Let L be the bipartite graph
Laplacian defined in (26) and A_»(L) be its second-smallest
eigenvalue. Let Iy, Iy be the smoothness parameters defined
in (27). Let (u®,v") be Sinkhorn iterates at iteration t
defined in (21) and B be the bound on ||(u®,v®)||,, defined
in (24). Define §* := inf,, ,g(u, v). For all t > 0, the optimal-
ity gap of the dual objective g(u,v) defined in (19) satisfies

D) N
) ) )
2

The ratio min{ly,I1}/A_»(L) can be interpreted as a con-
dition number of L.

g(u(t”),v(”l)) 7g=e < (1 —e

The linear convergence rate of Sinkhorn’s algorithm
is, therefore, quantified by A_,(£)/min{l, 1}, which is
invariant under rescalings of A — c-A. Although the
corresponding bipartite graph G, with biadjacency
matrix A is a natural object to consider in the study
matrix-balancing problems, to our knowledge, Theorem 3
is the first to highlight the precise role of its spectral
property, described by A_»(£), in the linear convergence
of Sinkhorn’s algorithm. It fills the gap left by Luo and
Tseng (1992), who establish linear convergence with an
implicit rate, and it allows us to compute its dependence
on problem parameters by applying established bounds
on A_»(£) from spectral graph theory (Spielman 2007).

Remark 5 (Importance of Assumptions for Linear Conver-
gence). The importance of Assumptions 3 and 4 is
clearly reflected in the bound (28). First, note that the
Fiedler eigenvalue A_,(£) >0 if and only if Assump-
tion 4 holds (see Online Appendix A). On the other
hand, Assumption 3 guarantees the coercivity of ¢ on
1., (see (25)). This property ensures that B defined in
(24) satisfies B < co and consequently, that normal-
ized iterates stay bounded by B. That Assumption 3
guarantees g(u,v) is coercive should be compared
with the observation by Hunter (2004) that Assump-
tion 1 guarantees the upper compactness (a closely
related concept) of the log-likelihood function (5).
When Assumption 3 fails, B may become infinite, and
16, 2D)loo — 0.

Remark 6 (Self-Normalizing Property of Sinkhorn). The
ability of Sinkhorn’s algorithm to exploit the (sub-
space) strong convexity of g(#,v) on 1., to achieve
linear convergence relies critically on the invariance of
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the scaled matrix A = D'AD? and g(u,v) under the
transformation (D°,D') — (D°/c,c-D'). This is an
intrinsic feature of the matrix-balancing problem that
has been well known but not fully exploited in the
convergence analysis so far. It guarantees that the
translation (u,v) — (u —logc,v —logc) does not alter
g(u,v) and its derivatives in (19). We can, therefore,
impose the auxiliary normalization (u,v)T1m+,, =0 or
equivalently, de? = [],d}, which is easily achieved by
requiring that after every update in Algorithm 1, a
normalization (d°/c,cd") is performed using the nor-

malizing constant
= [TaMa: @
j i

See Algorithm 3 for the normalized Sinkhorn’s algo-
rithm, which given (29), results in a virtual sequence of
u®, v satisfying (u® vM)71,,,, =0. Moreover, the
values of g(u,v) on this virtual sequence are identical to
those on the standard Sinkhorn iterates. As a result, the
convergence result (28) applies to the standard Sink-
horn’s algorithm without normalization (or with any
other normalization) because of the invariance of
g(u,v). Normalization of Sinkhorn’s algorithm is also
considered in the analyses in Carlier et al. (2023),
although they use the asymmetric condition up =0,
which does not guarantee that normalized Sinkhorn

iterates stay in 1, ..

With this auxiliary normalization procedure, the
proof of Theorem 3 then relies on the observation that
the Hessian of g(u,v) is precisely the graph Laplacian
L(u,v) of the bipartite graph with biadjacency matrix
A = D(exp(—v))AD(exp(u)). As (u,v) are bounded on
normalized Sinkhorn iterates thanks to the coercivity of
g, the Fiedler eigenvalue of £ = £(0,0) quantifies the
strong convexity on 1;,_,. Linear convergence then fol-
lows from results on block coordinate descent and alter-
nating minimization methods for strongly convex and
smooth functions (Beck and Tetruashvili 2013). Typi-
cally, the leading eigenvalue of the Hessian quantifies
the smoothness, which is bounded by 2 max{l, 1} for L.
For alternating minimization methods, the better
smoothness constant min{ly,/;} is available. Thus, the
quantity min{lp,/1}/A_»(£) in (28) can be interpreted as
a type of “condition number” of the graph Laplacian L.
When A is positive (not just nonnegative), then the
strong existence and uniqueness conditions are trivially
satisfied, and our results continue to hold with the rate
quantified by min{ly,l1}/A_2(£). In this case, both
min{lp,/1} and A_,(L) are ©(n), where n is problem
dimension, so min{ly,[1}/A_»(L) does not increase with
problem dimension.

Remark 7 (Significance of Theorem 3). A main innova-
tion in our paper is in introducing the concept of

algebraic connectivity when quantifying the global con-
vergence of Sinkhorn’s algorithm for nonnegative matri-
ces. In this respect, the significance of Theorem 3 is more
conceptual than technical because once we identify the
right quantity (algebraic connectivity) and utilize the
self-normalizing property, the convergence result can be
obtained using standard matrix analysis and applying
the theory of Beck and Tetruashvili (2013) for block coor-
dinate descent algorithms. Nevertheless, we feel that the
role of algebraic connectivity in the study of matrix-
balancing problems holds general significance and likely
will lead to more results in related areas. See, for exam-
ple, Chang et al. (2024), which highlights its importance
for the statistical efficiency of a network traffic model
based on matrix balancing.

Although Theorem 3 implies an O(log(1/¢)) iteration
complexity, the complexity bound’s dependence on
problem parameters can be further improved. In partic-
ular, the constant B, which bounds ||(u*,2")]|.,, can be
hard to compute for some problems. We next establish
an iteration complexity bound that does not depend
exponentially on the implicit constant B defined in (24).

Proposition 2 (lteration Complexity). Under Assumption

3 and Assumption 4, let d°,d be a pair of optimal scalings.

[E[ 1
10 ” Ml o ”

0Nl ]| ) Suppose Sinkhorn’s algorithm initializes
with u® = 1,,. Then, ||(e"”,e"")|| < C forall t > 0. More-
over, for any ¢ < imin{|lp|l_, gl }, after

Define |[v]|_, := min;|v;|, and let C=: max{

o) <C2 IW (log(1/¢) +loglog C)) (30)

iterations of Sinkhorn’s algorithm, the optimality gap and the
" distance || — pl|; < e.

Proposition 2 relies on two technical innovations.
First, we bound e® < C, where C is explicitly con-
structed from any optimal solution pair and is invariant
under rescalings. Second, we improve the dependence
from e*® to €28 using the target marginals p, 4 to quantify
the smoothness of g(u,v) instead. Our message here is
that the convergence behavior of Sinkhorn’s algorithm
has two phases. Initially, we can apply a sublinear com-
plexity bound with O(1) iterations to obtain Sinkhorn
iterates sufficiently close to the optimal solution. After-
wards, the convergence can better be captured by a lin-
ear convergence with rate depending on the optimal
solution and target marginals p, 4. The dependence of C
on problem dimension is problem specific. In the worst
case, it can be exponential (Kalantari and Khachiyan
1993). In Online Appendix E.2, we plot (30) as a function
of problem dimension on randomly generated data, and
we find that the dependence is quadratic. In contrast,
sublinear bounds, such as Altschuler et al. (2017) and
Chakrabarty and Khanna (2021), have logarithmic
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dependence on problem dimension. It remains an inter-
esting question to improve the dependence on problem
dimension in (30) and to study trade-offs with the
dependence on ¢.

5.3. Strong vs. Weak Convergence of
Sinkhorn’s Algorithm

We now discuss the two different convergence regimes
of Sinkhorn’s algorithm when A > 0. As mentioned in
Sections 3.2 and 5.1, when A > 0, the canonical matrix-
balancing problem with target marginals p, q has a finite
positive solution pair DY, D! if and only if Assumption 3
holds (which trivially holds when A > 0). In this case,
Sinkhorn’s algorithm converges to D'ADY, which also
solves the KL minimization Problem (15). We call this
case the strong convergence of Sinkhorn.

However, even if Assumption 3 fails and no positive
finite scalings D, D! exist that solve the matrix-
balancing problem, the sequence of scaled matrices
A® =D'WADY® based on Sinkhorn’s algorithm can
still converge entry wise to the solution of (15) whenever
it has a finite solution. This apparent discrepancy is
explained by the fact that the solution of Problem (15)
requires a weaker condition than Assumption 3 for the
matrix-balancing problem. It can be stated in the follow-
ing equivalent forms.

Assumption 5 (Weak Existence). (a) There exists a non-
negative matrix A’ € R'™" that inherits all zeros of A and
has row and column sums p and q. Or, equivalently, (b)
for every pair of sets of indices NC[n] and MC[m] such

that Ay =0 fori¢ N and j€ M, 3 ienp; 2 3 jemd)-

The equivalence of the two conditions above follows
from Pukelsheim and Simeone (2009, theorem 4), which
also shows that they are the minimal requirements for
the convergence of Sinkhorn’s algorithm. Assumption
5(a) precisely guarantees that the constrained KL mini-
mization Problem (15) is feasible and bounded. It
relaxes Assumption 3(a) by allowing additional zeros in
the matrix A’. Similarly, Assumption 5(b) relaxes
Assumption 3(b) by allowing equality between ) ;.\ p;
and }_c\,q;, even when M, N do not correspond to a
block-diagonal structure.

The distinction between Assumption 3 and Assump-
tion 5 is important for the matrix-balancing problem
and Sinkhorn’s algorithm. Assumption 3 guarantees
that the solutions of (2) and (15) coincide and have
exactly the same zero pattern as A. If Assumption 5
holds but Assumption 3 fails, then the solution A of (15)
has additional zeros relative to A, and no direct (finite
and positive) scaling (D°, D) exists such that A = D'AD®.
However, the sequence of scaled matrices A" still con-
verges to A. We call this case the weak convergence of
Sinkhorn. In this case, the matrix-balancing problem is
said to have a limit scaling, where some entries of D°, D!

in Sinkhorn iterations approach zero or oo, resulting in
additional zeros in A. Below, we give an example adapted
from Pukelsheim and Simeone (2009), where p, g = (3,3)
and the scaled matrices A"’ converge but no direct scaling
exists:

AD = 1O 4D — pL®) {3 1}
0 2

0 ﬁ] [o 2] lo 11 - [o 3} 6D
2 t

Under Assumption 5, Léger (2021) proves the sub-
linear convergence of Sinkhorn’s algorithm, whereas it
is known since at least Soules (1991) and Luo and Tseng
(1992) that the convergence is linear under Assumption
3. It is, therefore, important to clarify the convergence
behaviors of Sinkhorn’s algorithm in the two settings.
We next show that if Assumption 5 holds but Assump-
tion 3 fails, then there exists an entry of A% that con-
verges at a lower-bound rate Q(1/t) (i.e., sublinear).
Together with existing and new results in this paper,
Proposition 3 fully characterizes the following conver-
gence behavior of Sinkhorn’s algorithm; whenever a
direct scaling exists for the matrix-balancing problem,
Sinkhorn’s algorithm converges linearly. If only a limit
scaling exists, then convergence deteriorates to sub-
linear. This generalizes the observations made by Sink-
horn and Knopp (1967) and Achilles (1993) for square
matrices and uniform marginals.

DO(t) —

Proposition 3 (Linear Versus Sublinear Convergence of
Sinkhorn). For general nonnegative matrices, Sinkhorn’s

algorithm converges linearly if and only if (A,p,q) satisfy
Assumption 3 and Assumption 4. The convergence is sub-
linear if and only if the weak existence condition Assumption
5 holds but Assumption 3 fails.

The regime of sublinear convergence also has an
interpretation in the choice-modeling framework. The
weak existence condition Assumption 5, when applied
to (A, p, q) constructed from a choice data set, allows the
case where some subset S of items is always preferred
over S¢, which implies, as observed already by the early
work of Ford (1957), that the log-likelihood function (5)
is only maximized at the boundary of the probability
simplex by shrinking s; for j€ S¢ toward zero (ie.,
D? — 0). Incidentally, Bacharach (1965) also refers to the
corresponding regime in matrix balancing as “boundary
solutions.”

5.4. Sharp Asymptotic Rate

Having established the global convergence and iteration
complexity of Sinkhorn’s algorithm when finite scalings
exist, we now turn to the problem of characterizing
the sharp (i.e., best-possible) asymptotic linear conver-
gence rate as t — oo for general nonnegative A and
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nonuniform marginals (p,q). Knight (2008) computed
this rate for uniform (p, q) under an implicit metric. Our
analysis is distinct from the analysis of Knight (2008)
and relies on an intrinsic orthogonality structure of
Sinkhorn’s algorithm, which is also different from the
auxiliary normalization in our global linear convergence
analysis. Note that unlike the global rate, which
depends on the initial problem data A and (u?, ), the
asymptotic rate now depends on the optimal solution
A = D'AD" as expected.

Theorem 4 (Sharp Asymptotic Rate). Suppose (A,p,q)
satisfy Assumption 3 and Assumption 4. Let A be the
unique scaled matrix with target marginals p, q defined in
(10). Then, marginals ) = A®1, where AY is the scaled
matrix after t iterations of Sinkhorn’s algorithm, satisfy

Yy - Bl
1 o7
AR — el 2

where the asymptotic linear rate of convergence Ao is

given by

Ao = M(AAT) = M, (A" A)
A:=D(1/p)-A-D(1/y/q)
and Ay (-) denotes the second-largest eigenvalue.

In the special case of m =n and p = q =1, the asymp-
totic rate in Theorem 4 reduces to that in Knight (2008).
Note, however, that the convergence metric is different;
we use the ¢ norm [|r'") /\/p — /pll,, whereas Knight
(2008) uses |[r) — p||, with an implicit norm || - ||, on R".
Moreover, one cannot directly extend results for square
matrices, such as those in Knight (2008), to nonsquare
matrices by padding them with zeros, as doing so
results in target marginals that are not strictly positive.
See, however, Knight (2008) for a symmetrization
proposal.

The proof of Theorem 4 relies on a sequence of novel
data-dependent mappings associated with Sinkhorn’s
algorithm. Intuitively, the dependence of the asymptotic
linear rate on the second-largest eigenvalue of A'A
(and AA T) is because of the fact that near the fixed point
\/;7 of the mapping associated with Sinkhorn iterations,
AA" (which is the Jacobian at \/P) approximates the
first-order change in #//p. Normally, the leading
eigenvalue quan’aﬁes this change. The unique leading
eigenvalue of AA" is equal to one with eigenvector /p,
which does not imply contraction. Fortunately, using
the quantity ¥ /y/p allows us to exploit the following
orthogonality structure:

(/NP — VP VP =D —p) =0

by virtue of Sinkhorn’s algorithm, preserving the quan-
tities Y71, for all . Thus, the residual r*)/ VP — AP is

always orthogonal to 4/p, which is both the leading
eigenvector and the fixed point of the iteration. The con-
vergence is then controlled by the second-largest eigen-

value of AA". This proof approach echoes that of the
global linear convergence result in Theorem 3, where
we also exploit an orthogonality condition to obtain a
meaningful bound. In Theorem 3, the bound depends
on the second-smallest eigenvalue of a Hessian matrix,
whereas in Theorem 4, the bound depends on the
second-largest eigenvalue of a Jacobian matrix.

Lastly, we note that the asymptotic rate A, is itself a
Fiedler eigenvalue associated with the Laplacian that is
the Schur complement of the scaled graph Laplacian

D(1/+/p) 0 D(A1,) -A
l 0 DA/D|| -A" DA,
D(1/yp) 0

l 0 D(l/\/ﬁ)]'

6. Conclusion

In this paper, we develop extensive connections
between matrix balancing and choice modeling. We
show that the maximum likelihood estimation of choice
models based on the Luce axioms of choice is an
instance of the canonical matrix-balancing problem.
Moreover, many algorithms in choice modeling can be
viewed as special cases or analogs of Sinkhorn’s algo-
rithm for matrix balancing. These connections can
potentially benefit multiple disciplines. For choice
modeling, they open the door to tools and insights from
well-studied topics in optimization and numerical lin-
ear algebra. For matrix balancing, the connections
enable us to resolve some interesting open problems on
the linear convergence of Sinkhorn’s algorithm for non-
negative matrices. We establish the first quantitative
global linear convergence result for Sinkhorn’s algo-
rithm applied to general nonnegative matrices. Our
analysis reveals the importance of algebraic connectivity
for matrix balancing. We also provide the first character-
ization of the exact asymptotic linear rate of conver-
gence for general nonnegative matrix and nonuniform
target marginals. Lastly, we clarify the linear and sub-
linear convergence behaviors of Sinkhorn’s algorithm
under the strong and weak existence assumptions for
matrix balancing. Overall, we believe that the connec-
tions established in this paper are useful for researchers
from different domains and can lead to further interest-
ing results.
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