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Abstract. For a broad class of models widely used in practice for choice and ranking data 
based on the Luce choice axiom, including the Bradley–Terry–Luce and Plackett–Luce 
models, we show that the associated maximum likelihood estimation problems are equiva-
lent to a classic matrix-balancing problem with target row and column sums. This perspec-
tive opens doors between two seemingly unrelated research areas and allows us to unify 
existing algorithms in the choice-modeling literature as special instances or analogs of Sink-
horn’s celebrated algorithm for matrix balancing. We draw inspirations from these connec-
tions and resolve some open problems on the study of Sinkhorn’s algorithm. We establish 
the global linear convergence of Sinkhorn’s algorithm for nonnegative matrices whenever 
finite scaling matrices exist and characterize its linear convergence rate in terms of the alge-
braic connectivity of a weighted bipartite graph. We further derive the sharp asymptotic 
rate of linear convergence, which generalizes a classic result of Knight. To our knowledge, 
these are the first quantitative linear convergence results for Sinkhorn’s algorithm for gen-
eral nonnegative matrices and positive marginals. Our results highlight the importance of 
connectivity and orthogonality structures in matrix balancing and Sinkhorn’s algorithm, 
which could be of independent interest. More broadly, the connections that we establish in 
this paper between matrix balancing and choice modeling could also help motivate further 
transmission of ideas and lead to interesting results in both disciplines.
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1. Introduction
The modeling of choice and ranking data is an impor-
tant topic across many disciplines. Given a collection of 
m objects, a universal problem is to aggregate choice or 
partial ranking data over them to arrive at a reasonable 
description of the behavior of decision makers, the 
intrinsic qualities of the objects, or both. Work on such 
problems dates back over a century at least to the work 
of Landau (1895), who considered m chess players and a 
record of their match results against one another, aiming 
to aggregate the pair-wise comparisons to arrive at a 
global ranking of all players (Landau 1895, Elo 1978). 
More generally, comparison data can result from 
choices from subsets of varying sizes, from partial or 

complete rankings of objects, or from mixtures of differ-
ent data types.

The modern rigorous study of comparisons primarily 
builds on the foundational works of Thurstone (1927) 
and Zermelo (1929). Both proposed models are based 
on a numerical “score” for each item (e.g., chess player) 
but with different specifications of choice probabilities. 
Zermelo (1929) builds on the intuition that choice proba-
bility should be proportional to the score and proposes 
a iterative algorithm to estimate the scores from pair- 
wise comparison data. As one of the foundational works 
in this direction, Luce (1959) formalized the multinomial 
logit (MNL) model of discrete choice starting from the 
axiom of independence of irrelevant alternatives (IIA). 

1 

OPERATIONS RESEARCH 
Articles in Advance, pp. 1–20 

ISSN 0030-364X (print), ISSN 1526-5463 (online) https://pubsonline.informs.org/journal/opre 

mailto:zq2236@columbia.edu
https://orcid.org/0000-0003-1484-1217
mailto:alfred.galichon@nyu.edu
mailto:gwz@stanford.edu
mailto:jugander@stanford.edu
https://orcid.org/0000-0001-5655-4086
https://doi.org/10.1287/opre.2023.0596
https://doi.org/10.1287/opre.2023.0596


It states that the relative likelihood of choosing an item j 
over another item k is independent of the presence of 
other alternatives. In other words, if S and S2 are two 
subsets of the m alternatives, both containing j and k, 
and Pr(j, S) denotes the probability of choosing item j 
from S, then for Pr(k, S), Pr(k, S2) > 0,

Pr(j, S)
Pr(k, S) ÿ

Pr(j, S2)
Pr(k, S2) :

This invariance property, together with a natural condi-
tion for zero probability alternatives, is often referred to 
as Luce’s choice axioms. They guarantee that each alter-
native can be summarized by a nonnegative score sj 

such that the probability of choice can be parameterized 
by

Pr(j, S) ÿ sj
P

k*S sk
(1) 

for any set S that contains j. The parameters sj reflect 
the “intrinsic” value of item j and are unique up to a 
normalization, which can be set to 

P

jsj ÿ 1. This 
general choice model includes as a special case the 
Bradley–Terry–Luce model (BTL) for pair-wise compar-
isons (Bradley and Terry 1952) and also applies to rank-
ing data when each k-way ranking is broken down into 
kÿ 1 choice observations, where an item is chosen over 
the set of items ranked lower (Plackett 1975, Hausman 
and Ruud 1987, Critchlow et al. 1991). The many subse-
quent works that build on Luce’s choice axioms speak 
to its fundamental importance in choice modeling. 
Other works have also sought to address the limitations 
of Luce choice models. Prominent among them are 
probit models (Thurstone 1927, Berkson 1944), random 
utility models (McFadden and Train 2000), context- 
dependent models (Batsell and Polking 1985, Seshadri 
et al. 2020), and behavioral models from psychology 
(Tversky 1972).

Matrix balancing (or scaling), meanwhile, is a seem-
ingly unrelated mathematical problem with an equally 
long history. In its most common form that we study in 
this paper, the problem seeks positive diagonal matrices 
D0, D1 of a given (entry-wise) nonnegative matrix A g 0 
such that the scaled matrix D0AD1 has row and column 
sums equal to some prescribed positive marginals p, q:

(D0AD1)1 ÿ p,

(D0AD1)T1 ÿ q: (2) 

Over the years, numerous applications and problems 
across different domains, including statistics (Yule 1912, 
Deming and Stephan 1940, Ireland and Kullback 1968), 
economics (Stone 1962, Bacharach 1970, Galichon and 
Salanié 2021), transportation networks (Kruithof 1937, 
Lamond and Stewart 1981, Chang et al. 2024), optimiza-
tion (Bregman 1967b, Ruiz 2001), and machine learning 
(Cuturi 2013, Peyré and Cuturi 2019), have found 

themselves essentially solving a new incarnation of the 
old matrix-balancing problem, which attests to its uni-
versality and importance.

A major appeal of the matrix-balancing problem lies 
in the simplicity and elegance of its popular solution 
method, widely known as Sinkhorn’s algorithm (Sink-
horn 1964). Observe that it is easy to scale the rows or 
columns of A such that the resulting matrix satisfies one 
of the two marginal constraints in (2). However, it is 
more difficult to construct scalings D0, D1 that simulta-
neously satisfy both constraints. Sinkhorn’s algorithm 
(Algorithm 1) simply alternates between updating the 
scalings D0 and D1 to satisfy one of the two marginal 
conditions in the hope of converging to a solution, lead-
ing to lightweight implementations that have proven to 
be effective for practical problems of massive size. In 
particular, Sinkhorn’s algorithm has gained much pop-
ularity in the recent decade thanks to its empirical suc-
cess at approximating optimal transport (OT) distances 
(Cuturi 2013, Altschuler et al. 2017), which are bedrocks 
of important recent topics in operations research, such 
as Wasserstein distributionally robust optimization 
(Esfahani and Kuhn 2018; Blanchet et al. 2019, 2022; 
Kuhn et al. 2019; Gao and Kleywegt 2023).

Despite the widespread popularity of Sinkhorn’s 
algorithm, its convergence behavior is yet to be fully 
understood. In particular, although there have been 
extensive studies of convergence, many focus on the set-
ting when the matrix A > 0 (i.e., entry-wise strictly posi-
tive), which includes most OT problems. In contrast, 
other applications of matrix balancing, particularly 
those with network structures, have A g 0 with zero ele-
ments, and are, therefore, potentially sparse. In this set-
ting, quantitative analyses are less common and more 
fragmented, employing different assumptions whose 
connections and distinctions remain less clear. On one 
hand, works such as Kalantari et al. (2008), Chakrabarty 
and Khanna (2021), and Léger (2021) have established 
global (that is, true for all iterations t g 1) sublinear 
convergence results (i.e., convergence to an ε�accuracy 
solution requires a total number of iterations that is 
polynomial in 1=ε). On the other hand, Knight (2008) 
establishes local (and more specifically, asymptotic) lin-
ear convergence for square matrix A g 0 and uniform 
marginals p, q. In other words, as t³>, solution accu-
racy at iteration t+ 1 improves over that at iteration t 
with a constant factor. Furthermore, a general result in 
Luo and Tseng (1992) implies global linear convergence 
of Sinkhorn’s algorithm (i.e., convergence to an ε�
accuracy solution requires iterations polynomial in 
log(1=ε)). However, their result is implicit and does not 
characterize the dependence on problem parameter and 
structure as those in the sublinear results.

These results leave open several questions on the con-
vergence of Sinkhorn’s algorithm. First, when does a 
quantitative global linear convergence result exist for 
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A g 0, and how do we characterize the global conver-
gence rate in terms of the problem primitives? Second, 
how do we characterize the sharp (i.e., best-possible) 
asymptotic linear convergence rate λ�that is applicable 
to general nonnegative A and nonuniform p, q? Third, 
how do we reconcile and clarify the linear versus sub-
linear convergence results under different assumptions 
on the problem structure? Given that many applications 
of matrix balancing with network structures correspond 
to the setting with sparse A g 0, such as transportation 
and trade, it is, therefore, important to better under-
stand the convergence of Sinkhorn’s algorithm in this 
setting.

In this paper, we provide answers to these open ques-
tions in matrix balancing. Surprisingly, the inspirations 
for our solutions come from results in the seemingly 
unrelated topic of choice modeling. Our main contribu-
tions are summarized below.

Our first set of contributions, which we detail in Sec-
tion 4, is recognizing Luce choice models as yet another 
instance where a central problem reduces to that of 
matrix balancing. More precisely, we formally establish 
the equivalence between the maximum likelihood esti-
mation of Luce choice models and matrix-balancing pro-
blems with an A g 0 with binary elements (Theorem 1). 
We also clarify the relations and distinctions between 
problem assumptions in the two literatures (Proposition 1). 
More importantly, we demonstrate that classic and new 
algorithms from the choice literature, including those of 
Zermelo (1929), Dykstra (1956), Ford (1957), Hunter 
(2004), Maystre and Grossglauser (2017), and Agarwal 
et al. (2018), can be viewed as special cases or analogs of 
Sinkhorn’s algorithm when applied to various problems 
in the choice setting (Theorem 2). These intimate mathe-
matical and algorithmic connections allow us to provide 
a unifying perspective on works from both areas. More 
broadly, they enable researchers to import insights and 
tools from one domain to the other. In particular, recent 
works on choice modeling (Shah et al. 2015, Seshadri 
et al. 2020, Vojnović et al. 2020) have highlighted the 
importance of algebraic connectivity (Fiedler 1973, Spiel-
man 2007) of the data structure for efficient parameter 
learning, which motivates us to also consider this quan-
tity in the convergence analysis of Sinkhorn’s algorithm.

Our next set of contributions, detailed in Section 5, is 
establishing novel convergence bounds on Sinkhorn’s 
algorithm, drawing from the connections to choice 
modeling that we establish. First, we provide a global 
linear convergence bound for Sinkhorn’s algorithm 
whenever the matrix-balancing problem has a finite 
solution pair D0, D1 (Theorem 3). We characterize the 
global convergence rate in terms of the algebraic connec-
tivity of the weighted bipartite graph whose biadjacency 
matrix is precisely A. To our knowledge, this result is 
the first to highlight the fundamental role of algebraic 
connectivity in the study of matrix balancing with 

sparse matrices. In addition, we characterize the asymp-
totic linear rate of convergence in terms of the scaled 
matrix D0AD1 with target marginals p, q, generalizing a 
result of Knight (2008) for uniform marginals and 
square matrices (Theorem 4). This result employs a 
more explicit analysis that exploits an intrinsic orthogo-
nality structure of Sinkhorn’s algorithm. We also clarify 
the convergence behavior of Sinkhorn’s algorithm 
under two regimes. When a finite scaling pair D0, D1 

exists, Sinkhorn’s algorithm converges linearly; other-
wise, it only converges sublinearly under the minimal 
conditions required for convergence (Proposition 3).

Besides the contributions above, we further discuss 
connections between Sinkhorn’s algorithm and topics in 
optimization and choice modeling in Online Appendix 
B. For example, interpreting Sinkhorn’s algorithm as a 
distributed optimization algorithm on a bipartite graph 
helps explain the importance of the spectral properties 
of the graph on its convergence. Inspired by Bayesian 
regularization of Luce choice models using gamma 
priors, we also design a regularized Sinkhorn’s algo-
rithm in Online Appendix C that is guaranteed to con-
verge even when the standard algorithm does not, 
which is not uncommon when the data are very sparse 
and there are measurement errors.

We believe that the connections that we establish in this 
paper between choice modeling and matrix balancing can 
lead to further interesting results in both disciplines and 
are, therefore, relevant to researchers working on related 
topics. In particular, the fundamental role of algebraic con-
nectivity in the study of matrix balancing for sparse matri-
ces goes beyond quantifying the algorithmic efficiency of 
Sinkhorn’s algorithm. See, for example, Chang et al. (2024), 
which quantifies the statistical efficiency of a network traf-
fic model using algebraic connectivity.

2. Related Work
This section includes an extensive review of related 
works in choice modeling and matrix balancing. Well- 
versed readers may skip ahead to the mathematical pre-
liminaries (Section 3) and our core results (Sections 4
and 5).

2.1. Choice Modeling
Methods for aggregating choice and comparison data 
usually take one of two closely related approaches: max-
imum likelihood estimation of a statistical model or 
ranking according to the stationary distributions of a 
random walk on a Markov chain. Recent connections 
between maximum likelihood and spectral methods 
have put these two classes of approaches in increasingly 
close conversation with each other.

2.1.1. Spectral Methods. The most well-known spectral 
method for rank aggregation is perhaps the PageRank 
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algorithm (Page et al. 1999), which ranks web pages based 
on the stationary distribution of a random walk on a 
hyperlink graph. The use of stationary distributions also 
features in the work of Dwork et al. (2001); the rank cen-
trality (RC) algorithm (Negahban et al. 2012, 2017), which 
generates consistent estimates for the Bradley–Terry–Luce 
pair-wise comparison model under assumptions on the 
sampling frame; and the Luce spectral ranking (LSR) and 
iterative LSR algorithms of Maystre and Grossglauser 
(2015) for choices from pairs as well as larger sets. Follow-
ing that work, Agarwal et al. (2018) proposed the acceler-
ated spectral ranking algorithm with provably faster 
mixing times than RC and LSR and better sample com-
plexity bounds than Negahban et al. (2017). Knight (2008) 
is an intriguing work partially motivated by Page et al. 
(1999) that applies Sinkhorn’s algorithm, which is central 
to the current work, to compute authority and hub scores 
similar to those proposed by Kleinberg (1999) and Tomlin 
(2003), although the focus in Knight (2008) is on Markov 
chains rather than maximum likelihood estimation of 
choice models. For ranking data, Soufiani et al. (2013) 
decompose rankings into pair-wise comparisons and 
develop consistent estimators for Plackett–Luce models 
based on a generalized method of moments. Other notable 
works that make connections between Markov chains and 
choice modeling include Blanchet et al. (2016) and Ragain 
and Ugander (2016).

2.1.2. Maximum Likelihood Methods. Maximum likeli-
hood estimation of the Bradley–Terry–Luce model dates 
back to Zermelo (1929), Dykstra (1956), and Ford (1957), 
which all give variants of the same iterative algorithm and 
prove its convergence to the maximum likelihood estima-
tor (MLE) when the directed comparison graph is strongly 
connected. Much later, Hunter (2004) observed that 
their algorithms are instances of a class of minorization- 
maximization or majorization-minimization (MM) algo-
rithms and developed MM algorithms for the 
Plackett–Luce model for ranking data among others. 
Vojnović et al. (2020, 2023) further investigated the conver-
gence rate of the MM algorithm for choice models, quanti-
fying it in terms of the algebraic connectivity of the 
comparison graph. Newman (2023) proposes an alterna-
tive to the classical iterative algorithm for pair-wise com-
parisons based on a reformulated moment condition, 
achieving impressive empirical speedups. Negahban et al. 
(2012) is arguably the first work that connects maximum 
likelihood estimation to Markov chains followed by Mays-
tre and Grossglauser (2015), whose spectral method is 
based on a balance equation interpretation of the optimal-
ity condition. Kumar et al. (2015) consider the problem of 
inverting the stationary distribution of a Markov chain 
and embed the maximum likelihood problem of the Luce 
choice model into this framework, where the MLEs 
parameterize the desired transition matrix. Maystre and 
Grossglauser (2017) consider the estimation of a network 

choice model with similarly parameterized random walks. 
Lastly, a vast literature in econometrics on discrete choice 
also considers different aspects of the ML estimation prob-
lem. In particular, the present paper is related to the 
Berry–Levinsohn–Pakes (BLP) framework of Berry et al. 
(1995), which is well known in econometrics. The matrix- 
balancing interpretation of maximum likelihood estima-
tion of choice models that we develop in this paper con-
nects many of the aforementioned works.

Besides optimization problems related to maximum 
likelihood estimation, there have also been extensive stud-
ies on the statistical properties of maximum likelihood 
estimates themselves (Hajek et al. 2014, Rajkumar and 
Agarwal 2014). In particular, a line of recent works has 
highlighted the importance of algebraic connectivity—as 
quantified by the Fiedler eigenvalue (Fiedler 1973, Spiel-
man 2007)—on the statistical efficiency of the MLEs. Shah 
et al. (2015) is the first to recognize this significance of data 
structure for the statistical efficiency of the BTL model, 
which they refer to as “topology dependence.” As a 
by-product of analysis for a context-dependent generali-
zation of the Luce choice model, Seshadri et al. (2020) 
obtain tight expected risk and tail risk bounds for the 
MLEs of Luce choice models (which they call MNL) and 
Plackett–Luce ranking models in terms of the algebraic 
connectivity, extending and improving upon previous 
works by Hajek et al. (2014), Shah et al. (2015), and 
Vojnović and Yun (2016). Other works with tight risk 
bounds on the BTL model include the works of Hen-
drickx et al. (2020) and Bong and Rinaldo (2022), who also 
provide the first high-probability guarantees for the exis-
tence of finite MLEs of the BTL model under conditions 
on a Fiedler eigenvalue. Interestingly, the statistical signif-
icance of algebraic connectivity has also been highlighted 
in models of networks in econometrics and machine 
learning by the works of De Paula (2017), Jochmans and 
Weidner (2019), and Chang et al. (2024) among others. 
Our present work is primarily concerned with the optimi-
zation aspects of the maximum likelihood estimation of 
choice models. Nevertheless, the statistical importance 
of algebraic connectivity in the aforementioned works 
also provides motivation for us to leverage it in our con-
vergence analysis of Sinkhorn’s algorithm for matrix 
balancing.

Lastly, a short note on terminology. Even though a 
choice model based on (1) is technically a “multinomial 
logit model” with only intercept terms (McFadden 
1973), there are subtle differences. When (1) is applied to 
model ranking and choice data with distinct items, each 
observation i usually consists of a possibly different sub-
set Si of the universe of all alternatives so that there is a 
large number of different configurations of the choice 
menu in the data set. On the other hand, common appli-
cations of multinomial logit models, such as classifica-
tion models in statistics and machine learning (Bishop 
and Nasrabadi 2006) and discrete choice models in 
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econometrics (McFadden 1973), often deal with 
repeated observations consisting of the same number of 
alternatives. However, these alternatives now possess 
“characteristics” that vary across observations, which 
are often mapped parametrically to the scores in (1). In 
this paper, we primarily use the term Luce choice model 
to refer to Model (4), although it is also called an MNL 
model in some works. We refrain from using the term 
MNL to avoid confusion with parametric models for 
featurized items used in ML and econometrics.

2.2. Matrix Balancing
Matrix balancing (or scaling) is an important topic in 
optimization and numerical linear algebra that under-
lies a diverse range of applications. The particular ques-
tion of scaling rows and columns of a matrix A so that 
the resulting matrix has target row and column norms 
p, q was studied as early as the 1930s and continues to 
interest researchers from different disciplines today. 
The present paper only contains a partial survey of the 
vast literature on this topic. Online Appendix D pro-
vides a summary of some popular applications to illus-
trate the ubiquity of the matrix-balancing problem. 
Schneider and Zenios (1990) and Idel (2016) also pro-
vide excellent discussions of many applications.

The standard iterative algorithm for the matrix- 
balancing problem that we study in this paper has been 
rediscovered independently quite a few times. As a 
result, it has domain-dependent names, including the 
iterative proportional fitting procedure (Deming and 
Stephan 1940), biproportional fitting (Bacharach 1965), 
and the RAS (the origin of the name is unknown) algo-
rithm (Stone 1962), but it is perhaps most widely known 
as Sinkhorn’s algorithm (Sinkhorn 1964). A precise 
description can be found in Algorithm 1. Sinkhorn’s algo-
rithm is also closely related to relaxation and coordinate 
descent-type methods for solving the dual of entropy 
optimization problems (Bregman 1967b, Cottle et al. 
1986, Tseng and Bertsekas 1987, Luo and Tseng 1992) as 
well as message passing and belief propagation algo-
rithms in distributed optimization (Balakrishnan et al. 
2004, Agarwal et al. 2018).

The convergence behavior of Sinkhorn’s algorithm in 
different settings has been extensively studied by Sink-
horn (1964), Bregman (1967a), Lamond and Stewart 
(1981), Franklin and Lorenz (1989), Ruschendorf (1995), 
Kalantari et al. (2008), Knight (2008), Pukelsheim and 
Simeone (2009), Altschuler et al. (2017), Dvurechensky 
et al. (2018), Di Marino and Gerolin (2020), Chakrabarty 
and Khanna (2021), Léger (2021), and Carlier (2022) 
among many others. For A with strictly positive entries, 
Franklin and Lorenz (1989) establish the global linear 
convergence of Sinkhorn’s algorithm in the Hilbert pro-
jective metric d (Bushell 1973). More precisely, if r(t)

denotes the row sum of the scaled matrix after t itera-
tions of Sinkhorn’s algorithm that enforce column 

constraints, then

d(r(t), p) f λt · d(r(0), p) (3) 

for some λ * (0, 1) dependent on A. On the other hand, 
works such as Kalantari and Khachiyan (1993), Altschuler 
et al. (2017), and Dvurechensky et al. (2018) develop com-
plexity bounds on the number of iterations required for 
the ℓ1 distance 6r(t)ÿ p61 f ε�for a given ε > 0. Although 
these bounds imply a convergence that is sublinear (i.e., 
6r(t)ÿ p61 ÿO(1=t)), their focus is on optimal depen-
dence on problem size and dimension. An important 
class of problems with A > 0 is entropy-regularized opti-
mal transport (Cuturi 2013), where A is of the form A ÿ
exp(ÿc=γ) with a finite cost function (matrix) c (i.e., A 
strictly positive everywhere). In this setting, convergence 
of Sinkhorn’s algorithm in discrete and continuous pro-
blems has been studied by Altschuler et al. (2017), Di 
Marino and Gerolin (2020), Léger (2021), and Ghosal and 
Nutz (2025) among others. The linear convergence of 
Sinkhorn’s algorithm for A > 0 has also been extended to 
the multimarginal continuous setting by Carlier (2022), 
building on the work of Di Marino and Gerolin (2020).

However, the matter of convergence is more delicate 
when the matrix contains zero entries, and additional 
assumptions on the problem structure are required to 
guarantee the existence of scalings D0, D1 and the con-
vergence of Sinkhorn’s algorithm. For nonnegative A, 
convergence is first established by Sinkhorn and Knopp 
(1967) in the special case of square A g 0 and uniform 
p ÿ q ÿ 1n ÿ 1m. Their necessary and sufficient condition 
is that A has support (i.e., there exists a permutation σ�
such that the “diagonal” (A1σ(1), A2σ(2), : : : , Anσ(n)) is 
strictly positive). Soules (1991) and Achilles (1993) fur-
ther show that the convergence is linear if and only if 
the stronger condition of total support holds (i.e., any 
nonzero entry of A must be in (A1σ(1), A2σ(2), : : : , Anσ(n))
for some permutation σ). Knight (2008) provides a tight 
asymptotic linear convergence rate in terms of the sub-
dominant (second-largest) singular value of the scaled 
doubly stochastic matrix D0AD1. The convergence in 
Knight (2008) is measured by some implicit distance to 
the target marginals p, q. However, no asymptotic linear 
convergence rate is previously known for nonsquare 
A g 0 and nonuniform marginals.

For general nonnegative matrices and nonuniform 
marginals, the necessary and sufficient conditions on A 
in the matrix-balancing problem that generalize that of 
Sinkhorn and Knopp (1967) have been studied by Thi-
onet (1964), Bacharach (1965), Brualdi (1968), Menon 
(1968), Djoković (1970), Sinkhorn (1974), Balakrishnan 
et al. (2004), and Pukelsheim and Simeone (2009) among 
others, and convergence of Sinkhorn’s algorithm under 
these conditions is well known. Connecting Sinkhorn’s 
algorithm to dual coordinate descent for entropy opti-
mization, Luo and Tseng (1992) show that the dual 
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optimality gap, defined in Equation (28), converges line-
arly globally with some unknown rate λ�when finite 
scalings D0, D1 exist. However, their result is implicit, 
and there are no results that quantify the global linear 
rate λ, even for special classes of nonnegative matrices. 
When convergence results for A > 0 in previous works 
are applied to nonnegative matrices, the bounds often 
blow up or become degenerate as soon as minijAij ³ 0. 
For example, in (3), the contraction factor λ³ 1 when A 
contains zero entries. When minijAij ÿ 0, complexity 
bounds on 6r(t)ÿ p61 and 6r(t) ÿ p62 have been estab-
lished for Sinkhorn’s algorithm (for example, by the 
works of Kalantari et al. 2008 and Chakrabarty and 
Khanna 2021), with polynomial dependence on 1=ε�(i.e., 
sublinear convergence). Under the minimal condition 
that guarantees the convergence of Sinkhorn’s algo-
rithm, Léger (2021) gives a quantitative global sublinear 
bound on the KL (Kullback-Leibler) divergence between 
r(t) and p in the continuous setting for general probability 
distributions, which include nonnegative matrices A g 0.

It, therefore, remains to reconcile the various results on 
Sinkhorn’s algorithm for A g 0 and characterize the global 
and asymptotic linear convergence rates for nonnegative 
A. Our results precisely fill these gaps left by previous 
works. The global linear convergence result in Theorem 3
establishes a contraction like (3) for the optimality gap 
whenever finite scalings D0, D1 exist and characterize the 
convergence rate λ�in terms of the algebraic connectivity. 
Moreover, the asymptotic linear rate in Theorem 4 directly 
extends the result of Knight (2008). See Table 1 for a 
detailed summary and comparison of the convergence 
results in previous works and this paper. The dependence 
of Sinkhorn’s convergence rate on spectral properties of 
graphs can be compared with convergence results in the 
literature on decentralized optimization and gossip algo-
rithms, where a spectral gap quantifies the convergence 
rate (Boyd et al. 2006, Xiao et al. 2007).

Lastly, we note that other algorithms with better com-
plexities have been developed for the matrix-balancing 
problem utilizing, for example, the ellipsoid algorithm 
(Kalantari and Khachiyan 1996) and geometric pro-
gramming (Nemirovski and Rothblum 1999), interior 
point algorithms (Cohen et al. 2017, Chen et al. 2022), or 
customized first-/second-order techniques (Linial et al. 
1998, Allen-Zhu et al. 2017). However, despite having 
better theoretical complexities, most of these algorithms 
have yet to be implemented practically. Sinkhorn’s algo-
rithm, on the other hand, remains an attractive choice in 
practice because of its simplicity, robustness, and paral-
lelization capabilities.

3. Preliminaries on Choice Modeling and 
Matrix Balancing

We start by providing brief but self-contained introduc-
tions to the two main subjects of this paper, choice 

modeling and matrix balancing, including their respective 
underlying mathematical problems and assumptions. 
Then, we formally establish their equivalence in Section 4.

3.1. Maximum Likelihood Estimation of Luce 

Choice Models
In the Luce choice-modeling framework, we have n 
observations {(ji, Si)}niÿ1, each consisting of a choice set 
Si ¦ {1, : : : , m} ÿ [m] that is a subset of the total m alter-
natives/items/objects and the alternative selected, 
denoted by ji * Si. The choice probability is prescribed 
by Luce’s axiom of choice given model parameter s *
Rm
++ in the interior of the probability simplex ∆m,

Pr(ji, Si) ÿ
sji

P

k*Si
sk

, 

and the likelihood of the observed data is thus given by

L(s; {(ji, Si)}niÿ1) :ÿ
Y

n

iÿ1

sji
P

k*Si
sk
: (4) 

A popular method to estimate s ÿ {s1, : : : , sm} is the max-
imum likelihood estimation approach, which maxi-
mizes the log likelihood

ℓ(s) :ÿ log L(s) ÿ
X

n

iÿ1

log sji ÿ log
X

k*Si

sk

 !

(5) 

over the interior of the probability simplex. Note that 
the choice sets Si can vary across i. In other words, in 
each observation, the choice is made from a potentially 
distinct set of alternatives. This feature of the problem 
turns out to be important for both the algorithmic effi-
ciency of computing the maximizers to (5) as well as the 
statistical efficiency of the resulting MLEs, which can be 
quantified by a measure of connectivity of the data 
structure. We will elaborate on these points shortly. For 
now, we focus on the existence and uniqueness of MLE.

If we reparameterize exp(uj) ÿ sj, it is obvious that (5) 
is concave in u. However, to ensure that the log- 
likelihood (5) has a unique maximizer in the interior of 
the simplex, additional assumptions on the comparison 
structure of the data set {(ji, Si)}niÿ1 are needed. The fol-
lowing classic condition is necessary and sufficient for 
the maximum likelihood problem to be well posed.

Assumption 1 (Strong Connectivity). In any partition of 
[m] into two nonempty subsets S and its complement SC, 
some j * S is selected at least once over some k * SC. Equiv-
alently, the directed comparison graph, with items as verti-
ces and an edge j³ k if and only if k is selected in some Si 

for which j, k * Si, is strongly connected.

Assumption 1 is standard in the literature (Hunter 
2004, Noothigattu et al. 2020) and appeared as early as 
the works of Zermelo (1929) and Ford (1957) for pair- 
wise comparisons. Hunter (2004) shows that Assump-
tion 1 is necessary and sufficient for the upper 
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compactness of (5), which guarantees the existence of a 
maximizer in the interior of the probability simplex. In 
fact, when an interior maximizer exists, it is also unique 
because Assumption 1 implies the following weaker 
condition, which guarantees the strict concavity of (5).

Assumption 2 (Connectivity). In any partition of [m] into 
two nonempty subsets S and SC, some j * S and some k *
SC appear in the same choice set Si for some i.

The intuitions provided by Ford (1957) and Hunter 
(2004) are helpful for understanding Assumptions 1 and 2. 
If items from some S( [m] are never compared with 
those in SC (i.e., never appeared together in any choice 
set Si), it is impossible to rank across the two subsets. In 
this case, we can rescale the relative weights of S and SC 

of an interior maximizer and obtain another maximizer. 
On the other hand, if items in S are always preferred to 
those in SC, we can increase the likelihood by scaling sj 

for items j * SC toward zero, and no maximizer in the 
interior of the probability simplex exists. Nevertheless, a 
boundary solution can still exist. This case turns out to 
be important in the present work; in the equivalent 
matrix-balancing problem, it corresponds to the slow-
down regime of Sinkhorn’s algorithm, where scalings 
diverge but the scaled matrix converges (Section 5).

Assumption 2 also has a concise graph-theoretic inter-
pretation. Define the weighted undirected comparison 
graph Gc on m vertices with adjacency matrix Ac given by

Ac
jk ÿ

0 j ÿ k
| {i * [n] | j, k * Si} | j ≠ k:

ÿ

(6) 

In other words, there is an undirected edge between j 
and k if and only if they are both included in some 

choice set Si, with the edge weight equal to the number 
of their co-occurrences, which could be zero. We can 
verify that Assumption 2 precisely requires Gc to be 
connected.

Remark 1 (Importance of Graph Connectivity). Under the 
standard Assumptions 1 and 2, previous works have 
studied the statistical efficiency of the MLE (Hajek 
et al. 2014, Shah et al. 2015, Seshadri et al. 2020) as 
well as the computational efficiency of the MM algo-
rithm for computing the MLE (Vojnović et al. 2020). In 
both cases, the algebraic connectivity of Gc (Fiedler 
1973), quantified by the second-smallest eigenvalue of 
the graph Laplacian of Gc, plays an important role. 
See Online Appendix A for more details. The impor-
tance of spectral properties for parameter learning in 
data with graph or matrix structures has appeared as 
early as Kendall and Smith (1940) and in the classic 
work of Keener (1993) on ranking sports teams as well 
as in works in economics (Abowd et al. 1999, Joch-
mans and Weidner 2019). These results, together with 
the connections that we establish in this paper between 
choice modeling and matrix balancing, inspire us to 
also quantify the convergence of Sinkhorn’s algorithm 
using the algebraic connectivity of a bipartite graph 
defined in (7).

3.2. The Canonical Matrix-Balancing Problem
Matrix balancing is a classic problem that shows up in a 
wide range of disciplines. See Online Appendix D for a 
short survey on some applications. The underlying 
mathematical problem can be stated concisely in matrix 
form as follows.

Table 1. Summary of Some Convergence Results on Sinkhorn’s Algorithm

Relevant work Convergence statement λ A p, q

Franklin and Lorenz (1989) dHilbert(r(t), p) f λtdHilbert(r(0), p) κ2(A) A > 0, rectangular Uniform

Luo and Tseng (1992) g(t) ÿ g7 f λt(g(0) ÿ g7) Unknown A g 0, rectangular General

Knight (2008) 6r(t+1)
ÿ p67=6r(t) ÿ p67³ λ σ2

2(Â) A g 0, square Uniform

Altschuler et al. (2017) 6r(t) ÿ p61 f 2
ooo

λ
t

q

log

P

ij
Aij

minijAij

ÿ ÿ

A > 0, rectangular General

Léger (2021) DKL(r(t)6p) f λt DKL(Â6A) A g 0, continuous General

Current work, asymptotic 6 r(t+1)
oo

p
: ÿ

ooo

p
: 62=6 r(t)

oo

p
: ÿ

ooo

p
: 62³ λ λ2(Ã

T
Ã) A g 0, rectangular General

Current work, global g(t) ÿ g7 f λt(g(0) ÿ g7) 1ÿ cBλÿ2(L)=l A g 0, rectangular General

Notes. Throughout, assume that 6p61 ÿ 6q61 ÿ 1. Define r(t) :ÿ A(t)1m, where A(t) is the scaled matrix after t Sinkhorn iterations. In Franklin and 

Lorenz (1989), κ(A) ÿ θ(A)
1=2

ÿ1

θ(A)1=2+1
, where θ(A) is the diameter of A in the Hilbert metric. The norm in Knight (2008) is not explicitly specified, and 

σ2(Â) denotes the second-largest singular value of the scaled doubly stochastic matrix Â. The bound in Altschuler et al. (2017) is originally stated 

as the complexity bound that 6r(t) ÿ p61 f ε�in t ÿO εÿ2log

P

ij
Aij

minijAij

ÿ ÿÿ ÿ

iterations, whereas the original result in Chakrabarty and Khanna (2021) 

is 6r(t) ÿ p61 f ε�in t ÿO εÿ2log
∆maxijAij

minij,Aij>0Aij

ÿ ÿÿ ÿ

iterations, where ∆ :ÿmaxj | i * [n] : Aij > 0 | . The result in Léger (2021) applies more generally to 

couplings of probability distributions. In our asymptotic result, λ2(Ã
T

Ã) is the second-largest eigenvalue of Ã :ÿD(1= ooo

p
: ) · Â ·D(1= ooo

q
: ). In our 

global bound, g(t) ÿ g(d0(t), d1(t)), whereas g7 is the minimum value of (16). λ
ÿ2(L) is the second-smallest eigenvalue of the Laplacian of the 

bipartite graph defined by A, l ÿmin{maxj(AT1n)j, maxi(A1m)i}, cB ÿ exp(ÿ4B), and B is a bound on the initial sublevel set, which is finite if and 

only if Assumption 3 holds.
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Given positive vectors p * Rn
++, q * Rm

++with 
P

ipi ÿ
P

jqj ÿ c > 0, which without loss of generality, can be set 
to c ÿ 1, and a nonnegative matrix A * Rn×m

+ , find posi-
tive diagonal matrices D1, D0 satisfying the conditions 
D1AD0 · 1m ÿ p and D0ATD1 · 1n ÿ q.

We, henceforth, refer to the above as the “canonical” 
matrix-balancing problem. Other variants of the problem 
replace the row and column sums (the 1-norm) with 
other norms (Bauer 1963, Ruiz 2001). Note that for any 
c > 0, (D0=c, cD1) is also a solution whenever (D0, D1) is. 
A finite positive solution (D0, D1) to the canonical matrix- 
balancing problem is often called a direct scaling.

The structure of the matrix-balancing problem suggests 
a simple iterative scheme; starting from any initial positive 
diagonal D0, invert D1AD01m ÿ p using p=(AD01m) to 
update D1. Then, invert D0ATD11n ÿ q using q=(ATD11n)
to compute the new estimate of D0, and repeat the proce-
dure, leading to a solution if it converges. Here, divisions 
involving two vectors of the same length are entry wise. 
This simple iterative scheme is precisely Sinkhorn’s algo-
rithm, described in Algorithm 1, where vectors d0, d1 are 
the diagonal elements of D0, D1.

An important dichotomy occurs depending on 
whether the entries of A are strictly positive. If A con-
tains no zero entries, then direct scalings and a unique 
scaled matrix D1AD0 always exist (Sinkhorn 1964). 
Moreover, Sinkhorn’s algorithm converges linearly 
(Franklin and Lorenz 1989). On the other hand, when A 
contains zero entries, the problem becomes more com-
plicated. Additional conditions are needed to guarantee 
meaningful solutions, and the convergence behavior of 
Sinkhorn’s algorithm is less clearly understood. Well 
posedness of the matrix-balancing problem has been 
studied by Brualdi (1968), Sinkhorn (1974), and Pukel-
sheim and Simeone (2009) among others, who charac-
terize the following equivalent existence conditions.

Assumption 3 (Strong Existence). (a) There exists a non-
negative matrix A2 * Rn×m

+ with the same zero patterns as 
A and with row and column sums p and q. Or, equiva-
lently, (b) for every pair of sets of indices N([n] and 
M([m] such that Aij ÿ 0 for i ∉N and j *M, 

P

i*Npi g
P

j*Mqj, with equality if and only if Aij ÿ 0 for all i *N 
and j ∉M as well.

It is well known in the matrix-balancing literature 
that the above two conditions are equivalent and that a 
positive finite solution (D0, D1) to the canonical problem 
exists if and only if they hold. See, for example, Pukel-
sheim and Simeone (2009, theorem 6). Assumption 3
also guarantees the convergence of Sinkhorn’s algo-
rithm. However, it is not a necessary condition. In other 
words, Sinkhorn’s algorithm could converge even if the 
matrix-balancing problem does not admit a direct scal-
ing. This phenomenon turns out to be important in char-
acterizing the convergence rate, which we study in 
Section 5.

Clearly, Assumption 3(a) is the minimal necessary 
condition when a solution to the matrix-balancing prob-
lem exists and trivially holds when A > 0 (take, for 
example, A2 as the Kronecker product of p, q). Assump-
tion 3(b) is closely connected to conditions for perfect 
matchings in bipartite graphs (Hall 1935, Galichon and 
Salanié 2021). In flow networks (Ford and Fulkerson 
1956, 1957; Gale 1957), it is a capacity constraint that 
guarantees that the maximum flow on a weighted bipar-
tite graph is equal to 

P

ipi ÿ
P

jqj and with positive 
flow on every edge (Idel 2016). The weighted bipartite 
graph, denoted by Gb, is important in this paper. Its 

adjacency matrix Ab * R(n+m)×(n+m) can be represented 
concisely using A as

Ab :ÿ 0 A
AT 0

ÿ ÿ

, (7) 

and A is sometimes called the biadjacency matrix of Gb. 
See Online Appendix A for more information. Just like 
in the choice setting, where the connectivity of the undi-
rected comparison graph Gc plays an important role, the 
connectivity of Gb turns out to be important for the 
linear convergence rate of Sinkhorn’s algorithm (see 
Section 5).

Lastly, the necessary and sufficient condition for the 
uniqueness of finite scalings essentially requires that A 
is not block diagonal and precisely guarantees that Gb is 
connected.

Assumption 4 (Uniqueness). D0 and D1 are unique mod-
ulo normalization if and only if A is indecomposable (i.e., 
there does not exist permutation matrices P, Q such that 
PAQ is block diagonal).

Algorithm 1 (Sinkhorn’s Algorithm)
Input: A, p, q,[tol.
initialize d0 * Rm

++
repeat

d1± p=(Ad0)
d0± q=(ATd1)
[± maximal update in (d0, d1) or distance between 
D1Ad0 and p

until [ < [tol

With a proper introduction to both problems, we are 
now ready to establish the equivalence between Luce 
choice model estimation and matrix balancing. In Section 5, 
we return to Sinkhorn’s algorithm for the matrix- 
balancing problem and provide answers to open pro-
blems concerning its linear convergence for nonnegative 
A by leveraging the connections that we establish next.

4. Connecting Choice Modeling and 
Matrix Balancing

In this section, we formally establish the connections 
between choice modeling and matrix balancing. We 
show that maximizing the log-likelihood (5) is equivalent 
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to solving a canonical matrix-balancing problem. We 
also precisely describe the correspondence between 
the relevant conditions in the two problems. In view of 
this equivalence, we show that Sinkhorn’s algorithm, 
when applied to estimate Luce choice models, is in fact 
a parallelized generalization of the classic iterative 
algorithm for choice models dating back to Zermelo 
(1929), Dykstra (1956), and Ford (1957) and also stud-
ied extensively by Hunter (2004) and Vojnović et al. 
(2020, 2023).

4.1. Maximum Likelihood Estimation of Luce 
Choice Models as Matrix Balancing

The optimality conditions for maximizing the log- 
likelihood (5) for each sj are given by

"sjℓ(s) ÿ
X

i*[n] | (j,Si)

1

sj
ÿ

X

i*[n] | j*Si

1
P

k*Si
sk
ÿ 0:

Multiplying by sj and dividing by 1=n, we have

Wj

n
ÿ 1

n

X

i*[n] | j*Si

sj
P

k*Si
sk

, (8) 

where Wj :ÿ |{i * [n] | (j, Si)} | is the number of observa-
tions where j is selected.

Note that in the special case where Si c [n] (i.e., every 
choice set contains all items), the MLE simply reduces to 
the familiar empirical frequencies ŝj ÿWj=n. However, 
when the choice sets Si vary, no closed-form solution to 
(8) exists, which is the primary motivation behind the 
long line of works on the algorithmic problem of solving 
(8). With varying Si, we can interpret the optimality con-
dition as requiring that the observed frequency of j 
being chosen (left-hand side) be equal to the average or 
expected probability of j being selected (right-hand 

side), which conditional on choice set Si, is 
sj

P

k*Si
sk 

if j * Si 

and zero otherwise. In addition, note that because the 
optimality condition in (8) only involves the frequency 
of selection, distinct data sets could yield the same opti-
mality conditions and hence, the same MLEs. For exam-
ple, suppose that two alternatives j and k both appear in 
choice sets Si and Si2 , with j selected in Si and k selected 
in Si2 . Then, switching the choices in Si and Si2 does not 
alter the likelihood and optimality conditions. This fea-
ture holds more generally with longer cycles of items 
and choice sets, and it can be viewed as a consequence 
of the context-independent nature of Luce’s choice 
axiom (i.e., IIA). In some sense, it is also the underpin-
ning of many works in economics that estimate choice 
models based on marginal sufficient statistics. A promi-
nent example is Berry et al. (1995), which estimates con-
sumer preferences using data on aggregate market 
shares of products.

Remark 2 (Reduction to Unique Choice Sets). In practice, 
the choice sets of many observations may be identical 

to each other (i.e., Si c Si2 for some i, i2 * [n]). Because 
(8) only depends on the total “winning” counts of 
items, we may aggregate over observations with the 
same Si:

X

i*[n] | j*Si

sj
P

k*Si
sk
ÿ

X

i2*[n7] | j*S7
i2

Ri2 ·
sj

P

k*S7
i2

sk
, 

where each S7i2 is a unique choice set that appears in 
Ri2 g 1 observations for i2 ÿ 1, : : : , n7 f n. By construc-
tion, 

Pn7

i2ÿ1 Ri2 ÿ n. Note, however, that the selected item 
could vary across different appearances of S7i , yet the 
optimality conditions only involve each item’s winning 
count Wj. From now on, we will assume this reduction 
and drop the * superscript. In other words, without loss 
of generality, we assume that we observe n unique 
choice sets, and choice set Si has multiplicity Ri (Shah 
et al. 2015). The resulting maximum likelihood problem 
has optimality conditions

Wj ÿ
X

i*[n] | j*Si

Ri ·
sj

P

k*Si
sk
: (9) 

We are now ready to reformulate (9) as a canonical 
matrix-balancing problem. Define p * Rn as pi ÿ Ri (i.e., 
the number of times that choice set Si appears in the 
data). Define q * Rm as qj ÿWj (i.e., the number of times 
that item j was selected in the data). By construction, we 
have 

P

ipi ÿ
P

jqj, and pi, qj > 0 whenever Assumption 
1 holds.

Now, define the n ×m binary matrix A by Aij ÿ 1{j *
Si} so that the ith row of A is the indicator of which items 
appear in the (unique) choice set Si and the jth column 
of A is the indicator of which choice sets item j appears 
in. We refer to this A constructed from a choice data set 
as the participation matrix. By construction, A has dis-
tinct rows but may still have identical columns. We may 
also remove repeated columns by “merging” items and 
their win counts. Their estimated scores can be com-
puted from the score of the merged item proportional to 
their respective win counts. We do not require this 
reduction in our results. Figure 1 provides an illustra-
tion of the matrix-balancing representation of the Luce 
choice-modeling problem with (A, p, q) defined as 
above.

Let D0 * Rm×m be the diagonal matrix with D0
j ÿ sj and 

D1 * Rn×n be the diagonal matrix with D1
i ÿ Ri=

P

k*Si
sk, 

and define the scaled matrix

Â :ÿD1AD0: (10) 

The matrices D1 and D0 are scalings of rows and col-
umns of A, respectively, and

Âij ÿ
Ri

P

k*Si
sk
· 1 j * Si

ÿ ÿ

· sj:
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The key observation is that the optimality conditions (9) 
can be rewritten as

Â
T
1n ÿ q: (11) 

Moreover, by construction, Â also satisfies

Â1m ÿ p: (12) 

Therefore, if sj’s satisfy the optimality conditions for 
maximizing (5), then D0, D1 defined above solve the 
matrix-balancing problem in Equations (10)–(12). More-
over, the converse is also true, and we thus establish the 
equivalence between choice maximum likelihood esti-
mation and matrix balancing. All omitted proofs appear 
in Online Appendix F.

Theorem 1 (Equivalence of Problems). Let (A, p, q) be 
constructed from a choice data set as follows: p * Rn with 
pi ÿ Ri, the multiplicity of choice set Si; q * Rm with 
qj ÿWj, the total number of times that item j is chosen in 

the choice data set; and A * Rn×m with Aij ÿ 1{j * Si} (i.e., 

the ith row of A is a one-hot encoding of the choice set Si).

Then, D0, D1 > 0 with 
P

jD
0
j ÿ 1 solves the matrix- 

balancing problem

D1AD0 ÿ Â

Â1m ÿ p

Â
T
1n ÿ q (13) 

if and only if s * ∆m with sj ÿD0
j satisfies the optimality con-

ditions (9) of the maximum likelihood estimation problem of a 
Luce choice model given the choice data set.

Theorem 1 implies that (5) has a unique maximizer s 
in the interior of the probability simplex if and only if 
(13) has a unique normalized solution D0 as well. The 
next question, naturally, is then how Assumption 1 and 
Assumption 2 for choice modeling are connected to 
Assumption 3 and Assumption 4 for matrix balancing.

Proposition 1 (Equivalence of Assumptions). Let (A, p, q) 
be constructed from the choice data set as in Theorem 1, 
with p, q > 0. Assumption 2 is equivalent to Assumption 4. 
Furthermore, Assumption 1 holds if and only if (A, p, q)
satisfy Assumption 3 and A satisfies Assumption 4.

Thus, when the choice maximum likelihood estima-
tion problem is cast as a matrix-balancing problem, 
Assumption 3 exactly characterizes the gap between 
Assumption 2 and Assumption 1. We provide some 
intuition for Proposition 1. When we construct a triplet 
(A, p, q) from a choice data set, with p the numbers of 
appearances of unique choice sets and q the winning 
counts of each item, Assumption 4 precludes the possi-
bility of partitioning the items into two subsets that 
never get compared with each other (i.e., Assumption 2). 
Then, Assumption 3 requires that whenever a strict sub-
set M([m] of objects only appears in a strict subset 
N([n] of the observations, their total winning counts are 
strictly smaller than the total number of these observa-
tions (i.e., there is some object j ∉M that is selected in Si 

for some i *N, which is required by Assumption 1).
Interestingly, although Assumption 1 requires the 

directed comparison graph, defined by the m ×m matrix 
of counts of item j being chosen over item k, to be strongly 
connected, the corresponding conditions for the equivalent 
matrix-balancing problem concern the n ×m participation 
matrix A and positive vectors p, q, which do not explicitly 
encode the specific choice of each observation. This appar-
ent discrepancy is because of the fact that (A, p, q) form the 
sufficient statistics of the Luce choice model. In other 
words, there can be more than one choice data set with the 
same optimality condition (9) and (A, p, q) defining the 
equivalent matrix-balancing problem (see Figure 1).

Remark 3 (Aggregate Data as Sufficient Statistics). The 
feature where “marginal” or aggregate quantities con-
stitute the sufficient statistics of a parametric model is 
an important characteristic that underlies many works 
in economics and statistics (Stone 1962, Birch 1963, 
Good 1963, Theil 1967, Fienberg 1970, Berry et al. 1995, 
Kullback 1997, Fofana et al. 2002, Maystre and Gross-
glauser 2017, Chang et al. 2024). It makes the task of 
estimating a joint model from marginal quantities feasi-
ble and is very useful because in many applications, 
only marginal data are available because of high sam-
pling cost or privacy-preserving considerations.

Having formulated a particular matrix-balancing 
problem from the estimation problem given choice 

Figure 1. (Color online) Representation of Luce Choice Data 
with Participation Matrix A, Ri as the Frequency of Appear-
ances of Choice Set i, and Wj as the Frequency of Choices of 
Item j as a Matrix-Balancing Problem (A, p, q) with Target 
Marginals pi ÿ Ri and qj ÿWj 
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data, we may ask how one can go in the other direction. 
In other words, when/how can we construct a “choice 
data set” whose sufficient statistics are a given triplet 
(A, p, q)? First off, for (A, p, q) to be valid sufficient statis-
tics of a Luce choice model, p, q need to be positive inte-
gers. Moreover, A must be a binary matrix with unique 
rows, each containing at least two nonzero elements 
(valid choice sets have at least two items). Given such an 
(A, p, q) satisfying Assumptions 3 and 4, a choice data 
set can be constructed efficiently. Such a procedure is 
described, for example, in Kumar et al. (2015), where A 
is motivated by random walks on a graph instead of 
matrix balancing (Online Appendix B). Their construc-
tion relies on finding the max flow on the bipartite 
graph Gb. For rational p, q, this max flow can be found 
efficiently in polynomial time (Balakrishnan et al. 2004, 
Idel 2016). Moreover, the maximum flow implies a 
matrix A2 satisfying Assumption 3(a), thus providing a 
feasibility certificate for the matrix-balancing problem 
as well.

We have thus closed the loop and fully established 
the equivalence of the maximum likelihood estimation 
of Luce choice models and the canonical matrix- 
balancing problem.

Corollary 1. There is a one-to-one correspondence between 
classes of maximum likelihood estimation problems with the 
same optimality conditions (9) and canonical matrix-bal-
ancing problems with (A, p, q), where A is a valid binary 
participation matrix and p, q > 0 have integer entries.

Connections to discrete choice modeling have also 
been established for the related problem of regularized 
semidiscrete optimal transport (Taşkesen et al. 2023), 
although the problem setting and results are distinct 
from the ones studied in this paper. We next turn our 
attention to the algorithmic connections between choice 
modeling and matrix balancing.

4.2. Algorithmic Connections Between Matrix 

Balancing and Choice Modeling
Given the equivalence between matrix balancing and 
choice modeling, we can naturally consider applying 
Sinkhorn’s algorithm to maximize (5). In this case, one 
can verify that the updates in each full iteration of Algo-
rithm 1 reduce algebraically to

s(t+1)
j ÿWj=

X

i*[n] | j*Si

Ri
P

k*Si
s(t)k

(14) 

in the tth iteration. Comparing (14) with the optimality 
condition in (9), which we recall is given by

Wj ÿ
X

i*[n] | j*Si

Ri
sj

P

k*Si
sk
ÿ sj ·

X

i*[n] | j*Si

Ri
P

k*Si
sk

, 

we can, therefore, interpret the iterations as simply 
dividing the winning count Wj by the coefficient of sj on 

the right repeatedly in the hope of converging to a fixed 
point. A similar intuition was given by Ford (1957) in 
the special case of pair-wise comparisons. Indeed, the 
algorithm proposed in that paper is a cyclic variant of 
(14) applied to pair-wise comparisons. However, this 
connection is mainly algebraic as the optimality condi-
tion in Ford (1957) does not admit a reformulation as the 
matrix-balancing problem in (13).

In Online Appendix B, we provide further discus-
sions on the connections of Sinkhorn’s algorithm to 
existing frameworks and algorithms in the choice- 
modeling literature and the optimization literature. We 
demonstrate that many existing algorithms for Luce 
choice model estimation are in fact special cases or ana-
logs of Sinkhorn’s algorithm. These connections also 
illustrate the many interpretations of Sinkhorn’s algo-
rithm (e.g., as a distributed optimization algorithm as 
well as a minorization-maximization or MM algorithm) 
(Lange 2016). However, compared with most algo-
rithms for choice modeling discussed in this work, Sink-
horn’s algorithm is more general as it applies to 
nonbinary A and noninteger p, q, and it has the addi-
tional advantage of being parallelized and distributed 
and hence, more efficient in practice. To highlight the 
ubiquity of Sinkhorn’s algorithm in the choice setting, 
we summarize these algorithmic connections below.

Theorem 2 (Equivalence of Algorithms). Sinkhorn’s algo-
rithm, when applied to matrix-balancing formulations of 
various choice-modeling problems, is equivalent to the fol-
lowing algorithms: 
" the iterative algorithms of Zermelo (1929), Dykstra 

(1956), and Ford (1957) for the BTL model of pair-wise com-
parison data;
" the MM algorithm of Hunter (2004) for the Plackett–Luce 

model of ranking data;
" the unregularized version of the ChoiceRank algorithm 

of Maystre and Grossglauser (2017) for their proposed net-
work choice model; and
" the BLP algorithm of Berry et al. (1995) in a logit ran-

dom utility model with only intercepts.
Moreover, Sinkhorn’s algorithm can be viewed as a gen-

eral MM algorithm as well as a message-passing algorithm, 
and in the latter case, it is a variant of the accelerated spec-
tral-ranking algorithm of Agarwal et al. (2018) for Luce 
choice models based on a different moment condition.

The mathematical and algorithmic connections 
between matrix balancing and choice modeling that we 
establish in this paper allow for the transmission of 
ideas in both directions. For example, inspired by regu-
larized maximum likelihood estimation (Maystre and 
Grossglauser 2017), we propose a regularized version 
of Sinkhorn’s algorithm in Online Appendix C, which 
is guaranteed to converge even when the original 
Sinkhorn’s algorithm does not converge. Leveraging 
optimization connections between maximum likelihood 
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estimation of choice models and matrix balancing, 
Chang et al. (2024) propose a statistical framework for 
network traffic that justifies the popular use of Sink-
horn’s algorithm to infer detailed dynamic networks 
from aggregate node-level activities. In the rest of the 
main text, we focus on resolving some interesting open 
problems on the convergence of Sinkhorn’s algorithm 
motivated by results in choice modeling on the impor-
tance of algebraic connectivity in quantifying statistical 
and computational efficiencies.

5. Linear Convergence of Sinkhorn’s 
Algorithm for Nonnegative Matrices

In this section, we turn our attention on matrix balanc-
ing and study the global and asymptotic linear conver-
gence of Sinkhorn’s algorithm for general nonnegative 
matrices A g 0 and positive marginals p, q > 0. We first 
present the relevant optimization principles behind 
matrix balancing and discuss some existing results in 
Section 5.1, and then, we present the convergence 
results in Sections 5.2–5.4. Throughout, we use super-
script (t) to denote quantities after t iterations of Sink-
horn’s algorithm with normalized columns, described 
in Algorithm 1.

5.1. Preliminaries
We start with the optimization principles associated 
with matrix balancing and Sinkhorn’s algorithm. Given 
a matrix-balancing problem with A g 0,

P

ijAij ÿ 1 and 
target marginals p, q with 

P

ipi ÿ
P

jqj ÿ 1, consider the 
following KL divergence (relative entropy) minimiza-
tion problem:

min
Â*Rn×m

+

DKL(Â6A)

Â1m ÿ p

Â
T
1n ÿ q:

(15) 

It is well known that when scalings D0, D1 solve the 
matrix-balancing problem with (A, p, q), the scaled 
matrix Â ÿD1AD0 is the unique minimizer of (15) 
(Bregman 1967a, Ireland and Kullback 1968). Moreover, 
vector representations d0, d1 of the optimal scalings 
D0, D1 precisely minimize the following (negative) dual 
objective of (15):

g(d0, d1) :ÿ (d1)TAd0
ÿ

X

n

iÿ1

pi logd1
i ÿ

X

m

jÿ1

qj logd0
j , (16) 

and Sinkhorn’s algorithm is a block coordinate descent- 
type algorithm (Tseng 2001) applied to minimize (16). 
Luo and Tseng (1992) study the linear convergence of 
block coordinate descent algorithms for a general class 

of objectives that include (16). In particular, their result 
implies that the convergence of Sinkhorn’s algorithm, 
measured in terms of the optimality gap of g, is linear 
with some unknown rate as long as finite positive scal-
ings D0, D1 exist that satisfy (2). The function g, some-
times referred to as the potential function of Sinkhorn’s 
algorithm, also turns out to be crucial in quantifying the 
global linear convergence rate in the present work.

Remark 4 (Optimization Connections). Interestingly, min-
imizing (16) is in fact equivalent to maximizing the log- 
likelihood function ℓ(s) in (5) for valid (A, p, q) because 
mind1 g(d0, d1) ÿÿℓ(d0) + c for some c > 0. Moreover, 
the optimality condition of minimizing g with respect to 
d0 reduces to the optimality condition (9). A detailed dis-
cussion can be found in Online Appendix B.4. This con-
nection relates choice modeling and matrix balancing 
from an optimization perspective.

Although convergence results on Sinkhorn’s algo-
rithm are abundant, they are often stated in different 
forms, are developed under different assumptions, and 
apply to settings of varying degrees of generality. Next, 
we briefly discuss some existing works to clarify their 
connections and distinctions, which also help motivate 
the technical results in this paper. They are summarized 
in Table 1.

First and foremost, how to define and measure the 
convergence of Sinkhorn’s algorithm is not entirely triv-
ial. Because of the indeterminacy of scalings under the 
transformation (D0, D1) ³ (D0=c, c ·D1), most works 
define convergence using quantities that are invariant 
under this transformation. Let D0(t), D1(t) be the scalings 
obtained after t iterations of Sinkhorn’s algorithm, and 
let A(t) :ÿD1(t)AD0(t) be the scaled matrix based on these 
scalings. Because A(t) is invariant under the transforma-
tion, some earlier works, such as Franklin and Lorenz 
(1989) and Soules (1991), measure convergence in terms 
of A(t) to the optimally scaled matrix Â ÿD1AD0 that 
has the target row and column sums p, q. Most later 
works focus instead on the convergence of the marginal 
quantities

r(t) :ÿ A(t)1m; c(t) :ÿ A(t)T1n 

to the target row and column sums p, q. Because after 
each iteration in Algorithm 1, the column constraint is 
always satisfied (A(t)1n ÿ q), it suffices to focus on the 
convergence of r(t) to p. For example, Léger (2021) uses 
the KL divergence DKL(r(t)6p), whereas Altschuler et al. 
(2017) and Chakrabarty and Khanna (2021) use the ℓ1 

distance 6r(t) ÿ p61, which is upper bounded by the KL 
divergence via Pinsker’s inequality. Given the entropy 
optimization perspective of matrix balancing and Sink-
horn’s algorithm in (15) and (16), it is also possible to 
measure convergence in terms of the dual optimality 
gap g(d0(t), d1(t))ÿ g(d0, d1), which in turn, bounds KL 
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divergences via

g(d0(t), d1(t))ÿ g(d0, d1) ÿDKL(D1AD06A(t))

ÿ
X

>

sÿt

DKL(p6r(s)) +DKL(q6c(s)):

(17) 

Luo and Tseng (1992) show that this dual optimality 
gap converges linearly, but how the convergence rate 
depends on problem structure has been an open ques-
tion. Our global linear convergence result in Theorem 3
is the first to characterize this rate.

Next, we note the distinction between global and local 
(particularly asymptotic) convergence results. Global 
results hold for all iterations t > 0. For example, Léger 
(2021) shows DKL(r(t)6p) f D7KL=t for all t, where D7KL is 
the optimal value of the relative entropy minimization 
Problem (15). On the other hand, local convergence 
results pertain to the behavior of an algorithm in a 
neighborhood of the optimal solution, whereas asymp-
totic results only hold in the limit as t³>. For 
example, Knight (2008) characterizes the asymptotic 

rate limt³>6r(t+1)
ÿ p67=6r(t) ÿ p67 of linear convergence 

for Sinkhorn’s algorithm, where 6 · 67 is an implicitly 
defined norm. When A g 0, Knight (2008) is the only 
work on the exact asymptotic convergence rate for 
square A and uniform p, q. Theorem 4 is the first asymp-
totic result for general A g 0 and nonuniform p, q, with 
an explicit norm (6 · 62). Although asymptotic results 
provide a more precise description of an algorithm’s 
behavior near the optimal solution, global results are 
useful for obtaining complexity bounds on the number 
of iterations required to obtain ε�accuracy solutions. In 
fact, global results are often stated directly as complexity 
bounds. For example, the result in Altschuler et al. 

(2017) is that for A > 0, t ÿ 4(ε)ÿ2log(PijAij=minijAij) itera-

tions of Sinkhorn’s algorithm guarantee 6r(t) ÿ p61 f ε.
Lastly, we note the distinction between (global) linear 

and sublinear convergence results. Linear convergence 
is often understood as successive improvements of the 
convergence metric by a constant factor. For example, 
Franklin and Lorenz (1989) show that for A > 0 and the 
Hilbert metric d, d(r(t+1), p) f λ · d(r(t), p) for all t > 0 for 
some λ * (0, 1). As a result, d(r(t), p) f λt · d(r(0), p)
decreases exponentially in t so that d(r(t), p) f ε�in 
O(log(1=ε)) iterations. In contrast, in sublinear results, 
such as Léger (2021), the convergence metric DKL(r(t)6p)
only decreases polynomially in t, requiring O(1=ε) itera-
tions to guarantee DKL(r(t)6p) f ε. Although sublinear 
complexity bounds have worse (polynomial) depen-
dence on 1=ε, they often focus on optimizing the depen-
dence on problem size and dimension. Our main focus 
in this paper is on understanding the linear convergence 
behavior of Sinkhorn’s algorithm when A g 0 (i.e., 
O(log(1=ε)) iteration complexity). Nevertheless, we also 

provide refined complexity bounds in Proposition 2
that optimize dependence on problem constants.

As discussed before, when A g 0, only sublinear 
convergence results with explicit rates are known 
(Kalantari et al. 2008, Chakrabarty and Khanna 2021, 
Léger 2021), whereas Luo and Tseng (1992) implies 
global linear convergence with an unknown rate. We 
now characterize this global linear rate of convergence 
in terms of the algebraic connectivity of the bipartite 
graph defined in (7).

5.2. Global Linear Convergence
Our analysis starts with the following change of vari-
ables to transform the potential function (16):

u :ÿ log d0, v :ÿ ÿlog d1, (18) 

resulting in the reparameterized potential function g(u, v)
of (16):

g(u, v) :ÿ
X

ij

Aije
ÿvi+uj +

X

n

iÿ1

pivi ÿ

X

m

jÿ1

qjuj: (19) 

Note first that g(u, v) ÿ g(u+ a, v+ a) for any constant 
a * R. We can verify that Sinkhorn’s algorithm is equiva-
lent to the alternating minimization algorithm (Bertse-
kas 1997) for (19), which alternates between minimizing 
with respect to u and v, holding the other block fixed:

u(t)± argmin
u

g(u,v(tÿ1)), v(t)± argmin
v

g(u(t),v) (20) 

or written more explicitly element wise,

u(t)j ± log
qj

P

i Aije
ÿv(tÿ1)

i

, v(t)i ± log
pi

P

j Aije
u(t)

j

: (21) 

A main reason to focus on (19) instead of the log- 
barrier form (16) is that (19) has a Hessian with desirable 
properties for proving linear convergence. The Hessian 
of g(u, v) is

'2g(u, v) ÿ
D(Â1m) ÿÂ

ÿÂ
T

D(ÂT
1n)

" #

, (22) 

where D converts a vector to a diagonal matrix and Â ÿ
D(d1)AD(d0) ÿD(exp(ÿv))AD(exp(u)) is the matrix 
scaled by u, v. Note that the Hessian '2g(u, v) always 
has 1m+n in its null space. On the surface, it may seem 
that standard linear convergence results for first-order 
methods, which require strong convexity (or the 
Polyak–Łojasiewicz condition) of the objective function, 
do not apply to g(u, v). However, we will show that 
whenever the matrix-balancing problem has finite scal-
ing solutions, g(u, v) is in fact strongly convex when 
restricted to bounded subsets of the subspace

1§m+n :ÿ {u * Rm, v * Rn : (u, v)T1m+n ÿ 0}: (23) 

Moreover, the invariance of g(u, v) and its gradient and 
Hessian under constant translations of (u, v) by 1m+n 
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guarantees that the strong convexity constant of g(u, v)
on 1§m+n in fact quantifies the linear convergence of Sink-
horn’s algorithm, even if the iterates u(t), v(t) are not in 
1m+n. Similar types of “restricted strong convexity” 
properties have been studied by, for example, Agarwal 
et al. (2010). It also shares similarities with the exp- 
concavity property popular in online learning (Hazan 
2016, Orabona 2019), which implies the strong convexity 
of a function in the direction of the gradient evaluated at 
any point. In contrast, g(u, v) is strongly convex along 
any direction orthogonal to 1m+n, but its gradient evalu-
ated at any (u, v) is not necessarily orthogonal to 1m+n. 
However, the key is that along the trajectory of iterates 
(u(t), v(t)) obtained by running Sinkhorn’s algorithm, the 
gradients of g evaluated at (u(t), v(t)) are indeed orthogo-
nal to 1m+n, which is sufficient to guarantee the linear 
convergence of Sinkhorn’s algorithm.

We now introduce the key quantities and defini-
tions used in our result. Let Sinkhorn’s algorithm ini-
tialize with a u(0), with v(0) given by (21). Define the 
constant B as

B :ÿ sup
(u,v)
6(u, v)6>

subject to (u, v)T1m+n ÿ 0,

g(u, v) f g(u(0), v(0)):

(24) 

In other words, B is the diameter of the initial normal-
ized sublevel set. We will show that B is finite and that it 
bounds normalized Sinkhorn iterates 6(u(t), v(t))6>
because under Assumption 3, the function g(u, v) is 
coercive on the subspace 1§m+n. Coercivity is an impor-
tant property, and we define it below following Bertse-
kas (2016).

Definition 1 (Coercivity). A function f (x) : Rd³ R is 
coercive on a subspace V ¦ Rd if

f (x(t)) ³ +> whenever x(t) * V and 6x(t)6>³+>:

(25) 

Next, define the Laplacian matrix L :ÿ L(A) of the 
bipartite graph Gb (see (7)) as

L : ÿ D(A1m) ÿA

ÿAT
D(AT1n)

ÿ ÿ

, (26) 

and refer to the second-smallest eigenvalue λ
ÿ2(L)

as the Fiedler eigenvalue. λ
ÿ2(L) > 0 if and only if 

Assumption 4 holds and it quantifies “connectivity” of 
the data structure (Spielman 2007). Although an impor-
tant quantity in the choice-modeling literature, algebraic 
connectivity has not been previously used in the analy-
sis of Sinkhorn’s algorithm. For details on the graph 
Laplacian and the Fiedler eigenvalue, see Online 

Appendix A. Finally, define the smoothness parameters

l0 :ÿmax
j
(AT1n)j, l1 :ÿmax

i
(A1m)i, (27) 

which are used to quantify the smoothness of g(u, v).
We can now state one of our main contributions to 

the study of Sinkhorn’s algorithm.

Theorem 3 (Global Linear Convergence). Suppose Assump-
tion 3 and Assumption 4 hold. Let L be the bipartite graph 
Laplacian defined in (26) and λ

ÿ2(L) be its second-smallest 
eigenvalue. Let l0, l1 be the smoothness parameters defined 
in (27). Let (u(t), v(t)) be Sinkhorn iterates at iteration t 
defined in (21) and B be the bound on 6(u(t), v(t))6> defined 
in (24). Define g7 :ÿ infu, vg(u, v). For all t > 0, the optimal-
ity gap of the dual objective g(u, v) defined in (19) satisfies

g(u(t+1),v(t+1))ÿg7 f 1ÿeÿ4B λÿ2(L)
min{l0, l1}

ÿ ÿ

(g(u(t),v(t))ÿg7):

(28) 

The ratio min{l0, l1}=λÿ2(L) can be interpreted as a con-
dition number of L.

The linear convergence rate of Sinkhorn’s algorithm 
is, therefore, quantified by λ

ÿ2(L)=min{l0, l1}, which is 
invariant under rescalings of A³ c ·A. Although the 
corresponding bipartite graph Gb with biadjacency 
matrix A is a natural object to consider in the study 
matrix-balancing problems, to our knowledge, Theorem 3
is the first to highlight the precise role of its spectral 
property, described by λ

ÿ2(L), in the linear convergence 
of Sinkhorn’s algorithm. It fills the gap left by Luo and 
Tseng (1992), who establish linear convergence with an 
implicit rate, and it allows us to compute its dependence 
on problem parameters by applying established bounds 
on λ

ÿ2(L) from spectral graph theory (Spielman 2007).

Remark 5 (Importance of Assumptions for Linear Conver-
gence). The importance of Assumptions 3 and 4 is 
clearly reflected in the bound (28). First, note that the 
Fiedler eigenvalue λ

ÿ2(L) > 0 if and only if Assump-
tion 4 holds (see Online Appendix A). On the other 
hand, Assumption 3 guarantees the coercivity of g on 
1§m+n (see (25)). This property ensures that B defined in 
(24) satisfies B < > and consequently, that normal-
ized iterates stay bounded by B. That Assumption 3
guarantees g(u, v) is coercive should be compared 
with the observation by Hunter (2004) that Assump-
tion 1 guarantees the upper compactness (a closely 
related concept) of the log-likelihood function (5). 
When Assumption 3 fails, B may become infinite, and 
6(u(t), v(t))6>³>.

Remark 6 (Self-Normalizing Property of Sinkhorn). The 
ability of Sinkhorn’s algorithm to exploit the (sub-
space) strong convexity of g(u, v) on 1§m+n to achieve 
linear convergence relies critically on the invariance of 
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the scaled matrix Â ÿD1AD0 and g(u, v) under the 
transformation (D0, D1) ³ (D0=c, c ·D1). This is an 
intrinsic feature of the matrix-balancing problem that 
has been well known but not fully exploited in the 
convergence analysis so far. It guarantees that the 
translation (u, v) ³ (uÿ log c, vÿ log c) does not alter 
g(u, v) and its derivatives in (19). We can, therefore, 
impose the auxiliary normalization (u, v)T1m+n ÿ 0 or 
equivalently, 

Q

jd
0
j ÿ
Q

id
1
i , which is easily achieved by 

requiring that after every update in Algorithm 1, a 
normalization (d0=c, cd1) is performed using the nor-
malizing constant

c ÿ
oooooooooooooooooooooooooo

Y

j

d0
j =
Y

i

d1
i

s

: (29) 

See Algorithm 3 for the normalized Sinkhorn’s algo-
rithm, which given (29), results in a virtual sequence of 
u(t), v(t) satisfying (u(t), v(t))T1m+n ÿ 0. Moreover, the 
values of g(u, v) on this virtual sequence are identical to 
those on the standard Sinkhorn iterates. As a result, the 
convergence result (28) applies to the standard Sink-
horn’s algorithm without normalization (or with any 
other normalization) because of the invariance of 
g(u, v). Normalization of Sinkhorn’s algorithm is also 
considered in the analyses in Carlier et al. (2023), 
although they use the asymmetric condition u0 ÿ 0, 
which does not guarantee that normalized Sinkhorn 
iterates stay in 1§m+n.

With this auxiliary normalization procedure, the 
proof of Theorem 3 then relies on the observation that 
the Hessian of g(u, v) is precisely the graph Laplacian 
L(u, v) of the bipartite graph with biadjacency matrix 
Â ÿD(exp(ÿv))AD(exp(u)). As (u, v) are bounded on 
normalized Sinkhorn iterates thanks to the coercivity of 
g, the Fiedler eigenvalue of L ÿ L(0, 0) quantifies the 
strong convexity on 1§m+n. Linear convergence then fol-
lows from results on block coordinate descent and alter-
nating minimization methods for strongly convex and 
smooth functions (Beck and Tetruashvili 2013). Typi-
cally, the leading eigenvalue of the Hessian quantifies 
the smoothness, which is bounded by 2 max{l0, l1} for L. 
For alternating minimization methods, the better 
smoothness constant min{l0, l1} is available. Thus, the 
quantity min{l0, l1}=λÿ2(L) in (28) can be interpreted as 
a type of “condition number” of the graph Laplacian L. 
When A is positive (not just nonnegative), then the 
strong existence and uniqueness conditions are trivially 
satisfied, and our results continue to hold with the rate 
quantified by min{l0, l1}=λÿ2(L). In this case, both 
min{l0, l1} and λ

ÿ2(L) are Θ(n), where n is problem 
dimension, so min{l0, l1}=λÿ2(L) does not increase with 
problem dimension.

Remark 7 (Significance of Theorem 3). A main innova-
tion in our paper is in introducing the concept of 

algebraic connectivity when quantifying the global con-
vergence of Sinkhorn’s algorithm for nonnegative matri-
ces. In this respect, the significance of Theorem 3 is more 
conceptual than technical because once we identify the 
right quantity (algebraic connectivity) and utilize the 
self-normalizing property, the convergence result can be 
obtained using standard matrix analysis and applying 
the theory of Beck and Tetruashvili (2013) for block coor-
dinate descent algorithms. Nevertheless, we feel that the 
role of algebraic connectivity in the study of matrix- 
balancing problems holds general significance and likely 
will lead to more results in related areas. See, for exam-
ple, Chang et al. (2024), which highlights its importance 
for the statistical efficiency of a network traffic model 
based on matrix balancing.

Although Theorem 3 implies an O(log(1=ε)) iteration 
complexity, the complexity bound’s dependence on 
problem parameters can be further improved. In partic-
ular, the constant B, which bounds 6(u(t), v(t))6>, can be 
hard to compute for some problems. We next establish 
an iteration complexity bound that does not depend 
exponentially on the implicit constant B defined in (24).

Proposition 2 (Iteration Complexity). Under Assumption 

3 and Assumption 4, let d0
7 , d1
7 be a pair of optimal scalings. 

Define 6v6
ÿ> :ÿmini |vi | , and let C ≕ max 6d0

7 6>
6d0
7 6ÿ>

, 1
6d0
7 6ÿ>6d1

7 6ÿ>
,

n

6d0
7 6>6d1

7 6>}. Suppose Sinkhorn’s algorithm initializes 

with u(0) ÿ 1m. Then, 6(eu(t) , ev(t))6> f C for all t > 0. More-

over, for any ε f 1
2 min 6p6

ÿ>, 6q6
ÿ>

ÿ ÿ

, after

O C2 ·min{6p6>, 6q6>}
λ
ÿ2(L)

· (log(1=ε) + loglogC)
ÿ ÿ

(30) 

iterations of Sinkhorn’s algorithm, the optimality gap and the 

ℓ1 distance 6r(t) ÿ p61 f ε.
Proposition 2 relies on two technical innovations. 

First, we bound eB f C, where C is explicitly con-
structed from any optimal solution pair and is invariant 
under rescalings. Second, we improve the dependence 
from e4B to e2B using the target marginals p, q to quantify 
the smoothness of g(u, v) instead. Our message here is 
that the convergence behavior of Sinkhorn’s algorithm 
has two phases. Initially, we can apply a sublinear com-
plexity bound with O(1) iterations to obtain Sinkhorn 
iterates sufficiently close to the optimal solution. After-
wards, the convergence can better be captured by a lin-
ear convergence with rate depending on the optimal 
solution and target marginals p, q. The dependence of C 
on problem dimension is problem specific. In the worst 
case, it can be exponential (Kalantari and Khachiyan 
1993). In Online Appendix E.2, we plot (30) as a function 
of problem dimension on randomly generated data, and 
we find that the dependence is quadratic. In contrast, 
sublinear bounds, such as Altschuler et al. (2017) and 
Chakrabarty and Khanna (2021), have logarithmic 
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dependence on problem dimension. It remains an inter-
esting question to improve the dependence on problem 
dimension in (30) and to study trade-offs with the 
dependence on ε.

5.3. Strong vs. Weak Convergence of 

Sinkhorn’s Algorithm
We now discuss the two different convergence regimes 
of Sinkhorn’s algorithm when A g 0. As mentioned in 
Sections 3.2 and 5.1, when A g 0, the canonical matrix- 
balancing problem with target marginals p, q has a finite 
positive solution pair D0, D1 if and only if Assumption 3
holds (which trivially holds when A > 0). In this case, 
Sinkhorn’s algorithm converges to D1AD0, which also 
solves the KL minimization Problem (15). We call this 
case the strong convergence of Sinkhorn.

However, even if Assumption 3 fails and no positive 
finite scalings D0, D1 exist that solve the matrix- 
balancing problem, the sequence of scaled matrices 
A(t) ÿD1(t)AD0(t) based on Sinkhorn’s algorithm can 
still converge entry wise to the solution of (15) whenever 
it has a finite solution. This apparent discrepancy is 
explained by the fact that the solution of Problem (15) 
requires a weaker condition than Assumption 3 for the 
matrix-balancing problem. It can be stated in the follow-
ing equivalent forms.

Assumption 5 (Weak Existence). (a) There exists a non-
negative matrix A2 * Rn×m

+ that inherits all zeros of A and 
has row and column sums p and q. Or, equivalently, (b) 
for every pair of sets of indices N([n] and M([m] such 
that Aij ÿ 0 for i ∉N and j *M, 

P

i*Npi g
P

j*Mqj.

The equivalence of the two conditions above follows 
from Pukelsheim and Simeone (2009, theorem 4), which 
also shows that they are the minimal requirements for 
the convergence of Sinkhorn’s algorithm. Assumption 
5(a) precisely guarantees that the constrained KL mini-
mization Problem (15) is feasible and bounded. It 
relaxes Assumption 3(a) by allowing additional zeros in 
the matrix A2. Similarly, Assumption 5(b) relaxes 
Assumption 3(b) by allowing equality between 

P

i*Npi 

and 
P

j*Mqj, even when M, N do not correspond to a 

block-diagonal structure.
The distinction between Assumption 3 and Assump-

tion 5 is important for the matrix-balancing problem 
and Sinkhorn’s algorithm. Assumption 3 guarantees 
that the solutions of (2) and (15) coincide and have 
exactly the same zero pattern as A. If Assumption 5

holds but Assumption 3 fails, then the solution Â of (15) 
has additional zeros relative to A, and no direct (finite 
and positive) scaling (D0, D1) exists such that Â ÿD1AD0. 
However, the sequence of scaled matrices Â

(t)
still con-

verges to Â. We call this case the weak convergence of 
Sinkhorn. In this case, the matrix-balancing problem is 
said to have a limit scaling, where some entries of D0, D1 

in Sinkhorn iterations approach zero or >, resulting in 
additional zeros in Â. Below, we give an example adapted 
from Pukelsheim and Simeone (2009), where p, q ÿ (3, 3)
and the scaled matrices Â

(t)
converge but no direct scaling 

exists:

A(t) ÿD1(t)AD0(t) ÿD1(t) 3 1

0 2

ÿ ÿ

D0(t) ÿ
1 0

0
3t

2

" #

3 1

0 2

ÿ ÿ 1 0

0
1

t

" #

³ 3 0

0 3

ÿ ÿ

: (31) 

Under Assumption 5, Léger (2021) proves the sub-
linear convergence of Sinkhorn’s algorithm, whereas it 
is known since at least Soules (1991) and Luo and Tseng 
(1992) that the convergence is linear under Assumption 
3. It is, therefore, important to clarify the convergence 
behaviors of Sinkhorn’s algorithm in the two settings. 
We next show that if Assumption 5 holds but Assump-
tion 3 fails, then there exists an entry of A(t) that con-
verges at a lower-bound rate Ω(1=t) (i.e., sublinear). 
Together with existing and new results in this paper, 
Proposition 3 fully characterizes the following conver-
gence behavior of Sinkhorn’s algorithm; whenever a 
direct scaling exists for the matrix-balancing problem, 
Sinkhorn’s algorithm converges linearly. If only a limit 
scaling exists, then convergence deteriorates to sub-
linear. This generalizes the observations made by Sink-
horn and Knopp (1967) and Achilles (1993) for square 
matrices and uniform marginals.

Proposition 3 (Linear Versus Sublinear Convergence of 
Sinkhorn). For general nonnegative matrices, Sinkhorn’s 
algorithm converges linearly if and only if (A, p, q) satisfy 
Assumption 3 and Assumption 4. The convergence is sub-
linear if and only if the weak existence condition Assumption 
5 holds but Assumption 3 fails.

The regime of sublinear convergence also has an 
interpretation in the choice-modeling framework. The 
weak existence condition Assumption 5, when applied 
to (A, p, q) constructed from a choice data set, allows the 
case where some subset S of items is always preferred 
over SC, which implies, as observed already by the early 
work of Ford (1957), that the log-likelihood function (5) 
is only maximized at the boundary of the probability 

simplex by shrinking sj for j * SC toward zero (i.e., 
D0

j ³ 0). Incidentally, Bacharach (1965) also refers to the 
corresponding regime in matrix balancing as “boundary 
solutions.”

5.4. Sharp Asymptotic Rate
Having established the global convergence and iteration 
complexity of Sinkhorn’s algorithm when finite scalings 
exist, we now turn to the problem of characterizing 
the sharp (i.e., best-possible) asymptotic linear conver-
gence rate as t³> for general nonnegative A and 
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nonuniform marginals (p, q). Knight (2008) computed 
this rate for uniform (p, q) under an implicit metric. Our 
analysis is distinct from the analysis of Knight (2008) 
and relies on an intrinsic orthogonality structure of 
Sinkhorn’s algorithm, which is also different from the 
auxiliary normalization in our global linear convergence 
analysis. Note that unlike the global rate, which 
depends on the initial problem data A and (u(0), v(0)), the 
asymptotic rate now depends on the optimal solution 
Â ÿD1AD0 as expected.

Theorem 4 (Sharp Asymptotic Rate). Suppose (A, p, q)
satisfy Assumption 3 and Assumption 4. Let Â be the 
unique scaled matrix with target marginals p, q defined in 
(10). Then, marginals r(t) ÿ A(t)1, where A(t) is the scaled 
matrix after t iterations of Sinkhorn’s algorithm, satisfy

lim
t³>

6r(t+1)=
ooo

p
:

ÿ

ooo

p
: 62

6r(t)= ooo

p
:

ÿ

ooo

p
: 62

ÿ λ>, (32) 

where the asymptotic linear rate of convergence λ> is 
given by

λ> :ÿ λ2(ÃÃ
T) ÿ λ2(Ã

T
Ã)

Ã :ÿD(1= ooo

p
: ) · Â ·D(1= ooo

q
: )

and λ2(·) denotes the second-largest eigenvalue.

In the special case of m ÿ n and p ÿ q ÿ 1, the asymp-
totic rate in Theorem 4 reduces to that in Knight (2008). 
Note, however, that the convergence metric is different; 
we use the ℓ2 norm 6r(t)= ooo

p
:

ÿ

ooo

p
: 62, whereas Knight 

(2008) uses 6r(t) ÿ p67 with an implicit norm 6 · 67 on Rn. 
Moreover, one cannot directly extend results for square 
matrices, such as those in Knight (2008), to nonsquare 
matrices by padding them with zeros, as doing so 
results in target marginals that are not strictly positive. 
See, however, Knight (2008) for a symmetrization 
proposal.

The proof of Theorem 4 relies on a sequence of novel 
data-dependent mappings associated with Sinkhorn’s 
algorithm. Intuitively, the dependence of the asymptotic 

linear rate on the second-largest eigenvalue of Ã
T
Ã 

(and ÃÃ
T
) is because of the fact that near the fixed point 

ooo

p
:

of the mapping associated with Sinkhorn iterations, 

ÃÃ
T 

(which is the Jacobian at 
ooo

p
:

) approximates the 
first-order change in r(t)=

ooo

p
:

. Normally, the leading 
eigenvalue quantifies this change. The unique leading 

eigenvalue of ÃÃ
T 

is equal to one with eigenvector 
ooo

p
:

, 
which does not imply contraction. Fortunately, using 
the quantity r(t)=

ooo

p
:

allows us to exploit the following 
orthogonality structure:

(r(t)= ooo

p
:

ÿ

ooo

p
: )T ooo

p
: ÿ

X

i

(r(t)i ÿ pi) ÿ 0 

by virtue of Sinkhorn’s algorithm, preserving the quan-
tities r(t)T1n for all t. Thus, the residual r(t)=

ooo

p
:

ÿ

ooo

p
:

is 

always orthogonal to 
ooo

p
:

, which is both the leading 
eigenvector and the fixed point of the iteration. The con-
vergence is then controlled by the second-largest eigen-

value of ÃÃ
T
. This proof approach echoes that of the 

global linear convergence result in Theorem 3, where 
we also exploit an orthogonality condition to obtain a 
meaningful bound. In Theorem 3, the bound depends 
on the second-smallest eigenvalue of a Hessian matrix, 
whereas in Theorem 4, the bound depends on the 
second-largest eigenvalue of a Jacobian matrix.

Lastly, we note that the asymptotic rate λ> is itself a 
Fiedler eigenvalue associated with the Laplacian that is 
the Schur complement of the scaled graph Laplacian

D(1= ooo

p
: ) 0

0 D(1= ooo

q
: )

" #

D(Â1m) ÿÂ

ÿÂ
T

D(ÂT
1n)

2

4

3

5

D(1= ooo

p
: ) 0

0 D(1= ooo

q
: )

" #

:

6. Conclusion
In this paper, we develop extensive connections 
between matrix balancing and choice modeling. We 
show that the maximum likelihood estimation of choice 
models based on the Luce axioms of choice is an 
instance of the canonical matrix-balancing problem. 
Moreover, many algorithms in choice modeling can be 
viewed as special cases or analogs of Sinkhorn’s algo-
rithm for matrix balancing. These connections can 
potentially benefit multiple disciplines. For choice 
modeling, they open the door to tools and insights from 
well-studied topics in optimization and numerical lin-
ear algebra. For matrix balancing, the connections 
enable us to resolve some interesting open problems on 
the linear convergence of Sinkhorn’s algorithm for non-
negative matrices. We establish the first quantitative 
global linear convergence result for Sinkhorn’s algo-
rithm applied to general nonnegative matrices. Our 
analysis reveals the importance of algebraic connectivity 
for matrix balancing. We also provide the first character-
ization of the exact asymptotic linear rate of conver-
gence for general nonnegative matrix and nonuniform 
target marginals. Lastly, we clarify the linear and sub-
linear convergence behaviors of Sinkhorn’s algorithm 
under the strong and weak existence assumptions for 
matrix balancing. Overall, we believe that the connec-
tions established in this paper are useful for researchers 
from different domains and can lead to further interest-
ing results.
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