Published as a conference paper at ICLR 2025

LLM-SR: SCIENTIFIC EQUATION DISCOVERY VIA
PROGRAMMING WITH LARGE LANGUAGE MODELS

Parshin Shojaee!. Kazem Meidani?~ Shashank Gupta®
Amir Barati Farimani’ Chandan K. Reddy'

1Virginia Tech 2Carnegie Mellon University 3Allen Institute for Al

ABSTRACT

Mathematical equations have been unreasonably effective in describing complex
natural phenomena across various scientific disciplines. However, discovering such
insightful equations from data presents significant challenges due to the necessity
of navigating extremely large combinatorial hypothesis spaces. Current methods of
equation discovery, commonly known as symbolic regression techniques, largely
focus on extracting equations from data alone, often neglecting the domain-specific
prior knowledge that scientists typically depend on. They also employ limited
representations such as expression trees, constraining the search space and expres-
siveness of equations. To bridge this gap, we introduce LLM-SR, a novel approach
that leverages the extensive scientific knowledge and robust code generation capa-
bilities of Large Language Models (LLMs) to discover scientific equations from
data. Specifically, LLM-SR treats equations as programs with mathematical opera-
tors and combines LLMs’ scientific priors with evolutionary search over equation
programs. The LLM iteratively proposes new equation skeleton hypotheses, draw-
ing from its domain knowledge, which are then optimized against data to estimate
parameters. We evaluate LLM-SR on four benchmark problems across diverse
scientific domains (e.g., physics, biology), which we carefully designed to simulate
the discovery process and prevent LLM recitation. Our results demonstrate that
LLM-SR discovers physically accurate equations that significantly outperform
state-of-the-art symbolic regression baselines, particularly in out-of-domain test
settings. We also show that LLM-SR’s incorporation of scientific priors enables
more efficient equation space exploration than the baselines'.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) has marked a significant milestone in artificial
intelligence, showcasing remarkable capabilities across various domains (Achiam et al., 2023). As
LLMs continue to evolve, researchers are exploring innovative ways to harness their potential for
solving complex problems such as scientific discovery (Wang et al., 2023a; Al4Science & Quantum,
2023). Their ability to process and comprehend vast amounts of scientific literature, extract relevant
information, and generate coherent hypotheses has recently opened up new avenues for accelerating
scientific progress (Zheng et al., 2023b; Ji et al., 2024). Additionally, by leveraging their ability to
understand and reason with the help of programming and execution, LLMs have shown the potential
to enhance automated reasoning and problem-solving capabilities for general natural language and
mathematics optimization tasks, e.g., prompt optimization and heuristic discovery (Meyerson et al.,
2023; Yang et al., 2023a; Madaan et al., 2024; Romera-Paredes et al., 2024). Motivated by these
strengths, LLMs could be particularly helpful for the task of equation discovery, a fundamental task
in science and scientific discovery.

Discovering accurate symbolic mathematical models from data is an important task in various
scientific and engineering disciplines. The task of data-driven equation discovery (also commonly
known as Symbolic Regression (SR)), aims to find abstract mathematical equations from data

*Equal contribution. Contact: parshinshojaee @vt.edu, mmeidani @andrew.cmu.edu
!Code and data are available: https://github.com/deep-symbolic-mathematics/LLM-SR

https://github.com/deep-symbolic-mathematics/LLM-SR

Published as a conference paper at ICLR 2025

- Instruction Hypothesns
- Specificati Generation #1

<sci fic p di r
Prompt :_,»‘

- Experience Demonstration: %ﬁ

4 Experience N @ Data-driven
4 Fetch @
Experience Management Evaluation

Optimize Parameters

A}
: 1
i 1
i 1
' i
i i
: D (Torch+Adam / NumPy+BFGS) 1
! E Experience i
' Manager i i
1 . =
! ' Evaluate GRS '
o N params*[1]= 0.5]
' a Fit to Data params*[2]= 2.1 '
! Island 1 Is Experience : : params*[3]= 5.4 :
b, Buffer Iy !
L /7 \ ’

Figure 1: The LLM-SR framework, consisting of three main steps: (a) Hypothesis Generation, where
LLM generates equation program skeletons based on a structured prompt; (b) Data-driven Evaluation, which
optimizes the parameters of each equation skeleton hypothesis and assesses its fit to the data; and (c) Experience
Management, which maintains a diverse buffer of high-scoring hypotheses to provide informative in-context
examples into LLM’s prompt for effective iterative refinement.

observations such that these equations are predictive of the underlying data, are interpretable, and
generalize to unseen data from the same physical phenomena. Finding such equations offers several
advantages over simply estimating a predictive model, as the resulting mathematical functions provide
insights into the underlying physical processes, enable extrapolation beyond the observed data, and
facilitate knowledge transfer across related problems (Langley, 1981; Schmidt & Lipson, 2009).
However, while evaluating the fit of a proposed equation is relatively straightforward, the inverse
process of obtaining these mathematical equations from data is a challenging problem, known to
be NP-hard (Virgolin & Pissis, 2022). Current equation discovery methods encompass a wide
variety of approaches from evolutionary search algorithms (Cranmer, 2023; Mundhenk et al., 2021;
La Cava et al., 2021) to advanced deep learning methods using Transformers (Biggio et al., 2021;
Kamienny et al., 2022). Most of the traditional symbolic regression techniques are built on top of
Genetic Programming (GP) (Koza, 1994) evolutionary methods, representing mathematical equations
as expression trees and searching the combinatorial space of possible equations through iterative
mutation and recombination. However, these methods often struggle with the complexity of the vast
optimization space and do not incorporate prior scientific knowledge, which leads to suboptimal
solutions and inefficient exploration of the equation search space. Similarly, the design of current
general LLM-based optimization frameworks (Meyerson et al., 2023; Romera-Paredes et al., 2024;
Yang et al., 2023a) also have several key limitations in terms of domain knowledge integration and
diverse exploration which are critical for equation discovery. Thus, there is a need for specialized
equation discovery methods that effectively integrate prior scientific knowledge into the navigation
of vast equation search space, a strategy akin to a scientist’s reliance on foundational scientific
knowledge when formulating hypotheses for scientific discovery.

To address all these limitations, we introduce LLM-SR (shown in Fig. 1), a novel framework that
combines the strengths of LLMs, reliable optimizers, and evolutionary search for data-driven equation
discovery. Atits core, LLM-SR is an iterative hypotheses refinement method that generates, evaluates,
and refines equation hypotheses based on data-driven feedback. Specifically, LLM-SR first prompts
the LLM to propose new equation hypotheses (Fig. 1(a)), then evaluates their fit on the observed
data using off-the-shelf optimizers (Fig. 1(b)), and uses this data-driven feedback and a carefully
maintained dynamic memory of previous equations (Fig. 1(c)) to iteratively guide the search
towards better equations. LLM-SR leverages the scientific knowledge embedded in LLMs using
short descriptions of the problem and the variables involved in a given system to generate educated

Published as a conference paper at ICLR 2025

hypotheses for equation skeletons (i.e., mathematical structures with placeholder parameters for
numeric coefficients and constants). The LLM’s in-context learning and crossover capabilities
(Meyerson et al., 2023) are then employed to refine the suggested equation skeletons in an iterative
process. By representing equations as Python programs, we take advantage of LLM’s ability to
generate structured and executable code (Li et al., 2023; Shojaee et al., 2023) while providing a
flexible and effective way to represent general mathematical relations. The program representation
also facilitates direct and differentiable parameter optimization to better optimize the coefficients or
constants in the generated equations.

To leverage LLM’s scientific prior knowledge yet prevent the risk of LLM recitation (Wu et al.,
2023) in equation discovery (observed for common benchmarks like Feynman (Udrescu & Tegmark,
2020)), we designed four custom benchmark problems across physics, biology, and materials science
for the evaluation of LLM-SR. By incorporating synthetic modifications to physical models and
experimental datasets, these problems aim to simulate the real discovery processes (see App. C
and D for details). We evaluated LLM-SR using GPT-3.5-turbo (Brown, 2020) and Mixtral-8x7B
(Jiang et al., 2024) as backbone LLMs. Results demonstrate that LLM-SR consistently outperforms
state-of-the-art symbolic regression methods, discovering physically accurate equations with better fit
and generalization in both in-domain (ID) and out-of-domain (OOD) test settings. By leveraging the
scientific prior knowledge, LLM-SR explores the equation search space more efficiently, requiring
fewer iterations to find accurate equations. Our ablation analysis also highlights the crucial role of
data-driven feedback, iterative refinement, and program representation in LLM-SR’s performance.
The major contributions of this work are as follows:

* We introduce LLM-SR, a novel framework that leverages domain-specific prior knowledge and
code generation capabilities of LLMs combined with off-the-shelf optimizers and evolutionary
search for data-driven scientific equation discovery.

* We create four benchmark problems spanning physics, biology, and materials science, designed to
simulate real-world discovery and prevent LLM recitation risks for evaluation of LLM-SR.

* We show that LLM-SR outperforms state-of-the-art symbolic regression methods by navigating
the equation search space more efficiently and discovering more accurate equations with better
out-of-domain generalization.

* We demonstrate through a comprehensive ablation study that natural language problem descriptions,
program representation, data-driven feedback, and iterative hypothesis refinement are all essential
components for LLM-SR’s success.

2 LLM-SR METHODOLOGY

2.1 PROBLEM FORMULATION
In the task of data-driven equation discovery, also known as symbolic regression (SR), the goal is

to find a concise symbolic expression f approximating an unknown function f : R — R. Given a
dataset D = {(x, yi)}"1, SR methods seek to uncover the hidden mathematical relationship such

that f(x;) =~ y;, Vi. The discovered equation should not only accurately fit the observed data points
but also exhibit strong generalization capabilities to unseen data while maintaining interpretability.

Current SR methods typically represent equations using techniques such as expression trees (Cranmer,
2023), prefix sequences (Petersen et al., 2021; Biggio et al., 2021), or context-free grammars (Brence
et al., 2021). These representations provide structured and constrained search spaces, enabling evolu-
tionary algorithms like genetic programming to explore and find candidate expressions. In contrast,
we employ program functions to directly map inputs « to targets y: def f(x): ... return y.
This approach offers greater expressiveness in mathematical relations but expands the search space
significantly. To navigate this vast program space effectively, we leverage LL.Ms for their scientific
knowledge and code generation capabilities. Let my denote a pre-trained LLM with parameters 6. We
iteratively sample equation program skeletons F = {f : f ~ mg}, aiming to maximize the reward
Score7(f, D) for a given scientific problem 7 and dataset D: f* = argmax; Eqep [Scorer(f, D).
Our approach, LLM-SR, prompts the LLM to propose hypotheses based on problem specifications
and demonstrations of previously discovered promising equations. The LLM generates equation
program skeletons with placeholder parameters, which are then optimized using robust Python
optimizers. Promising hypotheses are added to a dynamic experience buffer, guiding subsequent
in-context example updates and equation refinement. Below we explain the key components of this
framework, shown in Fig. 1, in more detail.

Published as a conference paper at ICLR 2025

Instruction

You are a helpful assistant tasked with discovering mathematical function structures for
scientific systems. Complete the 'equation' function below, considering the physical
meaning and relationships of inputs. Explain your reasoning briefly before completing the
function. Let’s think step by step.

(.
Problem Specification

Find the mathematical function skeleton that represents acceleration in a damped
» nonlinear oscillator system with driving force, given data on position,

velocity, and time.

_ o

Evaluation and Optimization
def evaluate(data, equation):
wan P& Parameter Optimization (NumPy) i

Evaluate the equation on data observations. U4 Optimize parancters bused on data (Hurey) 1
Args: ! iapors. mumpy s |
data: A dictionary containing 'inputs' and 'outputs' arrays. J from scipy-optiniza import minimize 1
equation: A function representing the equation to be evaluated.) ot loas(parans): |
Retiurn: 7 y_};red - equat??n(t, = v zax:m?)“ ol
The mean squared error between predicted and true outputs. ¢ | 7O TRomesntly-pred T outputs |

wnn e : result = minimize(loss, H
Load data observations ’ 1 S i, I
inputs, outputs = datal'inputs'], datal'outputs'] s 1 |
% | score = 10ssresure.) i

t, x, v = inputs /

class Model(torch.nn.Module):
def __init__(self):
Super (se1f).__init__Q

Return evaluation score \
_ return score \

LY
Equation Program Example

def equation_vO(t, x, v, params):
""" Mathematical function for acceleration in a damped
nonlinear oscillator
Args:
t: Time
z: Position
v: Velocity
params: Numeric parameters to be optimized
Return:
Acceleration """
A simple initial ezample of function structure J

self.params = torch.mn.ParameterList(

def forvard(self, t, x, v
return equation(t, x, v, self.params)

loss = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model . parameters(), 1r-LR)

for _ in range(N_ITERATIONS):
optimizer.zero_grad()
y-pred = model(t, x, v)
loss = loss(y_pred, outputs)
1oss. backward ()
optimizer.step()

\
1
1
1
]
1
1
1
1
1
1

model = Model() 1
1
1
1
1
1
1
1
1
1
1
7

return params[0]*t + params[1]*x + params[2]*v + params[3]

Function to Complete

def equation_vi(t, x, v, params):
""" Improved version of equation_v0"""

-

.

Figure 2: Example of initial input prompt for the nonlinear oscillator discovery task, including problem
specification, evaluation and optimization function, and the initial input equation example.

2.2 HYPOTHESIS GENERATION

The hypothesis generation step (Fig. 1(a)) utilizes a pre-trained LLM to propose diverse and promising
equation program skeletons. Our prompt structure, shown in Fig. 2, consists of the following compo-
nents: Instruction: A clear directive for completing the function body, emphasizing consideration
of physical meanings and relationships among input variables; Problem Specification: A concise
description of the scientific problem, including key variables, constraints, and objectives; Evaluation
and Optimization Function: The function used to assess the data-driven quality and fitness of pro-
posed equations after parameter optimization; and Experience Demonstration: In-context examples
of equation skeleton programs and their improvement trajectory.

At each iteration ¢, we sample a batch of b equation skeletons F; = { fi}?:1 from the LLM 7g: f; ~
mo(-|p+) where p; is the constructed prompt. We employ stochastic temperature-based sampling to
balance exploration (creativity) and exploitation (prior knowledge) in the hypothesis space. Sampled
equation programs are executed, and those failing to execute or exceeding a maximum execution time
threshold are discarded to ensure validity and computational efficiency.

2.3 HYPOTHESIS OPTIMIZATION AND ASSESSMENT

After generating equation skeleton hypotheses, we evaluate and score them using observed data
(Fig. 1(b)). This process involves optimizing the parameters of each hypothesis and then assessing
its fitness. We decouple equation discovery into two steps: (z) discovering the equation program
structures (skeletons) using the LLM, and (¢7) optimizing the skeleton parameters/coefficients based
on data. The LLM is responsible for generating equation skeletons and the core logic of the program,
while the numeric values of the parameters are represented as placeholders in the form of a parameter
vector params (as shown in Fig. 2). These placeholders are subsequently optimized to fit the data.
Each equation program skeleton f € F; is a function of the form: “def f (x, params): ...
return y”. We employ two optimization approaches: numpy+BFGS: A nonlinear optimization
method using scipy library (Fletcher, 1987), and torch+Adam: A stochastic gradient-based

Published as a conference paper at ICLR 2025

optimization algorithm using PyTorch (Kingma & Ba, 2014). The choice between these methods
depends on the problem characteristics and equation skeleton complexity. The numpy+BFGS is
preferred for problems with fewer parameters, while torch+Adam is more suitable for larger-scale
problems benefiting from efficient gradient computation through differentiable programming.

After optimizing the skeleton parameters (params™), we assess the fitness of equation program
hypotheses by measuring its ability to capture underlying patterns in the data. We compute predicted
target values as: y = f(x,params™). The fitness evaluation score s is then calculated as the
negative Mean Squared Error (MSE) between predicted and true target values: s = Scorer(f, D) =
~MSE (3, y).

2.4 EXPERIENCE MANAGEMENT

To efficiently navigate the search landscape and avoid local minima, LLM-SR employs an experience
management step (Fig.1(c)). This process maintains a diverse population of high-quality equation
programs in a dynamic experience buffer and samples from this population to construct informative
prompts for subsequent LLM iterations. Let PP; denote the experience buffer at iteration ¢, storing pairs
of equation skeleton hypotheses and their corresponding scores (f, s). We adopt an islands model
(Cranmer, 2023; Romera-Paredes et al., 2024) with m independently evolving islands, initialized
with a copy of the equation program example from the initial prompt (equation_v0 in Fig. 2).
At each iteration ¢, new hypotheses F; and their scores are added to the source island (from which
the in-context examples of prompts were sampled) if they improve upon the current best: P; «
PiU{(f,s): f € Fi,s = —Scorer(f,D),s > st} where P} is the i-th island and si. is its
current best score. Within each island, equation programs are clustered based on their signature
(defined by their score) to further preserve diversity.

To construct informative prompts, we then sample equation programs from the experience buffer
using a two-stage method. First, uniformly select a random island from the m available. Second,
sample k£ equation programs from the selected island using (a) Cluster selection via Boltzmann

sampling, favoring higher scores: P; = % where s; is the mean score of the i-th cluster

and 7. is a temperature parameter. (b) Individual program sampling, favoring shorter programs:

P(f;) o exp(—I;/7,) where [; is the normalized program length and 7;, is a temperature parameter.
The sampled programs are then included in the prompt as in-context experience demonstrations,
guiding the LLM in generating new equation program hypotheses. Detailed sampling procedures are
provided in Appendix B.

Algorithm 1: LLM-SR

:LLM gy, dataset D, problem T,
T iterations, k in-context

examples,

b samples per prompt

Algorithm 1 presents the simplified pseudo-code of the
LLM-SR framework. The experience buffer Py is initial-
ized with initial prompt, using a simple linear equation
skeleton as a template (e.g., Fig. 2 for the nonlinear oscil-
lator problem). This initial structure serves as a baseline
for the LLM to modify operators and structures based on
its domain knowledge. Each iteration ¢ involves: (z) sam-
pling k in-context examples from P;_1, (i7) updating the
prompt, (ii¢) generating b equation program skeletons
from the LLM, and (iv) evaluating and potentially adding

Input

Initialize population

Po < InitPop()

f*, 8% < null, —c0

fort < 1toT —1do

Sample examples from buffer

EH{e]}y 1°

these to P; if they improve upon the best score s*. This
process leverages the LLM’s generative capabilities to re-
fine equation structures guided by the evolving experience
buffer. The algorithm returns the best-scoring program
f* and its score s* as the optimal solution, iteratively ex-
ploring the equation space while balancing exploitation of
promising structures with exploration of new possibilities.

3 EXPERIMENTS

3.1 BENCHMARKS AND DATASETS

The Feynman benchmark (Udrescu & Tegmark, 2020),
comprising 120 fundamental physics problems from Feyn-
man Lectures on Physics database series!, is the current

e; = SampleExp(Pi—1)

Prompt with new examples
p <+ MakeFewShotPrompt(E)
Sample from LLM

Fe {351 fi ~ me(-Ip)

for f € F; do
S ScoreT(f, D)
if s > s* then
[* 8"« f,s
Pr 7’t 1U{(f,9)}
end
end

end
Output : f* s*

Evaluation and population update

"https://space.mit.edu/home/tegmark/aifeynman.html

https://space.mit.edu/home/tegmark/aifeynman.html

Published as a conference paper at ICLR 2025

standard benchmark for evaluating symbolic regression techniques in scientific equation discov-
ery. However, our investigation reveals that LLMs have significant memorization issues with these
well-known physics equations, potentially undermining their effectiveness in assessing LLM-based
equation discovery approaches. For instance, LLM-SR rapidly achieves low data-driven errors within
few iterations (< 20) on Feynman problems, suggesting a recitation of memorized information
rather than a process of discovery (full results in App. C). To address these limitations and provide
a more robust evaluation, we introduce novel benchmark problems across three scientific domains.
Our benchmark design focuses on: (¢) Custom modifications to physical models to prevent trivial
memorization; (¢¢) Complex synthetic non-linear relationships to challenge creative exploration; and
(#12) Realistic scenarios with experimental data to reflect real modeling processes. These benchmarks
are designed to challenge the model’s ability to uncover complex mathematical relations while
leveraging its scientific prior knowledge, simulating conditions for scientific discovery. To validate
our new benchmarks’ effectiveness, we compared LLM response perplexity (using open-source
Mixtral-8x7B) and equation discovery error curves (using GPT-3.5) between Feynman problems and
our new benchmarks. Results show lower perplexity (Fig. 9 in App. C) and sharper discovery curves
(Fig. 11 in App. C) for Feynman problems, suggesting that both LLM backbones have more likely
memorized common Feynman equations, while our benchmarks present novel challenges requiring
reasoning and exploration. We next discuss these new benchmark problems in detail:

Nonlinear Oscillators Nonlinear damped oscillators, ubiquitous in physics and engineering, are
governed by differential equations describing the complex interplay between an oscillator’s position,
velocity, and acting forces. The general form of these equations is typically expressed as: & +
f(t,x, &) = 0 where ¢ is time, x is position, and f (¢, z, &) represents nonlinear forces. To challenge
LLM-based equation discovery methods beyond common oscillator systems (e.g., Van der Pol,
Duffing), we introduce two custom nonlinear designs: () Oscillation 1: 90 = Fsin(wz) —
av® — Bx® —yrv—x cos(z);and @ Oscillation 2:0 = Fsin(wt)—av® — Brv—dz exp(yz),
where v = & represents velocity, and w, o, 8,7, d are constants. These two forms, serving as a proof
of concept, are carefully designed to incorporate a combination of challenging yet solvable nonlinear
structures (including trigonometric, polynomial, and exponential) that are distinct from well-known
oscillator systems. More details on the design rationale and data generation are provided in App. D.1.

Bacterial Growth The growth of Escherichia coli (E. coli) bacteria has been widely studied
in microbiology due to its importance in various applications, such as biotechnology, and food
safety. Discovering equations governing E. coli growth rate under different conditions is crucial for
predicting and optimizing bacterial growth. The bacterial population growth rate has been modeled
using a differential equation with the effects of population density (B), substrate concentration (S),
temperature (1), and pH level, which is commonly formulated with multiplicative structure: %B =
f(B,S,T,pH) = fg(B) - fs(S) - fr(T) - fou(pH). To create a challenging benchmark that
leverages LLMs’ prior knowledge while preventing trivial memorization, we introduce novel nonlinear
formulations for fr(T") and fou(pH). These custom functions maintain key characteristics of
established models while introducing complexities that require exploration and discovery rather
than recall. The complete mathematical formulations, along with the data generation process and
parameter ranges, are detailed in App. D.2.

Material Stress Behavior The stress-strain relationship of materials under varying conditions,
particularly as a function of temperature and material type, is fundamental to structural design and
analysis across engineering disciplines. This benchmark problem leverages a real-world experimental
dataset from (Aakash et al., 2019), comprising tensile tests on Aluminum 6061-T651 across a range of
temperatures. The inclusion of this benchmark serves multiple purposes: (2) It challenges LLM-based
equation discovery methods with experimental data, moving beyond synthetic or idealized problems.
(¢7) Unlike the previous benchmarks, there is no predetermined theoretical model structure for this
problem, necessitating creative modeling approaches from LLMs. In other words, modeling for this
type of task is mostly empirical and the stress-strain-temperature relations may vary significantly
based on the specific material and experimental condition, preventing trivial memorization. More
details on this problem and experimental data are provided in App. D.3.

3.2 EXPERIMENTAL SETUP
We compare LLM-SR against state-of-the-art symbolic regression (SR) methods, including
evolutionary-based approaches like GPlearn® (Genetic Programming) and PySR? (multi-island

https://gplearn.readthedocs.io/en/stable/
Shttps://github.com/MilesCranmer/PySR

https://gplearn.readthedocs.io/en/stable/
https://github.com/MilesCranmer/PySR

Published as a conference paper at ICLR 2025

Model Oscillation 1 Oscillation 2 E. coli growth Stress-Strain
D} OODJ D} 00D, ID| OO0D| ID|] OOD}
GPlearn 0.0155 0.5567 0.7551 3.188 1.081 1.039 0.1063 0.4091
NeSymReS (Biggio et al., 2021) 0.0047 0.5377 0.2488 0.6472 N/A (d > 3) 0.7928 0.6377
E2E (Kamienny et al., 2022) 0.0082 0.3722 0.1401 0.1911 0.6321 1.4467 0.2262 0.5867
DSR (Petersen et al., 2021) 0.0087 0.2454 0.0580 0.1945 0.9451 2.4291 0.3326 1.108
uDSR (Landajuela et al., 2022) ~ 0.0003 0.0007 0.0032 0.0015 0.3322 5.4584 0.0502 0.1761
PySR (Cranmer, 2023) 0.0009 03106 0.0002 0.0098 0.0376 1.0141 0.0331 0.1304
LLM-SR (Mixtral) 7.89¢-8 0.0002 0.0030 0.0291 0.0026 0.0037 0.0162 0.0946
LLM-SR (GPT-3.5) 4.65e-7 0.0005 2.12¢-7 3.81e-5 0.0214 0.0264 0.0210 0.0516

Table 1: Quantitative performance comparison of LLM-SR (with GPT-3.5 and Mixtral backbones), and SR
baseline models on different scientific benchmark problems measured by Normalized Mean Squared Error.
“N/A” refers to incompatibility of E. coli Growth dataset for the NeSymReS baseline (limited to < 3d data).

asynchronous evolution) (Cranmer, 2023), and deep learning-based methods such as DSR (rein-
forcement learning for expression generation) (Petersen et al., 2021) and uDSR (extending DSR
with Genetic Programming search at decoding) (Landajuela et al., 2022). We also evaluate against
pre-trained Transformer SR models: NeSymReS (Biggio et al., 2021) and E2E (Kamienny et al.,
2022). This selection provides a comprehensive evaluation across different SR paradigms. We allow
all search-based baselines to run for over 2M iterations until convergence to their best performance. In
LLM-SR experiments, each iteration samples b = 4 equation skeletons per prompt with temperature
7 = (.8, optimizes parameters via numpy+BFGS or torch+Adam (with 30 seconds timeout), and
uses k = 2 in-context examples from the experience buffer for refinement. We run LLM-SR variants
for around 2.5K iterations in all experiments. More details on the implementation and parameter
settings of each baseline as well as implementation specifics of LLM-SR, including experience buffer
structure, prompt refinement strategy, and parallel evaluation are provided in App. A.

3.3 QUANTITATIVE RESULTS

Accuracy Table 1 compares the performance of LLM-SR (using GPT-3.5 and Mixtral backbones)
against state-of-the-art symbolic regression methods across various scientific benchmarks. Perfor-
mance is measured using Normalized Mean Squared Error (NMSE), with lower values indicating
better performance. LLM-SR with both backbones consistently outperform baselines, despite running
for fewer iterations (2.5K vs. 2M+ for baselines). To assess generalization capability, we evaluate per-
formance on both in-domain (ID) and out-of-domain (OOD) test sets. The performance gap between
LLM-SR and baselines is more pronounced in the OOD setting, suggesting superior generalization
of LLM-SR’s discovered equations. For instance, on the E. coli growth problem, LLM-SR achieves
an OOD NMSE of ~ 0.0037, significantly outperforming other methods (with OOD NMSE > 1).

Among baselines, PySR and uDSR show —— LLM-SR (GPT-3.5) LLM-SR (Mixtral) ~—— PySR ~—— DSR —— uDSR
the best performance, while Transformer Oscillation 1 _ Oscilation 2

SR models (NeSymReS, E2E) perform
poorly, likely due to limited general-
ization from their pretraining on com-
mon benchmark distributions to our
novel datasets. These results demon-
strate LLM-SR’s effectiveness in discov- 1
ering accurate and generalizable equa- T e e e T e

tions across diverse scientific domains. E.coll Growth S stres Strain —

Efficiency Fig. 3 shows the perfor- 4 J
mance trajectories of LLM-SR variants £, k

and symbolic regression baselines across
different scientific benchmark problems,
depicting the best fitting scores achieved
over search iterations. By leveraging
scientific prior knowledge, LLM-SR ex-

plores a considerably lower number of gjgyre 3: Best score trajectories of LLM-SR with GPT-3.5 and
equation candidates in the vast optimiza- Mixtral against SR baselines across different benchmark prob-
tion space compared to symbolic regres- lems. LLM-SR discovers accurate equations more efficiently,
sion baselines that lack this knowledge. requiring fewer iterations. Baselines fail to match LLM-SR even
This is evident from the sharp drops in after 2M iterations.

Normalized MSE
o

Normalized MSE
1 1

Normalized MSE
Normalized MSE

/7= 107 /=

3 500 1000 1500 2000 2500/ 7m0 o 2000 2500
Iteration Iteration

Published as a conference paper at ICLR 2025

N\ ™

LLM-SR Y 0.36v + 2.23(v — 0.67)%

Oscillation 1 (GPT3.5) # r damping force
damping_force = params [2] * v ++ 2 + params(3] * np.tanh(params(4] *+ v)

+ np.sin(parans(1] * x)

*

o

2 + params[6] * v E2E
on 0.14 arctan(0.001 x arctan(4331.8(0.014 + (1 — 0.06v)2)?)

_forc = g_force - restoring_force
toral_force += nonlinear_term + params[8] DSR

return total_force —(v + sin(exp(¥))) X sin(x) — sin(x)

Velocity (v)

—0.095in(2.2x) + 0.97 tanh(1.15v) + 1.12v + 0.5xv

uDSR
def equation(params, x, v): E . a 2
Damping term —0.19x + 0.13x® — 0.520° — 0.5xv + 0.01v% — 0.009x*v
Displacement (x) LLM-SR ganping = -parans[0] * x * v - params[1i] * np.abs(v) ** 2 * v
= 08sin(x) — 0.50° — 0.2> — 0.5x0 — xcos(x)| (Mixtral) # Driving term
driving = params[2] * np.sin(params[3] * x + params[4]) PYSR
Acceleration: sum of damping and driving forces i
return damping + driving —0.15(exp(v cos(v)® + 0.02)* x sin(x + 0.1v)
k —0.5xv — 0.5v° — 0.09 sin(2.25x) / K J
/ def equation(params, t, x, v): \ NeSymReS —0077— =
Oscillation 2 driving = params[0]*np.sin(t) # Periodic ezternal force @an(0.02¢ /x)
LLM-SR restoring = -params[1]*np.exp(x) # Ezponential position-based force
(GPT 3.5) interaction = params[3]*x*v # Dependent on position and velocity E2E
ia;}mgl ;f{i?::.:slgiiwz # Non-linear damping at high velocities 0.008¢ + (0017 — 0.015 8) (1216 % — 052)+
return driving + restoring + interaction + damping + params[s] (P & SEEE? = ED,
2 03sin(t) +5.0(1 — e¥) — xv — 0.50° DSR
£ x(ex?=2x)-3x
E x(x+TE) —2x
dof squation(parans, <, %, V7 uDSR
restoring = params[0]*x # Proportional to position
LLM-SR linear_damping = params[1]*v # Proportional to veloc 0,018t - 0.028¢ + 237x* ~ 16x? — 10.5x% ~ 0.93v% — 11xv — 19.43x
" driving = params[2]+np.sin(params[3]*t + params[4]) Z111v* — 0360 L sin 021
Displacement () (Mixtral) pceraction = parans[5]+np.abs (x)*vnp.sign(x) # —veloc teraction A= 0360 4500 F =5 T coso) + eoste)
o = 03sin(f) — 0.50> — xv — 5xexp(0.5x) nonlinear_damping = params[6]+np.abs(v)++2+np.sign(v) # Cubic velocity damping
Total acceleration from sum of forces
return restoring + linear_damping + driving + interaction + nonlinear_damping PySR
= 0.3sin(t) — xv — 5x — x(tv* + 2.5
K —5.0x + 0.08v — 0.3sin(t — 9.1) — 1.27xv + 0.47v|v| / Ksm() — xv — 5x — x(tv’)sin(x)
(a) Ground Truth (b) LLM-SR Equations (c) Baseline SR Models

Figure 4: Discovered equations for Oscillation 1 (top) and Oscillation 2 (bottom) problems: (a) True
equations and their phase diagram; (b) Equation program skeletons identified by LLM-SR, with simplified forms
obtained after parameter optimization; and (c¢) Equations found using SR baselines. Shaded green terms denote
recovered symbolic terms from true equations.

the error curves for LLM-SR variants, indicating they efficiently navigate the search space by ex-
ploiting domain knowledge to identify promising candidates more quickly. In contrast, the symbolic
regression baselines show much more gradual improvements and fail to match LLM-SR’s perfor-
mance even after 2M+ iterations. The performance gap between LLM-SR and baselines also mostly
widens over iterations, highlighting the effectiveness of LLMs acting as mutation (or crossover)
agents in LLM-SR’s iterative refinement process.

3.4 QUALITATIVE ANALYSIS

Discovered Equations Fig. 4 presents the final discovered equations for both Oscillation problems
using LLM-SR and other symbolic regression baselines. A notable observation is that equations
discovered by LLM-SR have better recovered the symbolic terms of the true equations compared to
baselines. Also, LLM-SR provides explanations and reasoning steps based on scientific knowledge
about the problem, leading to more interpretable terms combined as the final function. For example, in
both problems, LLM-SR identifies the equation structure as a combination of driving force, damping
force, and restoring force terms, relating them to the problem’s physical characteristics. In contrast,
baselines generate equations lacking interpretability and understanding of the physical meanings of
variables and the relations between them. These equations appear as a combination of mathematical
operations and variables without a clear connection to the problem’s underlying physical principles.
App. G provides a more detailed qualitative analysis of the final discovered equations for other
benchmark problems (Figs. 23 and 24), as well as the equations discovered over the performance
trajectory of LLM-SR’s iterations (Figs. 19-22).

Generalization Fig. 5 compares predicted distributions obtained from LLM-SR, and competing
baselines (PySR and uDSR) with the ground truth distribution of E. coli growth problem. The shaded
region and black points indicate in-domain (ID) data, while the rest represent out-of-domain (OOD).
Results show that distributions obtained from LLM-SR align well with the ground truth, not only
for ID data but also for OOD regions. This alignment demonstrates the better generalizability of
equations discovered by LLM-SR to unseen data, likely due to the integration of scientific prior
knowledge in the equation discovery process. In contrast, PySR and uDSR tend to overfit the observed
data, with significant deviations in OOD regions.

Published as a conference paper at ICLR 2025

This overfitting behavior highlights their limited ground Trutn
ability to generalize beyond the training data

and capture the true physical underlying patterns.

Detailed analyses for other benchmark problems LLM-SR
are provided in App. G.

Growth Rate

Growth Rate

|
|

3.5 ABLATION STUDY PyYSR

Growth Rate

We conducted an ablation study on the Oscil-
lation 2 problem using GPT-3.5 as the LLM
backbone to investigate the impact of LLM-SR’s
key components (Fig. 6, more detailed results Population " bstrate | Temperature - pH Level

in App. E). Our findings reveal the crucial role

of each component in the model’s performance. Figure 5: Comparison of E. coli growth rate distributions
The “w/o Prior” variant, which removes the nat- from LLM-SR, PySR, and uDSR.

ural language description of the scientific prob-

lem and its variables, led to a considerable performance drop. This highlights the importance of
incorporating prior domain knowledge in equation discovery. The “w/o Program” variant, which
restricts LLM hypothesis generation to single-line mathematical expressions, also had a negative but
less severe impact on performance, denoting the importance of programming flexibility in this task.
The “w/o Iterative Refinement” variant, equivalent to the LLM sampling without the optimization
loop, led to substantial performance drops (NMSE: 1.01e-1 in-domain, 1.81e-1 OOD), emphasizing
the importance of the evolutionary search and optimization process in LLM-SR’s success. The
“w/o skeleton + optimizer” variant, which requires end-to-end equation generation without separate
parameter optimization step (i.e., generating hypotheses as full equations along with their numeric
parameters), also significantly worsened results (NMSE: 3.78e-1 in-domain, 3.75e-1 OOD). This
highlights the effectiveness of our two-stage approach—generating equation skeletons followed by
data-driven parameter optimization—in navigating complex combinatorial optimization space of
discrete equation structures and continuous parameters.

ubDSR

Growth Rate

LEH
-

We compared two optimization frameworks: numpy+BFGS and torch+Adam. In our experiments,
the numpy+BFGS variant performed slightly better compared to torch+Adam. This difference is
most likely attributed to the LLM’s higher proficiency in generating numpy code rather than inherent
superiority of the optimization method for this task. LLM-SR relies on direct and differentiable
parameter optimization, a capability not present in current symbolic regression methods. Combining
LLM-SR with LLM backbones that are better in generating PyTorch code could potentially enhance
equation discovery by leveraging differentiable parameter optimization in future.

3.78e-013.75e-01

B In-domain 1
00D 1.01e-01

81e-01

[
=)

-
=)
1

7.10e-03

i
=)
i

2.40e-04

-
=)
1

IS

4.65e-05 = 381e.05

Normalized MSE

-
=)
0

1.60e-06

-
=)
1

2.12e.07

w/o Prior w/o Program w/o Iterative w/o Skeleton w/ Torch+Adam w/ Numpy+BFGS
Refinement + Optimizer Optimizer Optimizer

Figure 6: Ablation results on the Oscillation 2 problem, showing the impact of problem specification,
program representation, iterative refinement, parameter optimization, and optimization frameworks on LLM-SR’s
performance.

4 RELATED WORK

LLMs and Optimization While LLMs have shown remarkable capabilities in various domains,
their performance often falls short in tasks requiring high precision and complex reasoning. To
address this, researchers have explored combining LLMs with feedback mechanisms (Madaan et al.,
2024; Yang et al., 2023b; Haluptzok et al., 2022) and integrating them into iterative optimization loops
(Lehman et al., 2023; Liu et al., 2023; Wu et al., 2024; Lange et al., 2024). Recently, LLMs have

Published as a conference paper at ICLR 2025

been successfully applied in prompt optimization (Yang et al., 2023a; Guo et al., 2024), data-driven
analysis (Majumder et al., 2024; Zheng et al., 2023b), and neural architecture search (Chen et al.,
2023; Zheng et al., 2023a). Most related to our work is FunSearch (Romera-Paredes et al., 2024)
that combines LLMs with systematic evaluators to search for heuristics that push the boundaries in
solving some established open mathematical problems. Building upon these ideas, our LLM-SR
framework employs LLM as an optimizer, leveraging its scientific prior knowledge and data-driven
evaluators to discover mathematical equations underlying scientific observations.

LLMs for Scientific Discovery The integration of LLMs into scientific tasks has recently garnered
significant attention, offering transformative potential across various fields such as drug discovery,
biology, and materials science (Wang et al., 2023a; Al4Science & Quantum, 2023). Specifically,
recent studies have demonstrated the capacity of LLMs to propose scientifically plausible and poten-
tially novel hypotheses by leveraging their extensive domain knowledge and reasoning capabilities
(Majumder et al., 2024; Zheng et al., 2023b; Qi et al., 2023; Ji et al., 2024). Also, when equipped
with external tools and scientific simulators, LLM agents have shown promise in automated statistical
discovery and reasoning (Li et al., 2024; Wang et al., 2023b; Ma et al., 2024). Despite the increasing
exploration of LLMs in scientific contexts and question answering, their potential for tasks such as
equation discovery and symbolic regression remains largely unexplored. Our work extends this line
of research by introducing a novel approach for equation discovery that combines LLMs’ scientific
prior knowledge and code generation with data-driven evaluation.

Symbolic Regression Symbolic regression (SR) methods can be broadly categorized into search-
based approaches, learning-based models, as well as hybrid learning and search methods. Search-
based approaches mainly explore the space of equation structures and parameters using evolutionary
algorithms or reinforcement learning (Schmidt & Lipson, 2009; Cranmer, 2023; Petersen et al., 2021;
Sun et al., 2023). They offer interpretable results but often struggle with scalability and efficiency.
Learning-based models, on the other hand, leverage large-scale synthetic data and Transformer models
to learn the mapping between numeric input observations and output mathematical expressions
(Biggio et al., 2021; Kamienny et al., 2022). Hybrid methods aim to combine the strengths of
both approaches, guiding the search by employing neural priors to improve the expressiveness
and efficiency of the discovery process (Landajuela et al., 2022; Shojaee et al., 2024; Mundhenk
et al., 2021; Meidani et al., 2023). Despite the progress made by these approaches, they often
face limitations such as the lack of scientific prior knowledge incorporation and the restricted
expressiveness of traditional equation representations like expression trees. While there have been
some works incorporating prior knowledge by using declarative bias and structures with pre-defined
grammars (Todorovski & Dzeroski, 1997; Todorovski & DZeroski, 2007), these methods do not
leverage the power of LLMs for this task. Our work advances this research direction by utilizing
LLMs to efficiently search the combinatorial optimization space of equation discovery and generate
meaningful equation structures based on the embedded scientific prior knowledge.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced LLM-SR, a novel approach to equation discovery that leverages the
scientific knowledge and code generation capabilities of Large Language Models (LLMs). By treating
equations as programs and combining LLM-generated educated hypotheses with evolutionary search,
our method demonstrates superior performance on benchmark problems across diverse scientific
domains, particularly in out-of-domain test settings. Despite its promising results, LLM-SR has
limitations. The method’s performance is inherently tied to the quality and breadth of the LLM’s
training data, which may lead to biases or gaps in certain scientific domains. Additionally, the
computational cost of iterative LLM queries and parameter optimization could be prohibitive for
large-scale problems. Future work could focus on integrating domain-specific LMs and retrieval-
augmented learning techniques to enhance the relevance and accuracy of generated equations; and
incorporating human domain experts in the pipeline to improve the scientific plausibility. The creation
of more comprehensive benchmarks, designed to simulate true discovery processes and prevent LLM
recitation, is also crucial for rigorous evaluation of LLM-based equation discovery methods.

ACKNOWLEDGMENTS

This research was partially supported by the U.S. National Science Foundation (NSF) under Grant
No. 2416728.

10

Published as a conference paper at ICLR 2025

REFERENCES

B.S. Aakash, JohnPatrick Connors, and Michael D. Shields. Stress-strain data for aluminum 6061-
t651 from 9 lots at 6 temperatures under uniaxial and plane strain tension. Data in Brief, 25:
104085, 2019. ISSN 2352-3409. doi: https://doi.org/10.1016/j.dib.2019.104085.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Microsoft Research Al4Science and Microsoft Azure Quantum. The impact of large language models
on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361, 2023.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936-945. PMLR, 18-24 Jul 2021.

Jure Brence, Ljupco Todorovski, and Saso DZeroski. Probabilistic grammars for equation discovery.
Knowledge-Based Systems, 224:107077, 2021. ISSN 0950-7051. doi: https://doi.org/10.1016/].
knosys.2021.107077.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Angelica Chen, David Dohan, and David So. Evoprompting: Language models for code-level neural
architecture search. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 7787-7817. Curran
Associates, Inc., 2023.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Roger Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, NY, USA, second
edition, 1987.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. arXiv preprint arXiv:2207.14502, 2022.

Heng Ji, Qingyun Wang, Doug Downey, and Tom Hope. Scimon: Scientific inspiration machines
optimized for novelty. In ACL Anthology: Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 279-299. University of
Illinois Urbana-Champaign/CABBI, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Francois Charton. End-
to-end symbolic regression with transformers. In Advances in Neural Information Processing
Systems, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

John R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87-112, Jun 1994. ISSN 1573-1375. doi: 10.1007/BF00175355.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio de Franca, Marco Virgolin, Ying
Jin, Michael Kommenda, and Jason Moore. Contemporary symbolic regression methods and their
relative performance. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

11

Published as a conference paper at ICLR 2025

Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Aravena,
Terrell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified framework for deep
symbolic regression. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho
(eds.), Advances in Neural Information Processing Systems, 2022.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies.
arXiv preprint arXiv:2402.18381, 2024.

Pat Langley. Data-driven discovery of physical laws. Cognitive Science, 5(1):31-54, 1981.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331-366.
Springer, 2023.

Michael Y Li, Emily B Fox, and Noah D Goodman. Automated statistical model discovery with
language models. arXiv preprint arXiv:2402.17879, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Tennison Liu, Nicolds Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on Learning
Representations, 2023.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo, Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. Llm and simulation as bilevel optimizers: A new paradigm
to advance physical scientific discovery. arXiv preprint arXiv:2405.09783, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Sanchaita Hazra, Ashish Sab-
harwal, and Peter Clark. Data-driven discovery with large generative models. arXiv preprint
arXiv:2402.13610, 2024.

Michael de la Maza and Bruce Tidor. An analysis of selection procedures with particular attention paid
to proportional and boltzmann selection. In Proceedings of the 5th International Conference on
Genetic Algorithms, pp. 124-131, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers
Inc. ISBN 1558602992.

Kazem Meidani, Parshin Shojaee, Chandan K Reddy, and Amir Barati Farimani. Snip: Bridging
mathematical symbolic and numeric realms with unified pre-training. In The Twelfth International
Conference on Learning Representations, 2023.

Elliot Meyerson, Mark J Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K Hoover, and
Joel Lehman. Language model crossover: Variation through few-shot prompting. arXiv preprint
arXiv:2302.12170, 2023.

Terrell N. Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel faissol, and
Brenden K. Petersen. Symbolic regression via deep reinforcement learning enhanced genetic
programming seeding. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathemat-
ical expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations, 2021.

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Sihang Zeng, Zhang-Ren Chen, and Bowen Zhou.
Large language models are zero shot hypothesis proposers. arXiv preprint arXiv:2311.05965,
2023.

12

Published as a conference paper at ICLR 2025

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program
search with large language models. Nature, 625(7995):468-475, Jan 2024. ISSN 1476-4687. doi:
10.1038/541586-023-06924-6.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science
Advance, 324(5923):81-85, 2009. ISSN 0036-8075. doi: 10.1126/science.1165893.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
planning for symbolic regression. Advances in Neural Information Processing Systems, 36, 2024.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. In The Eleventh International Conference on
Learning Representations, 2023.

Ljupco Todorovski and Saso Dzeroski. Declarative bias in equation discovery. In Proceedings of
the Fourteenth International Conference on Machine Learning, ICML 97, pp. 376-384, San
Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc. ISBN 1558604863.

Ljupco Todorovski and Saso DZeroski. Integrating Domain Knowledge in Equation Discovery, pp.
69-97. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-73920-3. doi:
10.1007/978-3-540-73920-3\ 4.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020. doi: 10.1126/sciadv.aay2631.

Marco Virgolin and Solon P Pissis. Symbolic regression is NP-hard. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen, Carla P.
Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu, Arjun Manrai,
Debora Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar Velickovi¢, Max
Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio, and Marinka Zitnik. Scientific
discovery in the age of artificial intelligence. Nature, 620(7972):47-60, Aug 2023a. ISSN
1476-4687. doi: 10.1038/s41586-023-06221-2.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D Goodman.
Hypothesis search: Inductive reasoning with language models. arXiv preprint arXiv:2309.05660,
2023b.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation in
the era of large language model: Survey and roadmap. arXiv preprint arXiv:2401.10034, 2024.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language
models. In Neural Information Processing Systems (NeurIPS), 2023b.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, and Samuel Albanie. Can
gpt-4 perform neural architecture search? arXiv preprint arXiv:2304.10970, 2023a.

Yizhen Zheng, Huan Yee Koh, Jiaxin Ju, Anh TN Nguyen, Lauren T May, Geoffrey I Webb, and
Shirui Pan. Large language models for scientific synthesis, inference and explanation. arXiv
preprint arXiv:2310.07984, 2023b.

13

Published as a conference paper at ICLR 2025

APPENDIX

A BASELINE IMPLEMENTATION DETAILS

A.1 MODELS

We compare LLM-SR against several state-of-the-art Symbolic Regression (SR) baselines, encom-
passing a diverse range of methodologies from traditional evolutionary approaches to modern deep
learning-based techniques. The baselines include:

GPlearn GPlearn is a pioneering and standard genetic programming (GP) SR approach. We use the
open-source gplearn? package with the following parameters: Population size: 500, Tournament
size: 20, Maximum generations: 2 million. Most of the hyperparameters are set from default setting.

PySR PySR (Cranmer, 2023) is an advanced SR method that employs asynchronous multi-island
GP-based evolutions. We implement PySR using the open-source pysr> package with the following
settings: Number of populations: 15, Population size: 33, Maximum iterations: 2 million. Except
for the number of iterations, other parameters are the same as the default setting in PySR. This
configuration leverages the power of parallel evolution over a long time allowing for a diverse and
robust search of the equation space.

Deep Symbolic Regression (DSR) DSR (Petersen et al., 2021) employs an RNN-based rein-
forcement learning search over symbolic expressions. We implement DSR using the open-source
deep-symbolic-optimization (DSO)% package with standard default parameters: Learn-
ing rate: 0.0005, Batch size: 512, and Maximum iterations: 2 million. This approach allows for a
guided search through the space of symbolic expressions, leveraging the power of deep learning to
inform the exploration process.

Unified Deep Symbolic Regression (uDSR) uDSR (Landajuela et al., 2022) extends DSR by
incorporating additional linear token and GP search at the decoding stage. We also implement uDSR
using the DSO package with the same default parameters as DSR. This unified approach aims to
combine the strengths of deep learning and traditional GP methods.

Neural Symbolic Regression that Scales (NeSymReS) NeSymReS (Biggio et al., 2021) is the
pioneering pre-trained Transformer SR model for expression skeleton generation. We implement it
using the NeuralSymbolicRegressionThatScales’ repository with the following default
parameters: Number of datapoints passed to Transformer: 500, and Expression sampling size: 32. It
is important to note that this model is limited to pre-training with < 3 variables. Consequently, we
only apply the model to datasets with d,,,, = 3, excluding the Bacterial Growth problem (which has
4 variables) for evaluation of this model.

End-to-End Symbolic Regression (E2E) E2E (Kamienny et al., 2022) is a more recent end-to-end
pre-trained Transformer SR approach. We implement it using the symbolicregression® Face-
book repository with the following default parameters: Number of datapoints passed to Transformer:
200, and Expression sampling size: 10. This model is also pre-trained for problems with < 10
variables.

A.2 DATA PREPROCESSING AND MODEL EXECUTION

For the pre-trained Transformer SR models (NeSymReS and E2E), data normalization is crucial.
We apply standard normalization to the input data before feeding it to these Transformer models to
ensure optimal performance. For the search-based methods, we allow all baselines (GPlearn, PySR,
DSR, and uDSR) to run for over 2 million iterations until convergence to their best performance.
In the experiments, each baseline undergoes 5 replications. The best results obtained were then
documented and reported. This extensive evaluation process, with a large number of iterations and
search evaluations, ensures a robust assessment of each model’s capability to converge towards
optimal solutions and effectively explore the vast equation space of each problem.

*nttps://gplearn.readthedocs.io/en/stable/
‘https://github.com/MilesCranmer/PySR
*https://github.com/dso-org/deep-symbolic-optimization
"https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales
$https://github.com/facebookresearch/symbolicregression

14

https://gplearn.readthedocs.io/en/stable/
https://github.com/MilesCranmer/PySR
https://github.com/dso-org/deep-symbolic-optimization
https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales
https://github.com/facebookresearch/symbolicregression

Published as a conference paper at ICLR 2025

Find the mathematical function skeleton that represents E. Coli bacterial growth
< rate, given data on population density of bacterial species, substrate
< concentration, temperature, and pH level.

def evaluate(data, equation):

Evaluate the equation on data observations.

def equation_vO(B, S, T, pH, params):

"m" Mathematical function for bacterial growth rate
Args:

B: Population density

S: Substrate concentration

T: Temperature

pH: pH level

params: Numeric parameters to be optimized
Return:

Growth rate """
A simple initial example of function structure
return params[0]*B + params[1]*S + params[2]*T + params[3]+*pH + params[4]

def equation_vi(B, S, T, pH, params):

"""Improved version of equation_u0"""

(a) Bacterial Growth Rate

Find the mathematical function skeleton that represents stress, given data on
< strain and temperature in an Aluminium rod for both elastic and plastic regions

def evaluate(data, equation):

Evaluate the equation on data observations.

def equation_vO(e, T, params):
""" Mathematical function for stress in Alluminium rod
Args:
e: Strain level
T: Temperature
params: Numeric parameters to be optimized
Return:
Stress level """
A simple initial example of function structure
return params[0]*e + params[1]*T + params[2]

def equation_vi(e, T, params):
"""Improved wversion of equation_v0"""

(b) Material Behavior Analysis

Figure 7: Example of input prompts program body for (a) E. Coli Growth and (b) Stress-Strain problems, with
problem specification, and the initial equation program example (set as simple linear equation skeleton). For
better readability, the details of evaluation function are not included in this figure. Check Fig. 2 for details.

B DETAILS OF LLM-SR METHOD AND IMPLEMENTATION

Hypothesis Generation and Data-driven Evaluation Fig. 2 provided an example of specification
for Nonlinear Oscillator problem. Here, Fig. 7 showcases illustrative examples of prompts and
specifications tailored for the Bacterial Growth and Stress-Strain problems. These prompts contain
descriptions of the problem and relevant variables, expressed in natural language. By providing this
context, the language model can leverage its existing domain knowledge about the physical meaning
and relations of variables to generate scientifically plausible hypotheses for new equation programs.
Fig. 8 also shows a more detailed example of prompt and specification for LLM-SR that prompts
the model to generate differentiable equation programs in PyTorch using tensor operations. The
prompt suggests using differentiable operators and replacing non-differentiable components (e.g.,
if-else conditions) with smooth differentiable approximations.

Our experiments employ either Mixtral-8x7B (using 4 NVIDIA RTX 8000 GPUs with 48GB memory
each) or GPT-3.5-turbo (via OpenAl API) as the language model backbone. During each prompting
step, the language model generates b = 4 distinct equation program skeletons using a generation
temperature of 7 = 0.8. This temperature setting is chosen based on preliminary experiments to

15

Published as a conference paper at ICLR 2025

Find mathematical function form that fits data. This function form can

only contain binary and unary mathematical operators that are differentiable.
wnn

import torch

import torch.nn as nn

import torch.optim as optim

class Model(torch.nn.Module) :
def __init__(self):
super (Model, self).__init__()
Initialize model parameters
self.params = torch.nn.ParameterList([torch.nn.Parameter(torch.tensor(1.0))
<« for _ in range(P)])
forward(self, x: torch.Tensor) -> torch.Tensor:
return
Foward pass the model
equation(x, self.params)

%
®
Fh

def evaluate(data: dict) -> float:

wnn

Evaluate equation on input and output observations.
wnn
Load true data observations
inputs , outputs = data['inputs'], data['outputs']
Define model
model = Model ()
Define optimizer
optimizer = optim.Adam(model.parameters(), 1r=0.001)
Optimize equation skeleton parameters
model . train()
num_iterations = 10000
for i in range(num_iterations):
Zero the gradients
optimizer.zero_grad()
Forward pass: compute predicted outputs by passing inputs to the model
y_pred = model(inputs)
Compute the loss
loss = torch.mean((y_pred - outputs) ** 2)
Backward pass: compute loss gradient with respect to parameters
loss.backward()
Update parameters using optimizer
optimizer.step()
#Return evaluation score
return -loss.item() if not (torch.isnan(loss) | torch.isinf(loss)).any() else
< None

def equation(x: torch.Tensor, params: torch.nn.ParameterList) -> torch.Tensor:
nnn
Args:
z (torch.Tensor): Input data.
params (torch.nn.ParameterList): List of model numeric constant parameters.
Return:
torch.Tensor: The result of applying the mathematical function to the z.

return params[0]*x + params([1]

Figure 8: An example of prompt structure, containing problem specification, evaluation and optimization
function, and equation program with pytorch tensor operations.

balance creativity (exploration) and adherence to the problem constraints and reliance on the prior
knowledge (exploitation). To control the length and the complexity of the generated equations and
prevent overparameterization, we set the maximum number of parameters (length of params vector)
as 10 in all experiments. The generated equation skeleton programs are then evaluated to gather
feedback. In this framework, we deploy e = 4 evaluators to operate concurrently. This parallelization
allows for rapid and efficient assessment of the generated programs per prompt. Evaluation is
constrained by time and memory limits set at 7" = 30 seconds and M = 2GB, respectively. Equation
programs that exceed these limits are disqualified and considered as discarded hypotheses by returning
None scores. This constraint ensures timely progress and resource efficiency in the search process.

Experience Buffer Management The system stores equation hypotheses and their corresponding
data-driven scores in an experience buffer. It uses an islands model with multiple populations
(m = 10 islands) to maintain diversity. Each island is initialized with a simple equation, which can
be customized for domain-specific problems. At each iteration, new hypotheses and their fitness
scores are added to their originating island if they improve upon the island’s best score. To maintain
the quality and diversity of the experience buffer, we follow (Romera-Paredes et al., 2024) and
periodically reset the worst-performing islands. Every T)..s¢; iterations (every 4 hrs), we identify
the m/2 islands whose best equation programs have the lowest fitness scores. All the equation
programs in these islands are discarded, and each island is reinitialized with a single high-performing
equation program, obtained by randomly selecting one of the surviving m/2 islands and copying its

16

Published as a conference paper at ICLR 2025

highest-scoring equation program (favoring older programs in case of ties). This reset mechanism
allows the framework to discard stagnant or unproductive regions of the equation program space and
focus on more promising areas. Within each island, we further cluster the equation programs based
on their signature, which is defined as the equation program score. Equation programs with identical
signatures are grouped together, forming clusters within each island. This clustering approach helps
preserve diversity by ensuring that equation programs with different performance characteristics are
maintained in each population.

Experience Sampling To construct informative prompts for the LLM, we sample equation programs
from the experience buffer and update the prompt to include new experience demonstration in-context
examples. Similar to (Romera-Paredes et al., 2024), here we use a two-stage sampling process. First,
we randomly select an island from the m available islands. Then, within the selected island, we
sample k equation programs (typically, £ = 2) to be included as in-context examples in the prompt.
When sampling equation programs within an island, we employ a two-step approach. First, we
sample a cluster based on its evaluation score, favoring clusters with higher scores (i.e., higher-quality
equation programs). Let s; denote the score of the ¢-th cluster, defined as an aggregation (e.g., mean)
of all the scores in the signature that characterizes that cluster. The probability P; of choosing cluster
1 is given by:

ex s—i)
p— p(TC , 7_CZTO<1_um](\)/de),
S () EE

where T, is the temperature parameter, u is the current number of equation programs in the island, and
Ty = 0.1 and N = 10, 000 are hyperparameters. This selection approach is known as the Boltzmann
selection procedure (Maza & Tidor, 1993). Once a cluster is selected, we sample an equation program
within that cluster, favoring shorter programs. Let [; denote the negative length of the i-th program

within the chosen cluster (measured as the number of characters), and let [; = % We set

the probability of selecting each equation program proportional to exp (—ZZ / Tp) ,where 7, = lisa

temperature hyperparameter. The sampled programs are then included in the prompt as in-context
experience demonstration, providing the LLM with relevant and diverse examples to guide the
generation of new equation programs. By maintaining a diverse and high-quality population in the
experience buffer and employing a strategic sampling approach, the experience management enables
the LLM-SR framework to effectively explore the space of equation programs and iteratively refine
its search based on the most promising candidates.

C LIMITATION OF FEYNMAN BENCHMARK PROBLEMS

The Feynman benchmark (Udrescu & Tegmark, 2020), consisting of 120 fundamental physics
problems from the Feynman Lectures on Physics, is widely used to evaluate symbolic regression
techniques in scientific equation discovery. However, our investigation indicates that LLMs have
likely memorized many of these well-known physics equations. This memorization poses a challenge
when using the Feynman benchmark to assess LLM-based equation discovery methods, as it may not
accurately reflect the models’ true discovery capabilities. This section elaborates on these limitations
and provides evidence supporting the necessity of our newly designed benchmark problems.
lustrates the median perplexity of Feynman problems

against our new benchmarks (Oscillation 1, Oscilla-

tion 2, and E. Coli Growth) using the Mixtral-8x-7B i N
model as the LLM backbone. Perplexity, in this con- Problems

text, is calculated only for the generation of equations
given scientific context: p(Equation|Context). Exam-

ples of input prompts and outputs used for perplex-
ity computation across different benchmarks are pro-

Perplexity Analysis To quantify the potential mem-
orization of Feynman problems by LLMs, we first
conducted a comparative perplexity analysis. Fig. 9 il-

PPL on Mixtral

N W R U o N

Figure 9: Perplexity (Mixtral) comparison of
Feynman benchmark and our new designed bench-
mark problems

vided in Fig. 10. Mathematically, perplexity is defined as: PPL = exp (7% 7{11 log p(z; \x<l)) ,
where N is the number of tokens in the generated equation, and p(x;|x ;) is the probability of token

17

Published as a conference paper at ICLR 2025

Feynman Problem Examples New Benchmark Problems
(ScwemmcComex(Equation A (SclemmcComexl Equation N
Equation of gravitational force (F) between two o o o (oyayng 4 Equation of a custom nonlinear oscillator for dv/dt = F * sin (c * x) - ¢ *
masses (nl and m2) separated by a distance in 30 o J)) 0% " 00 o) SO acceleration (dv/dt) given position (x), VA3 - C*xA3 - c Xy *x-x %
space, given gravitational constant (G) is: y2-y; velocity (v), force (F) and constants (c) is: cos(x)
\p(Eququn | Context) > PPL=1.94 Feynman 1.9.18 Problem) \p(EqudUUH | Context) = PPL=6.24 Oscillation 1 Problem
(Scientific Context Equation " (scientific Context Equation)
Equation of angular momentun (L) for a particle | _ . 4y s ginctheta) Equation of a custom nonlinear oscillator for dv/dt = F * sin (c ¥ t) - ¢ *
with mass (m), velocity (v), at a distance (r) acceleration (dv/dt) given time (t), position VA3 - c*x *v - c*x*exp(c
from the axis of rotation, and angle (theta) (x), velocity (v), force (F) and constants (c) * x)
between r and v is: is:
\p(tquat\on | Context) > PPL=2.44 Feynman 1.18.14 Problem) \p(tquanon | Context) » PPL=5.27 Oscillation 2 Problem
(Scientific Context Equation " (scientific Context Equation 7
)) q —— i i i dB/dt = mu * B * S/(K +S) *
Equation relating energy (E), mass (m), speed of E = * cA2 / sqrt(l - vA2 Equation of single-population E. Coli Bacterial N
light (c), and velocity (v) is: n2) G population grouth rate (dg/dt) given population tanh(k(T-x_8))/ (1rc(T-x_decay)~4)
(B), substrate concentration (S), temperature exp(-|pH-pH_opt|) * sin ((pH-
(1), and pH is: pH_min)*pi / (pH_max-pH_min))~2
\p(qumnon | Context) = PPL=2.04 Feynman 1.48.2 Problem) \p(Fqnatmn | Context) > PPL=6.93 E. Coli Growth Problem)

Figure 10: Examples of input context and output equations for Feynman equations and our new benchmark
problems in Perplexity experiments with Mixtral LLM backbone.

x; given the preceding tokens, derived from the logits of the Mixtral model. The significantly lower
perplexity observed for Feynman problems indicates a higher certainty in the LLM’s predictions
for these equations, and a higher chance of LLM recitation rather than reasoning and discovery.
This suggests a high likelihood of memorization of well-known Feynman equations by the LLM,
potentially due to their prevalence in scientific training data. It is worth noting that we have excluded
the Stress-Strain problem from this analysis due to its experimental nature and lack of a predetermined
theoretical model structure, precluding the calculation of perplexity.

Discovery Error Curve Analysis To further
validate the need for new benchmarks, we com- 10°
pared equation discovery error curves between

Feynman problems and our new benchmark

problems. Fig. 11 presents the performance of 107
LLM-SR with a GPT-3.5 backbone across var-
ious problems, showing the best score trajectory
of Normalized Mean Squared Error (NMSE)

Normalized MSE

-6
against the number of iterations. For Feynman * — oscilation
benchmark problems, LLM-SR achieves low ——— Oscillation 2
NMSE scores within very few iterations, often —-= E. coli Growth
in a single pass. This rapid convergence further e T E:ye::asﬁra‘”

supports the hypothesis that LLMs have likely
memorized these fundamental physics equations
due to their ubiquity in training data. Qualitative O 200 400 600 800 1000 1200 1400
examples in Figs. 12 and 13 also provide addi- Iterations

tional evidence. The LLM’s one-pass responses
to several Feynman problems not only demon-
strate functional accuracy but also often recite
the exact form of the corresponding physics ex-
pressions, suggesting direct recall rather than a
discovery process. In contrast, our newly designed benchmark problems present novel challenges
requiring reasoning and exploration.

Figure 11: Trajectory of Normalized MSE score over
iterations for LLM-SR (GPT-3. 5) on Feynman bench-
mark problems versus new benchmarks

D ADDITIONAL DETAILS ON NEW BENCHMARK PROBLEMS

The datasets used in this study include both publicly available and newly generated data. The material
stress behavior analysis dataset (stress-strain) is publicly available under the CC BY 4.0 license
and can be accessed at https://data.mendeley.com/datasets/rd6jm9tyb6/1. The remaining datasets
(Oscillation 1, Oscillation 2, and E. coli Growth) were generated for this work and are released
under the MIT License as part of the LLM-SR GitHub repository: https://github.com/deep-symbolic-
mathematics/LLM-SR

18

https://data.mendeley.com/datasets/rd6jm9tyb6/1
https://github.com/deep-symbolic-mathematics/LLM-SR
https://github.com/deep-symbolic-mathematics/LLM-SR

Published as a conference paper at ICLR 2025

Input Prompt

nwnn

Find the mathematical function skeleton that represents the resultant intensity due

— to the interference of two coherent light sources.
win

def evaluate(data, equation):

nun

Evaluate the equation on data observations.

nun

def equation_v0(I1, I2, delta, params):
""" Mathematical function for the resultant intensity due to interference of two
< waves
Args:
I1: Intensity of first wave
I2: Intensity of second wave
delta: Phase difference between two waves
params: Numeric parameters to be optimized
Return:
Resultant intensity
A simple initial example of function structure
return params[0]*I1 + params[1]+#I2 + params[2]+*delta + params[3]

wun

def equation_vi(I1, I2, delta, params):
"iImproved version of equation_v0"""

LLM Response

return params[0]+*np.sqrt(I1+I2)+np.cos(delta) + params[1]*I1 + params[2]+I2 +
< paranms[3]

Feynman 1.37.4 Problem [-E L. =1, + I + 2,/ 111, cos(5)]

Figure 12: An example of LLM response to Feynman 1.37.4 problem, demonstrating LLM recitation without
iterative search. For better readability, the details of evaluation function are not included in this figure. Check
Fig. 2 for details.

D.1 NONLINEAR OSCILLATOR EQUATIONS

In this work, we introduce two novel nonlinear oscillator systems as part of our effort to create more
challenging and robust benchmarks for LLM-based equation discovery methods. These custom-
designed oscillators extend beyond commonly studied systems like Van der Pol, Rayleigh, or Duffing
oscillators, presenting unique challenges that test the reasoning and discovery capabilities of LLM-
based approaches.

The general form of nonlinear damped oscillator equations is typically expressed as: & + f(t,z, %) =
0, where t represents time, x represents position, and f (¢, z, &) represents nonlinear forces. Our
custom designs expand upon this framework, incorporating a rich combination of nonlinear terms
to create systems that are challenging yet solvable. We simulate two nonlinear oscillators using the
solve_ivp function from the scipy library to generate data.

Dataset Time range initial values F «a 5] d v w

Oscillator 1 (0, 50) {x=0.5,v=0.5} 08 05 02 _ 05 10
Oscillator 2 (0, 50) {x=0.5,v=0.5} 03 05 10 50 05 1.0

Table 2: Parameter values for Oscillator datasets.

The parameters and initial values for these simulations are provided in Table 2. The governing
equations for our oscillator systems are as follows:

Oscillator 1:

0 = Fsin(wzr) — aw® — B — vz - v — x cos(x)

Oscillator 2:

0 = Fsin(wt) — av® — Bz -v — dz - exp(yz)

19

Published as a conference paper at ICLR 2025

Input Prompt

nun

Find the mathematical function skeleton that represents the relationship between the

< angle of incidence and the angle of refraction.
nin

def evaluate(data, equation):
win

Evaluate the equation on data observations.

won

def equation_vO(n, theta, params):

""" Mathematical function for angle of refraction
Args:

n: Refractive indecr

theta: Angle of incidence

params: Numeric parameters to be optimized
Return:

Refraction angle """
A simple initial example of function structure
return params[0]*n + params[1]*theta + params[2]

def equation_vi(n, theta, params):
"""Improved version of equation_v0"""

LLM Response

return params[0] * np.arcsin(params[i] * n * np.sin(theta)) + params[2]

Feynman 1.26.2 Problem (IZ 6, = arcsin(nsin(6,))]

Figure 13: An example of LLM response to Feynman 1.26.2 problem, demonstrating LLM recitation without
iterative search. For better readability, the details of evaluation function are not included in this figure. Check
Fig. 2 for details.

where v = & represents velocity, and F, w, «, 3,7, § are constants specific to each oscillator system.
These equations are carefully deisgned to incorporate a diverse set of nonlinear structures, including
trigonometric, polynomial, and exponential terms. This design choice serves multiple purposes:

* Challenging Complexity: The combination of various nonlinear terms creates a rich dynamical
system that is more complex than common oscillator systems, making the equation discovery task
non-trivial.

* Realistic Physics: While complex, these equations are still solvable and still represent physically
plausible systems, incorporating recognizable elements such as nonlinear damping and position-
dependent restoring forces.

* Novelty: By deviating from well-known oscillator forms, we reduce the likelihood of LLMs simply
reciting memorized equations, thus testing their reasoning and discovery capabilities in the context
of data-driven scientific equation discovery.

Fig. 14 illustrates the phase plane diagrams of these

nonlinear damped oscillators, visually demonstrating os = os

the complex dynamics arising from the interplay of o . \\\ os

nonlinear driving forces, restoring forces, and damp- | /7 ---0%, Nl e

ing forces. These diagrams highlight the rich behav- = | // \\\‘ N

ior that makes these systems challenging for equa- * / { / I} i £

tion identification tasks. To effectively evaluate the .|\ o

generalization capability of predicted equations, we =~ -

employ a strategic data partitioning scheme. The T e T it

simulation data is divided into three sets based on @ (®)
the trajectory time: (1) Training set, (2) In-domain
validation set, and (3) Out-of-domain validation set.
Specifically, we utilize the time interval 7' = [0, 20)
to evaluate the out-of-domain generalization of the
discovered equations.

Figure 14: Phase diagrams of trajectories corre-
sponding to custom oscillators: (a) Oscillator 1
and (b) Oscillator 2

20

Published as a conference paper at ICLR 2025

D.2 E.coLl GROWTH RATE EQUATIONS

In the domain of microbiology, understanding and modeling the growth dynamics of Escherichia
coli (E. coli) is of paramount importance due to its wide-ranging applications in biotechnology,
food safety, and fundamental biological research. To advance the LLM-based equation discovery
approaches in this field, we have developed a novel benchmark problem centered around E. coli
growth rate modeling. The growth rate of bacterial populations, including E. coli, is typically modeled
by a differential equation that incorporates multiple environmental factors. This mathematical model
commonly takes a multiplicative form:

dB

E = f(Ba Sa Ta PH) = fB(B) . fS(S) : fT(T) : pr(pH)v
where B represents bacterial population density, S is substrate concentration, 7" is temperature, and
pH represents the acidity or alkalinity of the growth medium. To create a benchmark that is grounded
in biological prior knowledge yet is challenging, we have extended this framework with a custom
differential equation:

(pH — pH

min)ﬂ- :
pHmaz - pHmzn

dB S)tanh(k:(T—wo))

q - HmeeB (Ks TS5) T4 (T — 2aeeay)t (= [pH = pH,,) sin (

This equation incorporates several key components, each designed to test different aspects of equation
discovery systems:

* Population Density (f5): We maintain a linear relationship with B, reflecting a simple single-
population scenario. This choice allows the focus to remain on the more complex environmental
dependencies.

K.+5
has been a cornerstone of bacterial growth modeling since its introduction by Jacques Monod
in 1949. This inclusion serves as prior knowledge, allowing us to evaluate how well discovery
methods can identify known relationships within a more complex overall structure.

+ Temperature Dependency (fr): We introduce a novel formulation, % which cap-
ecay

tures the non-monotonic response of bacterial growth to temperature changes. This function
combines a hyperbolic tangent term, representing the initial growth acceleration with temperature,
and a quartic decay term, modeling the rapid decline in growth rate at high temperatures. This
formulation presents a new and challenging form for LLM-based equation discovery methods, as it
introduces operators and structures not commonly seen in the literature of this scientific context.

2
(pH—pH,, ;)7)
9

* Substrate Concentration (fs): We employ the well-established Monod equation, (i), which

PH 0w —PHpn i
combines exponential and trigonometric terms to model the complex relationship between bacterial
growth and pH levels. This formulation captures both the optimal pH range for growth and the
symmetric decline in growth rate as pH deviates from the optimum. It also poses challenging setting
for LLM-based equation discovery methods with structures uncommon in the relevant scientific
context.

* pH Dependency (fyn): Our custom pH function, exp (— |pH — pH,,,|) sin (

Fig. 15 illustrates the behavior of our custom-designed f7(T") and f,u(pH) functions in comparison to
established models from the literature for temperature and pH impact in bacterial growth. As observed,
our custom models maintain key characteristics of bacterial growth responses while introducing
complexities that challenge equation discovery methods. The temperature dependency model shows
a sharper optimal peak and more rapid decline at high temperatures compared to traditional models,
while the pH dependency model exhibits a narrower optimal range with steeper declines outside this
range.

This carefully constructed benchmark serves multiple purposes: (z) It leverages LLMs’ prior knowl-
edge of bacterial growth patterns and common mathematical functions used in biological modeling;
(47) It prevents trivial LLM recitation by introducing novel combinations of functions and opera-
tors that go beyond standard models; and (¢:2) It challenges equation discovery systems to identify
complex, biologically plausible relationships from data, simulating the process of scientific discovery.

21

Published as a conference paper at ICLR 2025

1.0 — Cardinal Temperature Model
Modified Ratkowsky Model

—— CTMI Model

—— Gaussian Model

—-=-- Custom Model

1.0] — Cardinal pH Model
Zwietering pH Model
—— Gaussian Model
—— Exponential Modél
--- Custom Model

0.8

0.0 ———fer—e= T 0.0
0 10

20 30 40 2 a4 6 8 10 12
Temperature (°C) pH

Figure 15: Scheme of some established models from literature for temperature and pH impact in bacterial growth
compared to our custom-designed model behavior.

Temperature
20°C

100°C
150°C
200°C
250°C
300°C

Stress (MPa

0.00 0.05 0.10 0.15 0.20
Strain

Figure 16: Stress-strain curves of Aluminium 6061-T651 under various temperatures (data from (Aakash et al.,
2019))

D.3 MATERIAL STRESS BEHAVIOR ANALYSIS

The analysis of material stress behavior with regard to temperature variations is a critical area of
study in materials science and engineering. Our focus on experimental data of Aluminium 6061-T651
(Aakash et al., 2019) provides a new experimental case study for LLM-based equation discovery
methods. Fig. 16 presents stress-strain curves for this alloy across a range of temperatures, offering
rich insights into its mechanical behavior. For this problem, the experimental data represents the
tensile behavior of material under uniaxial tension for 6 different temperatures from 20°C to 300°C.
We allocate the data corresponding to T = 200°C for use as the out-of-domain validation set.

The stress-strain curves in Fig. 16 reveal several key features: Temperature Dependence: As
temperature increases from 20°C to 300°C, we observe a significant decrease in both yield strength
and ultimate tensile strength. Elastic Region: The initial linear portion of each curve represents the
elastic region, where deformation is reversible. The slope of this region, known as Young’s modulus,
appears to decrease with increasing temperature, indicating reduced stiffness at higher temperatures.
Plastic Region: Beyond the yield point, the curves exhibit non-linear behavior characteristic of
plastic deformation. The shape of this region varies with temperature, suggesting changes in work
hardening behavior. Failure Region: The endpoints of the curves indicate material failure. Notably,
the strain at failure generally increases with temperature, implying enhanced ductility at higher
temperatures. Complex Non-linearity: The overall shape of the curves exhibit piece-wise form,
particularly in the plastic region, displays complex non-linear behavior that varies significantly with
temperature and cannot be simply modeled with closed-form mathematical expressions.

The complex, nonlinear behavior of materials under varying experimental conditions poses significant
challenges in developing comprehensive theoretical models. Moreover, unlike many physics problems
where equation forms might be known or suspected, stress-strain-temperature relationships for
specific materials often lack a universally accepted theoretical model. This absence necessitates

22

Published as a conference paper at ICLR 2025

3.11e-01 9.80e-03

= In-domain 1072 7.10e-03 = In-domain
10 00D 4.30e-03 00D

2.00e-04

10-3] 9.00e-04
5.00e-04
4.65€-05 o~ 3.81e.05

Normalized MSE
Normalized MSE

4.65-07 2.12e-07

PySR LLM-SR LLM-SR LLM-SR PySR LLM-SR

LLM-SR LLM-SR
(w/o Prior) (w/o Program) (w/o Prior) (w/o Program)

(a) Oscillation 1 (b) Oscillation 2
169200 == In-domain 130e0L 128¢:01 = In-domain
100 1.01e+00 000 00D
107!
6.71e.01
"é] 6.60e-02
= 5.91e-02
° 22301 o° 5.53e-02
& & < 5.16e-02
s &
£ £
S0 9.49¢-02 g 4
3.31e-02
3x10
3.76e-02
64e-02
2.14e-02 2.10e-02
210
PySR LLM-SR LLM-SR LLM-SR PySR LLM-SR LLM-SR LLM-SR
(w/o Prior) (w/o Program) (w/o Prior) (w/o Program)
(c) E. Coli Growth (d) Stress-Strain

Figure 17: Ablation comparison of LLM-SR variants (GPT-3. 5 backbone) and PySR on four benchmarks,
showing in-domain and out-of-domain errors for (a) Oscillation 1, (b) Oscillation 2, (¢) E.coli Growth, and
(d) Stress-Strain problems. LLM-SR consistently outperforms PySR and ablated versions, highlighting the
importance of both prior knowledge and equation program representation components.

a more exploratory, data-driven approach to empirical equation discovery. By incorporating this
real-world experimental materials science problem into our benchmark problems, we aim to evaluate
the ability of LLM-SR to discover physically meaningful and interpretable equations in a domain
where empirical modeling often dominates

E ADDITIONAL ABLATION STUDY

To evaluate the key components of our LLM-SR framework, we conducted additional ablation studies
across all benchmark datasets. These experiments specifically target two main motivations behind
LLM-SR: (1) leveraging scientific prior knowledge and (2) utilizing code generation capabilities of
LLMs in the context of scientific equation discovery. We present the results of these ablation studies
in Fig. 17, which compares the performance of three LLM-SR variant models: (¢) LLM-SR (w/o
Prior): This variant removes the incorporation of problem-specific prior knowledge from the LLMs’
input prompt; (¢2) LLM-SR (w/o Program): This variant eliminates the use of program representation
for hypotheses; and (¢77) LLM-SR: This variant is the final version of LLM-SR model including
all components. We evaluated these models on all benchmark problems. For each problem, we
assessed performance under both in-domain and out-of-domain (OOD) test settings, providing a
robust evaluation of generalization capabilities in discovered equations.

Fig. 17 shows that both ablated components are critical to LLM-SR’s success. Across all datasets
and in both test settings, w/o Prior and w/o Program consistently underperformed compared to the
full LLM-SR model. In both Oscillation 1 and Oscillation 2 problems, prior knowledge and code
generation capabilities demonstrated comparable impacts on model performance. This held true
for both in-domain and OOD settings, suggesting that both components contribute similarly to the
model’s understanding and generalization of oscillatory systems. For the E. coli Growth problem,
we observed a more pronounced effect of prior knowledge. This indicates that domain-specific
knowledge plays a particularly crucial role in modeling for this problem. Interestingly, while both
components had similar impacts on in-domain performance in stress-strain problem, prior knowledge
appeared to have a more substantial effect on OOD performance. This aligns with our intuition that
OOD generalization should correlate more strongly with prior domain knowledge of the system.

23

Published as a conference paper at ICLR 2025

Stress-Strain Oscillation 2
D} 0O0DJ D} 0O0DJ

LLM-SR (w/o multi-island & sampling) 0.0257 0.1010 6.23e-6 0.0008
LLM-SR 0.0210 0.0516 2.12¢-7 3.81e-5

Model

Table 3: Impact of multi-island design on LLM-SR performance (with GPT-3.5 backbone) across two benchmark
problems measured by Normalized Mean Squared Error.

We further conducted ablation experiments to analyze the impact of the multi-island buffer design and
corresponding sampling strategy. Table 3 compares the performance of LLM-SR with and without
the multi-island components on two benchmark problems. Specifically, we evaluated a variant that
uses only one island in the buffer and employs a simple deterministic top-k selection approach for
in-context example selection. The results demonstrate that the multi-island design positively impacts
LLM-SR performance in both in-domain and OOD settings. Qualitatively, we observe that the
number of islands plays a critical role in balancing exploitation and exploration. With fewer islands,
the framework exhibits reduced exploration capabilities, generating less diverse equation hypotheses
and converging prematurely to equation structures produced in early iterations.

F ADDITIONAL EXPERIMENTS

F.1 NOISE ROBUSTNESS ANALYSIS

To evaluate the robustness of LLM-SR to imperfect data conditions commonly encountered in real-
world settings, we conducted a systematic analysis of model performance under varying levels of
noise. We specifically focused on the Oscillation 2 benchmark problem, introducing controlled
Gaussian noise with different standard deviations (o = {0,0.01,0.05,0.1}) to the training data. This
analysis provides insights into how the incorporation of prior knowledge through LLM-SR affects
equation discovery performance when dealing with noisy measurements.

—e— LLM-SR (ID)
1.4 -m- LLM-SR (OOD)
—&— PySR (ID)
1.2 -¥- PySR (OOD)
1.0
w 0.8
(2]
s
4
0.6
0.4
0.2
0.0

Noise Level (o)

Figure 18: Noise robustness analysis of LLM-SR compared to PySR on the Oscillation 2 benchmark. The plot
shows normalized mean squared error (NMSE) for both in-domain and out-of-domain (OOD) predictions under
different levels of Gaussian noise (¢ = 0,0.01, 0.05, 0.1). While performance degrades with increasing noise
for both methods, LLM-SR maintains better robustness, particularly for OOD predictions, demonstrating the
value of incorporating domain knowledge in noisy real-world settings.

Fig. 18 presents a comparative analysis between LLM-SR and PySR under different noise conditions.
The results demonstrate that while increasing noise levels generally degrade performance across all
methods, LLM-SR exhibits notably better resilience to noise compared to traditional approaches.
Specifically, at moderate noise levels (0 = 0.01, o = 0.05), LLM-SR maintains significantly lower
NMSE compared to PySR, particularly in out-of-domain predictions.

This enhanced robustness can be attributed to the incorporation of domain knowledge through LLM
prompting, which helps constrain the search space to physically plausible solutions even in the
presence of noise. These findings highlight an important aspect of symbolic regression: as data

24

Published as a conference paper at ICLR 2025

quality decreases, the value of incorporating prior knowledge becomes increasingly significant. This
observation aligns with the broader principle that when evidence (data) becomes less reliable, the
role of priors in inference becomes more crucial.

F.2 LLM-BASED OPTIMIZATION BASELINES

Several frameworks have emerged recently exploring the integration of LLMs into optimization
tasks (Meyerson et al., 2023; Yang et al., 2023a; Romera-Paredes et al., 2024). Among these works,
LMX (Meyerson et al., 2023) has included symbolic regression as one of its experimental tasks,
though primarily as a proof-of-concept rather than aiming to achieve state-of-the-art performance.
Their implementation does not incorporate domain-specific prior knowledge, generates complete
equations with LLM instead of optimizable skeletons, uses older LLM models (Galactica, Pythia),
and lacks several design elements present in LLM-SR such as equation-as-program representation
and multi-island dynamic memory management for diverse exploration. We conducted experiments
to evaluate LLM-SR alongside LMX and FunSearch (Romera-Paredes et al., 2024). For LMX, we
utilized their open-source implementation directly, while for FunSearch, we adapted their prompt and
feedback design to suit the equation-as-program task. All methods were run for the same number of
iterations as LLM-SR, using GPT-3.5 as the LLM backbone.

Oscillation 1 Oscillation 2
Model

D) OO0D| D) OO0OD|
DSR 0.0087 0.2454 0.0580 0.1945
uDSR 0.0003 0.0007 0.0032 0.0015
PySR 0.0009 0.3106 0.0002 0.0098
LMX 0.5031 4893 1.004 0.9371
FunSearch 0.4840 8.059 0.7234 0.5861
LLM-SR (w/o skeleton+optimizer) 0.1371 0.6764 0.3780 0.3751
LLM-SR (w/o Prior) 0.0001 0.0029 4.65¢-5 0.0071
LLM-SR (w/o Program) 0.0001 0.0035 3.22¢-5 0.0043
LLM-SR 4.65e-7 0.0005 2.12¢e-7 3.81e-5

Table 4: Additional experimental results comparing different optimization methods on oscillator problems
measured by Normalized Mean Squared Error.

Results in Table 4 show that LLM-SR and its variants achieve better performance than LMX and
FunSearch in both in-domain and OOD test settings. Even when the skeleton+optimizer design is
ablated (allowing LLM to generate complete equations without placeholder parameters), performance
drops significantly but still outperforms both LMX and FunSearch. Further ablation of prior knowl-
edge or program representation components shows less dramatic impact, though the full LLM-SR
incorporating all components achieves the best performance overall. Notably, traditional SR baselines
(DSR, uDSR, PySR) also outperform the existing LLM-based approaches on both datasets, supporting
our focus on comparing against state-of-the-art SR methods in the main experiments.

F.3 LLM BACKBONES

We have also conducted experiments with larger LLMs as the backbone for LLM-SR (than current
Mixtral and GPT-3.5 backbones). Due to the computational budget limitations, we only conducted
experiments on the oscillation 1 and oscillation 2 datasets. For a fair comparison, we ran this
GPT-40 backbone model for the same number of iterations (2500) as other LLM-SR runs. Table 5
shows that on both datasets, LLM-SR (with GPT-40) provides slightly better performance than
LLM-SR with GPT-3.5 and Mixtral backbones, particularly in the OOD settings (reported numbers
are NMSE as in Table 1). These findings align with expectations that improved LLMs with better
knowledge, reasoning, and programming capabilities have potential to enhance performance in
LLM-SR framework.

Oscillation 1 Oscillation 2
1DJ 00D| 1D} 00DJ

LLM-SR (Mixtral) 7.89e-8 0.0002 0.0030 0.0291
LLM-SR (GPT-3.5) 4.65e-7 0.0005 2.12e-7 3.81e-5
LLM-SR (GPT-40) 7.29¢-6 6.75¢-5 4.27¢-10 1.29¢-6

Model

Table 5: Additional experimental results comparing different LLM backbones on oscillator problems measured
by Normalized Mean Squared Error.

25

Published as a conference paper at ICLR 2025

True Equation: 0.3 sin(t) — 0.5v° — xv — 5x.exp(0.5x)

00200 =0 0.3sin(t) +5.0(1—e*)

0.0175 0.3 sin(t) — 5.0x + 0.03v — 0.06v% — 2.3x?

0.0150

o
=)
=
N
o

0.3 sin(t) — 5.0x + 0.03v — 0.07v? + 2.3x% — 0.25v|v|

Normalized MSE
° o
¢ ¢
< I
> 8

0.3sin(t) + 5.0(1 — e*) + 0.02v — 0.23v|v| + xv
0.0050

0.3sin(t) + 5.0(1 — e*) — xv — 0.5v°
0.0025

0.0000

0 200 400 600 800 1000
Iterations

Figure 19: Performance Trajectory of LLM-SR (GPT-3. 5) along with the best-scoring simplified equations
(after parameter optimization) over iterations on the Oscillation 2 problem. Green highlights indicate recovered
symbolic terms from the true equation.

G ADDITIONAL QUALITATIVE RESULTS

Discovery Trajectory In this section, we evaluate the progress of generated equations using
LLM-SR over iterations. This analysis can illustrate the qualitative evolutionary refinement of the
discovered equations.

Fig. 19 shows the NMSE values for the Oscillation 2 dataset. For simplicity, we have provided the
simplified equation versions of programs with their optimized parameters. We observe that some of
the common nonlinear terms such as sinisoidal driving force term are found early in the search, while
more complicated nonlinear terms are found later in the search. An interesting observation here is that
while ground truth equation for this dataset is v = 0.3 sin(¢) —0.50% —z-v—5x-exp(0.5z), LLM-SR
has discovered the equation © = 0.3 sin(t) — 0.5v3 — 2 - v + 5(1 — exp(x)) at the end. By evaluating
the different terms in these two forms, we observe that in fact 5(1 — exp(z)) = —5x - exp(0.5z) for
x € (—2,2), which is the approximate range of displacement in this dataset.

Fig. 20 illustrates the evolution of equation program skeletons for the Oscillation 1 problem. It can
be observed that the model attempts to incorporate various nonlinear terms corresponding to driving,
restoring, and damping forces, as evidenced by comments or variable names within the code, aiming
to enhance accuracy.

Similarly, Fig. 21 presents an annotated performance curve illustrating LLM-SR’s performance on
the E. coli growth rate equation discovery benchmark problem. It becomes apparent that the model
recognizes the potential presence of optimal values for temperature and pH from the early iterations
which comes from model prior knowledge about the common bell-shaped effect of these variables
on the growth rate (check Fig. 15). To enhance accuracy, the model necessitates exploration and
incorporation of various nonlinear forms. Notably, LLM-SR directs its evolutionary changes towards
the more critical and variable aspects of the problem, specifically the pH and temperature effects, as
opsposed to other components such as substrate concentration represented by the Monod equation
%5 Additionally, the figure demonstrates LLM-SR’s comprehension that different components of
the function should be multiplied together in the final step, underscoring how prior domain knowledge
of the problem structure can guide LLM-SR’s evolutionary steps.

Fig. 22 displays three distinct equation skeleton programs discovered by LLM-SR for the stress-strain
problem over search iterations. As in previous cases, we notice the model’s enhancement through
exploration and incorporation of various nonlinear terms into the equations, particularly in the plastic
region terms. An additional significant observation for this problem is that stress-strain relationships
often exhibit piece-wise behavior (as it can also be observed in Fig. 16), which closed-form expression

26

Published as a conference paper at ICLR 2025

def equation(params, x, v): def equation(params, x, v):
Restoring force # Driving force
restoring_force = -params[0] * x driving_force = params[0] * np.sin(params[1] * x)

Damping force

Velocity term
damping_force = -params[1] * v

linear_velocity = params[2] * v
Driving force
driving_force = params[2] * (1 - x##2) * np.sign(v) # Damping force
nonlinear_damping = params[3] * np.abs(v)**params[4]
Nonlinear restoring force
nonlinear_restoring = params[3] * x**3 # Position-velocity interaction
interaction_term = -params[5] * x * v
Sum up all terms to get total force
total_force = restoring_force + damping_force + driving_force +

Sum up all terms to get the total force
< nonlinear_restoring

total_force = driving_force + linear_velocity + nonlinear_damping +
> interaction_term
return total_force

return total_force

def equation(params, x, v):
Position-velocity interaction damping
nonlinear_damping = -params[0] * x * v+*params[1]

Velocity damping
velocity_damping = -params[2] * v**params[3]

Driving force
driving_force = params[4] * np.sin(params[5] * x + params[6])

| # Sum up all terms to get total force
10 total_force = nonlinear_damping + velocity_damping + driving_force
| return total_force

Normalized MSE

4 def equation(params, x, v):
Damping term
damping = -params[0] * x * v - params[1] * np.abs(v) ** 2 * v

[500 1000 1500 2000
Iterations

Driving term
driving = params[2] * np.sin(params[3] * x + params[4])

Sum up all terms to get total force
return damping + driving

Figure 20: Performance Trajectory of LLM-SR (Mixtral) along with the best-scoring equation program
skeletons (before parameter optimization) over iterations on the Oscillation 1 problem.

structures in traditional symbolic regression models struggle to model. However, LLM-SR represents
equation skeletons as programs, thus, it can employ conditional rules (If-Else) or their continuous
relaxations, utilizing step-wise nonlinear differentiable functions such as the sigmoid function
to model smooth piece-wise relations. This differentiability and smooth approximation of if-else
conditions are particularly helpful for the parameter optimization step, providing smooth functions
for the optimizer to navigate.

Discovered Equations Fig. 23 and Fig. 24 depict the equation programs identified by LLM-SR
and other leading symbolic regression baselines (DSR, uDSR, and PySR) for the E. coli growth and
the stress-strain problems, respectively. The diverse range of equation forms identified by different
symbolic regression methods reflects the challenges posed by these datasets. Notably, in both datasets,
the SR methods yield either lengthy or highly nonlinear equations that are not aligned with the prior
knowledge of the systems, as evidenced by their poor out-of-domain (OOD) performance scores
in Table 1. In contrast, LLM-SR finds flexible equation programs that are more interpretable and
aligned with the domain-specific scientific priors of the systems.

Behavior of Discovered Models Fig. 25 and Fig. 26 offer a qualitative comparison by visually
presenting the outputs of the equations obtained using LLM-SR, PySR, and uDSR. Upon examination,
it becomes evident that the predictions generated by LLM-SR exhibit a notable degree of alignment
with the ground truth data. This alignment suggests that LLM-SR effectively captures the underlying
patterns and dynamics of the data.

27

Published as a conference paper at ICLR 2025

@ equation(parans, B, S, T, ph): \ @i equation(parans, B, S, T, pH): \

T_opt = params[0) # Optimal temperature for in Celsius T_opt = params[0] # Optimal temperature in Celsius

pH_opt = params[1] # Optimal pH pH_opt = params[1] # Optimal pH

Population density effect # Mazimum growth rate

population_effect = B ** params[3] max_growth_rate = params[2]

Substrate concentration effect (Monod) # Population density effect (growth inhibition at high densities)
substrate_effect = S / (params[4] + S) population_effect = np.power (B, params[3])

Substrate concentration effect (Monod)

Temperature dependency (Gaussian)
substrate_effect = S / (S + params[4])

temperature_effect = np.exp(-params[5] * (T - T_opt) #* 2)

Temperature dependency (Gaussian)

pH dependency temperature_effect = np.exp(-params[5] * (T - T_opt)**2)

pH_effect = np.exp(-params[6] + (pH - pH_opt) ** 2)
Mazimum growth rate

pH d d
max_growth_rate = params[2] P2 Sependency

pH_effect = np.exp(-params[6] # (pH - pH_opt)+*2)

Combine all effects to get the growth rate
growth_rate = (max_growth_rate * population_effect * substrate_effect *
temperature_effect * pH_effect + params[7])

Carrying capacity effect (logistic growth term)
carrying_capacity_effect = (1 - B / params[7])

Combine all effects to get the growth rate
return growth_rate growth_rate = (max_growth_rate * population_effect * substrate_effect *
/ temperature_effect * pH_effect * carrying_capacity_effect)
o / / \ return growth_rate)
(ef equation(params, B, S, T, pH): \
Unpack the parameters
% Mu, alpha, Ks, Kt, Kp, Kd, gamma_t, gamma_p, T_opt, pH_opt = params
=
b=y # Temperature modulation factor
o temp_factor = 1 / (1 + np.exp(gamma_t * (T - T_opt)))
©
£ 107 # ol
£ pH modulation factor
=] / pH_factor = 1 / (1 + np.exp(gamma_p * (pH - pH_opt)))
Population density effect
population_effect = np.power (B, alpha)
Substrate concentration effect (Monod)
substrate_effect = S / (S + Ks)
° / b 0 mlterati‘gons 0 o0 o # Temperature dependency
temperature_effect = np.exp(-Kt * np.square(T - T_opt))
@f equation(parans, B, S, T, pH): \
T_opt = params[0] # Optimal temperature in Celsius # pH dependency
pH_opt = params[1] # Optimal pH pH_effect = np.exp(-Kp * np.square(pH - pH_opt))
Substrate concentration effect (Monod) # Bacterial death rate
Monod = params[2] * (S / (params[3] + 8)) death_rate = Kd * B
Te p (Arrhenius) # Combine all effects to get the growth rate
Arrhenius = np.exp(-params[4] * (T - T_opt) ** 2) growth_rate = (Mu * population_effect * substrate_effect *
temperature_effect * pH_effect - death_rate) * temp_factor *
pH effect (exponential decay from optimal pH) ~ pH_factor
pH_effect = np.exp(-params[5] * np.abs(pH - pH_opt))
return growth_rate

Population density limitation (logistic growth term) \ /
limitation_by_density = 1 - (B / params([6])

Combine all effects to get the growth rate
growth_rate = Monod * Arrhenius * pH_effect + limitation_by_density

\ return growth_rate /

Figure 21: Performance Trajectory of LLM-SR (GPT-3. 5) along with the best-scoring equation program
skeletons (before parameter optimization) over iterations on the E. coli growth problem.

28

Published as a conference paper at ICLR 2025

@ equation(perans, e, T): \ @ equation(params, e, T): \

Initial stress with temperature dependence # Unpack the parameters

initial_stress = params[0] * e * (1 + alpha, beta, delta, e0, sigma_y, sigma_0, q, r, A, B = params
« params [1]+np.exp(-params [2] * (T-params [3])**2))
Linear elastic response

Transition factor between elastic and plastic region. elastic_response = alpha * e

s
alpha = 1 - (1-params[4])/(i+np.exp(-params[5]+*(e-params[6])))
v L # Nonlinear plastic response with temperature dependence
inear elastic term ! e
elastic_tern = params(7] + params[8]+e plastic_response = sigma_y + beta / (1 + np.exp(-delta * ((e - e0) / (L + A *
< (np.exp(B * T) - 1)))#+2))
Nonlinear plastic term

plastic_term = params[9]+T#+2 # Smooth transition between elastic and plastic regions
transition = 1 / (1 + np.exp(-q * (e - 1)))
Combine elastic and plastic responses smoothed_transition = 0.5 * (1 + np.tanh(q * (e - 1)))
total_stress = initial_stress * (1 - alpha) + (elastic_term +
» plastic_term)+alpha # Combine elastic and plastic responses using smooth transition
/ total_stress = elastic_response * (1 - smoothed_transition) + plastic_response *
return total_stress < smoothed_transition

10° ./ X
def equation(params, e, T):
Unpack the parameters
alpha, beta, delta, e0, sigma_y, sigma_0, q, r, A, B = params

/ / K return total_stress j

Temperature-dependent strain scaling factor
strain_scale = 1 + A * np.exp(B * T)

Elastic-plastic transition term with temperature dependence
terml = alpha * e / (1 + np.exp(-delta * ((e - e0 / strain_scale)*#2)))

Normalized MSE

- # Yield stress term with temperature dependence
term2 = sigma_y + beta / (1 + np.exp(-delta * ((e - e0 / strain_scale)*+2)))

Smooth step function for transition
smooth_step = 1 / (1 + np.exp(-q * (e - 1)))

Nonlinear hardening term
term3 = 0.5 * (1 + np.tanh(10 * (e - e0) * smooth_step + 5 * (1 - smooth_step) *
o (e - e0)))

1000 1500 2000 2500
Iterations

Initial yield stress term
term4 = sigma_0 * (1 - term3)

Smooth approzimation for stress calculation
smooth_approx = 1 / (1 + np.exp(-10 * (smooth_step - 0.5)))

Combine all terms to find total stress

stress = terml + (term2 - term1) * (term3 + smooth_approx * (term4 - term3)) /
<> (smooth_approx * term4 + (1 - smooth_approx) * (term2 - terml))

K return stress j

Figure 22: Performance Trajectory of LLM-SR (Mixtral) along with the best-scoring equation program
skeletons (before parameter optimization) over iterations on the Stress-Strain problem.

29

Published as a conference paper at ICLR 2025

ﬁef equation(params, B, S, T, pH): .
Unpack the parameters LLM-SR (Mlxtral)

Mu, K, Ks, Kt, Kh, E, F, G, H, I, T_opt, pH_opt = params

Temperature factor
temperature_factor = np.exp(-Kt * np.abs(T - T_opt) / E - ((T - T_opt) ** 2) /
= (2 * E *x 2))

pH factor
pH_factor = 1 / (1 + Kh # np.exp(np.abs(pH - pH_opt) / F))

Inhibition factor
inhibition_factor = 1 + I * np.clip(np.abs(pH - pH_opt) + np.exp(-np.abs(pH -
= pH_opt)), 0, 10)

Temperature-dependent growth factor

h_factor = G * (T - T_opt) + H

growth_factor = (1 + np.tanh(0.5 * (h_factor + np.arctan(h_factor)))) =*
—+ pH_factor * inhibition_factor

Kinetic factor (Monod)
kinetic_factor = S / (Ks + 8)

Growth rate term

growth_rate = Mu * B * np.where(
kinetic_factor > 1,
kinetic_factor / (1 + np.exp(-K * (kinetic_factor - 1))),
kinetic_factor)

Combine all effects to get final growth rate
growth_rate *= temperature_factor * growth_factor # np.maximum(1 - np.abs(T -
- T_opt) / 10, 0)

K return growth_rate J

@ equation(params, B, S, T, pH): LLM-SR (GPT 3.5) \

Unpack the parameters
Mu, alpha, Ks, Kt, Kp, Kd, gamma t, gamma p, T_opt, pH_opt = params

Temperature modulation factor
temp_factor = 1 / (1 + np.exp(gamma_t * (T - T_opt)))

pH modulation factor
pH_factor = 1 / (1 + np.exp(gamma_p * (pH - pH_opt)))

Population density effect
population_effect = np.power(B, alpha)

Substrate concentration effect (Monod)
substrate_effect = S / (S + Ks)

Temperature dependency
temperature_effect = np.exp(-Kt * np.square(T - T_opt))

pH dependency
pH_effect = np.exp(-Kp * np.square(pH - pH_opt))

Bacterial death rate
death_rate = Kd * B

Combine all effects to get the growth rate

growth_rate = (Mu * population_effect * substrate_effect *
temperature_effect * pH_effect - death_rate) * temp_factor *
— pH_factor

\ return growth_rate j

T log (log(pH))
pH X (b + s.pH + Tlog(b))

DSR

4 (—9.1757 x 107°B + 329934 x 107*B2S + 1.5599 x 10~°B>T — 3.96705 x 10~°B?pH
+ 6.62027 x 10758 +4.40703 x 10 *BS? — 6.75274 x 10~ 5BST — 1.55073 x 10~ *BSpH ubSR
—29761 x 1072BS — 5.48518 x 10 °BT? — 1.27722 x 10 °BTpH + 1.40836 x 10">BT
+8.81533 x 10~*BpH? — 1.14007 x 10~2BpH +3.00963 x 10~2B — 2.33351 x 10~5%
+3.01844 x 107°52T — 1.31112 x 10~*S?pH + 1.63188 x 107252 — 1.33597 x 10°ST?
—1.7635 x 107°STpH +4.1777 x 10*ST 4 2.98769 x 10~ *SpH? — 2.5354 x 10~>SpH
+3.0621 x 10738 +4.97662 x 107°T? + 3.06327 x 10~ *TpH? — 4.20817 x 10~ >TpH

+1.13549 x 1072T — 1.23534 x 10~ *pH> — 4.55259 x 10~ >pH? + 7.83677 x 10~ pH — 0.231108)

L en(on (e) g

[B X sin(3.5 X 1075 x T3)® x sin(cos(| sin(0.45pH)| + 0.2))°® PySR]

Figure 23: Final discovered equations from LLM-SR and other leading SR baseline methods (DSR, uDSR,
PySR for E. coli bacterial growth rate problem.

30

Published as a conference paper at ICLR 2025

def equation(params, e, T): . <\\\
/ # Unpack the parameters LLM-SR (Mixtral)

alpha, beta, delta, e0, sigma_y, sigma_0, q, r, A, B = params

Temperature-dependent strain scaling factor
strain_scale = 1 + A * np.exp(B * T)

Elastic-plastic transition term with temperature dependence
terml = alpha * e / (1 + np.exp(-delta * ((e - @0 / strain_scale)**2)))

Yield stress term with temperature dependence
term2 = sigma_y + beta / (1 + np.exp(-delta * ((e - €0 / strain_scale)**2)))

Smooth step function for transition
smooth_step = 1 / (1 + np.exp(-q * (e - 1)))

Nonlinear hardening term
term3 = 0.5 * (1 + np.tanh(i0 * (e - e0) * smooth_step + 5 * (1 - smooth_step) *
o (e - e0)))

Initial yield stress term
term4 = sigma_0 * (1 - term3)

Smooth approzimation for stress calculation
smooth_approx = 1 / (1 + mp.exp(-10 * (smooth_step - 0.5)))

Combine all terms to find total stress
stress = terml + (term2 - term1) * (term3 + smooth_approx * (term4 - term3)) /
<> (smooth_approx * term4 + (1 - smooth_approx) * (term2 - terml))

K return stress J

@f equation(params, e, T): LLM-SR (GPT 3.5) \

Unpack the parameters
k1, k2, k3, k4, k5, k6, k7, k8, k9, k10 = params

Stress in the elastic region
elastic_stress = k1l * e + k2 * T

Stress in the plastic region
plastic_stress = k3 * (e *+ 2) + k4 * T + kb

#Stress in the failure rTegion
failure_stress = k6 * np.exp(k7 * e) + k8 * (T #* 2) + k9

Smooth transition from elastic to plastic region
elastic_to_plastic = 1 / (1 + np.exp(-k8 * (e - k9)))

Smooth transition from plastic to failure region
plastic_to_failure = 1 / (1 + np.exp(-k10 * (e - k9)))

Stresses in all Tegions

total_stress = (
elastic_stress * (1 - elastic_to_plastic) * (1 - plastic_to_failure) +
plastic_stress * elastic_to_plastic * (1 - plastic_to_failure) +
failure_stress * plastic_to_failure

)

return total_stress

. %
(sin (exp (—e - T-exp (12) +¢—T)) sk |
(]

—351€% +2.29¢? - T +3.81€® — 0.92¢ - T — 0.30¢ - T — 409 ypSR
+1.017° ~ 20172 + 087T — log (T — log (¢*)) +2.71

; 2eos(T Y (e Y PySR
s (1.136 cos (cos(e) €+ 0.004 y

Figure 24: Final discovered equations from LLM-SR and leading SR baseline methods (DSR, uDSR, PySR) for
Stress-Strain problem.

31

Published as a conference paper at ICLR 2025

dv/dt

— True
—-+ LLM-SR
-—- PySR
..... UDSR

dv/dt

Time (t) Displacement (x) Velocity (v)

Velocity (v)

Figure 25: Qualitative evaluation of the performance of LLM-SR on Oscillation 2 problem compared to uDSR
and PySR baselines. Plots show the target acceleration with respect to time, displacement, and velocity.

Temperature

— 100°C
— 150°C
— 250°C
— 300°C

e (b) Temperature: 300°C

250

0 — Ground Truth
10 .
—- UMSR
— = PySR
-+ UDSR

Stress (MPa)

— Ground Truth
o -=- LLM-SR

0000 0025 0050 0075 _ 0100 0125 010 0175 07,
Strain . 2

0.000 0.025 0.050 0075 0100 0125 0150 0175
Strain

Figure 26: Qualitative evaluation of LLM-SR performance for Stress-Strain problem compared to uDSR and
PySR baselines. Plots show the target stress with respect to strain and temperature.

32

	Introduction
	LLM-SR Methodology
	Problem Formulation
	Hypothesis Generation
	Hypothesis Optimization and Assessment
	Experience Management

	Experiments
	Benchmarks and Datasets
	Experimental Setup
	Quantitative Results
	Qualitative Analysis
	Ablation Study

	Related Work
	Conclusion and Future Work
	Baseline Implementation Details
	Models
	Data Preprocessing and Model Execution

	Details of LLM-SR Method and Implementation
	Limitation of Feynman Benchmark Problems
	Additional Details on New Benchmark Problems
	Nonlinear Oscillator Equations
	E. coli Growth Rate Equations
	Material Stress Behavior Analysis

	Additional Ablation Study
	Additional Experiments
	Noise Robustness Analysis
	LLM-based optimization baselines
	LLM backbones

	Additional Qualitative Results

