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Abstract—Energy-efficient software helps improve mobile de-
vice experiences and reduce the carbon footprint of data centers.
However, energy goals are often de-prioritized in order to
meet other requirements. We take inspiration from recent work
exploring the use of large language models (LLMs) for different
software engineering activities. We propose a novel application
of LLMs: as code optimizers for energy efficiency. We describe
and evaluate a prototype, finding that over 6 small programs
our system can improve energy efficiency in 3 of them, up to 2x
better than compiler optimizations alone. From our experience,
we identify some of the challenges of energy-efficient LLM code
optimization and propose a research agenda.

Index Terms—Energy efficiency, Research agenda, Software
optimization, Large language models

I. INTRODUCTION

Energy efficiency has become a critical issue across various
domains, from mobile devices to large-scale data centers. On
mobile devices such as those running Android, energy effi-
ciency directly impacts battery life and accessibility, making
it a key concern for user experience [1]. On a larger scale, data
centers contribute significantly to climate change, accounting
for 4% of electricity generation in the United States [2] and
3% in the European Union [3]. Improving computing energy
efficiency is part of addressing environmental sustainability.

Previous approaches have focused primarily on physical
hardware, with limited discussion on improving the underlying
software for energy efficiency [4]. Efforts to design energy-
efficient programs have introduced energy models [5]-[8],
energy measurement tools [9], and energy-aware design pat-
terns [10]-[13]. However, the barrier to adopting these energy-
efficient practices remains high, often introducing complexity
accessible only to systems experts [14]. Software engineers
recognize energy efficiency as a desirable property [15]. How-
ever, it often loses out to organizational goals like latency
and throughput [4], due to the ineffectiveness of existing
methods in meeting the dynamic nonfunctional performance
requirements. LLMs like ChatGPT are transforming software
engineering by aiding in tasks like debugging and code
optimization [16], [17]. Although their potential for energy
efficiency has yet to be fully explored, LLMs show promise as
powerful aids in optimizing code for energy-aware practices.
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Fig. 1: Standard optimization prompts focus on speed, memory
optimization, and code readability. Our proposed energy opti-
mization prompts focus on reducing energy usage. One must
then ensure that optimizations actually reduce energy use, not
just performance metrics such as latency and FLOPS.

In this paper, we explore a novel approach to energy-
efficient software development. We ask: Can LLMs assist
developers in optimizing energy efficiency without compro-
mising performance or correctness? As shown in Figure 1,
we propose an automated tool designed to refactor software
with a primary focus on optimizing energy efficiency, going
beyond conventional performance metrics to directly target
energy usage reduction. This tool incorporates energy-aware
prompts that are input into a generator LLM alongside the
original code to produce more efficient program outputs. The
optimized code is then evaluated and refined through Natural
Language Feedback from an evaluator LLM, allowing for
iterative improvements to the code itself. This approach offers
the advantage of being portable — it is easy to set up,
and compatible with multiple programming languages with-
out significant modifications. We present preliminary results
from evaluating our prototype using the Energy-Language



benchmark in §III. In §IV we outline a research agenda for
extending these findings.

II. BACKGROUND AND RELATED WORKS

A. Energy-efficient Computing and Software

Energy-efficient computing focuses on reducing power con-
sumption, usually while maintaining performance or correct-
ness. Current solutions for energy-efficient software frequently
require heavyweight design approaches [18], [19], pattern cat-
alogues [12], [13], specialized programming languages [20], or
decision frameworks [21], which makes it difficult for software
engineers to adopt, implement, and subsequently maintain
energy characteristics after evolution.

Another challenge of energy-efficient software design is
that relationships between memory, latency, and energy are
counterintuitive. Common metrics for code performance such
as FLOPS, latency, and memory usage are not necessar-
ily strongly correlated with each other or with energy effi-
ciency [22]. On certain hardware, even reducing input sizes
may increase latency [23]. Furthermore, improving character-
istics such as parallelism [24] may increase energy usage [25].
Thus, creating code that avoids confounding performance met-
rics with energy efficiency is difficult, but critically important
if energy use is the primary metric of interest.

B. LLM-Driven Code Generation and Optimization

LLMs are transforming software engineering practices [16],
[17]. Recent experiments show LLMs assisting with error mes-
sage interpretation [26], cybersecurity defect repair [27], cloud
incident mitigation [28], and requirements elicitation [29].
Moreover, recent studies also evaluate LLMs on efficient code
generation and optimization, showing they can achieve both
without compromising correctness [30]-[32].

However, existing research primarily focuses on leveraging
LLMs to generate fast code, rather than energy-efficient code.
When energy consumption is the primary concern, current
code-generation LLMs may fall short, as they do not explicitly
consider the impact of their code on power consumption.
Nevertheless, building on previous work, we anticipate that
with appropriate adaptations, LLMs can be made to optimize
for energy efficiency, extending their capabilities beyond just
minimizing latency.

III. PROTOTYPE: DESIGN, IMPLEMENTATION, & EVAL.

We propose an approach to evaluate LLMs’ potential in
refactoring software for energy efficiency. As an initial test of
this concept, we developed a prototype of an automated LLM-
assisted tool for energy optimization. To ensure effectiveness,
all optimizations must maintain the original system behavior
without introducing semantic changes while improving energy
efficiency. This section outlines the design, prototype imple-
mentation, and preliminary evaluation of our approach.
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Fig. 2: Overview of our prototype. The core components of the
automated feedback loop are Energy-Aware Prompting (EAP)
and Energy Optimization Evaluation (EOE).

A. Design

Our system leverages state-of-the-art prompt engineering
techniques and LLM feedback loops, applying them uniquely
to the domain of energy measurement. The key to our design
lies in enabling the LLM to be energy-aware, guiding it to
generate code that not only optimizes for speed but also makes
significant improvements in energy efficiency. As we described
in §II-A, optimizing a program for energy efficiency is non-
trivial, since metrics associated with latency and throughput
(parallelism) are not necessarily correlated with power con-
sumption. To overcome this challenge, we incorporate energy
profiling mechanisms into the LLM feedback loop. The LLM
is given power-consumption data alongside latency, which is
used to adjust generated-code.

Figure 2 shows the prototype design. Following prior LLM
applications, we chose an automated feedback loop structure to
allow iterative improvement and repair. Our loop involves two
modules: Energy-Aware Prompting (EAP), and Energy Opti-
mization Evaluation (EOE). The EAP module integrates In-
Context Learning [33] and Chain-of-Thought Prompting [34]
to deliver detailed and informative instructions to the Gen-
erator LLM. the EOE module evaluates the correctness and
energy efficiency of the LLM-generated code, using an Eval-
uator LLM to provide feedback for iterative refinement.

B. Prototype Implementation

Automated Feedback Loop: This loop applies the GPT-
40 as two agents, building on methods proposed in prior
studies [35]-[37]. The AFL consists of a Generator LLM and
an Evaluator LLM. As shown in Figure 2, the original code
and Energy-Aware Prompting serve as inputs to the Generator
LLM. The Generator’s output is subsequently evaluated by
the Evaluator LLM, which assesses the code based on its
correctness and energy profile and provides recommendations
for refinement. By decoupling code generation from energy




data analysis, we ensure that each LLM remains focused on
its respective task, thereby improving overall performance.

Energy-Aware Prompting (EAP): In the Generator LLM,
we employed One-Shot, Chain of Thought (CoT), and self-
consistency prompting techniques to enhance the model’s
performance by providing sufficient contextual information
on energy-efficient computing. The prompt consists of three
components. First, the task for the Generator to perform is
described. Second, a brief code snippet, an optimized example,
and a CoT rationale behind the optimization are provided.
Third, we integrate self-consistency by prompting the Gen-
erator to consider multiple optimization strategies focused
on efficiency before selecting a final approach [38]. These
prompts encourage the LLM to reason more carefully, and
provide an efficient and correct solution.

Energy Optimization Evaluation (EOE): This module
has two objectives: (1) ensure the optimized code is compilable
and functionally correct, and (2) measure energy efficiency and
offer further optimization guidance.

The correctness evaluation involves two key steps. First, the
EOE module checks if the optimized code compiles success-
fully. If it fails, the Generator LLM receives the error message
and optimized code for Self-Reflection and correction [39],
[40]. Second, the EOE runs a regression test to verify logical
correctness. If runtime errors or output mismatches occur, the
LLM is iteratively prompted with expected and actual outputs
to refine optimization until the regression test passes, ensuring
the optimized code matches the original functionality.

Once correctness is confirmed, we assess the energy ef-
ficiency and latency of the optimized code. The Evaluator
LLM then analyzes the optimized code’s energy profile and
provides the Generator LLM with Natural Language Feedback
(NLF) for further optimization. The Evaluator is provided with
(1) the original code, (2) the code with the lowest power
consumption from the Optimization History Buffer, and (3)
the most recent optimized code. This helps the Evaluator
generate more precise feedback by correlating energy usage
with optimizations while learning from the best historical
example to drive further improvements.

C. Experimental Setup

Software Benchmark: Building on the prior research in
Android energy efficiency [41], [42], we selected Energy-
Language as the benchmark tool for our experiments [43].
It offers comprehensive support for a wide range of testing
algorithms across multiple programming languages and in-
cludes integrated energy measurement capabilities. Addition-
ally, Energy-Language is designed for scalability which facil-
itates easy incorporation of new codebases and programming
languages into the testing suite.

Power Consumption Measurement: We use the Energy-
Language’s built-in energy measurement system, which reads
data from Model-Specific Registers (MSRs) supported by
the Running Average Power Limit (RAPL) interface [44]-
[46]. To measure energy using MSRs, the RAPL registers
accumulate energy usage over time. Energy efficiency is

determined by reading the relevant MSR registers before
and after a workload and calculating the difference. These
values are scaled to Joules using energy units from the
MSR_RAPI_POWER_UNIT register, allowing precise analysis
of power usage for different components.

D. Preliminary Results and Analysis

We evaluated our prototype using the C++ benchmark,
consisting of eleven unique programs. We successfully ran
six of the programs with the results presented in Table I
The remaining five programs were not tested owing to com-
pilation errors, runtime issues, or GPT-40 model token limit
constraints. We collected data from three different optimization
approaches: the original un-optimized program without the
-03 flag, the compiler-optimized code with the —03 flag, and
the LLM-optimized code without the —03 flag.

Comparison of Results with GCC -03: As shown in Ta-
ble I, the results indicate that our framework reduces energy
consumption in 83% of the programs tested and outperforms
the compiler optimization baseline in 50% of them. Further-
more, the results from our framework are characterized by a
much higher Standard Deviation relative to the compiler opti-
mization baseline. This is most clearly seen in the fannkuch-
redux test where the Standard Deviation for the measured
energy and latency for our framework is 883 and 5441. It is
also notable that, in the case of the spectral-norm benchmark,
compiler optimizations increased energy consumption from
31J to 57J, while our code significantly reduced energy usage,
bringing it down from 31J to just 15J.

Observations and Discussion: Our prototype illustrates
the potential for LLM-generated energy-aware optimizations.
We observed the LLM was proficient at improving memory
traffic patterns, leading to reduced energy usage. For instance,
in spectral-norm, the LLM replaces Streaming SIMD Ex-
tensions (SSE) with Advanced Vector Extensions (AVX2),
which performs twice as many floating-point computations
in parallel. Additionally, the LLM-generated code processed
data in larger chunks (size 256 bit vs. size 128 bit), reducing
memory traffic and thus energy usage. These enhancements
demonstrate the LLM’s ability to optimize beyond the scope
of individual functions. These results also highlight our frame-
work’s ability to reduce energy usage in a deliberate manner.

We highlight two limitations of the prototype. First, there
is significant variance in the energy consumption of LLM-
optimized software across successive iterations. We conjecture
two causes of this property. First, LLM output is sensi-
tive to hyperparameter choices such as Top-K and Temper-
ature; therefore the input-output relationship can be non-
deterministic. Though this non-determinism can be controlled
(e.g., with Temperature= 0) using a non-zero Temperature
allows for more substantial optimization attempts. Second, we
hypothesize that prompting alone is insufficient. Our prototype
relies on prompting and learning from feedback, but uses
existing model parameters. As a result, the LLM may not be
properly conditioned on applying energy-aware optimizations.




Table I: Preliminary results of our prototype. We illustrate the performance of two optimization strategies (compiler, ours) across
six algorithms compared with a baseline implementation. LLM improvements over the compiler optimizations are indicated
with green, and degradation in red. Values are rounded to the nearest integer.

Prosram Size Original Code Compiler Optimized LLM Optimized

2 Latency (ms) | Energy (J) | Latency (ms) | Energy (J) | Latency (ms) | Energy (J)

binary-trees | 139 lines (9 funcs) 760 7 538 LSl 187954 | 20- 64
fannkuch-redux 198 lines (5 funcs) 6536 ‘ 1119 1605 ‘ 259 5787 — 17918 ‘ 953 — 2945
n-body 184 lines (6 funcs) 20905 ‘ 1150 2056 ‘ 115 11601 — 22575 ‘ 608 — 1193

pidigits 68 lines (5 funcs) 566 ‘ 28 592 ‘ 29 525-542 | 27-28
k-nucleotide 154 lines (11 funcs) 3685 \ 476 865 \ 85 3677 - 5318 | 478 — 789
spectral-norm 135 lines (8 funcs) 176 | 31 409 | 57 87 — 6637 | 15-342

As a second limitation, the Generator LLM was effective
at resolving compiler errors, but struggled to address run-time
errors. Unlike compiler errors, run-time errors often do not
yield an explicit error message. As a result, in longer and
more complex programs such as fannkuch-redux, n-body, and
k-nucleotide, the LLM required more iterations to address this
type of error. Additionally, we observed that spending more
than three iterations on code-refinement led an increase in
energy usage and latency. This indicates that the LLM lacks
an understanding of run-time error-handling or early-stopping
criteria for code-optimization.

IV. FUTURE PLANS
A. Improvements to Evaluation

Baseline Analysis: In our preliminary evaluation, we used
the gcc —03 optimization flag for C++ benchmarks. We will
extend similar analysis to other languages, such as Java with its
JIT optimizer. Additionally, we will benchmark our approach
against the recently released GPT-o1 model which has native
chain-of-thought ability. We will evaluate our pipeline on
larger applications including standard data center benchmarks
such as the Facebook benchmark of datacenter cloud applica-
tions, DCPerf [47], and standard HPC benchmarks evaluated
in the Green500 work [48].

Extended SOTA Comparison: We plan to evaluate state-
of-the-art code-generation models on baseline programs, and
compare their performance with our prototype. This will
identify shortcomings and potential improvements for energy-
aware LLM code generation, paving the way for additional
research efforts. It will also be interesting to compare with
other approaches for energy efficiency, such as search-based
software engineering approaches.

B. Prototype Framework Refinements

LLM Prompting: We will refine our prompts. Building on
previous work, we will apply prompt engineering methods
such as few-shot learning, structured CoT prompting [49],
and prompt chaining. This will yield the first catalog of LLM
prompts for energy efficiency.

LLM Fine-tuning: We will fine-tune the LLM on a curated
dataset of energy-efficient algorithms and low-power software
practices. For this purpose, we will develop a new training
dataset for energy-efficient computing, focusing on efficiency-
critical data center software and HPC algorithms. Inspired by

prior work [50], we will perform large-scale data collection
from GitHub repositories, using a language model to analyze
commit messages and identify energy-efficiency commits. This
dataset would allow us to fine-tune the LLM performance.

Hardware-Aware Code Generation: Our current ap-
proach focuses on optimizing specific components of the
system or hardware at the code level without consid-
ering its deployment scenario (system resources, hard-
ware architecture, etc.). We believe integrating a Retrieval-
Augmented-Generation (RAG) framework [51] that relates
code-modifications to hardware and system specifications
could rectify this issue. In spectral-norm, we observed GPT
do this without specific prompting.

C. Broader Research Directions

Weighing Costs of LLM-Driven Energy Optimizations:
Al systems such as LLMs are power hungry. We will assess
both the energy and computational costs of using LLMs
for software energy-efficiency optimization, comparing the
energy usage of different LLMs for the same tasks. Based
on the findings, we will develop adaptive strategies, such as
triggering LLM-based optimizations only when significant
energy savings are expected.

Multi-Objective Optimization: We will explore whether
LLMs can be adapted for multi-objective optimization, bal-
ancing energy efficiency with key performance metrics like
latency and throughput. Developing tools that optimize across
these competing objectives would enhance LLM applicability
in real-world scenarios where such trade-offs are critical.
LLMs could also generate code across a spectrum of efficiency
constraints. In this context, formal verification techniques
might be incorporated for stronger correctness guarantees [52].

Second-Class Citizenship is Better than None: After
decades of calls for energy-aware computing, it seems
clear to us that energy will not be prioritized as much as
business-critical metrics such as latency and throughput.
We hope, however, that it will not be ignored. We suggest
that engineers and researchers might approach energy as
a secondary performance metric, one that should still be
considered after primary metrics are met. This would
require engineering tools and processes that support energy
considerations in a lightweight way, and that can be applied
after the primary engineering goals are met. Our LLM
approach may become one such tool.




V. CONCLUSION

In this paper, we explored the potential of applying LLMs
to energy-efficient software development and introduced an
automated approach for energy-aware code optimization. Our
initial experiments demonstrate that LLMs can improve energy
efficiency while maintaining code correctness. Based on this
emerging result, we discuss our immediate and longer-term
research plans.

Data availability: Code, prompts, and data are available:
https://anonymous.4open.science/t/E2COOL-5CDA4.
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