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Abstract—The rapid advancement of Quantum Machine
Learning (QML) has introduced new possibilities and challenges
in the field of cybersecurity. Generative Adversarial Networks
(GANs) have been used as promising tools in Machine Learning
(ML) and QML for generating realistic synthetic data from
existing (real) dataset which aids in the analysis, detection,
and protection against adversarial attacks. In fact, Quantum
Generative Adversarial Networks (QGANs) has great ability for
numerical data as well as image data generation which have
high-dimensional features using the property of quantum su-
perposition. However, effectively loading datasets onto quantum
computers encounters significant obstacles due to losses and
inherent noise which affects performance. In this work, we study
the impact of various losses during training of QGANs as well
as GANs for various state-of-the-art cybersecurity datasets. This
paper presents a comparative analysis of the stability of loss
functions for real datasets as well as GANs generated synthetic
dataset. Therefore, we conclude that QGANs demonstrate su-
perior stability and maintain consistently lower generator loss
values than traditional machine learning approaches like GANs.
Consequently, experimental results indicate that the stability of
the loss function is more pronounced for QGANs than GANs.

Index Terms—Generative Adversarial Networks, Quantum
Computing, Loss Functions, Entropy

I. INTRODUCTION

QML has gained remarkable interest among researchers
and became a prominent field of study. Google recently
made a significant breakthrough by proclaiming the attainment
of ”quantum supremacy”. While the classical supercomputer
would take an estimated 10,000 years to complete the task,
Google’s quantum computer accomplished it in just 3 minutes
and 20 seconds [1]. That is why, quantum computing has
caught huge attention in recent years, because it can solve
complex problems using special features like superposition and
entanglement, which regular computers can not handle [2-3].

Also, researchers are using machine learning for network
security in different ways to stop various attacks, which
make networks crash. They are also working on making sure
important data gets sent quickly and smoothly over industrial
wireless networks. They are focusing on making the rules for
how devices communicate really well to support important
jobs in factories and other industrial places [4-5]. Also, Akter
et al., 2023 used different machine learning approaches for the

§This research has been made in the context of the Excellence Chair in Big
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prediction of risk factor for elements of the cryptocurrency
market [6]. Moreover, Rahman et al., 2023 used K-means
clustering to make the datasamples as clustered input to the
Random Forest classifier for big data distributed systems for
detecting in a high accuracy using big data processing because
it was introduced to use computing capabilities across clusters
of machines in the case of huge amount of data [7]. Gener-
ative Adversarial Networks (GANs) have gained widespread
recognition and applications as powerful generative models
in machine learning [8], also related to deep learning for
network intrusion detection problems [28]. Moreover, they
focused on enhancing this work to address the imbalanced
dataset problem using GANs by generating datasamples for
specific classes so that the imbalanced dataset issues can
be resolved for IDS in distributed computing using PySpark
[9]. The related problem of efficiently managing datasets has
been also investigated by several research proposals, such
as event-based compression [23] and privacy-preserving [25]
frameworks, handling large data streams and sensor networks
[24], or data visualization [26] and adaptive hypermedia using
object-oriented approaches and XML [27].

Researchers in diverse fields have proposed various GANs
variants. For instance, conditional generative adversarial nets
(cGAN) introduced by Mirza and Osindero in November
2014 greatly improved image generation by incorporating data
point labels as conditions [10]. Radford, Metz, and Chintala
proposed Deep convolutional generative adversarial networks
in November 2015 addressed gradient instability through the
integration of convolutional networks [11]. Further advance-
ments include the introduction of least squares generative
adversarial networks (LSGAN) by Mao et al. in January 2016,
which mitigated issues like vanishing gradients, poor image
quality, and mode collapse by adopting the least squares loss
function [12]. Additionally, the theoretical insights provided
by Arjovsky, Chintala, and Bottou in January 2017 led to
the development of the Wasserstein GAN (WGAN) algorithm.
WGAN effectively resolved the vanishing gradient problem
and training instability by incorporating the Wasserstein dis-
tance into its loss function, resulting in a more diverse sample
generation [13-14].

In our study, we analyzed the stability of various loss
functions when training Large Language Models (LLMs) on
cybersecurity datasets—specifically, malicious prompt injec-



tion detection [15-16] and HIPAA safeguard compliance clas-
sification [17]. Fine-tuned LLMs such as Multilingual BERT
and domain-specific embeddings consistently demonstrated
smoother and more stable convergence, particularly when reg-
ularization techniques and balanced datasets were applied. For
the HIPAA rule classification task, loss variability was minimal
due to the semantic richness of the input embeddings, lead-
ing to faster convergence with fewer fluctuations. Similarly,
prompt injection datasets showed steady loss decline with
minimal oscillation, especially when LLMs were pre-trained
or fine-tuned, confirming previous findings that LLMs reduce
training sample dependence [18]. The probabilistic nature of
quantum circuits contributed to smoother gradients and less
frequent mode collapse during training. While classical GANs
exhibited unstable adversarial loss dynamics—often oscillating
without convergence—QGANs maintained consistent learning
curves, reflecting better equilibrium between generator and
discriminator. Thus, both LLMs and QGANs, in their respec-
tive domains, contribute significantly to stabilizing training
processes and minimizing loss volatility across cybersecurity
and compliance tasks.

Researchers are becoming interested in using quantum al-
gorithms to fix many issues like few datasamples [19], and
reduce the time complexity of machine learning algorithms
[20], etc. QuGAN achieves almost similar performance with
reduced parameter set compared with classical GANs [21].
QGANs have great ability for image generation which have
high-dimensional features using the property of quantum su-
perposition [22]. This is the first work to explore and compare
the stability and convergence behaviors of loss functions across
GAN and QGANs. Previous works focused on task perfor-
mance, but none analyzed loss dynamics in these paradigms.

Our research is structured into several sections: Section II
provides a detailed information on state of the art cybersecurity
datasets. Section III and Section IV gives an overview of
quantum computing and provides loss Functions respectively.
The flowchart of this work is described with a diagram in
Section V. Also, results and discussion is provided in Section
VI. In the final section, we conclude the summary and finding
of this work.

II. LOSS FUNCTIONS

Loss functions are fundamental components in the training
of Generative Adversarial Networks (GANs) and Quantum
Generative Adversarial Networks (QGANs). In GANs, binary
cross entropy is employed to optimize the discriminator and
generator, while QGANs utilize diverse loss functions, such as
Jensen-Shannon divergence, to quantify the disparity between
real and generated quantum distributions. The selection of
effective loss functions is vital for ensuring stable convergence
and generating superior synthetic data in both GANs and
QGANs.

A. Loss Function of GANs

Generative Adversarial Networks (GANs) have gained sub-
stantial acclaim in diverse fields owing to their versatility

and broad applicability. This section presents a comprehensive
examination of the underlying principles driving GANs and
delves into the complexities of their training process.

The origin of Generative Adversarial Networks (GANs)
can be attributed to the groundbreaking research conducted
by Goodfellow et al. in 2014 [8]. GANs feature a unique
architectural framework, vividly depicted in Fig. 1, comprising
two key components: a generative network denoted as G and
a discriminative network referred to as D.

The generative network G serves as a creator by taking
a random noise vector, z, as input, adhering to either a
Gaussian or uniform distribution. Employing a sophisticated
mapping mechanism, the generator G transforms z into a
novel probability distribution, generating synthetic samples
represented as G(z).

In contrast, the discriminative network D functions as a
binary classifier, processing two distinct types of inputs. It
encounters the counterfeit samples, G(z), produced by the
generator G, as well as authentic samples denoted as x,
sourced from real datasets. The discriminator D endeavors
to estimate the likelihood of an input sample originating from
the genuine dataset rather than the artificially generated one.

Inspired by game theory, GANs operate as a competitive
interplay between the generator and the discriminator. The
primary objective of the generator is to produce synthetic
samples that closely resemble real data, effectively deceiving
the discriminator D. Conversely, the discriminator strives to
discern between fake and authentic samples. This adversar-
ial relationship fosters a dynamic equilibrium, enabling the
generator to progressively enhance its capability to generate
samples aligning with the distribution of real data, rendering
the discriminator unable to differentiate between genuine and
synthetic samples.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))] (1)

Where x is used to express the real observations from
pdata(x). E and z are expectation and the vector respectively.
During training, the generator and discriminator iteratively
strengthen their networks. The value of the objective function
of Generative Adversarial Networks (GANs) is a minimax
game (Equation 1) that maximizes the discriminator’s accuracy
in classifying real and generated samples. The generator
maximizes D(G(z)) to deceive the discriminator, minimizing
log(1 − D(G(z))). The discriminator uses cross entropy to
differentiate real data from generated data, maximizing the
overall objective function V (D,G). The generator is op-
timized with a fixed discriminator. Research indicates that
the discriminator achieves optimality when it satisfies the
condition D∗(x) = pdata(x)

pdata(x)+pg(x) . When both have sufficient
capacity, the model reaches a Nash equilibrium where discrim-
inating between real and synthetic data becomes challenging.

B. Loss Function of QGANs
A Survey Quantum Generative Adversarial Networks

(QGANs) have emerged as algorithmic frameworks that in-



tegrate classical and quantum elements, amalgamating Gen-
erative Adversarial Networks (GANs), and Quantum Machine
Learning. In 2018, the Quantum Generative Adversarial Learn-
ing (QGAL) protocol was proposed by Lloyd, which explored
potential scenarios for adversarial learning and speculated on
the possibility of QGANs achieving quantum supremacy and
unlocking unprecedented computational capacities. To address
the limitations of classical GANs in generating discrete data,
Situ et al. proposed an innovative solution in October 2018.
They integrated quantum Born rules into QGANs, comple-
menting classical GAN theory and enhancing the efficacy of
discrete data generation. In January 2019, Hu et al. success-
fully implemented QGANs within a superconducting quantum
circuit which is depicted in (Fig. 2), achieving an impressive
fidelity of 98.8% between the generated quantum state and
the actual quantum state. This groundbreaking achievement
highlighted the exponential advantage QGANs hold over their
classical counterparts. A specialized QGAN was proposed
which presented heightened learning challenges due to the
generation and assimilation of quantum data, alongside the
consideration of wave function phases. Finally, Zeng et al.
made significant strides in May 2019 by designing a quantum-
classical hybrid QGAN model.

Data observations gl from the quantum generator and we
chosen training data observation xl, where l = 1, . . . ,m. We
can wrire the qGANs’ loss functions of the generator by the
given equation:

LG(ϕ, θ) = − 1

m

m∑
l=1

logDϕ(g
l),

and, the discriminator is:

LD(ϕ, θ) =
1

m

m∑
l=1

(
logDϕ(x

l) + log(1−Dϕ(g
l))

)
,

According to the discriminator’s parameters ϕ and the gener-
ator’s parameters θ, the loss functions are optimized.

C. Entropy for QGANs

In the context of Quantum Generative Adversarial Networks
(QGAN), the entropy for the generator and discriminator refers
to the level of uncertainty or randomness in the generated data
and the discriminator’s classification decisions, respectively.
Entropy can be computed using the formula for Shannon
entropy for the Generator and the Discriminator:

EntropyGenerator = −
∑
i

pi log(pi)

EntropyDiscriminator = −
∑
i

qi log(qi)

Where pi represents the probability of each data sample
being generated by the generator, and qi represents the prob-
ability of each data sample being classified correctly by the
Discriminator.

Moreover, the generator and the discriminator can be trained
with binary cross entropy which is known the loss function:

L(θ) =
∑
j

pj(θ) [yj log(xj) + (1− yj) log(1− xj)] ,

where xj are observations and yj to the corresponding labelled
observation.

Fig. 1. The architecture of a typical models with generator (G) and
discriminator (D) for GANs.

Fig. 2. The architecture of a typical models with generator (G) and
discriminator (D) for QGANs.

III. METHODS

Our research successfully employed two neural networks,
specifically a quantum generator and a classical discriminator,
to accomplish our goal. The quantum generator utilized a
quantum neural network, while the classical discriminator was
implemented using PyTorch. To optimize hardware efficiency,
we adopted a hardware-efficient ansatz with six repetitions
for the quantum generator. This ansatz involved parameterized
quantum circuits with RY and RZ rotations, as well as CX

gates, which is built upon the dataset observations as input
states.

We were very careful for selection of generator parameters
considered circuit depth which enables the incorporation of
more intricate structures. This deeper circuit depth plays a
pivotal role in accurately capturing and representing the ob-
servations, which helps comprehensive analysis. The quantum
generator with chosen ansatz and its corresponding parameters
collaborated with the classical discriminator implemented in
PyTorch. Both models were trained using a manual imple-
mentation of the binary cross-entropy loss function to assess
gradients.

We proposed the integrated framework (Fig. 3) in which
high-quality synthetic data is successfully generated from
existing datasets using Generative Adversarial Networks
(GANs). The process involved in the strengths of GANs to



Fig. 3. The Flowchart to Investigate the Convergence Behaviours of GANs
and QGANs

create synthetic data that closely mirrors the characteristics
of the original datasets. This synthetic dataset, along with the
existing dataset, was then fed separately into typical Quan-
tum Generative Adversarial Networks (QGANs) to examine
the convergence behaviors of their respective loss functions
with the convergence behaviors by GANs. By comparing the
performance of QGANs when trained on both synthetic and
original datasets, we aimed to gain deeper insights into their
learning dynamics and effectiveness. The results highlighted
the potential of synthetic data in enhancing the training process
and provided valuable information on how QGANs can adapt
to different data sources. This integrated approach underscores
the importance of combining classical and quantum machine
learning techniques to address complex data challenges in
cybersecurity.

However, the classical discriminator is implemented as
a PyTorch-based neural network that follows its advanced
capabilities with automatic gradient computation. This fea-
ture streamlines the training process and can optimize the
discriminator’s parameters efficiently. By using the strengths
of both the quantum generator and the classical discriminator,
the system benefits from their complementary nature which
leads to enhanced performance and more accurate generation
and discrimination of data samples than GANs of classical
computing. The integration of these components enables a

TABLE I
LOSS BY GANS FOR EPOCH 10000 (REAL DATASET)

Dataset Network Min. loss Max. loss
UNSW Generator 0.33 14.45

Discriminator 0.12 2.6
NSL-KDD Generator 0.32 2.9

Discriminator 0.1 1.2

robust framework for training and analysis tasks in quantum
generative adversarial networks.

IV. RESULTS AND DISCUSSION

In our research, we utilized Google Colab as a powerful
computing platform to perform quantum computations and
implement classical ML as well as Quantum ML. Google
Colab provides a cloud-based environment with access to
quantum computing resources which enables us to leverage
quantum capabilities for our experiments. With the aid of
user-friendly interface and integration with QGAN libraries,
we efficiently executed the QGAN algorithms and conducted
quantum simulations in colab. This enabled us to explore the
potential of QGANs and quantum computing in generating
synthetic data and advancing research in the field of quantum
machine learning. Access to quantum processors is typically
provided through the Google Quantum Computing service
through the Quantum Computing API which allows users to
submit quantum circuits and execute them. We trained classical
ML with cyber dataset, and then QML will be trained to
observe the stability as well as convergence.

We used two datasets. The UNSW dataset [29] comprises
various features critical for cybersecurity tasks like intrusion
detection and anomaly classification. Key features include
protocol type (indicating the network protocols used, such
as TCP, UDP, and ICMP), service (representing network
services like HTTP, FTP, and SMTP), source and destina-
tion IP addresses (helping identify malicious communication
patterns), and source and destination ports (which can reveal
uncommon or suspicious activity). The NSL-KDD dataset [30]
consists of a training subset with 125,973 records and a test
subset containing 22,544 records. For supervised modeling,
key features include protocol type, service, bytes transferred
(src and dst), and several destination host metrics, including
srv count, same srv rate, and different srv rate.

Firstly, classical ML has consistently higher losses for
UNSW dataset than the NSL-KDD dataset. While training the
generator and the discriminator of GANs, we observed that
ML encounters greater challenges and difficulties in generating
synthetic data than QML. It is also noted that the higher loss
values suggest a higher degree of fluctuations and potentially
slower convergence during training, which may be attributed
to the complexity and variability of the UNSW dataset. In
contrast, the NSL-KDD dataset appears to be more stable to
the GANs model.

TABLE I provides a summary of the GANs training results
for both the datasets. The table includes information on the



dataset, the type of network (generator or discriminator),
epochs and the minimum and maximum loss values recorded
during training.

For the UNSW dataset, the generator got a minimum loss
of 0.33 and a maximum loss is 14.45, while the discriminator
has a minimum loss and a maximum loss which are 0.12
and 2.6. On the other hand, for the NSL-KDD dataset, a
minimum loss is 0.32 for the generator and a maximum loss
is 2.9 for discriminator, while a minimum loss and maximum
losses are 0.1 and 1.2 respectively. These outcomes suggest
that the GAN model faced higher losses for the UNSW dataset
compared to the NSL-KDD dataset, both in terms of generator
and discriminator losses. This could indicate that the GANs
model struggled more with the complexity and variability of
the UNSW dataset which results in higher fluctuations and
potentially slower convergence during training.

During QGANs training, the loss function progress of the
generator and the discriminator (left column) is illustrated for
real and synthetic datasets (UNSW), and the right column
displays the convergence of the relative entropy for real
and synthetic datasets. TABLE II presents the loss functions
during the training of two networks, namely the Generator
and Discriminator, for the UNSW dataset. The loss values are
recorded as the minimum (Min. loss) and maximum (Max.
loss) achieved during the training process. Additionally, the
stability of each network is indicated by the Stable column.
For the Generator network trained on real data, the minimum
loss achieved is 0.602, while the maximum loss is 0.730, with
a stable value of 0.693. The Discriminator network trained on
real data exhibits a minimum loss of 0.688, a maximum loss
of 0.698, and a stable value of 0.692.

TABLE II
LOSS FUNCTIONS-QGANS: (LEFT COL. (UNSW))

Networks Dataset Min. loss Max. loss Stable
Generator Real 0.602 0.730 0.693

Discriminator Real 0.688 0.698 0.692
Generator Synthetic 0.666 0.806 0.694

Discriminator Synthetic 0.692 0.697 0.694

TABLE III
LOSS FUNCTIONS (QGANS): (LEFT COL. (KDD))

Networks Dataset Min. loss Max. loss Stable
Generator Real 0.675 0.753 0.693

Discriminator Real 0.691 0.696 0.693
Generator Synthetic 0.678 0.802 0.694

Discriminator Synthetic 0.692 0.696 0.694

On the other hand, when the Generator network is trained
on synthetic data, the minimum loss obtained is 0.666, while
the maximum loss reaches 0.806. The stable value for the
Generator network with synthetic data is 0.694. The Dis-
criminator network, when trained on synthetic data, has a
minimum loss of 0.692, a maximum loss of 0.697, and a
stable value of 0.694. Overall, the presented table provides
valuable information about the loss functions and stability of

TABLE IV
ENTROPY IN QGANS

Dataset-Name Type Epochs Max. diff. Min. diff.
UNSW Real 100 0.56 0.21

Real 500 1.19 0.07
Synthetic 500 0.72 0.04

NSL-KDD Real 100 0.48 0.21
Real 500 0.52 0.02

Synthetic 500 0.69 0.03

the Generator and Discriminator networks during the training
process on the UNSW dataset.

In the case of QGANs training, the loss function progress of
the generator and the discriminator (left column) is illustrated
for real and synthetic datasets (NSL-KDD), and the right col-
umn displays the convergence of the relative entropy for real
and synthetic datasets. The provided TABLE III displays the
loss functions observed during the training of two networks,
the Generator and Discriminator, on the NSL-KDD dataset. It
includes the minimum (Min. loss) and maximum (Max. loss)
loss values achieved during the training process, along with
the stability (Stable) of each network.

For the Generator network trained on real data from the
NSL-KDD dataset, the minimum loss recorded is 0.675, while
the maximum loss is 0.753. The stable value for the Generator
network with real data is 0.693. The Discriminator network,
when trained on real data, exhibits a minimum loss of 0.691, a
maximum loss of 0.696, and a stable value of 0.693. Similarly,
when the Generator network is trained on synthetic data from
the NSL-KDD dataset, the minimum loss attained is 0.678,
and the maximum loss is 0.802. The stable value for the
Generator network with synthetic data is 0.694. On the other
hand, the Discriminator network, when trained on synthetic
data, demonstrates a minimum loss of 0.692, a maximum loss
of 0.696, and a stable value of 0.694. In summary, the table
provides a concise overview of the loss functions and the
stability of the Generator and Discriminator networks during
their training on the NSL-KDD dataset.

The TABLE IV presents a comparative analysis of entropy
values across different datasets, data types, and epochs, pro-
viding insights into the level of uncertainty and randomness
in the generated data and the discriminator’s classification
decisions during the training of the QGAN. In the case of
UNSW dataset and epochs 500, the generator gets a minimum
and maximum values of relative entropy were 0.07 and 1.19
and these values are 0.04 and 0.72 for the synthetic dataset.
On the other hand, for the NSL-KDD dataset, a minimum and
maximum relative entropy are 0.02 and 0.52 respectively. For
the synthetic dataset, 0.03 and 0.69 are the values of minimum
and maximum relative entropy respectively.

Based on the presented results, it can be concluded that
QGANs demonstrate greater stability in generating synthetic
datasets compared to traditional GANs when applied to cyber
datasets. These research findings have significant implications
in the realm of cybersecurity, as QGANs improved stability



aids in preventing adversarial attacks by producing more
reliable and robust synthetic data. By taking the advantages,
QGANs offers promising solutions in enhancing the security
and resilience of cyber systems against potential threats. These
insights contribute to the advancement of data generation
techniques and reinforce the importance of exploring quantum-
based approaches for addressing challenges in cybersecurity.

V. CONCLUSIONS

This paper presented a comparative analysis of the stability
of loss functions in GANs and QGANs for two prominent cy-
bersecurity datasets. We investigated the convergence behavior
and variability of loss functions during the training process.
Experimental results indicate that the instability of the loss
function is more pronounced in the UNSW dataset compared
to the NSL-KDD dataset. The most important finding is
that QGANs demonstrated significantly lower generator loss
values, with ranges peaking at 0.5 to 1 for both datasets.
The observed discrepancy in loss function behavior highlights
the challenges associated with achieving stable convergence
during training. The wider range of generator loss values in
GANs indicates increased fluctuation and potentially slower
convergence. Conversely, QGAN demonstrates superior stabil-
ity, maintaining consistently lower generator loss values and
exhibiting smaller variations for both datasets.
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