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Abstract 
 

The accuracy of wind speed prediction is critical to wind farm development and operation, including site and turbine 

selection, energy production forecasting, and grid management. The increasing utilization of wind energy has required 

scientists to improve the prediction accuracy of the current approaches to maximize wind energy generation and 

utilization. In the field of wind energy, machine and deep learning methods have shown advantages in accurately 

forecasting data, such as wind speed and wind direction. This study focuses on evaluating the capabilities of Long 

Short-Term Memory (LSTM) models to consistently predict short-term wind speeds using different amounts of 

training data to test the model’s generalizability and robustness. An LSTM model was trained using different sample 

sizes of training data and features, while the testing accuracies of the trained LSTM models were used to evaluate the 

models and compared to investigate the impacts of training data sizes and features. In addition, data from three 

locations with varying terrain and weather conditions was used to evaluate the performance of the trained LSTM 

model. The model was trained on data from each selected location and tested on the others to assess its predictive 

accuracy and generalizability across different geographic settings.  
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1. Introduction 
In the field of wind energy, accurate forecasting and resource allocation are crucial for maximizing power output, 

managing grid stability, and reducing operational costs at wind farms. Nevertheless, the inherent variability of wind 

presents a significant challenge for wind farm operators due to its complex nature and influence of several factors 

such as atmospheric processes, local topography, and fine-scale temporal and spatial variations. Nowadays, 

researchers classify the forecasts of wind speed based on the time scale, mostly in short-term forecasting (minutes to 

hours), medium-term forecasting (hours to days), and long-term forecasting (weeks to years). The rise in wind energy 

developments around the world has made short-term wind forecasting an essential tool for transmission system 

operators and power traders, particularly in regions with significant wind power integration to balance the supply and 

demand of energy [1]. Over the past five decades, researchers have dedicated considerable effort to enhancing the 

accuracy of wind speed and direction predictions at wind sites. Various approaches have been employed to improve 

wind forecasting, including physical methods, statistical models, and artificial intelligence (AI) algorithms [1]. In 
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recent years, AI-based models have gained attention across diverse fields of study, particularly due to their high 

accuracy in prediction, classification, and anomaly detection tasks [2]. Currently, the Long-Short Term Memory 

(LSTM) method has become one of the most prominent algorithms for prediction across several fields, due to its 

capacity to handle sequential data over time and the advantages it has shown in the analysis of patterns, future 

predictions, and real-time monitoring [3].  

 

The goal of this study is to evaluate whether LSTM models can consistently predict next hour wind speed across 

different geographic locations using different amounts of historical wind speed training data and a small number of 

randomly selected features, thereby testing the model's generalizability and robustness. The research method involved 

training an LSTM model with different sample sizes of training data and features to assess the impact of these elements 

on prediction accuracy. This approach aims to contribute to the ongoing efforts to improve wind forecasting 

techniques, ultimately enhancing the efficiency and reliability of wind energy production. 

 

2.  Background 
Despite the significant growth of the wind energy sector, the forecasting of wind conditions is considered as one of 

the most challenging tasks in the field as wind farms require accurate forecasting of available resources to maximize 

energy generation. To advance research in clean energy and enhance the efficiency of wind power resources, it is 

important to continue exploring prediction methods aimed at improving the forecasting of wind energy sites, especially 

with the rise of machine and deep learning models.  In recent years, several algorithms have been utilized to predict 

wind speed and wind direction, LSTM networks being one of the most studied ones due to their effectiveness in 

modeling sequential data [1,4,5]. In addition, researchers have also focused on exploring the capabilities of LSTMs 

with different variations, such as using LSTMs to predict wind speed profiles over complex terrains [6], or the 

investigation of strategies to balance computational efficiency and prediction accuracy in wind-induced response 

predictions, experimenting with various modifications during the model training process [6]. For this study, the 

impacts of training size and meteorological factors in the performance of next-hour predictions with LSTM models 

were further explored. Meteorological data for three different cities in Texas was employed to evaluate the 

performance of the LSTM model when varying training input size and features.  This study selected the cities of 

Corpus Christi, El Paso, and Lubbock to analyze various factors that may impact the accuracy of wind speed 

predictions. These factors included sample sizes, meteorological features, and terrain characteristics, which can 

influence the training and testing of the machine learning algorithm. Table 1 summarizes some of the surface terrain 

characteristics for the selected cities in this study.  

 

Table 1: Surface Terrain Characteristics for Three Cities in Texas [7]. 

 

City Characteristics 

Corpus Christi -Flat terrain, nearly level. 

-Includes barrier islands, salt grass marshes, bays, and estuaries. 

-Elevation: 0 – 400. ft above sea level. 

El Paso -Most complex region, located in extreme western Texas to the Pecos River. 

-Diverse habitats: desert valleys, plateaus, and wooded mountain slope. 

-Elevation: 2500 – 5200 ft. above sea level. 

Lubbock -Flat terrains with a mix of shortgrass prairie and desert scrubland.  

-Subject to extended droughts. 

-Elevation: 3000 – 4500 ft. above sea level. 

 

3.  Methodology 
LSTM networks are a type of Recurrent Neural Networks (RNN) that have the ability to handle and analyze sequential 

data effectively in a variety of application domains, such as language modeling, speech-to-text transcription, and 

prediction [8]. LSTMs work by handling sequential data input by processing it through multiple time steps. During 

each step, the network's internal states are automatically updated based on the current input and information from the 

previous state. LSTMs employ a gating mechanism to learn which information should be retained, discarded, or passed 

on to the next step. This system of gates allows LSTMs to selectively regulate the flow of information into and out of 

their memory cells [9].  
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To conduct this study, historical meteorological data for three selected locations between 1998 and 2022 were obtained 

from the National Solar Radiation Database (NSRDB). The datasets included hourly measurements for various 

meteorological variables, such as diffuse horizontal irradiance (DHI), direct normal irradiance (DNI), global 

horizontal irradiance (GHI), wind speed, relative humidity, temperature, pressure, and wind direction. To study the 

effects of training sample sizes and features on wind speed prediction accuracy using LSTMs, a model using the 

previous hour’s values for several features to forecast the next hour was performed in MATLAB. Moreover, four 

distinct analyses were conducted: 1) Training with one week of data from a single city, followed by testing with one 

week of data from the same city; 2) Training with one month of data from a single city, followed by testing with one 

week of data from the same city; 3) Training on multiple features while testing on the same city; and 4) Training with 

data from one city and testing with data from a different city. For each analysis performed at each location, a random 

year was selected from the available data for training and testing the model. Likewise, all models were trained using 

24 hours of data from randomly selected dates throughout the year organized sequentially. The accuracy of the 

analyses was quantified using the Root Mean Square Error (RMSE), which measures the differences between 

predicted and actual values, along with the standard deviation to assess the variability in the model's predictions. 

 

4.  Results & Discussion 
The accuracy of short-term wind predictions can be influenced by the size and diversity of the historical datasets 

employed during the training of the model. The amount of available training data is critical to the model's effectiveness 

as larger datasets can enhance performance, while models trained on data from various locations and accounting for 

multiple factors can have a substantial impact on overall performance. Figure 1 shows distribution of data used in this 

study. A summary of the results of the four analyses is presented below.  

 

 
 

Figure 1: Time Series Graphs for Wind Speed, Temperature, and GHI: (a) El Paso and (b) Lubbock, Texas. 

 

4.1 Training with data from one week from a single city, testing performed in one week from the same city. 

The initial analysis evaluated the model's generalization ability by assessing its performance on data from different 

weeks within the same city. The model was trained using wind speed data from seven randomly selected days 

throughout the year, arranged sequentially for each location in this study. This training dataset comprised 168 

observations, representing seven days of hourly data. The model was then tested with another 168 observations from 

a continuous seven-day period, beginning on a randomly selected date, all containing hourly measurements. The 

underlying hypothesis was that training the model on a randomly selected week of data would expose it to wind speed 

patterns influenced by varying atmospheric conditions, enabling it to generalize to another week within the same city. 

However, the training dataset size could also impact prediction accuracy. The results showed that the model effectively 

predicted wind speed for continuous seven-day periods, with RMSE values remaining consistent across tested cities, 

averaging 0.4035. Table 2 presents the average RMSE values after running the analysis 10 times. 

 

Table 2:  RMSE values for training and testing with one-week data from the same city. 

 

City Corpus Christi El Paso Lubbock Total 

Average RMSE 0.3298  0.3948 0.4858 0.4035 

Standard Deviation 0.0628 0.0687 0.1279 0.0864 

(a) (b) 
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4.2 Training with data from one month from a single city, testing performed in one week from the same city. 

The modification of the code for the second version of the model involved using a larger volume of training data to 

assess the model's ability to generalize more accurately with extended training periods, compared to shorter durations 

like one week. The training dataset comprised 720 observations corresponding to 30 days of hourly data. Subsequently, 

the model underwent testing with an additional 168 observations, representing 7 consecutive days of hourly data 

commencing on a randomly selected date, all containing hourly measurements. The initial hypothesis for this analysis 

was that training the model on longer periods of historical wind speed data, such as one month, would lead to more 

accurate forecasts compared to training on shorter time periods. Moreover, the model could benefit from diverse 

datasets that encompass varying wind speed conditions and patterns, offering more comprehensive insights than seven 

days of data. Based on the obtained RMSE values, the initial hypothesis was validated, as using a larger dataset of 

thirty days of wind speed data, instead of seven, for model training led to improved accuracy. Overall, the three cities 

showed lower RMSE values in this analysis, with the city of Corpus Christi performing better than the cities of El 

Paso and Lubbock. Table 3 presents the average RMSE values after running the analysis 10 times and the standard 

deviation for these values, while Figure 2 shows the difference between predicted values and actual values.   

 

Table 3: RMSE values for training with data from one month from a single city, testing performed in one week from 

the same city. 

City Corpus Christi El Paso Lubbock Total 

Average RMSE 0.2715  0.3595 0.3915 0.3408 

Standard Deviation 0.0479 0.0568 0.0647 0.0565 

 

 
 

Figure 2: Wind Speed Predictions for Analysis 2: Corpus Christi, El Paso, and Lubbock. 

 

4.3 Training on Multiple Features and Testing on the Same City. 

The third analysis incorporated additional factors to train the model, as opposed to solely utilizing wind speed. This 

approach would allow the combination of meteorological factors available from the datasets collected from the 

NSRDB. The variables that were considered for the training of the model for this specific analysis were randomly 

selected, resulting in the selection of wind speed, temperature, and GHI for the performance of this analysis. Following 

a similar approach for the selection of the training data as analysis 2, thirty complete days (720 observations) of these 

data factors were randomly selected for model training. Subsequently, the model was evaluated using a continuous 

week of wind speed data (168 observations). The purpose was to assess the efficacy of incorporating additional 

features in predicting wind speed and to determine whether the model could generate accurate wind speed predictions 

when multiple features were utilized, as opposed to considering wind speed as the sole feature.  

 
Table 4:  RMSE values Training on Multiple Features and Testing on a Single Feature in the Same City. 

 

City Corpus Christi El Paso Lubbock Total 

Average RMSE 0.8090  0.8839 0.9648 0.8788 

Standard Deviation 0.2019 0.1569 0.3824 0.2471 

 

The results obtained as shown in Tables 3 and 4 indicated that the addition of more features to the model did not 

improve accuracy, suggesting that utilizing wind speed independently could produce reliable predictions and would 
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be sufficient for the model to learn patterns and make predictions. The higher RMSE values resulting from the 

inclusion of additional features suggested that the selected combination of features, such as wind temperature and 

GHI, may not have been optimal, potentially including weak features for predictions of wind speed. Future 

improvements to the model could involve selecting a different combination of features for training that more 

effectively captures the complex relationships between the variables. Figure 3 shows the predication results. 

 

 
 

Figure 3: Wind Speed Predictions for Analysis 3: Corpus Christi, El Paso, and Lubbock. 

 

4.4 Training with data from One City, Testing with data from a Different City. 

The final analysis evaluated the model's ability to generalize across diverse locations with varying surface and terrain 

conditions, influenced by different weather patterns, to predict wind speed in another city. This assessment aimed to 

determine whether the model could identify patterns and capture physical relationships relevant to the cities selected 

for the study. The model was trained using data from Corpus Christi and tested with data from El Paso and Lubbock. 

Similarly, a model trained with data from El Paso was tested in Corpus Christi and Lubbock, and a model trained with 

data from Lubbock was tested in Corpus Christi and El Paso. This code followed a similar approach to the third 

analysis, utilizing monthly data for training and incorporating additional factors to enhance the model's performance. 

The results of this analysis are presented in Table 5 and Figure 4. While the model demonstrated reasonable 

generalization when applied to data from different cities, variations in elevation, topography, and local weather 

patterns can significantly affect the accuracy of the predictions.  

 

Table 5:  RMSE values for training with data from One City, Testing with data from a Different City. 

 

City (Training) 
City (Testing) 

Corpus Christi El Paso Lubbock 

Corpus Christi - 1.5671 1.4089 

El Paso 1.1898 - 1.5501 

Lubbock 0.7344 0.9142 - 

 

 
 

Figure 4: Wind Speed Predictions for Analysis 4 – Training in Corpus Christi and Testing in El Paso; Training in El 

Paso and Testing in Lubbock; Training in Lubbock and Testing in El Paso. 
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5.  Conclusion and Final Thoughts   
Machine learning algorithms have revolutionized data analysis by identifying patterns within datasets, enabling the 

development of models that generalize effectively and generate accurate predictions for unseen data. Similarly, time 

series forecasting using LSTMs have become a powerful tool for predicting time-dependent variables by capturing 

temporal dependencies in sequential data and using past observations to predict future values.  In this study, four 

different analyses using LSTM models were performed to evaluate the impact that varying the size and features from 

the testing and training datasets have when predicting wind speed. Additionally, the performance of wind prediction 

models across different surface and terrain conditions was examined to assess their accuracy when being trained with 

weekly and monthly data. The results indicate that models trained on monthly data performed better than those trained 

on weekly data. A potential reason for this is that monthly datasets capture more valuable and informative patterns, 

such as seasonal trends or long-term behaviors, which may not be discernible in shorter training periods. Moreover, 

the increased number of observations in monthly data contributed to improved model performance. It was also 

observed that adding additional features did not improve model accuracy. This may be attributed to the inclusion of 

suboptimal, randomly selected variables, such as temperature and GHI, which may not be the most effective predictors 

for short-term wind speed forecasting with an LSTM model. Moreover, the incorporation of more features may have 

increased the model's complexity, thereby requiring a larger volume of training data for the effective learning of the 

model. Likewise, it was observed that when the model is trained using meteorological data from one city and tested 

on data from another, the RMSE values indicate that the model performs reasonably well. However, differences in 

terrain conditions between cities may impact performance, suggesting that model accuracy could be further improved 

with localized training data.  Future improvements will involve selecting a more relevant combination of features that 

better capture the complex relationships between variables and the forecasting of wind speed at different time-

horizons, which will be explored in future research. 

. 
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