
flame: A Framework for Learning in Agent-based ModEls
Ayush Chopra∗†

Massachusetts Institute of Technology
Cambridge, USA
ayushc@mit.edu

Jayakumar Subramanian∗
Adobe

Noida, India
jasubram@adobe.com

Balaji Krishnamurthy
Adobe

Noida, India
kbalaji@adobe.com

Ramesh Raskar
Massachusetts Institute of Technology

Cambridge, USA
raskar@media.mit.edu

ABSTRACT
Agent-based models (ABMs) are discrete simulators comprising
agents that act and interact in a computational world. Despite wide
applicability, infrastructure for ABMs has been fragmented and
lacks a standard framework to integrate bene!ts of recent com-
puting advances, especially in machine learning and automatic
di"erentiation (autograd). To alleviate this gap we introduce flame:
a framework to de!ne, simulate and optimize di"erentiable agent-
based models. First, flame introduces a domain-speci!c language
that describes ABMs with stochastic dynamics across several do-
mains and can be implemented using abstractions of autograd.
Second, flame models can execute simulations on GPU, process
millions of interactions per second and seamlessly scale from few
hundred agents to million-size populations. Third, flame provides
custom utilities to implement fully di"erentiable ABMs which can
bene!t from gradient-based learning and integrate with deep neu-
ral networks (DNNs), in several ways. Speci!cally, ABMs can now
use supervised and reinforcement learning to calibrate simulation
parameters, optimize agent actions and learn expressive interac-
tion rules. Finally, flame is easily accessible with a simple Python
API. We validate flame through multiple case studies that study
tissue morphogenesis over bio-electric networks, infectious disease
epidemiology over physical networks and opinion dynamics over
social networks. We hope flame can ignite further innovation at
the intersection of AI and ABMs. Our code is here.

KEYWORDS
Di"erentiable Agent-based Modeling; Deep Neural Networks; Au-
tomatic Di"erentiation
ACM Reference Format:
Ayush Chopra, Jayakumar Subramanian, Balaji Krishnamurthy, and Ramesh
Raskar. 2024. flame: A Framework for Learning in Agent-based ModEls.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 9 pages.
∗Equal contribution.
†Corresponding author

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Agent-based models (ABMs) [9] are discrete simulators that com-
prise a collection of agents that can act and interact within a com-
putational world. They can explicitly represent the heterogeneity
of an interacting population via underlying contact networks and
model the adaptability of individual agent behavior for more realis-
tic simulations. This enables domain experts to ground simulations
in mechanistic understanding and explore the emergent e"ects
of agent behavior and external interventions. ABMs are used to
simulate heterogeneous systems across biological [19, 20, 32], phys-
ical [5, 14, 41], digital [2, 18, 30] and !nancial [22, 33] realms. For
instance, ABMs have helped simulate: i) cells in a tumor micro-
environment to evaluate antibody treatments for tumor suppres-
sion [20], ii) diseased humans in the physical world to decide lock-
down strategies [26] and prioritize vaccination schedules [39], iii)
avatars in a digital environment to counter misinformation [10]
and vaccine hesitancy [2] and iv) !rms in a !nancial network to
predict housing market crashes [33]. Despite wide applicability, the
adoption of ABMs for general-purpose decision-making has been
scarce which can largely be attributed to computational constraints.

Conventional ABM frameworks [25, 45], while easy to use, are
very slow to execute, di#cult to scale to million-size populations,
tough to calibrate, and only enable modeling with simple hand-
crafted rules. Some works have sought to alleviate performance
bottlenecks through high-performance clusters [8] or customized
C++ code [21]. However, these implementations are di#cult to use
and generalize into an accessible modeling framework; and are not
compatible with data-driven machine learning.

Motivated by parallel e"orts in di"erentiable scienti!c computa-
tion for molecular dynamics [16, 40], computational chemistry [43],
and $uid dynamics [15], some recent works have sought to achieve
highly performant ABMs by making them compatible with auto-
matic di"erentiation (autograd). These di!erentiable ABMs [4, 14]
have shown promising results to accelerate simulations on CPUs
and GPUs [13], improve calibration using heterogeneous data by
integrating with DNNs [14], learn expressive rule sets via neural
model speci!cation [32] and accelerate sensitivity analyzes with
gradients [37]. While interesting proofs-of-concept, these bene-
!ts have been restricted to speci!c ad-hoc implementations as no
general framework exists to design di"erentiable ABMs. This is
because: i) standard ABM frameworks (Mesa, NetLogo, MASON,
Agents.jl) are not designed to support di"erentiable simulation and
interventions over millions of agents or integrate with DNNs; ii)

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

391

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1: flame can be used to de!ne diverse ABMs across biological, digital, and physical realms; execute million-scale
simulation; and use gradient-based learning and integrate with DNNs. This enables ABMs to leverage supervised learning and
reinforcement learning to calibrate simulation properties, optimize agent actions and learn expressive interaction rules.

autograd frameworks (Pytorch, JAX) are optimized for training
large DNNmodels and, not tailored for executing ABMs with mech-
anistic dynamics and interventions. flame alleviates this gap as a
framework that can describe expressive ABMs and, execute them
using the capabilities of autograd.

flame is guided by four key design principles. 1) "exible def-
inition: flame allows the de!nition of complex ABMs with se-
quence of stochastic dynamics and multiple interventions, general-
izes across several disciplines, and is intended to be a viable toolkit
for both scienti!c exploration and real-world decision making. 2)
scalable execution: flame is engineered to execute on both CPUs
and GPUs, process millions of inter-agent interactions per second
on commodity hardware, and scale from handling populations of
a few hundred agents in a synthetic grid to managing millions of
agents in complex, real-world contact graphs. 3) learning-!rst
design: flamemodels are fully di"erentiable which allows them to
utilize gradient-based learning and integrate with DNNs, in several
ways. ABMs designed with flame can use supervised and reinforce-
ment learning to calibrate simulation parameters, optimize agent
actions, or learn interaction rules. 4) easy accessibility: flame pro-
vides a simple Python-API to de!ne and simulate these million-scale
ABMs and facilitates quick integration with Pytorch (in 3 lines of
code) to leverage autograd or build hybrid DNN-ABM pipelines. We
validate flame throughmultiple case studies which involve learning
the purchase behavior of consumers on social platforms, simulating
inter-cellular interactions for tissue formation, and designing im-
munization policies against infectious disease for 6.5 million people.
Our code is open-source at: github.com/AgentTorch/AgentTorch

2 RELATEDWORK
Automatic di"erentiation is becoming integral to scienti!c compu-
tation for faster and data-driven simulations. This is being enabled
by modern simulation frameworks that tailor domain-speci!c un-
derstanding with the computational abilities of autograd and neural
networks. Some examples include JAX.MD [40] and TorchMD [16]
for molecular dynamics, TorchDyn [36] for neural di"erential equa-
tions, JAXFluids [7] for $uid dynamics. These have unlocked highly
performant applications across atmospheric modeling[12], catalytic
discovery [43], protein modeling [1, 23], computational !nance [11]
and rigid body dynamics [15, 17]. For agent-based modeling, some
recent works have demonstrated the utility of automatic di"erentia-
tion [4, 14] to accelerate simulations [13], improve calibration by in-
tegrating with deep neural networks [14, 38], conduct one-shot sen-
sitivity analysis using gradients [37], and replace mechanistic rules
with neural networks [32, 34]. However, this has been restricted to
a few ad-hoc examples, and no general-purpose framework exists
to design di"erentiable ABMs. Designing such a framework for
ABMs presents unique challenges due to multi-scale dynamics, sto-
chastic interventions, and the need to support diverse applicability;
all while ensuring compatibility with autograd.

Conventional ABM frameworks [25, 29, 45] are slow to exe-
cute, don’t scale to million-size populations, only enable simulating
with hard-crafted rules, and hence are incompatible with machine
learning. Implementations such as [8, 21] alleviate performance
bottlenecks but cannot support di"erentiable computation or neu-
ral network integrations. [3] allows using reinforcement learning
for ABMs but is restricted to a few hundred agents (no GPU ac-
celeration) and only policy gradient methods as their simulations

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

392

github.com/AgentTorch/AgentTorch

are not di"erentiable. Some recent multi-agent learning frame-
works [28, 31] support tensorization and GPU-accelerated sim-
ulations for black-box reinforcement learning, but they are not
designed for ABMs (cannot describe stochastic dynamics or inter-
ventions) and are, importantly, also not di"erentiable. In contrast,
flame is speci!cally designed to handle ABMs with stochastic dy-
namics and interventions, generalizes to multiple domains, scales
to millions of interacting agents, and is fully di"erentiable which
allows using both policy gradient and gradient-descent algorithms.

3 AGENT-BASED MODELINGWITH FLAME
flamemodels agent-based simulations and interventions over large-
scale populations and enables learning using automatic di"erentia-
tion. First, we de!ne a di"erentiable ABM. Second, we introduce the
design speci!cation to build an ABM using flame. Third, we pro-
vide a proof sketch and implementation primitives to validate the
di"erentiability of each $ame ABM. Finally, we describe learning
with flame which enables building hybrid DNN-ABM pipelines.

3.1 Di#erentiable Agent-based Model
Consider 𝐿𝐿 = 𝑀𝑁𝑂 (𝐿0;𝑃) where ABM is a stochastic N-step
function with input state 𝐿0, params 𝑃 , output state 𝐿𝐿 . ABM is
di"erentiable if, given a smooth objective 𝑄 = 𝑅 (𝐿𝐿), the gradients
𝑆𝑄/𝑆𝑃 and 𝑆𝑄/𝑆𝐿0 can be computed using autograd. This gradient
is useful for calibration of 𝑃 [14], sensitivity analysis [37] and in-
tegrating ABM with DNN [32]. Practically, this is constrained by
slow execution and non-di"erentiable operators in the ABM. Our
proposed framework flame resolves these by providing a compos-
able ABM de!nition with utilities to implement it via di"erentiable
operators and execute it via fast tensorization.

3.2 De!nition of a flame model
D!"#$#%#&$ 1 (flame ’&(!)). A flame model is de"ned by the

following tuple: →S,G↑. These are de"ned as given below. When read-
ing the terminology below, consider the example in Figure 2, which
simulates the spread of an infectious disease (like COVID-19).

(1) S = →S𝑀𝑁,S𝑂𝑃 ,S𝑄𝑅𝑆↑, represents the set of states of the three
kinds of entities in flame, which are:
(a) Agents which observe, act, and interact within a computa-

tional world. For instance, these can be infected citizens that
spread diseases (with properties like {age, disease_stage}).

(b) Objects which interface between agents but don’t have the
agency to act. For instance, these can be a virus that carries
infection (with properties like {RO}) or a pub where citizens
co-locate (with properties like {lat-long, capacity}).

(c) Environments which facilitate the interactions of agents with
other agents or objects. The interaction graphs are of two
types: agent-agent and agent-object. For instance, a citizen-
pub (agent-object) graph can represent the interaction of
citizens across di!erent pubs in a geo-locality.

Each state property is initialized once to de"ne the initial state and
may be transformed during the simulation. This transformation
is managed by the substeps de"ned below.

(2) Each episode or rollout of the simulation is assumed to run for 𝑇
steps, where each step 𝑈 ↓ {1, . . . ,𝑇 } comprises multiple substeps.
Thus, in flame, a substep is the main repeating operational unit,

and G represents the set of substeps within each step. Each substep
is composed of the three functions:
(a) Substep Observation which uses the current state and returns

an observation for the agents: 𝑉 : S ↔ O, where O is the
space of all observations. For instance, an agent can receive
an observation regarding the state of infection and vacci-
nation status of its immediate neighbors (observation =
observe_neighbors(state)).

(b) Substep Policy which uses this generated observation, along
with the entire history of earlier observations (compiled as
observation_history) to yield the agents’ actions: 𝑊 :
H ↔ A, where H is the set of trajectories of all histori-
cal observations for the agent and A is the set of all actions
(over all agents). For instance, an agent uses its current ob-
servations of vaccination by neighbors and historical deaths
to decide whether to vaccinate itself
(action = choose_vaccine(observation_history)).

(c) Substep Transition which uses the current state and agent
actions to generate the next state: 𝑈 : S ↗ A ↔ S. For in-
stance, a non-vaccinated agent may choose to accept the dose
(next_state = update_vacc_status(state, action)).

Note that in each substep, one or more classes of agents may
interact with each other and the environment.

3.3 Di#erentiability of a flame model
Proof Sketch Each flame ABM is a !nitely iterated, nested com-
position of di"erentiable functions where di"erentiability follows
from the chain rule. From the de!nition above, ABM is composed of
repeated simulation steps of function f, such that 𝐿𝑇+1 = 𝑋 (𝐿𝑇 ;𝑃)).
𝑋 transforms 𝐿𝑇 by composing k structured substeps invoked in
sequence. Each substep i (=1 to k) takes the state (𝐿𝑇,𝑈) to pro-
duce a new simulation state (𝐿𝑇 ,𝑈+1) by composing observation (𝑉𝑈),
policy(𝑌𝑈) and transition(𝑍𝑈) functions, all substep functions(𝑉𝑈 , 𝑌𝑈 ,𝑍𝑈)
are constructed via di"erentiable (mechanistic and neural) torch
and $ame operators (section 3.6) and, hence are di"erentiable w.r.t
their parameters and inputs. The di"erentiability of substep func-
tions, via the chain rule, invokes di"erentiability of each substep
and which implies di"erentiability of step function f. Since f is dif-
ferentiable, an objective 𝑄 = 𝑅 (𝐿𝐿 , 𝑃) is di"erentiable with respect
to the parameters 𝑃 , state 𝐿𝐿 and by chain rule with respect to
initial state 𝐿0. A detailed proof is included in the appendix.

Implementation flame is built using modern autograd libraries
that are compatible with hardware accelerators (GPU/TPU) to en-
sure di"erentiability and performance e#ciency. In this paper, we
use abstractions underlying PyTorch [35], which is a popular au-
tograd framework. Speci!cally, the simulation state is described
using nn.ParameterDict and the functions in each substep are
de!ned using the component nn.ModuleDict from PyTorch. This
design choice allow us to leverage in-built support for tensorized
GPU execution (via BLAS/CUDA) and autograd when simulating
ABMs. Furthermore, it also streamlines integration of mechanistic
ABMs with DNNs to build hybrid DNN-ABM pipelines. Speci!cally,
any substep function, independently of others, can be speci!ed
with mechanistic rules or with a deep neural network (DNN). The
learning-!rst design of flame enables calibrating arguments of any
rule-based mechanism using autograd and learning parameters of
neural speci!cation without a"ecting the rest. Each substep extends

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

393

state

N citizens

Agents

Age
Disease_St
age

Citizen

10

Citizen

Age
Disease_Stag
e

Age
Disease_Stag
e

Citizen

Citizen

age
disease
compliance
vaccination
infect_time 1

N

…
.

Virus

Ro
generation_time

1

Pub

Age
Disease_Stage

Age
Disease_Stage

Pub

Pub

lat-long
capacity
open-time 1

M

Objects Environments

…
.

Pubs ←→ Citizens

Citizens ←→ Citizens

Step:
day 1

Step:
day 2

Step:
day 3

Step:
day T……

Substep:
SEIRMProgression

Substep:
Vaccination

Substep:
NewTransmission

S_day3

Observation function:
Observe_neighbors

Policy function:
Choose_vaccine

Transition function:
Update_vacc_statusS_day3_1

observation
S_day3_2

action

S_day4S_day3_2S_day3_1

Substep Vaccination: S_day3_1 → S_day3_2

Figure 2: De!ning a flame model for spatial epidemiology. The simulation has N citizens (Agents) that interact through direct
mobility and co-locate across pubs (Object) to spread the virus (Object). The simulator state is a collection of properties that
describe each of these entities, is initialized once, and transformed during T simulation steps. Each step models the disease
progression of infected agents (SEIRMProgression), vaccination of susceptible agents (Vaccination), and transmission of new
infections (NewTransmission) to recursively transform the simulation state over these substeps. flame is designed to ensure
gradient "ow through all simulation steps and enables automatic di#erentiation of any state property or substep function.

nn.ModuleDict class. This design helps flame simulations ensure
gradient $ow (and parameter tracking) through each substep and
across all the steps of a simulation.

3.4 High-level modules and API
flame has multiple high-level modules to de!ne models, execute
simulations and track variables. Config and Runner are exposed to
the user for de!ning the model and executing simulation episodes.
Internally, these interface with Controller to initialize the simula-
tor state, register control $ow of substeps and track variables.

The model is de!ned by creating a config = Config() object.
This config enables adding agents and objects, inserting inter-
action environments, de!ning metadata and creating simulation
substeps. The code listing below uses the config to create infec-
tious citizens agents (line 3) and infecting virus object (line 4), de!ne
citizen mobility networks (line 6), describe a infection transmission
substep (line 7) and execute the simulation for 10 episodes (line 5).

1 from flame import Config
2 config = Config ()
3 config.add_agents(name=!citizens!, num_citizens ,

prop_list)
4 config.add_objects(name=!virus!, num_strains , prop_list)
5 config.add_metadata(!num_episodes!, 10)
6 config.add_environment(type=!agent -agent!, src=!from_file

!, path=!citizen_citizen.networkx!)
7 conf.add_substep(name=!NewTransmission!,active_agents=!

citizens!)

Listing 1: Using the flame Config API to de!ne a model

The simulation is executed by creating runner = Runner(config)
which links with the Controller. The user can invoke various
runner functions which are described below:

• First, runner.init() is used to initialize all state prop-
erties and create a tracking registry of substep functions
(registry_dict) via controller.initialize()

• Second, runner.step() is used to run all steps in a simula-
tion episode. Each episode step invokes all substeps in se-
quence via controller.execute_substep(state, registry_dict).

• Third, runner.reset() is used to reinitialize the state of
the simulator before the start of subsequent episodes. While
the default is to just use runner.init(), this function is
often overloaded to specify custom reset functions (as in
Case Study 1 using state from prior episodes).

• Fourth, runner.parameters() tracks and return all learn-
able parameters in the simulation episode. These parameters
can be properties of the simulator state or arguments of
substep functions; and are used when de!ning optimizers.

• Finally, runner.trajectory tracks the simulation state across
multiple steps and episodes and, is used to de!ne loss func-
tions and plot outputs.

The code listing below demonstrates use of flame to de!ne,
simulate and optimize an ABM. Further, (lines 19 and 34-37) shows
how flame can interface with torch to de!ne custom optimizers for
ABM parameters and minimize user-speci!ed objective functions.

1 from flame import Config , Runner
2 from torch import optim
3

4 # Step 1: define entities , metadata and substeps
5 config = Config ()
6 config.add_agents (...)
7 config.add_objects (...)
8 config.add_environments (...)
9 config.add_metadata (...)
10 config.add_substeps (...)
11

12 # Step 2: create simulation instance
13 runner = Runner(config)
14

15 # Step 3: initialize simulation state and create registry
16 runner.init()
17

18 # Step 4: create optimizer using learnable simulation
parameters

19 opt = optim.SGD(list(runner.parameters ()), lr=config_lr)
20

21 for episode in range(num_episodes):
22 opt.zero_grad ()
23

24 # Step 5: reset state before each episode

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

394

25 runner.reset()
26

27 # Step 6: execute all substeps in sequence
28 runner.step(num_steps)
29

30 # Step 7: read the trajectory to extract output
31 trajectory = runner.trajectory
32 output = generate_output(trajectory)
33

34 # Step 8: compute loss and optimize parameters
35 loss = loss_fn(output , ground_truth)
36 loss.backward ()
37 opt.step()

Listing 2: Using flame to de!ne simulate and optimize ABMs

3.5 Di#erentiating with flame
As stated earlier, using autograd primitives to design flame allows
to represent an ABM with substeps of dynamics and interventions
on a compute graph, which streamlines backpropagation. However,
unlike DNNs on computation graphs, de!ning ABM substeps re-
quires mechanistic operators (such as torch.max, torch.compare)
which are conventionally non-di"erentiable and can cause incom-
patibility with autograd. Recent di"erentiable ABM have used
straight-through estimators for discrete distributions [24] to rep-
resent stochastic dynamics [14]. However, this is insu#cient to
di"erentiate through interventions (eg: o"er a vaccine if age < 60;
purchase product with min price etc.). For flame, we generalize the
straight-through-trick [6] to build a library of foundational oper-
ator such as flame.compare, flame.max, flame.logical_and
etc. For each operator, we de!ne a smooth approximation to obtain
the gradient while using the exact function for computation. One
such implementation of flame.compare, is given below.

1 @flame.helpers
2 def compare(a, b):
3 '''return 1 if a>b; 0 otherwise '''
4 def compare_soft(a, b, hardness =0.8):
5 # approximate gradient
6 return torch.sigmoid(hardness * (a - b))
7

8 def compare_hard(a, b):
9 # exact computation
10 return (a > b).float()
11

12 soft = compare_soft(a, b)
13 return compare_hard(a, b) + soft - soft.detach ()

Listing 3: Diferentiable operators like flame.compare help
de!ne autograd-compatible dynamics and interventions.

3.6 Gradient-based Optimization
As explained in the previous section, by only using di"erentiable op-
erators, flame ensures gradient-$ow through all substeps of the sim-
ulation and thus, is compatible with automatic di"erentiation. This
allows using gradient-based learning to update properties of the
state or arguments of any substep function. All learnable parame-
ters across the simulator can be accessed via runner.parameters()
and used in torch.optim to de!ne custom optimizers, which can
then be used to optimize any user-speci!ed objective function.
flame supports both supervised learning (SL) and reinforcement

learning (RL) using !rst-order gradient estimates [42] and leverages
the PyTorch API for optimization. There are three modes:

• Mode 1: Optimize scalar/tensor ABM parameters. For instance,
this may involve calibrating the R0 parameter of a virus to death
statistics using SL (sec 4.2) or learning a purchase policy to maxi-
mize expected utility using RL (sec 4.3). The optimizer is de!ned
as torch.optim.SGD(runner.parameters()).

• Mode 2: Embed DNN inside ABM to learn substep functions. Often
the substep functions in any conventional ABM are de!ned as
simple mechanistic functions such as cellular automata rules. The
purpose of the ABM is then to simulate the e"ect of these sim-
ple functions when applied repeatedly. However, this approach
cannot facilitate learning structurally unknown substep func-
tions, which can, in-principle be modeled using any universal
function approximator. For instance, an unknown function in
a substep can be parameterized with a neural network with-
out a"ecting any other components of the simulator; and then
the parameters of this neural network can be learned to repro-
duce observed simulation output using SL (sec 4.1). This neural
substep function is de!ned in the config and its parameters
tracked in runner.parameters(). The optimizer is de!ned as
torch.optim.SGD(runner.parameters()).

• Mode 3: Integrate ABM with DNN pipelines. Instead of optimizing
components of the simulation, a flame model can become an ob-
jective function and provide gradients to learn an external black-
box models (external_nn). For instance, they may be used to
jointly forecast infections across multiple counties with distinct
simulators via SL (sec 4.2). The hybrid optimizers can be de!ned
with torch.optim.SGD(list(external_nn.parameters() +
runner.parameters())) or by using multiple optimizers for
the various groups of learnable parameters.

3.7 Summary of Contributions
Our proposed framework, flame, allows to de!ne, simulate and
optimize million-scale agent-based models. First, we introduce a
de!nition that make ABMs compatible with automatic di"eren-
tiation (autograd). The modular structure of flame involves de-
composing each simulation step into repeating substeps, each of
which comprises of three functions. This architecture allows us
to construct and execute simulations with diverse dynamics and
interventions using the same building blocks and, be implemented
using abstractions of autograd. Second, we provide a utils library of
straight-through di"erentiable operators with flame. These opera-
tors allow di"erentiation of traditionally non-di"erentiable mecha-
nistic and stochastic operators used in conventional ABMs. This
feature enables design of end-to-end di"erentiable ABMs and, sup-
ports gradient-based calibration and optimization. Third, a useful
consequence of having a di"erentiable ABM is that the entire ABM
can be treated as a di"erentiable black-box function, which can
then be integrated with any learnable pipeline using DNNs.

4 CASE STUDIES
Here, we present diverse case studies to show the $exibility of
flame in de!nition, simulation, and optimization. These case stud-
ies span digital, physical, and biological realms; scale from a few
hundred agents in synthetic grid spaces to millions of agents over

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

395

Figure 3: C1: Embed DNN inside ABM with flame. [32] uses cellular automata to simulate morphogenesis and parameterizes
the update rules with a CNN. flame is used to learn these rules by representing the substep transition function with a DNN
(MyCustomDNN()) and optimizing with an MSE loss (supervised_loss). Enabling this requires only a few additional lines, as
shown in the pseudocode on the left, and is an instance of Mode 2 in sec 3.6. Result, on the right, shows the emergent pattern
for two shapes (lizard and butter"y) at di#erent steps along the simulation.

.

city-scale contact networks; and involve learning simulation param-
eters, agent policies, and transition rules. Speci!cally, these include
cells in a bio-electric micro-environment assembling organs, hu-
man citizens in a physical environment spreading infections, and
avatars in a digital environment sharing opinions. The $exibility in
design is coupled with computational bene!ts realized by tensoriza-
tion, GPU execution, and support for automatic di"erentiation
which unlocks new capabilities via seamless (end-to-end) integra-
tion with deep neural networks. For this analysis, we implement
previously introduced simulators using flame. The key objective
is to demonstrate the capabilities of the design of flame, which
allows the speci!cation of diverse multi-agent scenarios, executes
million-scale simulations, conducts gradient-based optimization,
and evaluates interventions in agent-based models.

Figure 4: Benchmarking run-time performance for flame
simulations. flame can simulate millions of interactions in a
few seconds on commodity GPUs which demonstrates real
world utility. This plot follows from section 4.2

4.1 Morphogenesis via Neural Cellular
Automata

Morphogenesis is the process of an organism’s shape development
where cells interact over bio-electric networks to self-assemble into
tissues and organs. The process is extremely robust to perturba-
tions where several species have the ability to regenerate entire
organs by repairing damage (to intermediate states) or produce
viable organs even from atypical initial states. Understanding the
mechanism behind morphogenesis is an active area of research
and key to progress in regenerative medicine. We follow from [32],
which extends cellular automata (CAs) to identify cell-level rules
that result in adaptive and robust morphogenesis. CAs consist of a
grid of cells that are iteratively updated with the same set of rules
applied to each cell at every step. The new state of a cell depends
only upon the state of a few cells in its immediate neighborhood.
Conventionally, the rules in CAs are fairly simple deterministic
rules. The complexity in the system modeled using CAs is an emer-
gent property of these simple rules. However, in several real-world
use cases, we may not know these rules, or these rules may them-
selves be fairly complex, requiring function approximation with
a neural network to track state evolution using these rules. flame
allows us to de!ne rules of arbitrary complexity using our modular
substep architecture, where the function within a rule can be a
deep neural network (DNN) as well. In this case study, the goal
of the simulation is twofold: a) learn the cell-level mechanism by
representing it with a DNN, and b) validate the robustness of the
learned mechanism to perturbations in the initial state.

Following [32], in the simulation, agents are cells with a 16-dim
property state. Agent-agent interactions are described over a 2D
grid space environment. The state is initialized with a single ac-
tive agent, producing a multi-cellular pattern through simulation.
The simulation has a single substep (EvolveCell) with a transition

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

396

function that is parameterized with a convolutional neural network
(CNN) and describes how cells interact with neighbors to update
their state. The simulation output is a 2D grid pattern of all cell
states (denoting organism shape), and the learning objective is su-
pervised mean-squared error loss with respect to a pre-speci!ed
shape (or grid pattern). The goal is to learn a transition function
robust to perturbations in the initial state and involves jointly opti-
mizing over multiple simulations with varying initial states.

flame demonstrates two key capabilities in this case study:

• C1: flame allows to embed DNN inside an ABM. Here, the tran-
sition function of EvolveCell substep is parameterized with
a CNN. This is captured by runner.parameters() and can be
used with an optimizer as shown by psuedocode in Figure 3.

• C2: flame enables joint optimization and parameter sharing
between multiple ABMs. Here, multiple runner objects created
for di"erent initial states utilize a shared optimizer. Pseudocode
and results for this experiment are included in the appendix.

4.2 Spatial Infectious Disease Epidemiology
Infectious diseases spread through contact with infected agents and
have two phases: transmission to new agents and disease progres-
sion in infected agents. Modeling both phases is crucial for design-
ing e"ective interventions. For COVID-19, this involved deciding
lockdowns, vaccination schedules, and testing strategies. These
decisions are complex, requiring consideration of population scale,
individual behavior, and intervention properties. Decision-making
is further complicated by delayed feedback from interventions and
their non-linear interactions. Examples of such interventions in-
clude formulating and implementing e"ective public health policies
during COVID-19, including decisions such as delaying the adminis-
tration of the second vaccine dose [39], prioritizing test speed over
speci!city [27] etc. Evaluating these decisions in-silico requires
granular and data-driven simulations, fast calibration, and sensitiv-
ity analysis. For this case study, the goals of this simulation are: a)
recreate infection dynamics in real-world million-scale populations,
b) improve the calibration of simulation parameters using DNNs,
c) analyze the sensitivity of diverse interventions. Speci!cally, we
model spread of COVID-19 and In$uenza over 6.5 million people
across 12 counties in Massachusetts, calibrate using real CDC data
and validate performance by forecasting county and state-level
infections consistent with CDC guidelines.

Following from [13, 14, 21, 39], in the simulation, agents are
citizens with 5-dim property state (age, occupation, disease-stage,
infected-time, vaccine-status) that spread Covid-19 infection. Ob-
jects include both the infecting virus and co-location centers like
pubs, schools, and care homes. Environments are obtained us-
ing real-world contact graphs and describe interactions in citizen-
citizen mobility networks and citizen-pub co-location networks.
The simulator state is initialized with a few infected agents. Each
simulation step has two substeps InfectionTransmission and
SEIRMProgression, which describe the transmission of new in-
fections and a SEIRM progression of previously infected agents,
respectively. Discrete stochasticity in the simulation is handled
by reparameterizing with Gumbel-softmax gradient estimator to
ensure di"erentiability. The simulation output is the histogram of

citizen disease stages, and the learning objective for calibration is a
supervised loss against ground truth case statistics (from CDC).

flame demonstrates the following capabilities in this case study:

• C3: flame enables realistic simulations with million-scale popula-
tions and real-world contact networks, all while abstracting away
the engineering complexity from the modeler. The same API
scales to millions of agents and can support real-world contact
graphs. The run-time performance is benchmarked in Figure 4.

• C4: flame enables composing ABMs and DNNs end-to-end. Here,
this pipeline calibrates simulation parameters using gradient-
based learning by designing hybrid optimizers. This is evaluated
using forecasting results in !gure 5(left). Corresponding pseu-
docodes and a pipeline visualization are included in the appendix.

• C5: flame allows $exible experimentation through its modular
design. First, flame can evaluate policy interventions through
white-box scenario analysis. Figure 5 (right) shows results that
evaluate the e#cacy of a delayed vaccination schedule. Second,
flame can generalize across simulation assumptions by chang-
ing a few lines of code. Figure 5 (left) shows a model built for
COVID-19 can be adapted to In$uenza by just replacing a sin-
gle substep (SEIRMProgression with SIRSProgression). More
details about these experiments are in the appendix.

4.3 Social Opinion Dynamics
Digital interactions are already ubiquitous and have become in-
creasingly relevant with the advent of autonomous agents. Such
agents, trained to act strategically, will become integral to society
and business as they rede!ne interfaces with humans to mitigate
vaccine hesitancy against diseases, advertise new products in com-
petitive markets etc. Typically, agents in these systems interact in
two ways – directly via communicating with each other (in$uenced
by their individual follower tendencies) and indirectly via a"ecting
the environment or objects. We implement a standard opinion dy-
namics model, focusing on direct interactions, used in literature to
simulate e"ects such as lock-in of consumer behavior to a particular
product or service. In this case study, the goal of this simulation is:
a) learn agent policies that maximize utility over time horizon.

Following from [18], in the simulation, consumers and marketers
are the two types of agents. Objects include products that the mar-
keters advertise to consumers. We speci!cally consider a duopoly
with two products. Environment describes interactions through
consumer-consumer networks de!ned using the simulation’s grid
graphs. The simulation has a single substep PurchaseProduct
where agents observe the purchase behavior of neighbors to make
a discrete purchase decision. The simulation output is the observed
utility for all agents, and the learning objective is to maximize each
agent’s expected utility over the !nite time horizon. Speci!cally,
the agents wish to optimize their cumulative experienced prod-
uct quality. To achieve this, they need to balance exploitation and
exploration in their product purchase choices. Here, exploitation
corresponds to the agents sticking to their own opinions based on
their historical product usage experience, and exploration corre-
sponds to modifying their opinions about the products using the
opinions of their neighboring agents. In terms of learning, in this
simulation, we make the follower tendency, i.e., the degree of ex-
ploration of the agents, learnable parameters for each agent in the

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

397

Figure 5: C3-C5: flame simulate ABMs with millions of agents, build hybrid DNN-ABM pipelines, and jointly optimize multiple
ABMs by changing only a few lines of code. flame is used to calibrate ABM on 6.5 million agents and forecast the spread of two
diseases - COVID-19 and In"uenza over di#erent learning situations denoted by (a), (b), and (c). This calibrated model answers
policy questions, as shown on the right. The setup follows from [14] and more details, with pseudocodes, are in the appendix.

Figure 6: C6 - Policy optimizationwith flame. In social opinion dynamics [18], purchase behavior is parameterizedwith a follower
tendency, and agents learn personalized optimal follower tendencies to maximize utilities over timesteps (episode_return) by
minimizing policy_loss. This policy learning is enabled easily in flame with parameters in runner as shown in the pseudocode
on the left. The learning curve with follower tendencies versus episodes for a few sample agents is shown on the right. The
experimental setup primarily follows from [18], except for the learning dynamics. More details are given in the appendix.

system, which was not explored in the reference paper [18]. The
discrete stochasticity in the simulation, arising from agent purchase
behavior, is reparameterized with the Gumbel softmax gradient esti-
mator and also other straight-through di"erentiable approximators
of max, min operators in flame. This allows automatic di"erentia-
tion, with !rst-order gradient estimates, through time. In principle,
a score-function gradient estimate (variant of REINFORCE) can also
be used, but are less performant in practice [17, 44]. The goal here
to demonstrate the utility of flame for sequential decision-making,
independent of the speci!c algorithm.

• C6: flame allows learning agent policies by specifying custom
reward functions. End-to-end di"erentiability of flame enables
reinforcement learning with !rst-order policy gradients [44].
Pseudocode and speci!c example in the context of opinion dy-
namics are shown in Figure 6.

5 CONCLUSION
We introduce flame: a framework to de!ne, simulate and optimize
agent-based models (ABMs). First, the flame model de!nition has
been used to design diverse ABMs across biological, digital and
physical realms; and is implemented with the primitives of auto-
grad. Second, flame simulations execute on GPUs and seamlessly
scale to million-scale populations. Third, autograd compatibility
and custom flame.helpers allows simulating fully di"erentiable
ABMs which can utilize gradient-based learning and integrate with
DNNs. flame ABMs can use use supervised and reinforcement
learning to calibrate simulation parameters, optimize agent actions
and learning interaction rules. flame originated during COVID-19
and these capabilities have been used by clinicians and policy mak-
ers to evaluate immunization strategies that impacted millions of
people.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

398

REFERENCES
[1] Mohammed AlQuraishi. 2019. End-to-end di"erentiable learning of protein

structure. Cell systems 8, 4 (2019), 292–301.
[2] Camilla Ancona, Francesco Lo Iudice, Franco Garofalo, and Pietro De Lellis. 2022.

A model-based opinion dynamics approach to tackle vaccine hesitancy. Scienti"c
Reports 12, 1 (2022), 11835.

[3] Leo Ardon, Jared Vann, Deepeka Garg, Thomas Spooner, and Sumitra Ganesh.
2023. Phantom-A RL-driven Multi-Agent Framework to Model Complex Systems.
In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems. 2742–2744.

[4] Gaurav Arya, Moritz Schauer, Frank Schäfer, and Christopher Rackauckas. 2022.
Automatic di"erentiation of programs with discrete randomness. Advances in
Neural Information Processing Systems 35 (2022), 10435–10447.

[5] Joseph Aylett-Bullock, Carolina Cuesta-Lazaro, Arnau Quera-Bofarull, Miguel
Icaza-Lizaola, Aidan Sedgewick, Henry Truong, Aoife Curran, Edward Elliott,
Tristan Caul!eld, Kevin Fong, et al. 2021. JUNE: open-source individual-based
epidemiology simulation. Royal Society open science 8, 7 (2021), 210506.

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[7] Deniz A Bezgin, Aaron B Buhendwa, and Nikolaus A Adams. 2023. JAX-Fluids: A
fully-di"erentiable high-order computational $uid dynamics solver for compress-
ible two-phase $ows. Computer Physics Communications 282 (2023), 108527.

[8] Keith R Bisset, Jiangzhuo Chen, Xizhou Feng, VS Anil Kumar, and Madhav V
Marathe. 2009. EpiFast: a fast algorithm for large scale realistic epidemic simu-
lations on distributed memory systems. In Proceedings of the 23rd international
conference on Supercomputing. 430–439.

[9] Eric Bonabeau. 2002. Agent-based modeling: Methods and techniques for simu-
lating human systems. Proceedings of the national academy of sciences 99, suppl_3
(2002), 7280–7287.

[10] Julii Brainard, PR Hunter, and Ian R Hall. 2020. An agent-based model about the
e"ects of fake news on a norovirus outbreak. Revue d’epidemiologie et de sante
publique 68, 2 (2020), 99–107.

[11] Luca Capriotti. 2010. Fast Greeks by algorithmic di"erentiation. Available at
SSRN 1619626 (2010).

[12] Gregory R Carmichael, Adrian Sandu, et al. 1997. Sensitivity analysis for atmo-
spheric chemistry models via automatic di"erentiation. Atmospheric Environment
31, 3 (1997), 475–489.

[13] Ayush Chopra, Esma Gel, Jayakumar Subramanian, Balaji Krishnamurthy, Santi-
ago Romero-Brufau, Kalyan S Pasupathy, Thomas C Kingsley, and Ramesh Raskar.
2021. DeepABM: scalable, e#cient and di"erentiable agent-based simulations
via graph neural networks. InWinter Simulation Conference (WSC).

[14] Ayush Chopra, Alexander Rodriguez, Jayakumar Subramanian, Balaji Krishna-
murthy, B Aditya Prakash, and Ramesh Raskar. 2023. Di"erentiable Agent-based
Epidemiology.

[15] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and
J Zico Kolter. 2018. End-to-end di"erentiable physics for learning and control.
Advances in neural information processing systems 31 (2018).

[16] Stefan Doerr, Maciej Majewski, Adrià Pérez, Andreas Kramer, Cecilia Clementi,
Frank Noe, Toni Giorgino, and Gianni De Fabritiis. 2021. Torchmd: A deep
learning framework for molecular simulations. Journal of chemical theory and
computation 17, 4 (2021), 2355–2363.

[17] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and
Olivier Bachem. 2021. Brax - A Di!erentiable Physics Engine for Large Scale Rigid
Body Simulation. http://github.com/google/brax

[18] Michael Garlick and Maria Chli. 2010. Agent-based simulation of lock-in dynam-
ics in a duopoly. In 9th International Joint Conference on Autonomous Agents and
Multiagent Systems. 1545–1546.

[19] Voit EO Glen CM, Kemp ML. 2019. Agent-based modeling of morphogenetic
systems: Advantages and challenges. PLoS Computational Biology (2019).

[20] Chang Gong, Oleg Milberg, Bing Wang, Paolo Vicini, Rajesh Narwal, Lorin
Roskos, and Aleksander S Popel. 2017. A computational multiscale agent-based
model for simulating spatio-temporal tumour immune response to PD1 and PDL1
inhibition. Journal of the Royal Society Interface 14, 134 (2017), 20170320.

[21] Robert Hinch, William JM Probert, Anel Nurtay, Michelle Kendall, Chris Wymant,
Matthew Hall, Katrina Lythgoe, Ana Bulas Cruz, Lele Zhao, Andrea Stewart,
et al. 2021. OpenABM-Covid19—An agent-based model for non-pharmaceutical
interventions against COVID-19 including contact tracing. PLoS computational
biology 17, 7 (2021), e1009146.

[22] Cars H Hommes. 2002. Modeling the stylized facts in !nance through simple
nonlinear adaptive systems. Proceedings of the National Academy of Sciences 99,
suppl_3 (2002), 7221–7228.

[23] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. 2019. Learn-
ing protein structure with a di"erentiable simulator. In International Conference
on Learning Representations.

[24] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[25] Jackie Kazil, David Masad, and Andrew Crooks. 2020. Utilizing Python for
Agent-Based Modeling: The Mesa Framework. In Social, Cultural, and Behavioral
Modeling, Robert Thomson, Halil Bisgin, Christopher Dancy, Ayaz Hyder, and
Muhammad Hussain (Eds.). Springer International Publishing, Cham, 308–317.

[26] Cli" C Kerr, Robyn M Stuart, Dina Mistry, Romesh G Abeysuriya, Katherine
Rosenfeld, Gregory R Hart, Rafael C Núñez, Jamie A Cohen, Prashanth Selvaraj,
Brittany Hagedorn, et al. 2021. Covasim: an agent-based model of COVID-19
dynamics and interventions. PLOS Computational Biology 17, 7 (2021), e1009149.

[27] Daniel B Larremore, Bryan Wilder, Evan Lester, Soraya Shehata, James M Burke,
James AHay, Milind Tambe, Michael J Mina, and Roy Parker. 2021. Test sensitivity
is secondary to frequency and turnaround time for COVID-19 screening. Science
advances 7, 1 (2021), eabd5393.

[28] Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt,
and Jakob Foerster. 2022. Discovered policy optimisation. Advances in Neural
Information Processing Systems 35 (2022), 16455–16468.

[29] Sean Luke, Robert Simon, Andrew Crooks, Haoliang Wang, Ermo Wei, David
Freelan, Carmine Spagnuolo, Vittorio Scarano, Gennaro Cordasco, and Claudio
Cio#-Revilla. 2019. The MASON simulation toolkit: past, present, and future.
In Multi-Agent-Based Simulation XIX: 19th International Workshop, MABS 2018,
Stockholm, Sweden, July 14, 2018, Revised Selected Papers 19. Springer, 75–86.

[30] Ian S Lustick et al. 2000. Agent-based modelling of collective identity: testing
constructivist theory. Journal of Arti"cial Societies and Social Simulation 3, 1
(2000), 1.

[31] Kinal Mehta, Anuj Mahajan, and Pawan Kumar. 2023. marl-jax: Multi-agent
Reinforcement Leaning framework for Social Generalization. arXiv preprint
arXiv:2303.13808 (2023).

[32] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin.
2020. Growing Neural Cellular Automata. Distill (2020). https://distill.pub/2020/
growing-ca/

[33] Federico Guglielmo Morelli, Michael Benzaquen, Marco Tarzia, and Jean-Philippe
Bouchaud. 2020. Con!dence collapse in a multihousehold, self-re$exive DSGE
model. Proceedings of the National Academy of Sciences 117, 17 (2020), 9244–9249.

[34] Elias Najarro, Shyam Sudhakaran, Claire Glanois, and Sebastian Risi. 2022. Hy-
perNCA: Growing developmental networks with neural cellular automata. ICLR
Workshop on Cells to Societies (2022).

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

[36] Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. 2020. Torchdyn: A neural di"erential equations library. arXiv preprint
arXiv:2009.09346 (2020).

[37] Arnau Quera-Bofarull, Ayush Chopra, Joseph Aylett-Bullock, Carolina Cuesta-
Lazaro, Anisoara Calinescu, Ramesh Raskar, andMichaelWooldridge. 2023. Don’t
Simulate Twice: One-Shot Sensitivity Analyses via Automatic Di"erentiation.
In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems. 1867–1876.

[38] Arnau Quera-Bofarull, Ayush Chopra, Anisoara Calinescu, Michael Wooldridge,
and Joel Dyer. 2023. Bayesian calibration of di"erentiable agent-based models.
ICLR Workshop on AI for Agent-based Models (2023).

[39] Santiago Romero-Brufau, Ayush Chopra, Alex J Ryu, Esma Gel, Ramesh Raskar,
Walter Kremers, Karen S Anderson, Jayakumar Subramanian, Balaji Krishna-
murthy, Abhishek Singh, et al. 2021. Public health impact of delaying second dose
of BNT162b2 or mRNA-1273 covid-19 vaccine: simulation agent based modeling
study. bmj 373 (2021).

[40] Samuel Schoenholz and Ekin Dogus Cubuk. 2020. Jax md: a framework for
di"erentiable physics. Advances in Neural Information Processing Systems 33
(2020), 11428–11441.

[41] Neal R Smith, James M Trauer, Manoj Gambhir, Jack S Richards, Richard J Maude,
Jonathan M Keith, and Jennifer A Flegg. 2018. Agent-based models of malaria
transmission: a systematic review. Malaria journal 17, 1 (2018), 1–16.

[42] Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. 2022. Do
di"erentiable simulators give better policy gradients?. In International Conference
on Machine Learning. PMLR, 20668–20696.

[43] Teresa Tamayo-Mendoza, Christoph Kreisbeck, Roland Lindh, and Alán Aspuru-
Guzik. 2018. Automatic di"erentiation in quantum chemistry with applications
to fully variational Hartree–Fock. ACS central science 4, 5 (2018), 559–566.

[44] Nina Wiedemann, Valentin Wüest, Antonio Loquercio, Matthias Müller, Dario
Floreano, and Davide Scaramuzza. 2022. Training E#cient Controllers via Ana-
lytic Policy Gradient. arXiv preprint arXiv:2209.13052 (2022).

[45] Uri Wilensky. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL. http://ccl.northwestern.edu/netlogo/

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

399

http://github.com/google/brax
https://distill.pub/2020/growing-ca/
https://distill.pub/2020/growing-ca/
https://arxiv.org/abs/1912.01703
http://ccl.northwestern.edu/netlogo/

	Abstract
	1 Introduction
	2 Related Work
	3 Agent-based Modeling with python|flame|
	3.1 Differentiable Agent-based Model
	3.2 Definition of a python|flame| model
	3.3 Differentiability of a python|flame| model
	3.4 High-level modules and API
	3.5 Differentiating with python|flame|
	3.6 Gradient-based Optimization
	3.7 Summary of Contributions

	4 Case Studies
	4.1 Morphogenesis via Neural Cellular Automata
	4.2 Spatial Infectious Disease Epidemiology
	4.3 Social Opinion Dynamics

	5 Conclusion
	References

