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Abstract—This work introduces a novel physics-informed neu-
ral network (PINN)-based framework for modeling and optimiz-
ing false data injection (FDI) attacks on electric vehicle charging
station (EVCS) networks, with a focus on centralized charging
management system (CMS). By embedding the governing physi-
cal laws as constraints within the neural network’s loss function,
the proposed framework enables scalable, real-time analysis of
cyber-physical vulnerabilities. The PINN models EVCS dynamics
under both normal and adversarial conditions while optimizing
stealthy attack vectors that exploit voltage and current reg-
ulation. Evaluations on the IEEE 33-bus system demonstrate
the framework’s capability to uncover critical vulnerabilities.
These findings underscore the urgent need for enhanced resilience
strategies in EVCS networks to mitigate emerging cyber threats
targeting the power grid. Furthermore, the framework lays the
groundwork for exploring a broader range of cyber-physical
attack scenarios on EVCS networks, offering potential insights
into their impact on power grid operations. It provides a flexible
platform for studying the interplay between physical constraints
and adversarial manipulations, enhancing our understanding of
EVCS vulnerabilities. This approach opens avenues for future
research into robust mitigation strategies and resilient design
principles tailored to the evolving cybersecurity challenges in
smart grid systems.

Index Terms—Cybersecurity, False Data Injection, Electric
Vehicle Charging Station, Charging Management Systems, Open
Charge Point Protocol, Physics-Informed Neural Network

I. INTRODUCTION
A. Motivation

The electrification of transportation has witnessed unprece-
dented growth in recent years, with electric vehicle charging
stations (EVCSs) emerging as a critical component of the
electric vehicle (EV) ecosystem. Integrating these charging
stations into the power grid introduces a new dimension
of cyber-physical interdependence, underscoring the necessity
for robust cybersecurity measures. Among the myriad threats
facing EVCS, false data injection (FDI) attacks pose a par-
ticularly insidious risk, potentially compromising the integrity
and functionality of these critical systems. Recently, power
grids have become smarter and more efficient by incorporat-
ing the internet of things (IoT), making them vulnerable to
cyberattacks. A recent report found that the California power
grid has defended over a million cyberattacks each month [1].
FDI attacks represent a sophisticated cyber threat in which
adversaries manipulate data within a system to deceive its

decision-making processes. In the context of EVCS, these
attacks can lead to incorrect charging parameters, affecting the
state of charge (SoC) and current reference values, compro-
mising the efficiency of the charging process and potentially
causing damage to the battery of the electric vehicle [2].

Trends in electrification suggest that one in three cars are
expected to be electrified by 2040 [3]. The current EV charging
infrastructure has to be improved and expanded in accordance
with the global auto fleet’s shift toward EVs. The motivations
behind cyberattacks on an EVCS range from identity theft and
electricity theft to ransomware and virus assaults that poten-
tially compromise the entire EVCS network [4]. The transition
of the attack vector from the cyber layer to the physical
infrastructure layer involves intricate metrics that should be
analyzed with respect to the aftermath in real physical entities
such as power, current, voltage, and SoC. The work in [5]
includes the vulnerability analysis and risk assessment of an
EVCS with details of potential attack scenarios, such as denial
of service (DoS), man-in-the-middle (MiTM), and FDI. Ting
at el. [6] showed that the abundance of EVs can be exploited to
target the stability of the power grid. The adverse interaction
between EVCSs and power grids has been presented in [7]-[9].
The scope of this paper will primarily focus on FDI attacks.

Cyber-physical system (CPS) security research in EVCS
faces significant challenges due to limited access to the opera-
tional model and ethical constraints against real-world testing.
The interconnected nature of modern power grids complicates
attack vector identification, as disruptions can cascade through
systems. While traditional attack analytics models often fail to
capture real-world dynamics due to data quality limitations,
physics-informed neural networks (PINNs) offer a superior
alternative by embedding governing equations directly into
their architecture. PINNs enforce conservation laws and sys-
tem constraints through physics-informed loss functions, elim-
inating reliance on historical data. Our methodology leverages
PINNs as surrogate models to identify adaptive FDI attack
vectors in EVCSs, a critical component of the smart grid, with
impacts verified by real hardware prototyping.

B. Related Works

Intelligent and adaptive FDI attacks on EVCSs pose sig-
nificant analytical challenges. Traditional mixed-integer lin-



ear programming (MILP) approaches fail to capture non-
linear relationships between EVCS networks and power grids,
proving computationally prohibitive for systems governed
by complex ODEs and PDEs. While conventional machine
learning offers robust analytical tools, deep learning provides
superior capabilities for complex pattern recognition in grid
dynamics, as demonstrated in recent EV charging schemes
incorporating renewable energy and dynamic pricing. Physics-
informed machine learning further enhances these capabilities
by embedding system constraints directly into the learning
process, enabling data-efficient representations of system be-
havior. Recent studies in [10]-[12] have demonstrated the
utility of PINNs in modeling non-linear dynamic equations
across various domains. The study in [13] presents a novel
method for solving the optimal power flow (OPF) problem
using physics-informed typed graph neural networks (PI-
TGNs). Leveraging PINNs could lead to accurate impact
assessments and robust defenses against FDI attacks in modern
energy systems. The authors in [14]—-[17] discussed challenges
PINNs address, including data scarcity, interpretability, and
physical consistency, providing a roadmap for future research
that leverages PINNs to improve power grid performance and
resilience. Researchers in [18] introduced a robust voltage con-
trol method for distribution systems using physics-informed
graphical representation. The study in [19] presents a hybrid
control architecture combining PINNs with model predictive
control (MPC) for DC-DC buck converters.

The ever-expanding EV infrastructure has prompted various
approaches to managing the penetration of EVs on the power
grid. CMS allows monitoring of charging station activity —
charging, discharging, scheduling, and load balancing. Cyber-
physical security challenges in extreme fast charging (XFC)
stations for EVs, focusing on potential cyber threats that could
destabilize charging networks and impact grid stability, have
been demonstrated in [20]-[23]. Acharya et al. in [24] exam-
ined the cybersecurity vulnerabilities arising from integrating
EV, EVCS, and the power grid. It highlights risks at the
intersection of these systems, including data manipulation,
unauthorized access, and potential large-scale demand-side
attacks. The study in [25] investigated how botnets composed
of compromised EVs and fast-charging stations could impact
power grid stability. By analyzing the IEEE 33-bus, the work
demonstrated that simultaneous charging via a botnet attack
could lead to various harms, including line congestion and
voltage drops.

C. Contributions

Literature reveals significant gaps in EVCS security, partic-
ularly in real-time attack detection and mitigation. Traditional
solvers like Gurobi and CPLEX struggle with highly nonlinear
systems due to convergence issues, computational demands,
and discretization-related errors. In contrast, our proposed
model incorporates governing equations directly into neural
network architecture, enabling continuous solution approxima-
tion without discretization constraints. This approach allows
comprehensive exploration of potential attack vectors while

ensuring physical plausibility, thereby enhancing detection
accuracy and reducing false positives in EVCS networks. Our
key contributions in this research can be presented as follows:

« We propose the attack analytics model leveraging PINNs
to overcome the limitations of discretization. PINNs
explore the continuous attack space without requiring pre-
defined assumptions or resolution, offering a scalable and
efficient alternative. By embedding physical laws into the
optimization process, PINNs ensure the identified attack
vectors remain realistic and actionable, reducing false
positives and enhancing the reliability of the analysis.

« Integrating gradient-based optimization to identify attack
vectors that maximize performance deviations, such as
voltage regulation errors or current disruptions. This
approach avoids the computational overhead of discretiza-
tion and provides a direct solution to ordinary differential
equations (ODEs), enabling more efficient and accurate
attack modeling.

o Traditional discretization methods, which predefine a lim-
ited set of attack scenarios or states, face significant chal-
lenges in simulating and analyzing the high-dimensional
and continuous nature of attack impacts on EVCS net-
works. These methods are computationally expensive,
scale poorly with system complexity, and struggle to
capture subtle but impactful attack vectors. This approach
enables accurate modeling of EVCS networks without
pre-collected training data, resulting in faster training and
improved generalization.

The rest of the paper is organized as follows: we have
discussed the technical overview of the system in Section II.
Section IIT discusses the modeling of the optimal attack ana-
Iytics model. Section IV explains testbed implementation that
validates the PINN framework against real EVCS controllers
under various scenarios. Section V discusses performance
evaluation and the impact of FDI attacks on the EVCS
network. Finally, we conclude the paper in Section VI.

II. TECHNICAL OVERVIEW
A. EVCS Dynamics

AC-to-DC power conversion for EV charging involves mul-
tiple stages to ensure safe and efficient operation. Grid syn-
chronization, managed by a phase-locked loop (PLL), aligns
the control system with grid voltage by continuously adjusting
for grid angle and frequency discrepancies. The rectified AC
power is stored in a DC link, where a control loop stabilizes
voltage by minimizing fluctuations from grid disturbances or
load variations. Reference currents for direct and quadrature
AC components are computed for current regulation managed
by an inner loop compensating for component resistance and
inductance. An LCL filter smooths AC currents and removes
harmonics before rectification. The DC-link balances power
input from the grid with EV consumption, while a DC-
DC converter modulates the stabilized voltage to match the
EV battery’s requirements. This ensures precise, reliable, and



TABLE I
MODELING NOTATIONS

;‘}(I)It)zﬁ(:; Notation Description
B Set of all buses in the system
BEY Set of EVCS buses
T Set of all timeslots for controller’s
General response
b, 1 indices for buses
Bus 0 Phase angle of bus

Measurements )V Bus voltage
Fi Bus Frequency
P Active power
Reactive power

EVCS ) Phase angle

Measurements w Angular frequency
Ve DC link voltage of converter
Vout Output/terminal voltage of EVCS
Viyef Reference setpoints of AC/DC con-

verter voltage
ide DC link current of converter

lout Output/terminal current of EVCS
iref Reference setpoints of AC/DC con-
verter current
Moy de Modulation index of AC/DC con-
verter
ba d-axis flux linkage
Pq g-axis flux linkage
R Line resistance
Fixed L Inductance of LCL filter
Parameters C Capacitance of LCL filter
ADM TVt ADM threshold for voltage
Parameter Tlou ADM threshold for current

primmat ADM threshold for active power
mn,mar ADM threshold for reactive power
p

efficient charging, safeguarding battery health and maintaining
overall system stability. The EVCS dynamics used for this
attack analytics model are discussed in [26]. The modeling
notations for power system components, dynamics, and FDI
attacks are mentioned in Table I.

B. Charging Management System

CMS ensures the stability of the EVCS network by continu-
ously monitoring voltages and currents, comparing them with
setpoints, and issuing corrective signals to local controllers. By
coordinating multiple EVCS units, the CMS prevents localized
disturbances from affecting the wider network. The PINNs
model optimizes controller gains to counter cyber-physical
threats, enhancing system stability and security as EV adoption
grows. CMS uses proportional integral (PI) controllers to reg-
ulate voltage and current within limits. However, if attackers
inject false data by bypassing anomaly detection, the CMS
can be misled to issue incorrect setpoints, destabilizing the
voltage.

C. Loss Functions for PINN Model

The loss function is crucial in training PINNs, integrating
physical laws, and data-driven objectives to model complex

systems accurately. It enforces governing equations as penalty
terms, ensuring that predictions align with system dynamics
while reducing dependence on large datasets. Additional terms
for boundary, initial conditions, and data consistency refine
accuracy. The multi-objective structure enables PINNs to
handle high-dimensional, nonlinear systems without traditional
discretization, enhancing scalability. Proper weighting of loss
terms ensures a balance between physical constraints and
empirical data, making PINNs a powerful tool for modern
scientific and engineering challenges. One of the major loss
functions, PINN needs to minimize is the mismatch of active
and reactive power. If Lpg represents the power flow loss the
loss function can be written as:

Lop = Z Z ( Pacmal Zf:]xpected)Q (1)

i=1 jeN;

Voltage regulation loss ensures the voltage at each bus stays
within a specified range (i.e., (Viower - Vupper)- If Lyr represents
the voltage regulation loss, then it can be calculated as:

N
Lyr =Y (max(0, Vi — Vinax) + max(0, Viin — Vi))* (2)
i=1
The loss terms related to EVCS capture the dynamics of the
EVCS system. Each time derivative is associated with a loss
term that penalizes deviations from its expected value. Each
loss function targets a specific parameter to ensure it aligns
closely with its desired trajectory or calculated value based
on system equations. The loss function for the phase angle
ensures that the rate of change of the phase angle matches the
system’s angular frequency and can be written as:

ds ds 2
= — (= _ 3
dt loss ( dt w) ( )

The loss function of the phase-locked loop (PLL) error mini-
mizes the discrepancies of the AC-DC converter. The equation
can be written as:

dw dw 2
T . PLLETT‘OT 4
dt 1oss ( dt ) ( )

The flux linkage components are governed by the following
loss functions:

d¢los <d¢] —

2
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These ensure alignment between the rate of change of flux
linkages and the respective voltage components. d-axis and
g-axis current dynamics are managed by:

dij dij 1 conw ) . 2
Eloss - (dt N TLl (vj -R- i~ v +(“JLL1 : Zk))
(6)

where j,k g-axis, and d-axis are components of converter
current. These ensure that the currents in the d- and g-axes
align with their expected dynamic behavior. The inductor



current and capacitor voltage dynamics of the LCL filter used
in the system are described as follows:

The overall loss of an EVCS is the summation of the individual
loss of each EVCS, and if Lgycs represents the total EVCS
dynamics loss, then it can be represented as:

N .
dd dw do dig,
L hnd Y 1
EvVes = ; { dt 1oss + dt 1oss + dt 10ss dt loss (1 1)
+ diL2 divC d'UdC
dt loss dt loss dt loss

These losses align the inductor current and capacitor voltage
with their expected behavior in response to system inputs.
The loss functions outlined provide a robust framework for
system control, ensuring critical parameters like voltage, cur-
rent, frequency, and phase angle behave as intended. This
mathematical structure is fundamental in implementing control
systems for energy networks, particularly in advanced grid
operations involving EVCS.

Liotal = A1 Lpr + A2Lyr + A3LEvCS (12)

Where, A1, A2, A3 are weighting factors.

D. PINN Model Structure

We developed an LSTM-based PINNs with four hidden
layers of 512 LSTM units each to model the EVCS network
dynamics. Leveraging PyTorch’s forch.autograd for automatic
differentiation, the model enforces system equations while
capturing non-linear and time-dependent behaviors. Validation
under varying load conditions, discussed in Section IV, shows
the LSTM-PINN accurately learns temporal dependencies and
matches real-world EVCS behavior. Fig. 1 illustrates the
architecture of the proposed attack analytics model.

III. ATTACK ANALYTICS MODEL

We use PINNs to model the non-linear dynamics of EVCS
networks and evaluate the impact of stealthy FDI attacks. The
attack model targets OCPP-based CMS interfaces, enabling
manipulation of charging parameters (e.g., power flow, current,
SoC) while evading detection. Assuming attacker knowledge
of EVCS operations, the attack is formulated as a constrained
optimization problem to maximize disruption without trig-
gering alarms. PINNs provide a scalable framework to learn
system dynamics and identify vulnerabilities in EVCS-enabled
distribution grids.

A. Attack Technique

Assume that Vut , and T wut,p are the false data injected into
the output voltage and output current measurements of the
EVCS converter at node b and time ¢. The resulting attacked
measurements V!, o and I, «» can be expressed as:

VbGthGTa ‘/oulb
Yoe B,teT,

where B represents the EVCS nodes and 7 denotes the
duration of the attack.

‘/outb+‘/outb (13)

Igul,b = Iéut b + Isut b (14)

B. Attack Optimization

The attacker’s goal is to deploy optimized FDI attacks that
maximize voltage and current deviations across the EVCS
network, degrading control system effectiveness. By incorpo-
rating system dynamics into a PINN’s loss function, attackers
can identify subtle perturbations that exploit physical con-
straints while evading detection systems. The objective can
be formulated as:

nommal( )”)]

Z [ Vou ()
- (15)

subject to the physical constraints of the EVCS network:
F (Vout, Lout, 6V, 61) =0 (16)

max E

SV.61 nommal( )” + Hjout(t) —

where 6V and 07 represent the adversarial perturbations
introduced to voltage and current measurements, and F(-)
denotes the dynamics of the underlying physics-based system
modeled within the PINN framework.

C. Artack Constraints

The attacker’s ability to manipulate the EVCS network is
constrained by two primary factors: accessibility and stealth
requirements under the anomaly detection mechanism.
Accessibility: Accessibility defines the EVCS nodes and mea-
surements that the attacker can target, influenced by network
topology, open services, and existing security controls. This
is represented by a binary vector A € RIBI where A, = 0
indicates that the EVCS node b is inaccessible to the attacker.

VWeBteTS A,=0—AVY, =0, AIL,=0 (17)

This constraint ensures that the attacker can only introduce
perturbations AVOm . and AIOm ;. at nodes where accessibility
is granted, preventing modifications to inaccessible EVCS.
Stealth Constraints: To avoid detection by the anomaly detec-
tion model (ADM), the attacker keeps the injected deviations
V;m , and If)’m . within the tolerable limits of the CMS (i.e.
Toows Tiow )- These limits ensure that any sudden change is not
possible for the attacker to inject because the CMS checks the
variations in consecutive time-steps and discards the values
that are out of the threshold values. The constraints on the
permissible rate of change between consecutive measurements
are mentioned in (18)-(22):

TV S (V;)l:lt,t-i-l + Vout t+1) (ngnt + Vo?n,t) < TV (18)
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Fig. 1. Deep LSTM-based PINN attack analytics model.
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P < Pt] < P vbe BEY vt e T (20)
QI < Qult] < Qe Vbe BFV VteT Q1)

Vbout,min < Vbout [t] < Vout,maz

- ., YoeBEY vteT (22)

D. Attack Assumptions

This attack model considers the following assumptions to
simulate a worst-case scenario for the EVCS network:

o Assumption I: The Attacker agents have extensive knowl-
edge of the CMS’s control algorithms, EVCS network
parameters, and ADM thresholds.

o Assumption II: Attackers can access voltage Vg, and
current I,,; measurements from RTUs at selected EVCS
buses, but control signals from the charging management
system to EVCS converters remain secure.

o Assumption III: Load conditions across the EVCS net-
work may vary during the attack.

o Assumption IV: The attacker has sustained access to
compromised sensors, enabling continuous monitoring
and manipulation of Vg and Iy, across targeted EVCS.

These assumptions provide a detailed foundation for analyz-

ing potential vulnerabilities within the CMS-managed EVCS
network under coordinated FDI attacks, specifically on the
voltage and current control elements. This analysis highlights
the EVCS network’s resilience against sophisticated cyber
threats and informs strategies to enhance CMS security.

IV. TESTBED DESIGN AND EXPERIMENTATION

We first describe the experimental setup which incorporates
industry-standard IEEE bus configurations and realistic power
electronics modeling. We further demonstrate the behavior of
the system in steady-state and dynamic conditions, providing
insight into the characteristics of the charging infrastructure.

A. Simulation-based Experimentation

Simulation Design: The PINN-based attack analytics model
was implemented in Python and executed on an Intel Xeon
E5-240 system with dual RTX 4090 GPUs and 248GB RAM.
It models the IEEE 33-bus grid with five 55kW EVCS

operating at 98% efficiency using per-unit (p.u.) scaling. The
environment includes LCL filters, DC-DC converters, and
power electronics for accurate power flow simulation. For
validation, a Simulink-based EVCS model from [27] was
integrated with the IEEE 33-bus system. A Pl-based CMS
manages the optimal charging of the EVCS across the network.
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Fig. 2. PINN outputs of EVCS (a) voltage, (b) current in steady state
condition.
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Fig. 3. Simulink outputs of EVCS (a) voltage and (b) current on steady state
condition.
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Fig. 4. Demonstrating outputs of EVCS (a) active power and (b) reactive
power in EVCS Bus due to change of load.

Steady-State Response: During normal operation, the EVCS
voltages demonstrate ideal convergence characteristics, settling
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Fig. 5. Hardware testbed for PINN attack analytics.

precisely at the specified set point. The system response
in a steady-state EVCS network is shown in Fig. 2. The
figure shows that the system comes to a steady-state position
after initial oscillation. The actual values of output voltage,
output current, and active power are 550V, 100A, and 55kW,
respectively. The steady-state response of EVCS’s terminal
voltage and current simulated in Simulink are shown in Fig. 3.

Dynamic Response: We introduced up to 20% load variations
at EVCS-connected buses in the IEEE 33-bus system to assess
power balance and load dynamics. Fig. 4 shows the grid
maintains stability by adjusting setpoints and redistributing
power, keeping voltage and power flows within limits. These
results validate the model’s ability to capture realistic EVCS
demand and grid interactions.

B. Testbed Validation

The vulnerability of the OCPP module to FDI attacks was
assessed using a prototype EVCS connected to a CMS. The
hardware setup used for this experiment is illustrated in Fig. 5.
The prototype consists of a combination of an Arduino, a
DC-DC voltage regulator, voltage and current sensors, and
an analog-to-digital converter representing the physical EVCS
charging system. In addition to this, a Raspberry Pi was used to
represent the EVCS server that communicates with an open-
source CMS (SteVe) [28]. The system follows OCPP 1.6J,
the industry-standard protocol for bidirectional EVCS-CMS
communication, enabling real-time data exchange through
WebSocket connections. This facilitates efficient monitoring of
charging sessions, including station availability, transactions,
power consumption, and SoC updates. The network archi-
tecture integrates a SteVe-based CMS running in a modified
Docker setup that communicates with the EVCS’s components
via serial communication. The Raspberry Pi initiates an OCPP
transaction, prompting the Arduino to generate a PWM signal
for the load (a battery and LED) while the CMS records the
total power supplied. For cybersecurity analysis, a Kali Linux
virtual machine with Wireshark, Scapy, and Ettercap installed
is used for network sniffing, packet analysis, and injection,
allowing message monitoring and manipulation within the

network. The prototype operates at a voltage of 14.11V and
a current of 1.56A. The attack vectors we have derived from
our attack analytics model are scaled to this level and injected
through the MiTM attack between the EVCS module and
CMS. From Fig. 5, we have found that, when the attack values
are injected, the voltage drops to 12.8V from 14.11V and the
current drops to 1.09A from 1.56A, which in turn drops the
power consumed by the battery from 22Wh to 14.1Wh. This
validation supports the effectiveness of our attack module.

V. EVALUATION

This research explores the security of EVCS networks using
a PINN-based attack analytics model. To guide our investiga-
tion and provide a structured framework for evaluating our
proposed methodology, we formulate the following research
questions (RQ):
e RQ1. What is the impact of the attack vectors on the
charging schedule?
e RQ2. How scalable are the attack vectors to create
disturbances in the EVCS Network?
e RQ3. How computationally efficient is the PINN-based
model in analyzing attack vectors compared to traditional
methods?

A. Impact of Attack on Charging Schedule

In the steady-state operational regime of an EVCS network,
the power distribution remains relatively uniform across all
charging nodes, with consistent charging times as illustrated
in Fig. 6(a). Under normal conditions, charging times range
from approximately 138.3 to 211.5 minutes between sta-
tions. However, during peak hours with high load demand
(Fig. 6(b)), the CMS dynamically adjusts reference setpoints
through closed-loop control mechanisms to optimize power
distribution. This results in extended charging durations at
individual EVCS locations, with times ranging between 414.6
and 746.4 minutes, nearly twice the normal charging time.
Most critically, as demonstrated in Fig. 6(c), sophisticated
cyberphysical attacks that stealthily manipulate CMS setpoints
can induce severe charging disruptions without actual load



_ 800

w2 w

¢ 00 2700
175 ]

£ £ 600

E£1501 1357 1402 =00

Q15| . g

" (2]

< 100 2 400

1) .

S 50 2200

£ .

€ 25 €100

F F

o

EVCS1 EVCS8 EVCS 16 EVCS 25 EVCS 32
EVCS Station

(a) (b)

EVCS1 EVCS8 EVCS 16 EVCS 25 EVCS 32
EVCS Station

phle

=227

EVCS1 EVCS8 EVCS 16 EVCS 25 EVCS 32
EVCS Station

(©

g

Fig. 6. Required charging time for 5 EVCS in (a) normal operating conditions, (b) peak hour with high load demand, and (c) under cyber attack.

changes. These attacks extend charging times to over 1500
minutes (7 x normal) by forcing false power adjustments. Such
manipulation has bidirectional impacts: power reduction leads
to grid congestion and service degradation, while overdelivery
risks thermal stress, lithium plating, and battery degradation,
threatening system safety and reliability.
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Fig. 7. Results of PINN model for (a) optimal attack value for voltage
measurements, (b) EVCS output voltage, (¢) EVCS output current, and (d)
active power delivered by EVCS while targeting at most 9 EVCS.

B. FDI Attack Impact on CMS

Although the attack analytics model is primarily developed
for 5 EVCSs, one of the major advantages is that it can
be extended to any number of EVCS. We have simulated
the IEEE 33-bus system with up to 15 EVCS to identify
optimal attack vectors that could exploit vulnerabilities while
remaining undetected. Our approach leveraged the actual
dynamics of the system to ensure that the attack vectors
maintained both physical plausibility and evasion of the de-
tection mechanisms. The attack vectors were derived through
a rigorous process that incorporated the dynamics and con-
straints of the systems. Our methodology ensured that all
vectors adhered to the constraints of the physical system,
including power flow equations, voltage, and current limits.
Furthermore, vectors operate below established thresholds for
anomaly detection systems, making them particularly difficult

to identify through conventional monitoring systems. Through
systematic analysis of various attack scenarios, we identified
optimized stealthy attack vectors that maximize disruption
while evading detection. Fig. 7 shows the system’s progressive
deviation under these attacks, leading to voltage instabilities,
power flow shifts, and cascading failures, while keeping in-
dividual measurements within normal operational thresholds.
Importantly, the PINN framework scales efficiently to larger
networks, automatically identifying vulnerable nodes across
different EVCS deployment levels, making it a scalable and
robust security assessment tool.
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Fig. 8. Comparison of computational time between PINN and Odel4/15
based solver models.

C. Computational Advantage

We performed a computational analysis of the IEEE 33-
bus system with EVCS integration, comparing PINNs with
traditional solvers (Ode14/0Odel5s). The PINN model ran 1.5x
faster for 5 EVCSs and 6.5x faster for 15 EVCSs, as shown in
Fig. 8. Unlike sequential numerical solvers, PINNs leverage
parallelizable neural architectures, reducing bottlenecks when
handling stiff system dynamics. Notably, these gains were
achieved without GPU acceleration, highlighting the algo-
rithmic efficiency of PINNs over traditional methods. This
performance improvement is primarily due to the parallelizable
architecture of neural networks, which allows simultaneous
evaluation of system dynamics across multiple time steps,
bypassing the sequential nature of adaptive step-size solvers
like Odel4 and Odel5s. While traditional solvers require
iterative error estimation and correction at every step, PINNs
approximate the solution across the entire domain in a single
forward pass, significantly reducing computation overhead.



VI. CONCLUSION

Our research introduces a PINNs framework for modeling
FDI attacks on EVCS networks. By embedding physical laws
directly into neural networks, we overcome limitations of
traditional discretization methods, enabling continuous, scal-
able analysis of cyber-physical vulnerabilities. The framework
efficiently identifies attack vectors that maximize voltage regu-
lation errors and current disruptions while maintaining stealth
against conventional detection systems. Our gradient-based
optimization directly solves governing ODEs without com-
putational overhead, providing superior precision compared
to conventional approaches that struggle with scalability in
complex systems. These findings highlight the urgent need
for enhanced resilience in EVCS infrastructure and position
PINNs as a robust foundation for developing physics-aware
defense mechanisms to protect increasingly complex power
grid systems against sophisticated cyber threats.
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