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Abstract—This work introduces a novel physics-informed neu-
ral network (PINN)-based framework for modeling and optimiz-
ing false data injection (FDI) attacks on electric vehicle charging
station (EVCS) networks, with a focus on centralized charging
management system (CMS). By embedding the governing physi-
cal laws as constraints within the neural network’s loss function,
the proposed framework enables scalable, real-time analysis of
cyber-physical vulnerabilities. The PINN models EVCS dynamics
under both normal and adversarial conditions while optimizing
stealthy attack vectors that exploit voltage and current reg-
ulation. Evaluations on the IEEE 33-bus system demonstrate
the framework’s capability to uncover critical vulnerabilities.
These findings underscore the urgent need for enhanced resilience
strategies in EVCS networks to mitigate emerging cyber threats
targeting the power grid. Furthermore, the framework lays the
groundwork for exploring a broader range of cyber-physical
attack scenarios on EVCS networks, offering potential insights
into their impact on power grid operations. It provides a flexible
platform for studying the interplay between physical constraints
and adversarial manipulations, enhancing our understanding of
EVCS vulnerabilities. This approach opens avenues for future
research into robust mitigation strategies and resilient design
principles tailored to the evolving cybersecurity challenges in
smart grid systems.

Index Terms—Cybersecurity, False Data Injection, Electric
Vehicle Charging Station, Charging Management Systems, Open
Charge Point Protocol, Physics-Informed Neural Network

I. INTRODUCTION

A. Motivation

The electrification of transportation has witnessed unprece-

dented growth in recent years, with electric vehicle charging

stations (EVCSs) emerging as a critical component of the

electric vehicle (EV) ecosystem. Integrating these charging

stations into the power grid introduces a new dimension

of cyber-physical interdependence, underscoring the necessity

for robust cybersecurity measures. Among the myriad threats

facing EVCS, false data injection (FDI) attacks pose a par-

ticularly insidious risk, potentially compromising the integrity

and functionality of these critical systems. Recently, power

grids have become smarter and more efficient by incorporat-

ing the internet of things (IoT), making them vulnerable to

cyberattacks. A recent report found that the California power

grid has defended over a million cyberattacks each month [1].

FDI attacks represent a sophisticated cyber threat in which

adversaries manipulate data within a system to deceive its

decision-making processes. In the context of EVCS, these

attacks can lead to incorrect charging parameters, affecting the

state of charge (SoC) and current reference values, compro-

mising the efficiency of the charging process and potentially

causing damage to the battery of the electric vehicle [2].

Trends in electrification suggest that one in three cars are

expected to be electrified by 2040 [3]. The current EV charging

infrastructure has to be improved and expanded in accordance

with the global auto fleet’s shift toward EVs. The motivations

behind cyberattacks on an EVCS range from identity theft and

electricity theft to ransomware and virus assaults that poten-

tially compromise the entire EVCS network [4]. The transition

of the attack vector from the cyber layer to the physical

infrastructure layer involves intricate metrics that should be

analyzed with respect to the aftermath in real physical entities

such as power, current, voltage, and SoC. The work in [5]

includes the vulnerability analysis and risk assessment of an

EVCS with details of potential attack scenarios, such as denial

of service (DoS), man-in-the-middle (MiTM), and FDI. Ting

at el. [6] showed that the abundance of EVs can be exploited to

target the stability of the power grid. The adverse interaction

between EVCSs and power grids has been presented in [7]–[9].

The scope of this paper will primarily focus on FDI attacks.

Cyber-physical system (CPS) security research in EVCS

faces significant challenges due to limited access to the opera-

tional model and ethical constraints against real-world testing.

The interconnected nature of modern power grids complicates

attack vector identification, as disruptions can cascade through

systems. While traditional attack analytics models often fail to

capture real-world dynamics due to data quality limitations,

physics-informed neural networks (PINNs) offer a superior

alternative by embedding governing equations directly into

their architecture. PINNs enforce conservation laws and sys-

tem constraints through physics-informed loss functions, elim-

inating reliance on historical data. Our methodology leverages

PINNs as surrogate models to identify adaptive FDI attack

vectors in EVCSs, a critical component of the smart grid, with

impacts verified by real hardware prototyping.

B. Related Works

Intelligent and adaptive FDI attacks on EVCSs pose sig-

nificant analytical challenges. Traditional mixed-integer lin-



ear programming (MILP) approaches fail to capture non-

linear relationships between EVCS networks and power grids,

proving computationally prohibitive for systems governed

by complex ODEs and PDEs. While conventional machine

learning offers robust analytical tools, deep learning provides

superior capabilities for complex pattern recognition in grid

dynamics, as demonstrated in recent EV charging schemes

incorporating renewable energy and dynamic pricing. Physics-

informed machine learning further enhances these capabilities

by embedding system constraints directly into the learning

process, enabling data-efficient representations of system be-

havior. Recent studies in [10]–[12] have demonstrated the

utility of PINNs in modeling non-linear dynamic equations

across various domains. The study in [13] presents a novel

method for solving the optimal power flow (OPF) problem

using physics-informed typed graph neural networks (PI-

TGNs). Leveraging PINNs could lead to accurate impact

assessments and robust defenses against FDI attacks in modern

energy systems. The authors in [14]–[17] discussed challenges

PINNs address, including data scarcity, interpretability, and

physical consistency, providing a roadmap for future research

that leverages PINNs to improve power grid performance and

resilience. Researchers in [18] introduced a robust voltage con-

trol method for distribution systems using physics-informed

graphical representation. The study in [19] presents a hybrid

control architecture combining PINNs with model predictive

control (MPC) for DC-DC buck converters.

The ever-expanding EV infrastructure has prompted various

approaches to managing the penetration of EVs on the power

grid. CMS allows monitoring of charging station activity –

charging, discharging, scheduling, and load balancing. Cyber-

physical security challenges in extreme fast charging (XFC)

stations for EVs, focusing on potential cyber threats that could

destabilize charging networks and impact grid stability, have

been demonstrated in [20]–[23]. Acharya et al. in [24] exam-

ined the cybersecurity vulnerabilities arising from integrating

EV, EVCS, and the power grid. It highlights risks at the

intersection of these systems, including data manipulation,

unauthorized access, and potential large-scale demand-side

attacks. The study in [25] investigated how botnets composed

of compromised EVs and fast-charging stations could impact

power grid stability. By analyzing the IEEE 33-bus, the work

demonstrated that simultaneous charging via a botnet attack

could lead to various harms, including line congestion and

voltage drops.

C. Contributions

Literature reveals significant gaps in EVCS security, partic-

ularly in real-time attack detection and mitigation. Traditional

solvers like Gurobi and CPLEX struggle with highly nonlinear

systems due to convergence issues, computational demands,

and discretization-related errors. In contrast, our proposed

model incorporates governing equations directly into neural

network architecture, enabling continuous solution approxima-

tion without discretization constraints. This approach allows

comprehensive exploration of potential attack vectors while

ensuring physical plausibility, thereby enhancing detection

accuracy and reducing false positives in EVCS networks. Our

key contributions in this research can be presented as follows:

• We propose the attack analytics model leveraging PINNs

to overcome the limitations of discretization. PINNs

explore the continuous attack space without requiring pre-

defined assumptions or resolution, offering a scalable and

efficient alternative. By embedding physical laws into the

optimization process, PINNs ensure the identified attack

vectors remain realistic and actionable, reducing false

positives and enhancing the reliability of the analysis.

• Integrating gradient-based optimization to identify attack

vectors that maximize performance deviations, such as

voltage regulation errors or current disruptions. This

approach avoids the computational overhead of discretiza-

tion and provides a direct solution to ordinary differential

equations (ODEs), enabling more efficient and accurate

attack modeling.

• Traditional discretization methods, which predefine a lim-

ited set of attack scenarios or states, face significant chal-

lenges in simulating and analyzing the high-dimensional

and continuous nature of attack impacts on EVCS net-

works. These methods are computationally expensive,

scale poorly with system complexity, and struggle to

capture subtle but impactful attack vectors. This approach

enables accurate modeling of EVCS networks without

pre-collected training data, resulting in faster training and

improved generalization.

The rest of the paper is organized as follows: we have

discussed the technical overview of the system in Section II.

Section III discusses the modeling of the optimal attack ana-

lytics model. Section IV explains testbed implementation that

validates the PINN framework against real EVCS controllers

under various scenarios. Section V discusses performance

evaluation and the impact of FDI attacks on the EVCS

network. Finally, we conclude the paper in Section VI.

II. TECHNICAL OVERVIEW

A. EVCS Dynamics

AC-to-DC power conversion for EV charging involves mul-

tiple stages to ensure safe and efficient operation. Grid syn-

chronization, managed by a phase-locked loop (PLL), aligns

the control system with grid voltage by continuously adjusting

for grid angle and frequency discrepancies. The rectified AC

power is stored in a DC link, where a control loop stabilizes

voltage by minimizing fluctuations from grid disturbances or

load variations. Reference currents for direct and quadrature

AC components are computed for current regulation managed

by an inner loop compensating for component resistance and

inductance. An LCL filter smooths AC currents and removes

harmonics before rectification. The DC-link balances power

input from the grid with EV consumption, while a DC-

DC converter modulates the stabilized voltage to match the

EV battery’s requirements. This ensures precise, reliable, and



TABLE I
MODELING NOTATIONS

Type of
Notation

Notation Description

General

B Set of all buses in the system

B
EV Set of EVCS buses

T Set of all timeslots for controller’s
response

b, i indices for buses

Bus
Measurements

δ Phase angle of bus
Vt Bus voltage
Ft Bus Frequency

EVCS
Measurements

P Active power
Q Reactive power
δ Phase angle
ω Angular frequency
vdc DC link voltage of converter
vout Output/terminal voltage of EVCS
vref Reference setpoints of AC/DC con-

verter voltage
idc DC link current of converter
iout Output/terminal current of EVCS
iref Reference setpoints of AC/DC con-

verter current
mvdc Modulation index of AC/DC con-

verter
φd d-axis flux linkage
φq q-axis flux linkage

Fixed
Parameters

R Line resistance
L Inductance of LCL filter
C Capacitance of LCL filter

ADM
Parameter

τVout ADM threshold for voltage
τIout ADM threshold for current

Pmin,max ADM threshold for active power

Qmin,max ADM threshold for reactive power

efficient charging, safeguarding battery health and maintaining

overall system stability. The EVCS dynamics used for this

attack analytics model are discussed in [26]. The modeling

notations for power system components, dynamics, and FDI

attacks are mentioned in Table I.

B. Charging Management System

CMS ensures the stability of the EVCS network by continu-

ously monitoring voltages and currents, comparing them with

setpoints, and issuing corrective signals to local controllers. By

coordinating multiple EVCS units, the CMS prevents localized

disturbances from affecting the wider network. The PINNs

model optimizes controller gains to counter cyber-physical

threats, enhancing system stability and security as EV adoption

grows. CMS uses proportional integral (PI) controllers to reg-

ulate voltage and current within limits. However, if attackers

inject false data by bypassing anomaly detection, the CMS

can be misled to issue incorrect setpoints, destabilizing the

voltage.

C. Loss Functions for PINN Model

The loss function is crucial in training PINNs, integrating

physical laws, and data-driven objectives to model complex

systems accurately. It enforces governing equations as penalty

terms, ensuring that predictions align with system dynamics

while reducing dependence on large datasets. Additional terms

for boundary, initial conditions, and data consistency refine

accuracy. The multi-objective structure enables PINNs to

handle high-dimensional, nonlinear systems without traditional

discretization, enhancing scalability. Proper weighting of loss

terms ensures a balance between physical constraints and

empirical data, making PINNs a powerful tool for modern

scientific and engineering challenges. One of the major loss

functions, PINN needs to minimize is the mismatch of active

and reactive power. If LPF represents the power flow loss the

loss function can be written as:

LPF =
N
∑

i=1

∑

j∈Ni

(

P actual
ij − P

expected
ij

)2

(1)

Voltage regulation loss ensures the voltage at each bus stays

within a specified range (i.e., (Vlower - Vupper). If LVR represents

the voltage regulation loss, then it can be calculated as:

LVR =

N
∑

i=1

(max(0, Vi − Vmax) + max(0, Vmin − Vi))
2

(2)

The loss terms related to EVCS capture the dynamics of the

EVCS system. Each time derivative is associated with a loss

term that penalizes deviations from its expected value. Each

loss function targets a specific parameter to ensure it aligns

closely with its desired trajectory or calculated value based

on system equations. The loss function for the phase angle

ensures that the rate of change of the phase angle matches the

system’s angular frequency and can be written as:

dδ

dt loss
=

(

dδ

dt
− ω

)2

(3)

The loss function of the phase-locked loop (PLL) error mini-

mizes the discrepancies of the AC-DC converter. The equation

can be written as:

dω

dt loss
=

(

dω

dt
− PLLerror

)2

(4)

The flux linkage components are governed by the following

loss functions:

dφ

dt
loss =

(

dφj

dt
− vj

)2

; i = q, d (5)

These ensure alignment between the rate of change of flux

linkages and the respective voltage components. d-axis and

q-axis current dynamics are managed by:

dij

dt loss
=

(

dij

dt
−

1

LL1

(

vconvj −R · ij − vj + ωLL1 · ik
)

)2

(6)

where j, k q-axis, and d-axis are components of converter

current. These ensure that the currents in the d- and q-axes

align with their expected dynamic behavior. The inductor



current and capacitor voltage dynamics of the LCL filter used

in the system are described as follows:

diL1

dt loss
=

(

diL1

dt
−

1

LL1

(vconvd − vc −R · iL1
)

)2

(7)

diL2

dt loss
=

(

diL2

dt
−

1

LL2

(vc − vac −R · iL2
)

)2

(8)

dvc

dt loss
=

(

dvc

dt
−

1

CL1

(iL1
− iL2

)

)2

(9)

dvdc

dt loss
=

(

dvdc

dt
−

1

vdc · Cdc

(Pac − vdc · idc)

)2

(10)

The overall loss of an EVCS is the summation of the individual

loss of each EVCS, and if LEVCS represents the total EVCS

dynamics loss, then it can be represented as:

LEVCS =

N
∑

i=1

{

dδ

dt loss
+

dω

dt loss
+

dφ

dt loss
+

diL1

dt loss

+
diL2

dt loss
+

divc

dt loss
+

dvdc

dt loss

(11)

These losses align the inductor current and capacitor voltage

with their expected behavior in response to system inputs.

The loss functions outlined provide a robust framework for

system control, ensuring critical parameters like voltage, cur-

rent, frequency, and phase angle behave as intended. This

mathematical structure is fundamental in implementing control

systems for energy networks, particularly in advanced grid

operations involving EVCS.

Ltotal = λ1LPF + λ2LVR + λ3LEVCS (12)

Where, λ1, λ2, λ3 are weighting factors.

D. PINN Model Structure

We developed an LSTM-based PINNs with four hidden

layers of 512 LSTM units each to model the EVCS network

dynamics. Leveraging PyTorch’s torch.autograd for automatic

differentiation, the model enforces system equations while

capturing non-linear and time-dependent behaviors. Validation

under varying load conditions, discussed in Section IV, shows

the LSTM-PINN accurately learns temporal dependencies and

matches real-world EVCS behavior. Fig. 1 illustrates the

architecture of the proposed attack analytics model.

III. ATTACK ANALYTICS MODEL

We use PINNs to model the non-linear dynamics of EVCS

networks and evaluate the impact of stealthy FDI attacks. The

attack model targets OCPP-based CMS interfaces, enabling

manipulation of charging parameters (e.g., power flow, current,

SoC) while evading detection. Assuming attacker knowledge

of EVCS operations, the attack is formulated as a constrained

optimization problem to maximize disruption without trig-

gering alarms. PINNs provide a scalable framework to learn

system dynamics and identify vulnerabilities in EVCS-enabled

distribution grids.

A. Attack Technique

Assume that Ṽ t
out,b and Ĩtout,b are the false data injected into

the output voltage and output current measurements of the

EVCS converter at node b and time t. The resulting attacked

measurements V̄ t
out,b and Ītout,b can be expressed as:

∀b ∈ B, t ∈ T , V̄ t
out,b = V t

out,b + Ṽ t
out,b (13)

∀b ∈ B, t ∈ T , Ītout,b = Itout,b + Ĩtout,b (14)

where B represents the EVCS nodes and T denotes the

duration of the attack.

B. Attack Optimization

The attacker’s goal is to deploy optimized FDI attacks that

maximize voltage and current deviations across the EVCS

network, degrading control system effectiveness. By incorpo-

rating system dynamics into a PINN’s loss function, attackers

can identify subtle perturbations that exploit physical con-

straints while evading detection systems. The objective can

be formulated as:

max
δV,δI

E

[

T
∑

t=0

(∥Vout(t)− Vnominal(t)∥+ ∥Iout(t)− Inominal(t)∥)

]

(15)

subject to the physical constraints of the EVCS network:

F(Vout, Iout, δV, δI) = 0 (16)

where δV and δI represent the adversarial perturbations

introduced to voltage and current measurements, and F(·)
denotes the dynamics of the underlying physics-based system

modeled within the PINN framework.

C. Attack Constraints

The attacker’s ability to manipulate the EVCS network is

constrained by two primary factors: accessibility and stealth

requirements under the anomaly detection mechanism.

Accessibility: Accessibility defines the EVCS nodes and mea-

surements that the attacker can target, influenced by network

topology, open services, and existing security controls. This

is represented by a binary vector A ∈ R
|B|, where Ab = 0

indicates that the EVCS node b is inaccessible to the attacker.

∀b ∈ B, t ∈ T S , Ab = 0 → ∆V b
out,t = 0, ∆Ibout,t = 0 (17)

This constraint ensures that the attacker can only introduce

perturbations ∆V b
out,t and ∆Ibout,t at nodes where accessibility

is granted, preventing modifications to inaccessible EVCS.

Stealth Constraints: To avoid detection by the anomaly detec-

tion model (ADM), the attacker keeps the injected deviations

Ṽ b
out,t and Ĩbout,t within the tolerable limits of the CMS (i.e.

τvout
, τiout

). These limits ensure that any sudden change is not

possible for the attacker to inject because the CMS checks the

variations in consecutive time-steps and discards the values

that are out of the threshold values. The constraints on the

permissible rate of change between consecutive measurements

are mentioned in (18)-(22):

−τVout
f (V b

out,t+1 + Ṽ b
out,t+1)− (V b

out,t + Ṽ b
out,t) f τVout

(18)



Fig. 1. Deep LSTM-based PINN attack analytics model.

−τIout
f (Ibout,t+1 + Ĩbout,t+1)− (Ibout,t + Ĩbout,t) f τIout

(19)

Pmin
b f Pb[t] f P̄max

b , ∀b ∈ B
EV , ∀t ∈ T (20)

Qmin
b f Qb[t] f Q̄max

b , ∀b ∈ BEV , ∀t ∈ T (21)

V
out,min
b f V out

b [t] f V̄
out,max
b , ∀b ∈ B

EV , ∀t ∈ T (22)

D. Attack Assumptions

This attack model considers the following assumptions to

simulate a worst-case scenario for the EVCS network:

• Assumption I: The Attacker agents have extensive knowl-

edge of the CMS’s control algorithms, EVCS network

parameters, and ADM thresholds.

• Assumption II: Attackers can access voltage Vout and

current Iout measurements from RTUs at selected EVCS

buses, but control signals from the charging management

system to EVCS converters remain secure.

• Assumption III: Load conditions across the EVCS net-

work may vary during the attack.

• Assumption IV: The attacker has sustained access to

compromised sensors, enabling continuous monitoring

and manipulation of Vout and Iout across targeted EVCS.

These assumptions provide a detailed foundation for analyz-

ing potential vulnerabilities within the CMS-managed EVCS

network under coordinated FDI attacks, specifically on the

voltage and current control elements. This analysis highlights

the EVCS network’s resilience against sophisticated cyber

threats and informs strategies to enhance CMS security.

IV. TESTBED DESIGN AND EXPERIMENTATION

We first describe the experimental setup which incorporates

industry-standard IEEE bus configurations and realistic power

electronics modeling. We further demonstrate the behavior of

the system in steady-state and dynamic conditions, providing

insight into the characteristics of the charging infrastructure.

A. Simulation-based Experimentation

Simulation Design: The PINN-based attack analytics model

was implemented in Python and executed on an Intel Xeon

E5-240 system with dual RTX 4090 GPUs and 248GB RAM.

It models the IEEE 33-bus grid with five 55kW EVCS

operating at 98% efficiency using per-unit (p.u.) scaling. The

environment includes LCL filters, DC-DC converters, and

power electronics for accurate power flow simulation. For

validation, a Simulink-based EVCS model from [27] was

integrated with the IEEE 33-bus system. A PI-based CMS

manages the optimal charging of the EVCS across the network.
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Fig. 2. PINN outputs of EVCS (a) voltage, (b) current in steady state
condition.
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Fig. 3. Simulink outputs of EVCS (a) voltage and (b) current on steady state
condition.
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Fig. 4. Demonstrating outputs of EVCS (a) active power and (b) reactive
power in EVCS Bus due to change of load.

Steady-State Response: During normal operation, the EVCS

voltages demonstrate ideal convergence characteristics, settling



Fig. 5. Hardware testbed for PINN attack analytics.

precisely at the specified set point. The system response

in a steady-state EVCS network is shown in Fig. 2. The

figure shows that the system comes to a steady-state position

after initial oscillation. The actual values of output voltage,

output current, and active power are 550V, 100A, and 55kW,

respectively. The steady-state response of EVCS’s terminal

voltage and current simulated in Simulink are shown in Fig. 3.

Dynamic Response: We introduced up to 20% load variations

at EVCS-connected buses in the IEEE 33-bus system to assess

power balance and load dynamics. Fig. 4 shows the grid

maintains stability by adjusting setpoints and redistributing

power, keeping voltage and power flows within limits. These

results validate the model’s ability to capture realistic EVCS

demand and grid interactions.

B. Testbed Validation

The vulnerability of the OCPP module to FDI attacks was

assessed using a prototype EVCS connected to a CMS. The

hardware setup used for this experiment is illustrated in Fig. 5.

The prototype consists of a combination of an Arduino, a

DC-DC voltage regulator, voltage and current sensors, and

an analog-to-digital converter representing the physical EVCS

charging system. In addition to this, a Raspberry Pi was used to

represent the EVCS server that communicates with an open-

source CMS (SteVe) [28]. The system follows OCPP 1.6J,

the industry-standard protocol for bidirectional EVCS-CMS

communication, enabling real-time data exchange through

WebSocket connections. This facilitates efficient monitoring of

charging sessions, including station availability, transactions,

power consumption, and SoC updates. The network archi-

tecture integrates a SteVe-based CMS running in a modified

Docker setup that communicates with the EVCS’s components

via serial communication. The Raspberry Pi initiates an OCPP

transaction, prompting the Arduino to generate a PWM signal

for the load (a battery and LED) while the CMS records the

total power supplied. For cybersecurity analysis, a Kali Linux

virtual machine with Wireshark, Scapy, and Ettercap installed

is used for network sniffing, packet analysis, and injection,

allowing message monitoring and manipulation within the

network. The prototype operates at a voltage of 14.11V and

a current of 1.56A. The attack vectors we have derived from

our attack analytics model are scaled to this level and injected

through the MiTM attack between the EVCS module and

CMS. From Fig. 5, we have found that, when the attack values

are injected, the voltage drops to 12.8V from 14.11V and the

current drops to 1.09A from 1.56A, which in turn drops the

power consumed by the battery from 22Wh to 14.1Wh. This

validation supports the effectiveness of our attack module.

V. EVALUATION

This research explores the security of EVCS networks using

a PINN-based attack analytics model. To guide our investiga-

tion and provide a structured framework for evaluating our

proposed methodology, we formulate the following research

questions (RQ):

• RQ1. What is the impact of the attack vectors on the

charging schedule?

• RQ2. How scalable are the attack vectors to create

disturbances in the EVCS Network?

• RQ3. How computationally efficient is the PINN-based

model in analyzing attack vectors compared to traditional

methods?

A. Impact of Attack on Charging Schedule

In the steady-state operational regime of an EVCS network,

the power distribution remains relatively uniform across all

charging nodes, with consistent charging times as illustrated

in Fig. 6(a). Under normal conditions, charging times range

from approximately 138.3 to 211.5 minutes between sta-

tions. However, during peak hours with high load demand

(Fig. 6(b)), the CMS dynamically adjusts reference setpoints

through closed-loop control mechanisms to optimize power

distribution. This results in extended charging durations at

individual EVCS locations, with times ranging between 414.6

and 746.4 minutes, nearly twice the normal charging time.

Most critically, as demonstrated in Fig. 6(c), sophisticated

cyberphysical attacks that stealthily manipulate CMS setpoints

can induce severe charging disruptions without actual load
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Fig. 6. Required charging time for 5 EVCS in (a) normal operating conditions, (b) peak hour with high load demand, and (c) under cyber attack.

changes. These attacks extend charging times to over 1500

minutes (7× normal) by forcing false power adjustments. Such

manipulation has bidirectional impacts: power reduction leads

to grid congestion and service degradation, while overdelivery

risks thermal stress, lithium plating, and battery degradation,

threatening system safety and reliability.
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Fig. 7. Results of PINN model for (a) optimal attack value for voltage
measurements, (b) EVCS output voltage, (c) EVCS output current, and (d)
active power delivered by EVCS while targeting at most 9 EVCS.

B. FDI Attack Impact on CMS

Although the attack analytics model is primarily developed

for 5 EVCSs, one of the major advantages is that it can

be extended to any number of EVCS. We have simulated

the IEEE 33-bus system with up to 15 EVCS to identify

optimal attack vectors that could exploit vulnerabilities while

remaining undetected. Our approach leveraged the actual

dynamics of the system to ensure that the attack vectors

maintained both physical plausibility and evasion of the de-

tection mechanisms. The attack vectors were derived through

a rigorous process that incorporated the dynamics and con-

straints of the systems. Our methodology ensured that all

vectors adhered to the constraints of the physical system,

including power flow equations, voltage, and current limits.

Furthermore, vectors operate below established thresholds for

anomaly detection systems, making them particularly difficult

to identify through conventional monitoring systems. Through

systematic analysis of various attack scenarios, we identified

optimized stealthy attack vectors that maximize disruption

while evading detection. Fig. 7 shows the system’s progressive

deviation under these attacks, leading to voltage instabilities,

power flow shifts, and cascading failures, while keeping in-

dividual measurements within normal operational thresholds.

Importantly, the PINN framework scales efficiently to larger

networks, automatically identifying vulnerable nodes across

different EVCS deployment levels, making it a scalable and

robust security assessment tool.

Fig. 8. Comparison of computational time between PINN and Ode14/15
based solver models.

C. Computational Advantage

We performed a computational analysis of the IEEE 33-

bus system with EVCS integration, comparing PINNs with

traditional solvers (Ode14/Ode15s). The PINN model ran 1.5×

faster for 5 EVCSs and 6.5× faster for 15 EVCSs, as shown in

Fig. 8. Unlike sequential numerical solvers, PINNs leverage

parallelizable neural architectures, reducing bottlenecks when

handling stiff system dynamics. Notably, these gains were

achieved without GPU acceleration, highlighting the algo-

rithmic efficiency of PINNs over traditional methods. This

performance improvement is primarily due to the parallelizable

architecture of neural networks, which allows simultaneous

evaluation of system dynamics across multiple time steps,

bypassing the sequential nature of adaptive step-size solvers

like Ode14 and Ode15s. While traditional solvers require

iterative error estimation and correction at every step, PINNs

approximate the solution across the entire domain in a single

forward pass, significantly reducing computation overhead.



VI. CONCLUSION

Our research introduces a PINNs framework for modeling

FDI attacks on EVCS networks. By embedding physical laws

directly into neural networks, we overcome limitations of

traditional discretization methods, enabling continuous, scal-

able analysis of cyber-physical vulnerabilities. The framework

efficiently identifies attack vectors that maximize voltage regu-

lation errors and current disruptions while maintaining stealth

against conventional detection systems. Our gradient-based

optimization directly solves governing ODEs without com-

putational overhead, providing superior precision compared

to conventional approaches that struggle with scalability in

complex systems. These findings highlight the urgent need

for enhanced resilience in EVCS infrastructure and position

PINNs as a robust foundation for developing physics-aware

defense mechanisms to protect increasingly complex power

grid systems against sophisticated cyber threats.
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