
Secure iOS mHealth Apps Development: An IDE-Embedded
Framework for HIPAA-Aware Coding

Md Bajlur Rashid1∗, MD Abdul Barek2†, Md Mostafizur Rahman2†, Sharmin Yeasmin3‡,
Hossain Shahriar4§, Sheikh Iqbal Ahamed4§

∗ Department of Cybersecurity and Information Technology, University of West Florida, USA
† Department of Intelligent Systems and Robotics, University of West Florida, USA

† Department of Cybersecurity and Information Technology, University of West Florida, USA
‡ Department of Computer Science and Engineering, South East University, Bangladesh

§ Center for Cybersecurity, University of West Florida, USA
§ Department of Computer Science, Marquette University, Milwaukee, WI, United States

{ mr248@students.uwf.edu∗, mb381@students.uwf.edu †, mr240@students.uwf.edu †, sharmin10seu@gmail.com ‡, hshahriar@uwf.edu §,
sheikh.ahamed@mu.edu§}

Abstract—With the rapid growth of technology, accessing digital health
records has become increasingly easier. Especially mobile health technol-
ogy like mHealth apps help users to manage their health information, as
well as store, share and access medical records and treatment information.
Along with this huge advancement, mHealth apps are increasingly at risk
of exposing protected health information (PHI) when security measures
are not adequately implemented. The Health Insurance Portability and
Accountability Act (HIPAA) ensures the secure handling of PHI, and
mHealth applications are required to comply with its standards. But it
is unfortunate to note that many mobile and mHealth app developers,
along with their security teams, lack sufficient awareness of HIPAA
regulations, leading to inadequate implementation of compliance measures.
Moreover, the implementation of HIPAA security should be integrated
into applications from the earliest stages of development to ensure data
security and regulatory adherence throughout the software lifecycle.
This highlights the need for a comprehensive framework that supports
developers from the initial stages of mHealth app development and fosters
HIPAA compliance awareness among security teams and end users. An
iOS framework has been designed for integration into the Integrated
Development Environment(IDE), accompanied by a web application to
visualize HIPAA security concerns in mHealth app development. The web
application is intended to guide both developers and security teams on
HIPAA compliance, offering insights on incorporating regulations into
source code, with the IDE framework enabling the identification and
resolution of compliance violations during development. The aim is to
encourage the design of secure and compliant mHealth applications that
effectively safeguard personal health information.

Index Terms—HIPAA Compliance, mHealth Applications, iOS Develop-
ment, Xcode Integration, Swift Package Manager(SPM), HIPAA Checker,
Developer Awareness, Security Framework.

I. INTRODUCTION

As technology continues to improve, especially in mobile ap-
plication development, health information has become increasingly
accessible, manageable, and transferable. A recent study[1] reported
that over 60% of mHealth app users regularly accessed their electronic
health records, scheduled appointments, and reviewed medication or
treatment plans through these platforms. Also a cross-sectional survey
study published in 2025, found that 85.4%, across 20 countries,
healthcare professionals can conduct virtual consultations with pa-
tients [2], provide digital prescriptions and treatment plans, and both
patients and doctors can access medical test results in real-time.
Furthermore, pharmacies can digitally access prescriptions and fulfill
them by delivering the prescribed medication directly to the patient.
This technological progression has greatly enhanced the usability and
convenience of healthcare services, streamlining communication and
care delivery.

However, while these advancements simplify the healthcare process,
they also introduce significant security risks to PHI [3]. A com-
prehensive security assessment of mHealth applications found that
47% of iOS apps utilized backend servers with suboptimal security
configurations, and 33% employed unsecured connections, posing
risks to patient data confidentiality, authenticity, and integrity [4–6].
Medical and treatment data, such as medical conditions, treatment
plans, diagnostic results, and prescriptions, constitute highly sensitive
health information. Additionally, personally identifiable information
(PII), including a patient’s name, date of birth, and gender, is equally
private and must be protected from unauthorized access. Safeguarding
this information is essential for protecting patient privacy and keeping
trust in healthcare systems.

Fig. 1: HIPAA Checker Framework Architecture

The Health Insurance Portability and Accountability Act (HIPAA)
defines rules for the secure handling of PHI through technical safe-
guards such as access control, audit logs, encryption, transmission
security, and authentication[7, 8]. PHI must be encrypted during
storage and transfer, and access should be strictly controlled through
proper authorization and authentication mechanisms. Failure to imple-

Reference Rule Id Technical Safeguards

164.312(a)(1) authorization Implement technological policies and procedures to restrict access to individuals or
software programs that have been given access privileges for electronic information
systems that maintain EPHI.

164.312(a)(2)(i) unique id Assign a unique name or number to each patient in order to identify and monitor their
identification.

164.312(a)(2)(ii) emergency access Create and use processes for acquiring required digitally protected health information
in an emergency.

164.312(a)(2)(iii) user inactivity Implement software procedures that end a session after a certain period of inactivity.

164.312(a)(2)(iv) encryption decryption Implement a system for encrypting and decrypting EPHI.

164.312(b) audit Implement methods for recording and examining activities in information systems that
use or include EPHI.

164.312(c)(1) data integrity Implement regulations and procedures to prevent unauthorized manipulation or destruc-
tion of EPHI.

164.312(c)(2) authorization for destruction Utilize technological tools to verify that electronically stored protected health informa-
tion has not been tampered with or deleted without authorization.

164.312(d) user authentication Establish processes to confirm that the individual or organization requesting access to
EPHI is who is being identified.

164.312(e)(1) transmition secuirity Implement technological security measures to prevent unauthorized access to digitally
protected health information that is being sent through a network of electronic commu-
nications.

164.312(e)(2)(i) guard against com network Implement security measures to guarantee that electronically transmitted protected health
information is not improperly altered up to disposal without being noticed.

164.312(e)(2)(ii) phi encryption Implement a mechanism to encrypt EPHI whenever deemed appropriate.

TABLE I: HIPAA Technical Safeguards

ment these measures exposes sensitive data—like medical conditions,
diagnostic results, or treatment plans—to risks such as unauthorized
access, data breaches, identity theft, and potential fraud[9, 10].

These security lapses not only threaten patient privacy and care
quality, but also pose legal and financial risks to developers and
healthcare providers[11]. In 2024, Montefiore Medical Center paid
a $4.75 million HIPAA settlement after an employee accessed over
12,000 patient records without authorization, highlighting the severe
legal and financial consequences of inadequate compliance[12, 13].
Therefore, rigorous adherence to HIPAA safeguards is essential for
ensuring data integrity, maintaining trust, and achieving regulatory
compliance in health applications.

Developing a HIPAA-compliant health application, particularly a
mHealth app, requires a clear understanding of the technical safeguards
that must be integrated into the software. A Security Journey Study
reveals that 20% of organizations are confident in detecting vulnera-
bilities before release, while over 60% face challenges in remediating
them, highlighting the critical need to address vulnerabilities during
the development phase to ensure secure

applications [14, 15]. However, developers and security teams may
not be fully aware of how HIPAA measures should be implemented in
many cases. Furthermore, the technical safeguards outlined by HIPAA
are often broadly defined, which may lead to misinterpretation or
inconsistent implementation. While the development team may attempt
to incorporate privacy and security measures at later stages, such as
during final development or just prior to deployment, this reactive
approach may not be sufficient[16, 17]. Effective security measures
need to be planned at the software architecture design level and should
be integrated throughout the entire development lifecycle to ensure
comprehensive protection of sensitive health data.

To support HIPAA compliance in mHealth development, we intro-
duce xPlugin—an iOS package integrated via Swift Package Manager

in Xcode. It performs static code analysis, generates a HIPAA com-
pliance report with risk scores and line-level remediation guidance,
and sends results to the HIPAA Checker portal. Compatible with
Objective-C and Swift (iOS 11+, Swift 5.2+), it offers broad applica-
bility. Figure 4 illustrates its integration in Xcode. A web dashboard
further helps teams visualize compliance metrics and track safeguard
implementation throughout development, ensuring continuous security
and regulatory alignment.

The aim of this research is to promote secure and compliant mHealth
apps that protect personal health information. The main objectives are:

• Develop a source code analysis framework to assess mHealth
apps for HIPAA Technical Safeguard compliance.

• Integrate an analytical dashboard to visualize HIPAA risk scores
and vulnerabilities with detailed reports.

• Conduct a meta-analysis to identify risk factors, evaluate safety
mechanisms, and detect HIPAA non-compliance.

• Design and implement a Swift Package for Xcode to provide real-
time static analysis and feedback for early security and privacy
issue detection.

The remainder of this paper is organized as follows: Section II
outlines the research methods employed in this study. Section III
presents the architecture of the HIPAA Checker frameworks. Section
IV details the framework development process. Section V discusses
the testing procedures and evaluation results. Section VI provides
key recommendations. Section VII addresses limitations and proposes
directions for future research. Finally, Section VIII concludes the
paper.

II. RESEARCH METHODS

The Health Insurance Portability and Accountability Act (HIPAA)
outlines three core categories of security requirements: administrative,
physical, and technical safeguards. Table I presents the technical

Fig. 2: HIPAA Checker xPlugin workflow

Fig. 3: Comparison of the features of the proposed framework with
those of similar products on the market

safeguard requirements of HIPAA as defined by the US Department
of Health and Human Services (HHS), outlining the essential security
standards and implementation specifications necessary to ePHI in
digital health systems.

Administrative safeguards include policies and procedures that
guide the selection, development, implementation, and maintenance of
security measures designed to protect health information[3, 18, 19].
Physical safeguards refer to mechanisms, rules, and practices that
protect electronic systems, related equipment, and data from envi-
ronmental hazards and unauthorized physical access[20]. In contrast,
technical safeguards refer to the technological tools and policies put
in place to defend electronically protected health information (EPHI)
from unauthorized access.

This research focuses on the development and application of
source code analysis methods focusing on technical safeguards within
mHealth applications. By ensuring compliance with technical safe-
guards, it becomes feasible to indirectly support broader administrative
and physical security objectives. For example, tools developed to
detect technical non-compliance can also aid in monitoring administra-
tive controls and preventing incidents such as breaches resulting from
inadequate physical protection. A practical case is the difficulty of
retrieving encrypted PHI from a lost or stolen mobile device running
a compliant mHealth application, thereby reinforcing both technical
and physical security postures.

III. HIPAACHECKER FRAMEWORK

This study introduces a methodology for analyzing iOS mHealth
applications to ensure HIPAA compliance in data storage and transmis-
sion. Unlike general iOS security tools, the proposed framework scans

Fig. 4: HIPAA Checker xPlugin

(a) Step 1: Goto Packages Dependencies

(b) Step 2: Search for xPlugin

(c) Step 3: Add xPlugin to project

(d) Step 4: Initialize xPlugin

Fig. 5: Procedure for Integrating xPlugin during the Development.

(a) HIPAA Checker Web app onboarding

(b) HIPAA Checker report on HIPAA Technical Safeguards

(c) HIPAA Risk score summarization and CVSS score on vulnerabilities

Fig. 6: HIPAA Checker Web application and HIPAA risk assessment

source code for HIPAA-specific security and privacy patterns. The
system architecture is shown in Figure 1, and its feature comparison
with existing tools appears in Figure 3. Developers can use the Xcode-
integrated xPlugin before deployment, while others may upload source
files via the HIPAA Checker web platform, as outlined in Figure 2.
xPlugin fetches HIPAA rule sets—including the ”authorization” rules
in Table II—to analyze Swift and Objective-C code and generate
compliance reports highlighting specific lines needing attention.

Overall, the proposed framework offers mHealth app developers
a systematic approach to verifying that their applications align with
HIPAA’s technical safeguards, ultimately enhancing patient data pri-
vacy and security.

Rule Id Subrule Id Code Patterns

authorization

authorization exception

- LAErrorAuthorizationFailed

- LAErrorNotInteractive

- NSError.domain == LAErrorDomain

- case (.accessDenied|.notAuthorized)

illegal access

- SecAccessControlCreateFlags

- LAErrorUserCancel

- LAErrorSystemCancel

- kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

authorization enforcement

- SecItemCopyMatching.*kSecUseAuthenticationUI = kSecUseAuthenticationUIFail

- evaluatePolicy(LAPolicyDeviceOwnerAuthentication

- SecAccessControlCreateWithFlags.*kSecAccessControlApplicationPassword

- requireUserPresence

access control exception

- kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly

- SecAccessControlCreateWithFlags.*(biometryCurrentSet|devicePasscode)

- userInteractionAllowed = false

- validateAuthentication(UIViewController(

biometric authentication

- LAPolicyDeviceOwnerAuthenticationWithBiometrics

- LAContext.canEvaluatePolicy(.deviceOwnerAuthenticationWithBiometrics)

- LocalizedReason = ”Access health records”

- kSecAccessControlBiometryCurrentSet

- LAErrorBiometryLockout

- addConstraint(.touchIDAny)

TABLE II: iOS Code Patterns corresponding to one HIPAA rule ID and Sub Rule IDs

IV. A. FRAMEWORK DEVELOPMENT:

To facilitate automated HIPAA compliance verification in mHealth
application development, we propose a comprehensive framework
comprising a web-based analysis platform and an IDE-integrated
tool—xPlugin—targeted specifically for iOS development environ-
ments such as Xcode.

1) xPlugin: IDE-Level Compliance Enforcement: The core com-
ponent of the proposed methodology is xPlugin, a Swift Package
Manager (SPM)–distributable plugin designed for seamless integration
with the Xcode IDE. It can be downloaded by Xcode from this GitHub
Repository. Figure 5 shows the steps to integrate it into Xcode. xPlugin
connects directly to the HIPAA Checker analytical engine through
secure API communication channels. Upon initialization, developers
are prompted to authenticate using their credentials from the HIPAA
Checker web platform and specify the root directory of the project.
It is advisable to perform this initialization at the inception of the
development process to ensure continuous compliance tracking.

Once configured, xPlugin fetches the latest HIPAA compliance rules
from the remote engine. These rules consist of technical safeguards
defined by HIPAA, including subrules and source code patterns
tailored to the privacy and security of PHI. The plugin then initiates
a static analysis pass over the source code, detecting compliance
violations by matching against the predefined rule set.

Following the local analysis, the plugin securely transmits the results
to the HIPAA Checker engine, which performs a comprehensive
evaluation. The engine identifies code-level vulnerabilities in four key
categories aligned with HIPAA technical safeguards:

• Insufficient Authorization.
• Inadequate Data Security.

• Insecure Network Communication.
• Inconsistent Audit Trail.
Each detected issue is quantified using the Common Vulnerability

Scoring System (CVSS), a widely recognized framework for evaluat-
ing the severity of software vulnerabilities. The resulting compliance
report provides a granular overview of the application’s HIPAA
adherence, highlighting specific line numbers, affected files, and rule
violations. This report also includes a risk percentage and mitigation
recommendation, allowing developers to prioritize remediation efforts
effectively.

By integrating directly into the development workflow, xPlugin
minimizes the overhead associated with external audits and enables
real-time compliance validation. This approach significantly enhances
development efficiency and reduces the likelihood of non-compliance
prior to deployment.

2) Web-Based HIPAA Checker Platform: Complementing the IDE
tool, the web-based HIPAA Checker platform (link) allows broader
accessibility for compliance analysis across diverse development
frameworks. As depicted in Figure 2, the platform supports secure
file upload, metadata extraction, and recursive source code scanning.
Users undergo a two-step authentication process: standard credentials
followed by two-factor authentication (2FA). After successful upload,
the system extracts compiled and readable source code, performs a
deep pattern-matching scan, and stores results in a structured database
for further processing. The process is shown in Figure 6.

The final report, accessible via the platform’s user interface, mir-
rors the xPlugin output—detailing matched subrules, categorized risk
scores, and direct links to code segments requiring modification. Users
may navigate to specific HIPAA rules, view matched lines in context,

https://github.com/HIPAACKR/HIPAAChecker-xPlugin
https://github.com/HIPAACKR/HIPAAChecker-xPlugin
https://hipaachecker.health/

and take immediate corrective action.
Together, the xPlugin and web platform form a robust, developer-

centric ecosystem for ensuring HIPAA compliance in mHealth applica-
tions. By embedding compliance checks into the software development
lifecycle, the framework empowers developers to produce secure,
regulation-adherent applications with reduced manual intervention and
higher assurance of patient data protection.

V. B. TESTING AND EVALUATION

The source code for various iOS mHealth applications, developed
in Swift and Objective-C, was manually collected from open-source
repositories such as GitHub, GitLab, and other cloud-based platforms.
A strict filtering process excluded inactive, incomplete, deprecated,
or non-health-related projects. The selection emphasized apps han-
dling ePHI, particularly those involving covered entities and business
associates under HIPAA. Additional factors included geographical
diversity, as well as privacy policies, data handling methods, and ePHI
transmission practices.

After collecting the project source codes, we tested them us-
ing xPlugin. The results reveal a heterogeneous compliance land-
scape: High compliance levels were observed in eight of the im-
plemented eleven safeguards. These include user authentication, au-
dit, data integrity, user inactivity, unique id, encryption decryption,
transmition secuirity, and guard against com network. The preva-
lence of these safeguards suggests that developers are utilizing built-
in iOS security features—such as Apple’s Keychain, audit logging
tools, and inactivity timeout mechanisms—to meet standard security
expectations.

Fig. 7: HIPAA safeguards in iOS mHealth apps

Fig. 8: HIPAA rules distributions in different iOS mHealth apps

In contrast, low compliance levels were detected for three crit-
ical safeguards: phi encryption, authorization for destruction, and
authorization. These areas represent core pillars of HIPAA’s pri-
vacy and access control mandates. The weak enforcement of PHI-
specific encryption mechanisms (phi encryption) indicates that generic

encryption is often applied without regard for data classification.
Similarly, the limited presence of secure data deletion processes (au-
thorization for destruction) and inconsistent implementation of access
control logic (authorization) raise concerns about the ability of many
applications to maintain proper data lifecycle management and user-
specific data access restrictions.

These observations are illustrated in Figure 7 and 8. These findings
suggest that while general security measures are partially addressed
in open-source iOS applications, critical elements specifically tied to
HIPAA’s intent—particularly those concerning data governance and
user-specific access permissions—are significantly underimplemented.

VI. RECOMMENDATIONS

To address HIPAA compliance gaps in iOS mHealth apps, de-
velopers should incorporate HIPAA considerations from the early
stages of development. This includes conducting threat modeling,
aligning design with regulatory requirements, and involving security
teams throughout the software lifecycle for code audits and safeguard
validation. Table III outlines actionable measures to support this
process.

TABLE III: Key Recommendations for Improving HIPAA Compliance
in iOS mHealth Applications

No. Recommendation Target Group Purpose

1 Integrate a HIPAA
compliance frame-
work (e.g., HIPAA
Checker) into the
IDE

Developers Enables real-time identifi-
cation and remediation of
security violations during
development.

2 Implement PHI-
specific encryption
and secure deletion
mechanisms

Developers Ensures sensitive health
information is protected
and securely discarded in
compliance with HIPAA.

3 Use static code
analysis tools
to detect and
fix safeguard
violations

Developers &
Security

Facilitates automated de-
tection of compliance is-
sues early in the software
lifecycle.

4 Conduct role-based
access control and
authorization logic
design

Developers Supports proper enforce-
ment of access rights to
sensitive data.

5 Provide HIPAA
compliance
training and
documentation
for all technical
stakeholders

Developers
& Security
Teams

Enhances understanding
of regulatory expectations
and promotes consistent
application of safeguards.

Furthermore, effective collaboration between legal, compliance,
and technical teams is essential for translating regulatory language
into actionable software practices. As health technology continues
to evolve, maintaining agile compliance strategies through iterative
testing, user feedback, and continuous security updates is critical to
ensuring the confidentiality, integrity, and availability of ePHI.

VII. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

This study is subject to several limitations that present opportunities
for further investigation. First, the analysis relied primarily on open-
source iOS mHealth applications available in Swift and Objective-C,
which may not fully represent the broader landscape of commercial or
proprietary health apps in the App Store. Consequently, the findings

may not capture the complete spectrum of HIPAA compliance prac-
tices in widely used, closed-source applications. Additionally, while
the HIPAA Checker framework and accompanying web tool were
evaluated against a curated dataset, the scope of safeguards assessed
was limited to technical rules, excluding administrative and physical
safeguards due to the nature of source code-based analysis.

Moreover, the framework’s performance in real-time integrated
development environments (IDEs) across diverse developer workflows
was not extensively validated in longitudinal studies. This introduces
potential variability in how effectively developers may adopt and
benefit from the framework.

Future research should broaden compliance verification by integrat-
ing machine learning-based static and dynamic analysis techniques
capable of detecting context-aware violations and inferring missing
controls. Incorporating natural language processing (NLP) to analyze
app privacy policies and terms of service may further enhance the
framework’s ability to evaluate compliance beyond source code.
Additionally, large-scale empirical studies involving diverse industry
practitioners are needed to

VIII. CONCLUSION

As the adoption of mHealth applications continues to accelerate,
ensuring the security and privacy of ePHI has become a critical
concern. This study highlights the significant gaps in HIPAA technical
safeguard implementation across iOS-based mHealth applications.
Through empirical analysis of publicly available source code and the
development of a HIPAA compliance framework, this work provides a
structured approach to identifying, visualizing, and addressing security
vulnerabilities during the software development lifecycle.

The proposed xPlugin and HIPAA Checker framework , designed
for integration within development environments, empowers develop-
ers and security teams to proactively detect and remediate compliance
violations at the code level. Complemented by a web-based interface,
the tool enhances transparency and offers actionable guidance aligned
with regulatory standards. Furthermore, the study highlights the im-
portance of embedding HIPAA awareness from the early stages of
development and fostering close collaboration between development
and security teams.

By advancing automated, accessible solutions for regulatory ad-
herence, this work contributes to the broader goal of building se-
cure, privacy-respecting health technologies. Continued refinement,
expanded datasets, and broader community engagement will further
enhance the framework’s utility and impact within the evolving
mHealth ecosystem.

IX. ACKNOWLEDGMENTS

The work is supported by the National Science Foundation under
Award #2433800, #2421324, #1946442 and National Institutes
of Health Grant #5R42LM014356 − 03 Any opinions, findings,
recommendations, expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF and NIH.

REFERENCES

[1] Y. Zhou, H. Wang, and A. Singh, “The use of mhealth applications for
self-management in chronic disease: A meta-analysis,” JMIR mHealth and
uHealth, vol. 11, no. 3, p. e43129, 2023.

[2] G. Kerr, G. Greenfield, E. Li, T. Beaney, B. W. Hayhoe, J. Car,
A. Claverı́a, C. Collins, G. Gusso, R. D. Hoffman, et al., “Factors
associated with the availability of virtual consultations in primary care
across 20 countries: Cross-sectional study,” Journal of Medical Internet
Research, vol. 27, p. e65147, 2025.

[3] M. R. Mia, H. Shahriar, M. Valero, N. Sakib, B. Saha, M. A. Barek,
M. J. H. Faruk, B. Goodman, R. A. Khan, and S. I. Ahamed, “A
comparative study on hipaa technical safeguards assessment of android
mhealth applications,” Smart Health, vol. 26, p. 100349, 2022.

[4] X. Jin, W. Zhang, and B. Li, “Security and privacy in mobile health
applications: A comprehensive analysis,” Journal of Medical Internet
Research, vol. 21, no. 1, p. e9818, 2019.

[5] K. Rahkema and D. Pfahl, “Empirical study on code smells in ios appli-
cations,” in Proceedings of the IEEE/ACM 7th International Conference
on Mobile Software Engineering and Systems, pp. 61–65, 2020.

[6] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications.,” in NDSS, vol. 2011, p. 18th, 2011.

[7] B. Saha, S. Tahora, A. Barek, and H. Shahriar, “Hipaachecker: The
comprehensive solution for hipaa compliance in android mhealth apps,”
in 2023 IEEE 47th Annual Computers, Software, and Applications Con-
ference (COMPSAC), pp. 1822–1827, IEEE, 2023.

[8] M. A. Rahman, M. A. Barek, A. Riad, M. M. Rahman, M. B. Rashid,
S. Ambedkar, M. R. Miaa, F. Wu, A. Cuzzocrea, and S. I. Ahamed,
“Embedding with large language models for classification of hipaa
safeguard compliance rules,” arXiv preprint arXiv:2410.20664, 2024.

[9] A. K. I. Riad, M. A. Barek, M. M. Rahman, M. S. Akter, T. Islam, M. A.
Rahman, M. R. Mia, H. Shahriar, F. Wu, and S. I. Ahamed, “Enhancing
hipaa compliance in ai-driven mhealth devices security and privacy,” in
2024 IEEE 48th Annual Computers, Software, and Applications Confer-
ence (COMPSAC), pp. 2430–2435, IEEE, 2024.

[10] M. A. Barek, M. M. Rahman, S. Akter, A. K. Islam Riad, M. A. Rahman,
H. Shahriar, A. Rahman, and F. Wu, “Mitigating insecure outputs in
large language models(llms): A practical educational module,” in 2024
IEEE 48th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 2424–2429, 2024.

[11] M. M. Rahman, A. S. Arshi, M. M. Hasan, S. F. Mishu, H. Shahriar,
and F. Wu, “Security risk and attacks in ai: A survey of security
and privacy,” in 2023 IEEE 47th Annual Computers, Software, and
Applications Conference (COMPSAC), pp. 1834–1839, IEEE, 2023.

[12] M. Perez, “Nearly $5m paid in early 2024 hipaa settlement,” 2024.
Accessed: 2025-05-07.

[13] M. B. Rashid, N. Islam, A. A. M. Sabuj, S. Waheed, and M. B. A. Miah,
“Randomly encrypted key generation algorithm against side channel at-
tack in cloud computing,” in 2015 International Conference on Electrical
Engineering and Information Communication Technology (ICEEICT),
pp. 1–5, IEEE, 2015.

[14] S. Journey, “Ponemon institute study on software vulnerabilities,” 2020.
Accessed: 2025-05-07.

[15] A. Forsanker, “Evaluating the code quality of ios applications generated
by large language models,” 2024.

[16] M. M. Rahman, M. R. Islam, M. S. Islam, and M. M. Rahman, “Mitigating
software vulnerabilities through secure software development life cycle:
A review,” Security and Privacy, vol. 7, no. 1, p. e9962691, 2024.

[17] A. K. I. Riad, S. Ahmed, M. Z. Nizum, M. A. Barek, M. B. Rashid,
M. M. Rahman, I. Guillermo Francia, H. Shahriar, and S. I. Ahamed,
“Privacy-preserving self-supervised learning for secure image processing:
A byol-based framework for mnist and chest x-ray data,”

[18] M. A. Barek, M. B. Rashid, M. M. Rahman, A. K. I. Riad, G. F. III,
H. Shahriar, and S. I. Ahamed, “Vulnerability to stability: Scalable large
language model in queue-based web service,”

[19] M. S. Akter, M. A. Barek, M. M. Rahman, A. K. I. Riad, M. A. Rahman,
M. R. Mia, H. Shahriar, W. Chu, and S. I. Ahamed, “Hipaa technical
compliance evaluation of laravel-based mhealth apps,” in 2024 IEEE
International Conference on Digital Health (ICDH), pp. 58–67, 2024.

[20] N. Islam, M. M. Shoaib Hasan, I. Hossain Shibly, M. B. Rashid,
M. A. Yousuf, F. Haider, R. Ahmmed Aoni, and R. Ahmed, “Plasmonic
sensor using generative adversarial networks integration,” Optics Express,
vol. 32, no. 20, pp. 34184–34198, 2024.

	Introduction
	 RESEARCH METHODS
	HIPAACHECKER FRAMEWORK
	A. Framework Development:
	xPlugin: IDE-Level Compliance Enforcement
	Web-Based HIPAA Checker Platform

	B. Testing and Evaluation
	RECOMMENDATIONS
	Limitations and Future Research Directions
	Conclusion
	Acknowledgments

