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Abstract—Large language models (LLMs) are becoming a pop-
ular tool as they have significantly advanced in their capability
to tackle a wide range of language-based tasks. However, LLMs
applications are highly vulnerable to prompt injection attacks,
which poses a critical problem. These attacks target LLMs
applications through using carefully designed input prompts to
divert the model from adhering to original instruction, thereby
it could execute unintended actions. These manipulations pose
serious security threats which potentially results in data leaks,
biased outputs, or harmful responses. This project explores the
security vulnerabilities in relation to prompt injection attacks.
To detect whether a prompt is vulnerable or not, we follows
two approaches: 1) a pre-trained LLM, and 2) a fine-tuned
LLM. Then, we conduct a thorough analysis and comparison of
the classification performance. Firstly, we use pre-trained XLM-
RoBERTa model to detect prompt injections using test dataset
without any fine-tuning and evaluate it by zero-shot classification.
Then, this proposed work will apply supervised fine-tuning
to this pre-trained LLM using a task-specific labeled dataset
from deepset in huggingface, and this fine-tuned model achieves
impressive results with 99.13% accuracy, 100% precision, 98.33%
recall and 99.15% F1-score thorough rigorous experimentation
and evaluation. We observe that our approach is highly efficient
in detecting prompt injection attacks.

Index Terms—Prompt injections, Large Language Models,
Fine-Tuning LLMs

I. INTRODUCTION

Large language models (LLMs) are increasingly utilized due
to their impressive capacity to handle a broad spectrum of
linguistic undertakings, as documented in several studies [1-5].
This evolution introduces an exciting prospect for application

development, blending traditional programming techniques
with LLMs functionalities [6-9]. The popular transformer-
based LLMs are GPT-3 [10], GPT-4 [11-12], and PaLM-
2 [13] which possess amazing generative power that are
frequently employed in the backend of many LLM based
Integrated Applications, which are mostly popular real-world
applications. Nonetheless, these models are especially prone
to prompt injection attacks, a serious vulnerability highlighted
in recent research for LLMs.

These attacks occur when an application employs a LLM
based application to interpret a query comprising both an in-
struction (prompt) and additional data, and the malicious data
is nefarious enough to manipulate LLM’s operational output.
This form of exploitation can alter the intended responses
which enable unreliable sources to manipulate the outcomes.
Such threats are particularly severe in applications incorpo-
rating LLMs, as they allow malicious inputs to dominate the
response mechanism of the LLM either entirely or partially.
Highlighting the severity of this security issue, the Open Web
Application Security Project (OWASP) has ranked malicious
prompt exploitation at the forefront of their concerns in their
latest evaluation of the top 10 risks facing applications that
integrate LLMs [14]. A study used a transformer to identify
new and unknown types of malware from labeled samples
[36]. Another study used a method of masking payloads to
train a large language model (LLM). They adjusted the model
weights to understand the embeddings for malware detection
using unlabeled data sets [37]. In addition,they used a DPI
algorithm. In this method, a transformer classifier was applied
to detect malicious traffic [38].



Our focus is on safeguarding applications through efficient
detection that integrate LLMs against rapid injection attacks.
Typically, LLMs are utilized either through applications in
various ways like an API or through online chat interfaces on
websites. This constraint narrows our scope, as the common
query structure from an application to an LLM is denoted as P
+ D, where P represents a variable input which could originate
from any source and D is a stable prompt devised by the
developer. In this setup, while D may vary during execution,
P remains constant and is embedded within the application’s
source code.

In the past, researchers have explored numerous methods,
such as traditional machine learning and more advanced
techniques like quantum machine learning, to detect and
mitigate cyberattacks effectively [15-20]. These approaches
have demonstrated success in identifying vulnerabilities and
preventing threats. However, the focus has now shifted toward
integrating Large Language Models (LLMs) into cybersecurity
solutions [26-28]. LLMs are being leveraged for their ability to
process vast amounts of data, analyze patterns, and offer more
refined solutions to address cybersecurity issues. By incorpo-
rating LLMs, researchers aim to enhance the precision and
efficiency of cyberattack detection and prevention, addressing
complex vulnerabilities that may have been challenging for
previous techniques. This new direction highlights the growing
importance of advanced language models in modern cyberse-
curity frameworks.

Instruction tuning enhances pretrained language models
(LLMs) by training them with specific instructions and re-
sponses, successfully aligning these models to comply with
diverse human commands. This has led to the widespread
adoption of instruction-tuned LLMs across multiple sectors,
influencing societal views [29-34]. However, this flexibility
also presents serious security risks, as it allows attackers to
embed malicious backdoors into these models. These covert
features enable the spread of deceptive or biased information
that seems legitimate, posing a challenge in detection. Conse-
quently, these backdoors expose users to sophisticated attacks
that distribute false data across a broader audience, highlight-
ing the need for enhanced security protocols to mitigate these
risks effectively.

Rahman et al., 2024 used multilingual BERT for dataset
embedding to achieve improved performance using logistic
regression in which accuracy was 96.55% [35] and also for
HIPAA rules classification [41]. This has been motivated to
apply BERT as well as to fine-tune BERT for improving the
performance.

The remainder of this paper is organized as follows. Sec-
tion II discusses the OWASP Top 10 vulnerabilities specific
to Large Language Models (LLMs). Section III focuses on
prompt injection attacks and their implications. Section IV
provides an overview of Large Language Models, while Sec-
tion V presents the BERT architecture and its relevance to our
work. Section VI describes the fine-tuning process applied to
LLMs in this study. Section VII introduces the dataset used
for training and evaluation. Section VIII outlines the methods

and experimental setup, and Section IX presents and analyzes
the results.

II. OWASP TOP 10 LLM VULNERABILITIES

The OWASP Top 10 list for Large Language Models
(LLMs) identifies critical vulnerabilities that can pose signif-
icant security risks to applications utilizing these advanced
technologies. Key vulnerabilities include Prompt Injection,
where attackers manipulate input prompts to gain unauthorized
access, and Insecure Output Handling, which results from
inadequate validation of LLM-generated outputs. Additionally,
Training Data Poisoning involves tampering with training data,
leading to biased or harmful responses. Other threats, such as
Model Denial of Service and Supply Chain Vulnerabilities,
can disrupt services or compromise system integrity through
malicious components or datasets. Mitigating these risks is
crucial to ensure the reliability, accuracy, and ethical standards
of LLMs.

Other vulnerabilities include Sensitive Information Disclo-
sure, where LLMs inadvertently expose confidential data, and
Insecure Plugin Design, which allows untrusted inputs to
exploit system weaknesses. Excessive Agency highlights the
risks of granting too much autonomy to LLMs, potentially
resulting in unintended outcomes. Moreover, Overreliance on
LLM outputs without critical assessment can lead to flawed
decision-making and security issues. Finally, Model Theft
poses a severe threat, as unauthorized access to proprietary
models can result in the loss of competitive advantage and
sensitive information. This list serves as a comprehensive
guide for developers and organizations to recognize these
vulnerabilities and implement necessary countermeasures to
secure LLM applications effectively.

III. PROMPT INJECTION

In addition to direct prompt injection, LLMs can also be
vulnerable to indirect prompt injection attacks that manipulate
the external environment or context of model. Addressing this
challenge requires fine-tuning strategies that focus on secure
data source interactions.

Fine-tune the LLM to be more discerning of external data
sources, such as websites or files, that may contain embedded
malicious prompts. Develop robust input validation mecha-
nisms to identify and block potentially compromised external
content.

Fine-tune the LLM to be more aware of potential prompt
leakage, where the model inadvertently reveals sensitive infor-
mation about its internal prompt or training data. Incorporate
detection mechanisms to identify and mitigate such instances
of unintended disclosure.

The landscape of prompt injection attacks is rapidly evolv-
ing, requiring a continuous effort to fine-tune and improve the
security of pre-trained LLMs. Ongoing research, community
collaboration, and technological advancements are essential to
stay ahead of these sophisticated threats and ensure the safe
and trustworthy deployment of LLMs.

Indirect prompt injection attacks exploit the design of
large language models (LLMs), which process external inputs



Fig. 1. illustrates the mechanism through which attackers
introduce malicious instructions into the external content

presented to large language models (LLMs). This deceptive
insertion prompts the LLMs to produce responses that

exhibit misbehavior, compromising the reliability and safety
of the model outputs.

alongside instructions without distinguishing between them.
Attackers insert malicious code into these inputs, leading
LLMs to generate harmful or misleading outputs. This type
of vulnerability is particularly insidious, as it involves subtle
manipulation of input data rather than direct tampering with
the LLM’s core or code. Detecting and mitigating these
attacks requires advanced techniques to identify harmful con-
tent within inputs, emphasizing the need for robust security
measures focused on both the model and the integrity of
incoming data to ensure reliable outputs (Fig. 1).

IV. LARGE LANGUAGE MODELS

Large language models (LLMs) have significantly advanced
in their capability to tackle a wide range of language-based
tasks. They leverage sophisticated architectures, primarily the
transformer model, to process vast amounts of textual data,
capturing intricate relationships among words and phrases.
This capability allows LLMs to perform various tasks. The
training of LLMs occurs through unsupervised and self-
supervised learning techniques, utilizing extensive datasets to
refine their language understanding. These capabilities make
LLMs highly effective in applications such as chatbots, content
creation, and sentiment analysis, enabling organizations to
enhance customer interaction and automate processes.

However, LLMs face challenges related to bias, ethical con-
cerns regarding data privacy, and the potential for generating
inaccurate or misleading information. Addressing these issues
remains crucial as the technology evolves. Looking ahead,
the future of LLMs is promising, with ongoing advancements
aimed at improving their accuracy and reliability. Incorporat-
ing techniques such as reinforcement learning will enhance
their ability to understand context and respond appropriately,
ultimately leading to even more intelligent and adaptable AI
systems in diverse fields.

V. BERT

The name BERT stands for Bidirectional Encoder Represen-
tations from Transformers which introduces a groundbreaking
feature to the original Transformer developed by Google. It
enables bidirectional contextual understanding, meaning it can

analyze text both from left to right and from right to left.
This is achieved through a bidirectional multi-head attention
mechanism. Unlike the original Transformer, BERT only uses
the encoder layers and does not include the decoder stack.

BERT highlights its key characteristics. First, Bidirectional
means BERT processes text in both directions, allowing it
to capture context more effectively. Second, Encoder-based
means BERT relies solely on the encoder layers for predic-
tions, unlike the original Transformer, which includes both
an encoder and a decoder. Since BERT is built only on the
encoder stack, all its multi-head attention layers are part of
the encoder. The original Transformer consists of six layers
with a 512-dimensional model and eight attention heads, each
having a 64-dimensional size.

BERT comes in two versions: BERT Base and BERT Large,
both constructed using the encoder stack. BERT Base has 12
encoder layers, each with a 768-dimensional representation.
Its multi-head attention mechanism consists of 12 heads, each
with a 64-dimensional size. The output of the multi-head
attention is the combined result of all 12 heads. On the other
hand, BERT Large is a more complex version, containing
24 encoder layers with a 1024-dimensional representation. It
has a multi-head attention mechanism with 16 heads, each
maintaining a 64-dimensional size.

Apart from BERT, another widely used model is RoBERTa
(Robustly Optimized BERT Pretraining Approach), an im-
proved version of BERT. RoBERTa-Base has the same ar-
chitecture as BERT Base, with 12 encoder layers, 12 atten-
tion heads, and a 768-dimensional representation. However,
RoBERTa is trained with more data and removes the next-
sentence prediction (NSP) task used in BERT. It also dynam-
ically adjusts the masking patterns during training, making it
more efficient and improving its ability to understand complex
language structures.

This architecture allows BERT and RoBERTa to deeply
understand language by considering both past and future
context, making them highly effective for various natural
language processing tasks.

VI. FINE-TUNING LLM

Large language model (LLM) fine-tuning is a process that
takes pre-trained models and adapts them for specific tasks
or domains using smaller, specialized datasets. While initial
LLM training is typically unsupervised (using unlabeled data),
fine-tuning is a supervised process that uses labeled data to
refine the model’s performance and better align it with human
expectations.

The goal of fine-tuning is to transform general-purpose
language models into specialized models suited to unique
applications. By bridging the gap between generic pre-trained
models and specific requirements, fine-tuning ensures that
models can handle particular tasks effectively. Supervised
fine-tuning involves updating the model with labeled data,
which allows it to learn and perform tasks more accurately.
The process of preparing data for fine-tuning often involves
converting general datasets into instruction-based datasets.



For instance, a large set of Amazon product reviews can be
restructured as instruction prompts. Once the data is organized,
it is typically divided into training, validation, and test splits,
similar to standard supervised learning methods.

During the fine-tuning process, the model is exposed to
prompts from the labeled training data. It generates responses
and compares them to the actual labels to calculate an error,
which is then used to adjust the model’s internal parame-
ters (weights). These adjustments are guided by optimization
algorithms, such as gradient descent, to minimize the error
and refine the model’s understanding of the task. With each
iteration over the training data, the model improves by learning
the nuances and specific patterns of the new dataset. This helps
in adapting the model’s general knowledge to become more
specialized and effective for the desired task.

VII. DATASET

We have used two datasets and sourced from HuggingFace
which are specifically developed for analyzing prompt injec-
tion attacks. The training dataset and test dataset have 546
instances, 116 instances respectively. Both datasets contains
two attributes: a text attribute representing the malicious and
legitimate prompt texts (string) and a label attribute (int-
64) indicating whether the prompt is malicious or legitimate.
The label is typically assigned a value of 0 for legitimate
prompts and 1 for malicious prompts. The dataset serves as
the foundation for training and evaluating the model to detect
malicious prompt injections. By providing a diverse range
of prompt examples with corresponding labels, the dataset
enables the model to learn and distinguish between malicious
and legitimate prompts effectively, which enhances the ability
to identify and mitigate security risks in AI systems.

VIII. METHODS

In this study, we focus on fine-tuning large language mod-
els (LLMs) to classify prompt injection attacks—adversarial
inputs designed to manipulate LLM-based systems. Our goal
is to create a reliable classification system that distinguishes
between legitimate and malicious prompts. We utilize the
XLM-RoBERTa model for its strong performance in text
classification tasks and ability to handle multilingual data. The
fine-tuning process involves several steps (Fig. 2). First, we
load a dataset from the HuggingFace library and apply BERT
tokenizer, and early stopping to prevent over-fitting. This helps
standardize input data which ensures consistent performance.
Next, we train the model on the labeled dataset over multiple
epochs, and adjust hyperparameters such as learning rate and
batch size to optimize accuracy.

After training, the model is evaluated using 116 test samples
to measure its ability to classify both legitimate and injection
prompts. Standard metrics like accuracy, precision, recall, and
F1-score are used to assess the performance of model. Fig. 2
illustrates the full architecture, and further details are discussed
in the experiments section. Finally, We will evaluate the
accuracy, precision, recall, and F1-score of fine-tuned model

Fig. 2. Illustration of the proposed architecture for
fine-tuning LLM for detecting malicious prompt injection.

as well as non-fine-tuned model on a test set to scale its
effectiveness in detecting malicious injected prompts.

IX. RESULTS

A. Accuracy Metrics

Accuracy is calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
where:

• TP (True Positives) refers to the correctly classified
positive cases,

• TN (True Negatives) represents the correctly classified
negative cases,

• FP (False Positives) are negative cases mistakenly iden-
tified as positive, and

• FN (False Negatives) are positive cases incorrectly clas-
sified as negative.

Precision evaluates the proportion of correctly identified
positive cases among all cases predicted as positive:

Precision =
TP

TP + FP
Recall assesses the model’s ability to identify actual positive

cases:
Recall =

TP
TP + FN

The F1-Score is a metric that combines precision and recall
to provide a balanced measure of a model’s performance, with
values ranging from 0 (poor) to 1 (excellent):

F1-Score = 2× Precision × Recall
Precision + Recall

These metrics are critical in evaluating the effectiveness of
the prompt injection detection system in identifying malicious
inputs.



Fig. 3. Accuracy of proposed fine-tuned BERT for prompt
injections detection over epochs.

Fig. 4. Comparison Proposed fine-tuned BERT Model and
Existing Works.

B. Results

For the experiment, we used the pre-trained XLM-RoBERTa
model which is an enhanced version of BERT from the
HuggingFace library without fine-tuning. The zero-shot classi-
fication pipeline was used to evaluate how it performs prompt
classification on the testing dataset without any fine-tuning.
After assessing the model, we analyzed the classification
results. The testing dataset yielded an accuracy of 55.17%,
precision of 55.13%, recall of 71.67%, and an F1 score of
62.32%. These metrics indicate the model’s ability to classify
prompts is not effective across multiple languages.

Secondly, the LLM, XLM-RoBERTa, model was fine-tuned
on the training dataset across 50 epochs and then evaluated
using the testing dataset which has 116 samples. Fig. 3.
illustrates the accuracy of the proposed fine-tuned BERT for
prompt injections detection over epochs. The results from the
first 10 epochs demonstrate a rapid improvement in perfor-
mance metrics, with accuracy, precision, recall, and F1 score
increasing notably in the initial epochs. During the first epoch,
the model achieved an accuracy of 99.11%, precision of 100%,
recall of 98.33%, and an F1 score of 99.14%. By the second
epoch, the accuracy remained stable at 99.11%, but precision
reached 100%, and recall slightly dropped to 98.28%, giving
an F1 score of 98.30%. In the third epoch, both accuracy and
F1 score peaked at 99.14% and 99.16%, respectively, with
perfect precision (100%) and recall of 98.33%. This high

performance continued through the following epochs, with
minimal fluctuations in the precision and recall values. Fig. 4.
shows the four line plots to express the performance metrics of
the proposed fine-tuned BERT over 50 epochs. Also, confusion
matrix is provided values of true positive, true negative, false
positive, and false negative.

By the 10th epoch, the model achieved its highest per-
formance, with an accuracy of 99.14%, precision of 100%,
recall of 98.33%, and an F1 score of 99.16%. These results
demonstrate that the model had converged to a high level of
classification accuracy early in the training process, with only
slight improvements in subsequent epochs.

In the final 10 epochs (epochs 41-50), the model’s perfor-
mance metrics stabilized. From epoch 41 onward, accuracy
remained constant at 98.27%, with precision, recall, and F1
score all plateauing at 98.33%. Despite the training loss
continuing to decrease marginally, these core performance
metrics showed no further improvement. This indicates that the
model had fully converged by this point, with no significant
gains in classification performance in the later stages of fine-
tuning. Overall, the fine-tuned XLM-RoBERTa model signifi-
cantly outperformed its zero-shot counterpart, achieving higher
accuracy and more stable performance in prompt classification
tasks after fine-tuning. Moreover, as we implemented different
models like ML, Non-Fine-tuned and Fine-tuned Models, Fig.
5. shows the bar diagram to express the performance metrics.

In our work, we compared the performance of the XLM-
RoBERTa model for prompt classification in both non-fine-
tuned, fine-tuned settings, and existing simillar models in
similar tasks of other researchers in TABLE I. The non-fine-
tuned XLM-RoBERTa achieved an accuracy of 55.17%, which
is lower compared to models like Deep Learning (DistilBERT)
(63.76%). Similarly, models like TCNN (88.08%) and TCNN-
URG (89.84%) on the Weibo dataset also outperformed the
non-fine-tuned version of our model.

However, when we fine-tuned XLM-RoBERTa, the accuracy
improved dramatically, outperforming models such as Multi-
lingual BERT with embedded dataset which achieved accuracy
96.55% [33] when applied to prompt-injection same datasets.
Fig. 6 illustrates the accuracy of our implemented models with
existing works. This result highlights the importance of fine-
tuning in improving model performance, especially for specific
classification tasks. Our fine-tuned model demonstrates signif-
icant advancements over previous works and making it one
of the top-performing models in prompt-based classification
tasks. This indicates that fine-tuning large language models
(LLMs) is essential for achieving highest performance in
OWASP recommended vulnerabilities detection and preven-
tion.



Fig. 5. Performance Metrics of different implemented
models: ML, Non Fine-tuned and Fine-tuned Models.
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TABLE I
COMPARISON THE PROPOSED BERT AND EXISTING WORKS

ML Dataset BERT Acc.
LSTM Fake or Real News X 80.54
HDSF Fake or Real News X 82.19

(Karimi [39])
TCNN Weibo X 88.08

TCNN-URG Weibo X 89.84
(Qian [40])

Deep Learning Prompts-injection DistilBERT 63.76
BERT-ML Prompts-injection Multilingual 96.55
RoBERTa Prompts-injection Not Fine-tuned LLM 55.17
Proposed Prompts-injection Fine-tuned LLM 99.13

TABLE II compares different models based on AUC, Preci-
sion, Recall, and F1 Score. The first five rows present results
from Ayub et al., 2024, where Random Forest + OpenAI
achieved the performance with an AUC and F1 Score of
0.764 and 0.868 respectively. Other models, such as deberta-
v3-base variants and MiniLM-L3-v2, performed lower, with
AUC values ranging from 0.500 to 0.594.

The last row highlights our proposed fine-tuned deepset:
prompt-injection model, which significantly outperforms pre-
vious approaches. It achieves an accuracy, precision, recall
and F1 score of 0.9913, 1.00, 0.9833, and 0.9915 respectively.
These results indicate that our model provides a more accurate
and reliable approach for detecting prompt injections, demon-
strating superior generalization and effectiveness over existing
methods.

Fig. 6.
Comparison between Proposed Model and Existing Works.

X. CONCLUSION

In this work, we study the impacts of using various
BERT for prompt injection attacks prevention. We propose
a method to fine-tune pre-trained XLM-RoBERTa model to
detect prompt injections using test dataset without any fine-
tuning and evaluate it by zero-shot classification. Then, this
proposed work will apply supervised fine-tuning to this pre-
trained LLM using a task-specific labeled dataset from deepset
in huggingface, and this fine-tuned model demonstrates im-
pressive results with 99.13% accuracy. From a efficiency
perspective, dataset could be more robust that we used from
Hugging Face. But we showed the ways of applying LLM
for the detection and defense with qualityful training samples.
We hope our work can raise the awareness of researchers
for ensuring the perfect detection with more samples of the
training dataset, and we aim more works for the defence of
OWASP recommended vulnerabilities.
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