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ABSTRACT 1 
Conflict-based Safety Performance Functions (SPFs) are commonly used to model the relationship 2 
between traffic conflicts and various traffic parameters, typically based on data aggregated at specific 3 
temporal levels, such as hourly, 15-minute intervals, or per signal cycle. However, such temporal data 4 
aggregation is insufficient for investigating safety risk changes within signal cycles. This research 5 
proposes a new functional conflict-based Safety Performance Function using the Functional Data 6 
Analysis (FDA) approach. In this approach, the number of conflicts and their corresponding exposure and 7 
safety risk factors are modeled as functions with respect to time within signal cycles, rather than being 8 
aggregated. Functional data smoothing is applied to smooth the data, and functional linear regression is 9 
employed to develop the functional conflict-based SPF. The results indicate significant temporal variation 10 
in the effects of safety risk factors, specifically the number of moving vehicles and backward-forming 11 
shock wave speed, on traffic conflicts. A comparative study is conducted to evaluate the proposed 12 
functional conflict-based SPF against traditional aggregated SPFs, demonstrating the superiority of the 13 
functional approach. The proposed functional conflict-based SPF shows potential for designing more 14 
effective proactive safety management strategies. 15 
 16 
Keywords: Functional data analysis, Functional linear regression, Functional conflict-based SPFs  17 
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INTRODUCTION 1 
Traffic safety at urban signalized intersections is a critical concern due to the significant loss of 2 

lives in traffic crashes around the world (1). The primary factors contributing to the high safety risk at 3 
signalized intersections are the complex traffic signal changes and conflicting traffic movements (2). 4 
These factors often lead to repeated stop-and-go situations, which in turn forms shock waves (3). Thus, it 5 
is vital to properly model and investigate the relationship between traffic safety risk and its risk factors at 6 
signalized intersections. Traditionally, crash-based safety performance functions (SPFs) are often 7 
developed to examine the relationship between crash frequency and its corresponding exposure and safety 8 
risk factors (4), where traffic crashes, exposure (often traffic volume), and safety risk factors are often 9 
aggregated annually (5). The decision of using annual aggregation level is mostly because of the rarity of 10 
traffic crashes, which requires relatively long period of time to accumulate enough crash samples for the 11 
development of SPFs. 12 

Despite the valuable contribution of crash-based SPFs developed for signalized intersections, the 13 
rarity of crashes poses difficulties in terms of capturing more detailed safety patterns at higher granularity 14 
at signalized intersections. To overcome this challenge, traffic conflicts have gained popularity in 15 
assessing traffic safety risk at signalized intersections in recent years (4). Compared to traffic crashes, 16 
traffic conflicts occur more frequently and can be automatically extracted from detailed vehicle trajectory 17 
data (6). As a result, conflict-based SPFs have been developed to model the relationship between the 18 
number of traffic conflicts and their exposure and safety risk factors at more detailed temporal 19 
aggregation levels, such as hourly (7; 8), 15-minute (9), and the signal cycle level (3; 10). Studies that 20 
used traffic signal cycle as the temporal aggregation level (also the smallest temporal aggregation level) 21 
have shown that shock wave parameters, such as shock wave speeds, areas, etc., have statistically 22 
significant associations with the number of traffic conflicts (3; 10). 23 

However, there is evidence in past literature that suggests that safety risk varies at different time 24 
points within signal cycles (3; 11), and safety risk factors, such as shock wave parameters, also changes 25 
within signal cycles (10). Furthermore, traffic conflicts and safety risk factors extracted from high-26 
granular vehicle trajectory data possess very detailed spatio-temporal information. Thus, aggregating 27 
traffic conflicts and safety risk factors at the signal cycle level still may not be optimal and could result in 28 
potential information loss, thereby hindering a comprehensive understanding of safety risk at signalized 29 
intersections. 30 

Therefore, this research proposes a new functional conflict-based SPF for signalized 31 
intersections, aiming to address the limitation of temporal data aggregation in current safety literature. 32 
Specifically, we propose to employ the Functional Data Analysis (FDA) approach in statistics and model 33 
the number of conflicts and its corresponding exposure and safety risk factors as functions with respect to 34 
time within signal cycles. Among various techniques in the FDA framework, we propose to use the 35 
functional data smoothing method for modeling the number of conflicts and its corresponding exposure 36 
and safety risk factors, and the functional linear regression method for establishing the functional conflict-37 
based SPF between the number of conflicts and its exposure and safety risk factors, including shock wave 38 
parameters. As a case study, the pNEUMA dataset, an open dataset developed by Barmpounakis and 39 
Geroliminis (12), is used and one pre-timed signalized intersection is chosen for the analysis. By 40 
modeling conflicts and safety risk factors as time series rather than aggregating them, more detailed 41 
understanding of their relationship can be uncovered, which can benefit both researchers and practitioners 42 
on the development of proactive safety evaluation and management strategies. 43 
 44 
LITERATURE REVIEW 45 
Conflict-based SPFs at signalized intersections  46 

Conflict-based SPFs at signalized intersections are statistical models that model the relationship 47 
between the number of traffic conflicts (dependent variable) and exposure and various safety risk factors 48 
(independent variables) (3). The developed conflict-based SPFs can better quantify the potential safety 49 
risk and facilitate proactive safety assessments at signalized intersections. Different types of conflicts 50 
have been investigated for the development of conflict-based SPFs, such as left-turn conflict (8; 9), rear-51 
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end conflict (3; 8; 10), or a combination of different types of conflicts (7). Different Surrogate Safety 1 
Measures (SSMs) have also been explored when developing conflict-based SPFs, such as time to collision 2 
(TTC) (3; 9; 10), modified time to collision (MTTC) (3), deceleration rate to avoid crash (DRAC) (3). 3 

Additionally, many temporal data aggregation levels have been used during the development of 4 
conflict-based SPFs. For example, Sacchi and Sayed (8) used the hourly aggregation level and developed 5 
conflict-based SPFs in predicting the number of specific types of conflicts (i.e., rear-end and left-turn). 6 
El-Basyouny and Sayed (7) proposed a two-phase model that models first the average hourly conflicts 7 
with exposure, area type (e.g., urban or suburban), the number of through lanes and the presence of right 8 
and left turn lanes; and second the collisions based on conflicts, which indicated a significant proportional 9 
relationship exists between conflicts and collisions. 10 

In addition to aggregating the data hourly, Zhang et al. (9) used 15-minute data aggregation level 11 
developed conflict-based SPFs to model left-turn conflicts. Specific safety risk factors related to left-turn 12 
characteristics such as the presence of white line extension for the left-turn lane, the average turning 13 
radius for the left-turn traffic movement, and the green time allocated to the left-turn movement were 14 
explored. 15 

Besides, two studies (3; 10) aggregated the data at the signal cycle level and developed conflict-16 
based SPFs that can account for more detailed shock wave parameters that are unique to signalized 17 
intersections. Specifically, the following shock wave parameters are explored, including shock wave area 18 
and backward-forming shock wave speed, as well as maximum queue length, platoon ratio, and traffic 19 
volume. A positive effect for shock wave area and a negative effect for backward-forming shockwave 20 
speed on traffic conflicts were identified. 21 

As can be seen from the above discussion, the temporal aggregation levels have become more 22 
detailed over the years, with the traffic signal cycle level being the smallest aggregation level. By 23 
continuously improving the granularity of the temporal data aggregation levels, more detailed safety risk 24 
patterns at signalized intersections have been unveiled. However, even with the signal cycle level, the 25 
relationship between the traffic conflicts and safety risk factors, such as shock wave parameters, at each 26 
time point inside signal cycles remains unexplored. This research addresses the identified gap by 27 
proposing to use the FDA approach to develop a functional conflict-based SPF, aiming to capture more 28 
detailed relationships between shock wave parameters and the number of traffic conflicts within signal 29 
cycles. 30 
 31 
Applications of FDA in transportation 32 

FDA is a statistical framework designed for analyzing curves or functions over a continuum, 33 
which provides a comprehensive characterization of time series data. Representative studies that applied 34 
FDA approach in the transportation domain are summarized in TABLE 1. Among all the fourteen 35 
identified transportation studies, observed time series data were converted into functional curves using 36 
functional data smoothing methods as a preliminary step, while different FDA techniques were adopted 37 
for subsequent analysis based on different research purposes.  38 

Many of these studies focused on predicting or analyzing traffic flow (13-17), while only two 39 
studies investigated traffic safety at signalized intersections from a functional perspective. Yang et al. (11) 40 
introduced the FDA approach to the transportation safety field and explored the safety risk levels for 41 
different traffic movements at different time points within signal cycles. The positivity constraint has 42 
been added during the functional data smoothing process in modeling traffic safety risk due to the 43 
nonnegativity property of the safety risk values. Based on the findings, Yang et al. (18) further explored 44 
the use of the FDA approach in detecting safety-related anomalies for proactive safety monitoring. 45 

Besides, limited studies adopted functional regression in transportation domain. Briefly, Yang et 46 
al. (19) adopted nonparametric functional linear regression to identify the differences in driver response 47 
behavior to the speed compliance warning between the treatment and control groups; Shah et al. (20) 48 
focused on forecasting day-ahead traffic flow by using functional autoregression. Crawford, Watling and 49 
Connors (17) introduced functional linear regression to analyze systematic variations in daily traffic flow 50 
profiles based on known explanatory factors such as the day of the week and the season. 51 
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As can be seen from the above discussion, no studies have explored the relationship between 1 
functional traffic safety risk and safety risk factors, such as shock wave parameters, at signalized 2 
intersections, which is addressed in this research.  3 

 4 
TABLE 1 Previous studies using FDA method 5 

ID Study Research topic Variable modeled as 

functions 

FDA Approaches 

1 Chiou (13) Predicting traffic flow. Traffic flow Functional data smoothing, FPCA 

(Functional Principal Component 

Analysis), probabilistic functional 

classification, functional linear 

regression. 

2 Guardiola, 

Leon and 

Mallor (15) 

Analyzing different patterns 

of traffic flow. 

Traffic flow Functional data smoothing, 

FPCA. 

3 Chiou et al. 

(14)  

Impute missing values in 

traffic flow and detect 

outliers. 

Traffic flow Functional data smoothing, 

FPCA, functional bagplot and 

functional highest density region 

boxplot. 

4 Sudweeks 

(21) 

Detecting dangerous driving 

behaviors from videos 

recorded by cameras 

installed in vehicles. 

Yaw rate Functional data smoothing, Curve 

registration, Functional 

classification. 

5 Seya, 

Yoshida and 

Tsutsumi 

(22) 

Ex-post identification of the 

geographical extent of an 

area benefiting from a 

transportation project 

Land price Functional data smoothing, 
functional ordinary Kriging, 

functional clustering. 

7 Wagner-

Muns et al. 

(16) 

Predicting traffic flow Traffic flow Functional data smoothing, 

FPCA. 

8 Zhong et al. 

(23) 

Predicting link travel time. Travel time Functional data smoothing, 

FPCA. 

9 Hu et al. 

(24) 

Analyzing drivers’ behavior 

response. 

Vehicle trajectories 

(longitude and latitude) 

Functional data smoothing. 

10 Yang et al. 

(18) 

Detecting safety-related 

anomalies for proactive 

safety monitoring 

Traffic safety risk 

measured by traffic 

conflicts 

Functional data smoothing, 

Functional depth measures, 

Bivariate score depth, Bivariate 

score density. 

11 Yang et al. 

(11) 

Characterizing differences of 

safety risk levels for 

different traffic movements 

Traffic safety risk 

measured by traffic 

conflicts 

Functional data smoothing, 

FANOVA 

12 Yang et al. 

(19) 

Analyzing time-dependent 

driver response behavior to 

Connected Vehicle (CV) 

warnings 

Vehicle speed time series 

profile following speed 

compliance warning 

Functional data smoothing, 

FPCA, Nonparametric functional 

linear regression 

13 Shah et al. 

(20) 

Forecasting day-ahead 

traffic flow 

Traffic flow data 

collected at 15-minute 

intervals over the course 

of a day 

Functional data smoothing, 

Functional autoregression, 

14 Crawford, 

Watling and 

Connors 

(17) 

Predicting traffic flow Traffic flow Functional data smoothing, 

Functional linear regression. 

 6 
DATA 7 
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The pNEUMA data, an open dataset developed by Barmpounakis and Geroliminis (12) and 1 
available at https://open-traffic.epfl.ch, is used in this research for developing the functional conflict-2 
based SPFs. Briefly, this dataset contains vehicle trajectories extracted from a swarm of 10 drones 3 
covering a 1.3 km2 area with over 100 km-lanes of road network and around 100 busy intersections in 4 
central Athens, Greece. Many recent studies have explored this dataset from different perspectives, and it 5 
has been proven to be highly useful for investigating urban transportation problems.  6 
 7 
Data pre-processing 8 

In this research, vehicle trajectories at the signalized intersection of Alexandras Avenue and 9 
Mpoumpoulinas Street, is selected as a case study, as illustrated in Figure 1. Specifically, data collected 10 
between 8:30 AM and 9:30 AM on October 24, 2018 (one-hour) is processed. Geometrically, the 11 
Alexandras Avenue is separated by a median, with three lanes in either direction including one bus lane. 12 
The eastbound direction has been selected for subsequent analysis because our exploratory analysis of the 13 
westbound direction shows fewer stopping vehicles during the red interval, which poses challenges to 14 
extract traffic signal cycles (please see below for more detailed discussion). A 250 ft buffer is used to 15 
select vehicle trajectories belong to this signalized intersection, which has been commonly used in a past 16 
literature (25). As a result, a total number of 1114 vehicle trajectories are selected, and the trajectories are 17 
then smoothed by the moving average approach (with the window size equal to 12) to remove noise and 18 
outliers.  19 

 20 

 21 
Figure 1 Study location.  22 

 23 

Lane and signal cycle identification 24 
To develop the proposed functional conflict-based SPFs, lane and signal timing information is 25 

needed. However, as discussed in (26; 27), pNEUMA does not provide signal and lane information but it 26 
is given that all the signalized intersections employ the pre-timed signal control strategy. Thus, with 27 
detailed vehicle trajectories, it is feasible to infer both the locations of lane markings and the signal cycles 28 
and phases as demonstrated in previous studies (26; 27). 29 

For lane identification, this research adopts the assumption and algorithm discussed in 30 
Barmpounakis, Sauvin and Geroliminis (26) that vehicles tend to drive in the center of a lane and 31 
motorcycles should be excluded before lane identification due to their frequent travel near or on the lane 32 
markings. The lateral distances of vehicles from the median are visualized through the density of vehicle 33 
trajectory points. The midpoints between consecutive peaks are then identified as lane markings, as 34 
illustrated in Figure 2. Vehicle trajectories are then divided into the three lanes accordingly. 35 

https://open-traffic.epfl.ch/
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 1 
Figure 2 Density of the lateral distances of vehicles from the median with peak locations (black) and 2 
the identified lane markings (orange) highlighted. 3 

 4 

For traffic signal extraction, this research follows the method discussed in a previous study (27) 5 
and applies the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering 6 
method to extract signal cycles directly from trajectory data. Similar to lane identification, motorcycles 7 
are also excluded before signal extraction due to their relatively erratic behavior that may jeopardize the 8 
signal extraction process, such as weaving through stopped traffic to jump to the front of a queue and only 9 
stopping for a red signal after already passing the stop line. Briefly, we first cluster the vehicle trajectories 10 
at the stop line to identify vehicles that have successfully passed the stop line during the green signal. 11 
Then, the time difference between the two first vehicles of each pair of consecutive clusters is identified 12 
as the signal cycle length. To avoid misidentification of the end of the green interval due to queue spill-13 
overs that frequently occur in the chosen intersection, the maximum time difference between the first and 14 
last vehicles of each cluster is identified as the length of the green interval. As a result, a total of 20 15 
complete signal cycles are identified. The average signal cycle length is 90.02 seconds while the 16 
maximum green interval is 51.92. Thus, 90 seconds and 52 seconds are used as the final signal cycle 17 
length and length of the green interval, respectively. 18 
 19 
METHODS 20 

In this section, we formally introduce the SSM and the shock wave parameters used in this 21 
research for developing the functional conflict-based SPF, followed by the FDA approach that includes 22 
the functional data smoothing and the functional linear regression techniques. In this research, data are 23 
not aggregated per signal cycle but are instead collected at a temporal resolution of one second. From a 24 
spatial perspective, lane-level data are obtained, which is the most detailed level in literature (3). 25 
 26 
SSM and safety risk factors 27 
Time to Collision   28 
TTC, a very commonly used SSM proposed by Hayward (28), is used in this research to identify traffic 29 
conflicts. It is defined as the time required for two vehicles to collide if they continue at their present 30 
speeds and on the same path. Mathematically: 31 

2 1TTC= ,
1-2

2 1

D
v v

v - v
     (1) 32 

, where 1 2D −  is the relative distance between the leading vehicle and the following vehicle; 1v
 is the speed 33 

of the leading vehicle; and 2v  is the speed of the following vehicle. Surrogate Safety Assessment Model 34 

(SSAM), a commonly used tool to extract traffic conflicts from vehicle trajectories, is used to extract TTC 35 
and identify traffic conflicts accordingly (29). TTC threshold is set as 1.5 seconds, which has been widely 36 
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used in previous studies (3; 7; 10). The number of traffic conflicts per second is then obtained for 1 
subsequent modeling. 2 
 3 
The number of vehicles and the number of moving vehicles 4 

The number of vehicles per second is obtained by counting the number of vehicles for each lane 5 
within the intersection buffer area, while the number of moving vehicles per second is also gathered by 6 
counting the number of vehicles with speed larger than zero for each lane within the intersection buffer 7 
area. The reason for including the number of moving vehicles as one of the safety risk factors is that (30) 8 
has shown that the traffic safety risk may increase due to the turbulence of the moving vehicles. 9 

 10 
Shock wave parameters 11 
  Shock wave parameters are also extracted in this research due to significant relationships 12 
identified between shock wave parameters and traffic conflicts in past literature (3; 10). Thus, this 13 
research extracted the following shock wave parameters, namely queue length and shock wave speeds, as 14 
safety risk factors in developing the proposed functional conflict-based SPF. Specifically, queue length is 15 
defined as the number of vehicles in the queue (31) and two shock wave speeds–the backward-forming 16 
shock wave speed 1S  and the backward-recovery shock wave speed 2S –are extracted based on the 17 

definitions in Daganzo (32) and are illustrated in Figure 3. By definitions, the extracted 1S  and 2S  are 18 

negative. For easier interpretation, this research uses the absolute values of 1S  and 2S  for subsequent 19 

modeling. 20 
 21 

 22 
Figure 3 Demonstration of shock wave parameters. 23 
 24 
Functional data analysis 25 

The FDA approach constitutes a natural extension of the commonly used univariate and 26 
multivariate approaches in transportation safety research. Compared to these traditional approaches, FDA 27 
offers a distinct advantage by modeling the whole time series as a functional observation (33). Two major 28 
techniques in FDA are employed in our research: 1) the functional data smoothing, where each time series 29 
measure observation is modeled as a mathematical function with respect to time; and 2) the function 30 
linear regression that models the relationships between the number of traffic conflicts and its exposure 31 
and safety risk factors (all in functional forms). 32 

 33 
Functional data smoothing 34 

A function ( )w t  with respect to time t  can be constructed through a linear combination of a set 35 

of basis functions ( )k t , 1,...,k K= :  36 
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 ( ) ( ) ( )
1

'
K

k k

k

w t c t t 
=

= = c  (2) 1 

 2 

, where t  is the time argument defined over  min max,T T T=  where minT  and maxT  define the boundaries of 3 

the domain. The parameters 1 2, ,..., Kc c c  are the coefficients of the expansion. In the matrix expression, 4 

the vector c  denotes a K  dimensional column vector containing the coefficients corresponding to each 5 

basis function and ( )t  denotes a K  dimensional column vector containing all the basis functions at 6 

time t . 7 
 8 

B-spline basis system 9 
The B-spline basis system, a commonly used system for modeling nonperiodic data (34), is 10 

adopted in this research because no periodicity is observed in variables. The standard process for 11 

constructing B-spline basis functions is used in this study. Briefly, each basis function ( )k t  in the B-12 

spline basis system is a spline function that is generally constructed by firstly dividing the function 13 
domain into a number of subintervals separated by values called breakpoints and then specifying a 14 
polynomial over each subinterval. The breakpoints are specified to coincide with observed data points, 15 
i.e., at each second during the cycle, which is consistent with previous studies (11; 35). The order is set at 16 
4, with subinterval having the same order, which adheres to the conventional practices (11; 15). One 17 
interior knot is put at each breakpoint to ensure that the function values and the first and second derivative 18 
values match between adjacent polynomial, while 4 knots (the same as the polynomial order) are assigned 19 
for the boundary points of the function domain (34). After determining the order and knots, K  can be 20 
calculated as the sum of the order and the number of interior knots (34). 21 

 22 
The roughness-penalized fitting criterion 23 

The coefficients 1 2, ,..., Kc c c  are estimated by minimizing the fitting criterion that is defined as: 24 

 ( ) ( ) ( )
max

min

22 2

1

PENSSE '
n T

m m
T

m

y t D w t dt  
=

 =  −  +    c c  (3) 25 

, where ( )
2

1

'
n

m m

m

y t
=

 −   c is the traditional sum of squared errors (SSE). mt  is the time that the thm  26 

value of the function ( )w t  is observed. my  is the observed function value at time mt . n  is the total 27 

number of observed function values, i.e., the total number of seconds in a signal cycle in this study. In the 28 

second term,   is the hyperparameter, often called the smoothing parameter in FDA. ( )
max

min

2
2

T

T
D w t dt    29 

is the penalty term that represents the roughness of the whole functional curves and is added to avoid 30 
overfitting to the data.  31 

The optimal smoothing parameter   is often obtained as the one that minimizes the generalized 32 
cross-validation (GCV) criterion using grid-search (36), which is denoted as: 33 

 ( )
( ) ( )

SSE
GCV

n

n df n df


 

  
=     − −  

 (4) 34 

, where ( )df    is the effective degree of freedom of the fit defined by   and mathematically, 35 

( ) ( )
1

trace ' 'df  
− = +

 
Φ Φ Φ R Φ  where Φ  is an n  by K  matrix contains the basis function values 36 

( )k jt  at each observed time point. ( ) ( )
max

min

'
T

T
t t dt = R  is the order K  symmetric roughness penalty 37 

matrix. Even though the optimal smoothing parameter   is often chosen as the one that minimizes the 38 
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GCV, it is usually the case that GCV values change slowly near the minimum value, which indicates that 1 
the data are not particularly informative about the underlying true value of  . Ramsay, Hooker and 2 
Graves (34) recommended using the researchers’ own judgments and testing a range of values near the 3 
minimum value to enhance the utility of the modeling results, which is adopted in this research. 4 
 5 
The positivity constraint 6 

Since all the variables modeled in this research are non-negative, a positive constraint is imposed 7 
during the smoothing process using the exponential transportation (34). A positive smoothing function 8 

( )x t  can then be defined as: 9 

 ( ) ( )w t
x t e=  (5) 10 

By convention, the roughness of the positive smoothing function ( )x t  is still defined as the roughness of 11 

its logarithm ( )w t  (37). The roughness-penalized fitting criterion with the positivity constraint using the 12 

size of the second derivative is thus: 13 

 ( ) ( )( ) ( )
2 2

2

pos,

1

PENSSE exp '
n

p p

p

y t D w t dt  
=

   = − +    c c  (6) 14 

The optimal value of the smoothing parameter λ is obtained using the GCV method describled above.  15 

 16 
Functional linear regression 17 

To model the relationship between the functional number of conflicts and the functional exposure 18 
and safety risk factors, we proposed to use the concurrent functional linear model, in which both the 19 

dependent variable ( )y t  and the independent variables ( )x t  are defined on the same function domain t  20 

and the value of the response variable ( )y t  is predicted solely by the values of functional variables at the 21 

same time t . Then, the regression model is denoted as: 22 

 
1

0

1

( ) ( ) ( ) ( ) ( )
q

i ij j i

j

y t t x t t t 
−

=

+= +  (7) 23 

, where ( )ijx t  denotes the 
thj  independent variable of the thi  observation. j  ranges from 1 to 1q −  , 24 

where q  is the number of variables in the model, including the intercept term, and i  ranges from 1 to 25 

N  , where N  denotes the number of observations for each variable. ( )iy t  denotes the thi  observation of 26 

the dependent variable. 0( )t  is the intercept function. ( )j t  is the coefficient function for the 27 

corresponding ( )ijx t  functions. ( )i t  is the error term. Let the N  by q  functional matrix Z contain these 28 

ijx functions, and let the vector coefficient function   of length q  contain each of the regression 29 

functions. The concurrent functional linear model in matrix notation can be denoted as 30 
( ) = ( ) ( ) ( )y t t t t +Z , where y  is a functional vector of length N  containing the response functions, 31 

and   is the corresponding residual functions.  32 
To estimate the regression coefficients, the weighted regularized fitting criterion is used: 33 

 ( )
2

LMSSE ( ) ' ( ) ( )
q

j j j

j

t t dt L t dt   = +   r r  (8) 34 

where ( ) ' ( )t t dtr r  is the integral of the squared residuals, where ( )tr  is denoted as 35 

( ) = ( ) ( ) ( )t t t t−r y Z  . The second term 
2

( )
q

j j j

j

L t dt     is the regularization term that prevents 36 

overfitting. j is a regularization parameter. jL is a linear operator applied to ( )j t . ( )j t  are estimated 37 
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by minimizing equation (8). For more detailed explanation about the functional linear regression, please 1 
refer to (34). Bootstrapping method given in (38) is employed to obtain the confidence intervals for the 2 
estimated functional coefficients. Specifically, 1000 bootstrap samples are generated by sampling with 3 
replacement from all the observed functional subjects and 0.05 significance level is adopted to construct 4 
the confidence interval. The summary statistics of the variables used for developing the functional 5 
conflict-based SPFs are shown in TABLE 2. 6 
 7 
TABLE 2 Summaries of Data Statistics 8 

Variable  Description  Unit Mean SD Min Max 

NV  The number of vehicles - 10.30  4.02  0  26 

NMV  
The number of moving 

vehicles  

-  4.51  2.70  0  15 

Q  The number of vehicles in 

queue 

- 
5.80  5.07  0  21  

1S  
The backward-forming shock 

wave speed 
m/s 

0.60  1.43 0  15.29  

2S  
The backward-recovery 

shock wave speed 
m/s 

0.70  1.70 0 15.33  

Conflict 

count 
The number of conflicts 

- 
0.88  1.24  0 11  

 9 
RESULTS and DISCUSSION 10 
Determination of the smoothing parameter λ 11 
As discussed in method section, the first step in functional data smoothing is to determine the smoothing 12 
parameter  . To test a wide range of   values, a grid search is conducted for each functional variable by 13 
specifying the logarithms of  from 2−  to 2with 0.1 increments. The optimal   for the backward-14 
recovery shock wave speed, the number of vehicles, the number of moving vehicles, the backward-15 
forming shock wave speed, the number of vehicles in queue, and the number of conflicts is -0.3, 0.5, 0.5, 16 
0.5, 0.5, 1, respectively.  17 
 18 
Smoothed functional curves 19 

Using the optimal λ values, the smoothing functional curve for each variable is shown in Figure 20 
4 with the end of the green interval (at 52 seconds) labeled as a vertical dotted line. As can be seen from 21 
the figure, for the number of conflicts, there are noticeable conflicts around the beginning of green 22 
interval (0 s), which is consistent with a previous study (3). The functions approach zero during the 23 
middle of the green interval (i.e., around 25 seconds), which is probably because a stationary traffic state 24 
is observed at that time (i.e., vehicles traveling without interruptions). The number of conflicts reaches its 25 
peak near the beginning of the red interval (52 seconds), likely due to the deceleration of vehicles. 26 
Subsequently, the number of conflicts declines, which is probably because of the formation of the queue, 27 
i.e., an increasing number of vehicles become stationary. Overall, the smoothed curve of the number of 28 
conflicts exhibits patterns consistent with those observed in a previous study (11), where higher values are 29 
associated with signal changes.  30 

Signal changes also affect the patterns of the number of vehicles, moving vehicles and vehicles in 31 
queue. As can be seen from the figure, the trends for the number of vehicles and vehicles in queue are 32 
similar, both decreasing after the start of the green interval. This decrease occurs as vehicles at the front 33 
of the queue clear the intersection, while those at the back remain stationary. After approximately 25 34 
seconds, these values increase again, which is probably due to queue spill-overs. During the red interval, 35 
the values stabilize, which indicates a stationary queue within the intersection. Conversely, the number of 36 
moving vehicles shows an expected opposite trend, with some vehicles moving during the red interval, 37 
likely due to motorcycles bypassing the queue. Additionally, signal changes influence the backward-38 
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recovery shock wave speed and the backward-forming shock wave speed. As shown in the figure, the 1 
backward-recovery shock wave speed increases immediately after the start of the green interval, 2 
indicating the vehicles at the front of the queue have started moving. The value decreases to zero 3 
approximately 25 seconds later, which implies that the queues are cleared. On the other hand, the 4 
backward-forming shock wave speed exhibits positive values after 25 seconds from the start of the green 5 
interval, which is likely due to the queue spill-overs. These findings, specifically the temporal variations 6 
of safety variables within signal cycles, have rarely been explored in past literature due to the aggregation 7 
of temporal data.  8 

 9 

 10 
Figure 4 Smoothed functions for (a) the number of vehicles, (b) the number of moving vehicles, (c) 11 
the number of vehicles in queue, (d) backward-forming shock wave speed, (e) backward-recovery 12 
shock wave speed, (f) the number of conflicts.  13 
 14 
Functional conflict-based SPFs 15 

The functional conflict-based SPFs are developed by performing the functional linear regression 16 
approach discussed in the method section. All the safety risk factors discussed above are tested and only 17 
the ones that are statistically significant according to 0.05 significance level are retained. As a result, the 18 
final functional conflict-based SPF includes the number of moving vehicles and the backward-forming 19 
shock wave speed, as shown below.  20 

 2 11( ) ( ) ( ) ( ) ( ) ( ) ( )i ii iy NM tV St t t t t t   += + +  (9) 21 

The estimated functional regression coefficients corresponding to the number of moving vehicles and the 22 
backward-forming shock wave speed as well as their 95% confidence interval are illustrated in Figure 5. 23 
 24 

 25 
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Figure 5 The estimated regression coefficient function and the corresponding 95% confidence 1 

interval for (a) the number of moving vehicles ( 1
ˆ ( )t ), and (b) the backward-forming shock wave 2 

speed ( 2
ˆ ( )t ), respectively (the start of the red interval is labeled with red dotted lines).  3 

As can be seen from the figure, the 1
ˆ ( )t  is statistically significant according to the 0.05 4 

significance level and positive for most time points. This indicates that a higher number of moving 5 
vehicles is associated with an increased number of traffic conflicts throughout the entire signal cycle. 6 
Notably, the estimated positive effects vary at different time points, which has not been observed in 7 
previous literature due to temporal data aggregation. Specifically, the largest positive effects between the 8 
number of moving vehicles and traffic conflicts occur at two periods: immediately after the red interval 9 
begins (i.e., approximately at 62 seconds) and immediately before the green interval starts (i.e., 10 
approximately at 90 seconds). This finding can be attributed to the fact that during the beginning of the 11 
red interval, vehicles decelerate and come to a full stop. As stopped vehicles cannot generate turbulence 12 
to the traffic flow, the number of moving vehicles can have large impacts on the traffic safety risk during 13 
this time. As for the time duration immediately before the green interval begins, as suggested in a 14 
previous study (11), some vehicles may begin accelerating prematurely, which results in elevated safety 15 
risk during this time.  16 

Compared to 1
ˆ ( )t , 2

ˆ ( )t  exhibits both positive and negative associations with the number of 17 

conflicts within the entire signal cycles. Specifically, positive associations are found between the 18 
backward-forming shock wave speed and the number of traffic conflicts from 24 to 52 seconds, which 19 
corresponds to the second half of the green interval. This positive effect may be attributed to the spill-over 20 
effects in the queue downstream of the intersection. Vehicles approaching the intersection, despite seeing 21 
a green signal, may be unexpectedly required to stop due to the congestion spill-over, thereby resulting in 22 
an increase of safety risk. Conversely, from 56 to 60 seconds, i.e., at the beginning of the red interval, 23 
higher backward-forming shock wave speeds indicate that vehicles are coming to a full stop more rapidly. 24 
Given that drivers are aware of the signal being red during this time and are expected to brake 25 
accordingly, the faster the vehicles coming to a full stop, the less turbulence the vehicles will create, 26 
which results in lower safety risk.  27 

In summary, the proposed functional conflict-based SPF for signalized intersections reveals new 28 
insights from a temporal perspective that are not apparent if data aggregation, a commonly used method 29 
in past literature, is employed. These findings can facilitate the development of more targeted proactive 30 
safety management strategies, such as controlling for safety risk factors that may increase safety risks at 31 
specific times during signal cycles by issuing warnings to drivers.  32 

 33 
Comparison with aggregated data regression 34 

As discussed in the Introduction section, previous studies often developed conflict-based SPFs 35 
with data aggregated at signal cycle level. Thus, to further demonstrate the contributions of the proposed 36 
functional conflict-based SPF, conflict-based SPF based on data aggregated at the signal cycle level is 37 
also developed as a comparison. Specifically, to be consistent with the developed functional conflict-38 
based SPF above, the same safety risk factors, namely the number of moving vehicles and backward-39 
forming shock wave speed, are included in the aggregated model as shown below. 40 
 0 1 2 1ln( )Y NMV S   + + +=  (10) 41 

The estimated regression coefficients and the corresponding p-values are summarized in TABLE 3. 42 
 43 
TABLE 3 Summaries of aggregated data regression 44 

Variable Estimate Standard Error P-value 

Intercept 2.22 0.26 5.03×10−12 * 
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Number of moving vehicles 0.04 0.01 6.29×10−9 * 

Backward-forming shock wave speed 0.14 0.04 5.69×10−4 * 

*: Statistically significant at 0.05 significance level 1 
 2 

As can be seen from the table, the estimated regression coefficients for both the number of 3 
moving vehicles and the backward-forming shock wave speed are statistically significant at the 0.05 level 4 
and positive. However, due to the data aggregation, conflict-based SPF using data aggregated at the signal 5 
cycle level fails to capture the temporal variations in the relationships between traffic conflicts and safety 6 
risk factors. This is especially true for the backward-forming shock wave speed, as the estimated 7 
functional coefficient is positive during some periods and negative during others as discussed above. 8 
Thus, aggregating data at the signal cycle level can significantly impair a comprehensive understanding of 9 
safety risks at signalized intersections. 10 

 11 
CONCLUSIONS 12 

This research proposes a new method to model traffic safety risk at signalized intersections by 13 
developing a functional conflict-based safety performance function (SPF). Compared to current literature 14 
where traffic conflicts and safety risk factors are often aggregated using some temporal aggregation 15 
levels, such as at the signal cycle level, this research proposes to model the traffic conflict and safety risk 16 
as functions with respect to time within signal cycles using the functional data analysis (FDA) approach 17 
in statistics. The use of the FDA approach allows for a more detailed examination of the temporal 18 
variations in safety risk within signal cycles. Specifically, the functional data smoothing technique is 19 
employed to convert observed time series data into continuous functional curves using the B-spline basis 20 
function system. A roughness-penalized fitting criterion is used to estimate the smoothed functional 21 
curves. The functional linear regression technique is then applied to model the relationships between the 22 
functional forms of the number of conflicts and its corresponding exposure and safety risk factors. 23 

The pNEUMA dataset is used in this study and vehicle trajectories from the signalized 24 
intersection of Alexandras Avenue and Mpoumpoulinas Street between 8:30 AM and 9:30 AM on 25 
October 24, 2018, is analyzed. In addition to the traffic conflicts identified by the time-to-collision, safety 26 
risk factors extracted from this dataset include the number of vehicles, number of moving vehicles, queue 27 
length, backward-forming shock wave speed, and backward-recovery shock wave speed. The findings 28 
indicate that the number of moving vehicles and backward-forming shock wave speed are significant 29 
safety risk factors in modeling the number of traffic conflicts, with their effects varying across different 30 
time points within the signal cycle. Based on the proposed functional conflict-based SPF, detailed 31 
temporal effects are uncovered within signal cycles and time periods where safety risks are increased can 32 
be identified accordingly, which provides valuable insights for developing targeted proactive safety 33 
management strategies. Future research directions include exploring other surrogate safety measures, such 34 
as modified Time to Collision (MTTC), testing additional safety risk factors that may be relevant to 35 
modeling safety risk at signalized intersections, and investigating the impact of different levels of traffic 36 
conflict severity. 37 
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