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ABSTRACT

Conlflict-based Safety Performance Functions (SPFs) are commonly used to model the relationship
between traffic conflicts and various traffic parameters, typically based on data aggregated at specific
temporal levels, such as hourly, 15-minute intervals, or per signal cycle. However, such temporal data
aggregation is insufficient for investigating safety risk changes within signal cycles. This research
proposes a new functional conflict-based Safety Performance Function using the Functional Data
Analysis (FDA) approach. In this approach, the number of conflicts and their corresponding exposure and
safety risk factors are modeled as functions with respect to time within signal cycles, rather than being
aggregated. Functional data smoothing is applied to smooth the data, and functional linear regression is
employed to develop the functional conflict-based SPF. The results indicate significant temporal variation
in the effects of safety risk factors, specifically the number of moving vehicles and backward-forming
shock wave speed, on traffic conflicts. A comparative study is conducted to evaluate the proposed
functional conflict-based SPF against traditional aggregated SPFs, demonstrating the superiority of the
functional approach. The proposed functional conflict-based SPF shows potential for designing more
effective proactive safety management strategies.

Keywords: Functional data analysis, Functional linear regression, Functional conflict-based SPFs
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INTRODUCTION

Traffic safety at urban signalized intersections is a critical concern due to the significant loss of
lives in traffic crashes around the world (7). The primary factors contributing to the high safety risk at
signalized intersections are the complex traffic signal changes and conflicting traffic movements (2).
These factors often lead to repeated stop-and-go situations, which in turn forms shock waves (3). Thus, it
is vital to properly model and investigate the relationship between traffic safety risk and its risk factors at
signalized intersections. Traditionally, crash-based safety performance functions (SPFs) are often
developed to examine the relationship between crash frequency and its corresponding exposure and safety
risk factors (4), where traffic crashes, exposure (often traffic volume), and safety risk factors are often
aggregated annually (5). The decision of using annual aggregation level is mostly because of the rarity of
traffic crashes, which requires relatively long period of time to accumulate enough crash samples for the
development of SPFs.

Despite the valuable contribution of crash-based SPFs developed for signalized intersections, the
rarity of crashes poses difficulties in terms of capturing more detailed safety patterns at higher granularity
at signalized intersections. To overcome this challenge, traffic conflicts have gained popularity in
assessing traffic safety risk at signalized intersections in recent years (4). Compared to traffic crashes,
traffic conflicts occur more frequently and can be automatically extracted from detailed vehicle trajectory
data (6). As a result, conflict-based SPFs have been developed to model the relationship between the
number of traffic conflicts and their exposure and safety risk factors at more detailed temporal
aggregation levels, such as hourly (7; 8), 15-minute (9), and the signal cycle level (3, 10). Studies that
used traffic signal cycle as the temporal aggregation level (also the smallest temporal aggregation level)
have shown that shock wave parameters, such as shock wave speeds, areas, etc., have statistically
significant associations with the number of traffic conflicts (3, 710).

However, there is evidence in past literature that suggests that safety risk varies at different time
points within signal cycles (3; 17), and safety risk factors, such as shock wave parameters, also changes
within signal cycles (/0). Furthermore, traffic conflicts and safety risk factors extracted from high-
granular vehicle trajectory data possess very detailed spatio-temporal information. Thus, aggregating
traffic conflicts and safety risk factors at the signal cycle level still may not be optimal and could result in
potential information loss, thereby hindering a comprehensive understanding of safety risk at signalized
intersections.

Therefore, this research proposes a new functional conflict-based SPF for signalized
intersections, aiming to address the limitation of temporal data aggregation in current safety literature.
Specifically, we propose to employ the Functional Data Analysis (FDA) approach in statistics and model
the number of conflicts and its corresponding exposure and safety risk factors as functions with respect to
time within signal cycles. Among various techniques in the FDA framework, we propose to use the
functional data smoothing method for modeling the number of conflicts and its corresponding exposure
and safety risk factors, and the functional linear regression method for establishing the functional conflict-
based SPF between the number of conflicts and its exposure and safety risk factors, including shock wave
parameters. As a case study, the pNEUMA dataset, an open dataset developed by Barmpounakis and
Geroliminis (/2), is used and one pre-timed signalized intersection is chosen for the analysis. By
modeling conflicts and safety risk factors as time series rather than aggregating them, more detailed
understanding of their relationship can be uncovered, which can benefit both researchers and practitioners
on the development of proactive safety evaluation and management strategies.

LITERATURE REVIEW
Conflict-based SPF’s at signalized intersections

Conflict-based SPFs at signalized intersections are statistical models that model the relationship
between the number of traffic conflicts (dependent variable) and exposure and various safety risk factors
(independent variables) (3). The developed conflict-based SPFs can better quantify the potential safety
risk and facilitate proactive safety assessments at signalized intersections. Different types of conflicts
have been investigated for the development of conflict-based SPFs, such as left-turn conflict (8; 9), rear-
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end conflict (3; 8; 10), or a combination of different types of conflicts (7). Different Surrogate Safety
Measures (SSMs) have also been explored when developing conflict-based SPFs, such as time to collision
(TTC) (3, 9, 10), modified time to collision (MTTC) (3), deceleration rate to avoid crash (DRAC) (3).

Additionally, many temporal data aggregation levels have been used during the development of
conflict-based SPFs. For example, Sacchi and Sayed (8) used the hourly aggregation level and developed
conflict-based SPFs in predicting the number of specific types of conflicts (i.e., rear-end and left-turn).
El-Basyouny and Sayed (7) proposed a two-phase model that models first the average hourly conflicts
with exposure, area type (e.g., urban or suburban), the number of through lanes and the presence of right
and left turn lanes; and second the collisions based on conflicts, which indicated a significant proportional
relationship exists between conflicts and collisions.

In addition to aggregating the data hourly, Zhang et al. (9) used 15-minute data aggregation level
developed conflict-based SPFs to model left-turn conflicts. Specific safety risk factors related to left-turn
characteristics such as the presence of white line extension for the left-turn lane, the average turning
radius for the left-turn traffic movement, and the green time allocated to the left-turn movement were
explored.

Besides, two studies (3, 10) aggregated the data at the signal cycle level and developed conflict-
based SPFs that can account for more detailed shock wave parameters that are unique to signalized
intersections. Specifically, the following shock wave parameters are explored, including shock wave area
and backward-forming shock wave speed, as well as maximum queue length, platoon ratio, and traffic
volume. A positive effect for shock wave area and a negative effect for backward-forming shockwave
speed on traffic conflicts were identified.

As can be seen from the above discussion, the temporal aggregation levels have become more
detailed over the years, with the traffic signal cycle level being the smallest aggregation level. By
continuously improving the granularity of the temporal data aggregation levels, more detailed safety risk
patterns at signalized intersections have been unveiled. However, even with the signal cycle level, the
relationship between the traffic conflicts and safety risk factors, such as shock wave parameters, at each
time point inside signal cycles remains unexplored. This research addresses the identified gap by
proposing to use the FDA approach to develop a functional conflict-based SPF, aiming to capture more
detailed relationships between shock wave parameters and the number of traffic conflicts within signal
cycles.

Applications of FDA in transportation

FDA is a statistical framework designed for analyzing curves or functions over a continuum,
which provides a comprehensive characterization of time series data. Representative studies that applied
FDA approach in the transportation domain are summarized in TABLE 1. Among all the fourteen
identified transportation studies, observed time series data were converted into functional curves using
functional data smoothing methods as a preliminary step, while different FDA techniques were adopted
for subsequent analysis based on different research purposes.

Many of these studies focused on predicting or analyzing traffic flow (/3-17), while only two
studies investigated traffic safety at signalized intersections from a functional perspective. Yang et al. (/1)
introduced the FDA approach to the transportation safety field and explored the safety risk levels for
different traffic movements at different time points within signal cycles. The positivity constraint has
been added during the functional data smoothing process in modeling traffic safety risk due to the
nonnegativity property of the safety risk values. Based on the findings, Yang et al. (/8) further explored
the use of the FDA approach in detecting safety-related anomalies for proactive safety monitoring.

Besides, limited studies adopted functional regression in transportation domain. Briefly, Yang et
al. (19) adopted nonparametric functional linear regression to identify the differences in driver response
behavior to the speed compliance warning between the treatment and control groups; Shah et al. (20)
focused on forecasting day-ahead traffic flow by using functional autoregression. Crawford, Watling and
Connors (/7) introduced functional linear regression to analyze systematic variations in daily traffic flow
profiles based on known explanatory factors such as the day of the week and the season.

4
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1 As can be seen from the above discussion, no studies have explored the relationship between
2 functional traffic safety risk and safety risk factors, such as shock wave parameters, at signalized
3  intersections, which is addressed in this research.
4
5 TABLE 1 Previous studies using FDA method
ID Study Research topic Variable modeled as FDA Approaches
functions
1 Chiou (13) Predicting traffic flow. Traffic flow Functional data smoothing, FPCA
(Functional Principal Component
Analysis), probabilistic functional
classification, functional linear
regression.
2 Guardiola, Analyzing different patterns  Traffic flow Functional data smoothing,
Leon and of traffic flow. FPCA.
Mallor (15)
3 Chiouetal. Impute missing values in Traffic flow Functional data smoothing,
(14) traffic flow and detect FPCA, functional bagplot and
outliers. functional highest density region
boxplot.
4 Sudweeks Detecting dangerous driving ~ Yaw rate Functional data smoothing, Curve
21) behaviors from videos registration, Functional
recorded by cameras classification.
installed in vehicles.
5 Seya, Ex-post identification of the ~ Land price Functional data smoothing,
Yoshida and geographical extent of an functional ordinary Kriging,
Tsutsumi area benefiting from a functional clustering.
(22) transportation project
7  Wagner- Predicting traffic flow Traffic flow Functional data smoothing,
Muns et al. FPCA.
(16)
8 Zhong etal.  Predicting link travel time. Travel time Functional data smoothing,
(23) FPCA.
9 Hu et al. Analyzing drivers’ behavior ~ Vehicle trajectories Functional data smoothing.
(24) response. (longitude and latitude)
10 Yangetal. Detecting safety-related Traffic safety risk Functional data smoothing,
(18) anomalies for proactive measured by traffic Functional depth measures,
safety monitoring conflicts Bivariate score depth, Bivariate
score density.
11 Yangetal. Characterizing differences of ~Traffic safety risk Functional data smoothing,
(11) safety risk levels for measured by traffic FANOVA
different traffic movements conflicts
12 Yangetal. Analyzing time-dependent Vehicle speed time series  Functional data smoothing,
(19) driver response behavior to profile following speed FPCA, Nonparametric functional
Connected Vehicle (CV) compliance warning linear regression
warnings
13 Shah et al. Forecasting day-ahead Traffic flow data Functional data smoothing,
(20) traffic flow collected at 15-minute Functional autoregression,
intervals over the course
of a day
14 Crawford, Predicting traffic flow Traffic flow Functional data smoothing,
Watling and Functional linear regression.
Connors
(17)
6
7 DATA
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The pNEUMA data, an open dataset developed by Barmpounakis and Geroliminis (/2) and
available at https://open-traffic.epfl.ch, is used in this research for developing the functional conflict-
based SPFs. Briefly, this dataset contains vehicle trajectories extracted from a swarm of 10 drones
covering a 1.3 km? area with over 100 km-lanes of road network and around 100 busy intersections in
central Athens, Greece. Many recent studies have explored this dataset from different perspectives, and it
has been proven to be highly useful for investigating urban transportation problems.

Data pre-processing

In this research, vehicle trajectories at the signalized intersection of Alexandras Avenue and
Mpoumpoulinas Street, is selected as a case study, as illustrated in Figure 1. Specifically, data collected
between 8:30 AM and 9:30 AM on October 24, 2018 (one-hour) is processed. Geometrically, the
Alexandras Avenue is separated by a median, with three lanes in either direction including one bus lane.
The eastbound direction has been selected for subsequent analysis because our exploratory analysis of the
westbound direction shows fewer stopping vehicles during the red interval, which poses challenges to
extract traffic signal cycles (please see below for more detailed discussion). A 250 ft buffer is used to
select vehicle trajectories belong to this signalized intersection, which has been commonly used in a past
literature (25). As a result, a total number of 1114 vehicle trajectories are selected, and the trajectories are
then smoothed by the moving average approach (with the window size equal to 12) to remove noise and
outliers.

Eastbound
Direction

' I\w.‘-:a

‘J‘?_‘ I Stop line

! : ST ]
Figure 1 Study location.

Lane and signal cycle identification

To develop the proposed functional conflict-based SPFs, lane and signal timing information is
needed. However, as discussed in (26, 27), pPNEUMA does not provide signal and lane information but it
is given that all the signalized intersections employ the pre-timed signal control strategy. Thus, with
detailed vehicle trajectories, it is feasible to infer both the locations of lane markings and the signal cycles
and phases as demonstrated in previous studies (26, 27).

For lane identification, this research adopts the assumption and algorithm discussed in
Barmpounakis, Sauvin and Geroliminis (26) that vehicles tend to drive in the center of a lane and
motorcycles should be excluded before lane identification due to their frequent travel near or on the lane
markings. The lateral distances of vehicles from the median are visualized through the density of vehicle
trajectory points. The midpoints between consecutive peaks are then identified as lane markings, as
illustrated in Figure 2. Vehicle trajectories are then divided into the three lanes accordingly.


https://open-traffic.epfl.ch/
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Figure 2 Density of the lateral distances of vehicles from the median with peak locations (black) and
the identified lane markings (orange) highlighted.

For traffic signal extraction, this research follows the method discussed in a previous study (27)
and applies the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering
method to extract signal cycles directly from trajectory data. Similar to lane identification, motorcycles
are also excluded before signal extraction due to their relatively erratic behavior that may jeopardize the
signal extraction process, such as weaving through stopped traffic to jump to the front of a queue and only
stopping for a red signal after already passing the stop line. Briefly, we first cluster the vehicle trajectories
at the stop line to identify vehicles that have successfully passed the stop line during the green signal.
Then, the time difference between the two first vehicles of each pair of consecutive clusters is identified
as the signal cycle length. To avoid misidentification of the end of the green interval due to queue spill-
overs that frequently occur in the chosen intersection, the maximum time difference between the first and
last vehicles of each cluster is identified as the length of the green interval. As a result, a total of 20
complete signal cycles are identified. The average signal cycle length is 90.02 seconds while the
maximum green interval is 51.92. Thus, 90 seconds and 52 seconds are used as the final signal cycle
length and length of the green interval, respectively.

METHODS

In this section, we formally introduce the SSM and the shock wave parameters used in this
research for developing the functional conflict-based SPF, followed by the FDA approach that includes
the functional data smoothing and the functional linear regression techniques. In this research, data are
not aggregated per signal cycle but are instead collected at a temporal resolution of one second. From a
spatial perspective, lane-level data are obtained, which is the most detailed level in literature (3).

SSM and safety risk factors

Time to Collision

TTC, a very commonly used SSM proposed by Hayward (28), is used in this research to identify traffic
conflicts. It is defined as the time required for two vehicles to collide if they continue at their present
speeds and on the same path. Mathematically:

1-2

TTC=

, Vv, >y (1)
V-V,

, where D, _, is the relative distance between the leading vehicle and the following vehicle; v, is the speed
of the leading vehicle; and v, is the speed of the following vehicle. Surrogate Safety Assessment Model

(SSAM), a commonly used tool to extract traffic conflicts from vehicle trajectories, is used to extract TTC
and identify traffic conflicts accordingly (29). TTC threshold is set as 1.5 seconds, which has been widely
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used in previous studies (3, 7, 10). The number of traffic conflicts per second is then obtained for
subsequent modeling.

The number of vehicles and the number of moving vehicles

The number of vehicles per second is obtained by counting the number of vehicles for each lane
within the intersection buffer area, while the number of moving vehicles per second is also gathered by
counting the number of vehicles with speed larger than zero for each lane within the intersection buffer
area. The reason for including the number of moving vehicles as one of the safety risk factors is that (30)
has shown that the traffic safety risk may increase due to the turbulence of the moving vehicles.

Shock wave parameters

Shock wave parameters are also extracted in this research due to significant relationships
identified between shock wave parameters and traffic conflicts in past literature (3; /0). Thus, this
research extracted the following shock wave parameters, namely queue length and shock wave speeds, as
safety risk factors in developing the proposed functional conflict-based SPF. Specifically, queue length is
defined as the number of vehicles in the queue (3/) and two shock wave speeds—the backward-forming
shock wave speed S, and the backward-recovery shock wave speed §,—are extracted based on the

definitions in Daganzo (32) and are illustrated in Figure 3. By definitions, the extracted §, and S, are
negative. For easier interpretation, this research uses the absolute values of S, and §, for subsequent
modeling.

_ L
. ! _| Backward-forming shock
1o LD I wavespesas
ling .-
:g" — 0 N ,—{ Number of vehicles in queue
-‘g 10 @ _ -

Backward-recovery shock
wave speed S,

o

[ OF

0

570 600 630 660
Time (s)

Figure 3 Demonstration of shock wave parameters.

Functional data analysis

The FDA approach constitutes a natural extension of the commonly used univariate and
multivariate approaches in transportation safety research. Compared to these traditional approaches, FDA
offers a distinct advantage by modeling the whole time series as a functional observation (33). Two major
techniques in FDA are employed in our research: 1) the functional data smoothing, where each time series
measure observation is modeled as a mathematical function with respect to time; and 2) the function
linear regression that models the relationships between the number of traffic conflicts and its exposure
and safety risk factors (all in functional forms).

Functional data smoothing
A function w(t) with respect to time ¢ can be constructed through a linear combination of a set

of basis functions ¢, (1), k=1,...K :
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w(t)zick@(t):cwp(t) @)

, where ¢ is the time argument defined over T =[T,,,.,T,..| where T,

min ** max min

and T, define the boundaries of
the domain. The parameters c,,c,,...,c, are the coefficients of the expansion. In the matrix expression,
the vector ¢ denotes a K dimensional column vector containing the coefficients corresponding to each
basis function and ¢(t) denotes a K dimensional column vector containing all the basis functions at

time 7.

B-spline basis system
The B-spline basis system, a commonly used system for modeling nonperiodic data (34), is
adopted in this research because no periodicity is observed in variables. The standard process for

constructing B-spline basis functions is used in this study. Briefly, each basis function ¢, (t) in the B-

spline basis system is a spline function that is generally constructed by firstly dividing the function
domain into a number of subintervals separated by values called breakpoints and then specifying a
polynomial over each subinterval. The breakpoints are specified to coincide with observed data points,
i.e., at each second during the cycle, which is consistent with previous studies (//; 35). The order is set at
4, with subinterval having the same order, which adheres to the conventional practices (//, 15). One
interior knot is put at each breakpoint to ensure that the function values and the first and second derivative
values match between adjacent polynomial, while 4 knots (the same as the polynomial order) are assigned
for the boundary points of the function domain (34). After determining the order and knots, K can be
calculated as the sum of the order and the number of interior knots (34).

The roughness-penalized fitting criterion
The coefficients ¢|,c,,...,c, are estimated by minimizing the fitting criterion that is defined as:

PENSSE, (¢)= Z[ v —c'd(t,)] +2 LT [D*w(1)] ar (3)

mil

, where Z[ Vo — c’¢(tm )]2 is the traditional sum of squared errors (SSE). ¢, is the time that the m"

m=l1
value of the function w(7) is observed. y,, is the observed function value at time ¢, . n is the total

number of observed function values, i.e., the total number of seconds in a signal cycle in this study. In the

Tmax
second term, A is the hyperparameter, often called the smoothing parameter in FDA. IT [Dz w(t)]2 dt

is the penalty term that represents the roughness of the whole functional curves and is added to avoid
overfitting to the data.

The optimal smoothing parameter A is often obtained as the one that minimizes the generalized
cross-validation (GCV) criterion using grid-search (36), which is denoted as:

GCV(2)=| —— SSE )
n—df (2) )\ n—df (2)
, where df (1) is the effective degree of freedom of the fit defined by A and mathematically,

df (1) = trace[tl)(d)'q) +AR)" d)'} where @ is an n by K matrix contains the basis function values

b, (t j) at each observed time point. R = I; #(1)'¢(¢)dt isthe order K symmetric roughness penalty

matrix. Even though the optimal smoothing parameter A is often chosen as the one that minimizes the
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GCV, it is usually the case that GCV values change slowly near the minimum value, which indicates that
the data are not particularly informative about the underlying true value of 4. Ramsay, Hooker and
Graves (34) recommended using the researchers’ own judgments and testing a range of values near the
minimum value to enhance the utility of the modeling results, which is adopted in this research.

The positivity constraint
Since all the variables modeled in this research are non-negative, a positive constraint is imposed
during the smoothing process using the exponential transportation (34). A positive smoothing function

x(7) can then be defined as:

x(1) =" (5)
By convention, the roughness of the positive smoothing function x(7) is still defined as the roughness of
its logarithm w(t) (37). The roughness-penalized fitting criterion with the positivity constraint using the

size of the second derivative is thus:
n 2 P
PENSSE,, , (¢)= Y| », —exp(e'g(1,)) | +2[[ D*w(1)] ar 6)
p=l1
The optimal value of the smoothing parameter A is obtained using the GCV method describled above.

Functional linear regression
To model the relationship between the functional number of conflicts and the functional exposure
and safety risk factors, we proposed to use the concurrent functional linear model, in which both the

dependent variable y(t) and the independent variables x(¢) are defined on the same function domain ¢

and the value of the response variable y(t) is predicted solely by the values of functional variables at the

same time ¢. Then, the regression model is denoted as:
gq-1
Y1) = By(0)+Y x,() B,(1) + &) (7)
Jj=1

, where x,(7) denotes the j" independent variable of the i observation. j ranges from 1 to g—1 ,
where ¢ is the number of variables in the model, including the intercept term, and i ranges from 1 to

N ,where N denotes the number of observations for each variable. y,(¢) denotes the i” observation of
the dependent variable. f(¢) is the intercept function. S,(¢) is the coefficient function for the
corresponding x,(¢) functions. &,(¢) is the error term. Let the N by ¢ functional matrix Z contain these
x; functions, and let the vector coefficient function f of length g contain each of the regression

functions. The concurrent functional linear model in matrix notation can be denoted as
y(@)=Z(@)P(t)+&(t), where y is a functional vector of length N containing the response functions,

and ¢ is the corresponding residual functions.
To estimate the regression coefficients, the weighted regularized fitting criterion is used:

d 2
LMSSE(8) = [r()'r(ydt + Y 4, [[ L,B,(1) | dt (8)
j
where Ir(z)'r(t)dt is the integral of the squared residuals, where r(¢) is denoted as
9
r(t)=y()—Z(@)p(t) . The second term z/ljj[Lj B, (t)]2 dt is the regularization term that prevents
j

overfitting. A, 1is a regularization parameter. L, is a linear operator applied to 5,(¢) . f3,(¢) are estimated

10
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by minimizing equation (8). For more detailed explanation about the functional linear regression, please
refer to (34). Bootstrapping method given in (38) is employed to obtain the confidence intervals for the
estimated functional coefficients. Specifically, 1000 bootstrap samples are generated by sampling with
replacement from all the observed functional subjects and 0.05 significance level is adopted to construct
the confidence interval. The summary statistics of the variables used for developing the functional
conflict-based SPFs are shown in TABLE 2.

TABLE 2 Summaries of Data Statistics

Variable Description Unit Mean SD Min Max

NV The number of vehicles - 10.30  4.02 0 26

NMV The. number of moving - 4.51 2.70 0 15
vehicles

0 The number of vehicles in - 520 507 0 1
queue

S, The backward-forming shock m/s 0.60 1.43 0 15.29
wave speed

s, The backward-recovery m/s 0.70 1.70 0 15.33
shock wave speed

Conflict The number of conflicts ) 0.88 1.24 0 11

count

RESULTS and DISCUSSION

Determination of the smoothing parameter A

As discussed in method section, the first step in functional data smoothing is to determine the smoothing
parameter A. To test a wide range of A values, a grid search is conducted for each functional variable by
specifying the logarithms of from —2 to 2 with 0.1 increments. The optimal A for the backward-
recovery shock wave speed, the number of vehicles, the number of moving vehicles, the backward-
forming shock wave speed, the number of vehicles in queue, and the number of conflicts is -0.3, 0.5, 0.5,
0.5, 0.5, 1, respectively.

Smoothed functional curves

Using the optimal A values, the smoothing functional curve for each variable is shown in Figure
4 with the end of the green interval (at 52 seconds) labeled as a vertical dotted line. As can be seen from
the figure, for the number of conflicts, there are noticeable conflicts around the beginning of green
interval (0 s), which is consistent with a previous study (3). The functions approach zero during the
middle of the green interval (i.e., around 25 seconds), which is probably because a stationary traffic state
is observed at that time (i.e., vehicles traveling without interruptions). The number of conflicts reaches its
peak near the beginning of the red interval (52 seconds), likely due to the deceleration of vehicles.
Subsequently, the number of conflicts declines, which is probably because of the formation of the queue,
i.e., an increasing number of vehicles become stationary. Overall, the smoothed curve of the number of
conflicts exhibits patterns consistent with those observed in a previous study (//), where higher values are
associated with signal changes.

Signal changes also affect the patterns of the number of vehicles, moving vehicles and vehicles in
queue. As can be seen from the figure, the trends for the number of vehicles and vehicles in queue are
similar, both decreasing after the start of the green interval. This decrease occurs as vehicles at the front
of the queue clear the intersection, while those at the back remain stationary. After approximately 25
seconds, these values increase again, which is probably due to queue spill-overs. During the red interval,
the values stabilize, which indicates a stationary queue within the intersection. Conversely, the number of
moving vehicles shows an expected opposite trend, with some vehicles moving during the red interval,
likely due to motorcycles bypassing the queue. Additionally, signal changes influence the backward-

11



OCooONOOTULLPE WN PP

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24

25

Shen, Yang, Xie, Yang, Yang and Jeihani

recovery shock wave speed and the backward-forming shock wave speed. As shown in the figure, the
backward-recovery shock wave speed increases immediately after the start of the green interval,
indicating the vehicles at the front of the queue have started moving. The value decreases to zero
approximately 25 seconds later, which implies that the queues are cleared. On the other hand, the
backward-forming shock wave speed exhibits positive values after 25 seconds from the start of the green
interval, which is likely due to the queue spill-overs. These findings, specifically the temporal variations
of safety variables within signal cycles, have rarely been explored in past literature due to the aggregation

of temporal data.
- 0 25 5(j 75
(c)

Smoothed Curves

0 25 50 75 0 25 50 75 0 25 50 75

) @ (0
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Figure 4 Smoothed functions for (a) the number of vehicles, (b) the number of moving vehicles, (¢)
the number of vehicles in queue, (d) backward-forming shock wave speed, (¢) backward-recovery
shock wave speed, (f) the number of conflicts.

Functional conflict-based SPF's

The functional conflict-based SPFs are developed by performing the functional linear regression
approach discussed in the method section. All the safety risk factors discussed above are tested and only
the ones that are statistically significant according to 0.05 significance level are retained. As a result, the
final functional conflict-based SPF includes the number of moving vehicles and the backward-forming
shock wave speed, as shown below.

Y(0) = adt) +, (ONMV, () + S, (1)S, (1) + &,(2) )
The estimated functional regression coefficients corresponding to the number of moving vehicles and the
backward-forming shock wave speed as well as their 95% confidence interval are illustrated in Figure 5.
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Figure 5 The estimated regression coefficient function and the corresponding 95% confidence

interval for (a) the number of moving vehicles (,[?1 (1)), and (b) the backward-forming shock wave
speed (ﬁz (1)), respectively (the start of the red interval is labeled with red dotted lines).

As can be seen from the figure, the ﬁ’l (#) is statistically significant according to the 0.05

significance level and positive for most time points. This indicates that a higher number of moving
vehicles is associated with an increased number of traffic conflicts throughout the entire signal cycle.
Notably, the estimated positive effects vary at different time points, which has not been observed in
previous literature due to temporal data aggregation. Specifically, the largest positive effects between the
number of moving vehicles and traffic conflicts occur at two periods: immediately after the red interval
begins (i.e., approximately at 62 seconds) and immediately before the green interval starts (i.e.,
approximately at 90 seconds). This finding can be attributed to the fact that during the beginning of the
red interval, vehicles decelerate and come to a full stop. As stopped vehicles cannot generate turbulence
to the traffic flow, the number of moving vehicles can have large impacts on the traffic safety risk during
this time. As for the time duration immediately before the green interval begins, as suggested in a
previous study (/ /), some vehicles may begin accelerating prematurely, which results in elevated safety
risk during this time.

Compared to ﬁl (0, ,5’2 (t) exhibits both positive and negative associations with the number of

conflicts within the entire signal cycles. Specifically, positive associations are found between the
backward-forming shock wave speed and the number of traffic conflicts from 24 to 52 seconds, which
corresponds to the second half of the green interval. This positive effect may be attributed to the spill-over
effects in the queue downstream of the intersection. Vehicles approaching the intersection, despite seeing
a green signal, may be unexpectedly required to stop due to the congestion spill-over, thereby resulting in
an increase of safety risk. Conversely, from 56 to 60 seconds, i.e., at the beginning of the red interval,
higher backward-forming shock wave speeds indicate that vehicles are coming to a full stop more rapidly.
Given that drivers are aware of the signal being red during this time and are expected to brake
accordingly, the faster the vehicles coming to a full stop, the less turbulence the vehicles will create,
which results in lower safety risk.

In summary, the proposed functional conflict-based SPF for signalized intersections reveals new
insights from a temporal perspective that are not apparent if data aggregation, a commonly used method
in past literature, is employed. These findings can facilitate the development of more targeted proactive
safety management strategies, such as controlling for safety risk factors that may increase safety risks at
specific times during signal cycles by issuing warnings to drivers.

Comparison with aggregated data regression

As discussed in the Introduction section, previous studies often developed conflict-based SPFs
with data aggregated at signal cycle level. Thus, to further demonstrate the contributions of the proposed
functional conflict-based SPF, conflict-based SPF based on data aggregated at the signal cycle level is
also developed as a comparison. Specifically, to be consistent with the developed functional conflict-
based SPF above, the same safety risk factors, namely the number of moving vehicles and backward-
forming shock wave speed, are included in the aggregated model as shown below.

In(Y) = B, + BNMV + 3,8, + ¢ (10)

The estimated regression coefficients and the corresponding p-values are summarized in TABLE 3.

TABLE 3 Summaries of aggregated data regression
Variable Estimate  Standard Error ~ P-value
Intercept 2.22 0.26 5.03x1071%°
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Number of moving vehicles 0.04 0.01 6.29x107"
Backward-forming shock wave speed 0.14 0.04 5.69x107*"

*: Statistically significant at 0.05 significance level

As can be seen from the table, the estimated regression coefficients for both the number of
moving vehicles and the backward-forming shock wave speed are statistically significant at the 0.05 level
and positive. However, due to the data aggregation, conflict-based SPF using data aggregated at the signal
cycle level fails to capture the temporal variations in the relationships between traffic conflicts and safety
risk factors. This is especially true for the backward-forming shock wave speed, as the estimated
functional coefficient is positive during some periods and negative during others as discussed above.
Thus, aggregating data at the signal cycle level can significantly impair a comprehensive understanding of
safety risks at signalized intersections.

CONCLUSIONS

This research proposes a new method to model traffic safety risk at signalized intersections by
developing a functional conflict-based safety performance function (SPF). Compared to current literature
where traffic conflicts and safety risk factors are often aggregated using some temporal aggregation
levels, such as at the signal cycle level, this research proposes to model the traffic conflict and safety risk
as functions with respect to time within signal cycles using the functional data analysis (FDA) approach
in statistics. The use of the FDA approach allows for a more detailed examination of the temporal
variations in safety risk within signal cycles. Specifically, the functional data smoothing technique is
employed to convert observed time series data into continuous functional curves using the B-spline basis
function system. A roughness-penalized fitting criterion is used to estimate the smoothed functional
curves. The functional linear regression technique is then applied to model the relationships between the
functional forms of the number of conflicts and its corresponding exposure and safety risk factors.

The pNEUMA dataset is used in this study and vehicle trajectories from the signalized
intersection of Alexandras Avenue and Mpoumpoulinas Street between 8:30 AM and 9:30 AM on
October 24, 2018, is analyzed. In addition to the traffic conflicts identified by the time-to-collision, safety
risk factors extracted from this dataset include the number of vehicles, number of moving vehicles, queue
length, backward-forming shock wave speed, and backward-recovery shock wave speed. The findings
indicate that the number of moving vehicles and backward-forming shock wave speed are significant
safety risk factors in modeling the number of traffic conflicts, with their effects varying across different
time points within the signal cycle. Based on the proposed functional conflict-based SPF, detailed
temporal effects are uncovered within signal cycles and time periods where safety risks are increased can
be identified accordingly, which provides valuable insights for developing targeted proactive safety
management strategies. Future research directions include exploring other surrogate safety measures, such
as modified Time to Collision (MTTC), testing additional safety risk factors that may be relevant to
modeling safety risk at signalized intersections, and investigating the impact of different levels of traffic
conflict severity.
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