
Understanding and Estimating Error Propagation in
Neural Networks for Scientific Data Analysis

Weiming He
New Jersey Institute of Tech.

wh249@njit.edu

Qi Chen
Temple University

qi.chen0004@temple.edu

Qian Gong
Oak Ridge National Laboratory

gongq@ornl.gov

Jing Li
New Jersey Institute of Tech.

jingli@njit.edu

Qing Liu
New Jersey Institute of Tech.

qliu@njit.edu

Norbert Podhorszki
Oak Ridge National Laboratory

pnorbert@ornl.gov

Scott Klasky
Oak Ridge National Laboratory

klasky@ornl.gov

Kisung Jung
Pukyong National University

kjung@pknu.ac.kr

Cristian Lacey
Sandia National Laboratory

celacey@sandia.gov

Jackie Chen
Sandia National Laboratory

jhchen@sandia.gov

Hongjian Zhu
X-Byte Research

hzhu@xbyteresearch.com

Abstract—Neural networks are increasingly integrated into
scientific discovery, where input data reduction and model
quantization play a key role in accelerating inference. However,
understanding and mitigating the impact of these techniques
on output error is critical for ensuring reliable results, par-
ticularly in tasks demanding high numerical precision. This
paper introduces a comprehensive framework for optimizing
neural network inference in scientific computing by combining
data reduction and model quantization while maintaining error-
controlled outcomes. We develop theoretical analyses to bound er-
ror propagation under these techniques and propose a framework
that balances computational performance with error constraints.
Evaluation on real-world learning-based combustion simulations
and satellite image classification shows that our derived error
bounds accurately predict observed errors while enabling signif-
icant computational speedup under our framework. This work
highlights the potential for further leveraging advancements in
modern lossy compression algorithms and hardware accelerators
that support lower-precision formats.

I. INTRODUCTION

Simulation-based scientific discovery has entered a new era
where domain scientists are no longer limited to numerically
solving the governing equations as the only path forward. Over
the past decade, researchers have been increasingly leveraging
new capabilities from machine learning and artificial intelli-
gence (AI) to accelerate the path to knowledge. For exam-
ple, in combustion simulations conducted at Sandia National
Laboratory, calculating the chemical reaction rate—a crucial
quantity in the Navier-Stokes equations—is expensive and
time consuming due to the large number of species involved
in a single reaction, each requiring individual solutions for

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid up, irrevocable, world-
wide license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

its reaction rate using a resource-intensive in-house Fortran
combustion solver at Sandia National Laboratory. By contrast,
using a simple pre-trained neural network with two hidden lay-
ers with 50 neurons, combustion scientists can now accurately
compute reaction rates for the 9-species hydrogen mechanism
at significantly reduced costs [1]. This fundamentally shifts
the computational research from compute-driven to a mixed
paradigm driven by both compute and AI.

As neural networks become increasingly mature and preva-
lent in scientific discovery, it is crucial to understand the
impact of using neural networks on the outcomes of knowledge
discovery, with regard to the time to solution as well as the
potential deviation from the ground truth. While this paper
does not aim to broadly investigate the uncertainty of neural
networks itself, our goal in this work is to understand the
impact of model and data uncertainty as a result of employing
data reduction, which is done in the following two steps during
inference: 1) compressing the input data to the neural network
to reduce the data retrieval overhead from persistent storage
and 2) quantizing the network weights into fewer levels to
reduce memory footprint and bandwidth consumption.

In particular, the compression of input data is motivated
by the I/O bottleneck on high-performance computing (HPC)
systems where the gap between compute and storage continues
to widen [2], [3]. Consequently, large-scale simulations often
employ some form of data reduction (e.g., spatiotemporal
resolution reduction, compression, model reduction, etc. [4],
[5]) to lower the amount of data transferred to/from the storage
systems, while controlling the error for reduction to ensure
acceptable outcomes. As scientific data analytics moves further
towards AI, it is critical to understand and control the error
propagation in neural networks so that important physics are
not discarded during the training and inference process.

However, existing error-bounding methods have significant
limitations when applied to the complex pipelines for modern
scientific discovery. For instance, traditional error-bounded

{𝑊} Weights

	𝜙 Activation

		𝑥 Raw data

Trained
DNN

User-set total tol. on QoI

Tol. on comp.

Tol. on quant.

Error flow
analysis

Tol. on raw data

Quant. format

Reduced
data

Quantized
DNN

High-performance
inference pipeline

Error bounded QoI

Lossy compression

Post-training quantization

(FP16, INT8, etc.)

Fig. 1. Proposed framework. Starting with a trained deep neural network
and a user-defined error tolerance on the quantity of interest (Tol. on QoI),
our approach involves controlling two sub-components of the tolerance:
quantization and compression tolerances. These tolerances are then fed into the
error flow analysis, which generates an optimal combination of quantization
and compression configurations. This enables the construction of an inference
pipeline that effectively integrates lossy data reduction and post-training
quantization, ensuring efficient and error-bounded inference for input data.

compressors, such as SZ [6] and ZFP [7], were designed
primarily for writing or reading data from disks and do not
account for the compounded effect of errors introduced at
multiple stages of data processing and inference. As such,
they cannot ensure that the accumulated error remains within
acceptable bounds at the output of the inference pipeline.

Meanwhile, applying post-training network quantization—a
technique that reduces numerical precision (e.g., from FP32
to FP16) for inference computations—is driven by increased
computational speed and enhanced memory efficiency. For
instance, FP16 operations on NVIDIA GPUs achieve up to
8× arithmetic throughput and a 2× reduction in memory
bandwidth compared to FP32 operations, resulting in a com-
bined 16× improvement in peak performance [8]. Additionally,
emerging numerical formats, such as TensorFloat-32 (TF32)
and Brain Floating Point Format (BF16), offer balances be-
tween computational speed and numerical accuracy [9], [10],
providing more flexible options for quantization. Advanced
quantization strategies that apply block-wise, column-wise,
or row-wise quantization to weight matrices can offer tighter
quantization and reduced accuracy loss compared to uniform
per-layer quantization. By grouping subsets of weights and
assigning shared quantization parameters (e.g., scaling factors)
within each group, these methods capture the local range
of weights more precisely, thereby mitigating quantization
error. These advancements provide significant performance
improvements compared to using single precision alone.

Alongside compression and optimization efforts, various
software tools and frameworks enhance deep learning in-
ference through specialized techniques. The TensorRT SDK
accelerates execution by fusing kernels, thereby improv-
ing GPU utilization and inference efficiency [11]. PyTorch’s
torch.compile [12] optimizes computation graphs to
streamline execution and boost inference speed. The RAPIDS
software stack efficiently manages GPU-based data pipelines,
enabling rapid preprocessing and transfer. Smol [13] addresses

resnet_18

resnet_34

resnet_50

resnet_101

resnet_152

mlp_s
mlp_m

mlp_l

Neural network architecture

0%

50%

100%

Ti
m

e
pe

rc
en

ta
ge

Model execution Pre-processing Data loading

Fig. 2. Percentage of time spent on inference for models including standard
ResNet architectures with varying depths adapted for 10-class classification,
and MLP models of different sizes. The suffix of ResNet denotes the number
of layers in the network. For MLP, mlp s represents a model with a low
FLOPS of 0.5M, mlp m represents a model with a medium FLOPS of 4.2M,
and mlp l represents a model of high FLOPS of 33.7M.

preprocessing bottlenecks to improve end-to-end DNN infer-
ence. Although these tools significantly reduce neural net-
work runtime, they lack mechanisms to analytically bound
or evaluate the additional error introduced by combining
lossy compression and quantization—an essential capability
for scientific workflows.

In this paper, we aim to develop theoretical analyses to
bound the error propagation of neural networks, when the
input data and network weights are reduced. Enabled by these
analyses, we propose a framework illustrated in Fig. 1 that
provides recommendations on the optimized combination of
data reduction and network quantization, given a pre-trained
deep neural network and task-specific parameters, such as
error tolerance for the quantity of interest (QoI) and the
I/O-execution time ratio. Overall, this work provides new
insights and tools for leveraging neural networks in scientific
applications where efficient and reliable data processing is
essential. The contributions of this work are as follows:
• To the best of our knowledge, this work is the first to develop

mathematical theories for estimating the output error of
neural networks when both the input data and network
weights are reduced. By directly regulating the spectral
properties of weight matrices, our method provides accurate
error bound predictions that encompass the actual error.

• This paper investigates the potential performance benefits of
modern compression algorithms and hardware accelerators
in scientific tasks, with a particular focus on the synergistic
effect of combining compression and quantization—a dis-
covery that emerged from our experiments. We introduce a
framework that leverages these advancements while ensur-
ing error-controlled results.

• We evaluated two real-world combustion neural networks—
designed to compute reaction rates and dissipation rates,
respectively—along with various ResNet models to evaluate
the effectiveness the error estimation. Our derived error
bound successfully captures the actual achieved error in all
cases while enabling considerable speedup.

II. MOTIVATION

This work is motivated by the following observations:
Motivation 1: Scientific data analysis using neural networks
spend large portions of time on data loading and model
execution, where large amounts of floating-point data need
to be ingested and processed. In Fig. 2, we break down the
inference time of several common network modules into data
loading, pre-processing, and model execution. The absolute
processing time depends on the volume of data, which can
reach terabyte (TB) or even petabyte (PB) scales in scientific
computing. For example, high-fidelity climate simulations can
generate up to 85 PB of data per day [14], while a single X-
point Gyrokinetics Code (XGC) simulation in fusion research
may produce hundreds of petabytes of particle state data [15].
Such enormous data volumes require hours or even days to
read [14], let alone process. Our experiments are designed
to replicate realistic HPC workloads where in situ analysis
must be performed concurrently with simulations. In these
scenarios, even state-of-the-art pipelines experience significant
delays due to hardware limitations.
Motivation 2: For lossy data reduction, a key challenge is how
to control the downstream error in the analysis pipeline, e.g.,
for visualization, computing new derived quantities. While
this has been studied extensively for primary quantities, i.e.,
those that are reduced, the error propagation in a complex and
deep data analysis pipeline has not been well studied. Recent
work on MGARD was among the first to study and bound
the error for linear quantities of interest (QoI). However, the
mathematical operations in neural networks involve non-linear
operations and the theories in MGARD cannot be directly
applied. This work is motivated by the fact that when reduced
data are fed into neural networks with reduced weights, new
theories are needed to guarantee the error so that users can
make informed decisions with regard to the accuracy of input
data and network weights.

III. METHOD

This work leverages lossy compression and quantization to
accelerate neural network inference. To avoid the prediction
results to deviate from the ground truth significantly, we
enforce an error tolerance that bounds the final QoI error.

A. Overview

In this section, we go through the notation setup and propose
the formula for a safe error bound that limits the QoI error
when both compression and quantization errors are present
simultaneously. Consider an L-layer ResNet building block:

y = F(x, {W (l)}) +Wsx for l = 1, · · · , L− 1 (1)

where the function F(x, {W (l)}) represents the residual map-
ping to be learned; x is the input data; W (l) is the weight
matrix for layer l; Ws is the shortcut matrix used for linearly
projecting the skip connection. Notably, when the dimensions
of x and F are equal, Ws is the identity matrix. Additionally,
multi-layer perceptrons (MLPs) can be viewed as a special

case of a residual block where Ws is a zero matrix. The
recurrence relation inside the L-layer mapping is defined as:{

x = h(0)

F = z(L) and
{

z(l) = W (l)h(l−1)

h(l) = ϕ(z(l))

where ϕ is the nonlinear activation; z(l) denotes the pre-
activation for layer l, which is the linear combination of inputs
and weights before applying the activation function, and h(l)

denotes the post-activation for layer l. We use nl to denote
the number of neurons of the l-th layer. Since the subsequent
derivation does not depend on bias terms, we have omitted
them to streamline the notation.

We aim to bound the error that propagates through each
layer of the network, introduced by both lossy reduction
and quantization post-training. In this paper, we focus on
weight-only quantization using uniform affine transformation
with max calibration [8], a.k.a. affine quantization. While we
acknowledge that more advanced strategies, such as block-
wise, column-wise, or row-wise quantization, can yield tighter
memory footprints and potentially higher accuracy, these ap-
proaches are more complex to implement and optimize, and
therefore do not align with our primary goal of maximiz-
ing throughput [16]. We intend to explore these alternative
quantization techniques in future work. Let ∆x represent the
difference between the original data and its reconstruction.
Similarly, ∆z, ∆h and ∆y denote the deviations from z, h,
and y, respectively. We focus on the discussion of the L2 norm,
denoted by ∥·∥2. The results can be extended to the L-infinity
norm ∥ · ∥∞, given that:

1√
n
∥ · ∥2 ≤ ∥ · ∥∞ ≤ ∥ · ∥2.

Through one linear projection z(l) = W (l)h(l−1), the L2
norm of the input erro r vector ∥∆h(l−1)∥2 is amplified by a
finite factor, bounded by the spectral norm σ

(l)
W of the weight

matrix W (l) by definition, which is defined as:

σ
(l)
W := sup

∆h̸=0

∥W (l)∆h(l−1)∥2
∥∆h(l−1)∥2

. (2)

Note that the value of σ(l)
W is the largest singular value of the

weight matrix W (l), which remain fixed after training. The
power iteration method [17] is commonly used to approximate
this value efficiently.

Suppose the activation functions applied after each linear
layer have an upper limit on their first derivative, we have:

C = sup
z

d

dz
ϕ(z) =⇒ ∥∆h(l)∥2 ≤ C∥∆z(l)∥2.

This assumption does not affect the generality. Most com-
monly used activation functions in modern deep learning, such
as ReLU and its variants, GeLU, Tanh, etc. have globally
bounded derivatives. In rare cases where the derivative is
not globally bounded (e.g., with polynomial activations), we
perform a careful local analysis limited to the regions of the ac-
tivation function where the data encounters. Because standard
backpropagation requires bounded derivatives, a local bound

is guaranteed in these regions, and establishing it suffices
to ensure compatibility with our theoretical framework. Note
that our framework does not support discontinuous activation
functions, which are rarely used in mainstream deep learning
architectures. For common activations including Tanh, ReLU
and LeakyReLU, which are covered in this paper, we have
C = 1. Hence, we omit the constant C in the following
discussion for simplicity.

With both lossy reduction and post training affine quanti-
zation applied, the final output error ∥∆y∥2 of the building
block in Equation (1) is bounded by the following equation:

∥∆y∥2 ≤(σs +
L∏

l=1

σ
(l)
W)× ∥∆x∥2+

L∑
l=1

(l−1∏
i=1

(σ
(i)
W +

qi
√
min(ni−1, ni)√

3
) (3)

×
L∏

j=l+1

σ
(j)
W ×

ql
√
n0nl

2
√
3

)
Here, σs is the spectral norm of the shortcut matrix Ws. In

the case of a MLP, σs is defined to be zero. ql = q (W (l))
denotes the quantization step size for each layer. The formulas
to calculate the step sizes for several widely used numerical
formats are shown in TABLE I.

TABLE I
AVERAGE QUANTIZATION STEP SIZE q FOR COMMON NUMERICAL

FORMATS.

FORMAT STEP SIZE

TF32 q (W) = 2−10 ×
√

2 2×⌊log2 |Wij |⌋

FP16 q (W) = 2−10 ×
√

2 2×max(−14,⌊log2 |Wij |⌋)

BF16 q (W) = 2−7 ×
√

2 2×⌊log2 |Wij |⌋

INT8 q (W) = 2−8 ×
(
max(Wij)−min(Wij)

)
Inequality (3) provides a practical tool for determining

an appropriate combination of compression tolerance and
quantization precision in order to meet a user-specified QoI
tolerance. Notably, for a given deep network, the upper bound
of disturbance in its output depends solely on the compression
error ∥∆x∥2 as well as the numerical format employed in
quantization, making it readily applicable.

B. Error Flow Analysis

We have two components of errors: compression and quan-
tization errors. Despite the composed manner these two errors
propagate through the network, they contribute to the upper
bound of the total error additively. Consider the network
configuration space (x,W), representing all possible values
of the input features fed into the network and all possible
values of the weights in the network. We denote noisy or
perturbed versions of variables due to either lossy compres-
sion or quantization by the tilde notation ·̃ . Specifically, x̃
represents the reconstructed version of input x, W̃ represents

the quantized version of weights W, h̃ and z̃ denote the noisy
version of hidden variables h and z respectively, affected due
to the application of reduction and quantization. We compute
the total error ∆y on the output via a path integral:

∆y =

∫
γ

∇γy(x,W)ds. (4)

where γ(t) = (x(t),W (t)) for t ∈ [0, 1] is a path within the
configuration space and that γ(0) = (x,W); γ(1) =

(
x̃, W̃

)
;

ds =

√(
dx
dt

)2
+
(
dW
dt

)2
; dt is the arc length element. Two

paths to compute the integral in Equation (4) are:

(x, W)
↗
↘

(x̃, W)

(x, W̃)

↘
↗ (x̃, W̃)

During fast inference, we typically only have access to
the noisy variables x̃ and W̃ ; we have no access to the full
precision data x, but we can store and access the original
weight matrices {W (l)}. Hence, we follow the path where we
first vary x and then W :

∆y =

∫ x̃

x

∇x y(x)|W · dx+

∫ W̃

W

∇
W
y(W)|x̃ · dW.

The first term represents the compression error, introduces
by the disturbance of the input x from its original value to
the noisy reconstructed version, while keeping the network
weights unchanged; the second term represents the quantiza-
tion error, which occurs when the weights W are transitioned
from their original values to the quantized versions, while the
inputs are kept the same.

By applying the chain rule and our assumption in Section
III-A that the activation functions have their first derivatives
bounded by an upper limit of 1, we obtain:

∇x y(x)|W ≤ Ws +W (L−1) ·W (L−2) · · ·W (1).

Thus, we establish an upper bound for the compression error:

∥
∫ x̃

x

∇x y(x)|W · dx ∥2 ≤ (σs +
L∏

l=1

σ
(l)
W)× ∥∆x∥2. (5)

Quantization involves scaling and rounding off weight ma-
trices and activations. The error introduced by activation quan-
tization can be addressed similarly to compression error by
applying Equation (5), while excluding all layers preceding the
affected activation. Due to affine quantization, the deviations
of individual weights ∆W (l) = W̃ (l)−W (l) are independently
distributed with a uniform distribution centered at zero. Since
the components of h̃(l−1) are finite, the following inner
product satisfies Lindeberg’s condition [18]. By the Central
Limit Theorem, as nl−1 goes to infinity, the inner product
converges in distribution to a normal random variable:∑

j

∆W
(l)
ij h̃

(l−1)
j

d−→ N (0, s2l), ∀i,

where s2l =
q2l
12 · ∥h̃(l−1)∥22, and ql is the average quantization

step size of layer l, see TABLE I. By the Law of Large Num-
bers and concentration inequalities, when nl is sufficiently
large, which is generally true in scientific neural networks, the
norm ∥∆W (l) · h̃(l−1)∥2 concentrates around its mean value:

∥∆W (l) · h̃(l−1)∥2 → sl ·
√
nl =

ql
√
nl

2
√
3

· ∥h̃(l−1)∥2.

To bound ∥h̃(l−1)∥2 without specific input values, we as-
sume the inputs are normalized within the range [−1, 1] during
preprocessing. Thus, we have

∥h̃(l−1)∥2 ≤
l−1∏
i=1

σ
(i)

W̃
·
√
n0.

Recursively applying the above inequalities through the layers,
we obtain:

∥
∫ W̃

W

∇
W
y(W)|x̃ · dW ∥2 ≤

L−1∏
i=1

σ
(i)

W̃
·
qL

√
n0nL

2
√
3

+ σ
(L)
W

(
σ
(L−1)
W

(
σ
(L−2)
W · · ·

(
σ
(1)
W ∥x− x̃∥2

+
q1
√
n0n1

2
√
3

)
· · ·+

L−3∏
i=1

σ
(i)

W̃
·
qL−2

√
n0nL−2

2
√
3

)
+

L−2∏
i=1

σ
(i)

W̃
·
qL−1

√
n0nL−1

2
√
3

)
.

It’s also helpful to predict the quantization error bound be-
fore we actually quantize the network. Thus, we can eliminate
all of σ

W̃
in above equation:

σ
(l)

W̃
≤ σ

(l)
W +

ql
√
min(nl−1, nl)√

3
for l = 1, · · · , L− 1.

Combining compression error and quantization error, we
arrive at the Inequality (3). This final expression demonstrates
how the compression error and quantization error accumulates
across layers and provides a clear guideline for selecting
quantization parameters to meet the desired QoI tolerance.

C. Parameterized Spectral Normalization

The QoI error depends on the neural network’s learned
weights, which are shaped by the training data. In
H2Combustion, the reaction rates of different species exhibit
relatively low sensitivity to individual input variations (i.e.,
mass fraction changes). In contrast, BorghesiFlame shows high
sensitivity to input perturbations. For the EuroSAT classifica-
tion task, we consider the final feature map as the quantity
of interest, as it is essential not only for classification but
also for downstream tasks. Its sensitivity to variations in input
pixel values remains relatively low. In general, scientists can
leverage their empirical knowledge of the data to determine
appropriate compression tolerance levels.

WP S N =
W

σW
× α+ β (6)

We introduce a pair of learnable parameters, weight α and bias
β, that scale and shift each neuron’s normalized value, and
the new spectral norm after normalization is σWP S N = α. This
parameterized spectral normalization is based on the previous
version of spectral normalization used in GAN training [19].
Although the spectral normalization offers significant benefits
such as stabilized training and improved generalization, its
adoption beyond GANs remains limited due to its higher
complexity than the alternative methods like the batch nor-
malization [20]. In our approach, we validate the application
of spectral normalization to enhance inference performance
while maintaining controlled error rates.

The squared sum of the spectral norm for each layer is added
as a penalty to the loss function to constrain the value of the
new spectral norm. This modification ensures that the network
can represent any underlying function in scientific tasks, where
the Lipschitz constants are generally unknown. Lipschitz con-
stant of a differentiable function is the maximum norm of the
derivative across the domain, and it is closely related to the
spectral norms of each layer in a neural network. If applying
the standard spectral normalization, which is designed to
constrain the spectral norm of the target layer to be exactly
1, to control the spectral norms of all layers, the resulting
network can only fit functions with the Lipschitz constant
no more than 1. In comparison, our parameterized spectral
normalization allows for the necessary expressive ability of
scientific tasks. Furthermore, the additional parameters make
it possible to apply the parameterized spectral normalization
in the middle way during training or fine-tuning in the end.

IV. EXPERIMENT RESULTS

This section presents the experimental evaluation.

A. Experimental Setup

We evaluate three scientific data analytics: chemical source
term prediction in turbulent hydrogen combustion [1], dissi-
pation rate profiles within the multi-modal combustion con-
figuration called Borghesi flame [21], and land use and land
cover classification using EuroSAT satellite imagery [22].
These experiments encompass a wide range of neural network
architectures, from small-scale models to larger configurations,
including both fully connected networks and ResNets. We in-
corporate commonly used activation functions, including Tanh,
ReLU, and PReLU, and different optimization algorithms,
such as Stochastic Gradient Descent (SGD) and Adam. This
allows us to demonstrate the applicability of our methods
across diverse applications and network configurations.

Prior to training, we apply our proposed parameterized
spectral normalization technique to the networks (Section
III-C) and subsequently train them in full precision. Upon
completion, the model weights are stored for error bound pre-
diction using Equation (3). These experiments were conducted
on NVIDIA V100 GPUs on Summit [23] and AMD MI250X
GPUs on Frontier [24], both with a Lustre filesystem. The
input data are normalized prior to training and inference to
ensure consistency, and we use three widely used scientific

10 210 410 6

100

10 2

10 4

R
el

at
iv

e
Q

oI
 e

rr
or

 (L
) H2Combustion

1 2 3 4 5 6 7 8 9
10 6

10 5

10 4

H2Combustion

10 310 510 7

104

100

10 4

R
el

at
iv

e
Q

oI
 e

rr
or

 (L
) BorghesiFlame

1 2 3

10 3

10 1

101

BorghesiFlame

10 310 510 7

Relative input error (L)

108

104

100

10 4

R
el

at
iv

e
Q

oI
 e

rr
or

 (L
) EuroSAT

1 2 3 4 5 6 7 8 9 10
Output variable index

10 3

100

EuroSAT

Derived error bound
Real error distribution
Baseline w. weight dacay
Baseline

Fig. 3. Error bound prediction vs. the actual error distribution in L-infinity
norm. The error distribution is sampled by three compressors and five
independent batches of input data. The baseline corresponds to the derived
error bound without parameterized spectral normalization, while baseline w.
weight decay uses weight decay in place of the proposed parameterized
spectral normalization. Left figures show the total error across all output
features, while right figures show the per-feature QoI error.

compressors for input data reduction: ZFP [7], SZ [6], [25],
and MGARD [26], [27]. ZFP uses a block-based transform
for either fixed-rate or fixed-accuracy compression, making
it popular for on-the-fly or in-memory operations. SZ relies
on prediction and quantization to achieve high compression
ratios, often used in large-scale HPC simulations like cli-
mate or fluid dynamics. MGARD employs a multigrid-based
approach, making it well-suited for controlling user-defined
error tolerances in structured multi-dimensional data. We ran
additional experiments on the RTX 3080 Ti GPU, featuring the
newer Ampere architecture with the support of TensorFloat32
(TF32) and bfloat16 (BF16). In what follows, we further detail
the scientific data analytics we tested:

1) Hydrogen combustion: Turbulent combustion simulation
is a critical area within computational fluid dynamics, re-
quiring precise modeling of chemical reactions to accurately
predict flame behavior and pollutant formation. We utilize a
simplified nine-species mechanism of hydrogen (H2) combus-
tion [1] to manage computational complexity while capturing
essential chemical dynamics. The dataset consists of mass frac-

10 210 410 6

10 1

10 3

10 5

R
el

at
iv

e
Q

oI
 e

rr
or

 (L
2)

H2Combustion

1 2 3 4 5 6 7 8 9

10 5

10 3

H2Combustion

10 210 410 6

104

100

10 4

R
el

at
iv

e
Q

oI
 e

rr
or

 (L
2)

BorghesiFlame

1 2 3

10 2

101

BorghesiFlame

10 210 410 6

Relative input error (L2)

108

104

100

10 4

R
el

at
iv

e
Q

oI
 e

rr
or

 (L
2)

EuroSAT

1 2 3 4 5 6 7 8 9 10
Output variable index

10 2

101

EuroSAT

Derived error bound
Real error distribution
Baseline w. weight dacay
Baseline

Fig. 4. Error bound prediction vs. the actual error distribution in L2
norm. The error distribution is sampled with three compressors and five
independent batches of input data. The baseline corresponds to the derived
error bound without parameterized spectral normalization, while baseline w.
weight decay uses weight decay in place of the proposed parameterized
spectral normalization. Left figures show the total error across all output
features, while right figures show the per-feature QoI error.

tions for each species, derived from high-fidelity combustion
simulations conducted under various turbulent conditions. The
simulations feature a single vortex structure positioned at the
center, serving as the source of turbulence. A compact neural
network model comprising two hidden layers is designed to
receive the mass fractions of the nine species as inputs and
produce their corresponding reaction rates as outputs. The
model is trained using the standard SGD optimizer, facilitating
efficient and stable convergence.

2) Borghesi flame: The Borghesi Flame is a Direct Numer-
ical Simulation (DNS) database that models an auto-igniting
turbulent n-dodecane jet flame [21]. It encompasses several
stages representative of diesel ignition and combustion pro-
cesses. We conduct a learning-based dissipation rate profiling
on this dataset, which is a critical domain within combustion
simulations. The input dataset comprises 13 distinct variables
that reflect various aspects of the thermochemical states in
combustion simulations. These inputs include mixture fraction
gradients, progress variable gradients, and several other de-
rived parameters that are crucial for accurately representing the

TF32 FP16 BF16 INT8
Quantization format

10 3

10 2

A
ch

ie
ve

d
er

ro
r (

L
)

H2Combustion

TF32 FP16 BF16 INT8
Quantization format

10 4

10 3

BorghesiFlame

TF32 FP16 BF16 INT8
Quantization format

10 4

10 3

10 2

EuroSAT

Derived error bound V100 3080 Ti MI250X

Fig. 5. Comparison of predicted error bounds and achieved relative QoI error in L-infinity Norm across different quantization formats. Results for tf32 and
bf16 are available only for the RTX 3080 Ti GPU, as these formats are unsupported on the other GPUs tested. The TF32 format yields a nearly identical
error bounds to the FP16 format, which is largely attributed to both formats having the same number of mantissa bits. Similarly, despite that both FP16 and
BF16 utilizes a 16-bit size, the BF16 exhibits considerably higher error bounds due to having less mantissa bits.

TF32 FP16 BF16 INT8
Quantization format

10 4

10 3

10 2

A
ch

ie
ve

d
er

ro
r (

L2
)

H2Combustion

TF32 FP16 BF16 INT8
Quantization format

10 5

10 4

10 3

BorghesiFlame

TF32 FP16 BF16 INT8
Quantization format

10 4

10 3

10 2

EuroSAT

Derived error bound V100 3080 Ti MI250X

Fig. 6. Comparison of predicted error bounds and achieved relative QoI error in L2 Norm across different quantization formats. Results for tf32 and bf16
are available only for the RTX 3080 Ti GPU, as these formats are unsupported on the other GPUs tested. The TF32 format yields a nearly identical error
bounds to the FP16 format, which is largely attributed to both formats having the same number of mantissa bits. Similarly, despite that both FP16 and BF16
utilizes a 16-bit size, the BF16 exhibits considerably higher error bounds due to having less mantissa bits.

state of the turbulent flame in coarse-grained simulations. We
use an 8-hidden-layer MLP that outputs three specific filtered
dissipation rates: the mixture fraction dissipation rate, the
generalized progress variable dissipation rate, and the cross-
dissipation rate, encapsulating the dominant scalar transport
needed to model the combustion system. The training process
utilizes the Adam optimizer, facilitating efficient convergence.

3) EuroSAT: Unlike general image processing applications,
scientific tasks such as satellite image classification employ
high-precision data and necessitate enhanced numerical accu-
racy. Specifically, we employ the EuroSAT dataset [22], which
comprises multispectral, 16-bit samples derived from satellite
observations across various spectral bands. This dataset offers
a representation of the Earth’s surface using European satellite
imagery, designed for LULC classification across 10 distinct
output classes. Prior to training, the images are resized to
dimensions of 224×224 pixels and subjected to normalization
to standardize the input data. We trained a ResNet18 model
configured with 10 output features on the EuroSAT dataset, in-
corporating parameterized spectral normalization. The training
process utilizes the standard SGD optimizer.

B. Validation of Error Estimation
In this section, we evaluate the accuracy of the proposed

error estimation method and compare that with the achieved
error observed in our experiments. To understand the im-
pact on accuracy as a result of both lossy compression and
quantization, we first study the compression and quantization
error separately. In our study, our estimated error consistently
bounds the actual error, with the discrepancy between the two
being around one order of magnitude in all three tasks. All
errors discussed in this section are relative errors by default.

1) Compression error: Fig. 3 and 4 illustrate the com-
pression error, using the L-infinity and L2 norm, respectively.
We calculate both the global QoI error, which represents the
total error across all output features, and the per-feature QoI
error, which measures the error for a single output feature.
The distribution of the achieved QoI errors is compared to the
derived error bound. For the global error, results are presented
across a range of input error levels, while for the per-feature
error, results are shown specifically for a relative input error
of 10−5. To assess the achieved QoI error, we apply three
compression algorithms—ZFP, SZ, and MGARD—across five
independently sampled batches of input data. We plot the

10 5 10 4 10 3 10 2

Compression tolerance (L)

101

102
Th

ro
ug

hp
ut

 (G
B

/s
)

Baseline: 2.8 GB/s

MGARD

10 5 10 4 10 3 10 2

Compression tolerance (L)

101

102

Baseline: 2.8 GB/s

SZ

10 5 10 4 10 3 10 2

Compression tolerance (L)

101

102

Baseline: 2.8 GB/s

ZFP

H2Combustion BorghesiFlame EuroSAT

Fig. 7. I/O throughput versus user-specified tolerance on QoI, in L-infinity Norm, using different compression backends. At lower tolerance levels, MGARD
and SZ may reduce I/O throughput due to the added decompression time.

10 4 10 2

Compression tolerance (L2)

101

102

Th
ro

ug
hp

ut
 (G

B
/s

)

Baseline: 2.8 GB/s

MGARD

10 4 10 2

Compression tolerance (L2)

101

102

Baseline: 2.8 GB/s

SZ

H2Combustion BorghesiFlame EuroSAT

Fig. 8. I/O throughput versus user-specified tolerance on QoI, in L2 Norm,
using different compression backends. At lower tolerance levels, MGARD
and SZ may reduce I/O throughput due to the added decompression time.
ZFP does not support an L2 norm tolerance.

geometric mean and the range of the achieved QoI errors
against the actual input errors resulting from the compression
backends. It is observed that, even in the worst-case scenarios,
the achieved errors consistently remain below the derived error
bounds, validating that our error bound is guaranteed.

Furthermore, the gap between the predicted and achieved
errors is within one order of magnitude relative to the actual
errors. This is significant because when the gap is within one
order of magnitude, it indicates that the overall trend of the
QoI error is effectively captured without introducing a full
order-of-magnitude discrepancy. Achieving this is particularly
challenging given the diversity of data and the inherent dif-
ficulties of exact error prediction in data reduction [28]. This
shows that compression does not significantly distort essential
scientific information in deep networks trained with parame-
terized spectral normalization. This robustness is achieved by
directly constraining the spectral norm of each layer, which
regulates error propagation across the network and enables
precise error bound predictions.

2) Quantization error: Fig. 5 and 6 present the results of
quantization error across several widely adopted quantization
formats (TF32, FP16, BF16, INT8), with L-infinity and L2
norm, respectively. We quantize our models using the PyTorch

Quantization APIs. To validate our proposed error bounds
across different computational backends, each with their spe-
cific quantization implementations, we conducted experiments
on three GPUs: NVIDIA V100, RTX 3080 Ti, and AMD
MI250X. Notably, only the RTX 3080 Ti GPU natively sup-
ports TF32 and BF16. The NVIDIA V100 and AMD MI250X
emulate BF16 computations. Despite the approximations made
in deriving the quantization error bounds, the estimated error
effectively bounds the observed errors in all cases.

For each QoI metric, the relative error generally increases
as quantization precision decreases (e.g., moving from TF32
to INT8), reflecting the trade-off between precision and com-
putational efficiency. For the TF32 format, we obtain error
bounds nearly identical to those of the FP16 format, and
the achieved errors do not differ significantly either. Such
an outcome is largely attributed to both formats having the
same number of mantissa bits. Although BF16 also utilizes
a 16-bit size, it exhibits considerably higher error bounds
and achieved errors compared to FP16 due to having fewer
mantissa bits. This highlights the vital role of mantissa bits in
maintaining accuracy during the inference phase of scientific
models, in contrast to the training phase where the exponent
is more critical. Specifically, during the inference of MLPs or
CNNs, the dynamic range required for accurate computation is
smaller. In training, however, gradients can be extremely small,
making them susceptible to underflow. Offering more mantissa
bits are essential during inference to ensure high numeric
precision in resulting QoIs. INT8 quantization introduces a
larger relative error, exceeding 10−2 in two tasks. Therefore,
the application of this format requires careful consideration.
Overall, among the quantization formats investigated, FP16
is the most cost-effective option for scientific inference, as it
balances well between total bit size and mantissa bit allocation.

The sensitivity of QoI errors is influenced by the neural
network’s learned weights, which are shaped by the training
data. In H2Combustion, the reaction rates of different species
are relatively insensitive to individual input variations (i.e.,
changes in mass fractions): an input perturbation of 10−3

produces a 10−3 change in the QoI (measured in L2 norm).
In contrast, BorghesiFlame exhibits higher sensitivity, with the

FP32 TF32 FP16 BF16 INT8
Quantization

0

5

10

15

20

Th
ro

ug
hp

ut
 (G

B
/s

)

mlp_s
mlp_m
mlp_l

FP32 TF32 FP16 BF16 INT8
Quantization

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 (G

B
/s

)

resnet_18
resnet_34
resnet_50
resnet_101
resnet_152

Fig. 9. Data ingestion throughput vs. Quantization formats. The models evaluated include standard ResNet architectures with varying depths, adapted for
10-class classification, and MLP models of different sizes. The suffix of ResNet denotes the number of layers in the network. For MLP, mlp s represents a
ResNet with a low FLOPS of 0.5M, mlp m represents a ResNet with a medium FLOPS of 4.2M, and mlp l represents a ResNet of high FLOPS of 33.7M.

10 5 10 4 10 3 10 2 10 1

User-set tolerance on QoI (L)

10 6

10 4

10 2

A
ch

ie
ve

d
er

ro
r (

L
)

Derived error bound

FP32

FP16

BF16

INT8

Compression backend
ZFP
SZ
MGARD

10 5 10 4 10 3 10 2 10 1

User-set tolerance on QoI (L)

101

102

Th
ro

ug
hp

ut
 (G

B
/s

)

I/O w. ZFP
I/O w. SZ
I/O w. MGARD
Execution

Fig. 10. Coordination of data reduction and quantization to enhance inference speed, prioritizing quantization. Left: Compression exploits the difference
between quantization error and the user-specified tolerance. Right: Throughput of the I/O phase and Execution phase plotted against tolerance; the total
throughput is determined by the slower of the two phases, with the Execution phase acting as the bottleneck in this example.

same input variation leading to a 10−2 change in the QoI.
For the EuroSAT classification task, we observe a sensitiv-
ity falling between these two cases. Overall, scientists can
leverage their empirical understanding of the data to establish
appropriate compression tolerance levels.

C. Individual Performance Metrics

We evaluate the I/O performance gains achieved through
lossy compression on three datasets, H2Combustion, Borghe-
siFlame, and EuroSAT. Depending on the dataset and compres-
sion algorithm employed, we achieve up to a tenfold increase
in I/O throughput at a QoI tolerance of 10−3. Additionally, we
assess the computation throughput gains resulting from quanti-
zation on a series of MLPs and ResNets of various sizes using
the RTX 3080 Ti GPU, as it is the only GPU currently avail-
able to our team that natively supports the TF32 format. We
achieve up to a 4.5-fold increase in computation throughput
for FP16-quantized models compared to their non-quantized
FP32 counterparts. These results demonstrate the effectiveness
of our derived error bounds in guiding the optimization of data
compression and model quantization, enabling a controlled
trade-off between accuracy and performance.

Fig. 7 illustrates I/O throughput in relation to user-specified
compression tolerance levels on QoI. The I/O throughput of
compressed data is impacted by both the compression ratio
achieved, as well as the decompression speed at fetching. At
higher tolerance levels, each compression backend generally
enhances I/O throughput beyond the baseline of 2.8 GB/s.
However, at lower tolerance levels, the throughput for SZ
and MGARD decreases, due to the additional decompression
time required to meet stringent accuracy requirements. ZFP,
in contrast, maintains relatively stable throughput across tol-
erance levels, in line with the previous report [29] that ZFP
has a higher decompression speed compared with SZ and
MGARD. This trend suggests that, while compression can
significantly boost I/O throughput, the choice of compression
backend and tolerance settings must be carefully considered
to avoid bottlenecks in scenarios demanding high precision.

The model execution throughput versus computation pre-
cisions/quantization formats is shown in Fig. 9. The models
evaluated include standard ResNet architectures with varying
depths, adapted for 10-class classification, and MLP models of
different sizes. In particular, the suffix of ResNet denotes the
number of layers in the network. For MLP, mlp s represents

10 110 310 5

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L
)

 Deriv
ed err

or b
ound

H2Combustion

10 110 310 5

5

10

15

Th
ro

ug
hp

ut
 (G

B
/s

)

H2Combustion

10 110 310 5

10 4

10 2

A
ch

ie
ve

d
er

ro
r (

L
)

 Deri
ved

 er
ror

 bo
un

d

BorghesiFlame

10 110 310 5

5

10

Th
ro

ug
hp

ut
 (G

B
/s

)
BorghesiFlame

10 110 310 5

User-set tolerance on QoI (L)

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L
)

 Deri
ved err

or b
ound

EuroSAT

10 110 310 5

User-set tolerance on QoI (L)

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (G

B
/s

)

EuroSAT

10% quant. 50% quant. 90% quant.

Fig. 11. Left: Predicted error bounds vs. user set tolerance in L-infinity. Right:
Throughput vs. user set tolerance in L-infinity. Both results are obtained using
MGARD as the compression backend.

a ResNet with a low FLOPS of 0.5M, mlp m represents a
ResNet with a medium FLOPS of 4.2M, and mlp l represents a
ResNet of high FLOPS of 33.7M. The speedup via quantizing
the models is up to 4.5x times of the original throughput, and it
is essential in improving the overall performance when model
execution is the bottleneck in the inference pipeline.

As discussed in the previous section, while the FP16 format
offers a large speedup due to the smaller total bit size, it main-
tains a generally acceptable accuracy due to the proper balance
of the number of mantissa bits, making it a good choice for
quantization. Another format offering a large speedup is INT8,
which, however, can introduce error exceeding user tolerances.
TF32 and BF16 are not ideal choices in most cases in that they
provide little speedup while introducing a large quantization
error compared to the upstream formats.

D. Inference Pipeline Performance

The throughput of data I/O and model execution should
be balanced to ensure that neither becomes a bottleneck. A
balanced pipeline can handle increased loads more gracefully,
allowing for better system scaling to meet higher demand. In
this section, we underscore the importance of choosing suitable

10 110 310 5

10 4

10 2

A
ch

ie
ve

d
er

ro
r (

L2
)

 Deri
ved er

ror b
ound

H2Combustion

10 110 310 5

10

20

Th
ro

ug
hp

ut
 (G

B
/s

)

H2Combustion

10 110 310 5

10 4

10 2

A
ch

ie
ve

d
er

ro
r (

L2
)

 Deri
ved er

ror b
ound

BorghesiFlame

10 110 310 5

10

20

Th
ro

ug
hp

ut
 (G

B
/s

)

BorghesiFlame

10 110 310 5

User-set tolerance on QoI (L2)

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L2
)

 Deri
ved err

or b
ound

EuroSAT

10 110 310 5

User-set tolerance on QoI (L2)

1

2

3

Th
ro

ug
hp

ut
 (G

B
/s

)

EuroSAT

10% quant. 50% quant. 90% quant.

Fig. 12. Left: Predicted error bounds vs. user set tolerance in L-infinity.
Right: Throughput vs. user set tolerance in L2. Both results are obtained
using MGARD as the compression backend.

combination of compression and quantization tolerances to
achieve the optimum performance improvement.

Given a total QoI tolerance set by a user, individual toler-
ances for compression and quantization will be allocated ac-
cording to the discrepancy between the throughput of data I/O
and model execution. It is notable that while the compression
tolerance takes a continuous input, the quantization tolerance
only has a few discrete valid values, attribute to the limited
options of quantization format available. In our experiments,
we generate a continuous quantization tolerance based on the
derived error bound, times the configurable factor to control
the proportion of total tolerance allocated to quantization.
The best quantization format of which the predicted error
bound does not exceed the allocated quantization tolerance is
selected. Once quantization is decided, all unutilized tolerance
are allocated for data reduction.

Fig. 10 illustrates the interaction between compression and
quantization in the experiment of turbulent hydrogen combus-
tion simulation, where quantization is applied whenever the
tolerance required is encompassed by the total QoI tolerance.
Since our derived error bounds for compression error and
quantization error generally deviate from the corresponding
achieved errors in different levels, the tightness of the error

10 110 310 5

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L
)

 Deri
ved err

or b
ound

H2Combustion

10 110 310 5

20

40

Th
ro

ug
hp

ut
 (G

B
/s

)

H2Combustion

10 110 310 5

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L
)

 Deri
ved err

or b
ound

BorghesiFlame

10 110 310 5

10

20
Th

ro
ug

hp
ut

 (G
B

/s
)

BorghesiFlame

10 110 310 5

User-set tolerance on QoI (L)

10 5

10 3

10 1

A
ch

ie
ve

d
er

ro
r (

L
)

 Deriv
ed err

or bound

EuroSAT

10 110 310 5

User-set tolerance on QoI (L)

1

2

3

Th
ro

ug
hp

ut
 (G

B
/s

)

EuroSAT

10% quant. 50% quant. 90% quant.

Fig. 13. Left: Predicted error bounds vs. user set tolerance in L-infinity. Right:
Throughput vs. user set tolerance in L-infinity. Both results are obtained using
SZ as the compression backend.

bound will have a jump around the point where upstream
quantization format is applied. In this specific experiment,
model execution is a bottleneck, as shown in the right figure
that the model execution throughput is consistently smaller
than that of the I/O, even at the point where 100% of the total
tolerance is allocated to quantization.

Figs. 11 - 15 enumerate the detailed results using MGARD,
SZ and ZFP as the compression backend. Results of both
L-infinity norm and L2 norm are listed, except for ZFP
which does not support an L2 tolerance. We allocate different
proportion of the total tolerance to the quantization, from
10% to 90%, to highlight the capability of our approach to
balancing the throughput of data I/O and model execution.
Lower proportion allocated to quantization effectively shifts
the occurrence of quantization rightwards to the higher total
tolerance set on QoI. People might notice that in some intervals
of the user-set tolerance on QoI, data points overlap across
different tolerance allocation strategies. This is because of
the limited option of quantization formats, and within certain
intervals of the total tolerance, the exact same allocation
configuration is selected despite the strategies.

In hydrogen combustion dataset, the turbulence is mainly
concentrated around the single vortex at the center. As a

10 110 310 5

10 4

10 2

A
ch

ie
ve

d
er

ro
r (

L2
)

 Deri
ved er

ror b
ound

H2Combustion

10 110 310 5

20

40

Th
ro

ug
hp

ut
 (G

B
/s

)

H2Combustion

10 110 310 5

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L2
)

 Deri
ved er

ror b
ound

BorghesiFlame

10 110 310 5

10

20

Th
ro

ug
hp

ut
 (G

B
/s

)

BorghesiFlame

10 110 310 5

User-set tolerance on QoI (L2)

10 5

10 3

A
ch

ie
ve

d
er

ro
r (

L2
)

 Deriv
ed err

or b
ound

EuroSAT

10 110 310 5

User-set tolerance on QoI (L2)

1

2

3

Th
ro

ug
hp

ut
 (G

B
/s

)

EuroSAT

10% quant. 50% quant. 90% quant.

Fig. 14. Left: Predicted error bounds vs. user set tolerance in L-infinity. Right:
Throughput vs. user set tolerance in L2. Both results are obtained using SZ
as the compression backend.

result, the input data is easier to compress and it achieves
a high compression ratio even for small tolerance levels.
However, while the model execution performance is improved
by quantization, it remains to be the bottleneck of inference
performance. Although we could not fully balance the through-
put of both phases in this case, we are able to boost the
inference performance by prioritizing quantization in this task.

In experiments involving dissipation rate profiles and satel-
lite image classification, we investigate a more balanced infer-
ence pipeline. Although the three datasets differ significantly,
users can expect an approximate 5x speedup at a QoI level
of 10−3, as shown in Figs. 11 - 15. Notably, throughput
improvement accelerates when users can tolerate a larger QoI
error, establishing 10−3 as a key turning point. This behavior
is primarily driven by FP16 quantization, which becomes
effective with a tolerance of around 10−3. Beyond enhanc-
ing model execution, FP16 quantization also reduces model
sensitivity, enabling more aggressive input data compression
without significantly compromising QoI accuracy. These find-
ings underscore the critical role of combining compression
and quantization to optimize inference performance. Other
popular floating-point quantization formats, such as TF32
and BF16, are intentionally designed with fewer mantissa

10 110 310 5

10 5

10 2

A
ch

ie
ve

d
er

ro
r (

L
)

 Deriv
ed err

or bound

H2Combustion

10 110 310 5

10

20

30

Th
ro

ug
hp

ut
 (G

B
/s

)

H2Combustion

10 110 310 5

10 5

10 2

A
ch

ie
ve

d
er

ro
r (

L
)

 Deriv
ed err

or bound

BorghesiFlame

10 110 310 5

4

6

Th
ro

ug
hp

ut
 (G

B
/s

)

BorghesiFlame

10 110 310 5

User-set tolerance on QoI (L)

10 5

10 2

A
ch

ie
ve

d
er

ro
r (

L
)

 Deriv
ed err

or bound

EuroSAT

10 110 310 5

User-set tolerance on QoI (L)

0.5

1.0

Th
ro

ug
hp

ut
 (G

B
/s

)

EuroSAT

10% quant. 50% quant. 90% quant.

Fig. 15. Left: Predicted error bounds vs. user set tolerance in L-infinity. Right:
Throughput vs. user set tolerance in L-infinity. Both results are obtained using
ZFP as the compression backend.

bits, resulting in more limited improvements compared to
FP16. Our findings suggest the potential benefits of developing
lower-precision formats with increased mantissa bits to further
enhance performance and compression efficiency for scientific
computing workflows.

In the dissipation rate profiles and satellite image classifica-
tion experiments, we observe that allocating a fixed proportion
of the total tolerance to quantization does not consistently
yield an optimal strategy across all tolerance values. Priori-
tizing either aggressive quantization or compression leads to
suboptimal performance across different tolerance intervals.
This highlights the need for an optimization algorithm to
automate the determination of the optimal strategy, which rep-
resents a promising direction for future work. Additionally, the
granularity of quantization can be improved by enabling per-
layer quantization with different formats, thereby introducing
a significantly larger optimization space.

V. CONCLUSION

In this work, we perform a comprehensive error flow
analysis that encompasses errors introduced by both data
compression and model quantization. We introduce a pa-
rameterized spectral normalization technique to enhance the

stability and robustness of neural networks under various error
scenarios. Our method effectively constrains the sensitivity of
network outputs by directly regulating the spectral properties
of weight matrices, thereby enabling the accurate and efficient
prediction of error bounds on the final QoI prior to inference.
Through extensive experiments, we demonstrate the accuracy
and reliability of our proposed error bounds for composed
compression and quantization errors. The bounds closely align
with empirical error distributions, providing a theoretical foun-
dation for predicting network behavior under perturbations.

This study underscores the importance of incorporating
theoretical guarantees into deep learning models to improve
their resilience and inference performance. By combining
lossy compression and quantization, we observe a 5x speedup
at a QoI level of approximately 10−3 in three distinct sci-
entific workflows. Our findings also highlight the potential
benefits of developing lower-precision formats with additional
mantissa bits to further enhance performance and compression
efficiency in scientific computing workflows. Notably, among
current floating-point formats, FP16 offers a superior balance
of cost and precision compared to BF16 and TF32, largely
due to its higher ratio of mantissa bits.

VI. FUTURE WORK

This study demonstrates the importance of combining com-
pression and quantization to optimize inference performance in
scientific workflows. While we provide a comprehensive dis-
cussion of compression techniques—covering the three most
commonly used algorithms in scientific computing—further
investigation into quantization remains open. In particular, ad-
vanced quantization methods beyond affine quantization, such
as block-wise, column-wise, or row-wise schemes, are worth
exploring for their potential to balance precision and overhead.
Moreover, investigation on the new lower-precision floating-
point formats could further enhance performance of scientific
workflows. Our findings specifically suggest that formats with
increased mantissa bits can offer improved efficiency while
minimizing accuracy loss for scientific applications.

Looking ahead, we aim to extend this framework to a wider
range of model architectures. Scientific community is increas-
ingly deploying more complex surrogate models, such as U-
Nets and transformers, rather than only MLPs or ResNets. This
brings new challenges of higher computing demand. Adapting
our approach to these architectures requires deriving the cor-
responding error-flow equations for their unique components,
such as nested residual connections and attention mechanisms.
We intend to deepen our theoretical foundations in subsequent
research, with a special focus on applying these methods to
transformer-based weather prediction tasks.

ACKNOWLEDGMENT

This research was supported by DOE ASCR SIRIUS-
2 project and DE-SC0024424, NSF OAC-2311757, OAC-
2144403, CCF-2134202, CNS-2340171, the Scientific Discov-
ery through Advanced Computing (SciDAC) program for the
RAPIDS-2 SciDAC institute.

REFERENCES

[1] K. S. Jung, B. S. Soriano, J. H. Chen, and M. Khalil, “A hessian-based
transfer learning approach for artificial neural networks based chemical
kinetics with a sparse dataset,” Proceedings of the Combustion Institute,
vol. 40, no. 1-4, p. 105390, 2024.

[2] Z. Qiao, Q. Liu, N. Podhorszki, S. Klasky, and J. Chen, “Taming i/o
variation on qos-less hpc storage: What can applications do?” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020, pp. 1–13.

[3] Z. Qiao, Q. Tian, Z. Qin, J. Wang, Q. Liu, N. Podhorszki, S. Klasky, and
H. Zhu, “Tango: A cross-layer approach to managing i/o interference
over local ephemeral storage,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage,
and Analysis, ser. SC ’24. IEEE Press, 2024. [Online]. Available:
https://doi.org/10.1109/SC41406.2024.00020

[4] A. Datta, K. F. Ng, D. Balakrishnan, M. Ding, S. W. Chee, Y. Ban, J. Shi,
and N. D. Loh, “A data reduction and compression description for high
throughput time-resolved electron microscopy,” Nature communications,
vol. 12, no. 1, p. 664, 2021.

[5] D. Wang, J. Pulido, P. Grosset, J. Tian, J. Ahrens, and D. Tao, “Analyzing
impact of data reduction techniques on visualization for amr applications
using amrex framework,” in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 263–271.

[6] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 2021, pp. 1643–1654.

[7] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[8] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quanti-
zation for deep learning inference: Principles and empirical evaluation,”
arXiv preprint arXiv:2004.09602, 2020.

[9] H. Ootomo and R. Yokota, “Recovering single precision accuracy from
tensor cores while surpassing the fp32 theoretical peak performance,”
The International Journal of High Performance Computing Applications,
vol. 36, no. 4, pp. 475–491, 2022.

[10] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen
et al., “A study of bfloat16 for deep learning training,” arXiv preprint
arXiv:1905.12322, 2019.

[11] Y. Zhou and K. Yang, “Exploring tensorrt to improve real-time in-
ference for deep learning,” in 2022 IEEE 24th Int Conf on High
Performance Computing & Communications; 8th Int Conf on Data
Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 2022, pp. 2011–2018.

[12] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski et al., “Pytorch 2: Faster machine
learning through dynamic python bytecode transformation and graph
compilation,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2024, pp. 929–947.

[13] D. Kang, A. Mathur, T. Veeramacheneni, P. Bailis, and M. Zaharia,
“Jointly optimizing preprocessing and inference for dnn-based visual
analytics,” arXiv preprint arXiv:2007.13005, 2020.

[14] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di et al., “Computing just
what you need: Online data analysis and reduction at extreme scales,”
in Euro-Par 2017: Parallel Processing: 23rd International Conference
on Parallel and Distributed Computing, Santiago de Compostela, Spain,
August 28–September 1, 2017, Proceedings 23. Springer, 2017, pp. 3–
19.

[15] T. Banerjee, J. Choi, J. Lee, Q. Gong, R. Wang, S. Klasky, A. Rangara-
jan, and S. Ranka, “An algorithmic and software pipeline for very large
scale scientific data compression with error guarantees,” in 2022 IEEE
29th International Conference on High Performance Computing, Data,
and Analytics (HiPC). IEEE, 2022, pp. 226–235.

[16] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 ():
8-bit matrix multiplication for transformers at scale,” Advances in Neural
Information Processing Systems, vol. 35, pp. 30 318–30 332, 2022.

[17] R. Mises and H. Pollaczek-Geiringer, “Praktische verfahren der gle-
ichungsauflösung.” ZAMM-Journal of Applied Mathematics and Me-
chanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 9,
no. 1, pp. 58–77, 1929.

[18] J. W. Lindeberg, “Eine neue herleitung des exponentialgesetzes in der
wahrscheinlichkeitsrechnung,” Mathematische Zeitschrift, vol. 15, no. 1,
pp. 211–225, 1922.

[19] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral
normalization for generative adversarial networks,” arXiv preprint
arXiv:1802.05957, 2018.

[20] S. Ioffe, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,
2015.

[21] G. Borghesi, A. Krisman, T. Lu, and J. H. Chen, “Direct numerical sim-
ulation of a temporally evolving air/n-dodecane jet at low-temperature
diesel-relevant conditions,” Combustion and Flame, vol. 195, pp. 183–
202, 2018.

[22] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Introducing eurosat: A
novel dataset and deep learning benchmark for land use and land cover
classification,” in IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium. IEEE, 2018, pp. 204–207.

[23] “Summit system at oak ridge leadership computing facility,”
https://www.olcf.ornl.gov/summit/.

[24] “Frontier system at oak ridge leadership computing facility,”
https://www.olcf.ornl.gov/frontier/.

[25] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 2018, pp. 438–447.

[26] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the multivariate
case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–
A1303, 2019.

[27] X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress,
D. Pugmire, M. Wolf, N. Podhorszki et al., “Mgard+: Optimizing
multilevel methods for error-bounded scientific data reduction,” IEEE
Transactions on Computers, vol. 71, no. 7, pp. 1522–1536, 2021.

[28] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio
modeling and estimation across error bounds for lossy compression,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 7,
pp. 1621–1635, 2019.

[29] L. Lawrence Livermore National Security, “Final zfp r&d 100 award,”
Lawrence Livermore National Laboratory, Tech. Rep., 2023.

