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Abstract

Digital health interventions (DHIs) and remote
patient monitoring (RPM) have shown great
potential in improving chronic disease manage-
ment through personalized care. However, bar-
riers like limited efficacy and workload concerns
hinder adoption of existing DHIs, and limited
sample sizes and lack of interpretability limit
the effectiveness and adoption of purely black-
box algorithmic DHIs. In this paper, we ad-
dress these challenges by developing a pipeline
for learning explainable treatment policies for
RPM-enabled DHIs.

We apply our approach in the real-world set-
ting of RPM using a DHI to improve glycemic
control of youth with type 1 diabetes. Our
main contribution is to reveal the importance
of clinical domain knowledge in developing state
and action representations for effective, effi-
cient, and interpretable targeting policies. We
observe that policies learned from clinician-
informed representations are significantly more
efficacious and efficient than policies learned
from black-box representations. This work em-
phasizes the importance of collaboration be-
tween ML researchers and clinicians for devel-
oping effective DHIs in the real world.

Keywords: digital health interventions; policy
optimization; remote patient monitoring

Data and Code Availability Our data is from
three clinical trials with N = 281 patients with
type 1 diabetes (Scheinker et al., 2022; Prahalad

et al., 2022, 2024). These data are not yet publicly
available. The code used to generate our results
is available at http://github.com/jferstad/ml4h-
explainable-policies.

Institutional Review Board (IRB) Our re-
search was approved by the Stanford University In-
stitutional Review Board, under protocol 52812.

1. Introduction

Digital health interventions (DHIs) and remote pa-
tient monitoring (RPM) have the potential to revolu-
tionize patient care with treatment strategies dynam-
ically personalized to each patient’s characteristics
and context. DHIs and RPM have been associated
with improved management of many of chronic con-
ditions including heart disease, diabetes, and mental
health (Prahalad et al., 2024; Whitelaw et al., 2021; Liv-

erpool et al., 2020). Relative to standards of care that
rely on fixed-cadence clinic visits, RPM-enabled DHIs
promise more timely, personalized, and frequent pa-
tient support (Scheinker et al., 2022). These tech-
nologies could help move population-level outcomes
towards those typically seen in environments with
more healthcare resources, particularly for under-
served communities (Tikkanen, 2017; Anderson et al.,

2003; Rodŕıguez and Campbell, 2017; Prahalad et al.,

2024).
We consider RPM-enabled DHIs that involve the

following typical workflow. On a regular cadence
(e.g., weekly), the RPM platform takes as input
rich, high-dimensional patient data, including gran-
ular data from sensors such as continuous glucose
monitors (CGMs) and activity trackers. These data
are used to form a representation of patient states,
based on which patients are prioritized to receive a
DHI (or action). Actions may include messaging the
patient, recommending activity or treatment adjust-
ments (e.g., a dose change). A targeting policy deter-
mines how to rank patients for interventions based
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on patient state. The results of this ranking inform a
whole-population care model in which clinicians de-
termine what actions to take (e.g., which patients to
message and what to say in the message).

While the majority of clinicians plan to use RPM-
enabled DHIs, their adoption has been limited by sig-
nificant, well-documented challenges (Stevens et al.,

2022; Peterson, 2024; Vivalink, 2023; Lawrence et al.,

2023; Sasangohar et al., 2018; Cresswell and Sheikh, 2013;

Borges do Nascimento et al., 2023; Borghouts et al., 2021).
First is uncertain efficacy, i.e., the difficulty of learn-
ing effective policies. A major hurdle here is the dif-
ficulty of developing representations of patient states
from high-dimensional patient-level data from rela-
tively few patients (e.g., at most a few hundred). Sec-
ond is workload concerns: because clinical teams have
limited capacity, the targeting policy must respect re-
source constraints by directing attention to patients
who will benefit most from intervention. Third is a
difficulty understanding or interpreting the technol-
ogy. This lack of interpretability leads to a reluctance
of care teams to adopt solutions that rely on black-
box models.

In this paper we develop a pipeline to support the
optimization of a care model that addresses the pre-
ceding concerns. Our work is carried out in the real-
world context of an RPM-enabled DHI for individuals
with type 1 diabetes (T1D). In the setting we con-
sider, as in Prahalad et al. (2024), patients wear a con-
tinuous glucose monitor (CGM) that measures glu-
cose every 5 minutes, generating a high-dimensional
time series. The real-world deployment in Prahalad

et al. (2024) generates patient states using clinically-
informed single-dimensional summaries of this CGM
data, such as the percentage of time glucose levels
are in a desired target range (70-180 mg/dL). Clini-
cians provide guidance on how to improve manage-
ment through telehealth interactions using natural
language messages sent to the patient (e.g., “Increase
your pre-dinner insulin dose”) based on the dash-
board presentation of recent patient CGM data. The
objective of technology-based RPM for T1D is to im-
prove patients’ glucose management on an ongoing
basis, through personalized, timely interventions.

Our main contribution is to reveal the importance
of clinical domain knowledge in developing state and
action representations for effective, efficient, and in-
terpretable targeting policies. Because real-world set-
tings have limited sample sizes, the inductive bias
from clinical domain knowledge provides significant
benefits to real-world policy performance. In par-

ticular, in the preceding T1D RPM context, we
evaluate several approaches to low-dimensional state
and action representations: from black-box machine
learning methods, to clinician-informed learned rep-
resentations. We observe that policies derived from
clinician-informed representations significantly out-
perform policies learned from black-box-learned rep-
resentations in terms of efficacy and efficiency. In
fact, our evaluation reveals that learned policies out-
perform random targeting only when the state and
action representations are clinically informed – am-
plifying the importance of clinical inductive bias in
practice. Further, the use of clinical domain knowl-
edge also yields policies that are more interpretable
than black-box policies with state and action repre-
sentations that maintain clinically relevant features
and interventions.

To carry out our evaluation, we develop an end-to-
end pipeline for learning targeting policies: we (1)
learn low-dimensional state and action representa-
tions; (2) construct targeting policies by ranking pa-
tients based on estimated conditional average treat-
ment effects (CATEs); and (3) evaluate the policies
in the presence of capacity constraints. While each
component of this pipeline has been studied in prac-
tice, our paper presents a coherent implementation of
these steps together to carry out the evaluation de-
scribed above. This pipeline may be of independent
interest to digital health researchers carrying out sim-
ilar optimization and evaluation of targeting policies
in other real-world settings.

Our approach is broadly applicable to the evalua-
tion and optimization of digital health interventions.
Notably, our work suggests that interaction between
machine learning researchers and healthcare domain
experts is essential for developing practical, effective,
and interpretable data-driven treatment policies that
can be adopted in clinical practice.

2. Related work

Many studies have focused on the offline evaluation
of conditional average treatment effect (CATE) esti-
mators and of learned treatment policies, which are
foundational to our approach (Mahajan et al., 2023;

Dwivedi et al., 2020; Tang and Wiens, 2021; Yadlowsky

et al., 2021; Sverdrup et al., 2023; Bouneffouf et al., 2020;

Feuerriegel et al., 2024; Imai and Li, 2023, 2024). Our
work combines methods from these works into a novel
pipeline. Like us, they seek to facilitate the develop-
ment of better treatment policies. But unlike their
work, we do not treat our state and action repre-
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sentations as fixed. Instead, we learn and evaluate
targeting policies across many different representa-
tions, including interpretable representations defined
by clinicians.
Our focus on explainable and interpretable causal

inference and machine learning methods in health-
care aligns with the growing recognition of the im-
portance of interpretability in this domain. Rasheed

et al. (2022) provide a survey of explainable machine
learning methods in healthcare, highlighting the need
for transparent and understandable models. Mello

and Rose (2024) discuss the practical challenges asso-
ciated with non-interpretable recommendations gen-
erated by machine learning models broadly used by
insurance companies. Our approach complements
this line of research by demonstrating the value of
clinician-informed representations for learning inter-
pretable treatment policies in digital health interven-
tions.

3. Data and context: States, actions,

rewards

We use data from three IRB-approved clinical tri-
als of remote monitoring of N = 281 patients with
type 1 diabetes (T1D) (Scheinker et al., 2022; Praha-

lad et al., 2022, 2024). Participants in the trials wear
CGMs that regularly transmit glucose measurements
to TIDE, a remote patient monitoring platform (Fer-

stad et al., 2021; Kim et al., 2024). At regular inter-
vals, e.g., weekly, clinicians use TIDE to review pa-
tient CGM data and decide whether to send treat-
ment recommendations through asynchronous secure
messaging (Figure 1). Due to constraints on provider
time, at each review interval TIDE presents data for
a subset of patients prioritized based on simple met-
rics from the consensus guidelines established by the
American Diabetes Association, e.g., patients with a
relatively high percentage of very low CGM readings.
Our data consist of variable numbers of days of

data for each patient, depending on when the patient
started the study; we let Ti denote the number of
days of data for patient i. We let Xd

it denote patient
demographics for patient i on day t; Xd

it is a com-
bination of time-invariant patient demographics like
sex and race/ethnicity, and time-variant demograph-
ics like age and insulin pump use. In addition, clini-
cians and the TIDE dashboard consider the previous
two weeks of CGM readings—taken every 5 minutes–
in determining patient prioritization for intervention;
we let Xg

it ∈ ℜ4032 to be the (high-dimensional) vec-
tor of CGM recordings for patient i over the two pre-

vious weeks prior to day t (which may include miss-
ing values due to, e.g., the patient not wearing their
CGM). As such, the individualXg

it are defined using a
day-by-day rolling window on the raw CGM trace for
patient i. Taken together, we callXit = (Xd

it, X
g
it) the

high-dimensional patient state for patient i at time t;
we let X denote the state space.
Given our clinical context, we focus on messages

as the action taken by clinicians. In particular, we
let Mit denote the raw text of treatment messages
sent to patient i on day t. If no message is sent, then
Mit = 0. We refer to Mit as the high-dimensional
action taken on patient i at time t; we let M denote
the action space. Note that in our data, patients are
rarely messaged more than once per week.
At a high level, the goal of any targeting policy

is to direct clinicians’ limited resources to take ac-
tions (i.e., send appropriate messages) to those pa-
tients who are most in need of intervention (given
their patient state). Such a policy is considered effec-
tive if it leads to improvements in patients’ glucose
management. In particular, we define the reward rit
to be the improvement in the time-in-range (TIR)
of patient i at day t in the subsequent week relative
to the prior week. TIR is the fraction of a patient’s
glucose readings between 70-180 mg/dL, one of the
most commonly used outcome metrics in T1D care
(Battelino et al., 2019).

4. Methods: A pipeline for policy

learning and evaluation

In this section, we outline the three step approach to
learning targeting policies for remote patient mon-
itoring of T1D: (1) learning low-dimensional state
and action representations; (2) constructing target-
ing policies by ranking patients based on estimated
conditional average treatment effects (CATEs); and
(3) evaluating the policies in the presence of capacity
constraints (Figure 2). Our approach is applicable
to other domains with similar characteristics; where
possible we describe each step using general notation
and specialize as appropriate to our specific clinical
context.

4.1. State and action representations

In our setting both Xit and Mit are high-dimensional
relative to the number of patients. For this reason,
we require dimension-reduced representations of both
states and actions. We let S (resp., A) denote the
space of low-dimensional states (resp., actions). For-
mally, we let γ : X → S be a function that maps each
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Figure 1: Remote patient
monitoring workflow.
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Figure 2: Diagram of pipeline for learning targeting policies.

patient’s high-dimensional state to a low-dimensional
state representation sit ∈ S, i.e., sit = γ(Xit). Sim-
ilarly, we let φ : M → A be a function that maps
the high-dimensional action Mit to an action repre-
sentation ait ∈ A, i.e., ait = φ(Mit). We assume that
0 ∈ A, and that φ(0) = 0 uniquely (i.e., the control
action maps to itself, and is the only action to do so).
For simplicity, we also assume the set A is finite in
our development.

We simplify by assuming that patient states are
drawn from a stationary superpopulation distribution
P. Of course, in practice, there may be complex tem-
poral dynamics in the patient state; in general, we
presume that any such dynamics can be captured
through the high-dimensional underlying state rep-
resentation Xit (e.g., the rich CGM sensor data cap-
turing the trajectory of the patient). With this su-
perpopulation view, we let R(x,m) denote the re-
ward obtained by a patient in state x if they re-
ceive action m; we can view R(x,m) as the poten-
tial outcomes for a patient in state x, if we vary
the action m (Robins et al., 1994). Note that then
rit = R(Xit,Mit), and that given an action m, the
quantity E[R(x,m)|γ(x) = s] is the expectation of
reward (over the superpopulation distribution of pa-
tient states) with respect to the dimension-reduced
representation. Throughout the paper, we make the
following conditional consistency assumption; this as-
sumption is similar in nature to the consistency as-

sumption on outcomes in causal inference (Hernán,

2016), except that we have adapted it to apply to the
action representation selected.

Assumption 1 Conditional consistency of action
representation. An action representation φ is
conditionally consistent if for all s ∈ S and
m,m′ ∈ M such that φ(m) = φ(m′), there holds
E[R(x,m)|γ(x) = s] = E[R(x,m′)|γ(x) = s].

If φ satisfies Assumption 1, then for any action
a ∈ A, the quantity E[R(x,m)|γ(x) = s] is the same
for any m such that φ(m) = a; thus we can define
the reward in terms of the dimension-reduced repre-
sentations as ρ(s, a) = E[R(x,m)|γ(x) = s] where m
satisfies φ(m) = a.

We use two approaches to constructing representa-
tions: (1) algorithmic black-box approaches, and (2)
clinician-informed representations.

Black-box baselines: Low-dimensional representa-
tions directly from raw data. For action representa-
tion, we get features from the raw message text by
generating 728-dimensional embeddings using PaLM
(Pathways Language Model) (Anil et al., 2023), a
large-scale autoregressive language model. Then we
cluster the embeddings into discrete message types
using K-means to define discrete actions. For state
representations, we consider two methods for learning
low-dimensional state representations directly from
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the raw CGM traces: TS2Vec (Yue et al., 2021), a uni-
versal representation learning framework for time se-
ries that applies hierarchical contrastive learning; and
UMAP (Uniform Manifold Approximation and Pro-
jection), a non-linear dimensionality reduction tech-
nique that preserves the local and global structure of
the data (McInnes et al., 2018).

Clinician-informed representations. In most clin-
ical contexts with high-dimensional states or ac-
tions (e.g., sensor time series, imaging, text, etc.),
clinicians already have a lower-dimensional set of
features they extract for clinical decision-making.
Rather than starting from the raw data representa-
tion, our approach learns a low-dimensional represen-
tation starting from this “medium”-dimensional fea-
ture representation. The inductive bias provided by
such domain knowledge will prove crucial to learning
performant, interpretable policies that are clinically
grounded.

For action representations, we extract interpretable
clinical features using few-shot labeling with Gemini
Pro (Gemini, 2024) to generate labels from each mes-
sage (e.g., was a dose change recommended, did the
dose change focus on high or low glucose). We use
the features most predictive of rewards to anchor a
set of discrete actions; we then group each of the re-
maining features with its closest anchor action, or to
an “other message type” category, based on the sim-
ilarity of their clinical meanings. See Appendix C for
details.

For state representations, we start with a
“medium”-dimensional set of pre-defined CGM clini-
cal features commonly used in practice: time-in-range
(TIR; 70-180 mg/dl), mean glucose, time below 70
mg/dl, time below 55 mg/dl, etc. (Battelino et al.,

2019). We also include demographics (e.g., age, lan-
guage preference, insurance type, insulin pump use,
etc.). See Appendix D for a full list of included
clinician-defined state features. We evaluate repre-
sentations that are different subsets of these features:
the full set, a learned subset predictive of rewards,
and a subset defined most relevant by clinicians.

4.2. Targeting policies: Ranking via
estimated CATEs

A targeting policy chooses which patients to prioritize
for treatment, and what actions to choose for them,
given a capacity constraint. We consider targeting
policies that rank patients according to CATEs esti-
mated given the dimension-reduced state and action
representations.

A CATE function estimates the effect of an action
conditional on the patient’s state. The true CATE
function, denoted τ : S × A → R, is τ(s, a) =
ρ(s, a) − ρ(s, 0). (Note τ(s, 0) = 0 for the control
action.) Given a dataset D = {(Xit,Mit, rit)}i,t, an
estimated CATE function τ̂ : S ×A → R is a learned
estimate of the expected treatment effect for a given
state and action representation (defined by γ and φ,
respectively).

We estimate CATE functions τ̂ using several es-
timators. The S-Learner (Single Learner) is a sim-
ple approach that trains a single model to predict
the outcome using both the action and state repre-
sentations as input features. The T-Learner (Two
Learners) trains separate models for each treatment
action and for a pre-defined control action (e.g., no
message), and then estimates the CATE as the differ-
ence between their predictions. The X-Learner (X-
Learner) (Künzel et al., 2017) is a meta-learner that
estimates the CATE by training separate models for
each action, and then training a final model on the
imputed treatment effects relative to the control ac-
tion. The Causal Forest (Wager and Athey, 2015) is
an extension of random forests that estimates the
CATE by recursively partitioning the data based on
the covariates and treatment assignment. The DR
Forest (Doubly Robust Forest) (Athey et al., 2019)

is a variant of the Causal Forest that combines the
estimates from a propensity and outcome model to
achieve double robustness. We also create an ensem-
ble estimator by combining all of the previous estima-
tors, where the final CATE estimate is obtained by
taking a weighted average of the predictions of the
individual estimators. The weights for each model in
the ensemble are learned using the validation dataset
(Mahajan et al., 2023). We fit the CATE estimators
using EconML (Syrgkanis et al., 2021) and predictions
from nuisance models (prediction propensities and
outcomes) trained with AutoML in FLAML (Wang

et al., 2021).

For an estimated CATE function τ̂ and a capacity
constraint K f N on the number of patients that can
receive a treatment a ̸= 0 (i.e., other than the control
treatment), we define a targeting policy that priori-
tizes treating the patients with the highest estimated
rewards under the optimal actions.

Definition 1 (Induced targeting policy) Fix
an estimated CATE function τ̂ , capacity constraint
K f N , and a patient state vector s = (s1, . . . , sN ).
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The targeting policy π = π(·|τ̂ , K) induced by τ̂ and
K chooses actions for each patient as follows:
1. For each patient i, let a∗i = argmaxã∈A τ̂(si, ã).
2. Rank the patients in descending order of τ̂(si, a

∗
i ).

3. For the top K ranked patients, set πi(s) = a∗i ; for
the remaining patients set πi(s) = 0.

4.3. Evaluating targeting policies

Our goal is to find combinations of state representa-
tion γ, action representation φ, and CATE function
τ̂ such that the resulting induced targeting policy
π(·|τ̂ , K) achieves high quality outcomes, i.e., actu-
ally targets patients with the highest treatment ef-
fects.
Formally, for any targeting policy π with capacity

constraint K, we define the value function ATTK(π)
as the average treatment effect on the treated (ATT):

ATTK(π) = E

[
1
K

∑N

i=1 τ(s, πi(s))
]
. Here the expec-

tation is over the superpopulation, where we assume
that patients are sampled i.i.d. from the superpop-
ulation. Note that for any patient that receives the
control action under π, the treatment effect in the
sum is zero. As a result, if the policy π only provides
non-control actions to at most K patients, the right
hand side will be the average treatment effect of the
treated patients.
Our goal is to learn policies with high ATT, given

the capacity constraint K. Further, in practice, we
will be interested in additional qualitative desiderata,
e.g., whether the resulting policy is interpretable or
aligns with clinical guidelines. In our empirical eval-
uation we will test whether these requirements are
met, and in particular, whether the use of clinician-
informed representations biases selected policies to-
wards being interpretable as well.
Before continuing we comment briefly on the op-

timal policy. In particular, for fixed K, let π∗ =
π(·|τ,K); this is the policy that ranks patients ac-
cording to their true treatment effects. It is easy to
check that ATTK(π∗) g ATTK(π) for any other pol-
icy π that targets at most K patients; see Proposition
3 in Appendix H for a proof. We show in the follow-
ing theorem that if we estimate τ effectively, then the
value of the estimated optimal policy converges to the
value of the true optimal policy; the result is analo-
gous to existing results for policy learning (Wager and

Athey, 2015). See Appendix H for proof details.

Theorem 2 For each N , let τ̂N be a CATE estima-
tor such that sups∈S,a∈A |τ(s, a) − τ̂N (s, a)| → 0 in

distribution. Suppose also that the treatment effects
are bounded: sups∈S,a∈A |τ(s, a)| < ∞. Consider a
sequence KN such that KN/N → c as N → ∞, with
0 f c f 1. Let πN = π(·|τ̂N ,KN ) be the associated
sequence of targeting policies, and let π∗

N be the as-
sociated sequence of optimal targeting policies. Then
ATTKN

(πN )− ATTKN
(π∗

N ) → 0 as N → ∞.

In general, for a policy π, to estimate ATTK(π) for
a given K, we require an estimate of the treatment
effect of each action a, for each patient-day (i, t) pair
in our evaluation data. A challenge here is that in
our data, there is confounding between the actions
and rewards. For example, clinicians are more likely
to contact a patient with a recent drop in glucose
control, and that patient is also more likely to have
improved glucose control in the following week even
if they are not contacted by a clinician (regression to
the mean). If we fail to account for this confounding,
we would overestimate the impact of interventions on
the reward.

To account for confounding, we use a doubly ro-
bust approach. We describe our approach to con-
founding in detail in Appendix E. In short, to adjust
for confounding, we let Xc

it = γc(Xg
it, X

d
it) denote the

representation of the patient state that clinicians see
when reviewing patients. We let ê(Xc, a) denote a
learned propensity score model, and let r̂(Xc, a) de-
note a learned reward model. Now suppose that a pa-
tient i is observed at day t in an evaluation dataset E .
We define the following doubly robust score for each
action a; this is an estimate of the treatment effect of
action a for patient i at day t:

Γ̂it(a) = (r̂(Xc
it, a)− r̂(Xc

it, 0))

+ (rit − r̂(Xc
it, ait))

(
Iait=a

ê(Xc
it, a)

−
Iait=0

ê(Xc
it, 0)

)

We estimate ATTK(π) on an evaluation dataset E
with N patients and T time periods as:

ÂTTK(π) =
1

T

T∑

t=1

1

K

N∑

i=1

Γ̂it(πi(st)),

where st = (s1t, . . . , sNt) is the patient state vector
on day t. To estimate representative performance

in a real clinic, we specifically report ÂTTK(π) for
K/N = 0.25; we refer to this metric as ATT@25%.
This metric estimates the performance of the policy
when treating a proportion of the population that is
of similar size to the capacity of our clinic.
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Data splitting. We split the data into three parts
of approximately equal size by randomly dividing the
patients into three groups and putting the data from
each group of patients into separate datasets: train,
validation, and test. The training data are used for
pre-training state and action representations, CATE
estimation, and to train nuisance models (if needed to
adjust for confounding). The validation data are used
to evaluate the performance of candidate representa-
tions and targeting policies induced by the CATE es-
timators. The test data are used for valid estimation
of the performance of the final chosen policy. By cre-
ating these splits across patients, we ensure that we
learn a treatment policy that will generalize across
patients from a similar population.

5. Results

Interpretability and clinical relevance of rep-
resentations. We expect to see correlation be-
tween states and actions if the representations cap-
ture how clinicians make decisions. In managing
T1D, clinicians are concerned with highs (glucose lev-
els above 180 mg/dL) and lows (glucose levels below
70 mg/dL). When these events occur, we expect to
see clinicians send messages targeting those events.

Figure 3 shows the correlations between contin-
uous state variables and binary action indicators
with clinician-informed (left) or black-box-learned
(right) state and action representations. We see
that clinician-informed state variables are correlated
with clinician-informed actions: messages that target
highs (resp., lows) are sent when states represent-
ing highs (resp., lows) are observed. TS2Vec-learned
state variables are less correlated with embedding-
based actions. In other words, the black-box-learned
representations are not learning relationships that are
relevant to clinicians’ actions, while (as expected) the
clinician-informed state and action representations
are.

Policy performance. Figure 4 compares the
ATT@25% of different combinations of state and ac-
tion representations across CATE estimators. We
find that the estimated policy performance is equiv-
alent to random targeting (ATE) for policies learned
from most of the baseline representations we tested.
Notably, policies derived from clinician-informed rep-
resentations significantly outperform policies learned
from black-box algorithmic baseline representations;
not only are they more interpretable and clinically
grounded, they also have higher efficacy.

A closer look at the state and action representa-
tions provides additional insight. For state repre-
sentations, we see increasing performance with in-
creasing levels of domain knowledge, moving from the
“medium”-dimensional representation (all clinician-
informed features), to the learned subset, to the
fully clinician-informed subset (TIDE features). In
this clinical setting, the TIDE-only features repre-
sent strong clinical domain knowledge of CGM fea-
tures relevant to patient care, and have been devel-
oped over many years.

By contrast, our clinician-informed action repre-
sentations require a learning procedure, since we
started with high-dimensional (unlabeled) text mes-
sages as our raw actions. We again see the benefits
of clinical inductive bias: the clinically-informed ac-
tion set significantly outperforms a black-box-learned
clustering. See Appendix F for additional policy eval-
uation results (including TOC curves).

After identifying the best-performing policy on the
validation set, we evaluate it on the held-out test
set to check for potential selection bias inflating our
results on the validation data. The ATT@25% for
the policy (clinician-informed action representation,
TIDE state representations, T-Learner) is 6.6 [95%
CI: 5.6-7.6] on the test set, which is similar to the
validation set result of 6.7 [5.7-7.7].

Policy interpretation and clinical alignment.
By inspecting how the CATE predictions vary across
clinician-defined features we can assess if they align
with clinical knowledge. We want to recommend only
those policies that align with clinical best practices
(Battelino et al., 2019), since clinicians are unlikely to
adopt the policy otherwise.

Although management of T1D requires careful at-
tention to both highs and lows, highs are much more
consequential events for TIR than lows (Addala et al.,

2021). Lows are often emergent events requiring acute
intervention, and also are coupled to other interven-
tions (e.g., alarms on CGMs). By contrast, highs are
more persistent, significant, and longer-term in their
impacts on TIR. Since TIR is our reward, we ex-
pect that clinically aligned policies should focus pri-
marily on reducing highs (Addala et al., 2021). Addi-
tionally, we expect that patients with larger drops in
TIR week-over-week, and patients with higher mean
glucose, are more likely to see a TIR benefit from
clinician intervention. Finally, it is clinically well-
established that patients using insulin pumps tend to
be better able to manage their TIR, and thus patients
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Figure 3: Pearson correlations between continuous state variables and binary action indicators.
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Figure 4: Estimated ATT@25% with 95% CIs on validation data across representations and CATE estima-
tors. ATEs of the action with the highest predicted ATE shown as vertical dashed lines (expected ATT
under random targeting). See Appendix F for more results.

not using insulin pumps are more likely to see a TIR
benefit from clinician intervention (Berget et al., 2019).

In Figure 5, we show the values of the CATE pre-
dictions for the optimal action, as we vary patient
features across panels. For each factor, the policy
using clinician-informed representations matches ex-
actly the clinical guidelines described in the previ-
ous paragraph: patients with lower TIR, a larger
drop in TIR week-over-week, a higher mean glucose,
or not using a pump will be prioritized for contact.
Conversely, the policies using black-box representa-
tions lack this interpretability and are badly mis-
ligned with clinical guidance: notably they prioritize
patients with higher TIR, lower drops in TIR, and
lower mean glucose.

6. Discussion

We introduced an end-to-end pipeline for learning
and evaluating policies induced by different CATE es-
timators across both black-box and low-dimensional,
clinically-grounded state and action representations.
Using data from clinical trials with remote patient
monitoring for type 1 diabetes care, we learned
clinician-informed policies that outperformed black-
box-learned policies.

Iterating on the state and action representations
could further improve policy performance. We ex-
pect that clustering-embedding-based action repre-
sentations might produce more effective action repre-
sentations with increased data, though interpretabil-

332



Learning Explainable Treatment Policies with Clinician-Informed Representations

	� �� 
� ��
	




�

���!$��!%���%��
�'�)*�,��"�

.	� .�� .�� .� �

� �%���!%�����
���*,��%�'�)*�*,&�,��")�

��� 	�� 	��

���%��#+�&)�
�'�)*�,��"�

�&%*!%+&+)������+$$�(-��*�*!)*!����#+�

��
��
��
(�
�

Interpreting policies learned with clinician-informed representations

Interpreting policies learned with black-box-learned representations


� �� 
� ��
�


�




�

�
� �	� �	� �� � 	�� 
�� 
��
�&%*!%+&+)������+$$�(-��*�*!)*!����#+�

��
��
��
(�
�

���!$��!%���%��
�'�)*�,��"�

� �%���!%�����
���*,��%�'�)*�*,&�,��")�

���%��#+�&)�
�'�)*�,��"�

Figure 5: CATE predictions for the optimal action for policies learned using both approaches. Policies
learned from clinician-informed representations (top) are interpretable and align with clinical guidelines,
while those learned from black-box-learned representations (bottom) do not.

ity would remain a challenge. Any algorithm would
likely need a very large amount of data to learn mean-
ingful state representations of the high-dimensional
CGM traces that predict where actions fall in the
high-dimensional message text space. With low-
dimensional clinician-informed representations, it is
much easier to learn the relationship between state
and action representations (e.g. patients with more
low CGM readings are more likely to get a message
addressing low glucose). Future work could leverage
larger datasets or synthetic data to understand how
much data is necessary to learn useful embeddings for
policy learning from high-dimensional clinical data.
Despite adjusting for all available information

when estimating treatment effects and learning poli-
cies, unmeasured confounding may persist, which
could bias our results. The only way to guaran-
tee no unmeasured confounding would be to col-
lect data where actions are taken randomly with
known propensities, which might be infeasible in most
healthcare settings. Future work could include sensi-
tivity analyses to unmeasured confounding.
In our setting, the care team has capacity to take

actions on K patients in each time period. Future
work could examine a more general setting in which
different actions have different capacity costs. Our

analysis focuses on short-term outcomes; evaluating
long-term effects requires additional assumptions or
a randomized controlled trial of the learned policies
over a longer period (Ferstad et al., 2024; Collins et al.,

2007).
Our approach can improve digital health interven-

tions with large state and action spaces when clinical
domain knowledge is available. For instance, it could
enhance interventions based on wearable sensor data
(e.g., smart watches measuring pulse and activity).
Exactly how the approach is applied will depend on
the setting and which clinician-informed state and
action representations are available. Our approach
enables evaluating policies learned from different can-
didate representations. Successful deployment of suc-
cessful targeting policies could boost intervention effi-
cacy and patient outcomes, promoting digital health
adoption. However, it is crucial to ensure that pa-
tients not selected for treatment by a learned policy
receive alternative or complementary interventions.
Future work requires identifying and evaluating such
interventions to ensure all patients receive appropri-
ate care, as well as ensuring equitable access to such
interventions (Prahalad et al., 2024).
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Appendix A. Data summary

Table 1 presents the summary statistics of the patient population across the three data splits. We have more
than a year of data and 10+ messages received (treatments) for most of the patients in our datasets. The
data splits have similar summary statistics, as expected with random splitting.

Table 1: Summary statistics by dataset/split

Dataset

Summary statistic Train Validation Test

N (# of patients) 91 95 95
Pilot study participants 26 24 25
4T study participants 42 42 46
TIPS study participants 24 35 27
# observations (days); mean (IQR) across patients 734 (408-1071) 691 (350-969) 699 (411-952)
# messages received; mean (IQR) across patients 41 (17-60) 38 (12-58) 35 (14-52)
Age; mean (IQR) across patients 13 (10-17) 12 (9-16) 13 (10-17)
N patients using an insulin pump during study 66 70 63
N patients using automated insulin delivery during study 51 34 41

Appendix B. Computational resources

To train nuisance models and CATE estimators with EconML and FLAML, we used an instance of Google
Compute Engine machine type n2d-standard-224 with 224 vCPUs and 896 GB memory. We also did some
training on a n2d-standard-64 instance (64 vCPUs, 256 GB RAM). Generating all of the results in the paper
took less than a day with the n2d-standard-224.
To train the TS2Vec encoder, we used an instance of Google Compute Engine machine type n1-highmem-8

with 8 vCPUs, 52 GB memory, and one NVIDIA V100 GPU. Training the encoder took less than a day.
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Appendix C. Action representations

We generate clinical features with a few-shot prompt and language model (LM). Here’s an example prompt
and output.

Prompt

You are an AI assistant who extracts structured JSON from messages sent by clinicians to patients with
diabetes.

* First identify whether the message recommends changing insulin (recommends_insulin_dose_change).
* If the message recommends an insulin change , label whether it is a basal / long acting insulin change (

recommends_changing_basal_or_long_acting_insulin), a reminder to take correction doses (
recommends_more_correction_doses), whether it adjusts the carb ratio at meal time (
recommends_changing_carb_ratio), or if it has a reminder to bolus before meals (
reminds_patient_to_bolus).

* Then identify the targets of the message , which can include nighttime glucose (
recommends_insulin_change_at_night), daytime/mealtime glucose (
recommends_insulin_change_during_the_day), high glucose or low time in range (
recommendations_target_high_glucose_or_low_time_in_range), or low glucose (
recommendations_target_low_glucose).

* Finally , determine if the message mentiones a recent visit (mentions_recent_visit), or knowledge of the
patient ’s schedule (mentions_patient_schedule).

The output should be JSON with this structure: ... # see below

input: Looking at trends this past week compared to the previous week your average increased from 135 to
245. Has anything changed in your routine? Any insights into your daily routine would help me
recommend dose changes. For now , I have decreased your bedtime correction target to 150. By giving
correction insulin before bed we can help keep you in target range overnight. I would like to make
further recommendation to help bring you down to target range more often , but again can you provide
insights into your schedule ? How many times per day are you dosing insulin ? Are you giving

insulin for both carbs and glucose level at mealtime?
output: {{
recommends_insulin_dose_change: True ,
recommends_changing_basal_or_long_acting_insulin: False ,
recommends_more_correction_doses: True ,
recommends_changing_carb_ratio: False ,
reminds_patient_to_bolus: False ,
recommends_insulin_change_at_night: True ,
recommends_insulin_change_during_the_day: False ,
recommendations_target_high_glucose_or_low_time_in_range: True ,
recommendations_target_low_glucose: False ,
mentions_recent_visit: False ,
mentions_patient_schedule: False
}}
# + 4 more examples

input: X has an average blood glucose of 390 and is in target range (70 -150) 1%
output:

Output

{
recommends_insulin_dose_change: True ,
recommends_changing_basal_or_long_acting_insulin: True ,
recommends_more_correction_doses: False ,
recommends_changing_carb_ratio: False ,
reminds_patient_to_bolus: False ,
recommends_insulin_change_at_night: True ,
recommends_insulin_change_during_the_day: False ,
recommendations_target_high_glucose_or_low_time_in_range: True ,
recommendations_target_low_glucose: False ,
mentions_recent_visit: False ,
mentions_patient_schedule: False
}
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Table 2: Summary statistics across extracted clinical features

Clinical feature Total messages (%)

recommends insulin dose change 4,523 (18%)
recommends changing basal or long acting insulin 2,606 (10%)
recommends more correction doses 1,037 (4%)
recommends changing carb ratio 1,795 (7%)
reminds patient to bolus 1,167 (5%)
recommends insulin change at night 2,802 (11%)
recommends insulin change during the day 2,280 (9%)
recommendations target high glucose or low time in range 4,183 (17%)
recommendations target low glucose 3,861 (15%)
mentions recent visit 1,510 (6%)
mentions patient schedule 1,521 (6%)

Defining discrete clinician-informed action representations. To get discrete representations from
the clinical features, we first estimate the average treatment effect on the treated to make sure we include
features associated with much greater treatment effects than just receiving any message. Then we group the
features into discrete representations with clinically different meanings:

• Message treating highs and lows:
(recommendations target low glucose) AND

(recommendations target high glucose or low time in range OR

recommends more correction doses OR reminds patient to bolus)

• Message treating highs only:
(NOT recommendations target low glucose) AND

(recommendations target high glucose or low time in range

OR recommends more correction doses OR reminds patient to bolus)

• Message treating lows only:
(recommendations target low glucose) AND NOT

(recommendations target high glucose or low time in range

OR recommends more correction doses OR reminds patient to bolus)

• Other Message: Messages falling into none of the categories above.

Baseline representations. To extract features from the raw messages, we generate 728-dimensional text
embeddings with PaLM 2 (Anil et al., 2023). Then we learn a clustering of those embeddings using K-means
on the training data with K=4 to match the cardinality of the clinician-informed action representation.
Messages in the other datasets are mapped to the closest cluster centroid.
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Appendix D. State representations

D.1. Clinical features and representations

Full list of clinical state features:
g 7dr: Mean glucose last 7 days

very low 7dr: Prop. CGM readings < 54 mg/dL last 7 days
low 7dr: Prop. CGM readings < 70 mg/dL last 7 days
in range 7dr: Prop. CGM readings 70-180 mg/dL last 7 days
high 7dr: Prop. CGM readings > 180 mg/dL last 7 days
very high 7dr: Prop. CGM readings > 250 mg/dL last 7 days

gri 7dr: Glycemia Risk Index (Klonoff et al., 2023) last 7 days
g 14dr: Mean glucose last 14 days
very low 14dr: Prop. CGM readings < 54 mg/dL last 14 days
low 14dr: Prop. CGM readings < 70 mg/dL last 14 days
in range 14dr: Prop. CGM readings 70-180 mg/dL last 14 days
high 14dr: Prop. CGM readings > 180 mg/dL last 14 days
very high 14dr: Prop. CGM readings > 250 mg/dL last 14 days

gri 14dr: Glycemia Risk Index (Klonoff et al., 2023) last 14
days
night very low 7dr: Prop. CGM readings < 54 mg/dL last 7 days
at night time (11pm-5am)
night low 7dr: Prop. CGM readings < 70 mg/dL last 7 days at
night time (11pm-5am)
night high 7dr: Prop. CGM readings > 180 mg/dL last 7 days at
night time (11pm-5am)
night very high 7dr: Prop. CGM readings > 250 mg/dL last 7
days at night time (11pm-5am)
day very low 7dr: Prop. CGM readings < 54 mg/dL last 7 days at
day time (6am-10pm)
day low 7dr: Prop. CGM readings < 70 mg/dL last 7 days at day
time (6am-10pm)
day high 7dr: Prop. CGM readings > 180 mg/dL last 7 days at
day time (6am-10pm)
day very high 7dr: Prop. CGM readings > 250 mg/dL last 7 days
at day time (6am-10pm)
time worn 7dr: Prop. of time with CGM readings last 7 days
night worn 7dr: Prop. of time with CGM readings last 7 days at
night time (11pm-5am)
day worn 7dr: Prop. of time with CGM readings last 7 days at day
time (6am-10pm)
gri 7dr 7d delta: Difference in gri 7d between today and 7 days
ago
very low 7dr 7d delta: Difference in very low 7dr between today
and 7 days ago
low 7dr 7d delta: Difference in low 7dr between today and 7 days

ago
in range 7dr 7d delta: Difference in in range 7dr between today
and 7 days ago
very high 7dr 7d delta: Difference in very high 7dr between today
and 7 days ago
night very low 7dr 7d delta: Difference in night very low 7dr be-
tween today and 7 days ago
night low 7dr 7d delta: Difference in night low 7dr between today
and 7 days ago
night high 7dr 7d delta: Difference in night high 7dr between to-
day and 7 days ago
sexF: Indicator equal to 1 for female patients, 0 otherwise.
public insurance: Indicator equal to 1 for publicly insured pa-
tients, 0 otherwise
english primary language: Indicator equal to 1 for patients with
English as their preferred language, 0 otherwise
pop pilot: Indicator equal to 1 for patients enrolled in the 4T

Pilot study (Prahalad et al., 2022), 0 otherwise
pop 4T 1: Indicator equal to 1 for patients enrolled in the 4T Study

1 (Prahalad et al., 2024), 0 otherwise
pop TIPS: Indicator equal to 1 for patients enrolled in the TIPS

Study (Scheinker et al., 2022), 0 otherwise
age: Age of patient
months since onset: Months since onset of type 1 diabetes
using pump: Indicator equal to 1 for patients using an insulin
pump, 0 otherwise
using aid: Indicator equal to 1 for patients using automated in-
sulin delivery (closed loop), 0 otherwise
days since msg: Days since the last time the patient received a
message
large tir drop: Indicator equal to 1 for patients with
in range 7dr 7d delta<-0.15, 0 otherwise (used by clinicians for
risk stratification)
low tir: Indicator equal to 1 for patients with in range 7dr<0.65,
0 otherwise (used by clinicians for risk stratification)
lows: Indicator equal to 1 for patients with lows 7dr>0.04, 0 oth-
erwise (used by clinicians for risk stratification
very lows: Indicator equal to 1 for patients with
very lows 7dr>0.01, 0 otherwise (used by clinicians for risk strati-
fication

We create three different representations using these features:

1. Full: includes all features listed above

2. Subset selected with ML: Top features based on XGBoost variable importance (SHAP)
scores when training a model to predicting observed rewards in the training data. Includes
large tir drop, in range 7dr 7d delta, in range 14dr, in range 7dr, low 7dr, using pump,

using aid, time worn 7dr, day worn 7dr, day low 7dr, night high 7dr 7d delta, g 7dr,

months since onset, gri 7dr 7d delta

3. TIDE subset selected by clinicians: Features shown to clinicians when they review patients in TIDE.
Includes very low 7dr, low 7dr, in range 7dr, g 7dr, using pump, in range 7dr 7d delta,

large tir drop, low tir, lows, very lows, pop 4T 1, pop 4T 2, pop TIPS
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D.2. Baseline representations

TS2Vec. We generate low-dimensional representations of the CGM traces using TS2Vec (Yue et al., 2021).
We train the encoder on the training data, feeding in two weeks of CGM readings (4,032-dimensional vectors).
We use the default hyperparameters in the code at https://github.com/zhihanyue/ts2vec/, with n epochs=1
and output dims=8. We also tested training for 2 and 3 epochs and found very similar results to n epochs=1
when using the representations to fit CATE estimators.
UMAP. We project two weeks of CGM readings into low-dimensional representations using UMAP as

implemented at https://github.com/lmcinnes/umap. We tested projecting down to between 1 and 10 di-
mensions and then picked the number of dimensions that performed best at predicting observed rewards in
the training data. We ended up picking n components=4 for the projections used for CATE estimation.

Appendix E. Adjusting for confounding

In our data, there is confounding between the actions and rewards. To account for confounding, we adjust for
a set of control covariates Xc

it =
{
γc(Xg

it), X
d′

i

}
. This is the representation of the patient state that clinicians

see when reviewing patients, which includes a low-dimensional projection of the CGM data γc(Xg
it) and a

subset of the demographics Xd′

it ⊂ Xd
it. We make the following (commonly used) assumptions to adjust for

confounding and perform doubly robust policy evaluation.

Assumption 2 Consistency and stable unit treatment value. The potential outcomes (Imbens and Rubin,

2015) for each patient i at time t under treatment Mit = m are the same as the observed outcomes if they
actually received treatment m, and these potential outcomes depend only on the treatment Mit assigned to
that patient, not on the treatments assigned to other patients. Formally, rit(m) = rit if Mit = m.

Assumption 3 Conditional ignorability. Given the control covariates for patient i at time t, Xc
it, the

observed actions (treatment messages) Mit are independent of the potential reward rit(m) for all possible
actions m ∈ M. Formally, rit(m) ⊥ Mit | Xc

it, ∀m ∈ M, where M is the set of all possible actions
(messages), and rit(m) denotes the potential reward for patient i at time t under action m.

Under these assumptions, we fit outcome models r̂(Xc, a) predicting the rewards under each action con-
ditional on a vector of control covariates Xc, and a model predicting the reward under the control action
r̂(Xc, 0). We also fit models ê(Xc, a), which estimates the propensity scores (probabilities of each action
conditional on the control covariates). All of the nuisance models are trained with AutoML in FLAML
(Wang et al., 2021).

Now suppose that a patient i is observed at day t in an evaluation dataset E . We define the following
doubly robust score for each action a; this is an estimate of the treatment effect of action a for patient i at
day t:

Γ̂it(a) = (r̂(Xc
it, a)− r̂(Xc

it, 0))

+ (rit − r̂(Xc
it, ait))

(
Iait=a

ê(Xc
it, a)

−
Iait=0

ê(Xc
it, 0)

)

The doubly robust score corrects for unmeasured confounding in the following way: if at most one of the
reward model r̂ or the propensity model ê is misspecified, the doubly robust score will still be consistent for the
true treatment effect. In practice, we cannot completely rule out the possible simultaneous misspecification of
both models. However, as noted above, we take advantage of control covariates that capture all information
available to clinicians at the time of choosing an action, helping mitigate bias due to confounding.
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Appendix F. Additional policy evaluation results

In plotting our evaluation results for a given policy, we visualize the targeting operator characteristic (TOC)

curve (Sverdrup et al., 2023; Yadlowsky et al., 2021): this is a plot of ÂTTK(π) against K/N ; when K = N , we
obtain the average treatment effect (ATE) of the policy. We generate confidence intervals along the TOC
by bootstrapping patients in the evaluation data. A common evaluation metric used to evaluate targeting
policies is the Area Under the TOC curve (AUTOC), which is the area between the ATT and ATE integrated
over K from 0 to 1. See Figure 6 for reference. In this section, we report the ATT@25% and AUTOC values
for each state and action representation across CATE estimators.

% Treated

ATT

0% 100%

ATE

25%

ATT@25%

AUTOC

Figure 6: Illustrative TOC curve.

345



Learning Explainable Treatment Policies with Clinician-Informed Representations

CF
Ensemble
TLearner
XLearner

Action rep:
Binary

(any message)
Action rep:

Clustered Embeddings
(K=4)

Action rep:
Clinician-Informed

(from LLM indicators)

State rep:
Learned from Raw data

(TS2Vec)

CF
Ensemble
TLearner
XLearner

State rep:
Learned from Raw data

(UMAP)

CF
Ensemble
TLearner
XLearner

State rep:
Clinician-informed

(all features)

CF
Ensemble
TLearner
XLearner

State rep:
Clinician-informed
(learned subset)

0 2 4 6 8
CF

Ensemble
TLearner
XLearner

0 2 4 6 8 0 2 4 6 8

State rep:
Clinician-informed

(only TIDE features)

ATT@25% on validation dataset [95% CI]

CA
TE

 E
sti

m
at

or

Figure 7: ATT@25% for each state (rows) and action (columns) representation across CATE estimators.
Results with the S-Learner and DR Forest CATE estimators are excluded because they never outperformed
random targeting.
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Figure 8: AUTOCs for each state (rows) and action (columns) representation across CATE estimators
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Figure 9: Example TOC curve for the top performing policy on the validation set:
State representation = Clinician-informed (TIDE)
Action representation = Clinician-informed
CATE estimator = TLearner.
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Appendix G. Sensitivity analysis to adding longer patient history in control

covariates when evaluating policies

In order to understand if we are getting biased policy evaluation results by only using two weeks of CGM
data to construct our control covariates, we also evaluated the best-performing state representation with
control covariates that include longer histories (up to 4 weeks), including indicators for messages in previous
weeks. The ATT@25% when additional weeks of history are included in control covariates are shown in
Figure 10. We see that ATT@25% remains much higher than the ATEs (dashed vertical lines) when we are
using clinician-informed action representations (right-most column). There is a slight drop-off in estimated
performance as we add history to the control covariates though. This could be noise, but future work might
include more sensitivity analyses, and also adding more weeks of history to the state representations.
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Figure 10: ATT@25% when including more history in the control covariates.
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Appendix H. Additional results and proofs

Proposition 3 Fix K, and let π∗ = π(·|τ,K). Let π be any other policy that targets at most K patients
(i.e., selects at most K patients to receive a non-control action). Then ATTK(π∗) ≥ ATTK(π).

Proof of Proposition 3. Fix a state vector (s1, . . . , sN ) (sampled i.i.d. from the superpopulation). For each
patient i, let a∗i = argmaxã∈A τ(si, ã), i.e., the optimal action for that patient. Let αi = τ(si, a

∗
i ), and let

(α(1), . . . , α(N)) be the same values sorted in descending order. Observe that since π∗ selects the K highest
ranked patients according to αi, it follows that for any subset IK ⊂ {1, . . . , N} of cardinality K, there holds:

N∑

i=1

τ(si, π
∗
i (s)) =

K∑

i=1

α(i) ≥
∑

i∈IK

αi.

Now let IK be the set of (at most K) patients who receive non-control actions under another feasible policy
π. The preceding allows us to conclude that:

N∑

i=1

τ(si, π
∗
i (s)) ≥

N∑

i=1

τ(si, πi(s)),

since αi ≥ τ(si, πi(s)) for all i. Dividing by K and taking expectations over s concludes the proof. □

Proof of Theorem 2. First, we use the Skorohod representation theorem to construct a probability space
on which sups∈S,a∈A |τ(s, a) − τ̂N (s, a)| → 0 almost surely. Next, suppose that s = (s1, . . . , sN ) is an
i.i.d. sample of N patients from the superpopulation. Note that πN applies optimal treatments to the top
K ranked patients according to τ̂N . Therefore:

1

KN

N∑

i=1

τ̂N (si, πN,i(s)) ≥
1

KN

N∑

i=1

τ̂N (si, π
∗
N,i(s)).

For each i and N , define ∆i,N = τ̂N (si, πN,i(s)) − τ(si, πN,i(s)), and define ∆∗
i,N = τ̂N (si, π

∗
N,i(s)) −

τ(si, π
∗
N,i(s)). Then the preceding inequality becomes:

1

KN

N∑

i=1

(τ(si, πN,i(s))− τ(si, π
∗
N,i(s))) +

1

KN

N∑

i=1

(∆i,N −∆∗
i,N ) ≥ 0.

Note the second summation on the left hand side converges to zero almost surely. On the other hand, because
π∗
N is the oracle optimal policy, we also have:

1

KN

N∑

i=1

(τ(si, πN,i(s))− τ(si, π
∗
N,i(s))) ≤ 0.

Therefore we conclude:

lim
N→∞

1

KN

N∑

i=1

(τ(si, πN,i(s))− τ(si, π
∗
N,i(s))) = 0

almost surely.
Since treatment effects are bounded, we can apply the bounded convergence theorem to conclude that

ATTKN
(πN )− ATTKN

(π∗
N ) → 0, as required. □
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