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Abstract

Collaborative Genome-wide association studies (GWAS) have the potential to uncover rare genetic variant-trait asso-
ciations by leveraging larger datasets and diverse population samples. Despite this potential, privacy concerns and
cumbersome review processes for data validation and collaborator selection hinder their broader implementation.
Advances in generative models present a possible solution by generating synthetic datasets that closely resemble real
genomic data, thus enhancing privacy and expediting the review process. This study assesses the capability of deep
generative models to produce artificial genomic data for GWAS applications. We evaluate two state-of-the-art models
on real-world datasets, identifying significant limitations in their ability to generate high-quality artificial genomes.
Furthermore, we demonstrate that prevailing privacy measures, mainly based on membership inference attacks, are
inadequate for providing insightful privacy evaluations. Our findings highlight the critical challenges and suggest
future directions for the effective use of artificial genomes in GWAS.

Introduction

Recent advancements in bioinformatics and Next-generation sequencing have highlighted the potential of large-scale
collaborative efforts, which entail the joint analysis of datasets distributed across various institutions and organizations.
Facilitate collaborative Genome-wide Association Studies (GWAS), a widely used technique to uncover associations
between specific genotypes and phenotypes by examining common genetic variants among individuals, can address
the key limitations of single-site GWAS with overestimated effects [1] and have demonstrated enhanced capabilities
in detecting rare genetic variations and yield accurate findings [2]. However, previous studies mainly adopt the meta-
analysis approach by only aggregating summary statistics and, therefore, face challenges such as selection bias and
heterogeneity within meta-analyses. The explanatory power of these collaborative GWAS findings for the heritability
of common traits remains limited [3], suggesting that future studies may require more extensive collaboration and
participant involvement [4]. Nevertheless, the adoption of collaborative GWAS is greatly hindered by the privacy
concerns surrounding sharing personal genetic data. The unique nature of genetic data [5], such as DNA sequences,
coupled with its implications for not only the individual but also their relatives, demands stringent measures to prevent
unauthorized information disclosure in compliance with regulations like GDPR and HIPAA.

To facilitate the collaborative GWAS, researchers (potential collaborators) typically undergo a lengthy institutional
review board (IRB) process to exchange raw datasets that include individuals’ genomes, demographic data, and disease
status. Synthetic data, artificially generated by specific algorithms and models, could expedite the preliminary phases
of research (e.g., with less stringent requirements) and address collaboration challenges before full IRB approval
(e.g., exploratory results on the synthetic data can be used to identify the valuable researchers and useful data [6]).
Additionally, once trained, these models can produce unlimited artificial data, potentially improving the diversity of
genomic datasets. The use of synthetic data has been explored in various domains such as vision [7] and has been
used in fields such as labor statistics [8] and healthcare [9], their application in collaborative GWAS is still overlooked.
Without careful studies and evaluations, adopting artificial genomes can raise critical issues concerning data quality
[10] and the potential for privacy breaches [11], especially when employing synthetic data derived from personal
information, as highlighted by the controversy over DeepMind’s use of NHS patient records. 1

This paper presents the first thorough evaluation of cutting-edge generative models for genomic data within GWAS,
focusing on their capacity to mimic real genomic data while safeguarding original data integrity. Previous evaluations
[12] primarily focus on the traditional statistical methods [13] and deep generative models such as WGAN [14], which

1BBC News: DeepMind faces legal action over NHS data use, 2021. https://www.bbc.com/news/technology-58761324
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are unable to handle the discrete characteristics of genomic data and lack a comprehensive evaluation using only low-
order statistics and simple privacy measures. In this work, on the one hand, we examine two specific models, namely
CTGAN [15] and DNADiffusion [16], that can handle discrete and high dimensional data, as characterized by genomic
data. On the other hand, we employ various metrics, encapsulating low-order statistics, t-SNE [17] visualizations,
performance on two GWAS downstream tasks, and five state-of-art membership inference attacks against synthetic
data deep generative models to evaluate the fidelity, utility, and privacy of artificial genomes. Through extensive
evaluations, our findings indicate that there is still a significant gap in the application of artificial genomes in GWAS,
and more sophisticated privacy measures tailored for synthetic genomic data are needed. In terms of utility, while
CTGAN shows promise in preserving data distributions, both models struggle to produce high-quality synthetic SNP
sequences that maintain phenotype-SNP correlations. Furthermore, we observe discrepancies in model performance
across different genomic data groups, raising questions about the practical utility of artificial genomes in GWAS. The
privacy evaluation results reveal that, surprisingly, none of the MIAs achieve inference powers better than random
guessing on any of the synthetic datasets created by CTGAN and DNADiffusion, raising concerns for the efficiency
of existing MIA attacks, hence the need for the development of more discriminative privacy attacks.

Background

SNPs and GWAS. The complete human DNA consists of over 3 billion nucleotide pairs, with 99.9% of them shared
among humans. Single Nucleotide Polymorphisms (SNPs) are the most common genetic variants, with two possible
alleles : (i) major allele, the most common nucleotide in the population, and (ii) minor allele, the rarer nucleotide. SNPs
contain complex information and diverse patterns (e.g., haplotype blocks) and are studied by GWAS, a computational
method to identify genomic variants that are statistically associated with a risk for a disease or a particular trait, by
screening the entire genome of large numbers of individuals to look for associations between millions of genetic
variants. In the genome array, a SNP is encoded by 0, 1, or 2 to indicate the number of minor alleles found in a
specific genetic position. The association between each SNP and the phenotype encoded by a binary indicator (for the
binary-trait case) is tested through statistical methods such as the χ2 test and logistic regression.

Datasets We employ two real-world genomic datasets from the 1000 Genomes Project [18] and OpenSNP [19]. For
the 1000 Genomes dataset, we implement standard quality control measures, including the exclusion of SNPs and
individuals with missing data, the removal of SNPs with a Minor Allele Frequency (MAF) lower than 0.1, and the
elimination of related individuals. While the original data only contains the genomic array, we simulate a phenotype
vector using Genetic Complex Trait Analysis (GCTA) [20]. To evaluate the efficacy of DGMs across varying sequence
lengths and SNP groups, we randomly select around 500 significant SNPs and around 500 insignificant SNPs (em-
ploying a significance threshold of 0.05) for 2,400 individuals using Plink 2.0 [21]. Note that we chose a relatively
relaxed significance threshold to guarantee that the size of the significant SNP group was large enough. We maintain
the significant-to-insignificant SNP ratio while varying the SNP count per individual to 200, 500, and 1,000. We also
execute a train-test split with training set ratios of 0.25, 0.5, and 0.75, altering the seed at each division to produce five
distinct splits. For the OpenSNP dataset, we adhere to a comparable processing protocol, with two notable exceptions:
(1) we utilize binarized eye color as the phenotype instead of a simulated phenotype, and (2) given that the dataset is
comprised of 940 individuals, the training set ratios are adjusted to 0.5 and 0.75.

Methods

This section provides an overview of the state-of-the-art models for generating synthetic datasets and the utility and
privacy measures to evaluate their performance.

Deep generative models for artificial genomes

Unlike traditional methods, deep generative models learn the underlying data structure in a data-driven manner without
needing user-defined mathematical equations or physics simulations. With the neural networks’ aptitude to approxi-
mate complex non-linear relationships in data, DGMs have demonstrated superior performance in many applications.
In this work, we explore two generative models, namely CTGAN (Conditional Tabular Generative Adversarial Net-
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work) [15] and DNADiffusion [16].

CTGAN [15] incorporates a mode-specific normalization strategy to handle the multimodal distributions problem
in the feature and a conditional vector and novel sampling techniques to handle categorical features. CTGAN was
initially proposed for generating tabular data and has achieved good performance in various applications, such as
Electronic Health Records (EHR) data [22]. This work is the first to explore the applicability of CTGAN for artificial
genome generation, leveraging its ability to handle categorical data to effectively categorize the discrete characteristics
of genomic data.

DNADiffusion [16] is a novel approach leveraging diffusion probabilistic models to design cell type-specific DNA
regulatory sequences. The backbone of the model is a denoising UNet [23] with two embedding layers for cell
label and timestep, respectively. To handle the discrete nature of DNA data, before training, the DNA sequences are
converted to numerical forms using a standard technique, one-hot encoding. After training, the model takes in input a
cell type label and can generate cell type-specific sequences. Unlike other methods, such as Dirichlet Diffusion [24]
DNADiffusion allows training a single model across different cell types and generating cell type-specific sequences
without the need for additional models as guidance. In the implementation, we use the phenotype label as the condition
to generate phenotype-specific SNP sequences.

For CTGAN, we utilize the default settings from Synthcity [25], including 256 hidden nodes and two layers for both
the generator and discriminator. For all the datasets, we train CTGAN for 2000 epochs, although convergence is
typically observed after several hundred epochs. For DNADiffusion, we adhere to the implementation described in
[16] but limit the diffusion process to 10 steps and training epochs to 1000. Nevertheless, we have explored different
diffusion time steps (from 10 to 100) and training epochs (from 1000 to 10000) and have yet to observe significant
improvement in the results. Upon completion of training, we generate 5000 synthetic samples.

Evaluation measures

To explore the potential of artificial human genomes in the context of exploratory analysis for GWAS, we select a suite
of evaluation metrics, providing insights into utility and privacy.

Utility measures. There are three categories of measurements considered. (1) Two low-order statistics, namely Mi-
nor Allele Frequency (MAF) and Heterozygosity, are pivotal in GWAS to offer critical insights into the allele and
population statistics in the population. After computing the MAF values of the real (i.e., training set) SNPs and the
synthetic SNPs, we first examined the single-SNP level performance by plotting the MAF values at each locus. Then,
we employ the relative mean absolute error (RMAE) and the Kolmogorov-Smirnov (K-S) test to evaluate the perfor-
mance quantitatively on the entire dataset. The RMAE assesses the average deviations in MAF across all generated
SNPs from those of actual SNP sequences. The K-S test, a non-parametric method, determines if the MAFs of real
SNP sequences and artificial SNPs originate from the same distribution. A larger K-S statistic and correspondingly
lower p-value indicate the rejection of the null hypothesis that the MAF values from original and synthetic SNPs are
drawn from identical distributions. (2) t-SNE plots [17], widely used for visualizing high-dimensional data in lower-
dimensional spaces, are adopted for visualization evaluation of the fidelity and diversity of the synthetic datasets. (3)
Two fundamental downstream tasks in GWAS, imputation and association testing, are employed to demonstrate the
usefulness of synthetic datasets, aiming to discern performance variations when employing artificial genomic datasets
(SNPs and phenotypes) for GWAS. For the imputation task, we adopt the train-synthetic-test-real(TSTR) and train-
real-test-real (TRTR) techniques, and measure the performance deviations. Specifically, we introduce missing data in
the test dataset, following [26], adjusting the missing rate (θ) to encompass [10%, 20%, 30%], randomly selecting θ of
the samples. Within these samples, 5% of SNPs are designated missing, following the Missing Completely At Random
(MCAR) mechanism [27]. Once the missing data is introduced, we train an imputation model using the training and
synthetic data separately and perform the imputation on the test dataset. We selected the KNN-based imputation model
for its proven efficacy [28] and Root Mean Square Error (RMSE) to assess imputation accuracy. Since we aim to assess
the comparative performance the DGMs, we measure the RMSE relative to that of training data, i.e., RMSE obtained
using the training data and report proportional RMSE (p-RMSE), computed as |RMSETSTR−RMSETRTR|/RMSETRTR.
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As for the association testing task, we adopt the logistic regression test. The p-values and significance labels (i.e., sig-
nificant or insignificant) from synthetic datasets and the original dataset (utilizing all samples before the train-test split)
are compared with Mean Absolute Error (MAE) and accuracy rate, respectively.

Privacy measures. With the various metrics proposed for evaluating the privacy risks of synthetic datasets, in this
work, privacy is examined through the lens of a suite of Membership Inference Attacks (MIAs), for they are prevalent
in the context of bioinformatics. MIAs aim to infer whether an individual’s data has been used in training a generative
model, potentially leading to more invasive privacy breaches such as profiling and feature inference, and have been
used in other works [29]. We explore various MIA strategies, typically predicated on the “black-box” scenario where
the adversary has access only to the synthetic dataset and a specific target (i.e., record) but may also have a reference
dataset that might not align with the training data’s distribution. This situation is particularly relevant to bioinformatics,
where datasets are often specific to certain demographic groups. Our privacy evaluation encompasses both GAN-
specific and more broadly applicable attacks, including:

1. LOGAN-0 and LOGAN-D1 [30]. LOGAN-0 assumes that the adversary has a synthetic dataset produced by
the generative model but no access to the model. The synthetic dataset is then used to train a local GAN (we
employed CTGAN during the experiments). Once trained, the discriminator from the GAN is used to distinguish
the synthetic and real data. LOGAN-D1, conversely, assumes the adversary has access to a reference dataset,
and then uses it to train a discriminative model for membership inference. Following [11], we implemented a
three-layer fully connected neural network as the discriminative model, following the approach in prior work.

2. GAN-Leaks [31]. This approach categorizes MIAs against GANs across various scenarios, from fully black-box
to white-box settings. We focus on GAN-Leak 0, a strict black-box attack. To launch the attack, the adversary
generates a set of samples from the generative model, and then estimates the likelihood of a test point belonging
to the training set. In particular, the attack strategy involves generating a sample set Sk

G = {xi}ki=1 from the
generator G for a test point x∗ and a chosen k ∈ N, utilizing the score A(x∗, G) = exp(−minxi∈Sk

G
L2(x

∗, xi))
as an unnormalized surrogate for the probability that the target is generated by the generator. If the score is
greater than some predefined threshold, then the target x∗ is classified as belong to the training set.

3. Monte Carlo-based MIA (MC) [32] Applicable to a wide range of generative models, this attack uses synthetic
samples produced by the generative model to perform a Monte Carlo approximation of the model’s distribution
at each test point. Similar to GAN-Leak 0, a set of synthetic samples generated by the target generative model
is used to estimate the likelihood of the target record used for training the generator through approximating the
distribution of the small neighborhood of the target record.

4. DOMIAS [11] A density-based MIA designed for general generative models, comparing density estimates of
real and synthetic distributions to identify overfitting in generative models. In particular, given the real data
distribution pR(X) and the synthetic data distribution pG(X), for a target x∗, with the MIA scoring function
ADOMIAS(x

∗) = f
(

pG(x∗)
pR(x∗)

)
, where A represents the attack function and f : R → [0, 1] is a monotonically

increasing function.If the score exceeds some predefined threshold, then the target x∗ is classified as belong to
the training set. In the implementation, we employ a Gaussian Kernel Density Estimator (KDE) to approximate
these distributions.

Results

Utility evaluation

In this section, we provide a comprehensive utility evaluation of the performance of CTGAN and DNADiffusion on
the two datasets. Firstly, we examine whether artificial SNPs preserve allele and population statistics. For ease of
comparison, in Figure 1 and the subsequent figures, we sort the SNPs by their MAF values; nevertheless, during
the training and generation, the order of SNPs is randomly shuffled. Figure 1 depicts the MAF values of 200 SNPs
from both the training set and artificial genomes generated by CTGAN and DNADiffusion across the OpenSNP and
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(a) OpenSNP (b) Human1000
Figure 1: MAF for 200 SNPs generated by CTGAN and DNADiffusion, plotted against the training data, when training
ratio = 0.75. Solid lines represent the average values and the bands represent the bounds across five iterations.

(a) OpenSNP (b) Human1000
Figure 2: RMAE between the MAF values of all real SNPs and SNPs and K-S test statistics. Average results over five
runs with training ratio = 0.75.

Human1000 datasets. The comparison reveals that CTGAN more accurately replicates allele frequencies than DNAD-
iffusion overall. DNADiffusion exhibits a notable deficiency in preserving the MAF for most SNPs, with a pronounced
lack of variation across most loci across both datasets. However, the performance of CTGAN across the two datasets is
significantly different, suggesting the intricate nature of genomic data. After the visual comparison on the single-SNP
level, the results, presented in Figure 2, demonstrate that for both RMAE and K-S test outcomes, CTGAN surpasses
DNADiffusion in generating artificial SNP sequences that more closely resemble real ones in terms of allele frequen-
cies. Similarly, Figure 3 and 4 plot the percentage of heterozygous variants in each individual and the corresponding
RMAE and K-S test outcomes, respectively. While DNADiffusion produces more homozygous variants despite dis-
crepancies in minor allele frequencies, indicating a larger diversity in the population, CTGAN produces heterozygosity
percentages similar to the real dataset.

Next, we leverage t-SNE plots to visually compare the synthetic dataset generated by CTGAN and DNADiffusion
with the original training set. Given genomic arrays’ high-dimensional nature, we initially apply Principal Compo-
nent Analysis (PCA) to both the synthetic and training datasets independently, concentrating on the top 100 principal
components (PCs). This reduction is followed by t-SNE analysis on these PCs to visualize the data distributions. The
better overlapping of the original and synthetic data points in each t-SNE plot shows the better synchronization of
the original and learned distribution. Figure 5 showcases t-SNE plots for the OpenSNP and Human1000 populations
across varying training ratios and SNP sequence lengths. CTGAN consistently outperforms DNADiffusion on the Hu-
man1000 dataset by generating data that more closely aligns with the original distribution. However, for the OpenSNP

(a) OpenSNP (b) Human1000
Figure 3: Percentage of heterozygous variants in each sample in the training and generated datasets, using 1000 SNPs.
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(a) OpenSNP (b) Human1000
Figure 4: RMAE between the heterozygosity values of real and artificial samples and average K-S test statistics.
Results with training ratio = 0.75.

OpenSNP Human1000
Tasks θ CTGAN DNADiffusion CTGAN DNADiffusion

Imputation
p-RMSE

10% 0.169 (0.114) 0.65 (0.063) 0.018 (0.009) 0.593 (0.017)
20% 0.174 (0.128) 0.653 (0.03) 0.014 (0.005) 0.579 (0.023)
30% 0.181 (0.138) 0.647 (0.036) 0.013 (0.004) 0.586 (0.024)

LR-test MAE 0.533 (0.025) 0.490 (0.022) 0.614 (0.02) 0.524 (0.018)
Accuracy 0.563 (0.038) 0.555 (0.027) 0.662 (0.033) 0.453 (0.036)

Table 1: Downstream tasks performance when SNP number = 500 and training ratio = 0.75. θ represents the missing
ratio from the imputation tasks. Standard deviation over five runs is given in the bracket.

dataset, neither CTGAN nor DNADiffusion fully captures the complexity of the real data.

(a) (b) (c) (d)
Figure 5: t-SNE plots across various training ratio (row) and SNP numbers (column). Red: real records. Blue:
synthetic records. (a) and (b): OpenSNP, (c) and (d): Human1000.

Finally, we present the downstream tasks performances of CTGAN and DNADiffusion in Table 1. On the imputation
task, we report the average p-RMSE and its standard deviation over five iterations for both CTGAN and DNADiffusion.
The results show CTGAN’s better performance by achieving similar RMSE to the real data for both OpenSNP and
Human1000 datasets. However, discrepancies across datasets are again observed. As for the association testing task,
CTGAN again outperforms DNADiffusion. Nevertheless, CTGAN’s best-case scenario preserves the significance
status for only about 66% of SNPs (on Human1000) despite aligning with real data in terms of allele frequencies and
heterozygosity.

The above results show that CTGAN consistently generates better artificial SNP sequences than DNA diffusion on
both datasets. However, neither model can create SNPs that most resemble the real SNPs regarding the performance
of preserving the allele frequencies and downstream tasks. During the experiments, we also observed that while using
more training samples improves the overall quality of synthetic artificial, it results in larger MAFs deviant of some
SNPs. The significantly different performances of CTGAN on OpenSNP and Human1000, which may be due to the
intricate distributions of the underlying samples, including the population structures and the imbalanced phenotypes,
exposes the limitations of these models to model SNP sequences.
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(a) OpenSNP (b) Human1000
Figure 6: Heatmap of the average AUROC of five MIAs

Privacy evaluation

For the privacy evaluation, we implement the five MIAs, discussed in the previous section. Since DOMIAS with
Gaussian KDE functions require continuous data, we employ PCA first and select the top 100 PCs. While the other
MIAs can be implemented in the original space, we employed the same PCA procedure, as no significant performance
degradations for these attacks were observed during the experiments. For the evaluation, every sample in the training
set is considered a target for each attack. We calculate the scores of each sample to estimate the likelihood of sample
inclusion in the training set. We use the median of the scores as the threshold for GAN-Leaks, MC, and DOMIAS. We
then compute the accuracy and Area Under the Receiver Operating Characteristic (AUROC) over five iterations. Figure
6 presents the average AUROC and its variability for the OpenSNP and Human1000 datasets. The results suggest a
generally low efficacy of MIAs comparable to random guessing across most scenarios. Notably, the performance of
specific MIAs, like LOGAN-0, varies across datasets and training ratios, indicating inconsistent vulnerability to MIAs.
Surprisingly, despite additional information from a reference dataset, attacks like DOMIAS and LOGAN-D1 do not
consistently outperform others, with LOGAN-0 showing superior performance in some cases on Human1000.

Several potential reasons exist for the poor performance. On the one hand, all the five attacks except DOMIA rely on the
distance-based similarity measures and use the distribution of the closest distance between each record and the datasets
as the proximity for the closeness of the original and synthetic data distribution, which may not be suitable for the
high-dimensional genomic data. DOMIA, though directly comparing the distance between the generated and original
distribution, can still struggle to obtain accurate approximations of these distributions due to the high dimensionality.
On the other hand, these MIAs share the assumption that the generative models overfit may fail to capture the specific
overfitting phenomenon [33].

Performance disparity on different groups of SNPs

In practice, a prevalent imbalance exists between SNPs significantly associated with phenotypes and those that are not,
in terms of the numbers, the coupled p-values, and the implications in the GWAS. To better understand whether or not
the generative models can pick up different signals inherent in these SNPs, we examine the performances separately for
significant and insignificant SNP sets. Firstly, Figure 7 and Figure 8 present the RMAE and K-S statistics of the MAF
values and t-SNE plots for these SNP groups across OpenSNP and Human1000. Notably, CTGAN exhibits superior
performance on significant SNPs within the Human1000 populations, whereas its performance inversely correlates
with the OpenSNP dataset. Conversely, DNADiffusion performs better on insignificant SNPs within the Human1000
dataset than the significant SNPs. Next, we compare the downstream task performances of two SNP groups. Table
2 shows a distinct performance contradiction between CTGAN and DNADiffusion. CTGAN successfully retains
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Figure 7: RMAE between the MAF values of real and artificial SNPs and average K-S test statistics on different SNPs
groups. Results on Human1000 with 500 SNPs and training ratio = 0.75.

CTGAN DNADiffusion
Dataset TrainRatio Sig Insig Sig Insig

OpenSNP
0.5 0.872 (0.033) 0.328 (0.050) 0.450 (0.356) 0.552 (0.339)

0.75 0.889 (0.037) 0.311 (0.053) 0.156 (0.118) 0.864 (0.136)

Human1000
0.25 0.761 (0.203) 0.403 (0.113) 0.187 (0.099) 0.808 (0.087)
0.5 0.771 (0.162) 0.444 (0.123) 0.173 (0.023) 0.834 (0.024)

0.75 0.784 (0.108) 0.499 (0.094) 0.188 (0.118) 0.807 (0.080)

Table 2: LR-test task performance (measured by accuracy rate) on significant SNPs (Sig) and insignificant SNPs
(Insig), when both model are trained with 500 SNPs. Standard deviation over five run is given in the bracket.

the significance status of approximately 80% of artificial SNPs within significant groups but only about 30% within
insignificant groups. In contrast, DNADiffusion shows a pronounced improvement in performance on insignificant
SNPs compared to significant ones. As for the privacy evaluation, we conduct the same five MIAs, using samples
exclusively with significant or insignificant SNPs. Figure 9 shows that the divergent performances of CTGAN and
DNADiffusion persist. However, all the attacks fail to achieve higher power than random guessing.

Figure 8: t-SNE plots on significant and insignificant SNPs. Red: real records. Blue: synthetic records. Results on
Human1000 with 500 SNPs and training ratio = 0.75.

Conclusions and discussions

This study conducts a thorough examination of artificial genomic data generation using two state-of-the-art generative
algorithms (CTGAN and DNADiffusion) for GWAS applications. The findings highlight considerable limitations in
both the utility and privacy of the generated artificial genomes. Specifically, both models struggle to produce artificial
genomes that are consistently useful for core GWAS tasks. Furthermore, the performance discrepancy across SNP
groups, particularly when these are categorized by their relationship to specific phenotypes, underscores the need
for the development of new generative models capable of accurately modeling complex SNP distributions and their
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Figure 9: Heatmap of the average AUROC of five MIAs on different sets of SNPs, results on Human1000

associations with phenotypes.

In terms of privacy, the inadequacy of the five MIAs is twofold. First, their ineffectiveness across all scenarios demon-
strates a fundamental challenge in addressing high-dimensional genomic data. This could be attributed to the inad-
equate similarity measures used, which fail to offer a meaningful assessment of “closeness,” and the challenge of
verifying the presumption of overfitting in neural networks. Second, these privacy metrics cannot offer clear insights
into the privacy-utility tradeoffs and, more critically, fail to distinguish between the performances of different genera-
tive models. To improve the privacy assessment of artificial genomic data, future work may adopt Identity By Descent
(IBD) measures, which quantify genetic similarities, as a more nuanced approach to evaluating the “closeness” be-
tween artificial and real genomes. Additionally, addressing the limitations related to overrepresentation assumptions
might involve a deeper investigation into data-copying issues [33].
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