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Abstract 

With the increasing trend toward e-learning, accurately assessing student attentiveness has become a critical need for 
effective education. In traditional classrooms, teachers rely on nonverbal cues to gauge student engagement, but online 
environments limit this ability, hindering real-time feedback that can help adapt instructional methods. To address this 
challenge, we proposed a student eye movements-based model to assess the student’s attentiveness more effectively. 

For the student’s attentiveness, the data is directly collected using ETVision glasses, and the features of eye 
movements are selected and preprocessed. To detect students’ attentiveness and drowsiness, we propose a modified 
version of the Closed Eye Aspect Ratio (CEAR) model. Although the traditional model requires six eye landmark 
positions, in this paper, the proposed model requires only four eye landmark positions for the vertical dimension’s eye 
landmarks. However, as virtual vision-mapped-to-real vision relation can be exposed in the Pixel Per Inch (PPI) 
measurement, the essential eye aspect ratio can be obtained from the vertical to the horizontal dimensions. The 
proposed approach is deployed in our experiments to analyze the students' eye-movement tracking and distraction 
behaviors. The analysis of the results has testified that the proposed model effectively detects students' attentiveness 
and drowsiness.  
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1. Introduction  
With the increasing adoption of e-learning, accurately assessing student attentiveness has become critical for 
improving instructional methods and learning outcomes. Traditional in-person classrooms enable teachers to rely on 
nonverbal cues such as eye contact and facial expressions to gauge engagement, but online learning environments 
limit these observational capabilities [1]. Consequently, there is a growing need for computational models that can 
quantify student attentiveness in virtual settings. 

Recent research suggests that eye-tracking technology, particularly methods based on the Eye Aspect Ratio (EAR), is 
a promising approach for measuring attentiveness by detecting blink patterns and eyelid movements [2]. The EAR 
method has been extensively used in applications such as driver drowsiness detection and fatigue monitoring [3]. In 
e-learning, real-time tracking of eye behavior provides valuable insights into student focus and cognitive load, as 
spontaneous blink rates and eyelid distance variations have been linked to levels of attention [4].  

Building upon these findings, our study employs a refined Close Eye Aspect Ratio (CEAR) model, which minimizes 
reliance on multiple eye landmarks while maintaining accuracy. Unlike traditional models that require six eye 
landmark positions, our approach only utilizes four, optimizing computational efficiency while ensuring reliable 
assessment of attentiveness [5].  

This paper presents an approach to student attentiveness detection, emphasizing the effectiveness of eye-tracking 
technology in online education. Through empirical experiments using the ETVision system [6], we demonstrate how 
our model enhances real-time attentiveness measurement, offering a viable solution for improving personalized 
learning experiences and adaptive instructional design. 



Zhao, Jonnavittula, Ashour, & DiFrancesca 
 

2 

 

2. Methodology 
2.1 Experimental Setup 
The team collected eye-tracking data using the ETVision system which is a wearable 180Hz binocular eye-tracking 
system from Argus Science [6]. The position data is measured in pixels relative to the origin. Figure 1 shows the 
experimental setup and a student wearing the ETVision glasses. A calibration procedure was implemented to align 
gaze data with the observed environment, ensuring precision in eye movement tracking. This setup facilitated the 
assessment of attentiveness and drowsiness by capturing relevant eye movement metrics and providing a field-of-view 
recording through a scene camera as shown in Figure 1. The experiment included four stimuli: two reading tasks and 
two videos. Each subject was offered one reading task and a video to watch. The order and content of the stimuli were 
randomized to address any effect of these factors.  

 
Figure 1: Experimental Setup. 

2.2. Proposed Approach 

Feature Selection 
The device can collect up to 57 features such as the start of record, Gaze LAOI (Live Area of Interest), left pupil 
position horizontal, right pupil position horizontal, etc. Of these 57 features, the research team selected five features: 
the start of record, left and right eyelid upper vertical positions, and left and right eyelid lower vertical positions. The 
start of record is a timestamp in seconds. 

Pixel Per Inch (PPI) 
The ETVision system measures the upper eyelid and lower eyelid position in pixels. We measured the width of the 
eye in inches. To accommodate the differences in the measurement units, we calculated the ratio, K (pixel/inch), i.e., 
pixels per inch (PPI). For example, we measured the distance between the upper and lower eyelids of a student to be 
7/16 and 6/16 inches for the left and right eyes, respectively. In addition, we measured the width of the left and right 
eyes to be 1.5 inches. As an example for the same student, the vertical distance between the upper and lower eyelids 
is 119 pixels. Thus, the K is calculated as K =  

119

(6.5/16) 
= 292.923 = 293 pixels per inch. We believe that the impact 

of the differences between individuals’ dimensions will be trivial since we are using the PPI as the aspect ratio between 
the eye’s height and width, which will be almost the same for different individuals.  

Proposed Model 
The traditional close-eye aspect ratio (CEAR) model requires six eye landmark positions. Unlike the traditional CEAR 
model, the proposed model needs four eye landmark positions only. Figure 2 shows the positions (P1, P2, P3, & P4) 
of these landmarks. 

                 
a)                                                                               b) 

Figure 2: a) Open-eye measurements with four eye landmarks; b) Closed-eye landmarks 
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The proposed CEAR model is shown below: 

    𝐶𝐸𝐴𝑅𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 =  
||𝑃3−𝑃4||

||𝑃1−𝑃2||
  1)                                                         

Compared to the original CEAR model in [1], [4], two vertical eye landmarks are needed instead of four. The 
calculated ratio, K, can be used to calculate the width of the eye in pixels. As an example for the same student, the 
student's eye width in pixels can be calculated to be 293 PPI x 1.5 inches = 439.5 pixels. Thus, the CEAR value is 
119/439.5 = 0.271. Figure 3 shows the pseudocode of the proposed approach. 

Algorithm: The proposed approach 
Input: The data collected from the ETVision glasses (.CSV file) 
Output: Data visualization resulted from the proposed model 
Specification: 

1. Get the data from .CSV files. 
2. Select features from the data and convert them to the numerical type. 
3. Calculate the proposed CEAR values. 

1) Use the vertical measurements to calculate the K 
   𝐾 = (𝑝𝑖𝑥𝑒𝑙(‖𝑢𝑝𝑝𝑒𝑟 𝑒𝑦𝑒𝑙𝑖𝑑 − 𝑙𝑜𝑤𝑒𝑟 𝑒𝑦𝑒𝑙𝑖𝑑‖))/(𝑖𝑛𝑐ℎ(‖𝑢𝑝𝑝𝑒𝑟 𝑒𝑦𝑒𝑙𝑖𝑑 − 𝑙𝑜𝑤𝑒𝑟 𝑒𝑦𝑒𝑙𝑖𝑑‖)) 

 
 2) Use K to calculate the eye width in pixels 
 

𝑝𝑖𝑥𝑒𝑙(‖𝑒𝑦𝑒 𝑤𝑖𝑑𝑡ℎ‖)  = 𝐾 ⋅  𝑖𝑛𝑐ℎ(‖𝑒𝑦𝑒 𝑤𝑖𝑑𝑡ℎ‖) 
  
3) Calculate the proposed CEAR value 
 

              𝐶𝐸𝐴𝑅𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = (𝑝𝑖𝑥𝑒𝑙(‖𝑒𝑦𝑒 𝑙𝑒𝑛𝑔𝑡ℎ‖))/(𝑝𝑖𝑥𝑒𝑙(‖𝑒𝑦𝑒 𝑤𝑖𝑑𝑡ℎ‖)) 
  

4. Average the CEAR values over each second. 
In the loop: 

• Sum the CEAR values in each second timestamp and count the length of the 
proposed CEAR in a second. 

• Average the proposed CEAR is calculated: 

 𝐶𝐸𝐴𝑅𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 =  
∑ 𝐶𝐸𝐴𝑅𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑡𝑖𝑛
𝑖=1

𝑛
,   𝑖 ∈ 𝑍                                                                      

              End loop 
  

5. Create an image of the proposed CEAR values over time. 
 

Figure 3: The pseudocode of the proposed approach 

Attentiveness Peak Levels 
To evaluate the proposed model’s performance using students’ data, the distance of human eyelids from both vertical 
and horizontal perspectives is considered. The human eyelid measures between 1.10236 - 1.1811 inches wide and 
around 0.354331 - 0.393701 inches in height [5], [7], [8]. Thus, according to these ranges, the CEAR ranges can be 
calculated to be 0.3 and 0.3571. Therefore, the threshold value should not be beyond these values, if the proposed 
model provides the maximum ratio when the attentiveness is at its peak. 

Drowsiness Thresholds 
While the proposed model can detect students' peak attentiveness, a drowsiness threshold is another critical measure. 

According to studies, the drowsiness threshold for a car driver can be in the discrete range between 0.18, 0.2, 0.225, 
and 0.25 [1]. In addition, the constant threshold of 0.2 is used for the CEAR model for the student’s drowsiness as 
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described in [4]. We considered these thresholds in our experiments to evaluate the performance of the proposed 
model. 

3. Results and Discussions  

3.1 The Proposed CEAR Using the Data of Individual Students with a Video Stimulus 

Figures 4 a, b, c, & d present the proposed CEAR values over time for four students using a video stimulus. The values 
were calculated using the proposed model in Figure 3.   

     

a)                                                                                   b) 

        

c)                                                                               d)  

Figure 4: Student CEAR average values for students a) A, b) B, c) C, & d) D with video stimulus. 

The proposed CEAR values fall within the range (0, 0.32], validating the accuracy of the approach, as it does not 
exceed the peak student attentiveness level of 0.3571. Individual threshold values set for different students—0.18 for 
Student A, 0.15 for Student B, 0.2 for Student C, and 0.15 for Student D—demonstrate effective outcomes. In addition, 
the spikes at specific timestamps, such as 0, 75, and 150 seconds in Student A’s data in Figure 4 a, vary in individual 
plots but consistently reflect distraction behaviors. As the experiment is videotaped, these spikes align with observable 
student behaviors, including eye blinking, pupil movement, head movement, and loss of focus on the screen. 
 
3.2 The Proposed CEAR Using the Data of Individual Students with a Text Stimulus 
Figures 5 a, b, c, & d present the proposed CEAR values over time for four students using a text stimulus. The values 
were calculated using the proposed model in Figure 3. 
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a)                                                                                    b) 

    

c)                                                                                      d) 

Figure 5: Student CEAR average values for students a) A, b) B, c) C, & d) D with Text Stimulus 

The proposed CEAR values fall within the range (0, 0.25], validating the accuracy of the approach. Although both 
stimuli 1 and 2 utilize the same constant threshold for each student, they produce spikes at different timestamps, 
indicating that different stimuli impact student attentiveness in distinct ways. Furthermore, the CEAR value is directly 
proportional to attentiveness, meaning higher CEAR values correspond to increased student attentiveness. Conversely, 
the CEAR value is inversely proportional to drowsiness, implying that lower CEAR values indicate a higher likelihood 
of distraction. 

4. Conclusion 
This study demonstrates the effectiveness of eye-tracking and visual-spatial data analytics in assessing student 
attentiveness in e-learning environments. By leveraging the Close Eye Aspect Ratio (CEAR) model with a reduced 
set of eye landmarks, our approach enhances the accuracy and efficiency of attentiveness detection while minimizing 
computational complexity. The integration of blink analysis and eyelid position monitoring provides a comprehensive 
framework for real-time engagement assessment, addressing a critical challenge in remote education. As digital 
learning continues to expand, such objective measures of attentiveness can support adaptive instructional strategies, 
ultimately improving student outcomes and personalized learning experiences. Future research can explore refining 
the model with additional behavioral indicators, such as head movements and facial expressions, to further enhance 
the robustness of attentiveness detection systems. 
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