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Introduction

The learning environment is a complex environment for 
conducting evaluations. It is critical to understand this envi-
ronment to plan an evaluation that will successfully produce 
conclusive results. Typically, students are nested within one 
or more teachers, and teachers are nested within schools 

(which in turn are nested within districts and states), imply-
ing a multilevel structure. This nested structure should be 
considered when modeling educational outcomes because 
teachers, schools, and districts contribute to variation in stu-
dents’ outcomes. When planning evaluation studies of dif-
ferent educational interventions, it is important to think 

Improving the Design of Evaluations that Include Students, Teachers, 
and Schools: An Empirical Investigation of Key Design Parameters

Dea Mulolli

HumRRO

E. C. Hedberg

Westat

Megan Bogia

Fordham University

Jessaca Spybrook

American Institutes for Research, Western Michigan University

Tiffany Berglund

RAND Corporation

Fatih Unlu

Amazon

Isaac M. Opper

RAND Corporation

The learning environment is a complex environment for conducting evaluations. Students, teachers, and schools all play a 
role in shaping the environment, which can lead to differences in student achievement. Hence designing an evaluation with 
the capacity to detect the effectiveness of an educational intervention on student achievement requires careful planning. A key 
part of the planning is a statistical power analysis that considers the multilevel nature of the design. This study provides 
empirical estimates of design parameters necessary for planning adequately powered cluster randomized trials that include 
the student, teacher, and school level and are focused on reading, mathematics, or science achievement. The sample in our 
study includes administrative state datasets from Michigan, North Carolina, Kentucky, and Maryland for grades 3 through 8. 
The results showed that, with few exceptions, the variance in student test scores is larger between teachers within schools 
than between schools.

Keywords:	 Achievement, design parameters, experimental design, hierarchical linear modeling, intraclass correlation, 
program evaluation, teacher research

1320380 EROXXX10.1177/23328584251320380Mulolli et al.Improving the Design of Evaluations
research-article20252025

https://us.sagepub.com/en-us/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.1177%2F23328584251320380&domain=pdf&date_stamp=2025-03-03


Mulolli et al.

2

about the learning environment from a multilevel modeling 
perspective.

Over the past 15 years, researchers have started to assem-
ble a literature base focused on empirically estimating the 
contribution of these various levels (e.g. students, and 
schools) to variation in student achievement. For example, 
we have learned that approximately 20 percent of the vari-
ance in student science achievement can be attributed to dif-
ferences between schools and 80 percent of the variance can 
be attributed to differences between students within schools 
(Spybrook et al., 2016a). 

While this has been an active area of research, the teacher 
level has typically been absent from much of the literature, 
since many of the empirical analyses in the literature did not 
explicitly model the portion of outcome variance associated 
with teachers. The exceptions to this state of the literature 
are four studies (Jacob et al., 2010; Nye et al., 2004; Shen 
et al., 2023; Xu & Nichols, 2010) that explicitly modeled the 
teacher level in empirical analyses of student achievement 
with students nested within teachers nested within schools. 
These studies suggest that the percentage of variance at the 
teacher or classroom level can be substantial. Specifically, 5 
to 12 percent of the variance in math and reading achieve-
ment in elementary grades and as high as 20 percent of the 
variance in test scores in secondary course subjects such as 
Algebra II, biology, and chemistry were at the teacher level. 
These estimates are comparable to the percentage of vari-
ance often found at the school level (Hedges & Hedberg, 
2007; Spybrook et al., 2016a; Westine et al., 2013). Beyond 
these studies, many researchers have suggested other con-
ventions to be used, mainly based on rules of thumb, such as 
dividing the school-level portion of variance between the 
school and teacher level (Konstantopoulos, 2008a, 2008b; 
Nye et al., 2000, 2004). In this study, we explore how these 
patterns may vary in ICC values and provide examples to 
illustrate the implications. These results are based on models 
that include the teacher level for several academic achieve-
ment outcomes from four different states.

While the data we provide here will not provide all pos-
sible information that may be required, our goal is to illus-
trate the variation in possible design parameters. Moreover, 
in this paper, our findings suggest that the rule of thumb 
may not be accurate for all combinations of grade out-
comes and subjects. Hence, using these empirical estimates 
calculated in our present work for conducting power analy-
ses for three-level CRTs in various grades, outcomes, and 
subjects is critical. Since researchers rely on a small sam-
ple of studies from the literature while planning their eval-
uations, the “supply” of design parameters is rather limited 
and our present study can contribute to addressing this low 
supply of local information, which is in contrast to national 
level studies, such as Shen et al. (2023), that might have a 
broader inference population relative to the populations for 
which studies are planned.

The Utility of Teacher Design Parameters

Designing a study with the capacity to detect the effec-
tiveness of an educational program requires careful plan-
ning. A key part of the planning is a statistical power analysis 
that considers the multilevel nature of the design. Statistical 
power is the probability of correctly rejecting the null 
hypothesis of no difference between groups. A power analy-
sis depends on the true difference between groups, the vari-
ance structure of the outcome, the variance explained by 
covariates, the study design, and sample sizes (Cohen, 
1988). A power analysis can be conducted to determine the 
necessary sample size for a given level of power and impact, 
or difference between groups, or the minimum detectable 
impact, given power and sample size.

Accurate power analyses are critical as an underpow-
ered study may fail to identify an effective intervention and 
an overpowered study is a poor use of resources. An accu-
rate power analysis depends on reliable estimates of the 
following: sample size at each level (i.e., number of stu-
dents per teacher, number of teachers per school, number 
of schools per condition assuming random assignment is at 
the school level), percent of the variance in the outcome 
associated with each level (i.e., students, teachers, and 
schools), and percent of variance that can be explained by 
different covariate sets at each level (i.e., students, teach-
ers, and schools). The latter estimates, the variance attrib-
uted to the different levels in the study, also known as the 
intraclass correlation (ICC), and the percent of variance 
that can be explained by covariates at each level, also 
known as the R2 values, are generally referred to as “design 
parameters.” It is ideal to use empirically derived estimates 
of these design parameters to conduct an a priori power 
analysis.

To situate this work in the larger context, we reviewed 
studies where the primary goal was to empirically estimate 
design parameters such as ICCs and R2 values. To date, the 
majority of the studies in the literature that provide empir-
ical estimates for planning multilevel studies utilized two-
level models with students nested within schools (Bloom 
et  al., 2007; Brandon et  al., 2013; Dong et  al., 2016; 
Hedberg, 2016; Hedges & Hedberg, 2007; Kelcey & 
Phelps, 2013; Konstantopoulous, 2009; Phelps et  al., 
2016; Spybrook et  al., 2016a; Spybrook et al., 2016b; 
Stallasch et  al., 2021; Unlu et  al., 2014; Westine et  al., 
2013; Xu & Nichols, 2010), and three-level models with 
students nested within schools within districts (Hedges & 
Hedberg, 2013; Jacob et  al., 2010; Nye et  al., 2004; 
Spybrook et  al., 2016b; Stallasch et  al., 2021; Westine 
et al., 2013; Xu & Nichols, 2010). These estimates are use-
ful for planning specific types of studies including, for 
example, two-level cluster randomized trials (two-level 
CRT) with students nested within schools and schools as 
the unit of random assignment and three-level cluster ran-
domized trials (three-level CRT) with students nested 
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within schools nested within districts and districts as the 
unit of random assignment. However, they do not provide 
information for planning studies that include teachers—
for example, a three-level CRT with students nested within 
teachers nested within schools and schools as the unit of 
random assignment—or multi-site cluster randomized tri-
als (MSCRTs), which are a special case of CRTs, where 
teachers are randomly assigned to conditions within 
schools and students are nested within teachers. So far, 
only four studies in the literature (Jacob et al., 2010; Nye 
et al., 2004; Shen et al., 2023; Xu & Nichols, 2010) include 
empirical estimates for the teacher level. These studies 
examined student achievement in reading and mathemat-
ics as well as course-specific ICCs from science, such as 
chemistry and biology, using data from different sources, 
including two states and three evaluations that used non-
random, convenience samples, and from The Early 
Childhood Longitudinal Study, Kindergarten Class of 
1998–1999 (ECLS-K). However, it is not clear to what 
extent these design parameter estimates apply to other set-
tings and other outcome domains, such as general science 
achievement. 

Moerbeek (2004) shows that skipping the middle level 
of nesting in a three-level model is acceptable if the vari-
ability of the outcome variable of the ignored level is small. 
However, evidence to date suggests that the teacher-level 
variance is not always small (Jacob et al., 2010; Nye et al., 
2004; Xu & Nichols, 2010). Further, if there is a larger por-
tion of the total variance at the teacher level compared to the 
school level, then including the teacher-level random effect 
in the model can lead to more efficiency in CRTs compared 
to a model that excludes the teacher-level component. As a 
result, researchers may need fewer schools in their impact 
studies if teacher identifiers are available, which may reduce 
project budgets.

To estimate design parameters for studies with three 
levels of nesting (students in teachers in schools) or four 
levels of nesting (students in teachers in schools in dis-
tricts), we need to be able to link students to teachers, 
teachers to schools, and schools to districts. State educa-
tion agencies’ databases are a promising resource for pro-
viding this type of linked data. However, in the past, the 
links between teachers and students were not readily avail-
able. Fortunately, in the last few years, there has been a 
concerted effort across states to improve data systems and 
as such, there are several state administrative databases 
that now capture links between students and teachers. This 
is critical as it opens the door to empirical analyses to 
decompose the variance in student achievement at the stu-
dent, teacher, and school levels. Using such longitudinal 
data systems is important as it allows researchers to gain 
access to information such as student test scores, student 
and teacher demographics, etc., from trusted sources. In 
this study, we follow the state dataset approach.

Study Purpose

This study aims to provide teacher-level estimates of 
intraclass correlations (and contingent school and student 
values) that will offer empirical evidence for researchers 
when designing the evaluations of interventions that include 
the teacher level. To this end, we estimated the proportion of 
the variance in student achievement for math, reading, and 
science test scores, associated with the student, teacher, and 
school levels. In addition, we estimated the proportion of 
variance explained by covariates—or R2 values—associated 
with variables typically found in administrative datasets, 
such as pretest scores, and demographic information. The 
questions guiding this study were the following:

1.	 What portion of the variance in student achievement 
in math, reading, and science can be associated with 
the student, teacher, and school levels in our example 
states?

2.	 How much of the variance in student achievement in 
math, reading, and science can be explained by dif-
ferent sets of covariates such as earlier achievement 
and demographic indicators in our example states?

We begin this paper by first describing our data, analyses, 
and statistical models. Then we present the results and show 
some practical applications using the design parameters 
deriving from our results. Specifically, we examine power 
calculations for three-level studies using the estimated 
design parameters. Finally, we close the paper with a discus-
sion of the results and implications for future research.

Method

Sample and Data

The sample in our study includes administrative state 
datasets from Michigan, North Carolina, Kentucky, and 
Maryland for grades 3 through 8. We acknowledge that 
these states represent a convenience sample, as many 
states declined to participate (an unfortunate norm follow-
ing the InBloom student data use controversy which led 
many states to seldom share data with researchers; see 
Bulger et  al., 2017). The total number of students 
included in our analysis across outcome years, grades, 
and subjects is 1,348,186 in Michigan, 1,350,936 in 
North Carolina, 653,999 in Kentucky, and 854,080 in 
Maryland. The academic years included in our analysis 
were the following: for Michigan, academic years 2012–
2013 and 2013–2014, for North Carolina, Kentucky, and 
Maryland academic years 2017–2018 and 2018–2019. 
While for the latter states we were provided data of their 
most recent academic years at the time of our data request 
in 2020, Michigan was not able to share newer data 
beyond 2013–2014. This is because of a change in the 
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states’ administrative datasets; hence the 2013–2014 data 
represented the most accurate teacher-student links. While 
some policies have changed in the intervening years, these 
values still present the best evidence to date about the 
plausible variation in teacher associated portions of total 
student achievement variance. Tables 1 and 2 provide 
descriptions of the data, including state tests and sample 
sizes, and the percentage of data removed for each state 
during the cleaning process. For consistency, the data 
cleaning and preparation process was similar in nature 
across all states as described below. We linked the stu-
dents to teachers and schools within each state using 
their unique student, teacher, and school IDs through 
enrollment records.

Not every student who attended public schools in these 
states was recorded in the administrative data, and we pur-
posely omitted a small percentage of students. To be con-
sistent with previous studies (e.g., Hedges & Hedberg, 
2013), we omitted students with cognitive-related indi-
vidualized education programs (IEPs) from our analysis, 
which typically includes 10 percent of students. While it is 
often the case that students with IEPs are included in clus-
ter randomized trials, the relationship between students 
and teachers is complex and differs across grades and state 
contexts. Since our focus is on teacher associated variance 
components, and how these relative variance components 
differ across grades and contexts, our choice here is to 
maintain comparability in our results so that observed dif-
ferences are not confounded with state and grade-specific 
dynamics for this population, therefore students with IEPs 
were not included. To assess the quality of our remaining 
sample, we ensured that there was at least a count greater 
than or equal to 85.5 percent of students recorded by the 
Common Core of Data (see, e.g., Glander, 2016) associ-
ated with the students represented in our analysis. Our 
logic for the 85.5 percent threshold is that states are man-
dated to test at least 95 percent of their students, and stu-
dents without cognitive-related IEPs represent around 
90 percent of the student population. The product of these 
two proportions is the point probability of .95*.9 = .855. 
To ensure the maximum use of the remaining data, stu-
dents without information for gender, race, or other demo-
graphic covariates were coded with missing indicators. 
While using missing indicators is not suitable for causal 
studies, the purpose of this analysis is to measure the 
reduction in variance associated with these factors. Data 
cleaning and analysis were conducted using R and Stata, 
with ICCs and R2 values, and associated standard errors 
estimated from the output of mixed models using deriva-
tions found in Hedges et al. (2012). 

In some cases, the state did not nominate a specific 
teacher for a particular test subject, and so we used enroll-
ment data to select the most likely course and the associated 
teacher for each subject. For example, in departmentalized 
elementary schools, students were enrolled in a course “math 

instruction” and so the associated teacher was selected for 
our mathematics achievement models. In other elementary 
schools, students were only enrolled in a “homeroom” or 
“elementary instruction” course, and so the associated 
teacher was used for all outcomes. In a small fraction of 
cases (less than 5 percent of courses statewide), an obvious 
choice was not available, so we used teachers from courses 
with the highest frequency to be associated with students 
and their test outcomes, which were often homeroom or 
advisor teachers. Courses that were not plausibly associated 
with reading, mathematics, or science achievement, such as 
“physical education,” were excluded from this process. We 
did this to allow the data to inform plausible teachers who 
would be assigned interventions and avoid researcher choice 
to further contaminate the statistical model.

The schools associated with each student were based on 
the schools associated with the test scores for each stu-
dent. In cases in which students had multiple test results 
recorded, we picked the most recent test, and the teachers 
selected were from the same schools for each student. In 
some cases, students were associated with a different 
school for different subjects, but this was a small fraction 
of the observations. In most cases, the link between stu-
dents and schools was straightforward, which also explains 
the frequency of use of two-level designs with students 
nested in schools. In Tables 1 and 2, we present counts of 
schools, teachers, and students by grade in all states. Note 
that in North Carolina (Table 1), the percentage of data 
removed was higher compared to the rest of the state’s due 
to the number of students who were not matched to teach-
ers in the administrative data.

Analysis

The outcomes of interest for this study include the end-
of-grade state assessments in Mathematics, English Learning 
Arts (hereinafter: Reading), and Science. The assessments 
were independently administered in each state, so the grades 
in which a subject test was administered varied across states. 
Mathematics and reading were tested more frequently, 
whereas science was tested much less frequently. For exam-
ple, the state of Kentucky administers science assessment in 
grade 7, whereas Michigan, North Carolina, and Maryland 
administer it in grades 5 and 8. We estimated ICCs for the 
three-level models for each grade in each state. Within each 
state and grade, we performed a simple average on the ICC 
estimates and standard errors across the academic years 
noted in Table 3.

To estimate the R2 values for common covariates, we 
used prior year test scores in math and reading for fourth 
to eighth grade and school-level demographic informa-
tion. Since science is tested in only a subset of grades, we 
used the student-level mathematics pretest from the earlier 
academic grade, which is recognized in the literature to be 
less powerful than using pretests from the same subject 
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(Bloom et  al., 2007; Spybrook et  al., 2016a). However, 
using math as a pretest from an adjacent year is likely 
preferable to a science test from several grades in the past 
as the literature also suggests that the strength of the 
covariates decreases over time. Estimates of R2 values 

associated with demographic covariates such as race/eth-
nicity, gender, and lunch status (as an indicator of socio-
economic status; SES) were also produced. We received 
the information on the lunch status from the Common 
Core of Data (Glander, 2016).

Table 1
Counts of Schools, Teachers, and Students Unconditional Models by Grade in Michigan and North Carolina

Michigan North Carolina

Grade
% Data removed 

by cleaning
Total 

schools
Total 

teachers
Total 

students
% Data removed 

by cleaning
Total 

schools
Total 

teachers
Total 

students

Reading
3 0.20% 1752 4360 98149 13.54% 1350 5338 101403
4 13.74% 1907 3577 108454 13.21% 1333 4222 104409
5 6.25% 1962 3340 98770 11.89% 1315 3654 107380
6 5.46% 2138 3435 101157 13.14% 656 2127 105701
7 6.23% 1475 4022 106883 11.49% 638 2076 104873
8 5.97% 1224 4044 109195 11.33% 629 1995 102602
Mathematics
3 0.14% 1944 3766 99777 13.34% 1351 5358 100555
4 6.29% 1912 3586 100700 12.64% 1342 4272 105084
5 6.22% 1960 3338 99563 11.46% 1303 3503 107793
6 5.46% 2134 3434 101573 13.44% 647 1987 105242
7 6.23% 1477 4036 107247 11.62% 624 2005 104656
8 6.07% 1222 4033 109301 12.02% 635 1,815 98832
Science
8 6.49% 1195 2859 107417 11.34% 622 1420 102406

Table 2
Counts of Schools, Teacher, and Students Unconditional Models by Grade in Kentucky and Maryland

Kentucky Maryland

Grade
% Data removed 

by cleaning
Total 

schools
Total 

teachers
Total 

students
% Data removed 

by cleaning
Total 

schools
Total 

teachers
Total 

students

Reading 1.00% 717 2505 50691 1.00% 2943 868 65417
3 0.71% 717 2275 51661 0.84% 2772 870 67385
4 0.69% 711 2104 51941 0.87% 28698 866 68813
5 0.24% 461 1862 50158 3.02% 1253 386 65710
6 0.26% 424 1784 49295 1.89% 1212 348 64411
7 0.26% 444 1925 49170 1.95% 1141 350 62716
8
Mathematics 1.03% 717 2686 49869 1.80% 2844 868 65485
3 0.75% 717 2385 51579 8.18% 2572 870 63028
4 0.69% 711 2218 51870 0.80% 2633 866 69434
5 0.26% 461 1736 50130 0.45% 1300 387 67867
6 0.29% 423 1596 49293 0.47% 1370 348 65808
7 0.27% 444 1754 49148 0.62% 1178 348 64024
8 0.28% 423 1427 49194 2.67% 1431 352 63982
Science
7 or 8 1.00% 717 2505 50691 1.00% 2943 868 65417
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To estimate the R2 values, we used the student-level 
covariates and the averages of the student-level covariates at 
the teacher and school levels, to fit conditional models 
(defined below). As with other design parameter studies 
(Hedges & Hedberg, 2013; Spybrook et al., 2016a; Westine 
et  al., 2013), we examined three covariate set models: (1) 
baseline version of the outcome (i.e., pretest) only; (2) stu-
dent and school demographic characteristics and other base-
line attributes only; and (3) full covariate set including the 
pretest and all other student and school-level baseline char-
acteristics. Table 3 provides a summary of covariate mea-
sures. Our reason for not estimating R2 values is associated 
with other, arguably interesting, teacher-level demographic 
covariates as they are often more difficult to obtain, and our 
focus is on producing R2 value estimates for the most com-
monly available information.

Models

To empirically estimate ICCs and R2 values, we used a 
three-level hierarchical linear model where students are 
nested within teachers nested within schools. The estimates 
can inform the design of a schoolwide intervention study 
with students nested within teachers within schools, and 
schools are randomly assigned to treatment. In addition, 
these estimates can also inform the design of an intervention 
study with students nested within teachers within schools, 
and teachers are randomly assigned to treatment within 
schools. We use unconditional models without covariances 
with our data to estimate the ICC values and utilize models 
with covariates to estimate the R2 values.

Unconditional Three-Level Model.  To answer our first 
research question, we examined the following three-level 
unconditional model:

Level 1 (student):

Y e e Nijk jk ijk ijk� �� �0 0, ~ ( , )2 	 [1]

Level 2 (teacher):

� � �0 00 0 0 0jk k jk jk N� � r u 2, ~ ( , )
	 [2]

Level 3 (school):

� � �00 000 00 00 0k k k N� � r r 2, ~ ( , ) 	 [3]

In this model, the i subscript denotes each student, j 
denotes each teacher, and k denotes each school. The model 
is then for, Y

ijk
, the outcome (e.g., math test score) for student 

i taught by teacher j in school k is a function of, γ
000

, the grand 
mean, e 

ijk
, the error associated with each student with a mean 

of 0 and variance σ2, u
0jk

, the error associated with each 
teacher with a mean of 0 and variance τ2, and r

00k
, the error 

associated with each school with a mean of 0 and variance ʋ2.
This model allowed us to define two ICC parameters: 

ICC
L2

 captures the proportion of the outcome variance that 
lies between teachers within schools (i.e., teacher-level ICC) 
and ICC

L3
 captures the proportion of the outcome variance 

that lies between schools (i.e., school-level ICC). 
Specifically, the two ICC coefficients and their associated 
standard errors are defined as:

ICC

SE

J ICC ICC ICC

JICC

L

L

L L L

2

2

2 2 2

2

2

2

2 2 21 2 1
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� �
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	 [4]
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JICC ICC ICC

J ICC
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� �� �
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	 [5]

Table 3
Covariate Model Estimations by State and Grade Across States

Most recent school and student-level pretest

Grade Demographics Reading Mathematics Science

3 0 years MI, NC, KY, MD 1 year MI, NC, KY, MD 1 year MI, NC, KY, MD  
4 0 years MI, NC, KY, MD 1 year MI, NC, KY, MD 1 year MI, NC, KY, MD  
5 0 years MI, NC, KY, MD 1 year MI, NC, KY, MD 1 year MI, NC, KY, MD  
6 0 years MI, NC, KY, MD 1 year MI, NC, KY, MD 1 year MI, NC, KY, MD  
7 0 years MI, NC, KY, MD 1 year MI, NC, KY, MD 1 year MI, NC, KY, MD 3 years KY
8 0 years MI, NC, KY, MD 1 year MI, NC, KY, MD 1 year MI, NC, KY, MD 3 years MI, NC, MD

Note. MI = Michigan; NC = North Carolina; KY = Kentucky; MD = Maryland. In MI, data available for the outcome year 2013–2014. In NC, KY, MD, data 
available for the outcome year 2018–2019. Pretest year for MI is 2012–2013 and for NC, KY, MD is 2017–2018. For grade 3 there was no pretest available.
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A Note about Cross-Classified Models. In some elementary 

schools but typically in later grades, students’ instruction for 

various subjects is departmentalized, with students interact-

ing with a variety of teachers. This is a typically cross-classi-

fied variance structure, not dissimilar to a longitudinal 

complex variance structure (see, e.g., Chan et al., 2022). Sup-

pose a student i attends a school and interacts with four teach-

ers for each of four subjects, j, k, l, and m. The general linear 

model for a student’s score on some outcome y would be

y e u u u u z z z z

z z w w

ijklm ijklm j k l m jk jl jm kl

km lm jkl

� � � � � � � � � �

� � � �

�

jjkm jlm klm jklmw w q� � �  [6]

Which is equal to a grand mean, a student residual, the 

“main” effect of each teacher, the 
4

2
6

�

�
�
�

�
� �  two-way interac-

tions of each of the 4 teachers, the 
4

3
4

�

�
�
�

�
� �  three-way interac-

tions with each of the 4 teachers, and the one four-way 

interaction. Each of the Roman letters in the above model is 

associated with a variance component. The variance of eijklm 

is ijklm
2 , the variance of u j is j

2 , the variance of ul is l
2
, etc., 

the variance of vjm  is jm
2 , etc., the variance of wjkl  is 

jkl
2

, etc., and the variance of q jklm is jklm
2 .

The correlation of two students with the same teacher for 

subject j, but different teachers otherwise is (see, e.g., 

Chapter 12 in Raudenbush & Bryk, 2002) 

�
�

� � � � � � � � � �

�

j

j

j k l m jk jl jm kl km lm

jkl

�
� � � � � � � � �

� �

2

2 2 2 2 2 2 2 2 2 2

2 �� � � � �jkm jlm klm jklm ijklm
2 2 2 2 2� � � �

 

[7]

or the unique teacher variance component over the total 

variance.

In completely balanced cases in which there are an equal 

number of students assigned to each unique combination of 

teachers within a school, this expression would be the same 

value as the ICCs computed here from the simpler models. 

While the ICCs in practical imbalanced situations will differ, 

we remind the reader that the values we present here are to 

inform typical designs of evaluations, which usually involve 

assigning subject-specific teachers to a treatment arm, which 

typically do not use cross-classified models, involving ran-

dom effects for teachers of other subjects for which treatment 

is unlikely assigned, to estimate treatment effect standard 

errors. Thus, the ICC values reported here are applicable for 

the common evaluation designs which are planned.

Moreover, if researchers did randomly assign a set of 

teachers of different subjects to treatment or control, then 

each student in that school would likely receive one of a 

larger number of treatment/control teacher combinations, 

and so a complex cross classified models such as [6] would 

be require to appropriately estimate all the necessary random 

effects, and the results of this paper would not be informa-

tive, as researchers would need a standardized variance 

component for each of the main and interaction error terms, 

which would then depend on the number of school sessions, 

the number of teachers per subject, and the number of stu-

dents for each unique combination of possible teachers, 

which would itself likely vary across schools and districts, 

making such a model impractical to implement. How the 

values reported here would relate to the set of standardized 

variance components for each unique teacher effect is diffi-

cult to anticipate as the magnitude of the interaction vari-

ances would determine how much of the variance associated 

with any one teacher would be transferred from the numera-

tor or denominator of the ICC. However, it is plausible that 

our teacher ICCs are likely overestimates of the truly unique 

variance associated with any one teacher for a given subject. 

However, if in an experiment in which all students are asso-

ciated with a single teacher from the study pool, the ICCs 

reported here, even though they also include the interaction 

variances, are still appropriate representations of the vari-

ance components that would be used for the treatment effect 

hypothesis tests.

Conditional Model. To calculate the variance explained by 

covariates, the unconditional model shown above was modi-

fied to include student and school-level covariates including 

the (1) baseline version of the outcome (i.e., pretest) only; 

(2) student and school demographic characteristics and other 

baseline attributes only; and (3) full covariate set including 

the pretest and all other student and school-level baseline 

characteristics. All student-level covariates were aggregated 

to the higher levels and included in the models in addition to 

the individual-level covariates. The use of various covariate 

combinations provides a set of values for different scenarios 

which researchers may encounter with different sets of 

covariates. Formally, the three-level model that includes all 

available covariates was specified as follows:

Level 1 (student):

Y X e e Nijk jk n njk nijk ijk ijk X� � � �� � �0 0, ~ ( , )|2  [8]

Level 2 (teacher):

� � � �0 00 0 0 0 0jk k m mk mjk jk jk X WW N� � � � u u 2, ~ ( , )| ,  [9]

� �njk n k� 0  [10]

Level 3 (school):

� � � � � 	00 000 00 00 00 0k p p pk k k X W ZZ N� � � � ~ ( , )| , ,2  [11]
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� �n k n0 00� 	 [12]

� �0 0 0mk m� 	 [13]

where X
nijk

, W
mjk

, and Z
pk

 are the student, teacher, and 
school-level covariates and σ σ2

|x
, τ2

|x,w
, and ʋ2

|x,w,z
 are the 

conditional variances at the student, teacher, and school-
level levels. Using the unconditional and conditional vari-
ance components, we defined three R2 values that estimate 
the proportion of outcome variance at each level explained 
by the covariates:
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While earlier work in this field would often “center” 
covariates to aid in maximum likelihood estimation (see, 
e.g., Hedges & Hedberg, 2007), we do not center our covari-
ates as the means are included in each of the higher levels, 
which results in the same variance component estimation 
values no matter what the centering approach. This is 
because holding constant the aggregate means leads to “de-
meaning” or centering of predictors naturally through the 
cross-product matrices used in estimation.

Results

We first present the ICCs for the three-level unconditional 
model, and then the R2 values for the selected covariate sets. 

For comparison purposes, Appendix A provides tables with 
results of ICCs for two-level unconditional model with stu-
dents nested in schools, and corresponding R2 values for the 
three covariate sets.

Intraclass Correlations

Tables 4 and 5 present the unconditional ICCs for the 
three-level models, with students nested in teachers nested in 
schools. These results reveal key patterns and differences in 
ICCs, including distinctions between elementary and middle 
school ICCs, variations across reading, mathematics, and sci-
ence ICCs, differences between teacher and school ICCs, all 
while comparing across different states. To aid with the inter-
pretation of the tables below, we will use the ICCs for 
Michigan grade 5 in reading as an example (see Table 4), 
where teacher-level ICC is .143 and school-level ICC is .043. 
This means that, in Michigan grade 5, 14.3% of the variance 
in student reading test scores is between teachers within 
schools, and 4.3% is between schools.

In terms of patterns, Table 4 reveals a similar pattern 
across Michigan and North Carolina, where the teacher-level 
variance is larger than the school-level variance. For exam-
ple, in Michigan, in grade 3, about 2% of the variance in 
reading test scores is between schools, 16% is between teach-
ers within schools, and the remaining 82% is between stu-
dents within teachers. This means that there is more 
variability in math achievement between teachers within a 
school than between schools. Kentucky and Maryland in 
Table 5, however, show a different pattern, where for ele-
mentary school grades, the teacher-level variance is smaller 

Table 4
ICCs for Three-Level Unconditional HLM for Michigan and North Carolina

Michigan North Carolina

Grade ICC L2 SE ICC L3 SE ICC L2 SE ICC L3 SE

Reading
3 0.163 0.002 0.017 0.007 0.068 0.003 0.025 0.002
4 0.157 0.002 0.045 0.006 0.031 0.002 0.023 0.002
5 0.143 0.002 0.043 0.006 0.027 0.002 0.019 0.002
6 0.135 0.003 0.080 0.006 0.062 0.004 0.010 0.002
7 0.149 0.004 0.103 0.007 0.057 0.004 0.005 0.002
8 0.130 0.004 0.131 0.007 0.057 0.004 0.004 0.002
Mathematics
3 0.182 0.003 0.052 0.007 0.106 0.004 0.033 0.003
4 0.212 0.003 0.054 0.008 0.090 0.003 0.054 0.004
5 0.205 0.003 0.068 0.008 0.089 0.004 0.054 0.004
6 0.210 0.003 0.097 0.008 0.110 0.006 0.043 0.006
7 0.188 0.004 0.120 0.009 0.100 0.005 0.027 0.004
8 0.181 0.004 0.146 0.009 0.174 0.008 0.027 0.006
Science
8 0.154 0.004 0.124 0.008 0.067 0.005 0.051 0.006
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than the school-level variance, meaning there is more vari-
ability between schools in Kentucky and Maryland than 
within schools. While in Kentucky this pattern is visible in 
both reading and mathematics, in Maryland, however, the 
school-level variance is larger than the teacher-level vari-
ance in reading only, and in third-grade math. In general, 
North Carolina had the smallest estimates in both teacher 
and school level across the grades and subjects, compared 
to Michigan, Kentucky, and Maryland. Finally, as seen in 
Tables 4 and 5, the results showed larger teacher- and 
school-level ICCs in mathematics, compared to reading and 
science.

Percentage of Variance Explained

In this section, we present the results for the three-level 
model where student-level pretests and demographics were 
examined as covariates. First, in Tables 6 and 7, we present 
the results where the student-level pretest was examined as a 
covariate, including student-level individual scores in read-
ing, mathematics, and science, and teacher- and school-level 
averages of the student-level. These results explain the vari-
ation at the student-, teacher- and school level. Note that the 
only exception to this is for grade 3, which is the first year 
that students are tested, thus there was no pretest data avail-
able. In Tables 8 and 9, we present the results where demo-
graphic variables were examined as covariates, including 
race, gender, and lunch status. Lastly, in Tables 10 and 11, 
we present the results where both student-level pretest and 
demographics were examined as covariates.

Unlike our findings for ICCs, a similar pattern emerged 
across all four states where the percentage of variance 
explained at the teacher level by pretest was larger than the 
percentage of variance explained by pretest at the school 
level, and the percentage explained at student level was 
smaller than the percentage explained at teacher- and school-
level. Moreover, for grade 8 in Michigan, for example, the 
percentage of variance explained by reading pretest at both 
teacher and school level is higher than for the mathematics 
or science pretest. The results showed that across all states, 
the reading pretest explains more variability than either the 
mathematics or science pretest.

Tables 8 and 9 where demographic variables were 
included as covariates in the model, show that, overall, the 
patterns between elementary and middle-school grades, 
were similar in Michigan, Kentucky, and Maryland, where 
demographic variables explained more of the variance at the 
teacher level. In North Carolina middle schools, however, 
the differences in student test scores in reading and mathe-
matics are more strongly related to the differences between 
teachers than they are in elementary schools. This might 
imply that teacher demographics might affect student out-
comes more in middle school compared to elementary 
school.

Finally, including both student pretest and demographics 
in the model helps explain slightly more variance in student 
outcomes. Our results in Tables 10 and 11 showed that for 
each of the subjects, and at each level, the percentage of the 
variance explained by our combined set of variables 
increased. For example, for Michigan grade 4, at the teacher 

Table 5
ICCs for Three-Level Unconditional HLM for Kentucky and Maryland

Kentucky Maryland

Grade ICC L2 SE ICC L3 SE ICC L2 SE ICC L3 SE

Reading
3 0.054 0.004 0.113 0.007 0.121 0.005 0.196 0.010
4 0.061 0.004 0.096 0.007 0.167 0.006 0.185 0.010
5 0.082 0.005 0.088 0.007 0.146 0.006 0.205 0.011
6 0.214 0.011 0.079 0.012 0.278 0.013 0.170 0.018
7 0.300 0.014 0.070 0.013 0.301 0.013 0.157 0.018
8 0.317 0.014 0.091 0.015 0.284 0.014 0.163 0.018
Mathematics
3 0.071 0.004 0.128 0.008 0.177 0.006 0.191 0.011
4 0.075 0.005 0.134 0.009 0.236 0.008 0.177 0.012
5 0.096 0.006 0.125 0.009 0.297 0.009 0.170 0.012
6 0.192 0.010 0.124 0.014 0.398 0.016 0.176 0.020
7 0.234 0.012 0.078 0.012 0.391 0.015 0.186 0.020
8 0.248 0.012 0.130 0.016 0.352 0.015 0.186 0.020
Science
7 0.134 0.011 0.109 0.015  
8 0.160 0.009 0.264 0.019
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level, while the pretest only explained 93% of the variance, 
and demographics explained 83% of the variance, both com-
bined explained about 94% of the variance in student read-
ing outcomes. However, the difference in percentage 
explained between the first model where only the pretest 
was included as a covariate, and the third model where both 

the pretest and demographic were included as covariates was 
negligible, with an average of .007 units difference (not 
including the teacher level R2 value in Michigan, where the 
difference was .14) so it remains at the researchers’ discre-
tion on which is the most appropriate model to use its 
estimates.

Table 6
R2 values for Three-Level HLM with Pretest as Covariate for Michigan and North Carolina

Michigan North Carolina

Grade R2L1 R2L2 R2L3 R2L1 R2L2 R2L3

Reading
3 NA NA NA NA NA NA
4 0.431 0.928 0.719 0.621 0.929 0.928
5 0.474 0.943 0.877 0.548 0.935 0.923
6 0.455 0.936 0.928 0.599 0.963 0.876
7 0.433 0.938 0.949 0.608 0.968 0.926
8 0.460 0.954 0.969 0.594 0.965 0.938
Mathematics
3 NA NA NA NA NA NA
4 0.590 0.852 0.730 0.636 0.809 0.872
5 0.575 0.863 0.750 0.661 0.858 0.864
6 0.621 0.870 0.891 0.633 0.934 0.837
7 0.606 0.863 0.950 0.653 0.948 0.914
8 0.610 0.907 0.941 0.652 0.909 0.836
Science
8 0.428 0.734 0.921 0.631 0.883 0.852

Table 7
R2 values for Three-Level HLM with Pretest as Covariate for Kentucky and Maryland

Kentucky Maryland

Grade R2L1 R2L2 R2L3 R2L1 R2L2 R2L3

Reading
3 NA NA NA NA NA NA
4 0.507 0.835 0.852 0.634 0.907 0.897
5 0.523 0.934 0.820 0.669 0.908 0.928
6 0.490 0.961 0.691 0.642 0.976 0.847
7 0.511 0.979 0.814 0.663 0.977 0.927
8 0.496 0.987 0.854 0.668 0.973 0.940
Mathematics
3 NA NA NA NA NA NA
4 0.579 0.740 0.663 0.680 0.930 0.886
5 0.612 0.845 0.649 0.648 0.948 0.899
6 0.571 0.925 0.494 0.618 0.975 0.907
7 0.587 0.956 0.665 0.615 0.961 0.981
8 0.562 0.957 0.611 0.583 0.911 0.971
Science
7 0.425 0.963 0.586  
8 0.571 0.962 0.910
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Applications

Power Analyses for CRTs and MSCRTs

This paper demonstrates how applied researchers could 
use the design parameters from the tables presented in this 
study to conduct a power analysis. In this section, we 

provide examples of how the researchers could use those 
parameters in different scenarios. In Table 12, we show the 
parameters necessary in conducting an a priori power analy-
sis for the main effect of treatment for a three-level CRT 
with students nested in teachers nested in schools and ran-
dom assignment at the school level, and for an MSCRT with 

Table 8
R2 values for Three-Level HLM with Demographics as Covariate for Michigan and North Carolina

Michigan North Carolina

Grade R2L1 R2L2 R2L3 R2L1 R2L2 R2L3

Reading
3 0.022 0.785 0.075 0.279 0.690 0.839
4 0.019 0.830 0.160 0.634 0.937 0.930
5 0.019 0.850 0.158 0.576 0.951 0.932
6 0.015 0.844 0.233 0.613 0.974 0.869
7 0.017 0.855 0.197 0.618 0.975 0.897
8 0.016 0.876 0.159 0.609 0.974 0.901
Mathematics
3 0.025 0.738 0.044 0.250 0.473 0.794
4 0.033 0.808 0.075 0.652 0.819 0.881
5 0.028 0.739 0.121 0.676 0.869 0.867
6 0.029 0.734 0.143 0.649 0.945 0.852
7 0.029 0.753 0.144 0.665 0.954 0.908
8 0.031 0.796 0.132 0.664 0.919 0.819
Science
8 0.026 0.874 0.160 0.644 0.885 0.857

Table 9
R2 values for Three-Level HLM with Demographics as Covariate for Kentucky and Maryland

Kentucky Maryland

Grade R2L1 R2L2 R2L3 R2L1 R2L2 R2L3

Reading
3 0.025 0.025 0.647 0.034 0.088 0.852
4 0.022 0.111 0.701 0.044 0.132 0.843
5 0.024 0.158 0.728 0.051 0.140 0.855
6 0.028 0.136 0.713 0.076 0.167 0.832
7 0.034 0.162 0.778 0.079 0.178 0.729
8 0.043 0.152 0.689 0.089 0.218 0.863
Mathematics
3 0.022 0.000 0.536 0.024 0.088 0.881
4 0.025 0.070 0.517 0.022 0.119 0.893
5 0.026 0.069 0.544 0.024 0.155 1.000
6 0.031 0.119 0.471 0.038 0.188 1.000
7 0.029 0.136 0.710 0.032 0.124 0.956
8 0.027 0.115 0.590 0.029 0.120 0.892
Science
7 0.024 0.171 0.781  
8 0.039 0.162 0.954
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students nested within teachers nested within schools, and 
random assignment at the teacher level. Note that the same 
design parameters are necessary for the power analysis for 
the three-level CRTs and MSCRT, except for an additional 
parameter for the MSCRT with random effects. In that case, 
researchers need to estimate the Level 3 treatment effect 

heterogeneity, or the variance in the treatment effect across 
Level 3 units, standardized by the Level 3 outcome variation 
(marked with the Greek letter ω). We assume random effects 
in this example.

When conducting power analyses for CRTs and MSCRTs, 
researchers often approach it from the perspective of 

Table 10
R2 values for Three-Level HLM with Pretest and Demographics as Covariates for Michigan and North Carolina

Michigan North Carolina

Grade R2L1 R2L2 R2L3 R2L1 R2L2 R2L3

Reading
3 NA NA NA 0.279 0.690 0.839
4 0.434 0.942 0.716 0.634 0.937 0.930
5 0.476 0.954 0.868 0.576 0.951 0.932
6 0.456 0.942 0.927 0.613 0.974 0.869
7 0.436 0.948 0.954 0.618 0.975 0.897
8 0.463 0.959 0.970 0.609 0.974 0.901
Mathematics
3 NA NA NA 0.250 0.473 0.794
4 0.595 0.902 0.705 0.652 0.819 0.881
5 0.580 0.880 0.753 0.676 0.869 0.867
6 0.625 0.888 0.895 0.649 0.945 0.852
7 0.612 0.881 0.954 0.665 0.954 0.908
8 0.615 0.923 0.942 0.664 0.919 0.819
Science
8 0.440 0.873 0.928 0.644 0.885 0.857

Table 11
R2 values for Three-Level HLM with Pretest and Demographics as Covariates for Kentucky and Maryland

Kentucky Maryland

Grade R2L1 R2L2 R2L3 R2L1 R2L2 R2L3

Reading
3 NA NA NA NA NA NA
4 0.507 0.837 0.865 0.638 0.908 0.907
5 0.523 0.935 0.833 0.674 0.908 0.936
6 0.490 0.963 0.731 0.649 0.976 0.864
7 0.511 0.980 0.842 0.668 0.977 0.933
8 0.497 0.988 0.850 0.673 0.973 0.953
Mathematics
3 NA NA NA NA NA NA
4 0.579 0.747 0.681 0.683 0.930 0.914
5 0.612 0.846 0.664 0.650 0.949 0.904
6 0.571 0.927 0.563 0.624 0.975 0.929
7 0.587 0.956 0.717 0.618 0.962 0.987
8 0.562 0.959 0.652 0.585 0.912 0.980
Science
7 0.426 0.962 0.663  
8 0.570 0.960 0.910
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determining the minimum detectable effect size (MDES), 
which represents the smallest true mean program effect or 
effect size that a study design can detect at a specific level 
of statistical significance, which is commonly .05 for two-
tailed tests, and a specific level of statistical power, which is 
typically 80% (Bloom, 2005; Bloom & Spybrook, 2017). 
For three-level CRTs with students nested within teachers 
nested within schools, the number of schools is the most 
influential in determining the MDES. In MSCRTs, the num-
ber of teachers may play a more important role, particularly 
when the treatment effect can vary randomly across sites as 
in the case of an MSCRT with random effects (Bloom & 
Spybrook, 2017). 

The design parameters presented in Tables 4 through 12 
can serve in planning reading, mathematics, and science 
impact studies that use a CRT or MSCRT. We created two 
research scenarios where these design parameters were used. 
First, we considered a three-level CRT, with students nested 
in teachers nested in schools, and randomization at the 
school level. Second, since the main contribution of this 
study was around the teacher level, we also considered a 
three-level MSCRT with teachers randomly assigned to a 
treatment condition within schools and students nested 
within teachers. In both scenarios, the power was set to 80%, 
the significance level at .05, and they had balanced designs 
with 50% of the schools in CRT and teachers in MSCRT 
receiving the treatment, and the other 50% serving as a com-
parison group. All of the calculations were done using 
PowerUp! (Dong & Maynard, 2013; Dong et al., 2017).

Scenario 1: MDES for Main Effects (3-level CRT)

In this first hypothesized scenario, suppose a team of 
researchers is designing a study to test the efficacy of a new 

mathematics curriculum for fourth graders. The researchers 
will implement the study in Kentucky, where there are 
approximately 40 participating schools, 4 teachers per 
school, and 25 students per teacher. The team conducts a 
power analysis to determine the MDES (Bloom, 1995).

To calculate the MDES, relevant estimates of the ICC 
will be used from Table 5 where the teacher-level ICC was 
estimated at .075 in Kentucky and the school-level ICC was 
estimated at .134. For estimates of R2, the researchers want 
to use only the student pretest (see Table 7) as they are aware 
that traditionally, demographic covariates explain very little 
variance (Bloom et  al., 2007; Hedges & Hedberg, 2013; 
Spybrook et al., 2016a; Westine et al., 2013). So, given the 
provided number of clusters, sample size, and ICC and R2 
values, the researchers were able to detect an MDES of .210 
in Kentucky. The detected effect size is comparable to the 
range Hill et al. (2008) suggested for educational interven-
tion, which was .20 to .30.

Scenario 2: MDES for Main Effects (3-level MSCRT)

In this second scenario, suppose the same research team 
designed the study so that only the teachers receiving the 
treatment are provided with a tablet to prepare their notes 
and implement the respective math curriculum for grade 4. 
Due to this intervention’s nature, it is reasonable to conduct 
an MSCRT with treatment assigned at the teacher level. Like 
in the previous scenario, the researchers will conduct their 
study in Kentucky. In this scenario, each participating school 
is considering assigning teachers to the new curriculum or 
the business-as-usual condition. As in the previous scenario, 
there are approximately 40 participating schools, 4 teachers 
per school, and 25 students per teacher. To determine the 
MDES, the researchers decided to conduct a power analysis 

Table 12
Necessary Parameters for Power Analysis for Three-Level CRT and MSCRT

Necessary Parameters

Alpha level (α) – Probability of Type I error
Two-tailed or One-tailed Test Specification
Power (1-β) – Statistical power (1-probability of a Type II error)
g – Number of Level 3 covariates
P – Proportion of Level 3 units randomized to treatment
ICC

L2
 – proportion of variance between teachers within schools (Level 2 units)

ICC
L3

 – proportion of variance between schools (Level 3 units)
R2

L3
 – proportion of school-level variance explained by covariates

R2

L2
 – proportion of teacher-level variance explained by covariates

R2

L1
 – proportion of student-level variance explained by covariates

K – number of schools (sample size, number of Level 3 units)
J – average number of teachers per school (average sample size for Level 2)
I – average number of students per school (average sample size for Level 1)
*ω

3
 – Level 3 treatment effect heterogeneity: variance in treatment effect across Level 3 units, standardized by Level 3 outcome variation.

*This parameter is relevant only for MSCRT with random effects.
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using the MDES calculator for a three-level random effects 
blocked cluster randomized assignment design, with assign-
ment at level 2.

Also, here, estimates of ICC will be used from Table 5 
and estimates or R2 values from Table 7 where the model 
included student pretest as covariate. Consistent with Weiss 
et al. (2017) study of 16 MSCRTs in education, the Level 3 
treatment effect heterogeneity was set at .05 which is opera-
tionalized as equivalent to 5 percent of the variance of means 
at level 3. Power calculations showed the researchers would 
be able to detect an MDES value of .107.

Comparison of Power Analysis with and without the 
Teacher Level

For comparison purposes, we ran power analysis using 
the same assumptions as in the first scenario demonstrated 
above where we computed the MDES for Main Effects 
(3-level CRT). However, instead of using the ICC values 
derived empirically in this study, we used the rule of thumb, 
where we computed two-level models with students nested 
in schools, and then we decomposed the school-level ICC 
from the two-level model, such that two-thirds of the origi-
nal school-level ICC estimate remained at the school level, 
and one-third of the original school-level ICC estimate was 
moved to the teacher level.

In line with the first scenario, for a math curriculum study 
for fourth graders in Kentucky, we assumed 40 participating 
schools, 4 teachers per school, and 25 students per teacher. 
From Table 2 in Appendix A, we decomposed the respective 
school-level ICC (.12). This led to a teacher-level ICC of .04 
and a school-level ICC of .08 (note that using empirical esti-
mates, the teacher-level ICC was .075 and the school-level 
ICC was .134). We used the same R2 values as in the first 
scenario with only the student pretest (see Table 7). Given 
the provided number of clusters, sample size, and ICC and 
R2 values, using the rule of thumb, the results indicated that 
the researcher would be able to detect an MDES of .16, 
which is smaller than what the MDES value suggested by 
using empirical ICCs (.21). This demonstration shows that 
using the rule of thumb ICCs might be misleading for 
researchers, and in this case, potentially underestimating the 
MDES they can detect given their sample size.

Implication of Power Analysis for Recruitment Processes

While this paper does not provide all possible design 
parameter values that any current or future evaluation team 
may need, this paper does importantly show that evaluators 
must work with partner schools, districts, and states to obtain 
information on how student achievement varies by teachers 
within schools. Such an investigation would not require stu-
dent data per se, but if teacher-level means, counts, and stan-
dard deviations were available from districts and/or potential 

schools, values for teacher- and school-level ICCs could be 
computed using variance component formulas based on 
analysis of variance tables (see, e.g., Searle et al., 2009).

Discussion

This study highlights the importance of considering all 
levels of the learning environment’s landscape. Students, 
teachers, and schools all play a role in shaping the environ-
ment, which can lead to differences in student achievement. 
Therefore, we examined the role teachers play in student 
achievement and the learning environment by calculating 
empirical estimates of design parameters for the teacher 
level. We decomposed the variance in mathematics, reading, 
and science test scores to the student, teacher, and school 
levels and examined how it varied across states. Lastly, we 
provided practical applications demonstrating how to calcu-
late power for three-level CRTs and MSCRTs.

The empirical estimates provided in this study regarding 
the variance in mathematics, reading, and science test scores 
between teachers and schools showed different patterns 
across states. On average, North Carolina had the lowest 
between-teacher variance and between-school variance 
compared to other states. Furthermore, across all states, 
there were differences in the variance between teachers and 
between schools across grades, where middle school grades 
had higher values of between-teacher variance compared to 
elementary school grades. One possible explanation for this 
trend may be the sorting of students across classes within 
schools that occurs in middle school based on their abilities. 
For example, schools offer more advanced course pathways 
in mathematics and readings only for students who are high 
performers, and thus we might notice such differences in 
middle school ICCs. However, for this explanation to be 
conclusive, we would need to conduct further analysis.

This paper showed notable differences in findings across 
states in terms of ICC values and the relative size of teacher 
and school ICCs. Some of the reasons for observing such 
differences across states might be related to states’ popula-
tion heterogeneity (variations in demographics and socio-
economic status); district and state contextual factors and 
policies regarding student-teacher assignment and organiza-
tional influence on teaching practices, economic conditions, 
and environmental conditions, which individually or in com-
bination may influence the impact of teachers on student 
achievement. These potential sources of variability across 
states are important to be explored further in future studies 
and supplement the analysis with qualitative research meth-
ods to better understand contextual factors. Thus, as a major 
takeaway, this paper shows that there are important contex-
tual factors that must be considered when planning a study in 
a single state.

As expected, the empirical estimates of the percentage 
of variance explained by demographics and pretests for all 
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three subjects showed that student pretests explained a 
higher portion of the variance in student achievement 
compared to demographics. A similar pattern we noticed 
across the states was that the percentage of variance 
explained by teacher- and school-level reading pretests 
appeared to be higher than for the mathematics pretest, 
which may indicate that reading relative achievement is 
more stable from grade to grade than mathematics. 
Furthermore, teacher-level had the highest explanatory 
power in middle school grades, compared to the student 
level or the school level.

Most of the studies in literature examined the domains of 
reading and mathematics. Empirical evidence suggests that 
design parameters for one domain may not be the same as 
another (e.g., Westine et al., 2013). That is, the contribution 
of teachers and schools plays out differently for science 
achievement than for reading achievement, as it was sug-
gested by our findings. Hence, in this study, we deemed it 
was important to consider science in addition to reading and 
mathematics and analyze the variance the teacher level con-
tributes to each of these subjects. We included the three sub-
jects to help researchers planning CRTs to have subject and 
grade-specific parameter estimates, as opposed to borrowing 
estimation from other subjects, which will reduce the preci-
sion in power estimations. Given that our study included 
results from four states only, we recommend that researchers 
consider state-specific variables that may influence ICC val-
ues, such as demographics, regional policies, or socio-eco-
nomic factors. This ensures that the results are contextualized 
appropriately. Furthermore, we also recommend small pilot 
studies from a specific state using similar approaches to 
those we covered in this paper, to help researchers compare 
design parameters across different states, as well as contrib-
ute to the precision of the parameters when computing statis-
tical power.

While this study excluded students with cognitive-related 
IEPs, the results of our studies are not likely to negatively 
impact study planning if such students were to be included. It 
is likely that including these students would result in slightly 
smaller ICC values, as students with cognitive-related IEPs 
are likely to have lower scores on state exams, which given 
the limited members of this population in the total student 
population is more likely to add more to the residual variance 
than any clusters’ variance. This assumes that students with 
cognitive-related IEPs are integrated in general education 
classrooms. For example, if we examine earlier results which 
are stored in online-tables such as Online intraclass correla-
tion database (Institute for Policy Research, n.d), we see that 
the school ICC for all fifth grade Massachusetts students for 
math achievement is about .31 (SE = .06), whereas the school 
ICC for the same grade and subject, but for students with 
cognitive-related IEPs, is .26 (SE = .02), which is smaller. 
However, this difference of .05 has a variance of approxi-
mately .06 if we assume these are independent estimates or 

.04 if we assume the sampling correlation of .99, neither of 
which results in a statistically significant difference.

While studies with teacher ICC values are limited to a 
few states, our results have indicated that often a majority of 
the variance associated with the clusters in which students 
are nested relate to teachers rather than schools. Since we 
have shown that “rules of thumb” from other scholars did 
not apply to our limited set of states, we are hesitant to 
provide another rule of thumb with likely limited utility. 
We encourage researchers to use this paper in their dis-
cussions with the districts and states they work with to 
encourage sharing data or running analyses on student 
achievement, with teacher and other applicable random 
effects, so that appropriate ICC values can be used in 
study planning. Short of this, a conservative approach 
would be to use available school ICCs as both the school 
and teacher ICC and not to split the school ICC into com-
posite school and teacher values. This will result in a 
much larger MDES or required sample values, of course, 
but will also avoid underpowering studies.

Limitations and Future Directions

This paper represents an important contribution for 
researchers interested in planning studies to evaluate the 
effectiveness of different educational interventions. The 
availability of design parameters for the teacher level will 
allow the researchers to conduct more precise power anal-
yses for studies that include the teacher level. While this 
work is important in its own right, it also lays the founda-
tion for additional extensions that can take place to help 
the field grow.

One extension of this work might be to further explore 
ICCs of states by focusing on state demographics, including 
the locale of their school and districts, the school sizes, and 
the socio-economic status of the school. Such work is neces-
sary to provide researchers with more specific design param-
eters so they can use those for their own research context 
similar to those presented in this potential study.

Second, the current study is focused on grades 3 to 8, thus 
excluding high school grades. It is important to expand this 
work to also include the high school grades, and then com-
pare the ICCs between different grades, such as elementary, 
middle, and high school grades. Such a study is important, 
especially for the researchers that focus on intervention at 
the high school level.

Third, the current results from this paper are useful for the 
main effects. There is more work that needs to be done to 
also understand and evaluate teacher moderator effects as 
they play a very important role in delivering educational 
interventions. The inclusion of the teacher level in empirical 
estimates of ICCs will allow researchers to conduct power 
analyses to detect teacher-level moderator effects, which is 
an important next step in expanding the existing work.
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Lastly, while the quantitative methods of research can 
allow us as researchers to understand variability in student 
achievement and statistically explain it at different levels of 
nesting, as shown in this study, differences exist between 
states. Therefore, it is important in the future to take these 
results and conduct a study using qualitative methods of 
inquiry, such as grounded theory (Charmaz, 2006; Corbin & 
Strauss, 2015), by conducting interviews with representative 
of states’ educational departments and tap into their experi-
ences, stories, historical development of the education pol-
icies, and understanding of their respective states context 
(Mulolli & Gothberg, 2023). This way, we will be able to 

have a clearer picture of the reasons we are witnessing such 
variability in student achievement at different levels of 
nesting across states.

Some of the limitations of this study include the follow-
ing: given the use of convenience sampling of our states, 
the results of this study represent four states in total. In the 
future, it is important to run similar analyses in other states 
and compare the findings. In this study, we excluded stu-
dents with cognitive disabilities. While we provide our rea-
sons for making this decision in this paper, it would be 
important to add them back to the analytical sample in the 
future.

Appendix A

ICC and R2 Values by State, Grade, and Subject for Two-Level Models

Appendix A, Table 1
R2 values for Two-Level Unconditional HLM for Four States

Michigan North Carolina Kentucky Maryland

Grade ICC L2 SE ICC L2 SE ICC L2 SE ICC L2 SE

Reading
3 0.17 0.01 0.13 0.01 0.13 0.01 0.24 0.01
4 0.17 0.01 0.14 0.01 0.12 0.01 0.24 0.01
5 0.16 0.01 0.12 0.01 0.11 0.01 0.26 0.01
6 0.15 0.01 0.15 0.01 0.13 0.01 0.26 0.01
7 0.17 0.01 0.17 0.01 0.17 0.01 0.26 0.02
8 0.15 0.01 0.15 0.01 0.25 0.01 0.28 0.02
Mathematics
3 0.20 0.01 0.18 0.01 0.15 0.01 0.25 0.01
4 0.23 0.01 0.18 0.01 0.17 0.01 0.26 0.01
5 0.24 0.01 0.18 0.01 0.16 0.01 0.28 0.01
6 0.24 0.01 0.19 0.01 0.19 0.01 0.27 0.01
7 0.22 0.01 0.20 0.01 0.17 0.01 0.28 0.02
8 0.23 0.01 0.21 0.01 0.28 0.02 0.32 0.02
Science
7 0.18 0.01  
8 0.19 0.01 0.19 0.01 0.32 0.02
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Appendix A, Table 2
R2 values for Two-Level HLM with Pretest as Covariate in Four States

Michigan North Carolina Kentucky Maryland

Grade R2L1 R2L2 R2L1 R2L2 R2L1 R2L2 R2L1 R2L2

Reading
3 NA NA NA NA NA NA NA NA
4 0.42 0.90 0.64 0.92 0.52 0.83 0.66 0.89
5 0.48 0.93 0.57 0.91 0.54 0.83 0.69 0.92
6 0.48 0.93 0.66 0.93 0.53 0.76 0.68 0.87
7 0.46 0.93 0.66 0.95 0.56 0.89 0.71 0.93
8 0.50 0.95 0.65 0.95 0.55 0.94 0.71 0.95
Mathematics
3 NA NA NA NA NA NA NA NA
4 0.59 0.83 0.65 0.83 0.58 0.66 0.72 0.88
5 0.58 0.83 0.68 0.83 0.62 0.67 0.71 0.91
6 0.64 0.86 0.68 0.83 0.60 0.60 0.69 0.89
7 0.63 0.86 0.70 0.90 0.62 0.78 0.71 0.96
8 0.65 0.90 0.70 0.85 0.61 0.79 0.65 0.94
Science
7 0.45 0.68  
8 0.47 0.76 0.65 0.85 0.61 0.91

Appendix A, Table 3
R2 values for Two-Level HLM with Demographics as Covariate in Four States

Michigan North Carolina Kentucky Maryland

Grade R2L1 R2L2 R2L1 R2L2 R2L1 R2L2 R2L1 R2L2

Reading
3 0.02 0.75 0.30 0.82 0.03 0.54 0.04 0.74
4 0.02 0.78 0.66 0.92 0.02 0.56 0.05 0.71
5 0.02 0.80 0.60 0.93 0.03 0.56 0.06 0.74
6 0.02 0.79 0.67 0.95 0.04 0.45 0.09 0.64
7 0.03 0.81 0.67 0.96 0.04 0.63 0.09 0.59
8 0.02 0.82 0.66 0.95 0.05 0.54 0.10 0.68
Mathematics
3 0.03 0.65 0.26 0.73 0.02 0.43 0.03 0.72
4 0.04 0.73 0.67 0.83 0.03 0.41 0.03 0.79
5 0.03 0.67 0.69 0.83 0.03 0.39 0.04 0.74
6 0.04 0.66 0.69 0.86 0.04 0.33 0.06 0.79
7 0.04 0.70 0.72 0.90 0.04 0.55 0.06 0.75
8 0.04 0.72 0.71 0.86 0.04 0.46 0.04 0.72
Science
7 0.03 0.54  
8 0.03 0.79 0.66 0.85 0.05 0.74
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