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Abstract

Θ is the least ordinal α with the property that there is no surjection f : R→ α. ADR is the

Axiom of Determinacy for games played on the reals. It asserts that every game of length ω of

perfect information in which players take turns to play reals is determined. An ideal I on ω1 is

ω1-dense if the boolean algebra ℘(ω1)/I has a dense subset of size ω1. We consider the theories,

where CH stands for the Continuum Hypothesis,

(T1) ZFC + CH + “There is an ω1-dense ideal on ω1.”

(T2) ZF + ADR + “Θ is a regular cardinal.”

The main result of this paper is that T1 implies that the existence of a model of T2. Woodin, in

unpublished work, showed that the consistency of T2 implies the consistency of T1. We will also

give a proof of this result, which, together with our main theorem, establish the equiconsistency

of T1 and T2.

As a consequence, this resolves part of question 12 in [35]; in particular, it shows that the

theories (b) and (c) in [35, Question 12] are equiconsistent. Thus, our work completes the

work that started by Woodin and Ketchersid in [5] some 25 years ago. We also establish other

theorems of similar nature in this paper, showing the equiconsistency of T2 and the statement

that the nonstationary ideal on ℘ω1(R) is strong and pseudo-homogeneous. The aforementioned

results are the only known equiconsistency results at the level of ADR+“Θ is a regular cardinal.”

1. INTRODUCTION

This paper studies the consistency of strong determinacy theories, specifically the theory

“ZF + ADR + Θ is regular”

and the consistency of strong ideals on ω1, specifically ω1-dense ideals on ω1. The main theorems

of the paper, Theorem 1.4 and Corollary 1.6, resolve a long-standing conjecture by Woodin in [35].

The work in this paper contributes to our understanding of and helps further establish the close

connections between ideals and determinacy, two very seemingly different areas in set theory.
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Some background

Famously, Ulam’s investigations of the Measure Problem, which asks whether there is a measure on

[0, 1], led him to prove that there is no countably complete 0-1 measure, that is an ultrafilter, on ω1

(e.g. [3, Chapter 10]). Ulam’s theorem is often presented as showing that ω1 is not a measurable

cardinal, where we say that κ is a measurable cardinal if there is a κ-complete ultrafilter U on κ.

Ulam’s theorem and the Measure Problem in general have been a source of great ideas in set

theory, and one of these ideas has been the study of ideals that could induce nice ultrafilters on

uncountable cardinals. Suppose, for example, that I ⊆ ℘(κ) is an ideal on κ. Let PI = ℘(ω1)/I
be the corresponding boolean algebra induced by I. One can also think of PI as a poset ordered

by inclusion. It is not hard to see that if U is a generic object for PI1 then the function U∗ :

(℘(κ))V → {0, 1} given by U∗(A) = 0 ⇐⇒ A 6∈ U satisfies many of the properties of being a

0-1 measure with two major deficiencies. First U∗ may not measure all subsets of κ that exist in

V [U ], and second, U∗ may not be countably complete. It is then unclear exactly in what way this

approach could lead to a reasonable study of the Measure Problem.

The concept of ultrapower introduced the necessary formalism to eliminate the aforementioned

issues. It is a well-known fact that a cardinal κ is a measurable cardinal if and only if there is an

elementary embedding j : V → M such that M is a transitive class of V , j 6= id, j � κ = id and

j(κ) > κ. If κ is a measurable cardinal then one obtains the M above as an ultrapower of V by a

κ-complete ultrafilter on κ. The same can be done with our generic U above, and for the start one

can only demand the well-foundedness of Ult(V,U).

An ideal I is called precipitous if whenever U ⊆ PI is a generic ultrafilter, the generic ultrapower

of V by U , Ult(V,U), is well-founded. This approach to the Measure Problem has been incredibly

fruitful and has lead to many great discoveries. The story has been partially told in Foreman’s long

manuscript [2]. The study of precipitous ideals has led to solutions of problems considered not just

by set theorists but by wider mathematical community. For example, Theorem 5.42 of [2] states

that the existence of a certain nice ideal implies among other things that every projective set of

reals is Lebesgue measurable.

Let I be an ideal on ω1. We write I+ for the collection of I-positive sets and FI for the

dual filter of I. I is κ-saturated if there is no family (Si : i < κ) of sets in ℘(ω1)\I such that

Si ∩ Sj ∈ I for all i 6= j; in other words, I is κ-saturated if there is no antichain in PI of size

κ. A κ-complete ideal I is saturated if it is κ+-saturated. Presaturation is a technical weakening

of saturation. An ideal I on ω1 is presaturated if for any A ∈ ℘(ω1)\I, any sequence of maximal

antichains (Ai : i < ω) in ℘(ω1)/I, there is B ⊆ A such that B /∈ I and such that for each i < ω,

{X ∈ Ai : X ∩B /∈ I} has cardinality at most ω1. The reader can consult Foreman’s paper [2] and

Woodin’s book [35] for more comprehensive discussions on the topic of ideals, which is an important

area of research in modern set theory.

1I.e. intersects all dense open subsets of PI .
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Shelah, Jensen, and Steel have established the following famous theorem, which is one of the

first equiconsistency results that connects ideals and large cardinals.

Theorem 1.1. The following theories are equiconsistent.

1. ZFC + There is a pre-saturated ideal on ω1.

2. ZFC + There is a saturated ideal on ω1.

3. ZFC + There is a Woodin cardinal.

Shelah proves the consistency of 1 and 2 from the consistency of 3 by forcing techniques. Jensen

and Steel prove the converse using inner model theoretic techniques, in particular core model theory.

See, for example, [21, 4].

Claverie and Schindler [1] have improved the above result and shown that in fact theory 3 above

is equiconsistent with the theory “there is a strong ideal on ω1”.2

Below we say that the ideal I ⊆ ℘(ω1) is ω1-dense if PI has a dense set of size ω1. ω1-density is

a stronger property than saturation. The consistency question of ω1-dense ideals has been studied

extensively in the last 25 years, starting with Woodin [35] and by various other authors in [5, 14].

Unlike saturation and presaturation of ideals on ω1, which can be forced from a relatively mild

large cardinal like a Woodin cardinal, there is no known traditional forcing construction of an ω1-

dense ideal from a large cardinal significantly weaker than a supercompact cardinal.3 The Axiom

of Determinacy (AD) comes into the picture in a rather surprising and dramatic fashion via the

following remarkable theorem of Woodin.

Recall that AD states that every infinite-length, two-person game of perfect information where

players take turns to play integers is determined, i.e. one of the players has a winning strategy. It

is worth noting that AD is equiconsistent with “ZFC + there are ω many Woodin cardinals” and

the latter theory is much weaker than a supercompact cardinal. A (stronger) variation of AD is

ADR, which is like AD except the players are allowed to play reals. The theory “ZF + ADR + Θ

is regular” is strictly stronger than ZF + ADR; here Θ is the supremum of ordinals α for which

there is a surjection from R onto α. If the axiom of choice holds, then Θ = c+, the successor of

the continuum. If AD holds, then Θ is a limit of measurable cardinals and more. In the following

theorem and this paper, L(R) is the minimal model of ZF that contains all the ordinals and the

real numbers (see [14, Theorem 2.11.1]).

Theorem 1.2 (Woodin). The following theories are equiconsistent.

1. ZFC + “There is an ω1-dense ideal on ω1”.

2. AD holds in L(R).

2The property of being strong is weaker than being presaturated. Strong ideals are precipitous.
3Woodin constructs ω1-dense ideals from an almost huge cardinal (cf. [2]). Recently, Andreas Lietz has constructed

ω1-dense ideals from the existence of a supercompact cardinal, which is a weaker hypothesis than almost hugeness.
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Woodin introduces two very important sets of techniques in the proof of the above theorem. In

one direction, to show the consistency of “ZFC + There is an ω1-dense ideal on ω1”, he develops

powerful and general forcing techniques over models of determinacy, i.e. Pmax and its cousins (cf.

[35]).4 To prove the other direction, the core model induction (CMI) technique was introduced. CMI

is a general technique for obtaining lower-bound consistency by inductively proving determinacy

in canonical models like L(R). CMI has since then been developed further into a very powerful

and versatile method for proving lower-bound consistency and equiconsistency results (see for ex-

ample [14, 32, 34, 27]) from a variety of hypotheses. Part of this development is in understanding

determinacy models beyond L(R)5 and their canonical inner models of large cardinals (like the

HOD).

The aforementioned theorems of Shelah, Jensen, Steel, Woodin, and others demonstrate inti-

mate connections between different branches of set theory, namely the study of precipitous ideals

and the study of models of AD. It seems that the connections that theorems like above establish

are rooted in the naturalness of the constructions that produce the models of one theory given a

model of another, and this naturalness – the feeling of having no barriers to naturally drift from

one theory to another as if they were one and the same theory – is not fully expressed in the formal

statement of the theorem, namely that the two theories are equiconsistent. We discuss this a bit

more later in this section.

The main theorem of this paper, Theorem 1.4, has the same spirit as Woodin’s theorem above.

Definition 1.3 (DI). Let DI be the conjunction of

• CH,

• there is an ω1-dense ideal I on ω1.

a

For a sentence φ in the language of set theory, we say that M is the minimal model of “ZF +

ADR + φ” if M is a transitive model of “ZF + ADR + φ” containing all reals and ordinals, and

whenever N is a transitive model of “ZF + ADR +φ” containing all reals and ordinals then M ⊆ N .

Theorem 1.4. ZFC + DI implies that the minimal model of ZF + ADR + “Θ is a regular cardinal”

exists.

The proof of [7, Theorem 6.26] explicitly establishes that the existence of divergent models of

AD+ implies their common part is beyond a model of ZF + ADR + “Θ is a regular cardinal”. Thus,

if there is a model of ZF + ADR + “Θ is a regular cardinal” then there is a minimal one. As a result

of this theorem and Woodin’s unpublished work, which we will present in Section 2, we obtain the

following equiconsistency result.

Theorem 1.5. The following theories are equiconsistent.

4This work was partly inspired by previous work by Steel and Van Wesep [29].
5More precisely, AD+ models. AD+ is a technical strengthening of AD.
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1. ZFC + DI

2. ZF + ADR + “Θ is a regular cardinal.”

Let NSω1 be the nonstationary ideal on ω1 and (T ) be the theory

ZFC + CH + “NSω1 |S is ω1-dense for a dense set of S ∈ ℘(ω1)\NSω1”.

Woodin, unpublished, has shown that Con((T )) follows from Con(ZF + ADR + “Θ is regular.”).

This result and Theorem 1.5 immediately show

Corollary 1.6. The following theories are equiconsistent.

1. ZF + ADR+“Θ is regular”.

2. (T).

This confirms that theories (b) and (c) in [35, Question 12] are indeed equiconsistent. Below we

give some more motivations for proving such theorems.

Some definitions and more results.

For any set X, let ℘ω1(X) be the set of countable subsets of X. Let I be an ideal on ℘ω1(R).

We let I+ and FI be as before and let PI be the boolean algebra ℘(℘ω1(R))/I. Let c denote the

size of the continuum.

Definition 1.7. An ideal I on ω1 or on ℘ω1(R) is precipitous if whenever G ⊆ PI is a V -generic

ultrafilter, the generic ultrapower Ult(V,G) induced by G is well-founded. a

Definition 1.8. An ideal I on ℘ω1(R) is strong if

(a) I is precipitious, and

(b) whenever G ⊆ PI is V -generic, letting jG : V → Ult(V,G) be the ultrapower map, then

jG(ω1) = c+.

a

Definition 1.9. An ideal I on ℘ω1(R) is pseudo-homogeneous if for every α ∈ ON, s ∈ ONω,

λ < c+, and formula θ in the language of set theory, letting G ⊆ PI be a V -generic filter and

jG : V → Ult(V,G) the corresponding ultrapower map, the truth of the statement

Ult(V,G) � θ[α, jG(s), jG[λω]]

is independent of the choice of G. a

We obtain an equiconsistency regarding strong, pseudo-homogeneous ideals on ℘ω1(R).
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Theorem 1.10. The following are equiconsistent.

1. ZFC + “The nonstationary ideal on ℘ω1(R) is strong and pseudo-homogeneous.”

2. ZF + ADR+“Θ is a regular cardinal.”

Motivations

Motivated by the success of the generic elementary embeddings induced by ideals or other sim-

ilar structures, Foreman has suggested them as a possible foundational framework, and exposited

his ideas in [2, Chapter 11]. As is well known, the basic foundational issue that set theory is facing

is its inability to produce a single foundational framework that is accepted by all and at the same

time solves all fundamental problems including the Continuum Hypothesis. Several successful foun-

dational frameworks, such as Forcing Axioms, Canonical Inner Models and Generic Embeddings, have

been proposed and developed, but they all seem to disagree on basic questions such as whether

the Continuum Hypothesis is true or whether the universe is a ground (i.e., cannot be obtained as

a non-trivial forcing extension of an inner model) and on many other such fundamental questions.

One of the main goals of CMI is to unify all of these frameworks by showing that each can

be naturally interpreted in another. Given such bi-interpretations, disagreements on fundamental

questions can be traced to subjective preferences in one framework over another, or preferences in

one type of formalism over another.

For example, Woodin’s theorem (Theorem 1.2) and Theorem 1.5 show how to interpret natural

ideas occurring in the study of generic embeddings in models of determinacy and vice versa. The

reason is that, in both cases, the forcing notion used to obtain the models carrying such ideals are

natural forcing notions, and in the other direction, the models of determinacy built in both cases

are natural canonical models of AD. This sort of bi-interpretability demonstrates that one cannot

have scientifically objective reasons for preferring generic embeddings over, say, determinacy ax-

ioms, as they are deeply interconnected: commitment to one entails commitment to the other. A

bias towards a particular formalism can be justified by other more pragmatic ways, for example by

insisting on the shortest or clearest or most natural possible proofs of certain desired theorems. The

ideas exposited above are the motivational ideas behind proving theorems like the main theorem of

this paper.6 For a more detailed discussion of CMI and its role in set theory, readers may consult [11].

The history behind the paper.

The first written presentation of CMI is Ketchersid’s PhD thesis [5], which motivated Ralf Schindler

and John Steel to work on a book presenting the Core Model Induction (see [14]). In 2006 they or-

ganized a seminar in Berlin covering the basics of CMI. As one can see by flipping through [14],

one of the main directions pursued by the community at this time was to complete Ketchersid’s

project. See John Steel’s [23] for a conjecture along the same vein.

6The authors first learned about these ideas from John Steel.
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One of the main reasons this was believed to be important was that it was not known and

still is not known how to force DI, clause 1 of Theorem 1.5, from conventional large cardinals that

are weaker than supercompact cardinals. Woodin forced DI both over the models of ADR + “Θ

is a regular cardinal” and from an almost huge cardinal (see [2, Chapter 7.14]). In [35], Woodin

also forced MM++(c), Martin’s Maximum for forcing posets of size at most the continuum, over a

model of ADR + “Θ is a regular cardinal” (see [35, Theorem 9.40]), and just like with DI, it is not

known how to force MM++(c) from conventional large cardinals much weaker than a supercompact

cardinal. These and other results of Woodin from [35] seem to suggest that the theory ADR + “Θ is

a regular cardinal” is in the region of supercompact cardinals, and the project of getting a model of

it via CMI seemed to be equivalent to getting canonical inner models that could have supercompact

cardinals in it, which has been one of the Holy Grails of set theory.

However, [7] showed that in fact the theory ADR+“Θ is a regular cardinal” is much weaker than

a supercompact cardinal: it is weaker than a Woodin cardinal that is a limit of Woodin cardinals

(see [7, Theorem 6.26]). This theorem seems to suggest the existence of a gap in our understanding

of models of set theory. On the one hand, the conventional forcing and large cardinal technology

that is needed to force statements such as DI or MM++(c) requires the complexity of a supercompact

cardinal or beyond, and on the other hand, equally natural but different technologies based on [35]

place the complexity far below a supercompact cardinal. This phenomenon has not yet found a

proper explanation.

While [7] did show that finishing Ketchersid’s project will not lead to one of the Holy Grails of

set theory, the importance of the project didn’t diminish, as it was perceived to be one of the main

guiding problems for developing the CMI to a technique for producing models of ADR + “Θ is a

regular cardinal” and beyond7. In this direction, the last chapter of the second author’s thesis [12]

gave a rough outline of producing models of ADR+“Θ is a regular cardinal” from a strengthening of

DI,8 but later on a substantial error was discovered in the proof by Steel and the third author. The

concept of embeddings with condensation introduced in [8] (see [8, Definition 11.14, Lemma 11.15])

and further developed in [32] (see [32, Definition 3.81, Lemma 3.82]) and [10] seemed good enough

for correcting the aforementioned error, which is what we will do in this paper (see Theorem 6.17).

However, to obtain Theorem 1.4, more substantial ideas beyond this need to be developed.

Furthermore, the fourth author, in his thesis [34], developed techniques for handling the suc-

cessor stages of CMI that avoid the famous “A-iterability” proofs (see [14, Theorem 5.4.8] or [22,

Theorem 1.46]) and various other complicated arguments originally due to Woodin. We adapt

the fourth author’s arguments to our current context (see Section 5). The second, third, and

fourth authors established the consistency of ZF + ADR + “Θ is regular” from the aforementioned

strengthening of DI in 2020-2021; this completes the project started by Ketchersid in [5]. The

obvious question is how to get rid of the technical assumption used in the second author’s thesis, as

7See for example [10] for an analysis of determinacy models stronger than those of ADR +“Θ is a regular cardinal”
and core model induction techniques for constructing such models from strong theories like PFA.

8The strengthening is DI plus the statement: letting I be an ω1-dense ideal ω1, the generic embedding induced
by any generic G ⊆ PI when restricted to the ordinals is amenable to V .
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mentioned in Footnote 8. The first and fifth authors joined the ongoing work in 2022 and finished

the project. The result of these collaborations is Theorem 1.4.

As mentioned above, it is a well-known unpublished theorem of Woodin that one can force

DI over models of ADR + “Θ is a regular cardinal”. The fourth author forced some more general

statements about ideals in his thesis, and we will use his argument to give a proof of this theorem of

Woodin in Subsection 2.3 below. Thus, this paper presents a self-contained proof of Theorem 1.5,

giving the proof of both directions in as much detail as it is possible to do in a research article.

Theorem 1.5 and Theorem 1.10 are currently the only known equiconsistency results at the level

of ADR + “Θ is a regular cardinal”.

The paper is organized as follows. In Section 2, we summarize basic facts about ideals and AD+

we need in this paper and show that DI and the existence of a strong, pseudo-homogeneous ideal

on ℘ω1(R) are consistent relative to “ADR + Θ is a regular cardinal.”9 In Section 3, we summarize

preliminaries and basic notions we need for the CMI in this paper. Section 4 outlines the proof of

Theorem 1.4. Sections 5 and 6 fill in the details of the outline and complete the proof of Theorem

1.4, obtaining models of “ADR + Θ is a regular cardinal” from ZFC + DI. In Section 7, we out-

line the argument obtaining models of “ADR + Θ is a regular cardinal” from the assumption that

the nonstationary ideal on ℘ω1(R) is strong and pseudo-homogeneous. Since the argument is very

similar to the argument from DI, we simply focus on the main changes, leaving the details to the

reader. In the following, we will often write “Θ is regular” for “Θ is a regular cardinal.”

Acknowledgments. The work here is greatly influenced by Ketchersid’s work in his thesis [5],

which in turn is greatly influenced by Woodin’s early work in the CMI. We are grateful to them for

their inspiring work in this direction. We are also grateful to Woodin for his permission to include

the proof of his unpublished work which shows that Con(ZF + ADR+“Θ is a regular cardinal”)

implies Con(ZFC + DI). The third author is grateful to the NSF for its generous support via Career

Award DMS-1945592.

2. DENSE IDEALS AND STRONG PSEUDO-HOMOGENEOUS IDEALS FROM MODELS

OF ADR + Θ IS REGULAR

In this section, we show the consistency of ZFC + DI and of the existence of a strong, pseudo-

homogeneous ideal on ℘ω1(R) from ADR + “Θ is regular.”10 We first review basic facts about AD+

and ideals. In Subsection 2.3, we will give the consistency proof.

2.1. Basic facts about AD+

We start with the definition of Woodin’s theory of AD+. In this paper, we identify R with ωω. We

use Θ to denote the sup of ordinals α such that there is a surjection π : R → α. Under AC, Θ is

9We adapt the proof given in the fourth author’s thesis here. We note the result that Con(ZFC + DI) follows from
Con(ADR + “Θ is regular”) is due to Woodin.

10In fact we show the nonstationary ideal on ℘ω1(R) has these properties.
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just the successor cardinal of the continuum. In the context of AD, the cardinal Θ is shown to be

the supremum of w(A)11 for A ⊆ R (cf. [20]). The definition of Θ relativizes to any determined

pointclass Γ with sufficient closure properties, and we may write ΘΓ for the supremum of ordinals

α such that there is a surjection from R onto α coded by a set of reals in Γ.

Definition 2.1. AD+ is the theory ZF + AD + DCR plus the following two statements:

1. For every set of reals A, there are a set of ordinals S and a formula ϕ such that x ∈ A ⇐⇒
L[S, x] � ϕ[S, x]. The pair (S, ϕ) is called an ∞-Borel code for A.

2. For every λ < Θ, every continuous π : λω → ωω, and every set of reals A, the set π−1[A] is

determined.

a

AD+ is equivalent to AD + “the set of Suslin cardinals is closed below Θ.” Another, perhaps more

useful, characterization of AD+ is AD + “Σ1 statements reflect into the Suslin co-Suslin sets” (see

[26] for the precise statement).

For A ⊆ R, we let θA be the supremum of all α such that there is an OD(A)12 surjection from

R onto α. If Γ is a determined pointclass and A ∈ Γ, we write Γ � A for the set of all B ∈ Γ that

are Wadge reducible to A. If α < ΘΓ, we write Γ � α for the set of all A ∈ Γ with Wadge rank

strictly less than α.

Definition 2.2 (AD+). The Solovay sequence is the sequence 〈θα | α ≤ λ〉 where

1. θ0 is the supremum of ordinals β such that there is an OD surjection from R onto β;

2. if α > 0 is limit, then θα = sup{θβ | β < α};

3. if α = β + 1 and θβ < Θ (i.e. β < λ), fixing a set A ⊆ R of Wadge rank θβ , θα is the sup of

ordinals γ such that there is an OD(A) surjection from R onto γ, i.e. θα = θA.

a

Note that the definition of θα for α = β + 1 in Definition 2.2 does not depend on the choice of

A. One can also make sense of the Solovay sequence of pointclasses that may not be constructibly

closed. Such pointclasses show up in core model induction applications. The Solovay sequence

(θα : α < γ) of a pointclass Ω with the property that if A ∈ Ω, then L(A,R) � AD+ and ℘(R) ∩
L(A,R) ⊆ Ω is defined as follows. First, θ0 is the supremum of all α such that there is some A ∈ Ω

and some ODL(A,R) surjection π : R → α. If λ < γ is limit, then θγ = supα<λθα. If θα has been

defined and α + 1 < γ, then letting A ∈ Ω be of Wadge rank θα, θα+1 is the supremum of β such

that there is some B ∈ Ω and some OD(A)L(B,R) surjection π : R→ β.

11w(A) is the Wadge rank of A.
12x is OD(A) if there is a formula φ and a finite set of ordinals s such that x is the unique y satisfying the formula

φ(y, s, A).
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Roughly speaking, the longer the Solovay sequence is, the stronger the associated AD+-theory

is. The minimal model of AD+ is L(R), which satisfies Θ = θ0. The theory AD+ + ADR implies

that the Solovay sequence has limit length. The theory ADR + DC is strictly stronger than ADR

since by [20], DC implies cof(Θ) > ω whereas the minimal model13 of ADR satisfies Θ = θω. The

theory “ADR + Θ is regular” is much stronger still, as it implies the existence of many models of

ADR + DC. We end this section with a theorem of Woodin, which produces models with Woodin

cardinals from AD+. The theorem is important in the HOD analysis of such models.

Theorem 2.3 (Woodin, see [6]). Assume AD+. Let 〈θα | α ≤ Ω〉 be the Solovay sequence. Suppose

α = 0 or α = β + 1 for some β < Ω. Then HOD � θα is Woodin.

2.2. Basic properties of ideals

We summarize standard facts about ideals that we will need in this paper. See for example [35]

and [3] for a more detailed discussion.

Suppose I is an ideal on a set X. We say that I is countably complete if whenever {An : n < ω}
are sets in I then

⋃
n<ω An ∈ I. Supposing X is a cardinal (e.g. X = ω1), we say I is normal if

whenever {Ax : x ∈ X} ⊂ I then the diagonal union {x ∈ X : ∃y ∈ x(x ∈ Ay)} ∈ I. All ideals I
on a cardinal considered in this paper will be assumed countably complete and normal.

Suppose I is an ω1-dense ideal on ω1. The following are standard facts; see [35, Definition 6.19]

and the discussion after it.

Fact 2.4. (i) PI is a homogeneous forcing.14

(ii) There is a boolean isomorphism π : PI → RO(Coll(ω, ω1))15. In particular, PI is forcing

equivalent to Coll(ω, ω1).

(iii) For any V -generic filter G ⊂ Coll(ω, ω1), π induces a V -generic filter H ⊂ PI , and letting

j : V →M =def Ult(V,H) ⊂ V [H] be the associated generic ultrapower map, we have:

(a) j(f)(ωV1 ) = G for some f : ω1 → Hω1; in particular, V [H] = V [G].

(b) j(ωV1 ) = ωV2 .

(c) M is well-founded and Mω ⊂M in V [H].

Let I be an ω1-dense ideal on ω1. For any V -generic g ⊂ PI =def ℘(ω1)/I, let jg : V →
M = Ult(V, g) be the associated ultrapower map. We fix a Boolean isomorphism π : PI →
RO(Coll(ω, ω1)) as in Fact 2.4 and let G ⊂ Coll(ω, ω1) be such that g is induced from G via π.

When g is clear from the context, we will write j for jg.

13From here on, whenever we talk about “models of AD+”, we always mean transitive models of AD+ that contain
all reals and ordinals.

14A forcing P is homogeneous if whenever p, q ∈ P, there is an automorphism σ : P→ P such that σ(p) is compatible
with q.

15RO(Coll(ω, ω1)) is the regular open algebra of Coll(ω, ω1).
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We say that a set of reals A is ω1-universally Baire (or ω1-UB) if there is some ordinal γ and a

pair of trees T, U on ω × γ such that A = p[T ] = R− p[U ] and for any forcing P of size ≤ ωV1 , for

any V -generic h ⊂ P, in V [h], p[T ] = R− p[U ]. Here p[T ] = {x ∈ R : ∃f ∈ γω (x, f) ∈ [T ]}.

Lemma 2.5. Let PI , g, G,M be as above. Suppose A ⊂ R is ω1-UB as witnessed by trees (T, U),

then in V [G], p[T ] = p[jg(T )] and p[U ] = p[jg(U)].

Proof. We write j for jg. Clearly, p[T ] ⊆ p[j(T )] and p[U ] ⊆ p[j(U)]. In M , equivalently in V [G],

p[j(T )] = R− p[j(U)].

This follows from elementarity of j, the fact that in V , p[T ] = R − p[U ], and property (c) of Fact

2.4.

By the fact that T, U witness A is ω1-UB and Coll(ω, ω1) has size ω1, in V [G], p[T ] = R− p[U ].

We must then get p[T ] = p[j(T )] and p[U ] = p[j(U)].

Remark 2.6. It follows easily from Lemma 2.5 that if (T, U), (T ′, U ′) witness A is ω1-UB then in

V [g], p[T ] = p[T ′] and p[U ] = p[U ′]. Therefore, we can unambiguously write Ag for p[T ] ∩ V [g] as

the canonical interpretation of A in V [g].

Suppose X = ℘ω1(Y ), where ℘ω1(Y ) is the collection of all countable subsets of Y , for some set

Y (e.g. Y = R). We say I is fine if for any y ∈ Y , the set {σ ∈ ℘ω1(Y ) : y /∈ σ} ∈ I. We say I
is normal if whenever {Ay : y ∈ Y } ⊂ I, the diagonal union {σ ∈ ℘ω1(Y ) : ∃y ∈ σ (σ ∈ Ay)} ∈ I.

I is |Y |-dense if there is a dense subset of PI of size |Y |. All ideals on sets of the form ℘ω1(Y )

considered in this paper will be assumed countably complete, normal, and fine.

Lemma 2.7. Suppose I is a pseudo-homogeneous ideal on ℘ω1(R). Let G ⊂ PI be V -generic and

let jG : V → Ult(V,G) be the associated generic embedding. Then:

(a) For any ordinal α, jG � α does not depend on G; in particular, jG � α ∈ V .

(b) If λ < c+, then jG[λω] does not depend on G and jG[λω] ∈ V .

(c) If A is a set of ordinals that is definable in V from a countable sequence of ordinals, then jG(A)

does not depend on G and jG(A) ∈ V .

Proof. We give the proof for (a). The other items are similar. Let θ(u, v, w) be the formula

“u = v(0)”. Let α be an ordinal. Let s : ω → Ord be the constant function s(n) = α for all

n ∈ ω. For each ordinal β the truth of the statement Ult(V,G) � θ[β, jG(s), ∅] is independent of G

by pseudo-homogeneity, so the value of jG(α) is independent of G.

2.3. Ideals from determinacy

We assume ADR +“Θ is regular” and V = L(℘(R)). Let P be a poset with the following properties:

• P is coded by a set of reals.

11



• P is σ-closed.

• P is homogeneous.

• 1 
P R is wellorderable.

• 1 
P c-DC, dependent choices for c-sequences.

Recall that c is the size of the continuum. Examples of such P are Coll(ω1,R) and Pmax.

Let G ⊆ P be V -generic and let H ⊂ Coll(Θ, ℘(R))V [G]. Note that by the properties of P and

the assumption V = L(℘(R)), in V [G][H], ZFC holds and Θ = c+.

Definition 2.8. In V [G][H] an ideal I on ℘ω1(R) is said to have the ordinal covering property

with respect to V if for every function F : ℘ω1(R)→ Ord and every I-positive set S, there is some

I-positive set S0 ⊆ S and some F0 : ℘ω1(R)→ Ord in V such that F � S0 = F0 � S0. a

We will show that in V [G][H], there is an ideal I with the ordinal covering property with respect

to V . Let µ be the Solovay measure on ℘ω1(R)V , so A ∈ µ if and only if A contains a club set in

℘ω1(R). A set A ⊆ ℘ω1(R) is club if and only if there is a function F : R<ω → R such that

σ ∈ A⇔ F [σ<ω] ⊆ σ.

We say that A is the club set generated by F .

The measure µ induces an ultrapower map on the ordinals, jµ : Ord → Ord. By the basic

theory of AD+,

jµ(ω1) = Θ. (2.1)

See, for example, [34, Section 1.2] for a proof of this fact.

Lemma 2.9. Suppose V,G,H are as above. Suppose I is an ideal on ℘ω1(R) with the ordinal

covering property with respect to V . Let K ⊂ PI be a V [G][H]-generic filter. Then:

(a) The generic embedding jK � Ord = jµ � Ord. In particular, jK � α ∈ V [G][H] for every ordinal

α and doesn’t depend on the choice of K.

(b) I is strong.

Proof. For (a), for any F : ℘ω1(R)→ Ord in V [G][H], the covering property gives some S ∈ K and

F0 ∈ V such that F � S = F0 � S. Also, K ∩ V = µ since K is normal; this gives

{F : ℘ω1(R)→ Ord}V [G][H]/K = {F : ℘ω1(R)→ Ord}V /µ

and jK � Ord = jµ � Ord. Part (b) follows from (a) and (2.1).

Lemma 2.10. In V [G][H], if I has the ordinal covering property relative to V , then I is pseudo-

homogeneous.
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Proof. Let K ⊂ PI be a V [G][H]-generic filter. Let α ∈ Ord, s ∈ Ordω, λ < c+, and let θ be a

formula in the language of set theory. It suffices to show that the statement Ult(V [G][H],K) �

θ[α, jK(s), jK [λω]] is independent of K. By the ordinal covering property, we can find F0 ∈ V that

represents α in both Ult(V, µ) and Ult(V [G][H],K). In both ultrapowers, j(s) is represented by

the constant function F1(σ) = s for all σ ∈ ℘ω1(R). Fix a surjection π : R → λω in V . Then

jK [λω] is represented by the function F2 ∈ V given by F2(σ) = π[σ]. So we have Ult(V [G][H],K) �

θ[α, jK(s), jK [λω]] if and only if the set

S = {σ : V [G][H] � θ[F0(σ), F1(σ), F2(σ)]}

is in K. By homogeneity of P, S ∈ V . But then we have S ∈ K if and only if S ∈ µ, as desired.

Theorem 2.11. In V [G][H], the nonstationary ideal I = NSω1,R on ℘ω1(R) has the ordinal cov-

ering property with respect to V .

To establish the covering property of I in V [G][H], or equivalently in V [G], we will need the

following lemma.

Lemma 2.12. Let Ṡ be a P-name for a subset of ℘ω1(R). The following statements are equivalent

for any given p ∈ P:

(a) p 
 “Ṡ contains a club.”

(b) For a club of σ ∈ ℘ω1(R),

(†) ∀∗g ⊂ P � σ containing p ∀q ≤ g q 
 σ ∈ Ṡ.

Here ∀∗g stands for “for a comeager set of filters g”16 and q ≤ g means ∀r ∈ g q ≤ r.

Proof. Fix p ∈ P. Assume (a) holds for p. Let ḟ be a P-name for a function from R<ω into R such

that p forces Ṡ to contain the club set generated by ḟ . By our assumption, we may assume P ⊆ R.

To see (b), note that there is a club set of σ such that for all t ∈ σ<ω, the set

Dt = {q ∈ P ∩ σ : (∃x ∈ σ) (q 
 ḟ(t) = x)}.

is dense below p in P∩σ. This easily gives (†) for σ as there are countably many dense sets Dt and

hence there is a comeager set of filters g ⊂ P ∩ σ meeting all the Dt’s.

Assume (b) holds for p. Let

A = {(q, x) : x codes σ ∈ ℘ω1(R) and q 
 σ ∈ Ṡ}.

Take N = Lα(Pβ(R)) satisfying ZF− + ADR + “Θ is regular”, containing A, and admitting a

surjection F : R → N .17 Let B ⊂ R code the first order theory of the structure (Vω+1,∈, A).

Because ADR implies that every set of reals is R-universally Baire (see e.g. [34, Section 1.2],) in

16By P � σ, we mean the set of conditions in P coded by a real in σ. Note that P � σ is countable, so the category
quantifier over the set of all filters on it makes sense.

17Here Pβ(R) is the set {B ⊂ R : B has Wadge rank less than β}. We also use the notation ℘(R) � β.
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particular A and B are R-universally Baire. There is then a club C of σ ∈ ℘ω1(N) having the

following properties:

• (†) holds for σ ∩ R.

• σ ≺ N .

• Defining πσ : σ → Nσ as the transitive collapse of σ, we have

(Vω+1 ∩Nσ[h],∈, A ∩Nσ[h]) ≺ (Vω+1,∈, A)

for any Nσ-generic filter h ⊂ Coll(ω, σ ∩ R).

The last item follows from the R-universal Baireness of B.

All σ ∈ C have the following property:

Nσ � p 

g
P�(R∩σ) (1 
hColl(ω,R∩σ) (∀q ≤ g)((q, σh) ∈ πσ(A)g×h)). (2.2)

In (2.2), σh denotes the real generically coding σ∩R relative to h and πσ(A)g×h denotes the unique

extension of πσ(A) to a set of reals in Nσ[g][h], which can be construed as a generic extension of

Nσ by Coll(ω, σ ∩ R); the extension is given by the universal Baireness of A.

Now suppose G ⊂ P is V -generic and p ∈ G. There is a club set D of σ ∈ C such that

σ[G] ≺ N [G] and σ[G] ∩ V = σ. Take a σ in this club and g = G ∩ σ. Note that any lower bound

q ≤ g forces σ ∈ Ṡ by (2.2) and there is q ≤ g in G; so σ ∩ R ∈ ṠG. Therefore, the club set

{σ ∩ R : σ ∈ D} witnesses (a).

Proof of Theorem 2.11. Suppose p0 forces “Ḟ : Ṡ → Ord and Ṡ ⊆ ℘ω1(R) is stationary.” Using

(†), the latter part of this statement is equivalent to the following statement. For stationary many

(equivalently by ADR, for club many) countable σ ⊂ R,

∃∗g ⊂ P � σ containing p0 ∃q ≤ g q 
 σ ∈ Ṡ.

Under AD, a well-ordered union of meager sets is meager, so let F0(σ) be the least α such that

∃∗g ⊂ P � σ containing p0 ∃q ≤ g q 
 Ḟ (σ) = α.

By the above, p0 forces that the set of σ ∈ Ṡ such that F (σ) = F0(σ) is stationary.

Theorem 2.11 and Lemmas 2.9 and 2.10 immediately give one direction of Theorem 1.10.

Corollary 2.13. Con(ZF + ADR + “Θ is regular”) implies Con(ZFC + “the nonstationary ideal on

℘ω1(R) is strong and pseudo-homogeneous”).

Now we proceed to prove one direction of Theorem 1.5. We show Con(ADR + “Θ is regular”)

implies Con(ZFC + DI). We fix objects V,P, G,H as before. The following is the main theorem.

Theorem 2.14. In V [G][H], there is a c-dense ideal on ℘ω1(R) with the ordinal covering property

relative to V .
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We review some facts regarding generic ultrapowers by Coll(ω,R)-generics. See [34] for a more

detailed discussion. Let h ⊂ Coll(ω,R) be V -generic and

Uh = {A ⊆ Rω : A is weakly comeager below some p ∈ h}.

Here A ⊆ Rω is weakly comeager below a condition p ∈ Coll(ω,R) if for a club set of σ ∈ ℘ω1(R),

A ∩ σω is comeager below p in σω.18 Uh is the generic ultrafilter on Rω induced by h. Uh gives a

generic embedding jh : V → Ult(V,Uh) ⊂ V [h]. Using the fact that ADR + “Θ is regular” holds

in V , we can prove Loś’s theorem for jh and hence jh is elementary. We can show that the map

[F0]µ 7→ [F0 ◦ ran]Uh is an isomorphism from Ult(Ord, µ) to Ult(Ord, Uh), RV [h] = RUlt(V,Uh), and

jµ � Ord = jUh � Ord.

Proof of Theorem 2.14. We first prove the following claim.

Claim 2.15. If h ⊂ Coll(ω,R) is a V [H]-generic filter such that G ∈ V [h], then letting jh :

V → Ult(V,Uh) ⊂ V [h] denote the corresponding elementary embedding, in V [h][H], there is an

Ult(V,Uh)-generic filter G′ ⊂ jh(P) extending jh“G.

Proof. The poset jh(P) is countably closed in Ult(V,Uh) and is coded by a set of reals there. In

V [h], because R ∩ V [h] = R ∩ Ult(V,Uh) the poset jh(P) remains countably closed, and because

jh“G is countable there is a lower bound p ∈ jh(P) for jh“G.

Now note that in V [h], there is a surjection f from ℘(R)V onto ℘(jh(P))Ult(V,Uh); this is because

every subset of jh(P) in Ult(V,Uh) is represented by a function Rω → ℘(R) in V , which can be coded

by a set of reals in V . In V [G][H], there is a surjection k from ω
V [h]
1 = ΘV onto ℘(R) whose proper

initial segments are in V [G] ⊂ V [h]; this follows from the fact that the forcing Coll(ΘV , ℘(R)V )V [G]

is c+-closed and V [G] satisfies c-DC. Then the surjection k ◦ f : ω
V [h]
1 → ℘(jh(P))Ult(V,Uh) has the

property that its proper initial segments are in V [h].19 Using this surjection, we recursively define

a decreasing ω1-sequence of conditions (pα : α < ω1) in jh(P) below p whose proper initial segments

are in V [h] and which generates the desired filter G′.

By the assumptions on P, P× Coll(ω,R) is forcing equivalent to Coll(ω,R); therefore, we can

find an h satisfying the hypothesis of Claim 2.15. By Claim 2.15, forcing with Coll(ω,R) adds

an Ult(V,Uh)-generic filter G′ ⊂ jh(P) extending j“G. We can then extend jh to an elementary

embedding

j∗h : V [G]→ Ult(V,Uh)[G′]

by defining j∗h(τG) = jh(τ)G′ .

Now in V [G][H], define an ideal I on ℘ω1(R) by

S ∈ I ⇐⇒ ∅ 
Coll(ω,R) Ř /∈ j∗h(Š).

18We equip σω with the product of the discrete topologies on σ, so it is homeomorphic to the Baire space.
19We need this property for the following argument because this is the model in which jh(P) is countably closed.
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So PI is isomorphic to the subalgebra B = {||Ř ∈ j∗h(Š)|| : S ⊆ ℘ω1(R)}20 of the regular-open

algebra RO(Coll(ω,R)).

I is fine: for any x ∈ R, the set Tx = {σ : x /∈ σ} ∈ I because clearly ∅ 
Coll(ω,R) Ř /∈ j∗h(Ťx).

I is normal: suppose (Sx : x ∈ R) is a family of subsets of ℘ω1(R) and S is the diagonal union, i.e.

σ ∈ S if and only if there is some x ∈ σ such that σ ∈ Sx. Then

||Ř ∈ j∗h(S)|| = ||∃x ∈ Ř (Ř ∈ j∗h(Sx))|| = supx||Ř ∈ j∗h(Sx)||.

This verifies normality of I and also verifies B is a c-complete subalgebra of RO(Coll(ω,R)). Since

in V [G][H], RO(Coll(ω,R)) has size c+, has the c+-chain condition, and is c-dense, B is c-dense

and is a complete subalgebra of RO(Coll(ω,R)).

We now show I has the covering property relative to V . In V [G][H], suppose F : S → Ord

where S ∈ I+. Note that F ∈ V [G]. Let p ∈ Coll(ω,R) force “Ř ∈ j∗h(S)” and q ≤ p force

“j∗h(F )(Ř) = α” for some ordinal α. In V , let F0 : ℘ω1(R) → Ord such that [F0]µ = α. By the

discussion above, before the proof of the theorem,

∅ 
Coll(ω,R) [F0]µ = jh(F0)(Ř) = j∗h(F0)(Ř).

Therefore,

q 
Coll(ω,R) j
∗
h(F0)(Ř) = j∗h(F )(Ř).

This means the set {σ ∈ S : F (σ) = F0(σ)} is I-positive.

Now, let P be such that CH holds in V [G][H]. For example, we can take P = Coll(ω1,R). So

in V [G][H], c = ω1 and ΘV = ω2. By Theorem 2.14, in V [G][H], there is an ω1-dense ideal I on

℘ω1(R) that has the covering property with respect to V . Since |℘ω1(R)| = ω1 in V [G][H], we easily

obtain an ω1-dense ideal on ω1 with the ordinal covering property. This gives us one direction of

Theorem 1.5.

Corollary 2.16. Con(ZF + ADR + “Θ is regular”) implies Con(ZFC + DI).

Remark 2.17. We note that the ω1-dense ideal constructed above has the covering property with

respect to V , so in fact, it satisfies the strengthening of DI in Footnote 8, by Lemma 2.9.

3. PRELIMINARIES

This section, consisting of several subsections, develops some terminology and framework for the

core model induction. The first subsection gives a brief summary of the theory of F -premice and

strategy premice developed in [16]. For a full development of these concepts, the reader should

consult [16]. These concepts and notations will be used in Subsection 3.3, which defines core model

induction operators, which are the operators that we construct during the course of the core model

induction in this paper. Subsections 3.2 and 3.4 briefly summarize the theory of hod mice and

the HOD analysis in AD+ models (see [7] for a more detailed discussions of these topics). The

20||Ř ∈ j∗h(Š)|| is the boolean value of “Ř ∈ j∗h(Š)”.
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reader who wishes to see the main argument can skip them on the first read, and go back when

needed. Section 3.5 proves several important properties for reasonable hod pairs, defined in 3.32,

that we need for the proof of Theorem 1.4. The key result of this section is Lemma 3.36, whose

proof uses substantially Lemmata 3.34, 3.35. Lemma 3.34 appears to be a new fact in the theory

of hod mice at the level of “ADR + Θ is regular”. The last section reviews the technique of boolean

valued comparisons for such hod pairs. Throughout this paper, we will identify a set A ⊂ HC with

Code[A] ⊂ R, where Code is a simple coding of elements of HC by reals.

3.1. F -premice and strategy premice

In this section, we briefly review F -premice for an operator F , which is an abstract generalization

of first order mouse operators like x 7→ x], and strategy operators. These notions are developed

in details in for example [14], [16]. We adapt the framework given in [16] in this section and

throughout this paper.

First, the reader should review the definitions of J -structures and J -models over some transitive

set a (with parameter P) in [16, Section 2]. In particular, a J -model over a with parameter P has

the form

M = (M ;E,B, S, a,P).

The predicate E = ĖM will encode the top extender; the predicate B = ḂM will be used to code

extra information such as a (partial) branch of a tree in M ; and S = ṠM encodes a sequence

〈Sα : α ∈ [1, λ)〉 of the levels of M. We will omit P from the notation when it is clear from the

context.

Our notion of a “J -model over a” is a bit different from the notion of “model with parameter

a” in [14] or [34, Definition 2.1.1] in that we build into our notion some fine structure and we do not

have the predicate l used in [34, Definition 2.1.1]. Note that with notation in [16, Section 2], if λ is

a successor ordinal then M = J(SMλ−1), and otherwise, M =
⋃
α<λ |Sα|. Also, one can recover the

predicate coding the extender sequence and the predicate coding the strategy in the formulation

of [34] or [14] of the levels of M (not including the top predicate) from the predicate ṠM ; so this

change is mostly cosmetic. The reader should consult e.g. [16, Definitions 2.3, 2.12] for various

notions concerning J-models (like initial segment, E-passive/active, B-passive/active, ↓ etc.) and

the notion of an operator F with domain D. In the definition of operator, the variable i should be

interpreted as follows. When i = 0, we ignore history, and so P is treated as a coarse object when

determining F(0,P). When i = 1 we respect the history (given it exists).

[16, Section 2] defines various abstract properties of an operator F , like forgetful, historical,

basic, and projecting. We refer the reader to [16, Section 2] for more details. There are two main

classes of operators we have in mind: mouse operators and strategy operators. Here we give some

illustrations that are useful in this paper. Strategy operators (to be explained in more detail later)

are basic, and as usually defined, projecting and historical. Suppose we have an iteration strategy

Σ and we want to build a J -model N (over some a) that codes a fragment of Σ via its predicate

17



Ḃ. We feed Σ into N by always providing b = Σ(T ), for the <-N -least tree T for which this

information is required. So given a reasonably closed level P � N , the choice of which tree T
should be processed next will usually depend on the information regarding Σ already encoded in

P (its history). Using an operator F to build N , then F(i,P) will be a structure extending P and

over which b = Σ(T ) is encoded. The variable i should be interpreted as follows. When i = 1, we

respect the history of P when selecting T . When i = 0 we ignore history when selecting T . The

operator F(X) = X# is forgetful and projecting, and not basic; here F(X) = F(0, X).

Definition 3.1. For any P and any ordinal α ≥ 1, the operator Jm
α ( · ;P ) is defined as follows.21

For X such that P ∈ J1(X̂), let Jm
α (X;P ) be the J -model M over X, with parameter P , such

that |M| = Jα(X̂) and for each β ∈ [1, α], M|β is passive. If P = ∅ or we wish to supress P , we

just write Jm
α ( · ).

a

Definition 3.2. Let F be an operator and b ∈ CF . Let N be a whole F -premouse over b. A

potential continuing F-premouse over N is a J -model M over N such that M ↓ b is a

potential F -premouse over b.

We say that M (as above) is whole iff M ↓ b is whole.

A (potential) continuing F-premouse is a (potential) continuing F -premouse over b, for

some b. a

The definition of (potential) F -premice, which generalizes the notion of (potential) premice is

given in [16, Definition 2.10]. A (potential) premouse is a (potential) F -premouse, where F(x) =

Jm
1 (x).

The next couple of definitions define mouse operators. Certain first-order mouse operators (like

x 7→ M]
1(x)) are what we construct in the core model induction. These mouse operators will be

part of the definition of core model induction operators defined in the next section.

Definition 3.3. LpF (a) for an operator F denotes the stack of all countably F -iterable F -premice

M over a such that M is fully sound and projects to a.22

Let N be a whole F -premouse over b, for b ∈ CF . Then LpF+(N ) denotes the stack of all

countably F -iterable (above o(N )) continuing F -premiceM over N such thatM ↓ b is fully sound

and projects to N .23

We say that F is uniformly Σ1 iff there are Σ1 formulas ϕ1 and ϕ2 in L−0 such that whenever

M is a (continuing) F -premouse, then the set of whole proper segments of M is defined over M
by ϕ1 (ϕ2). For such an operator F , let ϕFwh denote the least such ϕ1. a

21The “m” is for “model”. X̂ is the transitive closure of {(X, ρ)} where ρ : X → rank(X) is the rank function of
X.

22Countable substructures of M are (ω, ω1 + 1)-F-iterable, i.e. all iterates are F-premice. See [16, Section 2] for
more details on F-iterability.

23Often times in this paper, when the context is clear, we will use the notation Lp for Lp+.
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Definition 3.4 (Mouse operator). Let Y be a projecting, uniformly Σ1 operator. A Y -mouse

operator F with domain D is an operator with domain D such for each (0, X) ∈ D, F(0, X) /

LpY (X), and for each (1, X) ∈ D, F(1, X) /LpY+(X).24 (So any Y -mouse operator is an operator.)

A Y -mouse operator F is called first-order if there are formulas ϕ1 and ϕ2 in the language of

Y -premice such that F(0, X) (F(1, X)) is the first M� LpY (X) (LpY+(X)) satisfying ϕ1 (ϕ2).

A mouse operator is a Jm
1 -mouse operator. a

We can then define F -solidity, the LF [E]-construction etc. as usual (see [16] for more details).

We now define the kind of condensation that mouse operators need to satisfy to ensure for example

that the LF [E]-construction converges. We define the coarse version of condensation (condense

coarsely) here for illustrative purposes.

Definition 3.5. Let Y be an operator. We say that Y condenses coarsely iff for all i ∈ {0, 1}
and (i, X̄), (i,X) ∈ dom(Y ), and all J -modelsM+ over X̄, if π :M+ → Yi(X) is fully elementary

and fixes the parameters in the definition of Y , then

1. if i = 0 then M+ E Y0(X̄); and

2. if i = 1 and X is a sound whole Y -premouse, then M+ E Y1(X̄). a

The finer version (condense finely), which is more technical, is discussed in detail in [16, Def-

inition 2.28]; the main difference here is that in fine condensation, we weaken the elementarity

requirement for embeddings (i.e. we only require π to be a weak k-embedding, cf [16, Definition

2.5]). In many cases, the “�” above can be replaced by “=” (cf. [16, Lemmaa 2.31]). The core

model induction operators, which form a subclass of the Y -mouse operators, will satisfy fine con-

densation. [16, Lemma 2.34] shows that if F is a projecting, uniformly Σ1 operators with fine

condensation, then the LF [E]-construction works out in a manner parallel to that of the standard

L[E]-construction.

[16, Section 3] develops the theory of Σ-premice, for an iteration strategy Σ. We first recall the

operator to be used to feed in Σ, the B-operator defined in [16, Definition 3.1].

Definition 3.6 (B(a, T , b), bN ). Let a,P be transitive, with P ∈ J1(â). Let λ > 0 and let T be

an iteration tree25 on P, of length ωλ, with T � β ∈ a for all β ≤ ωλ. Let b ⊆ ωλ. We define

N = B(a, T , b) recursively on lh(T ), as the J -model N over a with parameter P26 such that:

1. l(N ) = λ,

2. for each γ ∈ (0, λ), N|γ = B(a, T � ωγ, [0, ωγ]T ),

3. BN is the set of ordinals o(a) + γ such that γ ∈ b,
24This restricts the usual notion defined in [14].
25We formally take an iteration tree to include the entire sequence

〈
MTα

〉
α<lh(T )

of models. So it is Σ0(T ,P) to

assert that “T is an iteration tree on P”.
26P = MT0 is determined by T .
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4. EN = ∅.

We also write bN = b. a

It is easy to see that every initial segment of N is sound, so N is acceptable and is indeed a

J -model (not just a J -structure).

Using the definition of B, [16, Definition 3.4, 3.5] defines potential P-strategy premice (over

some set a of type ϕ). The formula ϕ selects the “next tree” T in the model that does not have its

branch indexed yet. One instance of ϕ(P, T ) is, in the case a is self-wellordered, the formula “T
is the least tree on P that doesn’t have a cofinal branch”, where least is computed with respect to

the canonical well-order of the model.

In the context of a Σ-premouseM for an iteration strategy Σ, if T is the <M-least tree for which

M lacks instruction regarding Σ(T ), thenM will already have been instructed regarding Σ(T � α)

for all α < lh(T ). Therefore if lh(T ) > ω then B(M, T ,Σ(T )) codes redundant information (the

branches already in T ) before coding Σ(T ). This redundancy seems to allow one to prove slightly

stronger condensation properties (e.g. fine condensation), given that Σ has nice condensation

properties (see [16, Section 3]). It also simplifies the definition.

The original version of [28] required that when o(M) < η+lh(T ), where η is the least such that

M|η � KP + ϕ(P, T ), ḂM is empty, whereas here we require that it code [0, o(M))T , in the same

way that ḂM will have to code a new branch when o(M) = η + lh(T ). Of course, letting ν be the

unique ordinal such that η + ν = o(M), [0, ν)T ∈M when o(M) < η + lh(T ) , so the current ḂM

seems equivalent to the original ḂM = ∅. However, ḂM = ∅ leads to ΣM1 being too weak, with

the consequence that a Σ1 hull of M might collapse to something that is not a strategy premouse.

Our current choice for ḂM solves that problem.

Definition 3.7 (Potential Σ-premouse). Let Σ be a (partial) iteration strategy for a transitive

structure P. A potential Σ-premouse (over a, of type ϕ) is a potential P-strategy premouse

M (over a, of type ϕ) such that ΣM ⊆ Σ.27 a

Now we define an operator that codes Σ via some scheme ϕ. An example of ϕ is the formula

ϕall defined in Definition 3.9. This scheme will be our default scheme used in this paper.

Definition 3.8. Let P be transitive and Σ a partial iteration strategy for P. Let ϕ ∈ L0. Let

F = FΣ,ϕ be the operator such that:

1. F0(a) = Jm
1 (a;P), for all transitive a such that P ∈ J1(â);

2. Let M be a sound branch-whole Σ-premouse of type ϕ. Let λ = l(M) and with notation

as in [16, Definition 3.5], let T = Tλ. If T = ∅ then F1(M) = Jm
1 (M;P). If T 6= ∅ then

F1(M) = B(M, T , b) where b = Σ(T ).

27If M is a model all of whose proper segments are potential Σ-premice, and the rules for potential P-strategy
premice require that BM code a T -cofinal branch, but Σ(T ) is not defined, then M is not a potential Σ-premouse,
whatever its predicates are.
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We say that F is a strategy operator corresponding to (Σ, ϕ). a

The reader can consult [16, Lemma 2.29, 3.13] for more detailed discussions of mouse operators

and strategy operators, particularly the proof that these operators condense coarsely and finely.

The next definition defines MF ,]1 , which is the next nontrivial operator constructed in the core

model induction, given the existence of the operator F . MF ,]1 is also important in the definition of

the Θ-g-organized hierarchy, discussed later in this paper.

Definition 3.9. Let a be transitive and let F be an operator. We say that MF ,#1 (a) exists iff

there is a (0, |a|, |a| + 1)-F -iterable, non-1-small F -premouse over a. We write MF ,#1 (a) for the

least such sound structure. For Σ,P, a, ϕ as in Definition 3.8, we writeMΣ,ϕ,#
1 (a) forMFΣ,ϕ,#

1 (a).

Let L+
0 be the language L0 ∪ {≺̇, Σ̇}, where ≺̇ is the binary relation defined by “ȧ is self-

wellordered, with ordering ≺ȧ, and ≺̇ is the canonical wellorder of the universe extending ≺ȧ”,

and Σ̇ is the partial function defined by “Ṗ is a transitive structure and the universe is a potential

Ṗ-strategy premouse over ȧ and Σ̇ is the associated partial putative iteration strategy for Ṗ”. Let

ϕall(T ) be the L0-formula “T is the ≺̇-least limit length iteration tree U on Ṗ such that U is via Σ̇,

but no proper extension of U is via Σ̇”. Then for Σ,P, a as in Definition 3.8, we sometimes write

MΣ,#
1 (a) for MFΣ,ϕall

,#

1 (a).

Let κ be a cardinal and suppose that M =MF ,#1 (a) exists and is (0, κ+ + 1)-iterable. We write

ΛM for the unique (0, κ+ + 1)-iteration strategy for M (given that κ is fixed). a

3.2. Hod mice

In this paper, a hod premouse P is one defined as in [7]. The reader is advised to consult [7] for

basic results and notations concerning hod premice and mice.

Suppose P is a hod premouse and γ is an ordinal, . By P|γ, we mean the model P up to γ,

including the top extender (if one exists); by P||γ, we mean the model P up to γ, not including

the top extender.

Let us summarize some basic first-order properties of a hod premouse P. There are an ordinal

λP and sequences 〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � “δPα is

Woodin”;

2. every Woodin cardinal or limit of Woodin cardinals of P is of the form δPα for some α;

3. P(α) � P is the α-th layer of P, and δPα is the largest limit cardinal of P(α);

4. P � “ΣPα is a (ω, o(P), o(P))28-strategy for P(α) with hull condensation”;

5. if α < β < λP then ΣPβ extends ΣPα .

28This just means ΣPα acts on all stacks of ω-maximal, normal trees in P.
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We will write δP for δP
λP

and ΣP = ⊕β<λPΣPβ . Note that P(0) is a pure extender model. Suppose

P and Q are two hod premice. Then P Ehod Q if there is α ≤ λQ such that P = Q(α). We say

then that P is a hod initial segment of Q. We say (P,Σ) is a hod pair if P is a hod premouse and

Σ is a strategy for P (acting on countable stacks of countable normal trees) such that ΣP ⊆ Σ and

this fact is preserved under Σ-iterations. Typically, we will construct hod pairs (P,Σ) such that Σ

has hull condensation, branch condensation, and is Γ-fullness preserving for some pointclass Γ.

The reader should also consult [7] for the definition of B(Q,Σ) and I(Q,Σ). Roughly speaking,

B(Q,Σ) is the collection of all hod pairs which are strict hod initial segments of a Σ-iterate of Q
and I(Q,Σ) is the collection of all Σ-iterates of Q. See [7] for the definition of Γ(P,Σ). Roughly,

Γ(P,Σ) is the pointclass generated by Σ. In the case λP is a limit ordinal, Γ(P,Σ) is the set of B

such that there is some (Q,Λ) ∈ B(P,Σ), B ≤w Λ. See [7] for the definition of Γ(Q,Σ) in the case

λQ is a successor ordinal. If (P,Σ) is a hod pair, and ~T is according to Σ with last model Q, then

we write ΣQ,~T for the ~T -tail strategy of Q induced by Σ, i.e. ΣQ,~T (~U) = Σ(~T a~U).

See [7] for the definition of hulls of an iteration tree/stack and [30] for a more general notion of

a pseudo-hull of a stack.

Definition 3.10. Let P be a hod premouse in the sense of [7] and Σ be an iteration strategy for

P.

(a) Σ has branch condensation if whenever ~T , ~U are stacks according to Σ, b = Σ(~T ) is a non-

dropping branch, and c is a cofinal, nondropping branch of ~U such that there is an elementary

σ :M~U
c →M

~T
b with the property that π

~T
b = σ ◦ π~Uc , then c = Σ(~U).

(b) Σ has strong hull condensation if whenever ~T is according to Σ and ~U is a pseudo-hull of ~T
then ~U is according to Σ. Σ has hull condensation if whenever ~T is according to Σ and ~U is a

hull of ~T then ~U is according to Σ.

a

Strong hull condensation easily implies hull condensation because every hull is a pseudo-hull.

We note that strategies for hod pairs are assumed to have hull condensation, but it is not clear that

hod mouse strategies constructed in [7] can have strong hull condensation. In Lemma 3.34, we show

that if (P,Σ) is a hod pair such that Σ has branch condensation and Γ(P,Σ)-fullness preserving

then Σ has strong hull condensation. Lemma 3.34 appears to be a new fact in hod mice theory at

the level of “ADR + Θ is regular.” 29 The lemma is used essentially in the proof of Lemma 3.36,

which is a key part in the proof of Theorem 1.4.

Suppose (Q,Σ) is a hod pair such that Σ has hull condensation. We say P is a (Q,Σ)-hod

premouse if there are an ordinal λP and sequences 〈(P(α),ΣPα ) | α < λP〉 and 〈δPα | α ≤ λP〉 such

that

29Lemma 3.34 should also hold for hod mice in a minimal model of LSA but we have not checked all details of this
claim.
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1. 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then P � δPα is

Woodin;

2. every Woodin cardinal or limit of Woodin cardinals of P is of the form δPα for some α;

3. P(0) = LpΣ
ω (P|δ0)P (so P(0) is a Σ-premouse built over Q); for α < λP , P(α + 1) =

(Lp
Σ⊕ΣPα
ω (P|δα))P ; for limit α ≤ λP , P(α) = (LpΣ⊕Λ

ω (P|δα))P , where Λ = ⊕β<αΣPβ ;

4. P � “Σ ∩ P is a (ω, o(P), o(P))-strategy for Q with hull condensation”;

5. P � “ΣPα is a (ω, o(P), o(P))-strategy for P(α) with hull condensation”;

6. if α < β < λP then ΣPβ extends ΣPα .

Inside P, the strategies ΣPα act on stacks above Q and every ΣP
α iterate is a Σ-premouse. Again,

we write δP for δP
λP

and ΣP = ⊕β<λPΣPβ . We say (P,Λ) is a (Q,Σ)-hod pair if P is a (Q,Σ)-hod

premouse and Λ is a strategy for P such that ΣP ⊆ Λ and this fact is preserved under Λ-iterations.

Suppose (R,Λ) is a hod pair and Γ is a nice pointclass. We say that Λ is Γ-Q-structure guided if

whenever T is according to Λ and short, then Λ(T ) = b is such that Q(b, T ) exists and the phalanx

Φ(T ab)30 is (ω1, ω1)-iterable with unique strategy in Γ. We show in essence that the branch b must

be unique in Lemma 3.33. We also note that if δ(T ) is a cutpoint of Q(b, T ) then the phalanx

iterability condition reduces to the iterability of Q(b, T ) above δ(T ).

Suppose P is Σ-premouse, δ is a cardinal of P, and A ⊆ R is ODΣ. We say P weakly term

captures A at δ if for each n < ω there is a term relation τ ∈ PColl(ω,(δ+n)P ) such that for comeager

many P-generics g ⊆ Coll(ω, (δ+n)P), we have τg = P[g] ∩ A. We say P term captures A if the

equality holds for all generics. Given a Σ-suitable P and an ODΣ set of reals A, we let τPA,δ,n be

the standard name for a set of reals in PColl(ω,(δ+n)P ) witnessing the fact that P weakly captures

A. When δ is clear from the context, we omit it from the notation and just write τPA,n. Let

γPA = sup(δ ∩HullP1 ({τPA,n : n < ω})).

We then let

fA(P) = 〈τPA,n : n < ω〉. (3.1)

Suppose (R,Λ) is a hod pair and λR = α + 1 for some α ≥ 0, where λR is the order type

of the set {δ : δ is either a Woodin cardinal or a limit of Woodin cardinals in R}; we will write δRα

for the α-th member of this set. Recall the notations δR, (R−,ΛR−), B(R−,ΛR−) from [7].31 [7,

Lemma 5.19] gives that AD+ implies there is some tail (S,Ψ) of (R,Λ) and some ~B = {Bi : i < ω}
that strongly guides Ψ. This means that

• Λ is Γ-Q-structure guided, where Γ = Γ(R,Λ).

30This is the set of models in the tree T ab along with the exchange ordinals.
31R− = R(α − 1) and ΛR− is just ΛR(α−1). In the case α = 0, (R−,ΛR−) = (∅, ∅). δR is the largest Woodin

cardinal of R.
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• There are terms (τSi,k = τSBi,k : i, k < ω, τSi,k ∈ SColl(ω,(δ
+k)S)) for the Bi’s such that whenever

l : S → Q is an iteration map by Ψ of a maximal tree, then for each i, k < ω, l(τSi,k) = τQBi,k,

sup{γQBi : i < ω} = δS , the branch b giving rise to the embedding l is the unique branch

whose branch embedding moves the terms for Bi’s correctly, and whenever ~T is according to

Ψ with branch embedding π, ~U is according to Ψ, and suppose b is a cofinal branch of ~U such

that there is an elementary map σ :M~U
b →M

~T such that σ ◦ π~Ub = π
~T , then for each i, k,

σ−1(τM
~T

Bi,k
) = τ

M~U
b

Bi,k
= π

~U
b (τSBi,k).

When we don’t want to specify the Bi’s or the particular Bi’s are not important to specify, we

simply say Ψ is strongly guided. The above notion of strongly guided can be defined in an obvious

way for (R,Λ), where λR = α + n for some n < ω. We omit details and refer the reader to [7]

for a full discussion. The next section will elaborate more on this topic in the context of the HOD

analysis.

In the following, if Σ is a strategy and Γ is a pointclass, N �LpΣ,Γ(x) if N is sound, projecting

to x and whenever π :M→N is elementary and M is countable, transitive then M has a unique

strategy Λ witnessing M is a Σπ-mouse over π−1(x) and Λ ∈ Γ.

Definition 3.11 (Γ-Fullness preservation). Suppose (P,Σ) is a hod pair such that P ∈ HC and Γ

is a nice pointclass. We say Σ is Γ-fullness preserving if Σ is Γ-Q-structure guided and the following

holds for all (Q, ~T ) ∈ I(P,Σ).

(1) For all limit α < λQ, letting R = Q(α), then

R = Lp
⊕β<αΣR(β),~T ,Γ
ω (R|δR).

(2) For all successor α < λQ, letting R = Q(α) and β = α− 1,

R = Lp
ΣR(β),~T ,Γ
ω (R|δR).

(3) If η is a cardinal strong cutpoint of Q, letting α be the largest such that Q(α) � Q|η and

R = Q(α), then

Q|(η+)Q = LpΓ,ΣR,~T (Q|η).

(4) Furthermore, letting for α+ 1 ≤ λQ,

UQ(α),Σ = {(x, y) ∈ R2 : x ∈ R codes a countable set a and y codes a sound ΣQ(α)-mouse M
over a whose unique strategy is in Γ such that ρ(M) = a},

and

24



WQ(α),Σ = {(x, y, z) ∈ R3 : (x, y) ∈ UQ(α),Σ and z codes an iteration tree on the mouse M
coded by y},

then whenever (~U ,R) ∈ I(Q(α+ 1),ΣQ(α+1),~T ) such that ~U only uses extenders with critical

points above δQα and its images along branch embeddings of ~U , we have

π
~U (fA(Q)) = fA(R),

where A = UQ(α),Σ ⊕WQ(α),Σ and fA is defined in (3.1) above.

a

Remark 3.12. In [7], clauses (1)–(3) comprise the definition of fullness preservation of Σ; if in

addition, clause (4) holds for Σ, then Σ is said to be super fullness preserving (with respect to Γ).

We simplify the terminology by combining these two notions into one definition. For Q satisfying

(1)–(3), we say that Q is full in Γ or Γ-full. For R as in (1), we say that R is full with respect to

⊕β<αΣR(β),~T -mice in Γ; a similar statement can be made for the mice in (2), (3). If Γ is ℘(R), we

simply omit Γ from our notation and say that Σ is fullness preserving etc.

Under AD+ and the hypothesis that there are no models of ADR + “Θ is regular,” [7] constructs

hod pairs that are fullness preserving and have branch condensation (see [7] for a full discussion of

these notions). Such hod pairs are particularly important for our computation as they are points

in the direct limit system giving rise to HOD of AD+ models. Under AD+, for hod pairs (MΣ,Σ),

if Σ is a fullness preserving strategy with branch condensation and ~T is a stack on MΣ with last

model N , then ΣN ,~T is independent of ~T . Therefore, later on we will omit the subscript ~T from

ΣN,~T whenever Σ is a strategy with branch condensation and MΣ is a hod mouse. In a core model

induction, at the moment (MΣ,Σ) is constructed we don’t quite have an AD+-model M such that

(MΣ,Σ) ∈ M , but we do know that every (R,Λ) ∈ B(MΣ,Σ) belongs to such a model. We then

can show (using our hypothesis) that (MΣ,Σ) belongs to an AD+-model.

We briefly review definitions and notations related to the analysis of stacks in [7, Section 6.2];

see [7, Section 6.2] for a more detailed discussion. These notions will be useful in Section 6. Suppose

P is a hod premouse and ~T is a stack on P. Let S be a model that appears in ~T . By ~T≤S we mean

the part of ~T up to and including S (according to the tree order of ~T ), we define ~T≥S , ~T<S , ~T>S
similarly. We let (Mα, Tα : α < η) be the normal components of ~T , i.e. M0 = P, Tα is a normal

tree onMα, andMα+1 =MTα . We say R is a terminal node of ~T if for some α, β, R =MTαβ and

πTα0,β is defined. We say R is a non-trivial terminal node of ~T if letting (α, β) witness that R is a

terminal node of ~T , the extender ETαβ is applied to R in the tree Tα to obtain the model MTαβ+1.

We write tn(~T ) for the set of terminal nodes of ~T and ntn(~T ) for the set of non-trivial terminal

nodes of ~T . If R is a non-trivial terminal node then ξ
~T ,R is the least ξ such that ETαβ ∈ R(ξ + 1).

For Q,R ∈ tn(~T ), we write Q ≺~T R if the Q-to-R iteration embedding in ~T exists, and we

write π
~T
Q,R for this embedding. We write Q ≺~T ,s R if letting ~U be the part of ~T between Q and

R, then ~U is an iteration on Q. We write ~TQ,R for ~U .
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Let C ⊆ tn(~T ). We say C is linear (strongly linear respectively) if C is linearly ordered by ≺~T

(≺~T,s respectively). We say C is closed if C is strongly linear and whenever α is a limit point of

C, then letting R be the direct limit of C � α (under the iteration embeddings), we have R ∈ C.

We say C is cofinal if for every S ∈ ~T , there are Q,R ∈ C such that Q ≺~T ,s R and S is in ~TQ,R.

Note that if ~T doesn’t have a last model, but there is a strongly closed and cofinal C ⊆ tn(~T ),

then C uniquely determines a cofinal branch of ~T . If such a C doesn’t exist, then η is a successor

ordinal, say η = α + 1. Let U = ~Tα and D = {S ∈ tn(U) : U≥S is a tree on S}. In this case D

has a ≺~T ,s-largest element and we write S~T for this element. Then ~TS~T is a normal tree based on

S~T (β + 1) and above δ
S~T
β for some β < λS~T .

3.3. Core model induction operators

In this section, our main goal is to introduce the main concepts that one uses in the core model

induction through the hierarchy Lp
GΣ(R,Σ � HC)32 33. Here Lp

GΣ(R,Σ � HC) is the union of

all sound, Θ-g-organized Σ-premice M over (R,Σ � HC) such that ρω(M) = R and whenever

π :M∗ →M is sufficiently elementary and M∗ is countable and transitive, then M∗ has a unique

(ω1 + 1)-Σ-iteration strategy Λ.34 See [16] for a precise definition of g-organized Σ-premice, Θ-g-

organized Σ-premice, Lp
gΣ(x), Lp

gΣ
+ (x) and other related concepts. When we write Lp

gΣ or Lp
gΣ
+ ,

we refer to the hierarchy of g-organized Σ-mice; when we write Lp
GΣ or Lp

GΣ
+ , we refer to the

hierarchy of Θ-g-organized Σ-mice. The g-organized hierarchy of Σ-mice is considered (instead of

the traditional “least branch” hierarchy of Σ-mice) because the S-constructions (cf. [15], where

they are called P -constructions) work out nicely for this hierarchy.35 The Θ-g-organized hierarchy,

which is a slight modification of the g-organized hierarchy, is considered because the scales analysis

under optimal hypotheses can be carried out in Lp
GΣ(R,Σ � HC) in much the same manner as the

scales analysis in Lp(R).36 For the purpose of this paper, it will not be important to go into the

detailed definitions of these hierarchies. Whenever it makes sense to define LpΣ(x) and Lp
gΣ(x),

[16] shows that ℘(x) ∩ LpΣ(x) = ℘(x) ∩ Lp
gΣ(x) (and similarly for Lp

GΣ(x)); also in the case it is

not clear how to make sense of LpΣ(x) (say for instance when x = R), it still makes sense to define

Lp
gΣ(x) and Lp

GΣ(x) and in that case, [16] shows that ℘(x) ∩ Lp
gΣ(x) = ℘(x) ∩ Lp

GΣ(x).

In core model induction applications, we often have a pair (P,Σ) where P is a hod premouse

(cf. Section 3.2) and Σ is P’s strategy with branch condensation and is fullness preserving (relative

to mice with strategies in some pointclass) or P is a sound (hybrid) premouse projecting to some

32An equivalent way to define this is to first fix a canonical coding function Code: HC → R and consider

Lp
GΣ(R,Code(Σ � HC)).
33Instead of feeding Σ into the hierarchy, which is not at all clear how it could be done in a canonical way, we feed

in Λ, the canonical strategy of MΣ,]
1 , into the hierarchy. Roughly speaking, the trees according to Λ that we feed

into Lp
GΣ(R,Code(Σ � HC)) are those making the local HOD of Lp

GΣ(R,Code(Σ � HC))|α generically generic, for
appropriately chosen ordinals α. See [16].

34This means whenever T is an iteration tree according to Λ with last model N , then N is a Σ-premouse.
35It is not clear how one can perform S-constructions over the least branch hierarchy.
36[16] generalizes Steel’s scales analysis in [25, 24] to Lp

GΣ(R,Σ � HC) for various classes of nice strategies Σ. It is
not clear that one can carry out the full scales analysis for the hierarchy Lp

gΣ(R,Σ � HC).
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countable set a and Σ is the unique (normal) (ω1 + 1)-strategy for P. Let F be the operator

corresponding to Σ (using the formula ϕall in Definition 3.9) and suppose MF ,]1 exists. Then [16,

Lemma 4.8] shows that F condenses finely and MF ,]1 generically interprets F . The core model

induction in this paper will give us that F � R is self-scaled (defined below) and MF ,]1 exists.

In the following, we will write MΣ,]
1 for MF ,]1 . To be descriptive, we will sometimes write “Σ-

premouse” to mean “F -premouse”, Lp
GΣ for Lp

GF etc. These properties of Σ and the existence of

MΣ,]
1 allows us to define Lp

GΣ(R,Σ � HC) and analyze its scales pattern as done in [16].

g-organization is a slight variation of the reogarnized hod mice hierarchy in [7, Section 3.7]. We

will use the reorganized hierarchy of hod premice in [7, Section 3.7] in this paper. The purpose of

using the reorganized (or g-organized) hierarchy is to ensure the S-constructions (cf. [7, Section

3.8]) work out nicely for hod mice and for Σ-mice as mentioned above. In the paragraph below,

we briefly remark on how the S-constructions work for the g-organized hierarchy and for the Θ-g-

hierarchy.

Suppose F is a nice operator (with parameter P)37 and suppose M is a G-mouse (over some

transitive a), where G is either gF or GF . Suppose δ is a cutpoint of M and suppose N is a

transitive structure such that δ ⊆ N ⊆ M|δ and P ∈ N . Suppose P ∈ Jω[N ] is such that M|δ
is P-generic over Jω[N ] and suppose whenever Q is a G-mouse over N such that HQδ = N then

M|δ is P-generic over Q. Then the S-constructions (or P -constructions) from [15] give a G-mouse

R over N such that R[M|δ] = M. The S-constructions give the sequence (Rα : δ < α ≤ λ) of

G-premice over N , where

(i) Rδ+1 = Jm
ω (N );

(ii) if α is limit then let R∗α =
⋃
β<αRβ . If M|α is passive, then let Rα = R∗α. So Rα is

passive. If BM|α 6= ∅, then let Rα = (|R∗α|; ∅, BM|α,
⋃
β<α S

Rβ ,N ,P). Suppose EM|α 6= ∅;
let E∗ = EM|α ∩ |R∗α|, then we let Rα = (|R∗α|;E∗, ∅,

⋃
β<α S

Rβ ,N ,P). By the hypothesis,

we have Rα[M|δ] =M|α.

(iii) Suppose we have already constructed Rα and (by the hypothesis) maintain that Rα[M|δ] =

M|α. Then Rα+1 = Jm
ω (Rα).

(iv) λ is such that Rλ[M|δ] =M. We set Rλ = R.

We note that the full constructions from [15] do not require that δ is a cutpoint of M but we

don’t need the full power of the S-constructions in our paper. Also, the fact that M is g-organized

(or Θ-g-organized) is important for our constructions above because it allows us to get past levels

M|α for which BM|α 6= ∅. Because of this fact, in this paper, hod mice are reorganized into the

g-organized hierarchy, that is if P is a hod mouse then P(α + 1) is a g-organized ΣP(α)-premouse

for all α < λP . The S-constructions are also important in many other contexts. One such context

37Nice is defined in [16, Definition 3.8]. Roughly speaking, these are operators that condense well and determine
themselves on generic extensions. CMI operators defined in this section are nice.
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is the local HOD analysis of levels of Lp
GF (R,F � R), which features in the scales analysis of

Lp
GF (R,F � R) (cf. [16]).

In the following, a transitive structure N is closed under an operator F if whenever x ∈
dom(F) ∩ N , then F(x) ∈ N . We are now in a position to introduce the core model induction

operators that we will need in this paper. These are particular kinds of mouse operators (in the

sense of [18, Example 3.41]) that are constructed during the course of the core model induction.

These operators can be shown to satisfy the sort of condensation described in [18, Section 3] (e.g.

condense coarsely, cf. Definition 3.5, and condense finely, cf. [16, Definition 2.28]), relativize well,

and determine themselves on generic extensions.

Definition 3.13 (relativizes well). Let F be an a Y -mouse operator for some operator Y .38 We

say that F relativizes well if there is a formula φ(x, y, z) such that for any a, b ∈ dom(F) such

that a ∈ L1(b), whenever N is a transitive model of ZFC− such that N is closed under Y and

a, b,F(b) ∈ N , then F(a) ∈ N and is the unique x ∈ N such that N � φ[x, a,F(b)]. a

Definition 3.14 (determines itself on generic extensions). Suppose F is an operator. We say that

F determines itself on generic extensions if there is a formula φ(x, y, z) and a parameter c ∈ HC
such that for any countable transitive structure N of ZFC− such that N contains c and is closed

under F , for any generic extension N [g] of N in V , F ∩N [g] ∈ N [g] and is definable over N [g] via

(φ, c), i.e. for any e ∈ N [g] ∩ dom(F), F(e) = d if and only if d is the unique d′ ∈ N [g] such that

N [g] � φ[c, d′, e]. a

Definition 3.15. Let Γ be an inductive-like pointclass.39 For x ∈ R, CΓ(x) denotes the set of

all y ∈ R such that for some ordinal γ < ω1, y (as a subset of ω) is ∆Γ({γ, x}), where ∆Γ is the

intersection of Γ with its dual pointclass.

Let x ∈ HC be transitive and let f : ω → x be a surjection. Then cf ∈ R denotes the code for

(x,∈) determined by f . And CΓ(x) denotes the set of all y ∈ HC∩℘(x) such that for all surjections

f : ω → x we have f−1(y) ∈ CΓ(cf ). a

We say that ~A is a self-justifying-system (sjs) if for any A ∈ rng( ~A), ¬A ∈ rng( ~A) and there is

a scale ϕ on A such that the set of prewellorderings associated with ϕ is a subset of rng( ~A). A set

Y ⊆ R is self-scaled if there are scales on Y and R\Y which are projective in Y .

In the following, η is a strong cutpoint of an F -premouse N (for some operator F) if there is no

extender E on the sequence of N such that crt(E) ≤ η ≤ lh(E). η is a cutpoint of an F -premouse

N if there is no extender E on the sequence of N such that crt(E) < η ≤ lh(E).

Definition 3.16. Let F be a nice operator, Γ be an inductive-like pointclass, and t ∈ HC such that

for some a, MF ,]1 (a),P ∈ J1(t). Let 1 ≤ k < ω. A premouse N over t is F-Γ-k-suitable (or just

k-suitable if Γ and F are clear from the context) iff there is a strictly increasing sequence 〈δi〉i<k
such that

38Y may be the rud operator, in which case F is just a mouse operator in the usual sense.
39Γ is inductive-like if it is ω-parametrized, closed under real quantification, recursive substitutions, and has the

scale property.
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1. ∀δ ∈ N , N �“δ is Woodin” if and only if ∃i < k (δ = δi).

2. o(N ) = supi<ω(δ+i
k−1)N .

3. If N|η is a strong cutpoint of N then N|(η+)N = Lp
gF ,Γ
+ (N|η).40

4. Let ξ < o(N ), where N �“ξ is not Woodin”. Then CΓ(N|ξ) �“ξ is not Woodin”.

We write δNi = δi; also let δN−1 = 0 and δNk = o(N ).41

If N is 1-suitable, we simply say N is suitable, and we write δN for δN0 . Additionally, we also

write N is Σ-suitable or Σ-Γ-suitable if we want to remind the reader that N is an F -premouse.

a

Let N be 1-Σ-suitable and let ξ ∈ o(N ) be a limit ordinal such that N �“ξ isn’t Woodin”. Let

Q/N be the Q-structure for ξ. Let α be such that ξ = o(N|α). If ξ is a strong cutpoint of N then

Q / Lp
gF ,Γ
+ (N|ξ) by clause 3 of the definition. Assume now that N is reasonably iterable. If ξ is

a strong cutpoint of Q, our mouse capturing hypothesis (namely Mouse Capturing with respect to

Σ, MC(Σ), which is what we show during the course of the core model induction) combined with

clause 4 gives that Q / Lp
gF ,Γ
+ (N|ξ). If ξ is an N -cardinal then indeed ξ is a strong cutpoint of

Q, since N has only finitely many Woodins. If ξ is not a strong cutpoint of Q, then by definition,

we do not have Q / Lp
gF ,Γ
+ (N|ξ). However, using ∗-translation (see [23]), one can find a level of

Lp
gF ,Γ
+ (N|ξ) which corresponds to Q (and this level is in CΓ(N|ξ)).
If F is a nice operator (in the sense of [16], see Footnote 37) and Σ is an iteration strategy for a

F -Γ-1-suitable premouse P such that Σ has branch condensation and is Γ-fullness preserving (for

some pointclass Γ), then we say that (P,Σ) is a F-Γ-suitable pair or just Γ-suitable pair or just

suitable pair if the pointclass and/or the operator F is clear from the context.

Definition 3.17 (Core model induction operators). Suppose (P,Σ) is a G-Ω∗-suitable pair for some

nice operator G or a hod pair such that Σ has branch condensation and is Ω∗-fullness preserving for

some inductive-like Ω∗. Let F = FΣ,ϕall
as defined in Definition 3.9. Assume Code(Σ) is self-scaled.

We say J is a Σ-core model induction operator or just a Σ-cmi operator if one of the following holds:

1. J is a nice F -mouse operator (or g-organized F -mouse operator) defined on a cone of HC

above some a ∈ HC. Furthermore, J condenses finely, relativizes well and determines itself

on generic extensions.

2. For some α ∈ OR such that α ends either a weak or a strong gap in the sense of [24] and

[16], letting M = Lp
GΣ(R,Σ � HC)|α and Γ = (Σ1)M , M � AD+ + MC(Σ).42 For some

40N � Lp
gF,Γ
+ (N|η) iff N � Lp

gF
+ (N|η) and whenever N ∗ is countable transitive and embeddable into N , N ∗ has

a unique iteration strategy above the preimage of η in Γ.
41We could also define a suitable premouse N as a Θ-g-organized F-premouse and all the results that follow in this

paper will be unaffected.
42MC(Σ) stands for Mouse Capturing relative to Σ which says that for x, y ∈ R, x is OD(Σ, y) (or equivalently x

is OD(Σ, y)) iff x is in some g-organized Σ-mouse over y. SMC is the statement that for every hod pair (P,Σ) such
that Σ is fullness preserving and has branch condensation, MC(Σ) holds.

29



transitive b ∈ HC and some 1-suitable43 F -premouse Q over b, J = Λ, where Λ is an (ω1, ω1)-

iteration strategy for Q which is Γ-fullness preserving, has branch condensation and is guided

by some self-justifying-system (sjs) ~A = (Ai : i < ω)44 such that for some real x, for each i,

Ai ∈ ODM
b,Σ,x and ~A seals the gap that ends at α.

When Σ is clear from the context or that we don’t want to specify Σ, we simply say J is a cmi

operator. a

Remark 3.18. Let Γ,M be as in clause 2 above. The (lightface) envelope of Γ is defined as:

A ∈ Env(Γ) iff for every countable σ ⊂ R there is some A′ such that A′ is ∆1-definable over M

from ordinal parameters and A∩σ = A′∩σ. For a real x, we define Env(Γ(x)) similarly: here Γ(x) =

Σ1(x)M and A ∈ Env(Γ(x)) iff for every countable σ ⊂ R there is some A′ that is ∆1(x)-definable

over M from ordinal parameters such that A∩ σ = A′ ∩ σ. We now let Env(Γ)

˜
=

⋃
x∈R Env(Γ(x)).

Note that Env(Γ)

˜
= ℘(R)M if α ends a weak gap and Env(Γ)

˜
= ℘(R)Lp

GΣ(R,Σ�HC)|(α+1) if α ends

a strong gap.

In clause 2 above, we say ~A seals the gap that ends at α if letting Γ be defined as above, then

~A is Wadge cofinal in Env(Γ)

˜
. We also say ~A seals Env(Γ)

˜
.

The following definitions are obvious generalizations of those defined in [14]. For example, see

[14, Definition 3.2.1] for the definition of a coarse (k, U)-Woodin mouse. We let Σ,F be as in

Definition 3.17.

Definition 3.19. We say that the coarse mouse witness condition W ∗,
gΣ

γ holds if, whenever U ⊆ R
and both U and its complement have scales in Lp

GΣ(R,Ω � HC)|γ, then for all k < ω and x ∈ R
there is a coarse (k, U)-Woodin mouse M containing x and closed under the strategy Λ of MΣ,]

1

with an (ω1 + 1)-iteration strategy whose restriction to HC is in Lp
GΣ(R,Σ � HC)|γ.45 a

Remark 3.20. By the proof of [14, Lemma 3.3.5], W ∗,
gΣ

γ implies Lp
GΣ(R,Σ � HC)|γ � AD+.

Definition 3.21. An ordinal γ is a critical ordinal in Lp
GΣ(R,Σ � HC) if there is some U ⊆ R such

that U and R\U have scales in Lp
GΣ(R,Σ � HC)|(γ + 1) but not in Lp

GΣ(R,Σ � HC)|γ. In other

words, γ is critical in Lp
GΣ(R,Σ � HC) just in case W ∗,

gΣ
γ+1 does not follow trivially from W ∗,

gΣ
γ . a

To any Σ1 formula θ(v) in the language of Lp
GΣ(R,Σ � HC) we associate formulae θk(v) for

k ∈ ω, such that θk is Σk, and for any γ and any real x,

Lp
GΣ(R,Σ � HC)|(γ + 1) � θ[x] ⇐⇒ ∃k < ω Lp

GΣ(R,Σ � HC)|γ � θk[x].

Definition 3.22. Suppose θ(v) is a Σ1 formula (in the language of set theory expanded by a name

for R and a predicate for GΣ), and z is a real; then a 〈θ, z〉-prewitness is an ω-sound g-organized

Σ-premouse N over z in which there are δ0 < · · · < δ9, S, and T such that N satisfies the formulae

expressing

43Recall this means F-Γ-1-suitable.
44 ~A = (Ai : i < ω) is a self-justifying system if for any Ai, there is some k < ω such that Ak = ¬Ai and some

function f : ω → ω such that (Af(n) : n < ω) codes a scale on Ai.
45We demand the strategy has the property that iterates of M according to the strategy are closed under Λ.
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(a) ZFC,

(b) δ0, . . . , δ9 are Woodin,

(c) S and T are trees on some ω × η which are absolutely complementing in V Col(ω,δ9), and

(d) For some k < ω, p[T ] is the Σk+3-theory (in the language with names for each real and predicate

for GΣ) of Lp
GΣ(R,Σ � HC)|γ, where γ is least such that Lp

GΣ(R,Σ � HC)|γ � θk[z].

If N is also (ω, ω1, ω1 + 1)-iterable (as a g-organized Σ-mouse), then we call it a 〈θ, z〉-witness. a

Definition 3.23. We say that the fine mouse witness condition W
gΣ
γ holds if whenever θ(v) is a

Σ1 formula (in the language L+ of g-organized Σ-premice (cf. [16])), z is a real, and Lp
GΣ(R,Σ �

HC)|γ � θ[z], then there is a 〈θ, z〉-witness N whose
g
Σ-iteration strategy, when restricted to

countable trees on N , is in Lp
GΣ(R,Σ � HC)|γ. a

Lemma 3.24. W ∗,
gΣ

γ implies W
gΣ
γ for limit γ.

The proof of the above lemma is a straightforward adaptation of that of [14, Lemma 3.5.4].

One main point is the use of the g-organization: g-organized Σ-mice behave well with respect to

generic extensions in the sense that if P is a g-organized Ω-mouse and h is set generic over P then

P[h] can be rearranged to a g-organized Σ-mouse over h.

Remark 3.25. In light of the discussion above, the core model induction (through Lp
GΣ(R,Σ �

HC)) inductively shows Lp
GΣ(R,Σ � HC)|γ � AD+ by showing that W ∗,

gΣ
γ holds for critical ordinals

γ. This, in turn, is done by constructing appropriate Σ-cmi operators “capturing” the theory of

those levels (as specified in Definitions 3.19 and 3.23).

Finally, as in [33], the maximal model of Θ = θΣ is sLp
GΣ(R,Σ � HC), an initial segment

(possibly strict) of Lp
GΣ(R,Σ � HC).

Definition 3.26. We define sLp
GΣ(R,Σ � HC) to be the union of thoseM�Lp

GΣ(R,Σ � HC) such

that whenever π : M∗ → M is elementary, P ∈ π−1(HC), and M∗ is countable and transitive,

then M∗ is F -(ω1 + 1)-iterable with unique strategy Λ such that Λ � HC ∈M. a

In Section 5, we will outline the core model induction, showing that Lp
GΣ(R,Σ � HC) � AD+ +

MC(Σ)46 for sufficiently nice Σ. We note that by [9], if M is a model of AD+ + MC(Σ) satisfying

Θ = ΘΣ and V = L(℘(R)), then M satisfies that every set of reals A belongs to sLp
GΣ(R,Σ � HC).

So in fact, in the situation of this paper,

sLp
GΣ(R,Σ � HC) = Lp

GΣ(R,Σ � HC).

For notational simplicity, from now on, we denote Lp
GΣ(R,Σ � HC) by LpΣ(R).

46MC(Σ) states that if x, y ∈ R and x ∈ OD(y,Σ), then there is a F-mouse M over y such that M is sound,
ρω(M) = ω, and x ∈M.
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3.4. HOD and HODΣ under AD+

Suppose Σ is an iteration strategy of some hod mouse Q and suppose Σ is fullness preserving (see

[7]) and has branch condensation. Assume further that V = L(℘(R)) and MC(Σ) holds and Θ = θΣ.

We outline the analysis of HOD and HODΣ in [7].

Definition 3.27 (S(Γ,Σ) and F (Γ,Σ)). Suppose Γ is a pointclass. Let S(Γ,Σ) = {Q : Q is Σ-

Γ-suitable47}. Also, we let F (Γ,Σ) be the set of functions f such that dom(f) = S(Γ,Σ) and for

each P ∈ S(Γ,Σ), f(P) ⊆ P and f(P) is amenable to P, i.e., for every X ∈ P , X ∩ f(P) ∈ P . a

We let Γ = ℘(R) and for the duration of this subsection, we drop Γ from our notation whenever

it is unambiguous to do so. Thus, a Σ-suitable premouse is a Σ-Γ-suitable premouse etc. We

remark that by [9],

V = L(LpΣ(R)).

Also, we allow for the case (P,Σ) = (∅, ∅), in which case V = L(Lp(R)) and HODΣ = HOD. The

following lemma is essentially due to Woodin and the proof for mice can be found in [14].

Lemma 3.28. Suppose P is Σ-suitable and A ⊆ R is ODΣ. Then P weakly term captures A.

Moreover, there is a Σ-suitable Q which term captures A.

The following lemma is one of the most fundamental lemmas used to compute HOD and it is

originally due to Woodin. Again, the proof can be found in [14]. See also [14, Section 4.1] for

detailed discussions of related standard notions like (strong) f -iterability and f -quasi-iterability.

Theorem 3.29. For each f ∈ F (Γ,Σ) such that f ∈ ODΣ, there is a Σ-suitable premouse P which

is strongly f -iterable.

To save some ink, in what follows, we will sometimes say A-iterable instead of fA-iterable and

similarly for other notions. Also, we will use A in our subscripts instead of fA. See Equation (3.1)

for the definition of fA.

Given P ∈ S(Γ,Σ) and f ∈ F (Γ,Σ) we let fn(P) = f(P) ∩ P|((δP)+n)P . Then f(P) =⋃
n<ω fn(P). We also let

γPf = sup(δP ∩HullP1 ({fn(P) : n < ω})).

Notice that

γPf = δP ∩HullP1 (γPf ∪ {fn(P) : n < ω}).

We then let

HPf = HullP1 (γPf ∪ {fn(P) : n < ω}).

47See Definition 3.16
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If P ∈ S(Γ,Σ), f ∈ FΣ,od, and i : P → Q is an embedding, then we let i(f(P)) =
⋃
n<ω i(fn(P)).

The following are the next block of definitions that routinely generalize into our context: (1)

(f,Σ)-iterability, (2) ~b = 〈bk : k < m〉 witnesses (f,Σ)-iterability for ~T = 〈Tk,Pk : k < m〉, and (3)

strong (f,Σ)-iterability.

If P is strongly (f,Σ)-iterable and ~T is a (Γ,Σ)-correctly guided finite stack on P with last

model R (cf. [7, Section 4.1]) then we let

πΣ
P,R,f : HPf → HRf

be the embedding given by any ~b which witnesses the (f,Σ)-iterability of ~T , i.e., fixing ~b which

witnesses f -iterability for ~T ,

πΣ
P,R,f = π~T ,~b � H

P
f .

Clearly, πΣ
P,R,f is independent of ~T and ~b. Here we keep Σ in our notation for πΣ

P,R,f because it

depends on a (Γ,Σ)-correct iteration. It is conceivable that R might also be a (Γ,Λ)-correct iterate

of P for another Λ, in which case πΣ
P,R,f might be different from πΛ

P,R,f . However, the point is that

these embeddings agree on HPf .

Given a finite sequence of functions ~f = 〈fi : i < n〉 in FΣ,od, we let ⊕i<nfi ∈ FΣ,od be the

function given by (⊕i<nfi)(P) = 〈fi(P) : i < n〉. We set ⊕~f = ⊕i<nfi.
We let F = F (Γ,Σ) ∩ODΣ and

IF,Σ = {(P, ~f) : P ∈ S(Γ,Σ), ~f ∈ F<ω and P is strongly ⊕~f -iterable}

and

FF,Σ = {HPf : (P, f) ∈ IF,Σ}.

We then define �F,Σ on IF,Σ by letting (P, ~f) �F,Σ (Q, ~g) iff Q is a Σ-correct iterate of P and
~f ⊆ ~g. Given (P, ~f) �F,Σ (Q, ~g), we have

πΣ
P,Q, ~f

: HP
⊕~f
→ HQ

⊕~f
.

Notice that �F,Σ is directed. Let then M∞,F,Σ be the direct limit of (FF,Σ,�F,Σ) under the maps

πΣ
P,Q, ~f

. Given (P, ~f) ∈ IF,Σ, we let πΣ
P, ~f,∞

: HP
⊕~f
→M∞,F,Σ be the direct limit embedding. Let

M∞ =M∞,F,Σ.

Theorem 3.30 (Woodin, [14]). δM∞ = Θ, M∞ ∈ HODΣ, and

M∞|Θ = (V HODΣ
Θ , ~EM∞|Θ, SM∞ ,∈),

where SM∞ is the predicate of M∞ describing Σ.
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Remark 3.31. In some of the arguments below, for convenience, we actually use the “one cardinal”

version of suitability. More precisely, for (P, f) ∈ IF,Σ we consider direct limits of (P̂, ~̂f) where

δ = δP , P̂ = P|(δ+)P , and ~̂f = ~f(P) ∩ P|(δ+)P . We define γP̂
f̂

= sup(δP ∩HullP1 ({f0(P)})) etc.

We let M̂∞ be the direct limit of such pairs (P̂, ~̂f). Then it is easy to see also that M̂∞|Θ =

(V HODΣ
Θ , ~EM∞|Θ, SM∞ ,∈).

Finally, if a ∈ Hω1 is self-wellordered then we could define M∞(a) by working with Σ-suitable

premice over a. Everything we have said about Σ-suitable premice can also be said about Σ-suitable

premice over a, and in particular the equivalent of Theorem 3.30 can be proven using HOD(Σ,a)∪{a}

instead of HODΣ and M∞(a) instead of M∞.

[7] computes HOD (up to Θ) in models of (V = L(℘(R))) + SMC + ADR below ADR + “Θ is

regular” by exhibiting a hod premouse M∞ satisfying

1. M∞ ∈ HOD.

2. M∞ is a hod premouse.

3. M∞|Θ = (V HOD
Θ , ~EM∞|Θ, SM∞ ,∈), where SM∞|Θ is the predicate for strategies of hod initial

segments of M∞|Θ.

Here SMC is Strong Mouse Capturing, which is the statement that for any x, y ∈ R, if x ∈ ODy,Σ

where (P,Σ) is a hod pair such that Σ has branch condensation and is fullness preserving, then

x is in a Σ-mouse M over y. We call M∞ the hod limit. Here M∞ =
⋃

(Q,Λ)M∞(Q,Λ), where

(Q,Λ) is a hod pair with branch condensation and is fullness preserving and M∞(Q,Λ) is the

direct limit of all (non-dropping) Λ-iterates of Q. The reader can consult [7] for more details on

this computation.

3.5. Strategies with strong hull condensation pulls back

Definition 3.32. We say a hod pair (P,Σ) reasonable if it has the following additional properties:

• Σ has branch condensation.

• Σ is Γ(P,Σ)-fullness preserving.

a

We will show that properties listed above for Σ hold for hold mice constructed in this paper.

For the next several proofs, the reader is advised to review [7] for basic properties and terminologies

of hod pair strategies. See also [16, Lemma 3.18] for a similar argument.

Lemma 3.33. Suppose (R,Λ) is a reasonable hod pair. Let Γ = Γ(R,Λ). Suppose ~U is according

to Λ with the following properties:

• ~U = ~Ua0 ~U1, where ~U0 =Wad and d = Λ(W),
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• letting S =MWd , there is β < λS such that the set of generators used in ~U0 α(~U0) ⊂ (δSβ )<ω,

• ~U1 is based on S(β + 1), has the last normal component, and is above δSβ ,

• suppose b is a cofinal well-founded branch such that Q(b, ~U1) exists and the phalanx Φ(~Ua1 b)
is iterable in Γ.

Then b = Λ~U0,S(~U1).

Proof. Let Σ = Λ~U0,S � S(β). Let c = Λ~U0,S(~U1). We want to show b = c. There are two cases.

Suppose δ =def δ(~U1) is a cutpoint of Q(b, ~U1).48 This means that

Q(b, ~U1) � LpΣ,Γ
+ (M(~U1)).

Recall M(~U1) is the common part model of ~U1, or more precisely, the common part model of the

last normal component of ~U1. This follows from the fact that Q(b, ~U1) must be iterable in Γ for

trees above δ. But by Γ-fullness preservation of Λ, Q(c, ~U1) exists, and Q(c, ~U1) � LpΣ,Γ
+ (M(~U1)).

Therefore, Q(c, ~U1) = Q(b, ~U1). So b = c.

Suppose now δ is not a cutpoint of Q(b, ~U1). Let E be the least extender on the Q(b, ~U1)-

sequence with the property that crt(E) < δ(~U1) < lh(E). Let U ′ = ~Ua1 〈E〉. Let λ + 1 = lh(U ′),
κ = crt(E), ξ = U ′ − pred(λ). Then it is easy to see that there is a γ < o(MU ′ξ ) such that

MU ′∞ =MU ′λ = Ultn(MU ′ξ |γ,E),

where n is least such that ρn+1(MU ′ξ ) ≤ κ.49 By the minimality of E, we also have

MU ′ξ |γ � “κ is a measurable limit of cutpoint Woodin cardinals”

and

MU ′∞ � “δ is a cutpoint Woodin cardinal”.

This implies MU ′∞ � LpΣ,Γ(M(U1)). Furthermore, ρn+1(MU ′∞) < δ(~U1) and the above properties

of κ, δ imply that both b, c drop;50 so Q(~U1, c) exists. Suppose Q(~U1, b) 6= Q(~U1, c). We claim

that letting Y,Z be the padded trees extending ~U1
ab, ~U1

ac respectively, that are the results of

comparing the phalanxes Φ(~Ua1 b),Φ(~Ua1 c), then for every α ≥ λ, [0, α]Y , [0, α]Z both drop. This

gives a standard contradiction.51

Suppose not. Let α ≥ λ be least such that either F = EYα or F = EZα has critical point < δ and

hence overlaps δ, i.e. crt(F ) < δ < lh(F ). Then [0, α′]Y and [0, α′]Z both drop for α′ ∈ [λ, α] by

48Technically, this is the Q-structure for the last normal component of ~U1, but we abuse notation here.
49This situation is what Sargsyan calls a “fatal drop” in [7]. See also [16] for an alternative treatment and more

details of such a situation.
50This is because Woodin cardinals are cutpoints of hod mice P we consider and there are no measurable κ such

that P|κ =
⋃
α<κ P(α) (i.e. below “ADR+Θ is measurable”).

51The fact that the last branches of Y,Z drop give that some pairs of extenders in Y,Z must be compatible. This
contradicts the fact that Y,Z are comparison trees. We note that the phalanx Φ(~Ua

1 c) is iterable by the strategy

induced by Λ and Φ(~Uab) has an iteration strategy in Γ by hypothesis.
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the above argument. Note that δ is Woodin in MY ||lh(F ) and if there is any F ′ on the sequence of

MY ||lh(F ) that overlaps δ, then [0, β]Y , [0, β]Z both drop for all β > α by the smallness assumption

on our hod mice.

So suppose F is the least extender overlapping δ, and so α = λ. Let κ′ = crt(F ) and ε be the

least ordinal less than the length of the last normal component of ~U1 such that F is applied to

some Q �M~U1
ε according to the rules of normal trees. Then Y � [ε, lh(Y)) and Z � [ε, lh(Z)) are

equivalent to above-κ′, normal trees on Q. If Q�M~U1
ε , we are done. Otherwise, [0, ε]~U1

must drop

because our hod mice are below “ADR+Θ is measurable” and κ′ is an inaccessible limit of Woodin

cardinals.

So Q(~U1, b) = Q(~U1, c) and hence b = c.

Lemma 3.34. Suppose (R,Λ) is a reasonable hod pair, then Λ has strong hull condensation.

Proof. Suppose ~T is according to Λ and ~U is a pseudo-hull of ~T . We assume for ease of notations

in the following argument that ~U = ~Ua0 ~U1 and letting Q be the last model of ~U0, then there is an

ordinal β such that:

• α(~U0), the set of generators used in ~U0, is contained in (δQβ )<ω.

• ~U1 is based on Q(β + 1) and is above δQβ .

• ~U0 is non-dropping and is according to Λ.

This is indeed the main case; the proof of other cases is similar and we will leave that to the reader.

In this case, we also have that ~T = ~T a0 ~T1, where ~T0 has last model S and the embedding

ϕ : Q → S is the natural map given by the fact that ~U is a pseudo-hull of ~T . Hence, we have

ϕ ◦ i0 = j0 where i0 is the iteration map given by ~U0 and j0 is the iteration map given by ~T0. We

also have that S is such that ~T1 is above S(ϕ(β)). Let

b∗ = Λ~T0,S(~T1)

and

S∗ =M~T1
b∗ .

Suppose the following holds.

Λϕ~T0,S
� Q(β) = Λ~U0,Q � Q(β). (3.2)

Call the strategy in (3.2) Σ. Let Ψ = Λϕ
~T0,S

, b = Ψ(~U1) and c = Λ~U0,Q(~U1), we then show that

b = c.
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R Q M ~U1
b

M ~U1
c

R S S∗

~U0, i0

id ϕ ϕ∗

~U1, c

~U1, b

~T0, j0 ~T1, b
∗

Figure 1: Strong hull condensation.

There are two cases. Suppose b does not drop. Then there is a map ϕ∗ :M~U1
b → S

∗ given by

the fact that ~U is a pseudo-hull of ~T . We then have that π
~T = ϕ∗ ◦ π~U1

b ◦ i0. Applying branch

condensation, we have that b = c. See Figure 1.

Suppose b drops, then Q(b, ~U1) exists and the phalanx Φ(~Ua1 b) is iterable (above δQβ ) in Γ

because it is embeddable into the phalanx Φ(~T a1 b∗) (cf. [17, Lemma 4.20]).52 Lemma 3.33 then

implies that b = c.

Now we prove equation (3.2). Suppose not. Let ~W = ~Wa0 ~W1 be a minimal disagreement stack

on Q(β). More precisely, ~W0 is a nondropping stack on Q(β) according to both Λϕ~T0,S
� Q(β) =def

Λ1 and Λ~U0,Q � Q(β) =def Λ2 with last model P∗, α( ~W0) ⊆ (δP
∗

γ )<ω and ~W1 is on [δP
∗

γ , δP
∗

γ+1) for

some γ, and Λ1
~W0,P∗

( ~W1) 6= Λ2
~W0,P∗

( ~W1). Let ψ : P∗ → R∗ be the copy map from ~W0 to ϕ ~W0. Let

bi = Λi~W0,P∗
( ~W1) for i = 1, 2.

Again there are two cases just like above. If b1 drops, then the same argument as above gives

us b1 = b2. Now suppose b1 does not drop. Let τ : M ~W1
b1
→ R∗∗ obtained by copying ~Wa1 b1 to

ψ ~Wa1 b1. Note that

τ ◦ π ~W1
b1
◦ π ~W0 ◦ π~U0 = πψ

~W1

b1
◦ πϕ ~W0 ◦ π~T1 .

By branch condensation, again, b1 = Λ~Ua
0
~W0

( ~W1). Therefore, b1 = b2. Contradiction. This shows

Equation (3.2) holds and hence completes the proof of the lemma.

The following lemma will be used in Lemma 3.36. Lemma 3.36 also uses Lemma 3.34 in an

essential way. Lemma 3.36 may also be of independent interest and is used in an essential way in

the proof of several theorems, including 5.5, 5.12.

Lemma 3.35. Assume CH+ there is an ω1-dense ideal I on ω1. Let g ⊆ PI be V -generic and

j = jg : V → M be the corresponding generic embedding. Suppose (R,Λ) is a reasonable hod

52In the case δ(~U1) is a cutpoint of Q(b, ~U1), as mentioned above, we simply have that Q(b, ~U1) is iterable above
δ(~U1) as a Σ-mouse via a unique iteration strategy in Γ.
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pair where |R|V ≤ ω1 and Λ is an (ω2, ω2)-strategy. Suppose A ⊆ ωV1 and A codes HV
ω1

. Then in

LΛ
ωV2

[A][g], there is no largest cardinal.

Proof. First, suppose π : P → R is elementary and P is countable. Let Ψ = Λπ. Λ has hull

condensation, and hence Ψ has hull condensation (see [7] for a proof that hull condensation “pulls

back”). We first claim that for any x ∈ HC containing P,

LΨ
ωV2

[x] = j(LΨ
ωV1

[x]). (∗)

Suppose not. Then let T be a tree in LΨ
ωV2

[x]∩ j(LΨ
ωV1

[x]) such that Ψ(T ) 6= j(Ψ)(T ). Let T be the

least such (in the constructibility order of the models). Now the following are easy to see:

(a) T ∈ V .

(b) j(π) = j ◦ π.

(c) j(Ψ) = j(Λπ) = j(Λ)j◦π.

So

j(Ψ)(T ) = j(Λ)j◦π(T ) = j(Λ)(j ◦ πT ) = Λ(πT ) = Ψ(T ). (3.3)

The first equality follows from (c). The second and last equalities follow from definitions. To see

the third equality, first note that by (a), πT ∈ V and therefore, j ◦ πT is a hull of j(πT ). Since

j(πT ) is according to j(Λ), so is j ◦ πT by hull condensation of j(Λ).53 Now let b = Λ(πT ),

then j(b) = j(Λ)(j(πT )). Since j ◦ πT ab is a hull of j(πT )aj(b), by hull condensation of j(Λ),

b = j(Λ)(j ◦ πT ) as desired. The last equality follows from the definition of Λ,Ψ.

(3.3) contradicts the assumption that Ψ(T ) 6= j(Ψ)(T ). So (∗) holds. (∗) implies that there is

no α < ωV1 such that

LΨ
ωV2

[x] � α+ = ωV1 .

This is because otherwise, in j(LΨ
ωV2

[x]) � α+ = j(ωV1 ) = ωV2 . This implies then that

j(LΨ
ωV1

[x]) � “ωV1 is not a cardinal”.

On the other hand,

LΨ
ωV2

[x] � “ωV1 is a cardinal.”

(∗) then immediately gives a contradiction.

Now let A ⊆ ωV1 and A codes HV
ω1

. Let X = LΛ
ωV2

[A][g]. To see that there is no largest cardinal

in X. It is enough to show there is no largest cardinal in LΛ
ωV2

[A].54 The argument above (showing

Equations (3.3) hold) shows that

Λ = j(Λ)j � V ,

53We note that j ◦ πT is countable in V [g] and therefore is in M .
54We use that PI is forcing equivalent to Coll(ω, ω1).
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and

LΛ
ωV2

[A] = L
j(Λ)j

ωV2
[A]. (3.4)

Now, R, A ∈ HCM , and j � R : R → j(R) is elementary in M (because M is closed under

countable sequences in V [g]), so the argument above, applied in M , shows that

ωM1 = ωV2 is not a successor cardinal in L
j(Λ)j

ω2 [A] (∗∗)

(∗∗) and Equation (3.4) imply that there is no largest cardinal in LΛ
ωV2

[A].

Lemma 3.36. Assume CH+ there is an ω1-dense ideal I on ω1. Suppose (R,Λ) is a reasonable

hod pair such that |R|V ≤ ω1 and Λ is an ω2-iteration strategy for R. Let g ⊆ PI be V -generic and

j = jg : V →M be the corresponding generic embedding. Then Λ = j(Λ)j.

Proof. By Lemma 3.34, Λ has strong hull condensation. By strong hull condensation and [17,

Theorem 7.3], there is a unique extension of Λ in V [g]. Hence we identify Λ with its canonical

extension in V [g]. First let T ∈ V be according to Λ. Then jT is a psedo-hull (in fact, a hull) of

j(T ) and j(T ) is according to j(Λ), so jT is according to j(Λ) by strong hull condensation of j(Λ).

But then T is by j(Λ)j .

Suppose T ∈ M is according to Λ. Then there is a U ∈ V according to Λ such that T is a

pseudo-hull of U (see [17, Theorem 7.3]); we note that to apply [17, Theorem 7.3] to get the existence

of U , we need to work inside X = LΛ
ωV2

[tr.cl.({Ṫ } ∪HV
ω1

)][g], where Ṫ ∈ HV
ω2

is a Coll(ω, ω1)-name

of T . For [17, Theorem 7.3] to apply, we need that ωV2 > (ωV1 )+,X . This follows from Lemma 3.35.

This means jT is a pseudo-hull of jU55 and jU is by j(Λ) by the argument above. By strong

hull condensation of j(Λ), jT is by j(Λ). Therefore, T is by j(Λ)j .

3.6. Boolean-valued comparison and ZFC comparison of hod pairs

Suppose (P,Σ) is a reasonable hod pair such that Σ is ω1-UB. Suppose p ∈ Coll(ω, ωV1 ) and

G ⊂ Coll(ω, ωV1 ) is V -generic and p ∈ G; let g ⊆ PI be the corresponding generic induced by G, π

and jg : V → M be the corresponding generic embedding. Suppose Γ ∈ V [G] is an inductive-like

pointclass.56 For each q ≤ p, let Gp = G − G � dom(q) ∪ q be the “finite variation” of G induced

by q. Note that V [G] = V [Gq] for all q ≤ p; for each q, let gq ⊆ PI be the corresponding generic

induced by Gq, π and jgq : V → Mq be the corresponding generic embedding. In V [G], suppose

(Pq,Λq) is a (countable) Σ-Γ-suitable mouse with Λq being a (ω1, ω1 + 1), Γ-fullness preserving

strategy for Pq and Λq is strongly guided by a sjs Aq that seals Env(Γ)

˜
(see Remark 3.18). Then

Woodin’s Boolean comparison theorem ([14]) gives us that we can compare {(Pq,Λq) : q ≤ p} in

V [G] and the comparison results in a pair (R,Λ) such that R ∈ V , |R|V ≤ ω1, Λ � HV
ω2
∈ V .

Furthermore, Λ is the tail of all the Λq’s via the iteration trees that appear in the comparison.

55This fact can be easily verified, by chasing through the definition of pseudo-hull. See [30]. Furthermore, [17,
Theorem 7.3] gives that if T is nondropping, then so is U .

56In cases of interest, Γ is typically of the form jg(Γ
∗) for some inductive-like Γ∗ ∈ V .
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In our present context,57 we only know Λq is an (ω1, ω1)-iteration strategy in V [G] for each q.

However, we can still conclude the comparison above terminates in less than ω
V [G]
1 = ωV2 many

steps. This is because by Σ1-reflection (inside the pointclass Γ), we have that for every q ≤ p, there

is a countable tree Tq such that:

• Tq is correctly guided, i.e. whenever α < lh(Tq) is limit, then Q(Tq � α) exists and Q(Tq �
α) � LpΣ,Γ

+ (M(Tq � α)).58

• Tq is maximal and has last model Mq = LpΣ,Γ
+ (M(Tq)).

• {Tq : q ≤ p} are obtained by the least-extender disagreement process.

Futhermore, for any q 6= r such that q, r ≤ p,

• Mq = Mr.

The tree Tq’s above are precisely the trees occurred during the Boolean comparison process.

This is possible because Tq is countable; that Tq is countable is a consequence of the fact that ω1

is measurable in Γ. Therefore, the comparison process succeeds and results in (R,Λ) above.59

We now introduce concepts needed for the proof of Claim 6.21. In essence, the proof of Claim

6.21 is a proof that a Boolean comparison between hod pairs {(Pq,Λq) : q ∈ Coll(ω, ωV1 )}60 ter-

minates in V [G] (in less than ω1 many steps), where for each q, Pq is a hod mouse such that

λPq is a limit ordinal and Λq is an (ω1, ω1)-strategy with branch condensation and for each

(Q,Ψ) ∈ B(Pq,Λq), Ψ is a (ω1, ω1 + 1)-strategy and Ψ � HC belongs to an AD+ model. Fur-

thermore, we assume that for p 6= q, (Pq,Λq), (Pp,Λp) are hod pairs of the “same kind”; this means

whenever (Q1,Ψ1) ∈ B(Pq,Λq) and (Q2,Ψ2) ∈ B(Pp,Λp) (see Section 3.2), and suppose there is

α < min(λQ1 , λQ2) such that (Q1(α), (Ψ1)Q1(α)) = (Q2(α), (Ψ2)Q2(α)), then there are normal trees

Ti according to Ψi on the window (δQiα , δQiα+1) such that letting Ri be the final model of Ti and

Λi = (Ψi)Ti,Ri , then (R1(α+ 1), (Λ1)R1(α+1)) = (R2(α+ 1), (Λ2)R2(α+1)).

Typically, Ψ1,Ψ2 are Suslin co-Suslin in an AD+ model X (e.g. X is of the form L(A,R) for

A ∈ Γ). We let (N, δ,Σ) be a coarse Ω-Woodin mouse for some inductive-like pointclass Ω ∈ X
that contains all projective sets in (Ψ1,Ψ2) and (N, δ,Σ) Suslin captures Ψ1,Ψ2.61 More precisely,

(N, δ,Σ) has the following properties:

• N � ZFC.

• δ is the unique Woodin cardinal of N .

• Σ is an iteration strategy for N .

57Another context, where the conditions for Λq’s below may not be satisfied, occurs in the proof of Claim 5.6. We
will show in that case the Boolean comparison still succeeds.

58We note that the fatal drop cases can be ruled out in the boolean comparison.
59Notice we never referred to the strategies Λq in the above process. Λq is used to define Λq(Tq) at the end (i.e.

picking the last, maximal branch of Tq). Λq is not in j(Γg) a priori.
60More generally, we compare pairs (Pq,Λq) for q ≤ p, for some fixed condition p.
61See [23] for more details on coarse Woodin mice.
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• Q1,Q2 ∈ N .

• For each i ∈ {1, 2}, there are trees (Ti, Ui) ∈ N that witnesses (N, δ,Σ) Suslin captures Ψi at

δ, i.e. for any countable Σ-iterate N ′ of N such that there is an iteration map i : N → N ′,

for any h ⊂ Coll(ω, i(δ)) such that h ∈ V is N ′-generic, p[i(Ti)] ∩ N ′[h] = Ψi ∩ N ′[h] and

p[i(Ui)] ∩N ′[h] = RN ′[h] −Ψi.
62

The existence of Ti is then easy to see. Let Λ = (Ψ1)Q1(α) = (Ψ2)Q2(α). In N , iterate (Ψ1)Q1(α+1)

and (Ψ2)Q2(α+1) into the Λ-hod mouse construction of V N
δ . Since these two strategies have branch

condensation, there are normal trees Ti (as specified above) and iteration maps ki : Qi → Ri
according to Ψi such that

(a) (R1(α+ 1), (Λ1)R1(α+1)) = (R2(α+ 1), (Λ2)R2(α+1)).

(b) R1(α+ 1) is model in the Λ-hod mouse construction of V N
δ and (Λ1)Ri(α+1) is the background

induced strategy.

See [7] for more details. The above argument generalizes easily to countably many hod pairs (as in

the proof of Claim 6.21).

The comparisons described above are the building blocks of the “diamond comparison” described

in Claim 6.21. The “diamond comparison” of all pairs of the form (Pq,Λq) for q ∈ Coll(ω, ω1) must

end in < ω1 steps in V [G]; see the proof of Claim 6.21 for more details.

4. OUTLINE OF THE PROOF OF THEOREM 1.4

We outline the proof of Theorem 1.4. In V , define the maximal pointclass

Γ = {A ⊆ R : L(A,R) � AD+}.

The goal is to show that Γ is sufficiently rich in that there is a Ω ⊆ Γ such that L(Ω,R) � “ADR + Θ

is regular”. So suppose not. We assume:

(‡) : For any transitive N such that Ord ∪ R ⊂ N and N � ZF + AD+, N does not satisfy

“ADR + Θ is regular.”

As part of the induction, we maintain:

(†): For all Σ ∈ Γ, all Σ-cmi operators are ω1-UB.

We will analyze the complexity of Γ, ultimately showing that there is some Wadge initial

segment Ω of Γ (possibly Ω = Γ) such that L(Ω,R) � “ADR + Θ is regular.” There are two major

cases. We summarize the key points of each case below before jumping into the details.

62Here we fix a canonical coding of elements of HC by reals identify Ψi with its code.
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(i) The successor case (Section 5): we first show that if (P,Σ) ∈ Γ ((P,Σ) may be ∅) is a hod

pair such that Σ is Γ-fullness preserving and has branch condensation, then LpΣ(R) � AD+,

and therefore ℘(R) ∩ LpΣ(R) ⊂ Γ. This is via a standard core model induction argument

similar to that showing AD holds in L(R) ([14, 34]). One wrinkle that appears in the case

that Σ 6= ∅ is that one needs to show MΣ,]
1 exists before being able to define LpΣ(R) as done

in [16]. The argument showing that MΣ,]
1 exists is given in Theorem 5.1.

As part of the induction, we maintain (†), the hypothesis that for every Σ-cmi operator J

(including the operator induced by Σ), J is ω1-UB. This is what we need to carry out the

proof of Theorem 5.1. This then allows us to adapt the standard arguments in [14, 34] to

show LpΣ(R) � AD+.

In Section 5 (see in particular Theorem 5.5), we adapt the argument in [34] to show that there

is a self-justifying system A consisting of sets Wadge cofinal in LpΣ(R), and a Σ-suitable pair

(Q,Λ) where Λ is the strategy guided by A.63 Therefore, Λ is Γ-fullness preserving and has

branch condensation and Λ /∈ LpΣ(R).

We can then show LpΛ(R) � AD+ and therefore Λ ∈ Γ. To do this, we first need to show some

such Λ can be extended to an ω2-strategy in V and is ω1-UB (Theorem 5.12). Crucially, we

use Lemma 3.36 in this argument.

(ii) The limit case (Section 6): assuming (‡) and letting H,H+ and Σ be defined as in Section

6, we use the generic embedding j : V → M induced by a V -generic G ⊂ Coll(ω, ω1) to

derive a nice strategy Λ for H+ in M . The strategy Λ is j(Γ)-fullness preserving, has branch

condensation, and most importantly, if Γ(H+,Λ) ( j(Γ), then letting M∞(H+,Λ) be the

direct limit of non-dropping iterates of (H+,Λ) in j(Γ), we have M∞(H+,Λ) = H(δ) where

δ = δM∞(H+,Λ), and there is a factor map σ : M∞(H+,Λ) → j(H+) such that crt(σ) = δ.

This property is a consequence of the j-condensation lemma, Theorem 6.17. This result is

crucial here and its variations are important in many other arguments (cf. [8, 10, 32]).

Again, Lemma 3.36 will be useful in proving Theorem 6.17 and Lemma 6.11. Part of the

proof of Lemma 6.11 is to show that j is continuous at o(H+). This continuity property is

also important in the proof of Theorem 6.17.

Now there are two cases. Suppose first that Γ(H+,Λ) = j(Γ). Then by elementarity, in

V there is a hod pair (P,Σ) such that Γ(P,Σ) = Γ; in particular, Σ /∈ Γ. By a core model

induction as in the successor case, LpΣ(R) � AD+. To show this, we again have to show we can

extend Σ to HV
ω2

and that Σ is ω1-UB (see Lemma 6.20). This implies Σ ∈ Γ. Contradiction.

Otherwise, Γ(H+,Λ) ( j(Γ). Therefore σ exists and δ is a regular cardinal which is a limit

of Woodin cardinals in M∞(H+,Λ). By standard arguments, L(j(Γ) � δ,RM ) � “ADR + Θ is

regular.” This is again a contradiction, so (‡) fails. This completes the outline of the proof.

63This argument allows us to construct (Q,Λ) without the technical hypothesis HI(c) in Ketchersid’s thesis. See
[14, 5] for an alternative argument constructing (Q,Λ) that uses a seemingly stronger hypothesis.
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5. SUCCESSOR STEP

We assume throughout this section CH and there is a dense ideal I on ω1. Let G ⊂ Coll(ω, ωV1 ) be

V -generic and g ⊆ PI be the corresponding generic induced by G, π, where π is as in Fact 2.4. Let

j = jg : V → Ult(V, g) = M be the corresponding generic embedding.

Recall the pointclass Γ defined in the previous section. Suppose (P,Σ) ∈ Γ is a reasonable

hod pair such that Σ is Γ-fullness preserving, has branch condensation, and Σ is ω1-UB (i.e. we

assume the hypothesis (†) holds for Σ). This includes the case (P,Σ) = (∅, ∅). We show that

LpΣ(R) � AD+. See Sections 3.1, 3.3 for a summary of mouse operators and Σ-cmi operators and

related concepts like the definition of FΣ,ϕ, ϕall etc.

Theorem 5.1. Suppose F is a nice mouse operator (or a Σ-cmi operator) on HV
ω1

that is ω1-UB,

then MF,]
1 is a nice operator (or a Σ-cmi operator) and is ω1-UB.

Proof. We assume that F is a Σ-cmi operator where Σ ∈ Γ has branch condensation, is Γ-fullness

preserving, and is ω1-UB. We consider the case F = FΣ,ϕ, where FΣ,ϕ is the operator induced by

Σ and with ϕ = ϕall and F+ the canonical extension of F in V [g]. The case F 6= FΣ,ϕ is similar.

The operator F codes up the same information as Σ does; the reader will lose little by pretending

F = Σ.

The proof that F ] exists and is ω1-UB is standard. Details have been given in [34, 14]. We

only mention some key points here. The operator F+, the unique extension of F in V , is simply

j(F) � V . Since F satisfies (†), the hypothesis DI will imply that j(F) � V is in V and doesn’t

depend on G; this follows from Lemma 2.5 and homogeneity of the forcing Coll(ω, ω1). We will

write F for F+ for brevity.

To see F ](x) is defined for each x ∈ dom(F), note that from j, one can define an ultrafilter µ

over LF [x]64 as follows: for each A ∈ ℘(ωV1 ) ∩ LF [x],

A ∈ µ ⇐⇒ ω1 ∈ j(A).

By a standard argument, µ is a countably complete, normal measure over LF [x] that is amenable

to LF|[x] in the sense that for any Y of size ωV1 in LF [x], we have µ ∩ Y ∈ LF [x]. Furthermore,

by condensation properties of F we have Ult(LF [x], µ) = LF [x] as it embeds into j(LF [x]). By

standard arguments due to Kunen, the amenable structure (LF [x], µ) is iterable. This implies

F ](x) exists.

To prove MF ,]1 exists, we need to build the Kc,F -construction inside N = LF
]
(R) and run the

proof of [14, Theorem 2.10.2]. For contradiction, we get for some x ∈ R, the core model (relative

to F) K = KF (x) exists (and iterable) in N . We need that j(K) ∈ V . To show this, we need to

show j(N) is definable in V [g] from parameters in V . Here are some details that execute this plan.

We define the following model W by induction on α < ωV2 : W0 = (HCV ,∈),

Wα+1 = Jω(tr.cl.(Wα ∪ {(T , b) : b = Σ(T ) ∧ T ∈Wα ∧ T is according to Σ})), 65

64This is the model LFc+ [x].
65Equivalently, Wα+1 = Jω(tr.cl.(Wα ∪ {(x,F(x)) : x ∈Wα})).
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and for α limit, Wα =
⋃
β<αWβ . Finally, let WF = W =

⋃
α<ωV2

Wα. Note that W ∈ V and

Σ �Wα ∈W for all α < ωV2 .

By the proof of [7, Lemma 3.35], we have the following.

Fact 5.2. For any poset P ∈ W and any W -generic h ⊂ P such that h ∈ V (or h ∈ M), W [h] is

closed under Σ (respectively j(Σ)).66

Let Σ+ be the canonical extension of Σ to V [g]. We fix trees T, U ∈ V witnessing Σ is ω1-UB. So

in V [g], Code(Σ+) = p[T ] = R\p[U ]. Note also that j(Σ) � V = Σ+ � V . Suppose h ∈ V (or in M)

is a generic enumeration of RV in order type ωV1 , let Xh =
⋃
α<ωV2

Xα, where X0 = tr.cl.(h ∪ {h}),
X1 = F+

0 (X0), and for α ≥ 1, Xα+1 = F+
1 (Xα), and Xλ =

⋃
α<λXα for λ a limit ordinal; here F+

codes Σ+ the same way F codes Σ. We note that Xh contains RV and is closed under Σ+. Now, if

we let WXh be the structure WF defined as above, but the definition is carried out inside Xh, then

WXh = W .

This means that the model W is independent of h.

In a similar manner, letting G = (F+)], we define Xh =
⋃
α<ωV2

Xα, where X0 = tr.cl.(h∪{h}),
X1 = G0(X0), and for α ≥ 1, Xα+1 = G1(Xα), and Xλ =

⋃
α<λXα for λ a limit ordinal67 and let

W be the model WG defined in Xh as above, but using G instead of F . In particular, it is easy to

verify that W now has the following properties:

• o(W ) = ω2 and W is a transitive model over RV ;

• for any a ∈ Hω2 ∩W , we have G(a) ∈ W ; in particular, W is closed under Σ+ and if h ∈ V
(or in M) is W -generic, then W [h] is closed under Σ+;

• W is independent of h; in other words, suppose h1, h2 ∈ V (or in M) are two enumerations

of R in order type ω1, then WXh1 = WXh2 .

• If h ∈ V (or in M) is Coll(ω1,RV )-generic over W , then the universe of Xh is just the universe

of W [h].

Suppose that on a cone of x ∈ HC, MF ,]1 (x) does not exist. Then in W [h] where h ∈ V is

Coll(ω1,RV )-generic over W , the core model K =def K
F+

(x) exists68. Here K is a F -mouse and is

in W .

Claim 5.3. j(K) ∈ V .

Proof of Claim 5.3. To see that j(K) ∈ V , it suffices to show that j(W ) is definable in V [G] from

parameters in V . To see this, first note that j(j(Σ) � V ) is definable in Ult(V, g) = M as the unique

66[7, Lemma 3.35] indeed implies that F determines itself on generic extensions. It is also easy to see that F
relativizes well.

67Xh is a potential G-premouse over h and it is closed under G because G relativizes well.
68Here the core model relative to Σ+ is defined in the sense of [4] and o(K) = ξ < o(W ) and ωV1 < ξ is a sufficiently

large indiscernible relative to G.
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extension of j(Σ) to Hω2 that has branch condensation. Let Λ = j(j(Σ) � V ). Note that Λ may

not be definable in V [G]; the main wrinkle is that H
V [G]
ω2 may differ from H

Ult(V,g)
ω2 . But in V [G]

we can define Ψ, the maximal (partial) strategy on Hω2 that extends j(Σ) with the property that

whenever T is according to Ψ, the branch Ψ(T ) (if defined) is the unique well-founded branch b

such that whenever (U , c) is a countable hull of (T , b), then U is according to j(Σ) and c = j(Σ)(U).

Note that if Λ1 and Λ2 are partial strategies extending j(Σ) satisfying the above properties, then

whenever T ∈ dom(Λ1) ∩ dom(Λ2), we have Λ1(T ) = Λ2(T ). As a result, Ψ is simply the union of

all such partial strategies, and since Λ is one such partial strategy,

Λ ⊆ Ψ.

This easily implies that j(W ) is definable in V [G] from Ψ as Ψ � W = Λ � W . Hence j(W ) is

definable in V [G] from j(Σ), but j(Σ) = p[j(T )]∩V Ult(V,g) = p[T ]∩V [g] (by Lemma 2.5); so j(W )

is definable in V [G] from (T, U).69 By homogeneity, j(W ) ∈ V .

Given this claim, the rest of the proof proceeds as in [14, Theorem 2.10.2] by showing that for

the (ωV1 , ω
V
2 )-extender E derived from j, we have E � α ∈ j(K) for all α < ωV2 . This implies that ωV1

is Shelah in j(K), contradiction. Fixing α < ωV2 , we give a sketch of E � α ∈ j(K). We note again

that W is closed under G. We need to see that the phalanx (j(K),Ult(j(K), E � α), α) is iterable in

j(W ).70 Otherwise in j(W ) there is a countable F -premouse K̄ and a map σ : K̄ → Ult(K,E � α)

with crt(σ) = α and

j(W ) � (j(K), K̄, α) is not ω1-iterable.

We have a factor map k : Ult(K,E � α)→ j(j(K)) with k � α = id and

k ◦ σ : K̄ → j(j(K))

such that k ◦ σ � α = id. Note that j(j(K)) makes sense by the claim above.

Let ψ = k ◦ σ and ψ = [β 7→ ψβ ]G. Let K̄ = [β 7→ Kβ ]G and α = [β 7→ αβ ]G. We need to see

that for G-almost all β,

W � (K,Kβ , αβ) is ω1-iterable.

By absoluteness, in j(W ) there is some ψ′β : Kβ → j(K) such that ψ′β � αβ = id. Then in W there

is some ψ̄ : Kβ → K such that ψ̄ � αβ = id. But this means (K,Kβ , αβ) is iterable in W . We have

reached a contradiction.

Finally, the operator H : x 7→ MF ,]1 (x) is definable from Σ. Since j(Σ) � V ∈ V , we have

j(H) � V ∈ V also. It is then standard to show H is ω1-UB. One shows that for club many

countable X ≺ (Hω2 ,∈, (T, U)), X is generically correct about H, namely letting πX : MX → X

be the uncollapse map, for any forcing P ∈MX such that

MX � “|P| ≤ ω1”,

69This is the crucial point and is the reason we maintain that operators we construct in this core model induction
are ω1-UB.

70Iterability here is with respect to trees of length < j(ξ) in j(W ).
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for any MX -generic g ⊂ P such that g ∈ V , then for any x ∈ HC ∩MX [g],

V � ϕ[x, (T, U)]⇔MX [g] � ϕ[x, π−1
X (T, U)],

here ϕ(x, (T, U)) is the natural formula that defines H(x) from F . We give an informal definition

of ϕ(x, y) here. ϕ(x, y) is the statement: there is a unique z such that

(a) z has the first order properties of MF ,]1 (x), where Code(F) = p[(y)0] = R− p[(y)1].

(b) z has a unique (ω1, ω1 +1)-iteration strategy Λ with the property that whenever T is according

to Λ with limit length (or T is a stack with last normal component with limit length), Λ(T ) is

the unique b such that MTb � F ](M(T )).

It is easy to verify that H is a Σ-cmi operator (i.e. H condenses finely, relativizes well, and

determines itself on generic extension); this is because F has these properties. We leave the details

to our reader.

The induction through LpΣ(R) proceeds as usual and is organized by the scales pattern in

LpΣ(R) (see [16]). The above theorem takes care of the successor steps in the induction in LpΣ(R).

The limit step is non-trivial and requires the use of our hypothesis when we reach an inductive-like

Ω; recall here that a pointclass Ω is inductive-like if it is ω-parametrized, closed under ∀R, ∃R,

recursive substitution, and has the scale property. We need to construct an operator that is beyond

Env(Γ)

˜
to continue the induction.71 We start with a useful lemma.

Lemma 5.4. Suppose (P,Σ) is a reasonable hod pair such that Σ is ω1-UB. Suppose (P ′,Σ′) is

a pair such that P ′ is a countable Σ-premouse that is Ω-suitable for some inductive-like pointclass

Ω ⊂ LpΣ(R) and Σ′ has branch condensation and is a Ω-fullness preserving strategy for P ′ (as a

Σ-mouse) that can be uniquely extended to an (ω2, ω2)-strategy, then Σ′ is ω1-UB.

Proof. We identify Σ′ with its unique extension to stacks in HV
ω2

. Let i : P ′ →M∞ be the direct

limit map of all non-dropping Σ′-iterates via stacks in HV
ω2

. For a club of countable Y ≺ (Hω3 ,∈
, (P ′,Σ′), i,M∞), let πY : MY → Y be the uncollapse, let κY = crt(πY ), and let aY = π−1

Y (a) for

any a ∈ Y . Let h ⊆ Coll(ω, κY ) be a MY -generic in V . Let T , b ∈ MY [h], let a = (i,M∞) where

T is a normal tree, and let ϕ(T , b, aY ) say:

• T is correctly guided i.e. all strict initial segments of T are given by the Q-structures in

Cj(Ω)(M(T )).72

71In fact, we need the hypothesis in the construction of the “next” operator when Γ is the last scaled pointclass in
LpΣ(R).

72At this point, we know Cj(Ω)(M(T )) is independent of generics g. To see this, suppose g1, g2 are such that

leting ji : V → Mi be the corresponding generic embeddings, and LpΣ,j1(Ω)(M(T )) � LpΣ,j2(Ω)(M(T )). Let M be
the least in LpΣ,j2(Ω)(M(T ))− LpΣ,j1(Ω)(M(T )) and ΛM be its unique strategy. Note that ΛM ∈ j2(Ω); therefore,
ΛM � V ∈ Ω as j2(ΛM � V ) = ΛM. This means j1(ΛM) ∈ j1(Ω). This contradicts the choice of M.
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• If T is short then b is the unique cofinal branch such that Q(b, T ) exists and the phalanx

Φ(T aQ(b, T )) is iterable with unique strategy in Cj(Ω)(M(T )).

• If T is maximal then b is the unique non-dropping branch such that there is a map σ :MTb →
MY
∞ such that iY = σ ◦ iTb .

We need to see that MY [h] � ϕ(T , b, aY ) if and only if Σ′(T ) = b. Suppose first T is short.

Note that HMY
ω2

is closed under Σ′, so we let W ∈ HMY
ω2

be transitive such that T ∈ W [h]. Let

π : P → Q be the iteration map given by the generic genericity iteration according to Σ′ � HMY
ω2

that makes W generically generic. So T ∈ Q[W,h] and Cj(Ω)(M(T )) ∈ Q[W,h] by j(Ω)-fullness of

Q and the fact that the operator Cj(Ω) relativizes well. Therefore, Q(b, T ) = Q(T ) ∈MY [h]. This

shows that MY [h] is correct about the shortness of T and can compute the correct Q-structure and

hence the branch Σ′(T ).

Suppose T is maximal. The above calculation shows that this is equivalent to T being maximal

in MY [h]. If MY [h] � ϕ(T , b, aY ) then there is a σ : MTb → MY
∞ such that iY = σ ◦ iTb . In V ,

let ~T be according to Σ′ with last model MY
∞ such that iY = iT . Then by branch condensation

of Σ′, b = Σ′(T ). Conversely, suppose Σ′(T ) = b. Let c = jh(Σ′ � MY )(T ). Then by boolean

comparisons, it is easy to see there is a σ : MTc → MY
∞ such that σ ◦ iTc = iY . But iY is an

iteration map according to Σ′ (in V ), by branch condensation of Σ′, c = Σ′(T ). So b = c.

The argument for stacks is similar. We leave the details to the reader. This completes the proof

of the lemma.

Theorem 5.5. Suppose Γ∗ ⊂ LpΣ(R) is an inductive-like pointclass such that:

Γ∗ � AD+ + MC(Σ).

Then

(a) for any A ∈ Env(Γ∗)

˜
, there is a scale on A whose norms are in Env(Γ∗)

˜
;

(b) there is a self-justifying system (sjs) (Ai : i < ω) sealing Env(Γ∗)

˜
.

Proof. We assume for simplicity that Σ = ∅, so LpΣ(R) = Lp(R); the general case is just more

notationally complicated. We assume Γ∗ = Σ
Lp(R)
1 , i.e. the largest scaled pointclass in Lp(R). The

other cases are taken care of by the scales analysis in Lp(R) (see [14, 19, 25]). Let T be the tree

of a Γ∗-scale on a universal Γ∗ set; T is a tree on ω × κ, where κ is the largest Suslin cardinal of

P = Lp(R).73 Let A = p[T ] be the universal Γ∗-set induced by T . We note that at this point, we

know that P � AD+; this is because by essentially the Kechris-Woodin transfer theorem (see [34] for

more discussions in this particular context), AD+ holds for sets in Env(Γ∗)

˜
and Env(Γ∗)

˜
= ℘(R)∩P

by arguments in [34, Lemma 4.5.1]. We assume for contradiction that (a) (and hence (b)) fails.

73The following argument works for P = LpΣ(R). One just needs to put the trees T,U witnessing Σ is ω1-UB into
the parameters that define all the relevant objects below.
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Claim 5.6. For any V -generic g ⊂ PI , suppose jg : V → Ult(V, g) = M is the associated ultrapower

map and G ⊆ Coll(ω, ωV1 ) is the V -generic filter associated with g, then

(i) jg � κ is independent of g

(ii) jg(κ) is the largest Suslin cardinal of (Lp(R))V [G] and hence is independent of g.

(iii) jg � (℘(κ))P is independent of g.

Proof. To see (i), let γ < κ be arbitrary and let A ∈ Lp(R) be of Wadge rank γ. Note that since

γ < κ, by our induction hypothesis, A is ω1-UB as witnessed by (S,W ). Notice then that by

Lemma 2.5,

jg(A) = p[S] ∩ V [g].

If (i) fails at γ, then there exist p 
 jg(γ) = γ0 and q 
 jg(γ) = γ1 with γ0 6= γ1. Let g0, g1 ⊂ PI
be V -generic such that p ∈ g0, q ∈ g1, and V [g1] = V [g0]; such g0, g1 can be easily obtained using

the homogeneity of the forcing 74. Let M0 = jg0(Lp(R)), M1 = jg1(Lp(R)). Note that M0 �M1 or

M1 �M0. Write ji for jgi and note that

j0(γ) = γ0 6= γ1 = j1(γ). (5.1)

Note also by the fact that V [g0] = V [g1],

j0(A) = j1(A) = p[S] ∩ V [g1] = p[S] ∩ V [g0]. (5.2)

The fact that the Wadge hierarchies of M0,M1 are compatible gives us

j0(A) = j1(A) ∈M0 ∩M1. (5.3)

5.2 and 5.3 give us the Wadge rank of j0(A) = j1(A) is j0(γ) = j1(γ), which clearly contradicts 5.1.

So (i) holds.

We now show (ii). We do not claim here that (Lp(R))V [G] � AD+. Suppose the statement of the

claim is false. Fix G, g as above witnessing the failure of the claim. Then there is M� (Lp(R))V [G]

such that j(Γ∗) is Suslin co-Suslin in M and M � AD+.

By the scales analysis and MC in M (MC holds in M by our smallness assumption (‡) and

results in [7]), there is a sjs ~A sealing Env(j(Γ∗))

˜
in V [G]. Let (P,Σ) ∈ M be guided by ~A.

By Boolean-valued comparisons (described in the previous section), there is an iterate (R,Λ) of

(P,Σ) such that R ∈ V and Λ � HV
ω2
∈ V . Now, Λ has branch condensation and is j(Γ∗)-fullness

preserving and hence by Lemma 3.34 has strong hull condensation. By Lemma 3.36, Λ = j(Λ)j .

Therefore, Λ ∈M and is j(Γ∗)-fullness preserving.

74Given p ∈ g0, we can find an automorphism τ : PI → PI such that τ(p0) ≤ q. Then let g1 = τ [g0]. g0, g1 are as
desired.
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Now note that Λ is ω1-UB in M by Lemma 5.4 and hence self-scaled, and so by the core model

induction similar to the above, LpΛ(RM ) � AD+ (here by density, RM = RV [G]). This implies

that L(Λ,RM ) � Θ > θ0 since Λ /∈ Lp(R)M . This in particular implies, via standard results (cf.

[34]), that conclusions (a) and (b) hold for Env(j(Γ∗))

˜
in M . By elementarity, (a) and (b) hold for

Env(Γ∗)

˜
. This contradicts our assumption that (a), (b) fail.

To see that jg � ℘P (κ) is independent of the choice of g in (iii), fix a Γ∗˜-prewellorder � of R
of length κ; by choosing a minimal definition, we can assume � is definable from a real y and κ

in P . More precisely, we choose the least ξ such that Lp(R)|ξ ordinal defines such a � from a real

y. By minimizing the ordinal parameters, we can then get that � is definable over Lp(R)|ξ from

{y, κ}, say by formula ϕ. Note that any X ∈ ℘P (κ) is Σ1
1(�, z) for some real z by the Coding

Lemma. Suppose X witnesses the failure of (c) and X is Σ1
1(�, z) for some real z. Let g0, g1 be

such that V [g0] = V [g1] and ji = jgi be the associated generic embeddings with the property that

j1(X) 6= j0(X). By part (ii), j0(κ) = j1(κ), so let κ∗ = j0(κ) = j1(κ). By the choice of � and part

(i), j0(�) = j1(�); this is because j0(�), j1(�) are both definable from {κ∗, y} via formula ϕ over

the least M � (Lp(R))V [g0] that defines a prewellorder of RV [g0] of length κ∗. Since j0(X), j1(X)

are Σ1
1-definable from j0(�) from y via the same formula, j0(X) = j1(X). Contradiction.

Remark 5.7. In the proof of Claim 5.6(ii), it appears that we need to assume the failure of

Theorem 5.5(a). However, one can show

(ii’) jg(κ) is independent of g

without assuming the failure of Theorem 5.5(a). Suppose (ii’) fails. We can then find g1, g2 such

that V [g1] = V [g2] and jg1(κ) < jg2(κ). Let ji = jgi for i ∈ 2 and ji : V → Mi. We can run

the argument in the proof of Claim 5.6(ii) to get (R,Λ) as there, where Λ is ω1-UB in M1. By

elementarity, there is such a pair (R,Λ) ∈ V such that Λ is ω1-UB, LpΛ(R) � AD+, and Λ /∈ Lp(R).

Since j0(κ) 6= j1(κ), it is easy to see that j0(Λ) 6= j1(Λ). But since Λ is ω1-UB as witnessed by

trees (T, U) and V [g0] = V [g1], j0(Λ) = p[T ] ∩ V [g0] = p[j1(T )] ∩M1 = j1(Λ). Contradiction.

From the claim above and homogeneity, we easily see that the value of jg(κ), jg(T ) is independent

of g; from now on, we will write j(κ) for jg(κ) etc. We let measΓ∗˜(κ<ω) be the set of countably

complete measures on (℘(κ<ω))P in P and

σ = j′′measΓ∗˜(κ<ω).

Note also that σ is independent of g. Let λ be the length of the well-ordering of Env(Γ). We have

λ < j(ωV1 ) = ωV2 . It follows that j′′λ (and hence also σ) is in Ult(V, g) and is countable there. This

then implies that σ ∈M .

Let µ ∈ σ. Suppose µ concentrates on j(κ)n and let 〈µi | i ≤ n〉 be the projections of µ, meaning

A ∈ µi ⇐⇒ {s ∈ j(κ)n | s � i ∈ A} ∈ µ. Note that µ0 is the trivial measure.

In Ult(V, g), we define the following putative scale {ϕµ : µ ∈ σ} on R\p[j(T )] as follows. For

each µ ∈ σ, and for each x ∈ R\p[j(T )] (so j(T )x is well-founded),
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ϕµ(x) = [rankj(T )x ]µ.75

We now define the following closed game Gσ,µj(T ) in Ult(V, g) (equivalently in V [G], recalling that

RV [G] = RUlt(V,g) and the pointclass j(Γ∗) is ordinal definable in V [G]): player I starts by playing

m0, . . . ,mn and sn, hn, and player II responds by playing a measure µn+1. In each subsequent

move (numbered i > n,) player I plays mi, si, hi, and player II plays a measure µi+1.

Rules for player I:

• mk < ω for all k < ω

• j(T )(m0,...,mn−1) ∈ µ = µn

• si ∈ jµi(j(T )(m0,...,mi)), and in particular si ∈ jµi(j(κ))i+1 for all i ≥ n

• sn ) [id]µn

• jµi,µi+1(si) ( si+1 for all i ≥ n

• hi ∈ OR for all i ≥ n

• jµi,µi+1(hi) > hi+1 for all i ≥ n

Rules for player II:

• µi+1 ∈ σ is a measure on j(κ)i+1 projecting to µi

• µi+1 concentrates on the set j(T )(m0,...,mi) ⊂ j(κ)i+1.

The first player that violates one of these rules loses, and if both players follow the rules for all ω

moves, then player I wins.

The game is closed, hence determined by the Gale–Stewart theorem. Intuitively, player I is

building a real x = (m0,m1, . . . ), player II is trying to build a tower ~µ of measures in σ concentrating

on j(T )x, and player I is trying to build a continuous witness ~h to the illfoundedness of ~µ as well

as a special kind of branch (ji,∞(si) : i ≥ n) through the direct limit j0,∞(j(T )x) of j(T )x along ~µ.

The following is the main lemma.

Lemma 5.8. Player II has a winning strategy in the game Gσ,µj(T ).

Proof. First note that j(T ) ∈ V ; this is because T is ordinal definable in V .The parameter defining

j(T ) in V [G] has the form j(s) for some finite sequence of ordinals s ∈ V . Therefore, j(s) ∈ V and

j(T ) ∈ V by homogeneity.76 In fact, by Claim 5.6 and the remark after, j(κ), j(T ), j � ℘P (κ<ω)

are independent of g.

We define a winning strategy for player II in Gσ,µj(T ) in Ult(V, g). Let µ0, . . . , µn be the projections

of µ in order (here µn = µ). Let j(µ̄i) = µi for i = 0, . . . , n. Note that for all i,

75rankj(T )x(t) denotes the rank of the node t in the tree j(T )x, and is considered to be zero if t /∈ j(T )x and
undefined if j(T )x is illfounded below t.

76In the case P = LpΣ(R), T is ordinal definable from Σ and there are trees (W,S) witnessing Σ is ω1-UB. Then
j(T ) is ordinal definable in V [G] from (W,S) by the fact that p[W ] = p[j(W )] and p[S] = p[j(S)] (see a similar
calculation in the proof of Claim 5.3). Therefore, j(T ) ∈ V by homogeneity.
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jµi ◦ j = j ◦ jµ̄i .

Suppose player I starts the game by playing integers m0, . . . ,mn, a finite sequence of ordinals

sn ∈ jµn(j(Tm0,...,mn)) ∩ jµn(j(κ)n+1), and an ordinal hn. Define the measure µ̄n+1 ∈ measΓ∗˜(κ<ω)

as follows.

X ∈ µ̄n+1 ⇐⇒ sn ∈ jµn(j(X)).

µ̄n+1 is ODV [g] from a finite sequence of ordinals, some real x ∈ RV 77 and jg � ℘P (κ<ω). Since

jg � ℘P (κ<ω) is independent of g, µ̄n+1 ∈ V .78

For i > n, suppose player I has played an integer mi, a finite sequence of ordinals si ∈
jµi(j(Tm0,...,mi)) ∩ jµi(j(κ)i+1), and an ordinal hi. Define the measure µ̄i+1 ∈ measΓ∗˜(κ<ω) as

follows.

X ∈ µ̄i+1 ⇐⇒ si ∈ jµi(j(X)).

As before, the measure µ̄i+1 is in V , concentrates on Tm0,...,mi , and projects to µ̄i. Let player II

play the measure µi+1 = j(µ̄i+1).

Assume for contradiction that player I is able to play ω many moves, following all the rules of

the game. We get a real x = (m0,m1, . . . ), a tower of measures (µi : i < ω) in σ, and a countable

sequence of ordinals (hi : i < ω) witnessing the illfoundedness of this tower. By elementarity, the

tower (µ̄i : i < ω) is also illfounded.

Take a wellfounded tree W ∈
⋃
x∈R L[T, x] on κ on which each measure µ̄i in this tower concen-

trates, and such that the function h̄ : ω → Ord defined by h̄(i) = [rankW ]µi is a pointwise minimal

witness to the illfoundedness of the tower (µ̄i : i < ω) (see [34, Lemma 3.5.9]). Then by the ele-

mentarity of j, the function h = j(h̄) is a pointwise minimal witness to the illfoundedness of the

tower (µi : i < ω).79 Because µ̄i concentrates on W we have si ∈ jµi(j(W )) for all i < ω. Define a

function h′ : ω → Ord by h′(i) = rankjµi (j(W ))(si). Then from the rules for player I concerning the

finite sequences si we have jµi,µi+1(h′(i)) > h′(i+ 1) and also h′(n) < rankjµn (j(W ))([id]µn) = h(n),

contradicting the minimality of h(n).

Remark 5.9. In the above proof, we use CH in a crucial way. CH implies that λ < ωV2 and we in

turns get that σ ∈M and is countable there. These two facts are key for the proof. As mentioned

in the introduction, without CH the existence of an ω1-dense ideal on ω1 is equiconsistent with AD.

The proof of Claim 5.6 and the argument in the following remark give us the following useful

corollary.

Corollary 5.10. Suppose A ∈ Γ∗ is ω1-UB and let γ = w(A) in Γ∗. Then jg(γ) is independent of

g.

77The real x can be taken to be the real that appears in the definition of j−1(µ).
78In the general case P = LpΣ(R), we reach the same conclusion because µ̄n+1 is ODV [g] from a real, a finite

sequence of ordinals, jg � ℘P (κ<ω), and (W,S), where (W,S) witnesses Σ is ω1-UB.
79Actually we only need the minimality of h(n).
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Lemma 5.11. In Ult(V, g), the set of norms {ϕµ : µ ∈ σ} defined by ϕµ(x) = [rankj(T )x ]µ (or

more precisely, any enumeration of this countable set of norms in order type ω) is a scale on the

complement of p[j(T )].

Proof. Work in Ult(V, g). Let µ ∈ σ. We say that σ stabilizes80 µ if, whenever (xk : k < ω) is a

sequence of reals in R\p[j(T )] converging to a limit x and such that for each µ′ ∈ σ, the ordinals

ϕµ′(xk) are eventually constant, we have ϕµ(x) ≤ limk→ωϕµ(xk). (In particular, ϕµ(x) <∞.)

It is clear from the definition that if σ stabilizes every µ ∈ σ, then {ϕµ : µ ∈ σ} is a scale. So fix

a measure µ ∈ σ. We want to show σ stabilizes µ. Suppose not. We describe a winning strategy for

player I in Gσ,µj(T ). Let (xk : k < ω) witness that σ does not stabilize µ. That is, xk ∈ R\p[j(T )] for

each k < ω, and the sequence of ordinals (ϕν(xk) : k < ω) has an eventually constant value h(ν) for

each measure ν ∈ σ but the limit x of the sequence (xk : k < ω) satisfies ϕµ(x) > limk→ωϕµ(xk).

(This includes the possibility that ϕµ(x) =∞.)

Define mi = x(i) and h(ν) = limk→ωϕν(xk). Let n be the unique integer such that µ concen-

trates on j(κ)n and let µi be the projection of µ onto j(κ)i for all i ≤ n. In particular, µn = µ. By

definition,

ϕµn(x) = [s 7→ rankj(T )x(s)]µn = rankjµn (j(T )x)([id]µn) > h(µn).

So there is a finite sequence sn ) [id]µn with rank ≥ h(µn) in the tree jµn(j(T )x). Let player I play

as his first move the integers m0, . . . ,mn, the ordinal hn = h(µn), and sn, where sn is the least

such sequence. For i ≥ n, we will show inductively that player I can maintain the inequality

rankjµi (j(T )x)(si) ≥ h(µi). (5.4)

Whenever player II plays a measure µi+1 according to the rules of the game, we have

rankjµi+1 (j(T )x)(jµi,µi+1(si)) = jµi,µi+1(rankjµi (j(T )x)(si)) ≥ jµi,µi+1(hi) > hi+1.

To show the last step jµi,µi+1(hi) > hi+1, we argue as follows. Recall that for each l we have

hl = h(µl) = limk→ωϕµl(xk). Since the measure µi+1 concentrates on j(T )x�(i+1) and projects to

µi, for each k we have

jµi,µi+1(ϕµi(xk)) = jµi,µi+1([rankj(T )xk
]µi) = [exti,i+1rankj(T )xk

]µi+1 ,

where the “extension” of a function F : j(κ)i → Ord to j(κ)i+1 is defined by exti,i+1F (s) = F (s � i)

for all s ∈ j(κ)i+1. Note that

[exti,i+1rankj(T )xk
]µi+1 > [rankj(T )xk

]µi+1 = ϕµi+1(xk).

Finally, since for each l the ordinal hl is the eventual value of ϕµl(xk) as k → ω, consideration of

sufficiently large k gives jµi,µi+1(hi) > hi+1.

This shows that player I can choose a successor si+1 ) jµi,µi+1(si) of rank at least h(µi+1) in

the tree jµi+1(j(T )x), thereby maintaining the desired inequality (5.4) for one more step. Then

80The idea of this definition comes from a similar notion of stability used in unpublished work of S. Jackson.
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player I can play the integer mi+1 = x(i + 1), the least such finite sequence si+1, and the ordinal

hi+1 = h(µi+1). By playing in this way, player I can follow the rules forever. This contradicts the

previous lemma, which showed that player II has a winning strategy.

The previous claims and elementarity establishes (a) for A being the universal Γ̌∗-set, where

recall Γ̌∗ is the dual pointclass of Γ∗. By standard arguments, see [34, Section 4.3], the rest of (a)

and (b) follow. This contradicts our assumption. Therefore, (a) and (b) hold after all.

Theorem 5.12. There is a hod pair (P ′,Σ′) in V such that

(1) Σ′ is LpΣ(R)-fullness preserving and Σ′ /∈ LpΣ(R).

(2) Σ′ has branch condensation.

(3) Σ′ is ω1-UB.

Proof. Let Γ∗ be the largest Suslin pointclass of LpΣ(R). Let ~A = (Ai : i < ω) be the sjs sealing

Env(Γ∗)

˜
as in the previous theorem. Let (P ′′,Σ′′) be a pair such that Σ′′ is guided by ~A. Σ′′ has

properties (1) and (2), but (3) may fail for Σ′′. Here one can regard P ′′ as a Σ-suitable mouse with

one Woodin cardinal or a hod mouse. We take the first viewpoint and hence we regard Σ′′ as an

iteration strategy for P ′′ as a Σ-mouse (so all ~T according to Σ′′ are above o(P) and iterates of P ′′

according to Σ′′ are Σ-premice).

For each p ∈ Coll(ω, ω1), let Gp be the “finite variation” of G induced by p and let gp be the

corresponding PI-generic induced by π and Gp. We let ~Ap = (Api : i < ω) be jgp( ~A). Let (Qp,Σp)

be a hod pair in V [g] = V [gp] guided by ~Ap81 and (N,Λ) be obtained by Boolean comparing all

(Qp,Σp). So N ∈ V and Λ � V ∈ V is a strategy acting on stacks in HV
ω2

such that Λ is has branch

condensation (and is guided by B =
⋃
p rng( ~Ap)), and is j(Γ∗)-fullness preserving. Therefore, Λ also

has strong hull condensation by Lemma 3.34. Note that R is countable in M and Λ /∈ j(LpΣ(R)).

Applying Lemma 3.36, we get that Λ = j(Λ)j . By elementarity, in V , there is a pair (P ′,Σ′)
and an elementary embedding π : P ′ → R such that

(a) Σ′ = Λπ.

(b) Σ′ � HC is Γ∗-fullness preserving and has branch condensation.

(c) P ′ is a countable Σ-mouse (i.e. π � P = id) that is Γ∗-suitable.

(P ′,Σ′) satisfies (1) and (2). We note that property (a) above gives that Σ′ is an (ω2, ω2)-

strategy. Now Lemma 5.4 implies that Σ′ is ω1-UB. This completes the proof of the theorem.

81We can take (Qp,Σp) to be (P ′′, jgp(Σ′′)).
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6. THE LIMIT CASE

Recall we let g ⊆ PI be V -generic and j = jg : V →M = Ult(V, g) be the corresponding ultrapower

map; by our hypothesis, g corresponds to a V -generic G ⊂ Coll(ω, ω1). We also let k : M → N be

the generic ultrapower map induced by a generic h ⊂ j(PI). We remind the reader that CH holds,

so the continuum c is ω1.

Let 〈θα : α < γ〉 be the Solovay sequence computed in Γ (our maximal model) and Θ = supγθγ .

By the previous section, γ is a limit ordinal and Θ is the Wadge ordinal of Γ. Recall for α ≤ Θ,

by Γ � α, we mean the set of B ∈ Γ such that the Wadge rank of B is less than α. We also remind

the reader that our inductive hypothesis implies that every B ∈ Γ is ω1-UB; in particular, because

Θ is a limit of Suslin cardinals in Γ, by Corollary 5.10, j � Θ is independent of g. First we claim

|Γ| ≤ c.

Lemma 6.1. Suppose |Γ| = c+. Then Γ = ℘(R) ∩ L(Γ,R).

Proof. Suppose not. Let α be the least such that ρω(Jα(Γ,R)) = R, i.e. Jα(Γ,R) defines a set

of reals A such that A /∈ Γ. Hence α ≥ c+ by our assumption. Let f : α × Γ � Jα(Γ,R) be a

surjection that is definable over Jα(Γ,R) (from parameters).

We first define a sequence 〈Hi | i < ω〉 as follows. Let H0 = R. By induction, suppose Hn

is defined and there is a surjection from R onto Hn. Suppose (ψ, a) is such that a ∈ Hn and

Jα(Γ,R) � ∃xψ[x, a]. Let (γa,ψ, βa,ψ) be the <lex-least pair such that there is a B ∈ Γ with Wadge

rank βa,ψ such that

Jα(Γ,R) � ψ[f(γa,ψ, B), a].

Let then Hn+1 = Hn ∪ {f(γa,ψ, B) | Jα(Γ,R) � ∃xψ[x, a] ∧ w(B) = βa,ψ ∧ a ∈ Hn}. It’s easy to

see that there is a surjection from R onto Hn+1. This uses the fact that ΘΓ = c+ is regular, which

implies sup{βa,ψ | a ∈ Hn ∧ Lα(Γ,R) � ∃xψ[x, a]} < Θ = c+. Let H =
⋃
nHn. By construction,

H ≺ Jα(Γ,R). Finally, let M be the transitive collapse of H.

Say M = Jβ(Γ∗,R). By construction, it is easy to see that Γ∗ = Γ � θγ for some γ such that

θγ < Θ. But then ρω(Jβ(Γ∗,R)) = R.82 This contradicts that Γ∗ is constructibly closed.

The lemma gives Γ = ℘(R) ∩ L(Γ,R) and in fact, L(Γ,R) � “ADR + Θ is regular”. This is

because Θ = c+ in this case. This contradicts (‡). Therefore, |Γ| ≤ c as desired.

Let H be the direct limit of hod pairs (P,Σ) ∈ Γ such that Σ has branch condensation and is

fullness preserving under iteration embeddings by Σ. So λH is a limit ordinal. For each α < λH,

let Σα be the strategy of H(α) in j(Γ) obtained as a tail of some (any) j(Σ), where (P,Σ) is a hod

pair in Γ with branch condensation and is fullness preserving such that M(P,Σ) = H(α). Let

Σ = ⊕α<λHΣα.

82For instance, to see that Γ � θ0 ⊂ Γ∗, let A ∈ Γ be OD in Jα(Γ,R) from a real x. Suppose A /∈M . By minimizing
the Wadge rank of A and minimizing the ordinal parameters defining A, we may assume A is definable in Jα(Γ,R)
from x. By elementarity, A is definable in M from x, so A ∈ Γ∗. Contradiction.
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Now note that

j is continuous at λH if and only if cofV (λH) = ω.

First note that j � ωV1 ∈M . If j is continuous at λH and cofV (λH) = ω1, then j(ωV1 ) is singular

in M . This contradicts the fact that j(ωV1 ) is a successor cardinal, hence regular, in M . This

implies cofV (λH) 6= ωV1 and hence cofV (λH) = ω.

At this point, we can show that cofV (λH) > ω. But the following analysis does not assume this.

See Remark 6.9.

Lemma 6.2. • Σ � V ∈ V and Σ does not depend on g.

• j � ΘΓ is independent of g.

Proof. This follows from our induction hypothesis, i.e. for each α, Σα is ω1-UB by the inductive

hypothesis, and hence Σα � V ∈ V and does not depend on g. This gives the first item. The

argument for the second item is given at the beginning of the section.

Let

H+ =

{
LpΣ,j(Γ)(H) if ∀M� LpΣ,j(Γ)(H) ρω(M) ≥ Θ

P where P � LpΣ,j(Γ)(H) is the least N such that ρω(N ) < Θ.
(6.1)

To be technically correct, by LpΣ,j(Γ)(H) we mean LpΣ(H) defined inside L(j(R), C) for some

C ∈ j(Γ). This makes sense as Σ ∈ j(Γ) and the Solovay sequence of j(Γ) has limit length. By

Lemma 6.2, we get that

H+ ∈ V.

This is because H+ is definable in V [G] from H,Σ � V and by Lemma 6.2, Σ � V ∈ V and does

not depend on G.

Proposition 6.3. |H+| ≤ c. Therefore, j � H+ ∈M

Proof. Suppose we have H+ = LpΣ,j(Γ)(H). If |H+| = c+, we would get an ω1-sequence of distinct

reals in j(Γ), noting that (c+)V = ωV2 is ω1 in M by the density of I. Contradiction. Therefore,

|H+| = c, and hence H+ is countable in M . Again, by density of I, j � H+ ∈ M . A similar

argument also works for the second case of (6.1).

Using the embedding j, the fact that j � H+ ∈ M , and the construction in [8, Section 11], we

obtain a strategy Λ for H+ such that

(i) Λ extends Σ;

(ii) for any Λ-iterate Q of H+ via a stack ~T such that i
~T exists, there is an embedding σ : Q →

j(H+) such that j � H+ = σ ◦ i~T . Furthermore, letting ΛQ be the ~T -tail of Λ, for all α < λQ,

ΛQ(α) ∈ j(Γ) has branch condensation.
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(iii) Λ is Γ(H+,Λ)-fullness preserving.

We outline the construction here. First recall definitions and notations related to the analysis

of stacks in [7, Section 6.2] summarized in Section 3.2; see [7, Section 6.2] for a more detailed

discussion.

Definition 6.4 (j-realizable iterations). Let ~T ∈ HCM be a stack onH+. We say ~T is j-realizable

if there is a sequence 〈σR : R ∈ tn(~T )〉 such that

(1) σH+ = j � H+; for all R ∈ tn(~T ), σR : R → j(H+).

(2) For R,Q ∈ tn(~T ) such that R ≺~T ,s Q, σR = σQ ◦ π
~T
R,Q.

(3) For every R ∈ ntn(~T ), there is a reasonable hod pair (SR,ΛR) ∈ j(Γ) that is j(Γ)-fullness

preserving and has branch condensation such that σR[R(ξ
~T ,R + 1)] ⊂ rng(πΛR

SR,∞).

(4) For every R ∈ ntn(~T ), letting (SR,ΛR) be as above, and letting kR : R(ξ
~T ,R + 1)→ SR be

given by: kR(x) = y if and only if σR(x) = πΛR
SR,∞(y) and kR~TR is according to ΛR.

(5) For every R ∈ ntn(~T ), let S∗R be the last model of kR~TR and let QR be the last model of

~TR (considered as a stack on all of R). Suppose π
~TR is defined (hence, QR ∈ tn(~T ) and

R ≺~T ,s QR). Let k∗R : QR(ζ) → S∗R be the natural map that comes from the copying

construction, where QR(ζ) is the image of R(ξ
~T ,R+ 1) under the iteration embedding of ~TR.

Then we define σQR : QR → j(H+) as follows: for all x ∈ QR,

σQR(x) = σR(f)(πΛ
S∗R,∞

(k∗R(a))),

where f ∈ R, and a ∈ [Q(π
~T
R,QR(ξ

~T ,R + 1))]<ω are such that x = π
~T
R,QR(f)(a); here Λ =

(ΛR)kR~TR,S∗R
.

(6) For every trivial terminal node R, for every ξ < λR, there is a reasonable hod pair (SR,ΛR) ∈
j(Γ) where Λ is j(Γ)-fullness preserving, and has branch condensation and σR(ξ + 1) ⊂
rng(πΛR

SR,∞).

The maps (σR : R ∈ tn(~T )) are the j-realizable embeddings of ~T . In the above, we may also

choose (SR,ΛR) such that letting j(H)(α) =M∞(SR,ΛR), then α is minimal. a

Now we define the domain of the strategy Λ. Basically, it consists of j-realizable stacks. See [8,

Definition 11.5].

Definition 6.5. Let ~T ∈ HCM be a stack of on H+.83 We let ~T ∈ dom(Λ) iff ~T is j-realizable.

Define Λ(~T ) = b iff ~T ab is j-realizable. a

Lemma 6.6. Whenever ~T ∈ dom(~T ), then Λ(~T ) is defined.

83~T either has a strongly linear, closed and cofinal set C ⊆ tn(~T ) or ~TS~T is of limit length.
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See [8, Lemma 11.6] for a similar argument. In other words, the lemma states that if ~T is j-

realizable and has no last model, then we can find a cofinal branch b of ~T so that ~T ab is j-realizable.

We sketch the argument here.

Proof. Suppose ~T has a last model. Then it is easy to verify that Λ(~T ) is defined. So we now

assume ~T does not have a last model.

Suppose there is a strongly closed, cofinal C ⊂ tn(~T ). In this case ~T has a unique, cofinal,

non-dropping branch b determined by C. Let Q = M~T
b and σQ : Q → j(H+) be the direct limit

of the maps {σR : R ∈ C}; more precisely, let σQ(x) = y if and only if there is some x∗ ∈ R for

some R ∈ C such that π
~T
R,Q(x∗) = x and σR(x∗) = y. It is easy to see that σQ is well-defined and

satisfies the clauses of Definition 6.4.

Otherwise, we are looking for a branch of ~TS~T . Let R = S~T and U = ~TS~T . By our hypothesis,

objects like σR, kR, (SR,ΛR) as in (3) and (4) can be defined. Let then b = ΛR(kRU), Q = MUb ,

S∗ =MkRU
b , k : Q(ζ)→ S∗, σQ : Q → j(H+) be the objects as described in (5) above. So b is the

branch of ~TS~T we are looking for.

In the following, we assume Q is a terminal node; otherwise, we’re done. We need to verify clause

(6) in the case Q is a trivial terminal node. The case for non-trivial terminal nodes has been dealt

with as above. Without loss of generality, we assume Q 6= R and there is a U on R with last model

Q such that πUR,Q exists. We let σR, kR, (SR,ΛR),S∗, k be the objects associated with R,U ,Q as

before. We let Λ = (ΛR)kRU ,S∗ and σQ = πΛ
S∗,∞◦k. Fix ξ < λQ. Let (W,Ψ) ∈ j(Γ) be a reasonable

hod pair such that Ψ is j(Γ)-fullness preserving, and such that M∞(W,Ψ) = j(H+)(σQ(ξ + 1)).

We can then find (S,ΨS) ∈ I(W,Ψ) such that σQ[Q(ξ + 1)] ⊂ rng(πΨS
S,∞). We are done.

Remark 6.7. Suppose ~T ∈ dom(Λ), then there is at most one b such that ~T ab is j-realizable. In

the proof of Lemma 6.6, the only case to verify is when S~T exists. Let R,U , σR, kR, (SR,ΛR) be

as there. Suppose (S∗R,Λ∗R) and lR : R(ξ
~T ,R + 1) → S∗R are such that lR(x) = y if and only if

σR(x) = π
Λ∗R
S∗R,∞

(y), lR~TR is according to Λ∗R and c = Λ∗R(lRU). To see b = c, we let (S,Ψ) be the

common iterate of (SR,ΛR) and (S∗R,Λ∗R). Let σ0 : SR → S and σ1 : S∗R → S be the iteration

maps. So ΛR = (Ψ)σ0 and Λ∗R = (Ψ)σ1 because these strategies are pullback consistent. It is also

easy to verify that

σ0 ◦ kR = σ1 ◦ lR;

this is because letting τ : S → σR(R(ξ
~T ,R+ 1)) be the direct limit embedding according to Ψ, then

σR = τ ◦ σ0 ◦ kR = τ ◦ σ1 ◦ lR.

So σ0 ◦ kR = σ1 ◦ lR as desired. Therefore,

b = Ψσ0◦kR(U) = Ψσ1◦lR(U) = c.

Clearly, if Λ is a j-realizable strategy, then Λ satisfies (i) and the first clause of (ii); by basic

hod mice theory (cf. [7]), Λ also satisfies the “Furthermore” clause. By the proof of [8, Lemma
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11.8], we can choose Λ so that Γ(H+,Λ) is Wadge minimal (amongst all strategies Λ constructed

this way) and this particular choice of Λ satisfies (iii) as well.

Lemma 6.8. H+ = LpΣ,j(Γ)(H) and if j is discontinuous at λH, then H+ � cof(λH) is measurable.

Proof. The second clause follows from the first clause and the case assumption that j is discontin-

uous at λH. To see this, assume the first clause. If H+ � “λH is regular”, then by standard results

on Vopenka forcing (cf. [31]) L[H+](Γ) ∩ ℘(R) = Γ and therefore, L(Γ,R) � “ADR+Θ is regular”,

contradicting our smallness assumption (‡). If H+ � “λH is singular”, then letting κ = cofH
+

(λH),

then κ must be measurable in H+. This is because j � (κ+ 1) is the iteration embedding of H(α)

according to Ψ =def ΣH(α) in M for some (equivalently any) α such that κ ∈ H(α); therefore,

iΨH(α),∞ is discontinuous at κ,84 implying κ is measurable in H(α), hence in H+.

Now, suppose for contradiction that there is a P � H+ such that ρω(P) < Θ. Let P be the

least such. Let β < λH be least such that ρω(P) ≤ δPβ and δPβ > cofP(λP), here λP = λH and

δPα = δHα for all α < λP . P can be considered a hod premouse over (H(β),Σβ). Using j and the

construction in [8, Section 11] discussed above, we can define a strategy Λ for P such that Λ acts

on stacks above δPβ and extends ⊕α<λPΣα (the strategy is simply ⊕α<λPΣα for stacks based on H
(above δPβ ), but the point is that it also acts on all of P because of j). This is because given a

stack ~T according to Λ, there is a map σ : M~T → j(P) such that σ ◦ i~T = j � P, where for any

f ∈ P , any generator a used along the main branch of ~T , say a ∈M~T (γ) andM~T (γ) is the image

of P(γ∗), then letting Ψ = Σγ∗ ,

σ(i
~T (f)(a)) = j(f)(i

Ψ
~T ,M~T (γ)(a)).

In the above, we note that i
~T is continuous at λP , so we can find γ, γ∗.

Note that Λ has branch condensation. By a core model induction as in the successor case, we

get that Λ ∈ j(Γ).85 In j(Γ), let F be the direct limit system of Σβ-hod pairs (Q,Ψ) Dodd-Jensen

equivalent to (P,Λ).86 F can be characterized as the direct limit system of Σβ-hod pairs (Q,Ψ) in

j(Γ) such that Ψ is Γ(P,Λ)-fullness preserving and has branch condensation and Γ(Q,Ψ) = Γ(P,Λ).

F only depends on Σβ and the Wadge rank of Γ(P,Λ) and hence is OD
L(j(R),C)
Σβ

for some C ∈ j(Γ).

Fix such a C and note that L(j(R), C) � AD+ + SMC. See Section 3.4 for a definition of SMC.

Let A ⊆ δPβ witness ρω(P) ≤ δPβ , that is, A /∈ P and there is a formula φ such that for all α ∈ δPβ ,

α ∈ A⇔ P � φ[α, p],

where p is the standard parameter of P. Now A is ODΣβ in L(j(R), C); this is because lettingM∞
be the direct limit of F under iteration maps, then in L(j(R), C), M∞ ∈ HODΣβ and A witnesses

84If j is continuous at κ, we show that j is continuous at λH. Suppose f : κ → λH is cofinal and increasing and
f ∈ H+. Then j(f) ∈ j(H+), and j(f) : j(κ) → j(λH) is cofinal and increasing. But j(κ) = sup j′′κ, therefore,
j(λH) = sup j′′λH.

85Λ is essentially Σ, acting on stacks above δPβ , so it has branch condensation. The core model induction (in M)
as done so far works for Λ, showing that in M we can uniquely extend Λ to an (ω2, ω2)-strategy and and Λ is ω1-UB.
We then proceed to show MΛ,]

1 exists, and LpΛ(R) � AD+ just like before.
86(P,Λ) is an anomalous hod pair in the terminology of [7]. (Q,Ψ) is Dodd-Jensen equivalent to (P,Λ) means that

there are non-dropping iterates (Q∗,Ψ∗) of (Q,Ψ) and (P∗,Λ∗) of (P,Λ) such that (Q∗,Ψ∗) = (P∗,Λ∗).
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that ρω(M∞) ≤ δPβ . By SMC in L(j(R), C) and the fact that H(β + 1) is j(Γ)-full, we get that

A ∈ P . This is a contradiction.

Remark 6.9. The construction of Λ is nontrivial in the case that H+ � cof(Θ) is measurable;

otherwise, Λ is simply Σ but because of j, it acts on all of H+ by an argument as in the proof of

Lemma 6.8. So from this point on, we assume j is not continuous at λH
+

.

Definition 6.10 (Nice strategies). Suppose πH+,R : H+ → R, σ : R → j(H+) are elementary and

R is countable in M . Suppose j � H+ = σ ◦ πH+,R. Let α < λR. We say that an iteration strategy

ΛR(α) for R(α) is nice if and only if

(i) ΛR(α) is a j(Γ)-fullness preserving strategy for R(α) with branch condensation. ΛR(α) is also

positional and commuting.

(ii) π
ΛR(α)

R(α),∞ = σ′ � R(α) for some elementary map σ′ : R → j(H+) such that j � H+ = σ′ ◦πH+,R

(so ΛR(α) acts on all of R).

(iii) If πH+,R ∈M , then Σα �M ∈M .

We say that a j-realizable strategy Λ is nice if given πH+,R, σ as above, where πH+,R is an

iteration map according to Λ, and σ is the realizing map given in the construction of Λ, then for

each α < λR, ΛR(α) is nice.

a

We want to show some j-realizable strategies are nice. This will be accomplished through the

next several lemmas. Recall the notion of fullness with respect to a pointclass in Remark 3.12.

Lemma 6.11. Let ~T ,R, σR be as above. Then R is full in j(Γ). In fact, letting π : H+ → R and

σ : R → j(H+) be arbitrary elementary embeddings such that j � H+ = σ ◦ π, then R is full in

j(Γ). Furthermore, j � H+, and hence π, must be continuous at o(H+).

Proof. We show the last statement of the lemma. The argument is very similar for all the other

statements; we briefly indicate the changes at the end of the proof. Suppose j is not continuous at

o(H+). Suppose without loss of generality that π is not continuous at o(H+). Indeed the general

case can be reduced to this case. Suppose j � H+ = σ′ ◦π′, where σ′ : R′ → j(H+) is discontinuous

at o(R′) and π′ : H+ → R′ is continuous at o(H+). In M , let σ : R → j(H+) be elementary

such that R is countable, transitive and rng(σ′) ⊆ rng(σ); such a σ can easily be found in M by

considering a countable hull X ≺ HM
ω2

that contains all relevant objects, then σ can be taken to be

the restriction of the uncollapse map associated with X. Let π = σ−1 ◦ σ′. It is easy to see then

that π is not continuous at o(H+).

This means there is a mouse M � Lp⊕β<λRΛR(β),j(Γ)(R|δR) = R such that M /∈ R|γ where

γ = sup π[o(H+)]. We take M to be the least such and let ΣM be the unique strategy for M in

j(Γ) (acting on trees on M above δR).
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Claim 6.12. There is a Σ-hod pair (P,Φ) such that

(a) P ∈ V , Φ � V ∈ V ,87 and Φ ∈ j(Γ) is fullness preserving and has branch condensation.

(b) P is countable in M , λP is limit and cofP(λP) is not measurable in P.

(c) Φ = j(Φ)j.

(d) in j(Γ), ∃β such that Γ(P,Φ) = j(Γ)|θβ+ω and Γ(P,Φ)|θβ � “(M,ΣM) witnesses π is not

continuous at o(H+)” .

(e) o(H+) is a cardinal of P, i.e. P � “H+ is full.”

Proof. First note that in M , there is some α such that ΣM, the canonical strategy of M, is in

j(Γ) � δP
∗

β , where P∗ = HOD
j(Γ)
Σ (α) 88 and P∗ � α = β + ω. Such P∗ and α exist by our

assumptions on Γ. P∗ ∈ V follows from homogeneity. Let Ψ∗ be the strategy of P∗ which is

the tail of some (equivalently, all) Σ-hod pair (R∗,Ψ) ∈ j(Γ) where Ψ is fullness preserving and

has branch condensation in j(Γ) and M∞(R,Ψ) = P∗. Ψ∗ is fullness preserving and has branch

condensation in k(j(Γ)). It follows that Ψ∗ � V ∈ V : we can ordinal define Ψ∗ � V in V [G] from

Σ and P with the prescription above, using the fact that j(Γ) is OD in V [G]; so by homogeneity,

Ψ∗ � V ∈ V .

We want to find a countable-in-M version of P∗ in V . Let (R,Ψ) be a Σ-hod pair in j(Γ)

such that M∞(R,Ψ) = P∗ and Ψ has strong hull condensation, branch condensation, and is j(Γ)-

fullness preserving. By boolean comparisons, there is a Ψ-iterate (P,Φ) such that (P,Φ) satisfies

(a). (b) is clear from the choice of P∗. (c) follows from Lemma 3.36. (d) follows from the choice of

P∗ and the fact that Γ(P,Φ) = j(Γ) � δP
∗

α .

To see (e), suppose not and for simplicity, let H+ �N � P be least such that ρ1(N ) = Θ. Let

f : κ∗ → Θ be an increasing and cofinal map in H+, where κ∗ = cofH
+

(Θ). N is intercomputable

with the sequence g = 〈Nα | α < κ∗〉, where Nα = ThNΣ1
(δH

+

f(α) ∪ {pN }). Note that Nα ∈ H+ for

each α < κ∗. Now let R0 = Ult0(H+, µ), R1 = Ult1(N , µ), where µ ∈ H+ is the (extender on the

sequence of H+ coding a) measure on κ∗ with Mitchell order 0. Let i0 : H+ → R0, i1 : N → R1 be

the ultrapower maps. Letting δ = δ
λH+ = Θ, it’s easy to see that i0 � (κ∗ + 1) = i1 � (κ∗ + 1) and

℘(δ)R0 = ℘(δ)R1 . The second equality follows from the fact that R0 is full in j(Γ) (and hence in

k(j(Γ))). This means 〈i1(Nα) | α < κ∗〉 ∈ ℘(δ)R0 . By fullness of H+ in j(Γ),89 〈i1(Nα) | α < κ∗〉 ∈
H+. Using i0, 〈i1(Nα) | α < κ∗〉 ∈ H+, and the fact that i0 � H+|Θ = i1 � N|Θ ∈ H+, we can get

N ∈ H+ as follows. For any α, β < Θ, α ∈ Nβ if and only if i0(α) ∈ i1(Nβ) = i0(Nβ). Since H+

can compute the right hand side of the equivalence, it can compute the sequence 〈Nα | α < κ∗〉.
Contradiction.

87By Φ � V , we mean Φ � HV
c+ .

88We identify HOD
j(Γ)
Σ with the direct limit of Σ-hod pairs (R,Ψ) and Ψ is fullness preserving and has branch

condensation in j(Γ).
89Any A ⊂ δ in R0 is OD

j(Γ)
Σ , and so by Strong Mouse Capturing (SMC, see [7]), A ∈ H+.
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Let (P,Φ) be as in the claim. Let π+ : P → S be the ultrapower map derived from the π-

extender of length δR. We note that π+ is continuous at o(H+) and by elementarity, S � “R|γ is

full”. Therefore, M /∈ S.

Let τ+ : S → j(P) be the factor map, so j � P = τ+ ◦σ+. Let Ψ = j(Φ)τ
+

. By (c) of the claim,

Φ = Ψσ+
. Therefore,

Γ(P,Φ) ⊂ Γ(R,Ψ).

Hence, Γ(R,Ψ)|θβ � “(M,ΣM) witnesses π is not continuous at o(H+)”. Now, we iterate S using

Ψ at the top ω Woodin cardinals of S to make RM generic.90 Let S∗ be the resulting model. The

derived model of S∗ at δS
∗

satisfies:

L(Γ(S∗,ΨS∗) � θβ) � “M is a sound ⊕β<λRΛR(β)-mouse such that ρω(M) = δR but M is not in

R|γ”.

On the other hand, S∗ � “R|γ is full with respect to sound ⊕β<λRΛR(β)-mice projecting to δR”.

This contradicts the displayed line above.

We have shown that π is continuous and that R is full “at the top”, i.e. for every M �

Lp⊕β<λRΛR(β),j(Γ)(R|δR), there is α < γ such that M � R|α. The remaining clause of fullness

is proved in an almost identical manner. Suppose there is a strong cut point ξ such that letting

α < λR be the largest such that δRα ≤ γ, then in j(Γ), there is a mouse M � LpΣQ(α)(Q|γ) such

that M /∈ R. The argument given above can be carried out verbatim to obtain a contradiction.

Definition 6.13. In M , suppose X ≺ (Hc+ ,∈) is countable.91 X is good if letting πX : MX → X

be the uncollapse map,

(a) j[H+] ∪ {j(H+)} ⊂ rng(πX);

(b) H+ ∪ {H+} ⊂MX ;

(c) letting PX = π−1
X (j(H+)), then PX is j(Γ)-full (see Remark 3.12) and for any α < λPX , πX �

PX(α) = i
ΛXα
PX(α),∞, where ΛXα is a tail of Λ for some (equivalently any) hod pair (Q,Λ) ∈ j(F)∩

X such that Λ is j(Γ)-fullness preserving and has branch condensation and (M∞(Q,Λ))MX =

PX(α).

a

Remark 6.14. (a) Note that if X is good, then PX is the transitive collapse of Hullj(H
+)(j[H+]∪

⊕α<λPX i
ΛXα
PX(α),∞).

90More precisely, we write (δSi : i < ω) for the top ω Woodin cardinals of S and a similar notation applies to
iterates of S. We work in M [L] where L ⊆ Coll(ω,RM ). We have a generic enumeration (xn : n < ω) of RM and
we have a sequence of normal trees and models (Tn,Sn : n < ω) according to Ψ, where T0 is on S = S0, Tn is a
xn-genericity iteration tree on Sn on the window (δSnn−1, δ

Sn
n ) according to the Tn−1-tail of Ψ, here δS−1 = 0. Letting

S∞ be the direct limit, then RM is the symmetric reals of S∞ for some g ⊆ Coll(ω,< λ), where λ is the supremum
of the Woodin cardinals of S∞.

91Sometimes, we just write Hc+ for (Hc+ ,∈) for brevity. Also, note that c+ = ω2 in M by elementarity.

61



(b) Letting X∗ = HullH
V
c+ (H+) and X = j[X∗], then X is good.

(c) Any good X is cofinal in o(j(H+)) by Lemma 6.11.

Lemma 6.15. In M , the set of good X is closed and unbounded; therefore, the set {X ∩ R :

X is good} is in the dual filter of j(I).

Proof. Let X be as in Remark 6.14(b) and let Y ≺ (Hc+ ,∈) be countable in M , X ≺ Y , and

H+ ∪ {H+} ⊂ Y . Since H+ is countable in M , there is a club of such Y . Clearly, (a) and (b) in

Definition 6.13 hold for Y . For (c), using the notation above and Lemma 6.11, we have that PY is

j(Γ)-full. Furthermore, for all α < λPY , πY � PY (α) = i
ΛYα
PY (α),∞ by elementarity of πY .

Suppose X is a good hull, we let jX : H+ → PX be jX = π−1
X ◦ j. We let ΛX be the strategy for

PX defined from πX the same way Λ is defined from j for H+ (again, we take ΛX with Γ(PX ,ΛX)

minimal). By Lemma 6.11 and the fact that X is good, ΛX is j(Γ)-fullness preserving. By [7], there

is an iterate (TX ,QX) of (PX ,ΛX) such that letting ΨX = (ΛX)TX ,QX , ΨX has branch condensation,

and is commuting (see [7]). Let now MX
∞ =M∞(QX ,ΨX). Note that MX

∞ = j(H+)(γ) for some

γ < j(λH) and MX
∞ does not depend on the choice of (QX ,ΨX).

By construction of ΛX , there is a map mX :MX
∞ → j(H+) such that

πX � PX = mX ◦ iΨXQX ,∞ ◦ i
TX .92

We need a strong form of condensation to show H+ � “Θ is regular”; basically, this form of

condensation will imply that if mX is nontrivial, then

crt(mX) = δM
X
∞ .93

Therefore,MX
∞ � “δM

X
∞ is a regular cardinal which is a limit of Woodin cardinal.” Since mX(δM

X
∞) =

j(Θ), this gives j(H+) � “j(Θ) is regular”. By elementarity, Θ is regular in H+.

The following definition originates from [8, Definition 11.14]. Let S be the set of good hulls.

For each X ∈ S, let ΘX = jX(Θ).

Definition 6.16. Suppose X ∈ S and A ∈ PX ∩ ℘(ΘX). We say that πX has A-condensation if

whenever there are elementary embeddings υ : PX → Q, τ : Q → j(H+) such that Q is countable

in M and πX = τ ◦ υ, then

υ(TPX ,A) = TQ,τ,A,

where

TPX ,A = {(φ, s) | s ∈ [ΘX ]<ω ∧ PX � φ[s,A]},

and

92Recall we assume j is discontinuous at λH
+

. Othewise, MX
∞ = j(H+) and mX is the identity.

93It could be that MX
∞ = j(H+) and mX is the identity map. In which case, we cannot conclude Θ is regular in

H+. In this case, Γ(H+,Λ) = j(Γ). We then simply continue the core model induction. See Section 4.
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TQ,τ,A = {(φ, s) | s ∈ [δQα ]<ω for some α < λQ ∧ j(H+) � φ[i
ΣτQ
Q(α),∞(s), πX(A)]},

where Στ
Q is the τ -pullback strategy of j(Σ).94

We say πX has condensation if it has A-condensation for every A ∈ PX ∩ ℘(ΘX). a

Theorem 6.17 (j-condensation lemma). Let X∗ = HullH
V
c+ (H+) and X = j[X∗]; so PX = H+,

ΘX = Θ, and πX � PX = j � PX . Then πX has condensation.

Proof. Fix A ∈ PX ∩ ℘(ΘX). We show that πX has A-condensation. Suppose not.

We first claim that if Y ∈ S is such that X ≺ Y and πY has πX,Y (A)-condensation, then πX

has A-condensation. Fix such a Y . Recall k : M → N is the generic ultrapower induced by a

generic h ⊂ j(PI) that we fix at the beginning of the section. Note that k(πX) = k(πY ) ◦ πX,Y
and k(πY ) = k � j(PX) ◦ πY . By elementarity, k(πY ) has πX,Y (A)-condensation in N and hence

k � j(PX) has j(A)-condensation in N , by the following calculations: for any countable R in N ,

suppose there are embeddings i : j(PX) → R and τ : R → k(j(PX)) such that k � j(PX) = τ ◦ i,
then

i(Tj(PX),j(A)) = i(πY (TPY ,πX,Y (A)))

= TR,τ,πX,Y (A)

= TR,τ,j(A);

the second equality uses the fact that k(πY ) has πX,Y (A)-condensation in N and k(πY ) = τ ◦ i◦πY .

Therfore, πX has A-condensation (in M) by the elementarity of j.

Suppose now for every Y ∈ S such that X ≺ Y , πY does not have πX,Y (A)-condensation. We

say that a tuple (〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,MY
∞) is a bad tuple (see Figure 4) if

(1) Y ∈ S;

(2) Pi = PXi for all i, where Xi ∈ S;

(3) X0 = X and for all i < j, Xi ≺ Xj ≺ Y ;

(4) for all i, ξi : Pi → Qi, σi : Qi →MY
∞, τi : Pi+1 →MY

∞, and πi : Qi → Pi+1;

(5) for all i, τi = σi ◦ ξi, σi = τi+1 ◦ πi, and πXi,Xi+1 � Pi =def φi,i+1 = πi ◦ ξi;

(6) φi,i+1(Ai) = Ai+1, where Ai = πX,Xi(A);

(7) for all i, ξi(TPi,Ai) 6= TQi,σi,Ai .

In (7), TQi,σi,AXi is computed relative to MY
∞, that is

TQi,σi,Ai = {(φ, s) | s ∈ [δQiα ]<ω for some α < λQi ∧MY
∞ � φ[i

Σ
σi
Qi
Qi(α),∞(s), τi(Ai)]}

94ΣτQ = ⊕α<λQj(Σ)τQ(α).
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Figure 2: A bad tuple

Claim 6.18. There is a bad tuple.

Proof. For brevity, we first construct a bad tuple (〈Pi,Qi, τi, ξi, πi, σi | i < ω〉, j(H+)) with j(H+)

playing the role ofMY
∞. We then simply choose a sufficiently large Y ∈ S and let iY : PY →MY

∞ be

the direct limit map, mY :MY
∞ → H+ be the natural factor map, i.e. mY ◦iY = πY . It’s easy to see

that for all sufficiently large Y , the tuple (〈Pi,Qi,m−1
Y ◦τi,m

−1
Y ◦ξi,m

−1
Y ◦πi,m

−1
Y ◦σi | i < ω〉,MY

∞)

is a bad tuple. But the existence of such a tuple (〈Pi,Qi, τi, ξi, πi, σi | i < ω〉, j(H+)) follows from

our assumption.

Fix a bad tuple A = (〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,MY
∞) given by the previous claim.

Claim 6.19. There is a Σ-hod pair (P+
0 ,Π) such that

(a) λP
+
0 is limit ordinal of the form α′ + ω, and such that ΛY ≤w ΠP+

0 (α′) (so ΛXi ≤w ΠP+
0 (α′) for

all i).

(b) (P+
0 ,Π � V ) ∈ V .

(c) In M , P+
0 is countable and Γ(P+

0 (α′),ΠP+
0 (α′)) � A is a bad tuple.

(d) Π has branch condensation, strong hull condensation, is j(Γ)-fullness preserving.

(e) Π = j(Π � V )j.

Proof. The properties above for (P+
0 ,Π) can be obtained by a proof similar to that of Claim 6.12,

with the last clause coming from Lemma 3.36.

This type of reflection is possible because we replace j(H+) by MY
∞. If Z is the result of

iterating P+
0 via Π above δ

P+
0

α′ to make RM generic (see Footnote 90), then letting h be Z-generic

for the Levy collapse of the supremum of Z’s Woodin cardinals such that RM is the symmetric

reals of Z[h], then in Z(RM ),

Γ(P+
0 (α′),ΠP+

0 (α′)) � A is a bad tuple.
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Figure 3: Lift-up maps of a bad tuple

Now we define by induction ξ+
i : P+

i → Q+
i , π+

i : Q+
i → P+

i+1, φ+
i,i+1 : P+

i → P+
i+1 as

follows. φ+
0,1 : P+

0 → P+
1 is the ultrapower map by the extender of length ΘX1 derived from

πX0,X1 . Note that φ+
0,1 extends φ0,1. Let ξ+

0 : P+
0 → Q

+
0 extend ξ0 be the ultrapower map by the

(crt(ξ0), δQ0)-extender derived from ξ0. Finally let π+
0 = (φ+

0,1)−1 ◦ ξ+
0 . The maps ξ+

i , π
+
i , φ

+
i,i+1 are

defined similarly. Let also MY = Ult(P+
0 , F ), where F is the extender of length ΘY derived from

πX,Y . There are maps ε2i : P+
i → MY , ε2i+1 : Q+

i → MY for all i such that ε2i = ε2i+1 ◦ ξ+
i ,

ε2i = ε2i+2 ◦ φ+
i,i+1, and ε2i+1 = ε2i+2 ◦ π+

i . Let π : MY → j(P+
0 )95 be the factor map. When

i = 0, ε0 is simply πF , the ultrapower map by F . That these maps are well-defined and the objects

P+
i ,Q

+
i end-extend Pi,Qi respectively come from the fact that j � H+ is continuous (see Lemma

6.11). See Figure 3.

Letting Σi = ΣPi and Ψi = ΣQi , there is a finite sequence of ordinals t and a formula θ(u, v)

such that in Γ(P+
0 ,Π)

(8) for every i < ω, (φ, s) ∈ TPi,Ai ⇔ θ[iΣiPi(α),∞(s), t], where α is least such that s ∈ [δPiα ]<ω;

(9) for every i, there is (φi, si) ∈ TQi,ξi(Ai) such that ¬θ[iΨiQi(α),∞(si), t] where α is least such that

si ∈ [δQiα ]<ω.

The pair (θ, t) essentially defines a Wadge-initial segment of Γ(P+
0 ,Π) that can define the pair

(MY
∞, A

∗), where τi(Ai) = A∗ for some (any) i. In fact, these parameters are inside Γ(P+
0 (α),Π).

Let Πi be the π ◦ εi-pullback of j(Π). Hence,

ΣY ≤w Π0 = Π = j(Π � V )j ≤w Π1 · · · ≤w j(Π � V )π.

We can use the strategies Πi’s to simultaneously execute a RM -genericity iterations. We outline

the process here. First we rename 〈P+
i ,Q

+
i , ξ

+
i , φ

+
i,i+1, π

+
i | i < ω〉 to 〈P0

i ,Q0
i , ξ

0
i , φ

0
i , π

0
i | i < ω〉. We

95π = σ1 ◦ σ0, where σ0 :MY → πE(P+
0 ) is given by σ0(πX,Y (f)(a)) = πE(f)(πY (a)) for f ∈ P+

0 and a ∈ [ΘY ]<ω

and σ1 : πE(P+
0 ) → j(P+

0 ) is defined as: σ1(πE(f)(a)) = j(f)(a) for f ∈ P+
0 and a ∈ [πE(Θ)]<ω. Here E is the

extender of length j(Θ) derived from j.
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fix in MCol(ω,R), 〈xi | i < ω〉, a generic enumeration of RM . We get 〈Pni ,Qni , ξni , φni , πni , τni , kni | n ≤
ω ∧ i < ω〉 such that

(i) Pωi is the direct limit of the Pni ’s under maps τni ’s for all i < ω.

(ii) Qωi is the direct limit of the Qni ’s under maps kni ’s for all i < ω.

(iii) Pnω is the direct limit of the Pni ’s under maps πni ’s.

(iv) for all n ≤ ω, i < ω, φni : Pni → Pni+1; ξni : Pni → Qni ; πni : Qni → Pni+1 and φni = πni ◦ ξni .

Then we start by iterating P0
0 above δ

P0
0

α to P1
0 to make x0-generic at δ

P1
0

α+1; say the tree is T0. We

let τ0
0 : P0

0 → P1
0 be the iteration map. During this process, we lift T0 to all P0

n,Q0
n for n < ω

using the maps ξ0
i , φ

0
i . We pick branches for the trees on P0

i ,Q0
i according to the strategies Πi. We

describe this process for the models Q0
0,P0

1 . Let W be the end model of the lift-up tree ξ0
0T on Q0

0.

Note that the tree ξ0
0T0 is according to Π1. We then iterate W to Q1

0 (using (Π1)W) to make x0

generic at δ
Q1

0
α+1. Let ξ1

0 : P1
0 → Q1

0 be the natural embedding. Let T1 be the x0-genericity iteration

tree on W just described and W∗ be the last model of φ0
0T
a

0 ξT1, where ξ is the natural map from

W to the last model of φ0
0T0. We then iterate the end model of the lifted stack φ0

0T
a

0 ξT1 on Q0
1,

noting that this stack is according to Π2, to Q1
1 to make x0 generic at δ

Q1
1

α+1. Let k0
0 : Q0

0 → Q1
0,

τ0
1 : P0

1 → P1
1 be the iteration embeddings, π1

0 : Q1
0 → P1

1 be the natural map, and φ1
0 = π1

0 ◦ ξ1
0 .

Continue this process of making x0 generic for the later models Q0
n’s and P0

n’s for n < ω. We then

start at P1
0 and repeat the above process, iterating above δ

P1
0

α+1 to make x1 generic at images of

δ
P1

0
α+2 etc. This whole process defines models and maps 〈Pni ,Qni , ξni , φni , πni , τni , kni | n ≤ ω ∧ i < ω〉

as described above.

The process yields a sequence of models 〈P+
i,ω = Pωi ,Q

+
i,ω = Qωi | i < ω〉 and maps ξ+

i,ω = ξωi :

P+
i,ω → Q

+
i,ω, π+

i,ω = πωi : Q+
i,ω → P

+
i+1,ω, and φ+

i,i+1,ω = φωi = π+
i,ω ◦π

+
i,ω. Furthermore, each P+

i,ω,Q
+
i,ω

embeds into a j(Π � V )π-iterate of MY and hence the direct limit P∞ of (P+
i,ω,Q

+
j,ω | i, j < ω)

under maps π+
i,ω’s and ξ+

i,ω’s is wellfounded. See the following figure.
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Let Ci be the derived model of P+
i,ω, Di be the derived model of Q+

i,ω (at the sup of the Woodin

cardinals of each model), then RN = RCi = RDi . Furthermore, Ci∩℘(R) ⊆ Di∩℘(R) ⊆ Ci+1∩℘(R)

for all i.

(8), (9) and the construction above give us that there is a t ∈ [OR]<ω, a formula θ(u, v) such

that

(10) for each i, in Ci, for every (φ, s) such that s ∈ δPi , (φ, s) ∈ TPi,Ai ⇔ θ[iΣiPi(α),∞(s), t] where α

is least such that s ∈ [δPiα ]<ω.

Let n be such that for all i ≥ n, ξ+
i,ω(t) = t. Such an n exists because the direct limit P∞ is

wellfounded.96 By elementarity of ξ+
i,ω and the fact that ξ+

i,ω � Pi = ξi,

(11) for all i ≥ n, in Di, for every (φ, s) such that s ∈ δQi , (φ, s) ∈ TQi,ξi(Ai) ⇔ θ[iΨiQi(α),∞(s), t]

where α is least such that s ∈ [δQiα ]<ω.

However, using (9), we get

(12) for every i, in Di, there is a formula φi and some si ∈ [δQi ]<ω such that (φi, si) ∈ TQi,ξi(Ai)
but ¬φ[iΨiQi(α),∞(si), t] where α is least such that s ∈ [δQiα ]<ω.

96We can arrange that P∞ embeds into a j(Π)+-iterate of j(P+
0 ), where j(Π)+ is the canonical extension of j(Π)

in N .
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Clearly (11) and (12) give us a contradiction. This shows that πX has A-condensation. Since A is

arbitrary, πX has condensation. This completes the proof of the theorem.

From the above theorems, we obtain a nice, j-realizable iteration strategy Λ with the following

property:

letting M∞(H+,Λ) be the direct limit of (all countable) Λ-iterates of H+ in M , then

there is an elementary map τ : M∞(H+,Λ) → j(H+) such that τ ◦ πΛ
H+,∞ = j � H+

and if τ is nontrivial, then crt(τ) = δM∞(P+,Λ).

The map τ is defined as follows: for any x ∈ M∞(H+,Λ), let R ∈ M be a Σ-iterate of H+

such that there is some y ∈ R such that πΛR
R,∞(y) = x. Now by construction of Λ, there is a map

τR : R → j(H+) such that j � P+ = τR ◦ πΛ
H+,R and τR � δR agrees with the iteration map by

Λ. We then let τ(x) = τR(y). τ is well-defined by the fact that some iterate of Λ has branch

condensation and is commuting.

The reason Λ is nice is because by construction and Theorem 6.17, whenever i : H+ → R is

according to Λ, letting τR : R → j(H+) be given by the construction of Λ, then τR � δR = πΛR
R,∞ � δ

R

and ΛR|δR = j(Σ)τ . So (ii) of Definition 6.10 holds for ΛR(α) for all α < λR. From this and standard

theorems in the theory of hod mice, see [7, Theorem 3.26], we get that for all α < δR, ΛR(α) satisfies

(i) Definition 6.10. (iii) is also clear. Furthermore, if τ : M∞(H+,Λ) → j(H+) is as above and

is nontrivial, then since τ is the “direct limit” of the τR’s for non-dropping Λ-iterates R of H+,

Theorem 6.17 implies that crt(τ) = δM∞(P+,Λ).

There are two cases. The first case is when τ is non-trivial, we then have that δM∞(P+,Λ) is

a regular cardinal which is a limit of Woodin cardinals of M∞(P+,Λ). Furthermore, by fullness

preservation of Λ, δM∞(P+,Λ) = θ
j(Γ)
α for some α and hence L(M∞(P+,Λ), j(Γ)|θα) � “AD+ + Θ

is regular.” Contradiction to our smallness assumption.

The remaining case is when τ is trivial. In other words, Γ(H+,Λ) = j(Γ). By elementarity, there

is a reasonable pair (P,Λ) in V such that Λ is fullness preserving, has hull and branch condensation,

is pullback consistent, commuting, and Γ(P,Λ) = Γ. At this point, we remind the reader that our

assumption is λP has measurable cofinality in P (cf. Remark 6.9). We need to show.

Lemma 6.20. There is a reasonable hod pair (Q,Ψ) such that Q ∈ V is countable, Γ = Γ(Q,Ψ),

Ψ has a unique extension Ψ+ that acts on stacks in HV
ω2

and Ψ is ω1-UB.

Proof. Let (P,Λ) be a reasonable pair in V such that Λ is fullness preserving, has hull and branch

condensation, is pullback consistent, commuting, and Γ(P,Λ) = Γ. Let (R,Λ′) be the result of

boolean comparing all “finite variations” of Λ i.e. for a V -generic G ⊂ Coll(ω, ω1), for a condition

q, let Gq = G−G � dom(q)∪ q, let Λq = jgq(Λ) and compare in V [G] all pairs (P,Λq) (see Section

3.6). 97

Claim 6.21. The boolean comparisons outlined above succeeds and hence (R,Λ′) above exists.

97To be completely precise, we compare all pairs (P,Λq) for q ≤ p, where p forces all relevant facts in V [G]
mentioned above. But we suppress the condition p for brevity.
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Proof. The argument is basically from [7, Theorem 2.47]. Suppose the comparison doesn’t succeed.

We can then build a “diamond sequence” of length ω1. More precisely, we have a sequence B =

(Rα,Sα,Pqα, ~Tα, ~Uα, ~Wq
α, b

q
α, i

q
α, j

q
α, ξα : α < β < ω1 ∧ q ∈ Coll(ω, ωV1 )), where

(1) R0 = P.

(2) ~T a0 ~U0 is a minimal disagreement between {(R0,Λq) : q ∈ Coll(ω, ωV1 )}. ~T0 is according to

all Λq with last model S0. For each q, bq0 = (Λq)~T0(~U0) and iq0 : S0 → Pqα is the iteration

embedding according to (Λq)~T0,S0
, i.e. iq0 = i

~U0
bq . We write Ψ0,q for Λq.

(3) For α > 0, ~T aα ~Uα is a minimal disagreement between {(Rα,Ψα,q) : q ∈ Coll(ω, ωV1 )}. ~Tα
is according to all Ψα,q with last model Sα, where Ψα,q is the appropriate tail of Λq on Rα
via the stack ⊕β<α~T aβ ~U

a
β
~Wq
β . For each q, bqα = (Ψα,q)~Tα,Sα(~Uα) and iqα : Sα → Pqα is the

corresponding iteration embedding according to (Ψα,q)~Tα , i.e. iqα = i
~Uα
bqα

.

(4) jqα : Pqα → Rα+1 are iteration maps via stack ~Wq
α according to (Ψα,q)~T a

α
~Ua
α b

q
α
.

(5) For any α, for any β < λRα+1 , for any p 6= q,

(Ψα,p)~T a
α
~Ua
α b

p
α
a ~Wp

α,Rα+1(β)
= (Ψα,q)~T a

α
~Ua
α b

q
α
a ~Wq

α,Rα+1(β)
.

but for some p 6= q,

(Ψα,p)~T a
α
~Ua
α b

p
α
a ~Wp

α,Rα+1
6= (Ψα,q)~T a

α
~Ua
α b

q
α
a ~Wq

α,Rα+1
.

(6) For each β < ω1, ξβ is the least ξ ∈ (δ(~Tβ), λSβ )98 such that ~Uβ is a stack on Sβ(ξ + 1) and

there are p 6= q such that ~Uβ witnesses (Ψα,p)~Tβ ,Sβ(ξ+1) 6= (Ψα,q)~Tβ ,Sβ(ξ+1), so in particular

bpα 6= bqα, but for all p, q (Ψα,p)~Tβ ,Sβ(ξ) = (Ψα,q)~Tβ ,Sβ(ξ).

Clause (6) explains the term “minimal disagreement” used in (2) and (3). By our assumption, for

each α, there are p 6= q such that bpα 6= bqα, equivalently ~Uα witnesses (Ψq)~Tα,Sα 6= (Ψp)~Tα,Sα . For each

α, q, let Σq be the appropriate tail of Λq on Pqα and λα,q be the order type of the Woodin cardinals of

Pqα. The maps jqα (in (4)) exist by the process of simultaneously comparing all (Pqα, (⊕α<λα,qΣq(α))

into a common hod pair construction inside j(Γ) (as described in Section 3.6). Furthermore,

the common model of the comparison exists and is called Rα+1, see [7, Theorem 2.47]. The

main point is {q : q ∈ Coll(ω, ωV1 )} is countable in M and the supremum of the Wadge ranks of

{⊕α<λα,qΣq(α) : q ∈ Coll(ω, ωV1 )} is bounded in j(Γ). That is why we can find a coarse Ω-Woodin

mouse (N,Ψ, δN ) that Suslin captures {⊕α<λα,qΣq(α) : q ∈ Coll(ω, ωV1 )} (and a universal Ω-set,

for Ω ( j(Γ), a Suslin co-Suslin pointclass containing all {⊕α<λα,qΣq(α) : q ∈ Coll(ω, ωV1 )}) and

performs the above comparison with the hod pair construction done inside N to guarantee (5);

this process is further explained in Section 3.6. The comparison succeeds for each α < ω1. So the

sequence is of length ω1.

98δ(~Tβ) is the supremum of generators used along ~Tβ .
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Figure 4: A Diamond sequence

Now, the proof of [7, Theorem 2.49] gives us a contradiction. We sketch the proof here for

the reader’s convenience. Let B be the sequence above and let X0 ≺ X1 ≺ Hω2 be countable and

contain all relevant objects (recall we work in V [g]). Let πi : Hi → Xi be the uncollapse map,

κi = crt(πi) for i ∈ {0, 1} and let π : H0 → H1 be the map π−1
1 ◦ π0. For each p ∈ Coll(ω, ωV1 ),

let jpκ0,κ1 be the iteration embedding from Rκ0 to Rκ1 by Ψκ0, p. It is easy to see that (see [7,

Theorem 2.49] for the simple calculations) for each such p:

jpκ0,κ1 = π � Rκ0 .

Let then jp : Sκ0 → Rκ1 be the embeddings according to (Ψκ0,p)~Tκ0 ,Sκ0
. For each x ∈ Sκ0 , let

f ∈ Rκ0 and a ∈ δ(~Tκ0)<ω such that x = π
~Tκ0 (f)(a), it is easy to see that

jp(x) = π(f)(jp(a)).

But note that the maps jp � δ(~Tκ0) agree (by property (6)), so indeed, the maps jp agree on Sκ0 .

Using this and pullback consistency, an argument just as in [7, Theorem 2.48] shows that for all

p, q,

(Ψκ0,p)~Tκ0 ,Sκ0 (ξκ0+1)(
~Uκ0) = (Ψκ0,q)~Tκ0 ,Sκ0 (ξκ0+1)(

~Uκ0). (6.2)

This clearly contradicts (6).

The equality (6.2) above holds because, by pullback consistency, for each p

(Ψκ0,p)~Tκ0 ,Sκ0 (ξκ0+1)(
~Uκ0) = (Ψκ1,p)Rκ1 (jp(ξκ0+1))(j

p~Uκ0),

and by (5) and the fact that the maps jp’s agree on Sκ0 , for any p, q,

(Ψκ1,p)Rκ1 (jp(ξκ0+1))(j
p~Uκ0) = (Ψκ1,p)Rκ1 (jq(ξκ0+1))(j

q~Uκ0).

This easily implies (6.2).

By the claim, R ∈ V and Λ′ � V ∈ V . By Lemma 3.36, Λ′ = j(Λ′)j . By elementarity, there

is a hod pair (Q,Ψ) such that Q ∈ V is countable, an elementary embedding π : Q → R such
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that Ψ = (Λ′)π and Γ(Q,Ψ) = Γ. Ψ is an (ω2, ω2)-strategy with branch condensation is Γ-fullness

preserving.

Claim 6.22. Ψ is ω1-UB.

Proof. Let M∞ be the direct limit of all non-dropping iterates of Ψ and i : Q → M∞ be the

direct limit map. Let a = (Q, i,M∞,Ψ). We want to find a formula ϕ[x, a] such that for a club of

countable X ≺ Hω3 containing all relevant objects, letting πX : MX → X be the uncollapse and

(ωX1 , a
X) = π−1

X (ω1, a), for any MX -generic h ⊂ Coll(ω, ωX1 ) in V , for any ~T ∈MX [h] according to

Ψ and b ∈MX [h] a cofinal branch of ~T ,

MX [h] � ϕ[(~T , b), aX ]⇔ V � ϕ[(~T , b), a]. (6.3)

We describe the formula ϕ. ϕ[x, a] says:

• If xa0 x1 is non-dropping, letting ~T = x0 and b = x1, then there is a map σ :M~T
b → a2 such

that σ ◦ i~Tb = a1. Here we think of x as an ordered pair (x0, x1) and a as an ordered tuple

(a0, a1, a2, a3).

• If xa0 x1 drops, letting ~T = x0, b = x1, and (~Tα,Pα, ξα : α ≤ ν ∧ ξα < λPα) be the essential

components of ~T ,99 then for α < ν, ~Tα does not drop and is based on Pα(ξα), ~Tν is a stack

based on Pν(ξν), ξν is a successor ordinal, with cofinal branch b. There is a Q′, a nondropping

iterate of a0 according to a3, with iteration map τ : a0 → Q′, and a σ1 : Pν → Q′ such that

σ1 ◦ i
~T<ν = τ , where ~T<ν = ⊕α<ν ~Tα, and letting Ψ′ = (a3)σ1

Q
100, then b = Ψ′(~Tν).

Now we show 6.3, suppose ~T ab does not drop, then the equivalence follows easily. This is

because if MX [h] � ϕ[(~T , b), aX ], then πX ◦ σ : M~T
b → M∞ is such that πX ◦ σ ◦ i

~T
b = πX ◦ a1.

πX ◦ a1 = πX(a1) : Q → M∞ is the direct limit map. By branch condensation, b = Ψ(~T ). If

V � ϕ[(~T , b), a], then again by branch condensation, b = Ψ(~T ). MX [h] � ϕ[(~T , b), aX ] by boolean

comparisons done inside MX [h].

Suppose b drops. Then clearly, Q(b, ~Tν) exists. If MX [h] � ϕ[(~T , b), aX ] then clearly V �

ϕ[(~T , b), a]. Conversely, by boolean comparison, we can find a τ,Q′ ∈ MX and σ1 ∈ MX [h] that

satisfy the second clause above. Letting Ψ′ = (a3)σ1
Q and c = Ψ′(~Tν), then since Ψ′ is fullness

preserving (see [7, Theorem 3.26]), Q(~T , c) must exist, and therefore c = b as shown in the previous

section. In both cases, b = Ψ(~T ).

99See [7, Definition 2.37].
100We suppress from the notation the stack ~U with iteration map τ and last model Q, technically we should write

(a3)σ~U,Q. This case includes the case ν = 0 and τ, σ1 are the identity maps.
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Let (Q,Ψ) be given by the above Lemma. We can then proceed with the CMI and show

LpΨ+
(R) � AD+. This implies then that Ψ ∈ Γ, contradicting the fact that Γ(Q,Ψ) = Γ. This

completes the proof of Theorem 1.4.

7. OUTLINE OF THE PROOF OF THEOREM 1.10

We outline the argument constructing models of “ADR + Θ is regular” from the assumption that the

non-stationary ideal on ℘ω1(R) is strong and pseudo-homogeneous. We let I be the non-stationary

ideal on ℘ω1(R). Let G ⊆ PI be V -generic and j = jG : V →M = Ult(V,G) ⊆ V [G] be the generic

embedding. Let k : M → N be the generic embedding given by an M -generic H ⊂ j(PI). We note

that

• j(ω1) = c+ (by the strength of the ideal).

• The properties in Lemma 2.7 hold for j.

• Letting M = Ult(V,G). M need not be closed under ω-sequences in V [G]. In particular, RM

may differ from RV [G]. Also, c+ may be > ωV2 .

We let Γ be defined as in Section 4 and operate under the smallness assumption (‡) as before.

Our inductive hypothesis in this case is:

(**): if J is a Σ-cmi operator for some reasonable hod pair (P,Σ) such that Σ is definable in V

from a countable sequence of ordinals, then J is definable in V from a countable sequence of

ordinals.

The core model induction is very similar to the one given in the previous section; however, instead

of maintaining the inductive hypothesis (†), we maintain (∗∗). We mention some key points below.

The details are left to the reader. We fix the pair (P,Σ) as in (∗∗). (P,Σ) is allowed to be (∅, ∅).

• If J is a Σ-cmi operator on (a cone above some a in) HV
ω1

that satisfies (∗∗), then by pseudo-

homogeneity, we can show j(J) � V ∈ V and by strongness, j(J) � V ∈ V has domain the

cone above a over HV
c+ . The definability calculations are done in M and V [G] plays no role in

the argument. For instance, one can show using pseudo-homogeneity (as the base case) that

j(Σ) � V ∈ V .

• One can then show the existence of MF ,]1 whenever F is a Σ-cmi operator that satisfies (∗∗).
Using pseudo-homogeneity again, one shows the operator H : x 7→ MF ,]1 (x) has the property

that j(H) � V ∈ V and (∗∗) holds for H. This is the analog of Theorem 5.1.

• Theorem 5.5 can be proved by a similar argument, though much simpler as Claim 5.6 follows

easily from pseudo-homogeneity. The proof of Lemmata 5.8 and 5.11 is also given in [34].

This gives also that o(LpΣ(R)) < j(ω1) = c+.
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• The above gives an analog of Theorem 5.12, namely the existence of a hod pair (P ′,Σ′) such

that Σ′ is LpΣ(R)-fullness preserving, Σ′ /∈ LpΣ(R), and Σ′ is definable in V from a countable

sequence of ordinals.

• In the limit case, we can define in M the model H+ (see 6.1) from j � H. Since j � H is

independent of G and hence j � H ∈ V , H+ ∈ V by pseudo-homogeneity.

• By an argument similar to that of Proposition 6.3, H+ is countable in M . We can argue j is

continuous at o(H+) as follows.

Claim 7.1. Let γ = o(H+). Then j(γ) = supα<γj(α).

Proof. We first claim j � H+ ∈ V . Let ≺ be the canonical well-order ofH+; ≺ is definable over

H+. We think of ≺ as a bijection from o(H+) onto H+. Note that j(H+) ∈ V (equivalently

j(≺) ∈ V ) and j � o(H+) ∈ V (this follows from the above discussion). j � H+ can be easily

computed from j � o(H+), j(H+), j(≺). Therefore, j � H+ ∈ V .

Suppose for contradiction that j(γ) > supα<γj(α). Let ν = sup j[γ]. Let ~C = (Cα : α < γ)

be the canonical �Θ-sequence defined over H+ (see [13] for a construction of such a sequence).

Let D = j( ~C)ν . Since ν < j(γ), D is defined and is club in ν. Furthermore, since j � H+ ∈ V ,

cofV (ν) = cofV (γ) > ω.

Since j(H+) ∈ V , cofj(H
+)(ν) > ω. This, in particular, implies that the set of limit points of

D is non-empty and in fact a club in ν. By the property of �-sequences, for each limit point

α ∈ D,

D ∩ α = j( ~C)α.

Since j � H+ ∈ V , E =def j
−1[D] ∈ V is an ω-club in ν with the property: for all limit point

α of E with cofV (α) = ω,

E ∩ α = Cα.

By the construction of ~C, E induces a P �H+ = LpΣ,j(Γ)(H), but also that every M�H+

is an initial segment of P. So P /∈ H+. Contradiction.

• We can show the corresponding claim in Section 6 that continuity of j at λH implies cofV (λH) =

ω as follows. If κ ∈ [ω1, c] is a successor cardinal or a weakly inaccessible cardinal, then j

is discontinuous at κ. This is because j � κ ∈ M and if j is continuous at κ, then j(κ) is

singular in M . This contradicts the fact that j(κ) is successor or weakly inaccessible, hence

regular, in M . This implies cofV (λH) = ω. The proof that |H+| ≤ c, Σ � V ∈ V and does not

depend on G, H+ = LpΣ,j(Γ)(H) � “cofV (λH) is measurable” (if j is discontinuous at λH) is

similar, using pseudo-homogeneity.
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• From this point on, we assume j is discontinuous at λH and hence H+ = LpΣ,j(Γ)(H) �

“cofV (λH) is measurable”. Otherwise, the argument is much easier.

• Claim 7.1 and the above argument show cof(o(H+)) = ω.

• By Lemma 2.7, arguments in Proposition 6.3 and the fact that j is continuous at o(H+), we

get that j � H+ ∈ V ∩M .

• The analog of Lemma 6.11 is the following.

Lemma 7.2. Λ is j(Γ)-fullness preserving .

Proof. Suppose not. Let ~T be according to Λ with end model Q such that Q is not j(Γ)-full.

This means there is a strong cut point γ such that letting α ≤ λQ be the largest such that

δQα ≤ γ, then without loss of generality, in j(Γ), there is a mouse M� LpΣQ(α)(Q|γ)101 such

that M /∈ Q. Let l : Q → j(H+) be such that j � H+ = l ◦ i~T ; here by the above discussions,

j(H+) = πE(H+) = {j(f)(a) : a ∈ [j(Θ)]<ω ∧ f ∈ H+} and l is defined as:

l(i
~T (f)(a)) = j(f)(i

ΣQ
Q,∞(a)),

where f ∈ H+, a ∈ [δQ]<ω. Here E is the (long) extender of length o(j(H)) derived from j.

We use i to denote i
~T from now on.

Claim 7.3. There is a Σ-hod pair (P,Φ) such that

(a) P ∈ V , Φ � V ∈ V ,102 and Φ ∈ j(Γ) is fullness preserving and has branch condensation.

(b) P is countable in M , λP is limit and cofP(λP) is not measurable in P.

(c) in j(Γ), Γ(P,Φ) witnesses Λ is not fullness preserving.

Proof. First note that in M , there is some α such that ΣM, the canonical strategy of M,

is in j(Γ)|δP∗α , where P∗ = HOD
j(Γ)
Σ (α) 103 and P∗ � ∃βα = β + ω. Such P∗ and α exists

by our assumptions on Γ. P∗ ∈ V follows from pseudo-homogeneity. Let Ψ be the strategy

of P∗ which is the tail of some (equivalently, all) Σ-hod pair (R,Ψ∗) ∈ j(Γ) Ψ is fullness

preserving and has branch condensation in j(Γ) and M∞(R,Ψ∗) = P∗. Note that Ψ is

fullness preserving and has branch condensation in k(j(Γ)). It follows that Ψ � V ∈ V . From

pseudo-homogeneity, we can ordinal define Ψ � V in M from Σ and P with the prescription

above, using the fact that j(Γ) is OD in M and j(Θ), the Wadge rank of j(Γ), doesn’t depend

on the choice of G.

101The case where γ = δα and M� Lp⊕β<αΣQ(β)(Q|γ) is similar.
102By Φ � V , we mean Φ � HV

c+ .
103We identify HOD

j(Γ)
Σ with the direct limit of Σ-hod pairs (R,Ψ) and Ψ is fullness preserving and has branch

condensation in j(Γ).
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We also have that j(P∗) ∈ V . This is because j(P∗) is definable inM from {j(α), j(I), j(H+)},
but j(I) and j(H+) are both definable in M .104 By an argument similar to that of Claim

7.1, j � P∗ ∈ V . We want to find a countable-in-M version of P∗ in V .

Let (Ṫ, Q̇,Ṁ, Λ̇) be PI-names for (~T ,Q,M,Λ) and let p ∈ PI force all relevant facts about

these objects. Let X ≺ (Hλ,∈) where

– λ > c+ is regular,

– Xω ⊂ X,

– c ∪ Γ ∪H+ ∪ {Ṫ, Q̇,Ṁ,Γ, (P∗,Ψ � V ), (j(P∗), j � P∗)} ⊂ X, and

– |X| ≤ c.

Let π : MX → X be the transitive uncollapse map and for any x ∈ X, let x̄ = π−1(x). Note

that

H+ = H+.

Let P = PI and h ⊂ P̄ be MX -generic such that h ∈ M . Such an h exists by the properties

of X. 105

Work in MX [h], let (T ,Q,M,Λ) be the interpretation of (Ṫ , Q̇,Ṁ, Λ̇). Let σ = j � P∗; so

σ : P∗ → j(P∗). Let R be the image of P∗ under the extender F derived from iT̄ , i.e.

R = {iT̄ (f)(a) : f ∈ P∗ ∧ a ∈ [δQ]<ω}.

Let iF : P∗ → R be the associated ultrapower map, and let l̄ : R → j(P∗). Let τ : R → j(P∗)
be τ = π ◦ l̄. Note that σ ◦ π = τ ◦ iF .

Let Υ = j(Ψ � V ) and Ψ∗ = π−1(Ψ � V ). In MX [h], Λ is not full as witnessed by T ,Q,M
inside j̄(Γ)|ᾱ, where j̄ is the generic ultrapower induced by h. Therefore, letting j(Ψ �

V )τ◦iF = Σ1 and j(Ψ � V )τ = Σ2, we note that

Σ1 ≤w Σ2.

In M ,

Γ(P∗,Σ1) ⊂ Γ(R,Σ2),

and letting Σ3 = j(Σ)τ ,

L(Γ(P∗,Σ1)) � “M is a Σ3-mouse and ¬(M�Q).”

104This is one place where we use the ideal I is the non-stationary ideal, or just that it is definable in V . Technically,
j(H+) is definable in M from j(H) and a countable sequence of ordinals, namely any sequence (j(γn) : n < ω), where
(γn : n < ω) is cofinal in o(H+) and there is j(H) �Mn � j(H+) such that o(Mn) = j(γn).

105We do not have a way of lifting π to all of MX [h]. This creates complications and forces us to argue as below.
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Figure 5: Diagram for the proof of Claim 6.12. Here τ = π ◦ l .

Finally, note that T is according to Λ as T is j-realizable. It is easy then to see that (a),(b),

(c) hold for (P∗,Σ1). Therefore, the pair (P∗,Σ1) is the desired (P,Φ). See Figure 5 for an

illustration of the argument above.

Now we proceed to finish the proof of Lemma 7.2. Let (P,Φ) be as in the claim. We assume

that L(Γ(P,Φ)) satisfies the statement: “Q is not full as witnessed by M”, i.e. we reuse the

notation for ~T ,Q,M, l. By arguments similar to that used in Lemma 6.8, we see that no

levels of P projects across Θ and in fact, by the proof of Claim 6.12(e), o(H+) is a cardinal

of P.

In other words, P thinks H+ is full. Let Ψ = Φ � V and let

i∗ : P → R

be the ultrapower map by the extender induced by i of length δQ. Note that Q �R and R
is wellfounded since there is a natural map

l∗ : R → PE

extending l and πE � P = l∗ ◦ i∗; here l∗(i∗(f)(a)) = πE(f)(i
ΣQ
Q,∞(a)) for f ∈ P and a ∈ [δQ]<ω

and PE = {πE(f)(a) : f ∈ P ∧ a ∈ [j(Θ)]<ω}. We note here that since πE is continuous at

o(H+), j(H+) is a cardinal initial segment of PE . Furthermore, there is a natural embedding

σ− : PE → j(P) such that

j � P = σ− ◦ l∗ ◦ i∗.

Here σ−(πE(f)(a)) = j(f)(a) for all f ∈ P and a ∈ [j(Θ)]<ω. The equality above just comes

from the fact that E is an extender derived from j.
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By the choice of (P,Φ), M’s unique strategy ΣM ≤w Φ and ΣM ∈ L(Γ(P,Φ)); so in partic-

ular, L(Γ(P,Φ)) knows Q is not full as witnessed by (M,ΣM).

LetW =MΦ,]
ω and Λ∗ be the unique strategy of W; againW ∈ V , W is countable in M , and

Λ∗ � V ∈ V . Furthermore, by fullness of P, o(P) is a cardinal of W. Let W∗ be a Λ∗-iterate

of W below its first Woodin cardinal that makes (Q, ~T ) generic via the (Q, ~T )-genericity

iteration. Letting K be the generic for the extender algebra of W∗ at its first Woodin

cardinal such that (Q, ~T ) ∈ W∗[K], then the derived model D(W∗[K]) (at the supremum of

the Woodin cardinals of W∗[K]) satisfies

L(Γ(P,Φ),R) � Q is not full.106107

So the above fact is forced over W∗[K].

Now further extend i∗ to i+ : W → Y and extend l∗ to l+ : Y → WE so that πE � W =

l+ ◦ i+; i+, l+,WE are defined in a similar manner as above. Again, there is a natural map

σ :WE → j(W) such that σ ◦ l+ ◦ i+ = j �W. Note that (Y, σ ◦ l+) are countable in M ; this

is the key reason we need P is countable in M . Therefore, it makes sense to pullback in M

via σ ◦ l+. Let

Ψ∗ = j(Λ∗)σ◦l
+

.

Now note that Φ = (πE(Ψ)l
∗
)i
∗

and Λ∗ = (Ψ∗)i
+

, so

Γ(P,Φ) ⊆ Γ(R, πE(Ψ)l
∗
) (7.1)

and

Λ ≤w Ψ∗. (7.2)

Now iterate Y using Ψ∗ to Y∗ above Q to make RM generic (see Footnote 90). From 7.1 and

7.2, we get that in D(Y∗),

L(Γ(R, πE(Ψ)l
∗
)) � Q is not full as witnessed by M.

This gives M is OD
D(Y∗)
ΣQ

, so M ∈ Y∗ and so M ∈ R since R is a cardinal initial segment

of Y∗. This contradicts the internal fullness of Q inside R (P thinks H+ is full, so by

elementarity, R thinks Q is full). See Figure 6 for an illustration of the argument above.

106Here we abuse notations a bit, by using the same notation for Φ and its various restrictions.
107This is because we can continue iterating W∗ above the first Woodin cardinal to W∗∗ such that letting λ be the

sup of the Woodin cardinals of W∗∗, then there is a Col(ω,< λ)-generic h such that RV [G] is the symmetric reals for
W∗∗[h]. And in W∗∗(RV [G]), the derived model satisfies that L(Γ(P,Φ)) � Q is not full. In the above, we have used
the fact that the interpretation of the UB-code of the strategy for P in W∗∗ to its derived model is Φ � RV [G]; this
key fact is proved in [7, Theorem 3.26].
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Figure 6: Diagram for the proof of Lemma 7.2.

• Regarding the proof of the j-condensation lemma (Theorem 6.17), the following are the main

changes we need. Fix a bad tuple A = (〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,MY
∞) in M as in the

proof of Theorem 6.17; note that k(A) = (〈Pi,Qi, τi, ξi, πi, σi | i < ω〉, k(MY
∞)) is also a bad

tuple in N .

We let (P+
0 ,Π) be such that

(a) P+
0 = HOD

j(Γ)
Σ (α′ + ω) for some limit ordinal α′ such that A ∈ j(Γ)|θα′ . Note that P+

0

is countable in N and {k(P+
0 ), k � P+

0 } ∈M .

(b) Π is the natural strategy of P+
0 and is the tail of any Σ-hod pair (R,Ψ) such that

M∞(R,Ψ) = P+
0 .

(c) Π � M ∈ M and Π � M ⊆ k(Π � M)k. The latter property follows from the fact that

(P+
0 ,Π) is a hod pair of limit type, Π has branch condensation and is k(j(Γ)) fullness

preserving; therefore, basic theory of hod mice, e.g. the proof of [7, Theorem 3.26],

implies Π = k(Π)k. We do not know if the conclusion of Lemma 3.36 holds for all hod

pairs constructed in the core model induction here, but fortunately, we do not need it.108

We will also write Π for k(Π �M)k when interpreted in N .

(d) ΛY ≤w ΠP+
0 (α′) (so ΛXi ≤w ΠP+

0 (α′) for all i) in N . Note that we can extend ΛY

(similarly ΛXi for all i) in N as the realizable strategy (which we also call ΛY ) of PY
into k(j(H+)) using the map k ◦ πY .

(e) In N , P+
0 is countable and Γ(P+

0 (α′),ΠP+
0 (α′)) � A is a bad tuple.

The rest of the proof is essentially the same as before, but now we run the “three dimensional

argument” using k (instead of j) and the argument takes place in N (instead of in M). We

leave the details to the reader.

This completes our outline.

108In the context of DI, we need Lemma 3.36 in situations where the hod pair has successor type. In the case where
hod pairs are of limit type, we can argue as above.

78



Remark 7.4. If one strengthens DI to the hypothesis in Footnote 8, then an easy modification of

the outline given above will also give the consistency of “ADR + Θ is regular”. In particular, one

maintains the inductive hypothesis (∗∗), instead of (†), and one does not need Lemma 3.36. We

leave the details to our reader.

8. OPEN PROBLEMS AND QUESTIONS

As mentioned above, there are various important and intriguing questions concerning ideals on ω2.

Woodin has conjectured that (see Theories (a) and (c) in [35, Question 12])

Conjecture 8.1. The following theories are equiconsistent.

1. ZFC + MM(c) + JNS is weakly presaturated.

2. ZF + ADR + “Θ is regular”.

In the above MM(c) is Martin’s Maximum for posets of size at most c, and JNS is the non-

stationary ideal on ω2 concentrating on ordinals of cofinality ω. JNS is weakly presaturated if for

every function f : ω2 → ω2, for every S ∈ ℘(ω2)/JNS , there exists a canonical function h : ω2 → ω2

such that

{α ∈ S : f(α) ≤ h(α)} /∈ JNS .

See [35, Section 9.7] for a more detailed discussions on ideals on ω2. [35, Theorem 9.137] has

established one direction of the conjecture. The converse most likely requires new techniques in

the core model induction.

Question 8.2. What is the consistency strength of the theory “ZFC + there is a dense ideal on

ω2”?

Finally, as mentioned in the previous section, we do not know the exact consistency strength of

the theory “ZFC + there is a strong, pseudo-homogeneous ideal on ℘ω1(R)”, but we conjecture

Conjecture 8.3. The following theories are equiconsistent.

1. “ZFC + there is a strong, pseudo-homogeneous ideal on ℘ω1(R)”.

2. ZF + ADR+ “Θ is regular”.
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