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Abstract

O is the least ordinal o with the property that there is no surjection f : R — «. ADg is the
Axiom of Determinacy for games played on the reals. It asserts that every game of length w of
perfect information in which players take turns to play reals is determined. An ideal Z on w; is
wi-dense if the boolean algebra p(w;)/Z has a dense subset of size w;. We consider the theories,
where CH stands for the Continuum Hypothesis,

(T1) ZFC 4+ CH + “There is an w;-dense ideal on wy.”

(T2) ZF + ADg + “© is a regular cardinal.”

The main result of this paper is that Ty implies that the existence of a model of T,. Woodin, in
unpublished work, showed that the consistency of T, implies the consistency of T;. We will also

give a proof of this result, which, together with our main theorem, establish the equiconsistency

of T1 and T»,.
As a consequence, this resolves part of question 12 in [35]; in particular, it shows that the
theories (b) and (c) in [35, Question 12] are equiconsistent. Thus, our work completes the

work that started by Woodin and Ketchersid in [5] some 25 years ago. We also establish other
theorems of similar nature in this paper, showing the equiconsistency of T, and the statement
that the nonstationary ideal on g, (R) is strong and pseudo-homogeneous. The aforementioned

results are the only known equiconsistency results at the level of ADg + “© is a regular cardinal.”

1. INTRODUCTION

This paper studies the consistency of strong determinacy theories, specifically the theory
“ZF + ADgr + O is regular”

and the consistency of strong ideals on wq, specifically wi-dense ideals on wi. The main theorems
of the paper, Theorem 1.4 and Corollary 1.6, resolve a long-standing conjecture by Woodin in [35].
The work in this paper contributes to our understanding of and helps further establish the close

connections between ideals and determinacy, two very seemingly different areas in set theory.
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Some background

Famously, Ulam’s investigations of the Measure Problem, which asks whether there is a measure on
[0, 1], led him to prove that there is no countably complete 0-1 measure, that is an wultrafilter, on wq
(e.g. [3, Chapter 10]). Ulam’s theorem is often presented as showing that w; is not a measurable
cardinal, where we say that k is a measurable cardinal if there is a k-complete ultrafilter U on k.

Ulam’s theorem and the Measure Problem in general have been a source of great ideas in set
theory, and one of these ideas has been the study of ideals that could induce nice ultrafilters on
uncountable cardinals. Suppose, for example, that Z C p(k) is an ideal on k. Let Pr = p(w1)/Z
be the corresponding boolean algebra induced by Z. One can also think of Pz as a poset ordered
by inclusion. It is not hard to see that if U is a generic object for Pz! then the function U* :
(p(r))Y — {0,1} given by U*(A) = 0 <= A ¢ U satisfies many of the properties of being a
0-1 measure with two major deficiencies. First U* may not measure all subsets of s that exist in
V[U], and second, U* may not be countably complete. It is then unclear exactly in what way this
approach could lead to a reasonable study of the Measure Problem.

The concept of ultrapower introduced the necessary formalism to eliminate the aforementioned
issues. It is a well-known fact that a cardinal k is a measurable cardinal if and only if there is an
elementary embedding j : V' — M such that M is a transitive class of V', j # id, j | kK = id and
j(k) > k. If k is a measurable cardinal then one obtains the M above as an ultrapower of V' by a
k-complete ultrafilter on k. The same can be done with our generic U above, and for the start one
can only demand the well-foundedness of Ult(V,U).

An ideal 7 is called precipitous if whenever U C Pz is a generic ultrafilter, the generic ultrapower
of V by U, Ult(V,U), is well-founded. This approach to the Measure Problem has been incredibly
fruitful and has lead to many great discoveries. The story has been partially told in Foreman’s long
manuscript [2]. The study of precipitous ideals has led to solutions of problems considered not just
by set theorists but by wider mathematical community. For example, Theorem 5.42 of [2] states
that the existence of a certain nice ideal implies among other things that every projective set of
reals is Lebesgue measurable.

Let Z be an ideal on w;. We write ZT for the collection of Z-positive sets and Fr for the
dual filter of Z. Z is k-saturated if there is no family (S; : ¢ < k) of sets in p(w1)\Z such that
S;NS; € I for all i # j; in other words, 7 is k-saturated if there is no antichain in Pz of size
k. A k-complete ideal Z is saturated if it is k*-saturated. Presaturation is a technical weakening
of saturation. An ideal Z on w; is presaturated if for any A € p(w1)\Z, any sequence of maximal
antichains (A; : i < w) in p(w1)/Z, there is B C A such that B ¢ Z and such that for each i < w,
{X € A; : XN B ¢ I} has cardinality at most w;. The reader can consult Foreman’s paper [2] and
Woodin’s book [35] for more comprehensive discussions on the topic of ideals, which is an important

area of research in modern set theory.

T.e. intersects all dense open subsets of Pz.



Shelah, Jensen, and Steel have established the following famous theorem, which is one of the

first equiconsistency results that connects ideals and large cardinals.
Theorem 1.1. The following theories are equiconsistent.

1. ZFC + There is a pre-saturated ideal on wy.

2. ZFC + There is a saturated ideal on wq.

3. ZFC 4 There is a Woodin cardinal.

Shelah proves the consistency of 1 and 2 from the consistency of 3 by forcing techniques. Jensen
and Steel prove the converse using inner model theoretic techniques, in particular core model theory.
See, for example, [21, 1].

Claverie and Schindler [1] have improved the above result and shown that in fact theory 3 above
is equiconsistent with the theory “there is a strong ideal on wy”.?

Below we say that the ideal Z C p(w;) is w;-dense if Pz has a dense set of size w;. w;-density is
a stronger property than saturation. The consistency question of wi-dense ideals has been studied
extensively in the last 25 years, starting with Woodin [35] and by various other authors in [5, 14].
Unlike saturation and presaturation of ideals on wi, which can be forced from a relatively mild
large cardinal like a Woodin cardinal, there is no known traditional forcing construction of an wi-
dense ideal from a large cardinal significantly weaker than a supercompact cardinal.®> The Aziom
of Determinacy (AD) comes into the picture in a rather surprising and dramatic fashion via the
following remarkable theorem of Woodin.

Recall that AD states that every infinite-length, two-person game of perfect information where
players take turns to play integers is determined, i.e. one of the players has a winning strategy. It
is worth noting that AD is equiconsistent with “ZFC 4+ there are w many Woodin cardinals” and
the latter theory is much weaker than a supercompact cardinal. A (stronger) variation of AD is
ADg, which is like AD except the players are allowed to play reals. The theory “ZF + ADgr + ©
is regular” is strictly stronger than ZF + ADg; here © is the supremum of ordinals « for which
there is a surjection from R onto a. If the axiom of choice holds, then ©® = ¢™, the successor of
the continuum. If AD holds, then © is a limit of measurable cardinals and more. In the following
theorem and this paper, L(R) is the minimal model of ZF that contains all the ordinals and the

real numbers (see [14, Theorem 2.11.1]).
Theorem 1.2 (Woodin). The following theories are equiconsistent.
1. ZFC + “There is an wi-dense ideal on wy”.

2. AD holds in L(R).

2The property of being strong is weaker than being presaturated. Strong ideals are precipitous.
3Woodin constructs wi-dense ideals from an almost huge cardinal (cf. [2]). Recently, Andreas Lietz has constructed
wi-dense ideals from the existence of a supercompact cardinal, which is a weaker hypothesis than almost hugeness.



Woodin introduces two very important sets of techniques in the proof of the above theorem. In
one direction, to show the consistency of “ZFC + There is an wi-dense ideal on w1”, he develops
powerful and general forcing techniques over models of determinacy, i.e. Ppax and its cousins (cf.
[35]).* To prove the other direction, the core model induction (CMI) technique was introduced. CMI
is a general technique for obtaining lower-bound consistency by inductively proving determinacy
in canonical models like L(R). CMI has since then been developed further into a very powerful
and versatile method for proving lower-bound consistency and equiconsistency results (see for ex-
ample [14, 32, 34, 27]) from a variety of hypotheses. Part of this development is in understanding
determinacy models beyond L(R)® and their canonical inner models of large cardinals (like the
HOD).

The aforementioned theorems of Shelah, Jensen, Steel, Woodin, and others demonstrate inti-
mate connections between different branches of set theory, namely the study of precipitous ideals
and the study of models of AD. It seems that the connections that theorems like above establish
are rooted in the naturalness of the constructions that produce the models of one theory given a
model of another, and this naturalness — the feeling of having no barriers to naturally drift from
one theory to another as if they were one and the same theory — is not fully expressed in the formal
statement of the theorem, namely that the two theories are equiconsistent. We discuss this a bit
more later in this section.

The main theorem of this paper, Theorem 1.4, has the same spirit as Woodin’s theorem above.
Definition 1.3 (DI). Let DI be the conjunction of

e CH,

e there is an wi-dense ideal Z on wy.

_{

For a sentence ¢ in the language of set theory, we say that M is the minimal model of “ZF +
ADg + ¢” if M is a transitive model of “ZF + ADgr + ¢” containing all reals and ordinals, and

whenever N is a transitive model of “ZF 4+ ADgr + ¢” containing all reals and ordinals then M C N.

Theorem 1.4. ZFC + DI implies that the minimal model of ZF + ADr + “© 1is a reqular cardinal”

exrists.

The proof of [7, Theorem 6.26] explicitly establishes that the existence of divergent models of
AD™ implies their common part is beyond a model of ZF 4+ ADg + “© is a regular cardinal”. Thus,
if there is a model of ZF + ADg + “© is a regular cardinal” then there is a minimal one. As a result
of this theorem and Woodin’s unpublished work, which we will present in Section 2, we obtain the

following equiconsistency result.

Theorem 1.5. The following theories are equiconsistent.

“This work was partly inspired by previous work by Steel and Van Wesep [29].
SMore precisely, AD" models. AD" is a technical strengthening of AD.



1. ZFC + DI
2. ZF + ADg + “O is a regular cardinal.”
Let NS., be the nonstationary ideal on w; and (T") be the theory
ZFC + CH + “NS,,,|S is wi-dense for a dense set of S € p(w1)\NS,,”.

Woodin, unpublished, has shown that Con((7")) follows from Con(ZF + ADg + “© is regular.”).

This result and Theorem 1.5 immediately show
Corollary 1.6. The following theories are equiconsistent.
1. ZF + ADgr+“® is regular”.
2. (T).
This confirms that theories (b) and (c) in [35, Question 12] are indeed equiconsistent. Below we
give some more motivations for proving such theorems.

Some definitions and more results.

For any set X, let g, (X) be the set of countable subsets of X. Let Z be an ideal on g, (R).
We let Zt and Fz be as before and let Pz be the boolean algebra p(p., (R))/Z. Let ¢ denote the

size of the continuum.

Definition 1.7. An ideal Z on w; or on g, (R) is precipitous if whenever G C Pz is a V-generic
ultrafilter, the generic ultrapower Ult(V, G) induced by G is well-founded. .

Definition 1.8. An ideal Z on g, (R) is strong if
(a) Z is precipitious, and

(b) whenever G C Pz is V-generic, letting jg : V. — Ult(V,G) be the ultrapower map, then

ja(wr) = ¢*.
_{

Definition 1.9. An ideal Z on g, (R) is pseudo-homogeneous if for every a € ON, s € ON®,
A < ¢, and formula @ in the language of set theory, letting G C Pz be a V-generic filter and
ja 'V = Ult(V, G) the corresponding ultrapower map, the truth of the statement

Ult(V7 G) F 0[a7jG(S)7jG[)‘wH
is independent of the choice of G. -

We obtain an equiconsistency regarding strong, pseudo-homogeneous ideals on g, (R).



Theorem 1.10. The following are equiconsistent.
1. ZFC + “The nonstationary ideal on p,, (R) is strong and pseudo-homogeneous.”
2. ZF + ADgr+ “© is a regular cardinal.”

Motivations

Motivated by the success of the generic elementary embeddings induced by ideals or other sim-
ilar structures, Foreman has suggested them as a possible foundational framework, and exposited
his ideas in [2, Chapter 11]. As is well known, the basic foundational issue that set theory is facing
is its inability to produce a single foundational framework that is accepted by all and at the same
time solves all fundamental problems including the Continuum Hypothesis. Several successful foun-
dational frameworks, such as Forcing Axioms, Canonical Inner Models and Generic Embeddings, have
been proposed and developed, but they all seem to disagree on basic questions such as whether
the Continuum Hypothesis is true or whether the universe is a ground (i.e., cannot be obtained as
a non-trivial forcing extension of an inner model) and on many other such fundamental questions.

One of the main goals of CMI is to unify all of these frameworks by showing that each can
be naturally interpreted in another. Given such bi-interpretations, disagreements on fundamental
questions can be traced to subjective preferences in one framework over another, or preferences in
one type of formalism over another.

For example, Woodin’s theorem (Theorem 1.2) and Theorem 1.5 show how to interpret natural
ideas occurring in the study of generic embeddings in models of determinacy and vice versa. The
reason is that, in both cases, the forcing notion used to obtain the models carrying such ideals are
natural forcing notions, and in the other direction, the models of determinacy built in both cases
are natural canonical models of AD. This sort of bi-interpretability demonstrates that one cannot
have scientifically objective reasons for preferring generic embeddings over, say, determinacy ax-
ioms, as they are deeply interconnected: commitment to one entails commitment to the other. A
bias towards a particular formalism can be justified by other more pragmatic ways, for example by
insisting on the shortest or clearest or most natural possible proofs of certain desired theorems. The
ideas exposited above are the motivational ideas behind proving theorems like the main theorem of

this paper.® For a more detailed discussion of CMI and its role in set theory, readers may consult [11].
The history behind the paper.

The first written presentation of CMI is Ketchersid’s PhD thesis [5], which motivated Ralf Schindler
and John Steel to work on a book presenting the Core Model Induction (see [14]). In 2006 they or-
ganized a seminar in Berlin covering the basics of CMI. As one can see by flipping through [14],
one of the main directions pursued by the community at this time was to complete Ketchersid’s

project. See John Steel’s [23] for a conjecture along the same vein.

5The authors first learned about these ideas from John Steel.



One of the main reasons this was believed to be important was that it was not known and
still is not known how to force DI, clause 1 of Theorem 1.5, from conventional large cardinals that
are weaker than supercompact cardinals. Woodin forced DI both over the models of ADgr + “©
is a regular cardinal” and from an almost huge cardinal (see [2, Chapter 7.14]). In [35], Woodin
also forced MM™ 7 (¢), Martin’s Maximum for forcing posets of size at most the continuum, over a
model of ADg + “© is a regular cardinal” (see [35, Theorem 9.40]), and just like with DI, it is not
known how to force MM™(¢) from conventional large cardinals much weaker than a supercompact
cardinal. These and other results of Woodin from [35] seem to suggest that the theory ADgr + “© is
a regular cardinal” is in the region of supercompact cardinals, and the project of getting a model of
it via CMI seemed to be equivalent to getting canonical inner models that could have supercompact
cardinals in it, which has been one of the Holy Grails of set theory.

However, [7] showed that in fact the theory ADg + “© is a regular cardinal” is much weaker than
a supercompact cardinal: it is weaker than a Woodin cardinal that is a limit of Woodin cardinals
(see [7, Theorem 6.26]). This theorem seems to suggest the existence of a gap in our understanding
of models of set theory. On the one hand, the conventional forcing and large cardinal technology
that is needed to force statements such as DI or MM (¢) requires the complexity of a supercompact
cardinal or beyond, and on the other hand, equally natural but different technologies based on [35]
place the complexity far below a supercompact cardinal. This phenomenon has not yet found a
proper explanation.

While [7] did show that finishing Ketchersid’s project will not lead to one of the Holy Grails of
set theory, the importance of the project didn’t diminish, as it was perceived to be one of the main
guiding problems for developing the CMI to a technique for producing models of ADg + “© is a
regular cardinal” and beyond”. In this direction, the last chapter of the second author’s thesis [12]
gave a rough outline of producing models of ADr+ “© is a regular cardinal” from a strengthening of
D8 but later on a substantial error was discovered in the proof by Steel and the third author. The
concept of embeddings with condensation introduced in [3] (see [8, Definition 11.14, Lemma 11.15])
and further developed in [32] (see [32, Definition 3.81, Lemma 3.82]) and [10] seemed good enough
for correcting the aforementioned error, which is what we will do in this paper (see Theorem 6.17).
However, to obtain Theorem 1.4, more substantial ideas beyond this need to be developed.

Furthermore, the fourth author, in his thesis [34], developed techniques for handling the suc-
cessor stages of CMI that avoid the famous “A-iterability” proofs (see [I, Theorem 5.4.8] or [22,
Theorem 1.46]) and various other complicated arguments originally due to Woodin. We adapt
the fourth author’s arguments to our current context (see Section 5). The second, third, and
fourth authors established the consistency of ZF + ADr + “© is regular” from the aforementioned
strengthening of DI in 2020-2021; this completes the project started by Ketchersid in [5]. The

obvious question is how to get rid of the technical assumption used in the second author’s thesis, as

"See for example [10] for an analysis of determinacy models stronger than those of ADg + “© is a regular cardinal”
and core model induction techniques for constructing such models from strong theories like PFA.

8The strengthening is DI plus the statement: letting Z be an wi-dense ideal w1, the generic embedding induced
by any generic G C Pz when restricted to the ordinals is amenable to V.



mentioned in Footnote 8. The first and fifth authors joined the ongoing work in 2022 and finished
the project. The result of these collaborations is Theorem 1.4.

As mentioned above, it is a well-known unpublished theorem of Woodin that one can force
DI over models of ADr + “© is a regular cardinal”. The fourth author forced some more general
statements about ideals in his thesis, and we will use his argument to give a proof of this theorem of
Woodin in Subsection 2.3 below. Thus, this paper presents a self-contained proof of Theorem 1.5,
giving the proof of both directions in as much detail as it is possible to do in a research article.
Theorem 1.5 and Theorem 1.10 are currently the only known equiconsistency results at the level
of ADg + “© is a regular cardinal”.

The paper is organized as follows. In Section 2, we summarize basic facts about ideals and AD™
we need in this paper and show that DI and the existence of a strong, pseudo-homogeneous ideal
on g, (R) are consistent relative to “ADg + © is a regular cardinal.”® In Section 3, we summarize
preliminaries and basic notions we need for the CMI in this paper. Section 4 outlines the proof of
Theorem 1.4. Sections 5 and 6 fill in the details of the outline and complete the proof of Theorem
1.4, obtaining models of “ADgr + © is a regular cardinal” from ZFC + DI. In Section 7, we out-
line the argument obtaining models of “ADgr + © is a regular cardinal” from the assumption that
the nonstationary ideal on g, (R) is strong and pseudo-homogeneous. Since the argument is very
similar to the argument from DI, we simply focus on the main changes, leaving the details to the

reader. In the following, we will often write “© is regular” for “© is a regular cardinal.”

Acknowledgments. The work here is greatly influenced by Ketchersid’s work in his thesis [7],
which in turn is greatly influenced by Woodin’s early work in the CMI. We are grateful to them for
their inspiring work in this direction. We are also grateful to Woodin for his permission to include
the proof of his unpublished work which shows that Con(ZF + ADr+“® is a regular cardinal”)
implies Con(ZFC+ DI). The third author is grateful to the NSF for its generous support via Career
Award DMS-1945592.

2. DENSE IDEALS AND STRONG PSEUDO-HOMOGENEOUS IDEALS FROM MODELS
OF ADg + © IS REGULAR

In this section, we show the consistency of ZFC 4 DI and of the existence of a strong, pseudo-
homogeneous ideal on g, (R) from ADg + “© is regular.” ! We first review basic facts about AD*"

and ideals. In Subsection 2.3, we will give the consistency proof.

2.1. Basic facts about ADT

We start with the definition of Woodin’s theory of AD™. In this paper, we identify R with w*. We

use © to denote the sup of ordinals « such that there is a surjection 7 : R — a. Under AC, © is

9We adapt the proof given in the fourth author’s thesis here. We note the result that Con(ZFC + DI) follows from
Con(ADr + “O is regular”) is due to Woodin.
°Tn fact we show the nonstationary ideal on g, (R) has these properties.



just the successor cardinal of the continuum. In the context of AD, the cardinal © is shown to be
the supremum of w(A)! for A C R (cf. [20]). The definition of © relativizes to any determined
pointclass T' with sufficient closure properties, and we may write ©F for the supremum of ordinals

« such that there is a surjection from R onto « coded by a set of reals in T.
Definition 2.1. AD™" is the theory ZF + AD + DCg plus the following two statements:

1. For every set of reals A, there are a set of ordinals S and a formula ¢ such that x € A <=
L[S, z] E ¢[S, z]. The pair (S, ¢) is called an oo-Borel code for A.

2. For every A\ < O, every continuous 7 : A — w*, and every set of reals A, the set 771[A] is

determined.
_{

AD™ is equivalent to AD + “the set of Suslin cardinals is closed below ©.” Another, perhaps more
useful, characterization of AD" is AD + “X; statements reflect into the Suslin co-Suslin sets” (see
[20] for the precise statement).

For A C R, we let 64 be the supremum of all « such that there is an OD(A)!? surjection from
R onto a. If I' is a determined pointclass and A € I', we write I' | A for the set of all B € I" that
are Wadge reducible to A. If a < OF, we write I' | a for the set of all A € T with Wadge rank

strictly less than a.

Definition 2.2 (AD"). The Solovay sequence is the sequence (0, | a < \) where
1. 6y is the supremum of ordinals S such that there is an OD surjection from R onto j;
2. if & > 0 is limit, then 6, = sup{fs | 5 < a};

3. ffa=p+1and g <O (ie. B <), fixing a set A C R of Wadge rank 63, 0, is the sup of
ordinals 7 such that there is an OD(A) surjection from R onto 7, i.e. 8, = 64.

_|

Note that the definition of 8, for a = 5 + 1 in Definition 2.2 does not depend on the choice of
A. One can also make sense of the Solovay sequence of pointclasses that may not be constructibly
closed. Such pointclasses show up in core model induction applications. The Solovay sequence
(04 : a < 7) of a pointclass Q with the property that if A € Q, then L(A,R) E AD" and p(R) N
L(A,R) C Q is defined as follows. First, 0y is the supremum of all « such that there is some A €
and some OD AR) surjection 7 : R — a. If A < v is limit, then 0, = sup,)bo. If 6, has been
defined and o + 1 < =, then letting A € Q be of Wadge rank 6, 6,41 is the supremum of g such
that there is some B € Q and some OD(A)X(BR) surjection 7 : R — .

"w(A) is the Wadge rank of A.
122 is OD(A) if there is a formula ¢ and a finite set of ordinals s such that z is the unique y satisfying the formula
oy, s, A).



Roughly speaking, the longer the Solovay sequence is, the stronger the associated AD"-theory
is. The minimal model of AD" is L(R), which satisfies © = 6. The theory AD" + ADg implies
that the Solovay sequence has limit length. The theory ADg + DC is strictly stronger than ADg
since by [20], DC implies cof(©) > w whereas the minimal model'® of ADy satisfies © = 6,,. The
theory “ADgr + © is regular” is much stronger still, as it implies the existence of many models of
ADgr 4+ DC. We end this section with a theorem of Woodin, which produces models with Woodin

cardinals from ADT. The theorem is important in the HOD analysis of such models.

Theorem 2.3 (Woodin, see [(]). Assume ADV. Let (0, | a < Q) be the Solovay sequence. Suppose
a=0ora=p+1 for some 8 <. Then HOD F 8, is Woodin.

2.2. Basic properties of ideals

We summarize standard facts about ideals that we will need in this paper. See for example [35]
and [3] for a more detailed discussion.

Suppose Z is an ideal on a set X. We say that Z is countably complete if whenever {A,, : n < w}
are sets in Z then (J,,., An € Z. Supposing X is a cardinal (e.g. X = w1), we say T is normal if
whenever {A; : € X} C Z then the diagonal union {z € X : 3y € z(x € A,)} € Z. All ideals Z
on a cardinal considered in this paper will be assumed countably complete and normal.

Suppose 7 is an wi-dense ideal on w;. The following are standard facts; see [35, Definition 6.19]

and the discussion after it.
Fact 2.4. (i) Pz is a homogeneous forcing. '

(ii) There is a boolean isomorphism « : Pz — RO(Coll(w,w1))!’. In particular, Pz is forcing

equivalent to Coll(w,wr).

(iii) For any V-generic filter G C Coll(w,w1), m induces a V-generic filter H C Pz, and letting
J:V = M =4 Ult(V,H) C V[H] be the associated generic ultrapower map, we have:

(a) §(f)(wY) =G for some f: w1 — H,,; in particular, V[H] = V[G].
(b) j(wi) =wy.
(¢) M is well-founded and M C M in V[H].
Let 7 be an wi-dense ideal on w;. For any V-generic g C Pz =45 p(w1)/Z, let j, : V —
M = Ult(V,g) be the associated ultrapower map. We fix a Boolean isomorphism 7 : Pz —

RO(Coll(w,w1)) as in Fact 2.4 and let G C Coll(w,w;) be such that ¢ is induced from G via .

When g is clear from the context, we will write j for jj.

13From here on, whenever we talk about “models of ADT”, we always mean transitive models of AD* that contain
all reals and ordinals.

A forcing P is homogeneous if whenever p, ¢ € P, there is an automorphism o : P — P such that o(p) is compatible
with q.

5RO(Coll(w, w1)) is the regular open algebra of Coll(w, w1).
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We say that a set of reals A is wy-universally Baire (or wi-UB) if there is some ordinal v and a
pair of trees T, U on w x 7 such that A = p[T] = R — p[U] and for any forcing P of size < wy’, for
any V-generic h C P, in V[h], p[T] =R — p[U]. Here p[T| ={x € R:3f € y* (z, f) € [T]}.

Lemma 2.5. Let Pz,g,G, M be as above. Suppose A C R is w1-UB as witnessed by trees (T,U),
then in V|G], p[T] = pljg(T)] and p[U] = p[js(U)].

Proof. We write j for j,. Clearly, p[T] C p[j(T")] and p[U] C p[j(U)]. In M, equivalently in V[G],

pli(T)] =R —p[j(U)].
This follows from elementarity of j, the fact that in V', p[T] = R — p[U], and property (c) of Fact
2.4.
By the fact that T, U witness A is w;-UB and Coll(w, w1 ) has size wy, in V[G], p[T] = R —p[U].
We must then get p[T] = p[j(T)] and p[U] = p[j(U)]. O

Remark 2.6. It follows easily from Lemma 2.5 that if (7, U), (T",U’) witness A is w1-UB then in
Vg, p[T) = p[T"] and p[U] = p[U’]. Therefore, we can unambiguously write A, for p[T] N Vg] as

the canonical interpretation of A in Vg].

Suppose X = g, (Y), where g, (V') is the collection of all countable subsets of Y, for some set
Y (e.g. Y =R). Wesay T is fine if for any y € Y, the set {0 € g, (Y) :y ¢ 0} € Z. We say T
is normal if whenever {A, : y € Y} C Z, the diagonal union {o € p.,(Y) :Jy € 0 (0 € A,)} € T.
Z is |Y|-dense if there is a dense subset of Pz of size |Y|. All ideals on sets of the form g, (Y)

considered in this paper will be assumed countably complete, normal, and fine.

Lemma 2.7. Suppose I is a pseudo-homogeneous ideal on g, (R). Let G C Pz be V-generic and
let jo : V — Ult(V,G) be the associated generic embedding. Then:

(a) For any ordinal o, jg | a does not depend on G; in particular, jo [ a € V.
(b) If X < ¢t, then jo[\*] does not depend on G and ja[\“] € V.

(c) If A is a set of ordinals that is definable in V' from a countable sequence of ordinals, then jg(A)
does not depend on G and jg(A) € V.

Proof. We give the proof for (a). The other items are similar. Let 6(u,v,w) be the formula
“u = v(0)”. Let a be an ordinal. Let s : w — Ord be the constant function s(n) = « for all
n € w. For each ordinal 8 the truth of the statement Ult(V, G) F 0[5, ja(s), 0] is independent of G
by pseudo-homogeneity, so the value of jg(«) is independent of G. O

2.3. Ideals from determinacy

We assume ADg + “© is regular” and V = L(p(R)). Let P be a poset with the following properties:

e P is coded by a set of reals.
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e P is o-closed.

e P is homogeneous.

e 1 IFp R is wellorderable.

e 1IFp ¢-DC, dependent choices for c-sequences.

Recall that ¢ is the size of the continuum. Examples of such P are Coll(wy,R) and P ax.
Let G C P be V-generic and let H C Coll(©, p(R))VI¢]. Note that by the properties of P and
the assumption V = L(p(R)), in V[G][H], ZFC holds and © = ¢™.

Definition 2.8. In V[G][H] an ideal Z on g, (R) is said to have the ordinal covering property
with respect to V' if for every function F : g, (R) — Ord and every Z-positive set S, there is some
Z-positive set Sy C S and some Fy : g, (R) — Ord in V such that F' [ Sy = Fy [ Sp. =

We will show that in V[G][H], there is an ideal Z with the ordinal covering property with respect
to V. Let u be the Solovay measure on g, (R)", so A € u if and only if A contains a club set in
puw, (R). A set A C gy, (R) is club if and only if there is a function F': R<¥ — R such that

c€eA& Flo<¥] Co.

We say that A is the club set generated by F.
The measure p induces an ultrapower map on the ordinals, j, : Ord — Ord. By the basic
theory of AD™,

Julwr) = 0©. (2.1)
See, for example, [34, Section 1.2] for a proof of this fact.

Lemma 2.9. Suppose V,G,H are as above. Suppose T is an ideal on g, (R) with the ordinal
covering property with respect to V. Let K C Pz be a V[G][H]-generic filter. Then:

(a) The generic embedding ji | Ord = j, | Ord. In particular, jk | o € V[G|[H] for every ordinal
a and doesn’t depend on the choice of K.

(b) T is strong.

Proof. For (a), for any F : ., (R) — Ord in V[G][H], the covering property gives some S € K and
Fy eV such that FF [ S=Fy[S. Also, KNV = p since K is normal; this gives

{F: p,(R) —» Ord}VIAH /K = {F : g, (R) — Ord} /u
and jg [ Ord = j, | Ord. Part (b) follows from (a) and (2.1). O

Lemma 2.10. In V[G][H], if Z has the ordinal covering property relative to V', then T is pseudo-

homogeneous.
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Proof. Let K C Pz be a V[G][H]-generic filter. Let o € Ord, s € Ord“, A < ¢*, and let 6 be a
formula in the language of set theory. It suffices to show that the statement Ult(V[G][H], K) F
O, ik (8), jr[A*]] is independent of K. By the ordinal covering property, we can find Fy € V' that
represents « in both Ult(V, ) and Ult(V[G][H], K). In both ultrapowers, j(s) is represented by
the constant function Fj(o) = s for all ¢ € p,, (R). Fix a surjection 7 : R — A in V. Then
Ji [A\*] is represented by the function Fy € V given by Fy(o) = 7[o]. So we have Ult(V[G][H], K) F
Ola, ik (8), jr[A]] if and only if the set

S ={o: VIG][H] F 0[Fo(0), Fi(0), Fa(o)]}
is in K. By homogeneity of P, S € V. But then we have S € K if and only if S € pu, as desired. [

Theorem 2.11. In V[G|[H], the nonstationary ideal T = NS, r on ., (R) has the ordinal cov-
ering property with respect to V.

To establish the covering property of Z in V[G][H], or equivalently in V[G], we will need the

following lemma.

Lemma 2.12. Let S be a P-name for a subset of ow; (R). The following statements are equivalent

for any given p € P:
(a) plF “S contains a club.”

(b) For a club of o € p,, (R),

(1) V*g C P | o containingpVg<g ql-o e S.

216

Here ¥*g stands for “for a comeager set of filters g and g < g means Vr € g ¢ < r.

Proof. Fix p € P. Assume (a) holds for p. Let f be a P-name for a function from R<“ into R such
that p forces S to contain the club set generated by f . By our assumption, we may assume P C R.
To see (b), note that there is a club set of o such that for all t € 0<“, the set

Di={qePno:(3zeo) (¢l f(t)=2)}

is dense below p in PNo. This easily gives (f) for o as there are countably many dense sets D; and
hence there is a comeager set of filters ¢ C PN o meeting all the D;’s.
Assume (b) holds for p. Let

A={(q,z):z codes o € g, (R) and ¢ IF o € S}.

Take N = Lo(Pg(R)) satisfying ZF~ + ADg + “O is regular”, containing A, and admitting a
surjection F : R — N.!7 Let B C R code the first order theory of the structure (V,,41,€,4).

Because ADg implies that every set of reals is R-universally Baire (see e.g. [34, Section 1.2],) in

By P | o, we mean the set of conditions in P coded by a real in . Note that P | o is countable, so the category
quantifier over the set of all filters on it makes sense.
"Here Ps(R) is the set {B C R : B has Wadge rank less than 3}. We also use the notation p(R) | 3.
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particular A and B are R-universally Baire. There is then a club C of o € g, (IN) having the

following properties:
e (1) holds for o NR.
e 0 <N.

e Defining 7, : 0 — N, as the transitive collapse of o, we have
(Vw+1 N Ng[h], €, AN Na[h]) < (Vw+1, e, A)

for any N,-generic filter h C Coll(w,o NR).

The last item follows from the R-universal Baireness of B.

All o € C have the following property:

No Ep I}_%[(Rﬂa‘) (1 H_}Cl'oll(w,lRﬂa) (Vg < 9)((q,0n) € To(A)gxn))- (2.2)

In (2.2), oy, denotes the real generically coding o NR relative to h and 7, (A)gxp denotes the unique
extension of m,(A) to a set of reals in Ny[g][h], which can be construed as a generic extension of
N, by Coll(w,o NR); the extension is given by the universal Baireness of A.

Now suppose G C P is V-generic and p € G. There is a club set D of ¢ € C such that
o[G] < N|G] and ¢[G] NV = o. Take a ¢ in this club and g = GNo. Note that any lower bound
q < g forces o € S by (2.2) and there is ¢ < g in G; so o NR € Sq. Therefore, the club set
{e MR :0 € D} witnesses (a). O

Proof of Theorem 2.11. Suppose po forces “F : § — Ord and S C ©w, (R) is stationary.” Using
(f), the latter part of this statement is equivalent to the following statement. For stationary many

(equivalently by ADg, for club many) countable o C R,
J*g C P | o containing pg g < g ¢gl-o € S.
Under AD, a well-ordered union of meager sets is meager, so let Fj(o) be the least a such that
3*g C P | o containing pp 3¢ < g ¢ IF F(0) = a.
By the above, pg forces that the set of o € S such that F(o) = Fy(o) is stationary. O
Theorem 2.11 and Lemmas 2.9 and 2.10 immediately give one direction of Theorem 1.10.

Corollary 2.13. Con(ZF 4+ ADgr + “© is reqular”) implies Con(ZFC + “the nonstationary ideal on

0w, (R) is strong and pseudo-homogeneous”).

Now we proceed to prove one direction of Theorem 1.5. We show Con(ADg + “© is regular”)
implies Con(ZFC + DI). We fix objects V,P, G, H as before. The following is the main theorem.

Theorem 2.14. In V[G|[H], there is a c-dense ideal on g, (R) with the ordinal covering property

relative to V.
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We review some facts regarding generic ultrapowers by Coll(w,R)-generics. See [31] for a more
detailed discussion. Let h C Coll(w,R) be V-generic and

U, ={A CR¥: A is weakly comeager below some p € h}.

Here A C R¥ is weakly comeager below a condition p € Coll(w,R) if for a club set of o € g, (R),
AN o is comeager below p in 0*.'® U, is the generic ultrafilter on R* induced by h. Uj, gives a
generic embedding j, : V. — Ult(V,Uy) C V[h]. Using the fact that ADg + “© is regular” holds
in V, we can prove Lo§’s theorem for j, and hence jj is elementary. We can show that the map
[Fol, — [Fo o ran]y, is an isomorphism from Ult(Ord, x2) to Ult(Ord, Uy), RV = RUE(V:UR) - and
Ju I Ord = jy, I Ord.

Proof of Theorem 2.14. We first prove the following claim.

Claim 2.15. If h C Coll(w,R) is a V[H]|-generic filter such that G € V[h], then letting jp :
V — Ult(V,Uy) C V[h] denote the corresponding elementary embedding, in V[h|[H]|, there is an
Ult(V,Uy)-generic filter G' C jn(P) extending ji“G.

Proof. The poset j,(P) is countably closed in Ult(V,U}) and is coded by a set of reals there. In
V[h], because R N V[h] = RN Ult(V,U}) the poset j,(P) remains countably closed, and because
Jrn“G is countable there is a lower bound p € j,(P) for j, “G.

Now note that in V[h], there is a surjection f from p(R)" onto p(jy,(P))VV:Un); this is because
every subset of j;(P) in Ult(V, Uy) is represented by a function R¥ — o(R) in V', which can be coded

Y[h] = 0" onto p(R) whose proper

by a set of reals in V. In V[G|[H], there is a surjection k from w
initial segments are in V[G] C V'[h]; this follows from the fact that the forcing Coll(©Y, p(R)V)VC]
is ¢T-closed and V[G] satisfies ¢-DC. Then the surjection ko f : w}/[h] — ©(jn(P))VMVUr) has the
property that its proper initial segments are in V[h].!? Using this surjection, we recursively define
a decreasing wi-sequence of conditions (p, : @ < wy) in j,(P) below p whose proper initial segments

are in V'[h| and which generates the desired filter G'. O

By the assumptions on P, P x Coll(w,R) is forcing equivalent to Coll(w,R); therefore, we can
find an h satisfying the hypothesis of Claim 2.15. By Claim 2.15, forcing with Coll(w,R) adds
an Ult(V, Up,)-generic filter G’ C ji(P) extending j“G. We can then extend j, to an elementary
embedding

i VIG] — Ult(V, Up)[G]

by defining jj(7¢) = jn(7)cr-
Now in V[G][H], define an ideal Z on g, (R) by

Sel < “_Coll(w,]R) R ¢ j;;(g)

8We equip 0* with the product of the discrete topologies on ¢, so it is homeomorphic to the Baire space.
19We need this property for the following argument because this is the model in which jy (P) is countably closed.
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So Pz is isomorphic to the subalgebra B = {||R € j;(9)|| : S C pu, (R)}?° of the regular-open
algebra RO(Coll(w,R)).

7 is fine: for any x € R, the set T, = {0 : v ¢ o} € T because clearly 0 IFcou(w ) R ¢ j;‘;(Tx)
Z is normal: suppose (S; : € R) is a family of subsets of g, (R) and S is the diagonal union, i.e.

o € S if and only if there is some x € ¢ such that o € S;. Then
IR € j5(S)]| =13z € R (R € j;(S2)l| = sup||R € 55 (S2)] -

This verifies normality of Z and also verifies B is a c-complete subalgebra of RO(Coll(w,R)). Since
in V[G][H], RO(Coll(w,R)) has size ¢*, has the ¢T-chain condition, and is c-dense, B is c-dense
and is a complete subalgebra of RO(Coll(w, R)).

We now show Z has the covering property relative to V. In V[G][H], suppose F' : S — Ord
where S € Z*. Note that F € V[G]. Let p € Coll(w,R) force “R € j#(S)” and ¢ < p force
“i*(F)(R) = " for some ordinal a. In V, let Fy : gy, (R) — Ord such that [Fp], = a. By the

discussion above, before the proof of the theorem,

01 Goti(eo,ry [Folu = jn(Fo)(R) = i (Fo)(R).

Therefore,

q " cot(wr) i (F0)(R) = ji(F)(R).

This means the set {o € S : F(0) = Fy(o)} is Z-positive. O

Now, let P be such that CH holds in V[G][H]. For example, we can take P = Coll(w;,R). So
in V[G][H], ¢ = w1 and OV = wy. By Theorem 2.14, in V[G][H], there is an w;-dense ideal Z on
9w, (R) that has the covering property with respect to V. Since |p., (R)| = w; in V[G|[H], we easily
obtain an wi-dense ideal on w; with the ordinal covering property. This gives us one direction of
Theorem 1.5.

Corollary 2.16. Con(ZF + ADg + “© is regular”) implies Con(ZFC + DI).

Remark 2.17. We note that the wi-dense ideal constructed above has the covering property with

respect to V, so in fact, it satisfies the strengthening of DI in Footnote 8, by Lemma 2.9.

3. PRELIMINARIES

This section, consisting of several subsections, develops some terminology and framework for the
core model induction. The first subsection gives a brief summary of the theory of F-premice and
strategy premice developed in [16]. For a full development of these concepts, the reader should
consult [16]. These concepts and notations will be used in Subsection 3.3, which defines core model
induction operators, which are the operators that we construct during the course of the core model
induction in this paper. Subsections 3.2 and 3.4 briefly summarize the theory of hod mice and

the HOD analysis in AD" models (see [7] for a more detailed discussions of these topics). The

20| R € §7(8)|| is the boolean value of “R € j;(5)”.
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reader who wishes to see the main argument can skip them on the first read, and go back when
needed. Section 3.5 proves several important properties for reasonable hod pairs, defined in 3.32,
that we need for the proof of Theorem 1.4. The key result of this section is Lemma 3.36, whose
proof uses substantially Lemmata 3.34, 3.35. Lemma 3.34 appears to be a new fact in the theory
of hod mice at the level of “ADr + O is regular”. The last section reviews the technique of boolean
valued comparisons for such hod pairs. Throughout this paper, we will identify a set A C HC with
Code[A] C R, where Code is a simple coding of elements of HC' by reals.

3.1. F-premice and strategy premice

In this section, we briefly review JF-premice for an operator F, which is an abstract generalization
of first order mouse operators like = — zf, and strategy operators. These notions are developed
in details in for example [11], [16]. We adapt the framework given in [10] in this section and
throughout this paper.

First, the reader should review the definitions of 7 -structures and J -models over some transitive
set a (with parameter ) in [10, Section 2]. In particular, a J-model over a with parameter B has
the form

M= (M;E,B,S,a,R).

The predicate E = EM will encode the top extender; the predicate B = BM will be used to code
extra information such as a (partial) branch of a tree in M; and S = SM encodes a sequence
(Sq : a € [1,A)) of the levels of M. We will omit 8 from the notation when it is clear from the
context.

Our notion of a “J-model over a” is a bit different from the notion of “model with parameter
a” in [141] or [34, Definition 2.1.1] in that we build into our notion some fine structure and we do not
have the predicate [ used in [34, Definition 2.1.1]. Note that with notation in [16, Section 2], if X is
a successor ordinal then M = J(S3)), and otherwise, M = (J,_, [Sa|. Also, one can recover the
predicate coding the extender sequence and the predicate coding the strategy in the formulation
of [34] or [14] of the levels of M (not including the top predicate) from the predicate SM; so this
change is mostly cosmetic. The reader should consult e.g. [16, Definitions 2.3, 2.12] for various
notions concerning J-models (like initial segment, F-passive/active, B-passive/active, | etc.) and
the notion of an operator F with domain D. In the definition of operator, the variable ¢ should be
interpreted as follows. When ¢ = 0, we ignore history, and so P is treated as a coarse object when
determining F(0,P). When ¢ = 1 we respect the history (given it exists).

[16, Section 2] defines various abstract properties of an operator F, like forgetful, historical,
basic, and projecting. We refer the reader to [16, Section 2] for more details. There are two main
classes of operators we have in mind: mouse operators and strategy operators. Here we give some
illustrations that are useful in this paper. Strategy operators (to be explained in more detail later)
are basic, and as usually defined, projecting and historical. Suppose we have an iteration strategy

¥ and we want to build a J-model N/ (over some a) that codes a fragment of ¥ via its predicate
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B. We feed ¥ into N by always providing b = X(7), for the <-N-least tree 7 for which this
information is required. So given a reasonably closed level P <t N/, the choice of which tree T
should be processed next will usually depend on the information regarding > already encoded in
P (its history). Using an operator F to build N, then F (i, P) will be a structure extending P and
over which b = ¥(7) is encoded. The variable i should be interpreted as follows. When i = 1, we
respect the history of P when selecting 7. When ¢ = 0 we ignore history when selecting 7 . The
operator F(X) = X7 is forgetful and projecting, and not basic; here F(X) = F(0, X).

Definition 3.1. For any P and any ordinal « > 1, the operator J™( - ; P) is defined as follows.?!
For X such that P € Ji(X), let J™(X;P) be the J-model M over X, with parameter P, such
that |M| = J.(X) and for each 8 € [1,a], M|B is passive. If P = () or we wish to supress P, we
just write J2( - ).

%

Definition 3.2. Let F be an operator and b € Cr. Let N be a whole F-premouse over b. A
potential continuing F-premouse over N is a J-model M over N such that M | b is a
potential F-premouse over b.

We say that M (as above) is whole iff M | b is whole.

A (potential) continuing F-premouse is a (potential) continuing F-premouse over b, for

some b. =

The definition of (potential) F-premice, which generalizes the notion of (potential) premice is
given in [10, Definition 2.10]. A (potential) premouse is a (potential) F-premouse, where F(z) =
I ().

The next couple of definitions define mouse operators. Certain first-order mouse operators (like
T — M%(:):)) are what we construct in the core model induction. These mouse operators will be

part of the definition of core model induction operators defined in the next section.

Definition 3.3. Lp” (a) for an operator F denotes the stack of all countably F-iterable F-premice
M over a such that M is fully sound and projects to a.??

Let N be a whole F-premouse over b, for b € Cr. Then LpiT (N) denotes the stack of all
countably F-iterable (above o(N)) continuing F-premice M over N such that M | b is fully sound
and projects to N2

We say that F is uniformly X, iff there are X formulas 1 and @2 in £ such that whenever
M is a (continuing) F-premouse, then the set of whole proper segments of M is defined over M

by ¢1 (¢2). For such an operator F, let 7, denote the least such ¢;. =

A The “m” is for “model”. X is the transitive closure of {(X, p)} where p : X — rank(X) is the rank function of
X.

22Countable substructures of M are (w,w; + 1)-F-iterable, i.e. all iterates are F-premice. See [16, Section 2] for
more details on F-iterability.

230ften times in this paper, when the context is clear, we will use the notation Lp for Lp.
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Definition 3.4 (Mouse operator). Let Y be a projecting, uniformly ¥; operator. A Y-mouse
operator F with domain D is an operator with domain D such for each (0, X) € D, F(0,X) <
LpY (X), and for each (1,X) € D, F(1,X)<LpX (X).?* (So any Y-mouse operator is an operator.)
A Y-mouse operator F is called first-order if there are formulas ¢, and 9 in the language of
Y-premice such that F(0,X) (F(1,X)) is the first M < Lp¥ (X) (LpX (X)) satisfying ¢1 (2).

A mouse operator is a J{"-mouse operator. n

We can then define F-solidity, the L’ [E]-construction etc. as usual (see [16] for more details).
We now define the kind of condensation that mouse operators need to satisfy to ensure for example
that the L’ [E]-construction converges. We define the coarse version of condensation (condense

coarsely) here for illustrative purposes.

Definition 3.5. Let Y be an operator. We say that Y condenses coarsely iff for all i € {0,1}
and (i, X), (i, X) € dom(Y), and all J-models M* over X, if 7 : M — Y;(X) is fully elementary

and fixes the parameters in the definition of Y, then
1. if i = 0 then M+ < Yp(X); and
2. if i = 1 and X is a sound whole Y-premouse, then M* < Y;(X). =

The finer version (condense finely), which is more technical, is discussed in detail in [16, Def-
inition 2.28]; the main difference here is that in fine condensation, we weaken the elementarity
requirement for embeddings (i.e. we only require 7 to be a weak k-embedding, cf [16, Definition
2.5]). In many cases, the “<9” above can be replaced by “=" (cf. [16, Lemmaa 2.31]). The core
model induction operators, which form a subclass of the Y-mouse operators, will satisfy fine con-
densation. [16, Lemma 2.34] shows that if F is a projecting, uniformly ¥; operators with fine
condensation, then the L [E]-construction works out in a manner parallel to that of the standard
L[E]-construction.

[16, Section 3| develops the theory of 3-premice, for an iteration strategy . We first recall the
operator to be used to feed in X, the B-operator defined in [16, Definition 3.1].

Definition 3.6 (B(a,T,b), bV). Let a, P be transitive, with P € J;(a). Let A > 0 and let T be
an iteration tree?® on P, of length w\, with 7 | 8 € a for all B < wA. Let b C w\. We define
N = 9B(a, T,b) recursively on 1h(7), as the J-model N over a with parameter P?% such that:

2. for each v € (0,\), Ny = B(a, T [ w7, [0,wr]7),

3. BV is the set of ordinals o(a) + 7 such that v € b,

24This restricts the usual notion defined in [14].

25We formally take an iteration tree to include the entire sequence <MZ >
assert that “7 is an iteration tree on B”.

26p = M{ is determined by 7.

a<Ih(T) of models. So it is Xo(7,9) to
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4. EN =9.
We also write bV = b. —

It is easy to see that every initial segment of A is sound, so N is acceptable and is indeed a
J-model (not just a J-structure).

Using the definition of 9B, [16, Definition 3.4, 3.5] defines potential P-strategy premice (over
some set a of type ). The formula ¢ selects the “next tree” T in the model that does not have its
branch indexed yet. One instance of ¢(P,T) is, in the case a is self-wellordered, the formula “T
is the least tree on P that doesn’t have a cofinal branch”, where least is computed with respect to
the canonical well-order of the model.

In the context of a X-premouse M for an iteration strategy 3, if 7 is the < x4-least tree for which
M lacks instruction regarding (7)), then M will already have been instructed regarding (7 | «)
for all @ < 1h(T). Therefore if Ih(7) > w then B(M,T,X(T)) codes redundant information (the
branches already in 7T') before coding (7). This redundancy seems to allow one to prove slightly
stronger condensation properties (e.g. fine condensation), given that ¥ has nice condensation
properties (see [10, Section 3]). It also simplifies the definition.

The original version of [28] required that when o(M) < n+1h(T), where 7 is the least such that
MnE KP + (P, T), BM is empty, whereas here we require that it code [0,0(M))7, in the same
way that BM will have to code a new branch when o(M) = 1+ 1h(T). Of course, letting v be the
unique ordinal such that 7+ v = o(M), [0,v)7 € M when o(M) < 1+ 1h(T) , so the current BM
seems equivalent to the original BM = (). However, BM = () leads to Ef’l being too weak, with
the consequence that a 31 hull of M might collapse to something that is not a strategy premouse.

Our current choice for BM solves that problem.

Definition 3.7 (Potential 3-premouse). Let ¥ be a (partial) iteration strategy for a transitive
structure P. A potential Y-premouse (over a, of type ) is a potential P-strategy premouse
M (over a, of type @) such that M C %.27 -

Now we define an operator that codes ¥ via some scheme . An example of ¢ is the formula

pan defined in Definition 3.9. This scheme will be our default scheme used in this paper.

Definition 3.8. Let P be transitive and ¥ a partial iteration strategy for P. Let ¢ € Ly. Let
F = Fsx,, be the operator such that:

1. Fo(a) = J™(a;P), for all transitive a such that P € Ji(a);

2. Let M be a sound branch-whole ¥-premouse of type ¢. Let A = I(M) and with notation
as in [10, Definition 3.5], let 7 = 7). If T = 0 then (M) = J(M;P). If T # 0 then
Fi(M) =B(M,T,b) where b = 3(T).

2"If M is a model all of whose proper segments are potential 3-premice, and the rules for potential P-strategy
premice require that B code a T-cofinal branch, but 3(T) is not defined, then M is not a potential X-premouse,
whatever its predicates are.
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We say that F is a strategy operator corresponding to (3, ¢). .

The reader can consult [16, Lemma 2.29, 3.13] for more detailed discussions of mouse operators
and strategy operators, particularly the proof that these operators condense coarsely and finely.
The next definition defines ./\/llf’ﬁ, which is the next nontrivial operator constructed in the core
model induction, given the existence of the operator F. Mf’ﬂ is also important in the definition of

the ©-g-organized hierarchy, discussed later in this paper.

Definition 3.9. Let a be transitive and let F be an operator. We say that Mf’#(a) exists iff
there is a (0, |al, |a| + 1)-F-iterable, non-1-small F-premouse over a. We write le’#(a) for the
least such sound structure. For X, P, a, ¢ as in Definition 3.8, we write Mlz’w’#(a) for Ml}-z“‘”#(a).

Let £J be the language Lo U {<,%}, where < is the binary relation defined by “a is self-
wellordered, with ordering <, and < is the canonical wellorder of the universe extending <;”,
and ¥ is the partial function defined by “‘i? is a transitive structure and the universe is a potential
’ii—strategy premouse over a and Y is the associated partial putative iteration strategy for ‘ia‘”. Let
©an(T) be the Lo-formula “T is the <-least limit length iteration tree U on B such that ¢/ is via 3,
but no proper extension of U is via $”. Then for 3, P, a as in Definition 3.8, we sometimes write
M#(a) for Mfz’“g‘"*“’#(a).

Let £ be a cardinal and suppose that 9t = /\/lf# (a) exists and is (0, xT + 1)-iterable. We write

Agy for the unique (0, <" 4 1)-iteration strategy for 9 (given that x is fixed). =
3.2. Hod mice
In this paper, a hod premouse P is one defined as in [7]. The reader is advised to consult [7] for

basic results and notations concerning hod premice and mice.

Suppose P is a hod premouse and ~ is an ordinal, . By P|y, we mean the model P up to 7,
including the top extender (if one exists); by P||y, we mean the model P up to 7, not including
the top extender.

Let us summarize some basic first-order properties of a hod premouse P. There are an ordinal
AP and sequences ((P(a),2%) | @ < AF) and (6F | @ < AP) such that

1. (6P | @ < AP} is increasing and continuous and if « is a successor ordinal then P F “57% is
Woodin”;

2. every Woodin cardinal or limit of Woodin cardinals of P is of the form 6% for some o
3. P(a) < P is the a-th layer of P, and 6% is the largest limit cardinal of P(«);
4. PE “XP is a (w,0(P), o(P))? -strategy for P(a) with hull condensation”;

5. if a < B < A? then 275 extends X7

28This just means X7, acts on all stacks of w-maximal, normal trees in P.
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We will write 67 for 51)73 and ¥ = Dgarr ZE. Note that P(0) is a pure extender model. Suppose
P and Q are two hod premice. Then P <j,q O if there is a < A€ such that P = Q(«). We say
then that P is a hod initial segment of Q. We say (P, X)) is a hod pair if P is a hod premouse and
Y is a strategy for P (acting on countable stacks of countable normal trees) such that X7 C ¥ and
this fact is preserved under Y-iterations. Typically, we will construct hod pairs (P, ) such that 3
has hull condensation, branch condensation, and is I'-fullness preserving for some pointclass I'.

The reader should also consult [7] for the definition of B(Q, ) and I(Q, ¥). Roughly speaking,
B(Q,Y) is the collection of all hod pairs which are strict hod initial segments of a X-iterate of Q
and 1(Q,Y) is the collection of all ¥-iterates of Q. See [7] for the definition of I'(P, X). Roughly,
I'(P,X) is the pointclass generated by ¥. In the case A¥ is a limit ordinal, I'(P, ¥) is the set of B
such that there is some (Q,A) € B(P,X), B <,, A. See [7] for the definition of I'(Q, ) in the case
A€ is a successor ordinal. If (P, X) is a hod pair, and T is according to X with last model Q, then
we write X 7 for the T -tail strategy of Q induced by %, i.e. YoqU 1) = X(T°U).

See [7] for the definition of hulls of an iteration tree/stack and [30] for a more general notion of

a pseudo-hull of a stack.

Definition 3.10. Let P be a hod premouse in the sense of [7] and ¥ be an iteration strategy for
P.

(a) X has branch condensation if whenever T,U are stacks according to X, b = 2(71) is a non-
dropping branch, and c is a cofinal, nondroppmg branch of I such that there is an elementary
o: ./\/lu — ./\/lT with the property that 7/ = o o 77“ then ¢ = S(U).

(b) ¥ has strong hull condensation if whenever T is according to > and Uis a pseudo-hull of T
then U is according to X. ¥ has hull condensation if whenever T is according to X and Uis a
hull of 7 then U is according to X.

_1

Strong hull condensation easily implies hull condensation because every hull is a pseudo-hull.
We note that strategies for hod pairs are assumed to have hull condensation, but it is not clear that
hod mouse strategies constructed in [7] can have strong hull condensation. In Lemma 3.34, we show
that if (P,X) is a hod pair such that ¥ has branch condensation and I'(P, ¥)-fullness preserving
then ¥ has strong hull condensation. Lemma 3.34 appears to be a new fact in hod mice theory at
the level of “ADg + O is regular.” ?° The lemma is used essentially in the proof of Lemma 3.36,
which is a key part in the proof of Theorem 1.4.

Suppose (Q,Y) is a hod pair such that ¥ has hull condensation. We say P is a (Q, X)-hod
premouse if there are an ordinal A\” and sequences ((P(a),¥%7) | a < A¥) and (§¥ | a < A7) such
that

29TLemma 3.34 should also hold for hod mice in a minimal model of LSA but we have not checked all details of this
claim.
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1. (6P | a < AP) is increasing and continuous and if « is a successor ordinal then P E 67 is
Woodin;

2. every Woodin cardinal or limit of Woodin cardinals of P is of the form 6% for some

3. P(0) = LpZ(P|d)” (so P(0) is a L-premouse built over Q); for a < AP, Pla + 1) =
(Lps ™% (P|54))P; for limit a < AP, P(a) = (LpSA (P|5,))P, where A = @5, 5E;

4. PE “YNPisa (w,0(P),o(P))-strategy for Q with hull condensation”;
5. PE “YPis a (w,0(P),o(P))-strategy for P(a) with hull condensation”;
6. if a < 8 < A" then 275 extends X7

Inside P, the strategies 7 act on stacks above Q and every X iterate is a ¥-premouse. Again,
we write 67 for (5;)7, and X7 = @B<>\7’E7ﬂj' We say (P,A) is a (Q, X)-hod pair if P is a (Q,X)-hod
premouse and A is a strategy for P such that 3 C A and this fact is preserved under A-iterations.

Suppose (R, A) is a hod pair and T is a nice pointclass. We say that A is I'-Q-structure guided if
whenever 7T is according to A and short, then A(7") = b is such that Q(b, T) exists and the phalanx
®(Tb)3 is (wy,w )-iterable with unique strategy in I'. We show in essence that the branch b must
be unique in Lemma 3.33. We also note that if §(7) is a cutpoint of Q(b,7T) then the phalanx
iterability condition reduces to the iterability of Q(b, T) above §(T).

Suppose P is Y-premouse, § is a cardinal of P, and A C R is ODys. We say P weakly term
captures A at ¢ if for each n < w there is a term relation 7 € PColl(@.(5"™)) guch that for comeager
many P-generics g C Coll(w, (67™)7), we have 7, = Plg] N A. We say P term captures A if the
equality holds for all generics. Given a Y-suitable P and an ODsx; set of reals A, we let TZi s be
w,(8F7)7)

the standard name for a set of reals in PEH witnessing the fact that P weakly captures

A. When § is clear from the context, we omit it from the notation and just write 7% A Let
i = sup(6 N Hullf({TKn ‘n < w})).

We then let
fa(P) = <7‘£n in < w). (3.1)

Suppose (R,A) is a hod pair and A® = a + 1 for some a > 0, where A® is the order type
of the set {§ : § is either a Woodin cardinal or a limit of Woodin cardinals in R}; we will write 6%
for the a-th member of this set. Recall the notations 6%, (R™,Ag-), B(R™,Ag-) from [7].3! [7,
Lemma 5.19] gives that AD* implies there is some tail (S, ¥) of (R, A) and some B = {B; : i < w}
that strongly guides ¥. This means that

e A is I'-Q-structure guided, where I' = T'(R, A).

30This is the set of models in the tree 77b along with the exchange ordinals.
MR™ = R(a—1) and Ag— is just Ag(a_1). In the case a = 0, (R™,Ag-) = (0,0). 6% is the largest Woodin
cardinal of R.
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e There are terms (Tfk = T§i7k tk <w, Tfk € SC"”(‘”’(‘SM)S)) for the B;’s such that whenever
[:S — Q@ is an iteration map by ¥ of a maximal tree, then for each i,k < w, l(Tfk) = Tg’k,
sup{’ygi i < w} = 6%, the branch b giving rise to the embedding [ is the unique branch
whose branch embedding moves the terms for B;’s correctly, and whenever T is according to
¥ with branch embedding 7, U is according to ¥, and suppose b is a cofinal branch of U such

that there is an elementary map o : Mg’ — MT such that o o 7'[‘157 = 7771, then for each i, k,

_ T M

ESEEN

When we don’t want to specify the B;’s or the particular B;’s are not important to specify, we
simply say W is strongly guided. The above notion of strongly guided can be defined in an obvious
way for (R,A), where \® = a +n for some n < w. We omit details and refer the reader to [7]
for a full discussion. The next section will elaborate more on this topic in the context of the HOD
analysis.

In the following, if & is a strategy and T is a pointclass, N' <t Lp™T (z) if A is sound, projecting
to z and whenever m : M — N is elementary and M is countable, transitive then M has a unique

strategy A witnessing M is a X™-mouse over 7~ 1(x) and A € T.

Definition 3.11 (I-Fullness preservation). Suppose (P, %) is a hod pair such that P € HC and T’
is a nice pointclass. We say X is I'-fullness preserving if ¥ is I'-Q-structure guided and the following
holds for all (Q,T) € I(P,%).

(1) For all limit a < A<, letting R = Q(a), then
R = Lpo " *OT (|57,
(2) For all successor o < A2, letting R = Q(a) and = o — 1,
R = Lp," 7" (R|6R).

(3) If n is a cardinal strong cutpoint of Q, letting a be the largest such that Q(a) < Q|n and
R = Q(a), then

Q|(*)2 = Lp' *=7 (Qln).
(4) Furthermore, letting for a + 1 < \<,

Ug(a),s = {(7,y) € R? : 2 € R codes a countable set a and y codes a sound ¥ 9(a)-mouse M

over a whose unique strategy is in I' such that p(M) = a},

and
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Wora),x = {(z,9,2) € R3: (z,y) € Ug(a),» and z codes an iteration tree on the mouse M
coded by y},

then whenever (U, R) € I(Q(a+1),% Oa +1),7’) such that 2/ only uses extenders with critical

points above §< and its images along branch embeddings of u , we have

(fa(Q)) = fa(R),
where A = Ug(q),5; ® Wo(a),» and fa is defined in (3.1) above.
_|

Remark 3.12. In [7], clauses (1)—(3) comprise the definition of fullness preservation of ¥; if in
addition, clause (4) holds for X, then ¥ is said to be super fullness preserving (with respect to I').
We simplify the terminology by combining these two notions into one definition. For Q satisfying
(1)=(3), we say that Q is full in I or I'-full. For R as in (1), we say that R is full with respect to
Dp<adipg) p-mice in I'; a similar statement can be made for the mice in (2), (3). If " is p(R), we

simply omit I' from our notation and say that X is fullness preserving etc.

Under AD" and the hypothesis that there are no models of ADg + “© is regular,” [7] constructs
hod pairs that are fullness preserving and have branch condensation (see [7] for a full discussion of
these notions). Such hod pairs are particularly important for our computation as they are points
in the direct limit system giving rise to HOD of AD™ models. Under AD™, for hod pairs (Myx, 2),
if 3 is a fullness preserving strategy with branch condensation and T is a stack on My, with last
model NV, then ¥ NT is independent of T. Therefore, later on we will omit the subscript 7 from
by NT whenever 3 is a strategy with branch condensation and My is a hod mouse. In a core model
induction, at the moment (Msy, X)) is constructed we don’t quite have an AD*-model M such that
(Myx, %) € M, but we do know that every (R,A) € B(Myx,¥) belongs to such a model. We then
can show (using our hypothesis) that (Msy,X) belongs to an AD*-model.

We briefly review definitions and notations related to the analysis of stacks in [7, Section 6.2];
see [7, Section 6.2] for a more detailed discussion. These notions will be useful in Section 6. Suppose
P is a hod premouse and T is a stack on P. Let S be a model that appears in T. By 7_23 we mean
the part of T up to and including S (according to the tree order of 71), we define 7123,723,7_;3
similarly. We let (Mg, 7o : @ < 1) be the normal components of 71, ie. My="P, T4 is a normal
tree on My, and Mqy1 = M7T>. We say R is a terminal node of T if for some a, B, R = MZ‘* and
773;‘5 is defined. We say R is a non-trivial terminal node of T if letting (v, B) witness that R is a
terminal node of 71, the extender Eg" is applied to R in the tree 7, to obtain the model Mg:jrl.
We write tn(7) for the set of terminal nodes of 7 and ntn(7) for the set of non-trivial terminal
nodes of 7. If R is a non-trivial terminal node then 571’72 is the least £ such that EE)‘ ER(EH+1T).

For Q,R € tn(T), we write Q <7 R if the O-to-R iteration embedding in 7 exists, and we
write WZ’R for this embedding. We write Q 471’3 R if letting U be the part of T between Q and
R, then U is an iteration on Q. We write Tg r for U.
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Let C Ctn(T). We say C' is linear (strongly linear respectively) if C' is linearly ordered by <7
(<T’5 respectively). We say C' is closed if C' is strongly linear and whenever « is a limit point of
C, then letting R be the direct limit of C' | « (under the iteration embeddings), we have R € C.
We say C'is cofinal if for every S € 71, there are @, R € C such that Q <75 R and S is in TQ’R.
Note that if 7 doesn’t have a last model, but there is a strongly closed and cofinal C' C tn(’f),
then C' uniquely determines a cofinal branch of 7. If such a C doesn’t exist, then 7 is a successor
ordinal, say n = o+ 1. Let U = T and D = {S € tn(U) : Uss is a tree on S}. In this case D

has a <71’s—largest element and we write Sz for this element. Then 7%9% is a normal tree based on

Sz(8+ 1) and above 5§f for some § < AS7.

3.3. Core model induction operators

In this section, our main goal is to introduce the main concepts that one uses in the core model
induction through the hierarchy LpGE(R,E I HC)32 33, Here LpGE(R,E I HC) is the union of
all sound, ©-g-organized X-premice M over (R,¥ [ HC) such that p,(M) = R and whenever
w: M* = M is sufficiently elementary and M™* is countable and transitive, then M* has a unique
(w1 + 1)--iteration strategy A.>* See [16] for a precise definition of g-organized Y-premice, ©-g-
organized X-premice, Lp“*(z), Lp;*(z) and other related concepts. When we write Lp“* or Lp >,
we refer to the hierarchy of g-organized Y-mice; when we write LpGE or Lpiz, we refer to the
hierarchy of ©-g-organized ¥-mice. The g-organized hierarchy of ¥-mice is considered (instead of
the traditional “least branch” hierarchy of ¥-mice) because the S-constructions (cf. [15], where
they are called P-constructions) work out nicely for this hierarchy.?® The ©-g-organized hierarchy,
which is a slight modification of the g-organized hierarchy, is considered because the scales analysis
under optimal hypotheses can be carried out in LpGE(R, Y [ HC) in much the same manner as the
scales analysis in Lp(R).3% For the purpose of this paper, it will not be important to go into the
detailed definitions of these hierarchies. Whenever it makes sense to define Lp*(z) and Lp®*(z),
[16] shows that p(z) NLp*(z) = p(z) NLp >(z) (and similarly for LpGE(x)); also in the case it is
not clear how to make sense of Lp™(z) (say for instance when x = R), it still makes sense to define
Lp*¥(z) and LpGE(x) and in that case, [16] shows that p(z) NLp*Z(x) = p(z) N LpGE(a:).

In core model induction applications, we often have a pair (P,X) where P is a hod premouse
(cf. Section 3.2) and ¥ is P’s strategy with branch condensation and is fullness preserving (relative

to mice with strategies in some pointclass) or P is a sound (hybrid) premouse projecting to some

32An equivalent way to define this is to first fix a canonical coding function Code: HC — R and consider
Lp S(R, Code(X | HC)).

33Instead of feeding ¥ into the hierarchy, which is not at all clear how it could be done in a canonical way, we feed
in A, the canonical strategy of Mlﬁ,ﬁ7 into the hierarchy. Roughly speaking, the trees according to A that we feed
into LpGE(]R, Code(X | HC)) are those making the local HOD of LpGE(]R, Code(X | HC))|« generically generic, for
appropriately chosen ordinals a. See [10].

34This means whenever 7 is an iteration tree according to A with last model A/, then A/ is a Y-premouse.

35Tt is not clear how one can perform S-constructions over the least branch hierarchy.

3616] generalizes Steel’s scales analysis in [25, 24] to LpGE(R, 3 | HC) for various classes of nice strategies ¥. It is

not clear that one can carry out the full scales analysis for the hierarchy Lng(R, ¥ | HO).
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countable set a and ¥ is the unique (normal) (w; + 1)-strategy for P. Let F be the operator
corresponding to 3 (using the formula ¢,; in Definition 3.9) and suppose Mf’ﬁ exists. Then [16,
Lemma 4.8] shows that F condenses finely and Mf’ﬂ generically interprets F. The core model
induction in this paper will give us that F | R is self-scaled (defined below) and ./\/llf’ti exists.
In the following, we will write /\/llz’Ij for le’ﬁ. To be descriptive, we will sometimes write “X-
premouse” to mean “F-premouse”, LpGE for LpGF etc. These properties of ¥ and the existence of
/\/llz’ti allows us to define LpGZ(}R7 Y | HC) and analyze its scales pattern as done in [10].

g-organization is a slight variation of the reogarnized hod mice hierarchy in [7, Section 3.7]. We
will use the reorganized hierarchy of hod premice in [7, Section 3.7] in this paper. The purpose of
using the reorganized (or g-organized) hierarchy is to ensure the S-constructions (cf. [7, Section
3.8]) work out nicely for hod mice and for ¥-mice as mentioned above. In the paragraph below,
we briefly remark on how the S-constructions work for the g-organized hierarchy and for the ©-g-
hierarchy.

Suppose F is a nice operator (with parameter B)%” and suppose M is a G-mouse (over some
transitive a), where G is either 8F or GF. Suppose ¢ is a cutpoint of M and suppose N is a
transitive structure such that § C N C M|é and P € N. Suppose P € J,[N] is such that M|J
is P-generic over J, [N | and suppose whenever Q is a G-mouse over N such that H 59 = N then
M|d is P-generic over Q. Then the S-constructions (or P-constructions) from [15] give a G-mouse
R over N such that R[M|§] = M. The S-constructions give the sequence (R, : 6 < a < \) of

G-premice over N, where
(i) Rotr = TSN

(ii) if o is limit then let Ry, = Uz, Rp. If M|a is passive, then let R, = Rj. So R is
passive. If BMI® = (), then let R, = (\RZ|;@,BM‘°‘,UB<Q SRs. N, B). Suppose EMle £ ().
let E* = EMle N |R%|, then we let Ry = (|RE); E*,0,Ugeq S™2, N, B). By the hypothesis,
we have R [M|d] = Mo

(iii) Suppose we have already constructed R, and (by the hypothesis) maintain that Ry[M|d] =
M|a. Then Ray1 = T (Ra).

(iv) A is such that Ry[M|d] = M. We set Ry = R.

We note that the full constructions from [15] do not require that § is a cutpoint of M but we
don’t need the full power of the S-constructions in our paper. Also, the fact that M is g-organized
(or ©-g-organized) is important for our constructions above because it allows us to get past levels
M| for which BMle £ (). Because of this fact, in this paper, hod mice are reorganized into the
g-organized hierarchy, that is if P is a hod mouse then P(a + 1) is a g-organized Yp(,)-premouse

for all @ < AP. The S-constructions are also important in many other contexts. One such context

3"Nice is defined in [16, Definition 3.8]. Roughly speaking, these are operators that condense well and determine
themselves on generic extensions. CMI operators defined in this section are nice.
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is the local HOD analysis of levels of Lpr (R,F T R), which features in the scales analysis of
Lp 7 (R, F I R) (cf. [10]).

In the following, a transitive structure N is closed under an operator F if whenever = €
dom(F) N N, then F(z) € N. We are now in a position to introduce the core model induction
operators that we will need in this paper. These are particular kinds of mouse operators (in the
sense of [18, Example 3.41]) that are constructed during the course of the core model induction.
These operators can be shown to satisfy the sort of condensation described in [18, Section 3] (e.g.
condense coarsely, cf. Definition 3.5, and condense finely, cf. [16, Definition 2.28]), relativize well,

and determine themselves on generic extensions.

Definition 3.13 (relativizes well). Let F be an a Y-mouse operator for some operator Y .3 We
say that F relativizes well if there is a formula ¢(x,y, z) such that for any a,b € dom(F) such
that a € Li(b), whenever N is a transitive model of ZFC™ such that N is closed under Y and
a,b, F(b) € N, then F(a) € N and is the unique x € N such that N F @[z, a, F(b)]. =

Definition 3.14 (determines itself on generic extensions). Suppose F is an operator. We say that
F determines itself on generic extensions if there is a formula ¢(x,y, z) and a parameter ¢ € HC
such that for any countable transitive structure N of ZFC™ such that N contains ¢ and is closed
under F, for any generic extension N[g] of N in V, FN N[g] € N[g] and is definable over N[g] via
(¢, ¢), ie. for any e € N[g] Ndom(F), F(e) = d if and only if d is the unique d’ € N[g] such that
Nlg] E ¢le,d, e]. 4

Definition 3.15. Let I be an inductive-like pointclass.?® For # € R, Cr(z) denotes the set of
all y € R such that for some ordinal v < w1, y (as a subset of w) is Ap({v,z}), where Ar is the
intersection of I' with its dual pointclass.

Let x € HC be transitive and let f : w — x be a surjection. Then ¢y € R denotes the code for
(z, €) determined by f. And Cr(x) denotes the set of all y € HCN p(x) such that for all surjections
[ :w— z we have f~1(y) € Cp(cy). =

We say that Aisa self-justifying-system (sjs) if for any A € rng(/_f), -A € rng(/_f) and there is
a scale ¢ on A such that the set of prewellorderings associated with ¢ is a subset of rng(ff). A set
Y C R is self-scaled if there are scales on Y and R\Y which are projective in Y.

In the following, 7 is a strong cutpoint of an F-premouse N (for some operator F) if there is no
extender E on the sequence of N such that crt(F) < n <1h(FE). n is a cutpoint of an F-premouse
N if there is no extender E on the sequence of N such that crt(E) < n < 1h(E).

Definition 3.16. Let F be a nice operator, I' be an inductive-like pointclass, and ¢ € HC such that
for some a, Mf’ﬁ(a),‘ﬁ € Ji(t). Let 1 < k < w. A premouse N over t is F-I'-k-suitable (or just
k-suitable if I' and F are clear from the context) iff there is a strictly increasing sequence (&;);_;.
such that

38y may be the rud operator, in which case F is just a mouse operator in the usual sense.
397 is inductive-like if it is w-parametrized, closed under real quantification, recursive substitutions, and has the
scale property.
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1. V6 € N, N E“ is Woodin” if and only if i < k (6 = 4;).
2. o(N) = sup,, (5,7 )V.
. . gF
3. If N is a strong cutpoint of A" then N|(t)N = Lp """ (W]n). 40
4. Let £ < o(N), where N E“¢ is not Woodin”. Then Cp(N|€) F“€ is not Woodin”.

We write 6 = §;; also let ) = 0 and 5 = o(N).*!
If NV is 1-suitable, we simply say N is suitable, and we write N for 56\/ . Additionally, we also

write A is X-suitable or X-I'-suitable if we want to remind the reader that N is an F-premouse.
_{

Let NV be 1-X-suitable and let £ € o(N) be a limit ordinal such that N'E“¢ isn’t Woodin”. Let
Q<N be the Q-structure for . Let « be such that £ = o(N|«). If £ is a strong cutpoint of N then
Q< Lpif’r (N]€) by clause 3 of the definition. Assume now that A is reasonably iterable. If £ is
a strong cutpoint of (), our mouse capturing hypothesis (namely Mouse Capturing with respect to
¥, MC(X), which is what we show during the course of the core model induction) combined with
clause 4 gives that Q < Lpif’r(/\/ |€). If € is an N-cardinal then indeed ¢ is a strong cutpoint of
Q, since N has only finitely many Woodins. If £ is not a strong cutpoint of ), then by definition,

we do not have @ < Lpif’r(/\/' |€). However, using *-translation (see [23]), one can find a level of
Lpif’r (N|€) which corresponds to @ (and this level is in Cp(N€)).
If F is a nice operator (in the sense of [10], see Footnote 37) and ¥ is an iteration strategy for a

F-I'-1-suitable premouse P such that ¥ has branch condensation and is I'-fullness preserving (for
some pointclass I'), then we say that (P,3) is a F-I'-suitable pair or just I'-suitable pair or just

suitable pair if the pointclass and/or the operator F is clear from the context.

Definition 3.17 (Core model induction operators). Suppose (P, X)) is a G-Q*-suitable pair for some
nice operator G or a hod pair such that ¥ has branch condensation and is 2*-fullness preserving for
some inductive-like Q*. Let F = Fx o, as defined in Definition 3.9. Assume Code(X) is self-scaled.

We say J is a Y-core model induction operator or just a 3-cmi operator if one of the following holds:

1. J is a nice F-mouse operator (or g-organized F-mouse operator) defined on a cone of HC
above some a € HC. Furthermore, J condenses finely, relativizes well and determines itself

on generic extensions.

2. For some a € OR such that « ends either a weak or a strong gap in the sense of [24] and
[16], letting M = LpGE(R,Z I HO)|aw and T' = (%1)M, M £ ADT + MC(X).#2 For some

N 4 Lpif’F(J\/\n) iff N <1 Lp 7 (M]n) and whenever A is countable transitive and embeddable into A/, N** has
a unique iteration strategy above the preimage of n in I'.

41'We could also define a suitable premouse A as a ©-g-organized F-premouse and all the results that follow in this
paper will be unaffected.

2MC(E) stands for Mouse Capturing relative to ¥ which says that for =,y € R, z is OD(X,y) (or equivalently
is OD(X,y)) iff z is in some g-organized ¥-mouse over y. SMC is the statement that for every hod pair (P,X) such
that X is fullness preserving and has branch condensation, MC(X) holds.
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transitive b € HC and some 1-suitable?® F-premouse Q over b, J = A, where A is an (wy, w1 )-
iteration strategy for Q@ which is I'-fullness preserving, has branch condensation and is guided
by some self-justifying-system (sjs) A= (A; i < w)* such that for some real x, for each i,
A; € OD{X[EJ and A seals the gap that ends at .

When ¥ is clear from the context or that we don’t want to specify 3, we simply say J is a cmi

operator. 4

Remark 3.18. Let I', M be as in clause 2 above. The (lightface) envelope of I' is defined as:
A € Env(T) iff for every countable o C R there is some A’ such that A’ is Aj-definable over M
from ordinal parameters and ANe = A’'No. For areal z, we define Env(I'(x)) similarly: here I'(z) =
Y1 (x)™ and A € Env(I'(z)) iff for every countable o C R there is some A’ that is Aj(z)-definable
over M from ordinal parameters such that AN = A’ No. We now let Eﬂ(/F) = Uper Env(I'(2)).

G
Note that Env(I') = p(R)M if o ends a weak gap and Env(I') = p(R)"P P(REMHO)|(0+1) if o ends
a strong gap.

In clause 2 above, we say A seals the gap that ends at « if letting I be defined as above, then

A is Wadge cofinal in Env(T). We also say A seals Env(T).

The following definitions are obvious generalizations of those defined in [14]. For example, see
[14, Definition 3.2.1] for the definition of a coarse (k,U)-Woodin mouse. We let 3, F be as in
Definition 3.17.

Definition 3.19. We say that the coarse mouse witness condition Wy * holds if, whenever U C R
and both U and its complement have scales in LpGZ(R, Q [ HC)|y, then for all k < w and z € R
there is a coarse (k,U)-Woodin mouse M containing = and closed under the strategy A of /\/112’ﬁ
with an (w; + 1)-iteration strategy whose restriction to HC is in LpGE(]R, ¥ [ HC)Jy. % =

Remark 3.20. By the proof of [1, Lemma 3.3.5], W::’gz implies LpGE(R, ¥ [ HC)|y = AD™.

Definition 3.21. An ordinal v is a critical ordinal in LpGE(]R, Y | HC) if there is some U C R such
that U and R\U have scales in LpGE(R, Y [ HO)|(y + 1) but not in LpGE(R, Y [ HO)|y. In other

words, +y is critical in LpGE(]R, Y [ HC) just in case W;flz does not follow trivially from W5 AR

To any ¥; formula #(v) in the language of LpGE(R, Y. | HC) we associate formulae 0 (v) for
k € w, such that 6 is X, and for any ~ and any real ,

Lp (R, [ HC)|(v + 1) E 0[z] <= 3k <w Lp =(R, T | HC)|y F 6;[z].

Definition 3.22. Suppose 0(v) is a ¥ formula (in the language of set theory expanded by a name
for R and a predicate for GE), and z is a real; then a (0, z)-prewitness is an w-sound g-organized
3-premouse NN over z in which there are dg < --- < d9, S, and 7" such that N satisfies the formulae

expressing

“3Recall this means F-T-1-suitable.

UL = (A; : i < w) is a self-justifying system if for any A;, there is some k < w such that Ay = —A; and some
function f : w — w such that (Af,) : n < w) codes a scale on A;.

®We demand the strategy has the property that iterates of M according to the strategy are closed under A.
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(a) ZFC,
(b) do,...,09 are Woodin,
(c) S and T are trees on some w X 1 which are absolutely complementing in Y Collw.d9) - and

(d) For some k < w, p[T] is the ¥y 3-theory (in the language with names for each real and predicate
for %) of Lp > (R, X | HC)|y, where v is least such that Lp Z(R, ¥ | HC)|y F 0x[2].

If N is also (w,w1,w; + 1)-iterable (as a g-organized Y-mouse), then we call it a (0, z)-witness.

Definition 3.23. We say that the fine mouse witness condition W;ZE holds if whenever 0(v) is a
¥, formula (in the language LT of g-organized X-premice (cf. [10])), z is a real, and Lp > (R, |
HC)|y £ 0[z], then there is a (6, z)-witness N whose ’Y-iteration strategy, when restricted to
countable trees on N is in LpGE(R, Y [ HC)|n. =

Lemma 3.24. Wff’gz implies I/Vyg2 for limat ~.

The proof of the above lemma is a straightforward adaptation of that of [14, Lemma 3.5.4].
One main point is the use of the g-organization: g-organized >-mice behave well with respect to
generic extensions in the sense that if P is a g-organized 2-mouse and h is set generic over P then

P[h] can be rearranged to a g-organized ¥-mouse over h.

Remark 3.25. In light of the discussion above, the core model induction (through LpGE(R, >0
HC)) inductively shows LpGE(R, ¥ | HC)|y E AD™ by showing that W7 "> holds for critical ordinals
~. This, in turn, is done by constructing appropriate ¥-cmi operators “capturing” the theory of
those levels (as specified in Definitions 3.19 and 3.23).

Finally, as in [33], the maximal model of © = 0y is stcz(R,Z I HC), an initial segment
(possibly strict) of LpGE(]R, ¥ [ HC).

Definition 3.26. We define stGZ(R, Y | HC) to be the union of those M < LpGZ(R, ¥ | HC) such
that whenever 7 : M* — M is elementary, P € 7~ !(HC), and M?* is countable and transitive,
then M* is F-(w; + 1)-iterable with unique strategy A such that A [ HC € M. -

In Section 5, we will outline the core model induction, showing that LpGE(R, ¥ [ HC) F ADT +
MC(%)%¢ for sufficiently nice 3. We note that by [J], if M is a model of ADT + MC(X) satisfying
© = Oy and V = L(p(R)), then M satisfies that every set of reals A belongs to stGE(R, ¥ [ HC).

So in fact, in the situation of this paper,
sLp *(R, X | HC) = Lp %(R, ¥ | HC).

For notational simplicity, from now on, we denote LpGE(R, ¥ | HC) by Lp*(R).

MC(T) states that if 2,y € R and = € OD(y,X), then there is a F-mouse M over y such that M is sound,
pw(M) =w, and = € M.
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3.4. HOD and HODsy. under AD™

Suppose ¥ is an iteration strategy of some hod mouse Q and suppose ¥ is fullness preserving (see
[7]) and has branch condensation. Assume further that V' = L(p(R)) and MC(X) holds and © = s..
We outline the analysis of HOD and HODy; in [7].

Definition 3.27 (S(I',X) and F(T',X)). Suppose I' is a pointclass. Let S(I',X) = {Q : Q is X-
I-suitable*”}. Also, we let F(I',X) be the set of functions f such that dom(f) = S(I',¥) and for
each P € S(I',X), f(P) C P and f(P) is amenable to P, i.e., for every X € P, X N f(P) € P. -

We let T' = p(R) and for the duration of this subsection, we drop I' from our notation whenever
it is unambiguous to do so. Thus, a Y-suitable premouse is a X-I'-suitable premouse etc. We
remark that by [9],

V = L(Lp*(R)).

Also, we allow for the case (P,X) = (0,0), in which case V = L(Lp(R)) and HODy, = HOD. The

following lemma is essentially due to Woodin and the proof for mice can be found in [14].

Lemma 3.28. Suppose P is 3-suitable and A C R is ODsx.. Then P weakly term captures A.

Moreover, there is a Y-suitable Q which term captures A.

The following lemma is one of the most fundamental lemmas used to compute HOD and it is
originally due to Woodin. Again, the proof can be found in [14]. See also [14, Section 4.1] for

detailed discussions of related standard notions like (strong) f-iterability and f-quasi-iterability.

Theorem 3.29. For each f € F(I',X) such that f € ODsy, there is a X-suitable premouse P which
1s strongly f-iterable.

To save some ink, in what follows, we will sometimes say A-iterable instead of f4-iterable and
similarly for other notions. Also, we will use A in our subscripts instead of f4. See Equation (3.1)
for the definition of f4.

Given P € S(I,X) and f € F(I,%) we let f,(P) = f(P)nP|((6¥)*")P. Then f(P) =
Un<w fn(P). We also let

fy;f = sup(6” N Hulll ({fo(P) : n < w})).
Notice that

P =6 n Hullf('y}) U{fn(P):n <w}).
We then let

HY = Hulll (Y7 U {fa(P) : n < w}).

47See Definition 3.16
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IfPeST,X), fe€Fso,andi:P — Q is an embedding, then we let i(f(P)) = U,,., i(fn(P)).
The following are the next block of definitions that routinely generalize into our context: (1)
(f, S)-iterability, (2) b= (by, : k < m) witnesses (f,X)-iterability for T = (Tg, Py : k < m), and (3)
strong (f, X)-iterability.
If P is strongly (f,X)-iterable and T is a (T', X)-correctly guided finite stack on P with last
model R (cf. [7, Section 4.1]) then we let

W%}Ryf : H}D — H}z

be the embedding given by any b which witnesses the (f, X)-iterability of T, ie., fixing b which

witnesses f-iterability for T,
% _ P
TeRs = Trp | Hy

Clearly, W%}Ry 7 is independent of 7 and b. Here we keep ¥ in our notation for 777237737 7 because it
depends on a (I', ¥)-correct iteration. It is conceivable that R might also be a (I', A)-correct iterate
of P for another A, in which case W%K f might be different from 777’}’737 - However, the point is that
these embeddings agree on H}D.

Given a finite sequence of functions f = (f; : ¢ < n) in Fy o4, we let @icnfi € Fxoq be the
function given by (Dicn fi)(P) = (fi(P) : i <n). We set @f: Di<nfi-

We let = F(I',3) N ODy, and

Irs ={(P,f): P € S(I,%), f € F<¥ and P is strongly @ f-iterable}
and

-FF,Z = {H}) : (P,f) c IF,Z}-

—

We then define <ps; on Zpy by letting (P, f) <rx (Q,9) iff Q is a X-correct iterate of P and
FC g Given (P, f) <px (Q,7), we have
b)) . 1gP Q
ﬂp,gf. H@JF—> H@f’

Notice that <gy is directed. Let then My rx be the direct limit of (Frx, <ry) under the maps

Given (P, f) € Ipy, we let 7r7§ Foo Hg;f—> Mo, Fx be the direct limit embedding. Let

)
P
Moo = Moo,F,E~
Theorem 3.30 (Woodin, [14]). M= =0, M, € HODy, and

Mool = (Vg OF%, EM=I9, 5= ¢),

where SMe is the predicate of My describing X.
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Remark 3.31. In some of the arguments below, for convenience, we actually use the “one cardinal”
version of suitability. More precisely, for (P, f) € Zr s we consider direct limits of (75, f) where
§ =067, P =P|(61)7, and f = f(P)NP|(6T)P. We define ’yJ; = sup(6” N Hulll ({fo(P)})) etc.

—

We let Moo be the direct limit of such pairs (fJ,f) Then it is easy to see also that MOO|® =
(‘/vé{ODE7 EMM|@’ SMOO, E)

Finally, if a € H,,, is self-wellordered then we could define My, (a) by working with Y-suitable
premice over a. Everything we have said about Y-suitable premice can also be said about ¥-suitable
premice over a, and in particular the equivalent of Theorem 3.30 can be proven using HOD (s 4)u14)
instead of HODy, and M (a) instead of M.

[7] computes HOD (up to ©) in models of (V = L(p(R))) + SMC + ADgr below ADgr + “O is
regular” by exhibiting a hod premouse M, satisfying

1. My € HOD.
2. M is a hod premouse.

3. Mx|O = (Vé{OD, EM=l® gMoo €), where SM=19 is the predicate for strategies of hod initial

segments of M |O.

Here SMC is Strong Mouse Capturing, which is the statement that for any =,y € R, if x € OD, x
where (P,3) is a hod pair such that 3 has branch condensation and is fullness preserving, then
z is in a X-mouse M over y. We call Mo the hod limit. Here Moo = g ) Moo(Q,A), Where
(Q,A) is a hod pair with branch condensation and is fullness preserving and M (Q,A) is the
direct limit of all (non-dropping) A-iterates of Q. The reader can consult [7] for more details on

this computation.

3.5.  Strategies with strong hull condensation pulls back

Definition 3.32. We say a hod pair (P, X) reasonable if it has the following additional properties:
e 3 has branch condensation.
e ¥ is I'(P, ¥)-fullness preserving.
4

We will show that properties listed above for 3 hold for hold mice constructed in this paper.
For the next several proofs, the reader is advised to review [7] for basic properties and terminologies

of hod pair strategies. See also [10, Lemma 3.18] for a similar argument.

Lemma 3.33. Suppose (R, A) is a reasonable hod pair. Let T' =T(R,A). Suppose U is according
to A with the following properties:

o U =UsU, where Uy = Wd and d = A(W),
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o letting S = MY, there is B < XS such that the set of generators used in Uy a(Uy) C (5§)<w,
o U is based on S(B + 1), has the last normal component, and is above 53,

e suppose b is a cofinal well-founded branch such that Q(b, L?l) exists and the phalanz @(Z:lfb)

is iterable in T'.
Then b = Aﬁo,s(gl)'

Proof. Let ¥ = Ay o[ S(B). Let ¢ = Ay, S(Z:ﬁ). We want to show b = c¢. There are two cases.

Suppose § =gt §(Uhy) is a cutpoint of Q(b,U;).*® This means that
Q(b,Uy) < Lpy " (M(Uy)).

Recall M(Z:ll) is the common part model of 1]1, or more precisely, the common part model of the
last normal component of Z4;. This follows from the fact that Q(b,%4;) must be iterable in T' for
trees above . But by I-fullness preservation of A, Q(c, ;) exists, and Q(c, ;) <1 LpE’F(M(L_il)).
Therefore, Q(c,U;) = Q(b,Uy). So b= c.

Suppose now & is not a cutpoint of Q(b,U;). Let E be the least extender on the Q(b,U;)-
sequence with the property that crt(E) < 6(h) < Ih(E). Let U’ = U] (E). Let A+ 1 = lh(U'),
k=crt(E), £ =U" — pred(X). Then it is easy to see that there is a v < O(Mzé[/) such that

MY = MY = Ult, (MY, B),
where n is least such that pn+1(M?/) < k.2 By the minimality of E, we also have
M?,]’y F “k is a measurable limit of cutpoint Woodin cardinals”

and
MZOJO/ F “§ is a cutpoint Woodin cardinal”.

This implies MY < Lp>T(M(U,)). Furthermore, p,41(MY) < 6(U;) and the above properties
of k,0 imply that both b,c drop;®® so Q(Zjll,c) exists. Suppose Q(Zjll,b) #+ Q(Zjll,c). We claim
that letting ), Z be the padded trees extending Z]fb,l]l“c respectively, that are the results of
comparing the phalanxes @(L?fb), @(ﬁfc), then for every a > A, [0, ]y, [0, ]z both drop. This
gives a standard contradiction.®!

Suppose not. Let a > A be least such that either F' = ng or F'= Ef has critical point < § and

hence overlaps 4§, i.e. crt(F) < § < 1Ih(F'). Then [0,']y and [0,a/]z both drop for o/ € [, a] by

48Technically, this is the Q-structure for the last normal component of 2711, but we abuse notation here.

“*This situation is what Sargsyan calls a “fatal drop” in [7]. See also [16] for an alternative treatment and more
details of such a situation.

50This is because Woodin cardinals are cutpoints of hod mice P we consider and there are no measurable & such
that Pl = U, .. P(a) (i.e. below “ADr+0© is measurable”).

51The fact that the last branches of ), Z drop give that some pairs of extenders in ), Z must be compatible. This
contradicts the fact that ), Z are comparison trees. We note that the phalanx <I>(Zjlfc) is iterable by the strategy
induced by A and @(ﬁ“b) has an iteration strategy in I' by hypothesis.
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the above argument. Note that § is Woodin in MY ||Ih(F) and if there is any F’ on the sequence of
MY ||Ih(F) that overlaps d, then [0, 8]y, [0, 8]z both drop for all 8 > a by the smallness assumption
on our hod mice.

So suppose F is the least extender overlapping ¢, and so a = . Let &' = crt(F) and € be the
least ordinal less than the length of the last normal component of Uy such that F is applied to
some Q < /\/lze21 according to the rules of normal trees. Then Y | [¢,1h(Y)) and Z [ [¢,1h(Z)) are
equivalent to above-x’, normal trees on Q. If Q < /\/lzzl, we are done. Otherwise, [0, 6]2;’[1 must drop
because our hod mice are below “ADr+© is measurable” and &’ is an inaccessible limit of Woodin
cardinals.

So Q(Uh,b) = Q(U, ¢) and hence b = c.

Lemma 3.34. Suppose (R, A) is a reasonable hod pair, then A has strong hull condensation.

Proof. Suppose T is according to A and Uis a pseudo-hull of 7. We assume for ease of notations
in the following argument that U= Zj{OA Uy and letting Q be the last model of Z]o, then there is an
ordinal § such that:

e a(Up), the set of generators used in Uy, is contained in (6§)<“’.
e U is based on Q(f + 1) and is above %Q.
o U is non-dropping and is according to A.

This is indeed the main case; the proof of other cases is similar and we will leave that to the reader.

In this case, we also have that T = 7?;711, where 7o has last model S and the embedding
@ : @ — S is the natural map given by the fact that Uis a pseudo-hull of T. Hence, we have
p oig = jo where ig is the iteration map given by Uy and Jo is the iteration map given by To. We
also have that S is such that 77 is above S(¢(3)). Let

and
St =M]L
Suppose the following holds.
A%S I 9(B) = AZJO,Q I Q(P). (3.2)

Call the strategy in (3.2) 3. Let ¥ = A%S, b=U(U) and ¢ = Aﬁo,g(al)7 we then show that

b=c.
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Figure 1: Strong hull condensation.

There are two cases. Suppose b does not drop. Then there is a map p* : ./\/lzg71 — §* given by
the fact that I/ is a pseudo-hull of 7. We then have that ©7 = p*o 7{’1 o ig. Applying branch
condensation, we have that b = c¢. See Figure 1.

Suppose b drops, then Q(b, L_il) exists and the phalanx @(L?f b) is iterable (above %Q) inT
because it is embeddable into the phalanx <I>(711Ab*) (cf. [17, Lemma 4.20]).°2 Lemma 3.33 then
implies that b = c.

Now we prove equation (3.2). Suppose not. Let W = W(; Wi be a minimal disagreement stack
on Q(fB). More precisely, V_Vo is a nondropping stack on Q(f) according to both A%,s I Q(B) =def
Al and Ajoo 1 QB) =der A2 with last model P*, a(Wp) C (525*)@’ and W is on [5?,55;0 for
some +y, and A)l/%ﬂ)* (W) # A?/%,P* (W,). Let ¢ : P* — R* be the copy map from Wy to pWy. Let
by = A%pr*(WI) fori=1,2.

Again there are two cases just like above. If b; drops, then the same argument as above gives
us by = by. Now suppose by does not drop. Let 7 : M}fl — R** obtained by copying V_Vf b1 to
Wy b1. Note that

TO ﬂ;/fl o7WVo o glho — ﬂlﬁwl omWo o 771,

By branch condensation, again, by = Aaﬂvﬁvo (Wl) Therefore, by = by. Contradiction. This shows
0
Equation (3.2) holds and hence completes the proof of the lemma.
O

The following lemma will be used in Lemma 3.36. Lemma 3.36 also uses Lemma 3.34 in an
essential way. Lemma 3.36 may also be of independent interest and is used in an essential way in

the proof of several theorems, including 5.5, 5.12.

Lemma 3.35. Assume CH+ there is an wi-dense ideal T on wy. Let g C Pz be V-generic and

J =1Jg: V. = M be the corresponding generic embedding. Suppose (R,A) is a reasonable hod

52In the case 6(2/71) is a cutpoint of Q(b,Z:Il), as mentioned above, we simply have that Q(b, I:{l) is iterable above
0(Ur) as a X-mouse via a unique iteration strategy in I'.
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pair where |R|V < wy and A is an (w2, ws)-strategy. Suppose A C w) and A codes HX1 Then in
LZJ\;/ [A][g], there is no largest cardinal.

Proof. First, suppose m : P — R is elementary and P is countable. Let ¥ = A”™. A has hull
condensation, and hence ¥ has hull condensation (see [7] for a proof that hull condensation “pulls
back”). We first claim that for any x € HC containing P,

LYy (2] = j(L3y [a]). (%)

Suppose not. Then let 7 be a tree in L:IJ'V [z] ﬂj(Lg’V [z]) such that U(T) # j(V)(T). Let T be the
2 1

least such (in the constructibility order of the models). Now the following are easy to see:
(a) TeV.

(b) j(m) =jom.

() J(¥) =j(AT) = j(A)y°T.

So
JO)(T) = j(A(T) = j(A)(GonT) = A(xT) = ¥(T). (3.3)

The first equality follows from (c¢). The second and last equalities follow from definitions. To see
the third equality, first note that by (a), 77 € V and therefore, j o 77 is a hull of j(77). Since
§(7T) is according to j(A), so is j o 7T by hull condensation of j(A).*® Now let b = A(xT),
then j(b) = j(A)(j(#nT)). Since jonT b is a hull of j(77T)"j(b), by hull condensation of j(A),
b=j(A)(jonT) as desired. The last equality follows from the definition of A, V.

(3.3) contradicts the assumption that W(7) # j(¥)(7). So (*) holds. (x) implies that there is
no o < wy such that

ng [z] Fat =w).

This is because otherwise, in j(Lg’V [z]) F at = j(w]) = wy. This implies then that
2
J (ij’v [z]) E “w} is not a cardinal”.
1
On the other hand,

LZ]X [z] F “w is a cardinal.”
(%) then immediately gives a contradiction.
Now let A C w{ and A codes HY . Let X = Lﬁg [A][g]. To see that there is no largest cardinal
in X. It is enough to show there is no largest cardinal in Li;\;/ [A].>* The argument above (showing

Equations (3.3) hold) shows that
A=jAY TV,

53We note that j o 77 is countable in V[g] and therefore is in M.
51YWe use that Pz is forcing equivalent to Coll(w,wr).
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and _
iy [A] = LI 14] (3.4)
Wa

Now, R,A € HCM and j | R : R — j(R) is elementary in M (because M is closed under

countable sequences in V[g]), so the argument above, applied in M, shows that

wM = wY is not a successor cardinal in LZLAV [A] (k)
(%) and Equation (3.4) imply that there is no largest cardinal in LS;/ [A]. O

Lemma 3.36. Assume CH+ there is an wi-dense ideal T on wy. Suppose (R,A) is a reasonable
hod pair such that |R|Y < wy and A is an we-iteration strategy for R. Let g C Pz be V-generic and
J=17Jg:V — M be the corresponding generic embedding. Then A = G(A).

Proof. By Lemma 3.34, A has strong hull condensation. By strong hull condensation and [!7,
Theorem 7.3|, there is a unique extension of A in V[g]. Hence we identify A with its canonical
extension in V[g]. First let 7 € V be according to A. Then j7 is a psedo-hull (in fact, a hull) of
J(T) and j(T) is according to j(A), so jT is according to j(A) by strong hull condensation of j(A).
But then T is by j(A).

Suppose 7 € M is according to A. Then there is a U4 € V according to A such that 7 is a
pseudo-hull of U (see [17, Theorem 7.3]); we note that to apply [17, Theorem 7.3] to get the existence
of U, we need to work inside X = LU/};, [tr.cl.({T}U HY )]lg], where T e HY is a Coll(w,w;)-name
of T. For [17, Theorem 7.3] to apply, we need that wy > (w})**. This follows from Lemma 3.35.

This means j7 is a pseudo-hull of jU°® and jU is by j(A) by the argument above. By strong
hull condensation of j(A), 57 is by j(A). Therefore, T is by j(A)’.

[

3.6. Boolean-valued comparison and ZFC comparison of hod pairs

Suppose (P,Y) is a reasonable hod pair such that ¥ is wi;-UB. Suppose p € Coll(w,w]) and
G C Coll(w,w)) is V-generic and p € G; let g C Pz be the corresponding generic induced by G, 7
and j, : V' — M be the corresponding generic embedding. Suppose I' € V[G] is an inductive-like
pointclass.”® For each ¢ < p, let G, = G — G | dom(q) U q be the “finite variation” of G induced
by ¢q. Note that V[G] = V[G,] for all ¢ < p; for each ¢, let g; C Pz be the corresponding generic
induced by Gy, 7 and jg, : V' — M, be the corresponding generic embedding. In V[G], suppose
(Pg,Aq) is a (countable) ¥-I'-suitable mouse with A, being a (wi,w; + 1), I'-fullness preserving
strategy for P, and A, is strongly guided by a sjs A, that seals Env(I') (see Remark 3.18). Then
Woodin’s Boolean comparison theorem ([14]) gives us that we caao/mpare {(Pg,Aq) : ¢ < p}in
V[G] and the comparison results in a pair (R,A) such that R € V, [R|Y < wi, A | HY, € V.

Furthermore, A is the tail of all the A,’s via the iteration trees that appear in the comparison.

55This fact can be easily verified, by chasing through the definition of pseudo-hull. See [30]. Furthermore, [17,
Theorem 7.3] gives that if 7 is nondropping, then so is U.
56Tn cases of interest, T is typically of the form j,(I'*) for some inductive-like T'* € V.
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In our present context,’” we only know A, is an (w1, w;)-iteration strategy in V[G] for each ¢.
However, we can still conclude the comparison above terminates in less than w}/ [l wg many
steps. This is because by 3;-reflection (inside the pointclass I'), we have that for every ¢ < p, there

is a countable tree 7, such that:

e 7, is correctly guided, i.e. whenever a < lh(7;) is limit, then Q(7; [ a) exists and Q(7; |
a) <Lp?" (M(Tg | ).

e 7, is maximal and has last model M, = Lpi’r(/\/l(ﬁ,)).

e {7, :q < p} are obtained by the least-extender disagreement process.
Futhermore, for any ¢ # r such that ¢, < p,

o M, = M,.

The tree 7,’s above are precisely the trees occurred during the Boolean comparison process.
This is possible because 7, is countable; that 7, is countable is a consequence of the fact that w;
is measurable in I'. Therefore, the comparison process succeeds and results in (R, A) above.?”

We now introduce concepts needed for the proof of Claim 6.21. In essence, the proof of Claim
6.21 is a proof that a Boolean comparison between hod pairs {(P,, A,) : ¢ € Coll(w,w] )} ter-
minates in V[G] (in less than w; many steps), where for each ¢, P, is a hod mouse such that
APa is a limit ordinal and A, is an (w;,w)-strategy with branch condensation and for each
(Q,¥) € B(Pg, Ay), ¥ is a (wi,w; + 1)-strategy and ¥ | HC belongs to an ADT model. Fur-
thermore, we assume that for p # ¢, (Py, Ay), (Pp, Ap) are hod pairs of the “same kind”; this means
whenever (Q1, V1) € B(Py,Aq) and (Qa, Vo) € B(Py, Ap) (see Section 3.2), and suppose there is
a < min(A9, A\92) such that (Q;(a), (1), () = (Q2(a), (¥2)0,(a)), then there are normal trees
T; according to ¥; on the window (5%',5(%1) such that letting R; be the final model of 7; and
Ai = (Vi)7;,R,, then (Ri(a + 1), (A1)R, (at1)) = (R2(a + 1), (A2) R, (a+1))-

Typically, U1, ¥y are Suslin co-Suslin in an AD" model X (e.g. X is of the form L(A,R) for
A eTl). Welet (N,6,%) be a coarse £2-Woodin mouse for some inductive-like pointclass Q@ € X
that contains all projective sets in (U1, Us) and (V, §,¥) Suslin captures Wy, ¥5.50 More precisely,

(N, 9,%) has the following properties:
e N EZFC.
e J is the unique Woodin cardinal of N.

e Y is an iteration strategy for N.

57 Another context, where the conditions for Ag4’s below may not be satisfied, occurs in the proof of Claim 5.6. We
will show in that case the Boolean comparison still succeeds.

5¥We note that the fatal drop cases can be ruled out in the boolean comparison.

59Notice we never referred to the strategies A, in the above process. A, is used to define A,(7;) at the end (i.e.
picking the last, maximal branch of 7). A4 is not in j(I'y) a priori.

50More generally, we compare pairs (Py, Ag) for ¢ < p, for some fixed condition p.

61See [23] for more details on coarse Woodin mice.
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o Q1,92 N.

e For each ¢ € {1,2}, there are trees (7;,U;) € N that witnesses (N, d,X) Suslin captures ¥; at
d, i.e. for any countable YX-iterate N’ of N such that there is an iteration map i : N — N’,
for any h C Coll(w,i(d)) such that h € V is N'-generic, p[i(7;)] N N'[h] = ¥; N N'[h] and
pli(U)] N N'[n] = RN — w02

The existence of 7; is then easy to see. Let A = (¥1)9,(a) = (¥2)0y(a)- In IV, iterate (¥1)g, (a+1)
and (V2) g, (a+1) into the A-hod mouse construction of V:sN . Since these two strategies have branch
condensation, there are normal trees 7; (as specified above) and iteration maps k; : Q; — R;

according to ¥; such that

(a) (Ri(a+1), (AR, (at1)) = (Ra(a + 1), (A2)R,(at1))-

(b) Ri(a+1) is model in the A-hod mouse construction of V§¥ and (A1)g,(a-1) is the background

0

induced strategy.

See [7] for more details. The above argument generalizes easily to countably many hod pairs (as in
the proof of Claim 6.21).

The comparisons described above are the building blocks of the “diamond comparison” described
in Claim 6.21. The “diamond comparison” of all pairs of the form (P,, A,) for ¢ € Coll(w,w:) must
end in < w; steps in V[G]; see the proof of Claim 6.21 for more details.

4. OUTLINE OF THE PROOF OF THEOREM 1.4

We outline the proof of Theorem 1.4. In V', define the maximal pointclass
I ={ACR:L(AR)FAD"}.

The goal is to show that I is sufficiently rich in that there is a  C I such that L(Q,R) E “ADg + ©

is regular”. So suppose not. We assume:

(1) : For any transitive N such that Ord UR C N and N F ZF + AD*, N does not satisfy
“ADr + O is regular.”

As part of the induction, we maintain:
(t): For all ¥ € T, all ¥-cmi operators are w;-UB.

We will analyze the complexity of I', ultimately showing that there is some Wadge initial
segment Q of T' (possibly  =T') such that L(Q,R) E “ADg + O is regular.” There are two major

cases. We summarize the key points of each case below before jumping into the details.

52Here we fix a canonical coding of elements of HC' by reals identify ¥; with its code.
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(i) The successor case (Section 5): we first show that if (P,X) € I’ ((P,X) may be ) is a hod
pair such that ¥ is I'-fullness preserving and has branch condensation, then Lp*(R) E AD™,
and therefore p(R) N Lp*(R) C T. This is via a standard core model induction argument
similar to that showing AD holds in L(R) ([14, 31]). One wrinkle that appears in the case
that ¥ # ) is that one needs to show /\/llz’ﬁ exists before being able to define Lp*(R) as done

in [16]. The argument showing that /\/llz’jj exists is given in Theorem 5.1.

As part of the induction, we maintain (}), the hypothesis that for every ¥-cmi operator J
(including the operator induced by ), J is w1-UB. This is what we need to carry out the
proof of Theorem 5.1. This then allows us to adapt the standard arguments in [14, 3] to
show Lp™(R) £ AD™.

In Section 5 (see in particular Theorem 5.5), we adapt the argument in [34] to show that there
is a self-justifying system A consisting of sets Wadge cofinal in Lp*(R), and a Y-suitable pair
(Q,A) where A is the strategy guided by A.93 Therefore, A is I-fullness preserving and has
branch condensation and A ¢ Lp*(R).

We can then show Lp™(R) E AD™ and therefore A € T'. To do this, we first need to show some
such A can be extended to an wsy-strategy in V' and is w1-UB (Theorem 5.12). Crucially, we

use Lemma 3.36 in this argument.

(ii) The limit case (Section 6): assuming (I) and letting H,H" and X be defined as in Section
6, we use the generic embedding j : V' — M induced by a V-generic G C Coll(w,w;) to
derive a nice strategy A for H' in M. The strategy A is j(T')-fullness preserving, has branch
condensation, and most importantly, if T(H*,A) € j(T'), then letting Moo (H™',A) be the
direct limit of non-dropping iterates of (H*,A) in j(T'), we have Moo (H',A) = H(5) where
§ = 6Moo(H"A) and there is a factor map o : Moo (H1,A) — j(H1) such that crt(o) = 6.
This property is a consequence of the j-condensation lemma, Theorem 6.17. This result is

crucial here and its variations are important in many other arguments (cf. [3, 10, 32]).

Again, Lemma 3.36 will be useful in proving Theorem 6.17 and Lemma 6.11. Part of the
proof of Lemma 6.11 is to show that j is continuous at o(H*). This continuity property is

also important in the proof of Theorem 6.17.

Now there are two cases. Suppose first that T'(HT,A) = j(I'). Then by elementarity, in
V there is a hod pair (P, ) such that I'(P,¥) = T'; in particular, ¥ ¢ I". By a core model
induction as in the successor case, Lp”(R) = AD". To show this, we again have to show we can
extend ¥ to H}Y, and that ¥ is w1-UB (see Lemma 6.20). This implies X € T'. Contradiction.
Otherwise, I'(H™,A) C j(T'). Therefore o exists and ¢ is a regular cardinal which is a limit
of Woodin cardinals in Mo (H*,A). By standard arguments, L(j(T') [ 6,RM) E “ADg + © is

regular.” This is again a contradiction, so (i) fails. This completes the outline of the proof.

53This argument allows us to construct (Q, A) without the technical hypothesis HI(c) in Ketchersid’s thesis. See
[14, 5] for an alternative argument constructing (Q, A) that uses a seemingly stronger hypothesis.
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5. SUCCESSOR STEP

We assume throughout this section CH and there is a dense ideal Z on w;. Let G C Coll(w,w!) be
V-generic and g C Pz be the corresponding generic induced by G, 7, where 7 is as in Fact 2.4. Let
Jj=17g:V = Ult(V,g) = M be the corresponding generic embedding.

Recall the pointclass I' defined in the previous section. Suppose (P,X) € I' is a reasonable
hod pair such that ¥ is I'-fullness preserving, has branch condensation, and ¥ is w;-UB (i.e. we
assume the hypothesis (1) holds for ). This includes the case (P,X) = (0,0). We show that
LpZ(R) E ADT. See Sections 3.1, 3.3 for a summary of mouse operators and Y-cmi operators and

related concepts like the definition of Fx ., pan etc.

Theorem 5.1. Suppose F is a nice mouse operator (or a X-cmi operator) on HL‘U/1 that is wy-UB,

then /\/ljl‘m’ﬁ is a mice operator (or a X-cmi operator) and is wy-UB.

Proof. We assume that F is a Y-cmi operator where > € I' has branch condensation, is I'-fullness
preserving, and is wi-UB. We consider the case F = Fyx ,, where Fx, ,, is the operator induced by
¥ and with ¢ = @, and FT the canonical extension of F in Vg]. The case F # Fy, is similar.
The operator F codes up the same information as 3 does; the reader will lose little by pretending
F =%

The proof that F* exists and is w;-UB is standard. Details have been given in [34, 14]. We
only mention some key points here. The operator F ', the unique extension of F in V, is simply
J(F) | V. Since F satisfies (}), the hypothesis DI will imply that j(F) [ V is in V and doesn’t
depend on G; this follows from Lemma 2.5 and homogeneity of the forcing Coll(w,w;). We will
write F for FT for brevity.

To see F*(x) is defined for each x € dom(F), note that from j, one can define an ultrafilter u
over L [x]% as follows: for each A € p(w}) N L[],

Aepu <= w €j(A).

By a standard argument, y is a countably complete, normal measure over L7 [z] that is amenable
to L7 ![z] in the sense that for any Y of size w} in L7 [z], we have u NY € L7 [z]. Furthermore,
by condensation properties of F we have Ult(L”[z], u) = L7 [x] as it embeds into j(L” [z]). By
standard arguments due to Kunen, the amenable structure (L7 [z], ) is iterable. This implies
Fi(x) exists.

To prove /\/lir’Ij exists, we need to build the K’ -construction inside N = L% g (R) and run the
proof of [11, Theorem 2.10.2]. For contradiction, we get for some = € R, the core model (relative
to F) K = K7 (z) exists (and iterable) in N. We need that j(K) € V. To show this, we need to
show j(NN) is definable in V[g] from parameters in V. Here are some details that execute this plan.

We define the following model W by induction on o < wd: Wy = (HCV, €),

Wat1 = Ju(trcd. (Wo U{(T,b) : b=5(T) AT € Wy AT is according to %})),

“This is the model L7 [z].
S5 Equivalently, W11 = Jo (tr.cl.(Wo U {(z, F(x)) : £ € Wa})).
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and for o limit, W, = UB<a Wps. Finally, let Wr = W = |
Y[ Wy €W forall a <wy.
By the proof of [7, Lemma 3.35], we have the following.

v W,. Note that W € V and

a<w2

Fact 5.2. For any poset P € W and any W-generic h C P such that h € V' (or h € M), Wh] is
closed under ¥ (respectively j(3)).5¢

Let ¥7 be the canonical extension of ¥ to V[g]. We fix trees T, U € V witnessing ¥ is w1-UB. So
in V{g], Code(XT) = p[T] = R\p[U]. Note also that j(X) | V =3 | V. Suppose h € V (or in M)
a<w) Xa, where Xo = tr.cl.(hU{h}),
Xy = Ff (Xo), and for a > 1, Xo41 = F; (X,), and X, = U< Xao for A a limit ordinal; here F+
codes 7 the same way F codes ¥. We note that X}, contains RV and is closed under ¥F. Now, if

we let WXr be the structure Wr defined as above, but the definition is carried out inside X}, then

is a generic enumeration of RV in order type w{’, let X} = |J

WXr = W.

This means that the model W is independent of h.

In a similar manner, letting G = (F)*, we define X} = Ua<w¥ Xo, where Xo = tr.cl.(hU{h}),
X1 = Go(Xo), and for a > 1, X441 = G1(Xo), and X = [J, o) Xo for A a limit ordinal®” and let
W be the model Wy defined in X} as above, but using G instead of F. In particular, it is easy to
verify that W now has the following properties:

e o(W) = wy and W is a transitive model over RV

e for any a € H,, N W, we have G(a) € W; in particular, W is closed under % and if h € V
(or in M) is W-generic, then W/h] is closed under X

W is independent of h; in other words, suppose hi, he € V (or in M) are two enumerations
of R in order type wy, then WXr1 = WXnz2,

If h € V (orin M) is Coll(wy, R )-generic over W, then the universe of X}, is just the universe
of W1h].

Suppose that on a cone of z € HC, leﬁ(x) does not exist. Then in W[h| where h € V is
Coll(wy,RY)-generic over W, the core model K =qo¢ K7 * (z) exists®. Here K is a F-mouse and is
in W.

Claim 5.3. j(K) e V.

Proof of Claim 5.3. To see that j(K) € V, it suffices to show that j(W) is definable in V[G] from
parameters in V. To see this, first note that j(j(X) [ V) is definable in Ult(V, g) = M as the unique

66[7, Lemma 3.35] indeed implies that F determines itself on generic extensions. It is also easy to see that JF
relativizes well.

87X, is a potential G-premouse over h and it is closed under G because G relativizes well.

58Here the core model relative to X7 is defined in the sense of [1] and o(K) = & < o(W) and w{ < ¢ is a sufficiently
large indiscernible relative to G.
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extension of j(X) to H,, that has branch condensation. Let A = j(§(X) [ V). Note that A may
not be definable in V[G]; the main wrinkle is that HXQ[G] may differ from HE;“V’Q). But in V[G]
we can define ¥, the maximal (partial) strategy on H,, that extends j(X) with the property that
whenever T is according to ¥, the branch (7)) (if defined) is the unique well-founded branch b
such that whenever (U, ¢) is a countable hull of (7, b), then U is according to j(X) and ¢ = j(3)(U).
Note that if A; and Ay are partial strategies extending j(X) satisfying the above properties, then
whenever T € dom(A1) N dom(As2), we have Ai(T) = Aa(T). As a result, ¥ is simply the union of

all such partial strategies, and since A is one such partial strategy,
ACWU.

This easily implies that j(W) is definable in V[G] from ¥ as ¥ [ W = A [ W. Hence j(W) is
definable in V[G] from j(X), but j(X) = p[i(T)] N VVH*V:9) = p[T]NV[g] (by Lemma 2.5); so j(W)
is definable in V[G] from (T,U).%° By homogeneity, j(W) € V. O

Given this claim, the rest of the proof proceeds as in [14, Theorem 2.10.2] by showing that for
the (w}’,wy )-extender E derived from j, we have E | o € j(K) for all a < wy . This implies that w}’
is Shelah in j(K), contradiction. Fixing a < w) , we give a sketch of E [ a € j(K). We note again
that T is closed under G. We need to see that the phalanx (j(K), Ult(j(K), E | a), @) is iterable in
(W)™ Otherwise in j(W) there is a countable F-premouse K and a map o : K — Ult(K, E | )

with crt(o) = a and
JW)E (§(K), K, ) is not wi-iterable.
We have a factor map &k : Ut(K, E | a) — j(j(K)) with k | o = id and
koo K = j((K))

such that koo [ a = id. Note that j(j(K)) makes sense by the claim above.
Let v = koo and ¢ = [8 — ¢s]lg. Let K = [ — Kgzlg and a = [ — aglg. We need to see
that for G-almost all j3,

W E (K, Kg,ag) is wi-iterable.

By absoluteness, in j(W) there is some 1/1/’3 : Kg — j(K) such that 1//6 I ag =id. Then in W there
is some v : K3 — K such that 9 [ ag = id. But this means (K, Kg, ag) is iterable in W. We have
reached a contradiction.

Finally, the operator H : x leﬁ(:z:) is definable from X. Since j(X) | V € V, we have
J(H) | V € V also. It is then standard to show H is w;-UB. One shows that for club many
countable X < (H,,,€,(T,U)), X is generically correct about H, namely letting 7x : Mx — X
be the uncollapse map, for any forcing P € Mx such that

MX E “’P| S (.Ul”,

59This is the crucial point and is the reason we maintain that operators we construct in this core model induction
are wi1-UB.
"Tterability here is with respect to trees of length < j(&) in j(W).
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for any Mx-generic g C P such that g € V, then for any z € HC N Mx|g],
VE gz, (T,U)] & Mx[g) F @[z, 73 (T, U)],

here p(z, (T,U)) is the natural formula that defines H(x) from F. We give an informal definition
of p(z,y) here. p(x,y) is the statement: there is a unique z such that

(a) z has the first order properties of Mfﬁ(x), where Code(F) = p[(y)o] = R — p[(y)1]-

(b) z has a unique (wy,w; + 1)-iteration strategy A with the property that whenever T is according
to A with limit length (or 7 is a stack with last normal component with limit length), A(7) is
the unique b such that M < FH(M(T)).

It is easy to verify that H is a ¥-cmi operator (i.e. H condenses finely, relativizes well, and
determines itself on generic extension); this is because F has these properties. We leave the details
to our reader.

O

The induction through Lp*(R) proceeds as usual and is organized by the scales pattern in
Lp*(R) (see [16]). The above theorem takes care of the successor steps in the induction in Lp*(R).
The limit step is non-trivial and requires the use of our hypothesis when we reach an inductive-like
Q; recall here that a pointclass Q is inductive-like if it is w-parametrized, closed under V¥, 3%,
recursive substitution, and has the scale property. We need to construct an operator that is beyond

Env(T) to continue the induction.” We start with a useful lemma.

Lemma 5.4. Suppose (P,X) is a reasonable hod pair such that ¥ is wy-UB. Suppose (P, %) is
a pair such that P’ is a countable YX-premouse that is Q-suitable for some inductive-like pointclass
Q C Lp™(R) and ¥ has branch condensation and is a Q-fullness preserving strategy for P' (as a

Y-mouse) that can be uniquely extended to an (wq,ws)-strategy, then X' is w1-UB.

Proof. We identify ¥ with its unique extension to stacks in HL/Q Let i : P’ — M be the direct
limit map of all non-dropping Y'-iterates via stacks in HXQ For a club of countable Y < (H,,, €
,(P',%),i, Mwo), let Ty : My — Y be the uncollapse, let ky = crt(my), and let a¥ = 7y (a) for
any a € Y. Let h C Coll(w, ky) be a My-generic in V. Let T,b € My[h], let a = (i, M) where
T is a normal tree, and let (7 ,b,a¥) say:

e T is correctly guided i.e. all strict initial segments of T are given by the O-structures in

Cjay(M(T)).™

"In fact, we need the hypothesis in the construction of the “next” operator when I is the last scaled pointclass in
LpZ(R).

"2At this point, we know Cj)(M(T)) is independent of generics g. To see this, suppose gi1,g2 are such that
leting j; : V' — M; be the corresponding generic embeddings, and Lp= it (M(T)) < Lp=72 (M(T)). Let M be
the least in Lp=72E) (M(T)) — Lp=71 D (M(T)) and A be its unique strategy. Note that Ay € j2(9); therefore,
Apm TV €Qas ja(Arm [ V) = Aag. This means ji(Aa) € 51(©2). This contradicts the choice of M.
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e If 7 is short then b is the unique cofinal branch such that Q(b,7T) exists and the phalanx
O(TQ(b,T)) is iterable with unique strategy in Cj(q)(M(T)).

e If 7 is maximal then b is the unique non-dropping branch such that there is a map o : MbT —
MY, such that ¥ = oo .

We need to see that My [h] F ¢(T,b,a¥) if and only if ¥'(7) = b. Suppose first T is short.
Note that HJ is closed under 3, so we let W € HJ!Y be transitive such that 7 € W[h]. Let
7 : P — Q be the iteration map given by the generic genericity iteration according to ¥’ | HfJ\/QIY
that makes W generically generic. So T € Q[W, h] and Cjq)(M(T)) € Q[W, h] by j(Q)-fullness of
Q and the fact that the operator Cjq) relativizes well. Therefore, Q(b,T) = Q(T) € My [h]. This
shows that My [h] is correct about the shortness of 7 and can compute the correct Q-structure and
hence the branch /(7).

Suppose T is maximal. The above calculation shows that this is equivalent to 7 being maximal
in My[h]. If My[h] E ¢(T,b,a¥) then there is a 0 : M] — MY such that i¥ = ooi/. InV,
let T be according to ¥’ with last model MY, such that i¥ = iT. Then by branch condensation
of ¥, b = ¥(T). Conversely, suppose X/(T) = b. Let ¢ = j(¥' | My)(T). Then by boolean
comparisons, it is easy to see there is a o : MJ — MY such that 0 04! = i¥. But ¥ is an
iteration map according to X’ (in V'), by branch condensation of ¥', ¢ = ¥'(T). So b =c.

The argument for stacks is similar. We leave the details to the reader. This completes the proof

of the lemma.
O

Theorem 5.5. Suppose I'* C LpE(R) is an inductive-like pointclass such that:
I'* =AD" + MC(X).
Then

(a) for any A € Env(I'™), there is a scale on A whose norms are in Env(I'™);

—_— —_—~—

(b) there is a self-justifying system (sjs) (A;:i < w) sealing Env(I'™).

P

Proof. We assume for simplicity that ¥ = (), so Lp™(R) = Lp(R); the general case is just more
notationally complicated. We assume I'* = Epr(R), i.e. the largest scaled pointclass in Lp(R). The
other cases are taken care of by the scales analysis in Lp(R) (see [14, 19, 25]). Let T be the tree
of a I'*-scale on a universal I'* set; T is a tree on w X K, where x is the largest Suslin cardinal of
P =Lp(R).™ Let A = p[T] be the universal I'*-set induced by T. We note that at this point, we
know that P AD™; this is because by essentially the Kechris-Woodin transfer theorem (see [34] for
more discussions in this particular context), AD holds for sets in Env(T'*) and Eﬁ?\@*) = p(R)NP

by arguments in [34, Lemma 4.5.1]. We assume for contradiction tﬁgm\t/(a) (and hence (b)) fails.

"The following argument works for P = Lp* (R). One just needs to put the trees T, U witnessing ¥ is w1-UB into
the parameters that define all the relevant objects below.
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Claim 5.6. For any V-generic g C Pz, suppose jo : V. — Ul(V, g) = M is the associated ultrapower
map and G C Coll(w,w)) is the V-generic filter associated with g, then

(i) jg | K is independent of g
(i) jq(k) is the largest Suslin cardinal of (Lp(R))VICl and hence is independent of g.

(iii) jg | (p(x))¥ is independent of g.

Proof. To see (i), let v < k be arbitrary and let A € Lp(R) be of Wadge rank ~. Note that since
v < K, by our induction hypothesis, A is w1-UB as witnessed by (S,W). Notice then that by

Lemma 2.5,
jg(A) = p[S]NV]g].

If (i) fails at +, then there exist p IF jg(v) = 10 and ¢ I+ jg(v) = y1 with 40 # v1. Let go,91 C Pz
be V-generic such that p € go,q € g1, and V[g1] = V[go]; such go, g1 can be easily obtained using
the homogeneity of the forcing ™. Let My = jg,(Lp(R)), M; = j,, (Lp(R)). Note that My < M; or
My < My. Write j; for j,, and note that

Jo(v) = #n = j1(7)- (5.1)
Note also by the fact that V[go] = V]g1],
jo(A) = j1(A) = p[SI N Vigi] = p[S] N Vgo]. (5.2)
The fact that the Wadge hierarchies of My, My are compatible gives us
jo(A) = j1(A) € Mo N M. (5.3)

5.2 and 5.3 give us the Wadge rank of jo(A) = j1(A4) is jo(y) = ji1(7), which clearly contradicts 5.1.
So (i) holds.

We now show (ii). We do not claim here that (Lp(R))VI¢! £ ADT. Suppose the statement of the
claim is false. Fix G, g as above witnessing the failure of the claim. Then there is M <1 (Lp(R))" ¢!
such that j(I'*) is Suslin co-Suslin in M and M E AD™.

By the scales analysis and MC in M (MC holds in M by our smallness assumption () and
results in [7]), there is a sjs A sealing Env(j(I'*)) in V[G]. Let (P,¥) € M be guided by A.
By Boolean-valued comparisons (describedme previous section), there is an iterate (R, A) of
(P, ) such that R € V and A | HY, € V. Now, A has branch condensation and is j(I'*)-fullness
preserving and hence by Lemma 3.34 has strong hull condensation. By Lemma 3.36, A = j(A)7.

Therefore, A € M and is j(I'*)-fullness preserving.

"Given p € go, we can find an automorphism 7 : Pz — Pz such that 7(po) < q. Then let g1 = T[go]. go, g1 are as
desired.
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Now note that A is w1-UB in M by Lemma 5.4 and hence self-scaled, and so by the core model
induction similar to the above, Lp*(RM) E AD™ (here by density, RM = RYI¢]). This implies
that L(A,R™) F © > 6 since A ¢ Lp(R)M. This in particular implies, via standard results (cf.
[31]), that conclusions (a) and (b) hold for Env(j(I'*)) in M. By elementarity, (a) and (b) hold for

P

Env(I™). This contradicts our assumption that (a), (b) fail.
(

To see that j, [ 9" (k) is independent of the choice of ¢ in (iii), fix a [*-prewellorder < of R
of length k; by choosing a minimal definition, we can assume = is definable from a real y and
in P. More precisely, we choose the least £ such that Lp(R)|¢ ordinal defines such a < from a real
y. By minimizing the ordinal parameters, we can then get that =< is definable over Lp(R)[{ from
{y, K}, say by formula ¢. Note that any X € pf(k) is ¥1(=,z) for some real z by the Coding
Lemma. Suppose X witnesses the failure of (c) and X is ¥1(=,2) for some real z. Let go, g1 be
such that V[go] = V]g1] and j; = jg, be the associated generic embeddings with the property that
J1(X) # jo(X). By part (ii), jo(k) = j1(k), so let k* = jo(k) = j1(k). By the choice of < and part
(i), jo(2) = j1(=); this is because jo(=),j1(=X) are both definable from {x*,y} via formula ¢ over
the least M <1 (Lp(R))V19! that defines a prewellorder of RV (%! of length x*. Since jo(X),j1(X)
are Y1-definable from jy(=<) from y via the same formula, jo(X) = j1(X). Contradiction.

O]

Remark 5.7. In the proof of Claim 5.6(ii), it appears that we need to assume the failure of

Theorem 5.5(a). However, one can show
(ii") jg(x) is independent of g

without assuming the failure of Theorem 5.5(a). Suppose (ii’) fails. We can then find g;, g2 such
that V[g1] = Vlgo] and jg, (k) < jg (k). Let j; = jg, for i € 2 and j; : V.— M;. We can run
the argument in the proof of Claim 5.6(ii) to get (R, A) as there, where A is w1-UB in M;. By
elementarity, there is such a pair (R, A) € V such that A is w;-UB, Lp*(R) F AD", and A ¢ Lp(R).
Since jo(k) # ji(k), it is easy to see that jo(A) # j1(A). But since A is w;-UB as witnessed by
trees (T,U) and V]go] = Vg1, jo(A) = p[T] N V]go] = plj1(T)] N M; = ji(A). Contradiction.
From the claim above and homogeneity, we easily see that the value of jq (), j4(T) is independent
of g; from now on, we will write j(x) for j,(x) etc. We let meas™ (k<) be the set of countably

complete measures on (p(x<*))" in P and
o = j"meas’" (K<¥).

Note also that o is independent of g. Let A be the length of the well-ordering of Env(I"). We have
A < j(w)) =wy. It follows that j”)\ (and hence also ) is in Ult(V, g) and is countable there. This
then implies that o € M.

Let 1 € 0. Suppose p concentrates on j(x)™ and let (u; | i < n) be the projections of y, meaning
Aecp; < {sej(k)"|s|ie A} € u. Note that pg is the trivial measure.

In Ult(V, g), we define the following putative scale {¢, : © € o} on R\p[j(T)] as follows. For
each p € o, and for each x € R\p[j(T")] (so j(T), is well-founded),
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u(@) = [rank;r), ] ™

We now define the following closed game G%*. in Ult(V,g) (equivalently in V[G], recalling that

J(T)
RVIC] = RUV:9) and the pointclass j(I'™*) is ordinal definable in V[G]): player I starts by playing
mo, ..., My and s,, hy, and player II responds by playing a measure p,41. In each subsequent

move (numbered i > n,) player I plays m;, s;, h;, and player II plays a measure p; 1.

Rules for player I:

e my <wforall k<w

® J(T)(moymn_r) € B = Hn

8i € Ju; (3(T) (mo,....my) ), and in particular s; € jy, (7(k))* for all i > n

® sp D [id]un
® Juipiii(5i) C siqq foralli >n
e h; cOR for alli>n
® Juipiii (hi) > hipy for alli >n
Rules for player II:
e L 1 € 0 is a measure on j(x)"! projecting to p;

e ;41 concentrates on the set j(T")(m,,....m;) C G(r)iTL

The first player that violates one of these rules loses, and if both players follow the rules for all w
moves, then player I wins.

The game is closed, hence determined by the Gale-Stewart theorem. Intuitively, player I is
building a real © = (mg, m1, ... ), player Il is trying to build a tower /i of measures in o concentrating
on j(T),, and player I is trying to build a continuous witness h to the illfoundedness of i as well
as a special kind of branch (j; oo (si) : @ > n) through the direct limit jo oo (j(T)z) of 5(T"), along fi.

The following is the main lemma.

Lemma 5.8. Player Il has a winning strategy in the game Gj(’%)

Proof. First note that j(T') € V; this is because T is ordinal definable in V. The parameter defining
J(T') in V[G] has the form j(s) for some finite sequence of ordinals s € V. Therefore, j(s) € V and
4(T) € V by homogeneity.” In fact, by Claim 5.6 and the remark after, j(x),j(T),7 | o’ (k<%)
are independent of g.

We define a winning strategy for player II in G;&’}) in Ult(V, g). Let po, ..., 1y, be the projections
of p in order (here p,, = p). Let j(g;) = p; for i = 0,...,n. Note that for all i,

"rank;(r), (t) denotes the rank of the node ¢ in the tree j(7'),, and is considered to be zero if t ¢ j(T), and
undefined if j(T), is illfounded below t.

™Tn the case P = Lp®(R), T is ordinal definable from . and there are trees (W, S) witnessing ¥ is w;-UB. Then
j(T) is ordinal definable in V[G] from (W, S) by the fact that p[W] = p[j(W)] and p[S] = p[j(S)] (see a similar
calculation in the proof of Claim 5.3). Therefore, j(T') € V' by homogeneity.
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jMz‘ Oj :j Ojﬂi‘
Suppose player I starts the game by playing integers my, ..., m,, a finite sequence of ordinals
$n € Jun (G (Tmoromn)) N G (3 (£)"1), and an ordinal hy,. Define the measure fin41 € meas’— (K<¢)

as follows.

X € fing1 <= sp € Ju, (J(X)).

fint1 is ODVI! from a finite sequence of ordinals, some real 2 € RY7" and jg | 9F(k<¥). Since

jg | ©F (k<%) is independent of g, fin+1 € V.7
For ¢ > n, suppose player I has played an integer m;, a finite sequence of ordinals s; €
3G (T ms)) N G (G (1)), and an ordinal h;. Define the measure fi;41 € meas™ (k<) as

follows.
X € fijy1 = 5 € ju, (§(X)).

As before, the measure ji;11 is in V, concentrates on T}y, .. m,, and projects to fi;. Let player II
play the measure ;11 = j(fi+1).

Assume for contradiction that player I is able to play w many moves, following all the rules of
the game. We get a real x = (mg, mq,...), a tower of measures (y; : © < w) in o, and a countable
sequence of ordinals (h; : i < w) witnessing the illfoundedness of this tower. By elementarity, the
tower (fi; : ¢ < w) is also illfounded.

Take a wellfounded tree W € J,cp

trates, and such that the function h : w — Ord defined by h(i) = [ranky],, is a pointwise minimal

L[T, z] on k on which each measure fi; in this tower concen-

witness to the illffoundedness of the tower (f; : i < w) (see [34, Lemma 3.5.9]). Then by the ele-
mentarity of j, the function h = j(h) is a pointwise minimal witness to the illfoundedness of the
tower (u; 1 i < w).™ Because [i; concentrates on W we have s; € j,,(j(W)) for all i < w. Define a
function h': w — Ord by K(i) = rank;, (jow))(si). Then from the rules for player I concerning the
finite sequences s; we have j,, , , (h'(i)) > B'(i + 1) and also h'(n) < rank;, (w)([id]n,) = h(n),

contradicting the minimality of h(n). O

Remark 5.9. In the above proof, we use CH in a crucial way. CH implies that A < wé/ and we in
turns get that o € M and is countable there. These two facts are key for the proof. As mentioned

in the introduction, without CH the existence of an wi-dense ideal on wy is equiconsistent with AD.

The proof of Claim 5.6 and the argument in the following remark give us the following useful

corollary.

Corollary 5.10. Suppose A € I'* is w1-UB and let v = w(A) in I'*. Then j,(7) is independent of
g.

""The real = can be taken to be the real that appears in the definition of jfl(u).

"In the general case P = Lp”(R), we reach the same conclusion because fini1 is 0DV from a real, a finite
sequence of ordinals, j, | p* (k<%), and (W, S), where (W, S) witnesses X is w1-UB.

™ Actually we only need the minimality of h(n).

51



Lemma 5.11. In Ult(V,g), the set of norms {¢, : p € o} defined by ¢, (v) = [rank;),]u (or
more precisely, any enumeration of this countable set of norms in order type w) is a scale on the

complement of p[j(T)].

Proof. Work in Ult(V,g). Let u € 0. We say that o stabilizes® p if, whenever (z;, : k < w) is a
sequence of reals in R\p[j(T)] converging to a limit x and such that for each u' € o, the ordinals
¢ (x1) are eventually constant, we have ¢, (x) < limy_,, ¢, (2x). (In particular, ¢, (z) < co.)

It is clear from the definition that if o stabilizes every p € o, then {¢, : p € o} is a scale. So fix
a measure u € 0. We want to show o stabilizes u. Suppose not. We describe a winning strategy for
player I in G;'(;) Let (xy : k < w) witness that o does not stabilize . That is, 2 € R\p[j(T)] for
each k < w, and the sequence of ordinals (¢, (xf) : k < w) has an eventually constant value h(v) for
each measure v € o but the limit x of the sequence (z, : k < w) satisfies () > limg_u, 0. (k).
(This includes the possibility that ¢, () = c0.)

Define m; = z(i) and h(v) = limg_, ¢ (xk). Let n be the unique integer such that p concen-
trates on j(x)™ and let p; be the projection of y onto j(k)* for all i < n. In particular, j, = u. By

definition,

Prin () =[s— rankj(T)x(S)],un = rankjm(j(T)w)([id]un) > h(pn).

So there is a finite sequence s, 2 [id],, with rank > h(uy) in the tree j,, (j(T')z). Let player I play
as his first move the integers my, ..., m,, the ordinal h, = h(u,), and s,, where s, is the least

such sequence. For ¢ > n, we will show inductively that player I can maintain the inequality

rankj#i(j(T)z)(si) > h(pi). (5.4)
Whenever player II plays a measure p;11 according to the rules of the game, we have

ranijH(j(T)z)(jm,mH(Si)) = jﬂivHiJrl(ra‘nkj#i(j(T)z)(Si)) > jui7ﬂi+1(hi) > Nyl

To show the last step ju,; uiy,(hi) > hiy1, we argue as follows. Recall that for each [ we have
hy = h() = limg .,y (7%). Since the measure ;41 concentrates on j(71'),(4+1) and projects to

w;, for each k we have
jm,ui+1 ((Pui (xk)) = jui,,lti+1 ([rankj(T)zk]#i) = [eXti,i-‘rlrankj(T)zk]HHl7
where the “extension” of a function F : j(k)" — Ord to j(k)"™! is defined by ext; ;11 F(s) = F(s | i)
for all s € j(k)"*!. Note that
[extiiprrankir), Jui > [rank;r), Ju, = Qui (@)

Finally, since for each [ the ordinal h; is the eventual value of ¢, (x) as k — w, consideration of
sufficiently large k gives ju, u;., (hi) > hit1.
This shows that player I can choose a successor s;1 2 Jjyu, uis, (5i) of rank at least h(j;41) in

the tree j,,,,(j(T):), thereby maintaining the desired inequality (5.4) for one more step. Then

89The idea of this definition comes from a similar notion of stability used in unpublished work of S. Jackson.
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player I can play the integer m;+1 = (i + 1), the least such finite sequence s;+1, and the ordinal
hit1 = h(pi+1). By playing in this way, player I can follow the rules forever. This contradicts the

previous lemma, which showed that player II has a winning strategy. O

The previous claims and elementarity establishes (a) for A being the universal I*-set, where
recall T'* is the dual pointclass of I'*. By standard arguments, see [34, Section 4.3], the rest of (a)
and (b) follow. This contradicts our assumption. Therefore, (a) and (b) hold after all.

O

Theorem 5.12. There is a hod pair (P',%X') in V such that
(1) ¥ is Lp™(R)-fullness preserving and ¥’ ¢ Lp™(R).
(2) %' has branch condensation.
(3) ¥ is wi1-UB.

Proof. Let T* be the largest Suslin pointclass of Lp™(R). Let A = (A; : i < w) be the sjs sealing
Enuv(T*) as in the previous theorem. Let (P”,%") be a pair such that %" is guided by A. ¥ has
plgp\c:"ties (1) and (2), but (3) may fail for 3”. Here one can regard P” as a X-suitable mouse with
one Woodin cardinal or a hod mouse. We take the first viewpoint and hence we regard X" as an
iteration strategy for P” as a ¥-mouse (so all 7 according to ¥” are above o(P) and iterates of P”
according to ¥/ are X-premice).

For each p € Coll(w,w1), let G, be the “finite variation” of G induced by p and let g, be the
corresponding Pz-generic induced by © and G,. We let AP = (A? : i < w) be jgp(ff). Let (Qp, %))
be a hod pair in V[g] = Vlg,| guided by AP8! and (N, A) be obtained by Boolean comparing all
(Qp,Ep). So N e Vand A | V €V is a strategy acting on stacks in HL/Q such that A is has branch
condensation (and is guided by B = |, rng(AP)), and is j(I'*)-fullness preserving. Therefore, A also
has strong hull condensation by Lemma 3.34. Note that R is countable in M and A ¢ j(Lp™(R)).

Applying Lemma 3.36, we get that A = j(A)/. By elementarity, in V, there is a pair (P’, %)
and an elementary embedding 7 : P’ — R such that

(a) X' =A™
(b) X' | HC is I'*-fullness preserving and has branch condensation.
(c) P’is a countable X-mouse (i.e. m | P = id) that is I'*-suitable.

(P, %) satisfies (1) and (2). We note that property (a) above gives that ¥/ is an (wa,w2)-
strategy. Now Lemma 5.4 implies that ¥/ is w1-UB. This completes the proof of the theorem. [J

81We can take (Qp, Xp) to be (P, jg, (5")).
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6. THE LIMIT CASE

Recall we let g C Pz be V-generic and j = j, : V. — M = Ult(V, g) be the corresponding ultrapower
map; by our hypothesis, g corresponds to a V-generic G C Coll(w,w;). We also let k: M — N be
the generic ultrapower map induced by a generic h C j(Pz). We remind the reader that CH holds,
so the continuum ¢ is wi.

Let (0 : a < ) be the Solovay sequence computed in I' (our maximal model) and © = sup., 0, .
By the previous section, v is a limit ordinal and © is the Wadge ordinal of I'. Recall for a < O,
by I' | @, we mean the set of B € I" such that the Wadge rank of B is less than a. We also remind
the reader that our inductive hypothesis implies that every B € I is w1-UB; in particular, because

O is a limit of Suslin cardinals in I", by Corollary 5.10, j | © is independent of g. First we claim
T <.
Lemma 6.1. Suppose |I'| = ¢*. Then T' = p(R) N L(T,R).

Proof. Suppose not. Let a be the least such that p,(Jo(I',R)) = R, i.e. Jo(I',R) defines a set
of reals A such that A ¢ T. Hence o > ¢t by our assumption. Let f : a x ' = J,(T',R) be a
surjection that is definable over J,(I',R) (from parameters).

We first define a sequence (H; | i < w) as follows. Let Hy = R. By induction, suppose H,
is defined and there is a surjection from R onto H,. Suppose (¢,a) is such that a € H, and
Jo(I,R) E zp[x, al. Let (a4, Ba,p) be the <jep-least pair such that there is a B € I' with Wadge
rank (3, such that

Ja(FaR) F ¢[f(7a,w7B)va]'
Let then Hy,p1 = Hy, U {f(Ya,p. B) | Jo(I,R) E Jxplz,a] Aw(B) = Bay Na € Hy}. It’s easy to

see that there is a surjection from R onto H,,1. This uses the fact that O = ¢t is regular, which
implies sup{B,.4 | @ € Hy A Lo(T',R) E Jzpx,a]} < © = ¢*. Let H = |J,, H,. By construction,
H < J,(T',R). Finally, let M be the transitive collapse of H.

Say M = Jg(I'*,R). By construction, it is easy to see that I'* = I' [ 6, for some 7 such that
0, < ©. But then p,(Js(I'*,R)) = R.5? This contradicts that I'* is constructibly closed. O

The lemma gives I' = p(R) N L(I',R) and in fact, L(I',R) F “ADr + © is regular”. This is
because © = ¢* in this case. This contradicts (). Therefore, |T'| < ¢ as desired.

Let H be the direct limit of hod pairs (P, X) € I" such that ¥ has branch condensation and is
fullness preserving under iteration embeddings by ¥. So A* is a limit ordinal. For each o < A,
let X, be the strategy of H(«) in j(I') obtained as a tail of some (any) j(X), where (P, %) is a hod
pair in " with branch condensation and is fullness preserving such that M(P,X) = H(«). Let

2 = Dacrrt Xa-

82For instance, to see that T' [ g C T*, let A € T'be OD in Jo (T, R) from a real . Suppose A ¢ M. By minimizing
the Wadge rank of A and minimizing the ordinal parameters defining A, we may assume A is definable in Jo (I, R)
from z. By elementarity, A is definable in M from z, so A € I'*. Contradiction.
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Now note that
4 is continuous at A\™ if and only if cof” (A") = w.

First note that j [ w} € M. If j is continuous at A* and cof” (A\*) = wy, then j(w]) is singular
in M. This contradicts the fact that j(w]’) is a successor cardinal, hence regular, in M. This
implies cof” (A\*) # w!” and hence cof” (A\") = w.

At this point, we can show that cof” (A\*) > w. But the following analysis does not assume this.
See Remark 6.9.

Lemma 6.2. e X[V eV and ¥ does not depend on g.
e j | OF is independent of g.

Proof. This follows from our induction hypothesis, i.e. for each «, 3, is w;-UB by the inductive
hypothesis, and hence ¥, [ V € V and does not depend on g. This gives the first item. The
argument for the second item is given at the beginning of the section.

O

Let

Lp=i M ()  if YM < LpZi W (H) p, (M) > 6
7#:{p (H) i p (H) puo(M) > (6.1)

P where P < Lp™J(1)(H) is the least A such that p,(N) < ©.

To be technically correct, by Lp™7() (%) we mean Lp>(H) defined inside L(j(R),C) for some
C € j(I'). This makes sense as ¥ € j(I') and the Solovay sequence of j(I') has limit length. By
Lemma 6.2, we get that
HT eV

This is because H* is definable in V[G] from H,¥ | V and by Lemma 6.2, ¥ [ V € V and does
not depend on G.

Proposition 6.3. || < c. Therefore, j | HT € M

Proof. Suppose we have H* = Lp™7/ (1) (H). If [HT| = ¢, we would get an w;-sequence of distinct

reals in j(T'), noting that (¢*)V = w) is w; in M by the density of Z. Contradiction. Therefore,

|HT| = ¢, and hence H™' is countable in M. Again, by density of Z, j | Ht € M. A similar

argument also works for the second case of (6.1). O

Using the embedding j, the fact that j | H* € M, and the construction in [3, Section 11], we
obtain a strategy A for H* such that

(i) A extends X;

(i) for any A-iterate Q of H* via a stack 7 such that iT exists, there is an embedding o : Q —
j(H') such that j | HT = ¢ 04’ . Furthermore, letting Ag be the T-tail of A, for all v < A2,
Ag(a) € j(I') has branch condensation.
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(iii)

A is T(H™*, A)-fullness preserving.

We outline the construction here. First recall definitions and notations related to the analysis

of stacks in [7, Section 6.2] summarized in Section 3.2; see [7, Section 6.2] for a more detailed

discussion.

Definition 6.4 (j-realizable iterations). Let 7 € HCM be a stack on H*. We say T is j-realizable

=

if there is a sequence (o : R € tn(7T)) such that

(1)
(2)
(3)

(4)

o+ =35 | HY; for all R € tn(T), o : R — j(H).

For R, Q € tn(T) such that R <75 Q, op = gg o 7777;79.

—

For every R € ntn(T), there is a reasonable hod pair (Sg,Ar) € j(I') that is j(I')-fullness
preserving and has branch condensation such that or[R(¢7R +1)] C rng(wé}s o)

-

For every R € ntn(T), letting (Sgr, Ar) be as above, and letting kg : R(éf’R +1) = Sg be
given by: kg (z) =y if and only if og(z) = ﬂé\g - (y) and krTr is according to Ag.

For every R € ntn(f), let S5 be the last model of knﬁg and let Or be the last model of
Tr (considered as a stack on all of R). Suppose 7T is defined (hence, Qr € tn(T) and
R <Ts Or). Let k% : Qr(¢) — S} be the natural map that comes from the copying
construction, where O (() is the image of R({f’n + 1) under the iteration embedding of 7.
Then we define oo, : Qr — j(HT) as follows: for all z € Og,

00 (@) = or()(rh (ki ())).

where f € R, and a € [Q(WZ’QR@%’R + 1))]<% are such that z = 7T:77;QR(f)(CL); here A =
(AR)ka‘R,S;%-

For every trivial terminal node R, for every ¢ < A%, there is a reasonable hod pair (Sg, Ar) €
J(I') where A is j(I')-fullness preserving, and has branch condensation and og(§ + 1) C

A
rng(wssm).

The maps (o : R € tn(T)) are the j-realizable embeddings of 7. In the above, we may also
choose (Sg, Ar) such that letting j(H)(a) = Moo(Sr, Ar), then « is minimal. —i

Now we define the domain of the strategy A. Basically, it consists of j-realizable stacks. See [8,
Definition 11.5].

Definition 6.5. Let 7 € HCM be a stack of on H*.5% We let 7 € dom(A) iff T is j-realizable.
Define A(T) = b iff T"b is j-realizable. .

Lemma 6.6. Whenever T € dom(T), then A(T) is defined.

83T either has a strongly linear, closed and cofinal set C' C tn('f') or ’7%37_ is of limit length.
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See [3, Lemma 11.6] for a similar argument. In other words, the lemma states that if 7 is j-
realizable and has no last model, then we can find a cofinal branch b of 7 so that 7"b is j-realizable.

We sketch the argument here.

Proof. Suppose 7 has a last model. Then it is easy to verify that A(7_") is defined. So we now
assume 7 does not have a last model.

Suppose there is a strongly closed, cofinal C C tn(’f) In this case 7 has a unique, cofinal,
non-dropping branch b determined by C. Let Q = MZ’ and o0g : @ — j(H™) be the direct limit
of the maps {or : R € C}; more precisely, let og(x) = y if and only if there is some z* € R for
some R € C such that ﬂ'zvg(l‘*) =z and og(z*) = y. It is easy to see that og is well-defined and
satisfies the clauses of Definition 6.4.

Otherwise, we are looking for a branch of 73%. Let R = Sz and U = 73%. By our hypothesis,
objects like o, kR, (Sr, Ar) as in (3) and (4) can be defined. Let then b = Ag(krl), Q = MY,
S* = M’;Ru’ k:Q(¢) — 8% og: Q— j(H') be the objects as described in (5) above. So b is the
branch of ’7_?5% we are looking for.

In the following, we assume @ is a terminal node; otherwise, we’re done. We need to verify clause
(6) in the case Q is a trivial terminal node. The case for non-trivial terminal nodes has been dealt
with as above. Without loss of generality, we assume Q # R and there is a U on R with last model
O such that ﬂ%yg exists. We let or, kg, (Sr,AR),S*, k be the objects associated with R,U, Q as
before. Welet A = (AR )krpu,s+ and og = ﬂ'fs\*’oook. Fix ¢ < A2. Let (W, ¥) € j(T) be a reasonable
hod pair such that ¥ is j(T')-fullness preserving, and such that M (W, ¥) = j(H")(oo(£ + 1)).
We can then find (S, ¥s) € I(W, ¥) such that 0g[Q({ +1)] C rng(ng’io). We are done. O

Remark 6.7. Suppose T e dom(A), then there is at most one b such that T b is j-realizable. In
the proof of Lemma 6.6, the only case to verify is when S,f- exists. Let R,U,oRr,kr,(Sr,AR) be
as there. Suppose (Sk,A%) and lg : R((7R + 1) — Sj are such that Ig(z) = y if and only if
or(z) = wé\goo(y), IrTr is according to A% and ¢ = AR (IrU). To see b= c, we let (S, V) be the
common iterate of (Sg,Ar) and (Si,A%). Let 09 : Sg — S and o1 : S — S be the iteration
maps. So Ar = (V)% and A} = (V)7 because these strategies are pullback consistent. It is also
easy to verify that

0p 0 kr = 01 0lR;
this is because letting 7 : S — UR(R(&T”R +1)) be the direct limit embedding according to ¥, then
orR =Toogokr =Too00lR.

So 0g o kg = 01 ol as desired. Therefore,
b= Wo0%kR (1Y) = UoelR (1) = c.
Clearly, if A is a j-realizable strategy, then A satisfies (i) and the first clause of (ii); by basic

hod mice theory (cf. [7]), A also satisfies the “Furthermore” clause. By the proof of [8, Lemma
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11.8], we can choose A so that ['(H T, A) is Wadge minimal (amongst all strategies A constructed

this way) and this particular choice of A satisfies (iii) as well.
Lemma 6.8. HT = Lp™I ) (H) and if j is discontinuous at N, then HT E cof(\™) is measurable.

Proof. The second clause follows from the first clause and the case assumption that j is discontin-
uous at A, To see this, assume the first clause. If HT E “A™ is regular”, then by standard results
on Vopenka forcing (cf. [31]) L[H1](T) N p(R) =T and therefore, L(I',R) F “ADg+0 is regular”,
contradicting our smallness assumption (1). If H* E “A* is singular”, then letting x = coftt” (A1),
then x must be measurable in H*. This is because j | (k + 1) is the iteration embedding of H(«)
according to W =gy Y q) in M for some (equivalently any) o such that x € H(a); therefore,
i;I_’[(a)’oo is discontinuous at ,** implying  is measurable in H(«), hence in H*.

Now, suppose for contradiction that there is a P <t HT such that p,(P) < ©. Let P be the
least such. Let 3 < AM be least such that p,(P) < 6;; and (55 > cof”(A\P), here A¥ = \* and
61 = 68X for all @ < AP. P can be considered a hod premouse over (H(f),%s). Using j and the
construction in [3, Section 11] discussed above, we can define a strategy A for P such that A acts
on stacks above (55 and extends @,.y»X, (the strategy is simply @, ,»2, for stacks based on H
(above (5;;), but the point is that it also acts on all of P because of j). This is because given a
stack T according to A, there is a map o : MT j(P) such that oo T = j | P, where for any
f € P, any generator a used along the main branch of T, say a € Mf(v) and ./\/l%('y) is the image
of P(v*), then letting ¥ = 3+,

o(T(£)(@) = (NG T4 (a)).
In the above, we note that iT is continuous at AP, so we can find 7, v*.

Note that A has branch condensation. By a core model induction as in the successor case, we
get that A € 5(I').%5 In j(I'), let F be the direct limit system of ¥g-hod pairs (Q, ¥) Dodd-Jensen
equivalent to (P, A).%6 F can be characterized as the direct limit system of ¥ 3-hod pairs (Q, ¥) in
J(T) such that W is T'(P, A)-fullness preserving and has branch condensation and I'(Q, ¥) = T'(P, A).
F only depends on X3 and the Wadge rank of I'(P, A) and hence is ODééj(R)’C) for some C' € j(I).

Fix such a C and note that L(j(R),C) F AD" 4+ SMC. See Section 3.4 for a definition of SMC.
Let A C (55 witness p,(P) < 65, that is, A ¢ P and there is a formula ¢ such that for all a € 6%,

a€ A& PE dla,pl,

where p is the standard parameter of P. Now A is ODs;, in L(j(R), C); this is because letting M
be the direct limit of 7 under iteration maps, then in L(j(R),C), M € HODyx, and A witnesses

841f j is continuous at x, we show that j is continuous at \*. Suppose f : & — A™ is cofinal and increasing and
f € HT. Then j(f) € j(HT), and j(f) : j(k) — j(A\*) is cofinal and increasing. But j(x) = sup j”k, therefore,
F(AM) = sup jA*.

85\ is essentially ¥, acting on stacks above 55, so it has branch condensation. The core model induction (in M)
as done so far works for A, showing that in M we can uniquely extend A to an (w2, ws)-strategy and and A is w1-UB.
We then proceed to show M exists, and Lp®(R) E AD™T just like before.

86(P, A) is an anomalous hod pair in the terminology of [7]. (Q, ¥) is Dodd-Jensen equivalent to (7, A) means that
there are non-dropping iterates (Q*, ¥*) of (Q, ¥) and (P*,A") of (P, A) such that (Q*,U") = (P*,A").
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that p,(Mso) < 5%3. By SMC in L(j(R),C) and the fact that H(8 + 1) is j(I')-full, we get that
A € P. This is a contradiction.
O

Remark 6.9. The construction of A is nontrivial in the case that HT F cof(©) is measurable;
otherwise, A is simply ¥ but because of j, it acts on all of ™ by an argument as in the proof of

Lemma 6.8. So from this point on, we assume j is not continuous at P

Definition 6.10 (Nice strategies). Suppose 7+ : HT = R, 0 : R — j(HT) are elementary and
R is countable in M. Suppose j | HT = oo T+ R Let a < AR. We say that an iteration strategy
AR(a) for R(a) is nice if and only if

(i) Ag(a) is a j(I')-fullness preserving strategy for R(a) with branch condensation. Ag(q) is also

positional and commuting.

(i) 7['71;7(10(3000 =o' | R(«a) for some elementary map ¢’ : R — j(HT) such that j | HT =o' omy+ z

(so Ag(q) acts on all of R).
(iii) If my+ g € M, then ¥, [ M € M.

We say that a j-realizable strategy A is nice if given my+ g,0 as above, where my+  is an
iteration map according to A, and ¢ is the realizing map given in the construction of A, then for
each o < A%, AR(qa) is nice.

_1

We want to show some j-realizable strategies are nice. This will be accomplished through the

next several lemmas. Recall the notion of fullness with respect to a pointclass in Remark 3.12.

Lemma 6.11. Let T,R,or be as above. Then R is full in J(0). In fact, letting 7 : H™ — R and
o: R — j(HT) be arbitrary elementary embeddings such that j | HY = o ox, then R is full in

j(T). Furthermore, j | H', and hence m, must be continuous at o(H™).

Proof. We show the last statement of the lemma. The argument is very similar for all the other
statements; we briefly indicate the changes at the end of the proof. Suppose j is not continuous at
o(H™). Suppose without loss of generality that 7 is not continuous at o(H™1). Indeed the general
case can be reduced to this case. Suppose j | HT = o’ o/, where 0/ : R' — j(H™") is discontinuous
at o(R’) and 7’ : HT — R’ is continuous at o(H"). In M, let 0 : R — j(HT) be elementary
such that R is countable, transitive and rng(c’) C rng(c); such a o can easily be found in M by
considering a countable hull X < Hfg that contains all relevant objects, then o can be taken to be

Lo g!. Tt is easy to see then

the restriction of the uncollapse map associated with X. Let m = o~
that 7 is not continuous at o(H™).

This means there is a mouse M < LpTs<xrA=() (1) (R|6®) = R such that M ¢ R|y where
v = sup w[o(HT)]. We take M to be the least such and let X o be the unique strategy for M in

§(T) (acting on trees on M above 7).
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Claim 6.12. There is a X-hod pair (P, ®) such that
(a) PEV,® [V eV,5 and ® € j(T') is fullness preserving and has branch condensation.

(b) P is countable in M, NP is limit and coft (\F) is not measurable in P.

(c) ® = j(®).

(d) in j(I'), 38 such that I'(P,®) = j(I')|0g4w and T'(P,®)|0s E “(M,Er) witnesses 7 is not

continuous at o(H')” .
(e) o(HT) is a cardinal of P, i.e. P E “HY is full.”

Proof. First note that in M, there is some « such that 3,4, the canonical strategy of M, is in
(T) | 6%, where P* = HODY)(a) ® and P* F o = B+ w. Such P* and a exist by our
assumptions on I'. P* € V follows from homogeneity. Let U* be the strategy of P* which is
the tail of some (equivalently, all) ¥-hod pair (R*,¥) € j(I') where V¥ is fullness preserving and
has branch condensation in j(T') and My (R, V) = P*. ¥* is fullness preserving and has branch
condensation in k(j(I")). It follows that U* | V € V: we can ordinal define ¥* [ V in V[G] from
Y and P with the prescription above, using the fact that j(I') is OD in V[G]; so by homogeneity,
U VeV.

We want to find a countable-in-M version of P* in V. Let (R, V) be a ¥-hod pair in j(I")
such that My (R, ¥) = P* and V¥ has strong hull condensation, branch condensation, and is j(I')-
fullness preserving. By boolean comparisons, there is a W-iterate (P, ®) such that (P, ®) satisfies
(a). (b) is clear from the choice of P*. (c) follows from Lemma 3.36. (d) follows from the choice of
P* and the fact that T'(P, ®) = j(T') | 6%".

To see (e), suppose not and for simplicity, let HT <N <P be least such that p;(N) = ©. Let
f : k¥ — O be an increasing and cofinal map in H', where x* = cof}ﬁ(@). N is intercomputable
with the sequence g = (N, | a < k*), where N, = Thjz\/l(d}{(:;) U {pn}). Note that N, € H* for
each a < k*. Now let Rg = Ultg(H T, 1), R1 = Ulty (N, ), where u € H™ is the (extender on the
sequence of HT coding a) measure on k* with Mitchell order 0. Let ig : H — Roq, i1 : N — Ry be
the ultrapower maps. Letting 0 = 0,,+ = ©, it’s easy to see that i [ (k" +1) =4 [ (k" + 1) and
©(8)R0 = p(§)R1. The second equality follows from the fact that Rg is full in j(T') (and hence in
k(§(T))). This means (i1 (Ny) | o < £*) € p(8)%0. By fullness of HT in j(I'),% (i1(N,) | a < *) €
HT. Using ig, (i1(Na) | @ < £*) € HT, and the fact that ig | HT|© =41 | N|© € HT, we can get
N € HT as follows. For any o, 8 < O, a € Nj if and only if ig(a) € i1(N3) = ig(Np). Since H*
can compute the right hand side of the equivalence, it can compute the sequence (N, | a < £*).
Contradiction.

O

8"By ® | V, we mean ® [Hc‘ﬂ.

88We identify HODJ;F) with the direct limit of ¥-hod pairs (R, ¥) and ¥ is fullness preserving and has branch
condensation in j(T").

89 Any A C 6 in Ro is ODL") | and so by Strong Mouse Capturing (SMC, see [7]), A € H*.
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Let (P,®) be as in the claim. Let 77 : P — S be the ultrapower map derived from the 7-
extender of length 6%. We note that 7+ is continuous at o(H*) and by elementarity, S F “R|vy is
full”. Therefore, M ¢ S.

Let 7+ : S — j(P) be the factor map, so j | P =7 oo™, Let ¥ = j(®)" . By (c) of the claim,
d =0, Therefore,

I'(P,®) Cc [(R, ).

Hence, I'(R, ¥)|05 E “(M, X 1) witnesses 7 is not continuous at o(H™)”. Now, we iterate S using
U at the top w Woodin cardinals of S to make RM generic.” Let S* be the resulting model. The
derived model of S* at 65" satisfies:

L(I(8*, Ws-) | 03) F “M is a sound @s_y» Ag(g)-mouse such that p, (M) =™ but M is not in
RIv”.

On the other hand, $* F “R|y is full with respect to sound @z \r Ag(g)-mice projecting to R,

This contradicts the displayed line above.

We have shown that 7 is continuous and that R is full “at the top”, i.e. for every M <
Lp®PsarAr@:d(T) (R|67), there is a < 7 such that M < R|a. The remaining clause of fullness
is proved in an almost identical manner. Suppose there is a strong cut point & such that letting
a < AR be the largest such that 6% < v, then in 5(T), there is a mouse M < Lp™2 (Q|y) such

that M ¢ R. The argument given above can be carried out verbatim to obtain a contradiction.
O

Definition 6.13. In M, suppose X < (H.+, €) is countable.”’ X is good if letting mx : Mx — X

be the uncollapse map,
(a) jIHTTU{j(HT)} C rng(mx);
(b) HTU{HT} C Mx;

(c) letting Px = 73! (j(HT)), then Py is j(I')-full (see Remark 3.12) and for any o < APX, 7y |
Px(a) = i;\g(a) > Where A is a tail of A for some (equivalently any) hod pair (Q,A) € j(F)N
X such that A is j(I')-fullness preserving and has branch condensation and (M. (Q, A))Mx =
Px ().

_{

Remark 6.14. (a) Note that if X is good, then Py is the transitive collapse of Hulld ") (j{H]U

AKX
DacaPx Lpy (a),oo)'

99More precisely, we write ((5;9 11 < w) for the top w Woodin cardinals of S and a similar notation applies to
iterates of S. We work in M[L] where L C Coll(w,R). We have a generic enumeration (z, : n < w) of R™ and
we have a sequence of normal trees and models (7,,S, : n < w) according to ¥, where To is on § = Sp, T» is a
Tp-genericity iteration tree on S, on the window (5521, 6;?") according to the 7;,_1-tail of ¥, here §5; = 0. Letting
Seo be the direct limit, then R is the symmetric reals of So, for some g C Coll(w, < A), where X is the supremum
of the Woodin cardinals of S.

91Sometimes, we just write H 1 for (H., €) for brevity. Also, note that ¢ = wa in M by elementarity.
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(b) Letting X* = Hull"& (H') and X = j[X*], then X is good.
(c) Any good X is cofinal in o(j(H#")) by Lemma 6.11.

Lemma 6.15. In M, the set of good X is closed and unbounded; therefore, the set {X NR :
X is good} is in the dual filter of j(T).

Proof. Let X be as in Remark 6.14(b) and let Y < (H+,€) be countable in M, X < Y, and
HTU{HT} CY. Since H" is countable in M, there is a club of such Y. Clearly, (a) and (b) in
Definition 6.13 hold for Y. For (c), using the notation above and Lemma 6.11, we have that Py is
§(T)-full. Furthermore, for all a < APY 7wy | Py (a) = z;% (@) 00 by elementarity of 7y . O

Suppose X is a good hull, we let jx : HT — Px be jx = w)_(l oj. We let Ax be the strategy for
Px defined from mx the same way A is defined from j for H™ (again, we take Ax with I'(Px, Ax)
minimal). By Lemma 6.11 and the fact that X is good, Ax is j(I')-fullness preserving. By [7], there
is an iterate (Tx, Qx) of (Px, Ax) such that letting ¥ x = (Ax)7,0x, ¥V x has branch condensation,
and is commuting (see [7]). Let now MX = M (Qx, ¥x). Note that MZX = j(H*)(v) for some
v < §(A™) and MZ does not depend on the choice of (Qx, V).

By construction of Ay, there is a map my : MZX — j(H") such that

U .
nx | Px =mx on;oo oilx 92

We need a strong form of condensation to show H' F “© is regular”; basically, this form of
condensation will imply that if mx is nontrivial, then
crt(my) = 6M% 93
Therefore, MX F “M isa regular cardinal which is a limit of Woodin cardinal.” Since mx (5M§°) =
7(©), this gives j(HT) F “j(0©) is regular”. By elementarity, © is regular in H™.
The following definition originates from [8, Definition 11.14]. Let & be the set of good hulls.
For each X € 6, let Ox = jx(0).

Definition 6.16. Suppose X € & and A € Px N p(Ox). We say that mx has A-condensation if
whenever there are elementary embeddings v : Px — Q, 7: Q — j (7—[+) such that Q is countable

in M and mx = 7 o v, then
v(Tpx,4) = Tor.a,
where
Tpy.a={(0,5) | s € [Ox]= A Px = ¢[s, Al},

and

92Recall we assume j is discontinuous at AT Othewise, M2 = j(H") and mx is the identity.
91t could be that MX = J(H') and mx is the identity map. In which case, we cannot conclude © is regular in
H*. In this case, ['(H",A) = j(I'). We then simply continue the core model induction. See Section 4.
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Tora={(6,5) | s € 52 for some a < Ag Aj(HY) F 6lig2, (), mx(A)]},

where X7, is the 7-pullback strategy of §(%).24
We say mx has condensation if it has A-condensation for every A € Px N p(Ox). -

Theorem 6.17 (j-condensation lemma). Let X* = Hull & (HT) and X = j[X*]; so Px = HT,
Ox =0, andnx [ Px =j | Px. Then wx has condensation.

Proof. Fix A € Px N p(O©x). We show that mx has A-condensation. Suppose not.

We first claim that if ¥ € & is such that X <Y and 7y has my y(A)-condensation, then 7y
has A-condensation. Fix such a Y. Recall £ : M — N is the generic ultrapower induced by a
generic h C j(Pz) that we fix at the beginning of the section. Note that k(rx) = k(my) o mxy
and k(my) = k | j(Px) o my. By elementarity, k(my) has mx y (A)-condensation in N and hence
k | 7(Px) has j(A)-condensation in N, by the following calculations: for any countable R in N,
suppose there are embeddings i : j(Px) = R and 7 : R — k(j(Px)) such that k [ j(Px) = 7 o1,
then

(Tipy).ia) = ((my (Tpy xx v (4)
= TR,T,T('XVY (4)

= TR j(A);

the second equality uses the fact that k(my) has mx y (A)-condensation in N and k(mwy) = Toiomy.
Therfore, mx has A-condensation (in M) by the elementarity of j.

Suppose now for every Y € & such that X <Y, my does not have mx y (A)-condensation. We
say that a tuple ((P;, Q;, 7i, &, mi, 04 | i < w), ML) is a bad tuple (see Figure 4) if

(1) Y € 6

(2) P; = Py, for all i, where X; € &;

(3) Xo=X and forall i < j, X; < X; <Y;

(4) for all i, & : Py — Qy, 04 : Qi — M{O, Ti : Pix1 — M};, and m; 1 Q; — Piaq;
(5) forall i, 7; = 0;0&, 03 = Tiy1 0wy, and Tx, x,,, | Pi =det iiv1 = T 0 &
(6) ¢iit1(A;) = Ajq1, where A; = mx x,(A);

(7) for all 4, §(Tp,, 4,) # Tg;,01,4;-

In (7), T, ,0;,4x, is computed relative to MY, that is

b
Tg, 0,4, = {(9,5) | s € [6] for some a < A% AME E dlig, (s),7i(A:)]}

942& = @a<>\9j(2)‘é(a)'
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70

MY
Figure 2: A bad tuple

Claim 6.18. There is a bad tuple.

Proof. For brevity, we first construct a bad tuple ((P;, Q;, 7, &, miy 04 | @ < w), j(HT)) with j(H™T)
playing the role of MY . We then simply choose a sufficiently large Y € & and let iy : Py — MY be
the direct limit map, my : ./\/lé/O — HT be the natural factor map, i.e. my oiy = my. It’s easy to see
that for all sufficiently large Y, the tuple ((P;, Q;, m{,l 0T, m;,l o0&, m{,l om;, m{,l oo; | i <w), M¥)
is a bad tuple. But the existence of such a tuple ((P;, Q;, 7, &, mi, 07 | i < w),j(HT)) follows from

our assumption. [
Fix a bad tuple A = ((P;, Qi, 7i, &, T, 04 | 1 < w), M) given by the previous claim.
Claim 6.19. There is a $-hod pair (P ,1I) such that

(a) PO s limit ordinal of the form o + w, and such that Ay <, HPS’(a’) (so Ax, <y Hpa-(a,) for
all i).

(b) (P§ I V)eV.

(¢c) In M, Py is countable and I‘(PJ(O/),HPJ(Q,)) F A is a bad tuple.

(d) II has branch condensation, strong hull condensation, is j(I')-fullness preserving.
() L= j(IT | V).

Proof. The properties above for (776r ,IT) can be obtained by a proof similar to that of Claim 6.12,

with the last clause coming from Lemma 3.36. O

This type of reflection is possible because we replace j(H') by MY . If Z is the result of
iterating Py via I above 55,; to make RM generic (see Footnote 90), then letting h be Z-generic
for the Levy collapse of the supremum of Z’s Woodin cardinals such that RM is the symmetric
reals of Z[h], then in Z(RM),

L(Py (), Hpgr(a,)) E A is a bad tuple.
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i(Pg)
Figure 3: Lift-up maps of a bad tuple

Now we define by induction & : PF — Qf, nf : Qf — 73;_11, ¢Zz‘+1 C P - P, as
follows. ¢(J)r,1 : Pgr — P; is the ultrapower map by the extender of length ©x, derived from
TXo,X,- Note that gb[{l extends ¢o1. Let f('f : Par — Qg extend &y be the ultrapower map by the
(crt(&p), 690)-extender derived from &y. Finally let Ty = (QZ’(J)F,l)_l o&f. The maps &, 7, QS;;.H are
defined similarly. Let also My = Ult(Py, F), where F is the extender of length Oy derived from
mx,y. There are maps e€; : P;r — My, €211 : Q;r — My for all i such that ey = €9;41 0 ‘fj,
€2; = €9;49 O gb;’:iJrl, and €2;+1 = €242 © 7ri+. Let 7 : My — j(PgF)% be the factor map. When
1 =0, € is simply 7, the ultrapower map by F. That these maps are well-defined and the objects
P;r , Q;r end-extend P;, Q; respectively come from the fact that j [ H* is continuous (see Lemma
6.11). See Figure 3.

Letting 3; = ¥p, and ¥; = Xg,, there is a finite sequence of ordinals ¢ and a formula 6(u,v)

such that in (P, II)

(8) for every i < w, (¢,s) € Tp, 4, & G[i;v;:(a) (8),1], where a is least such that s € [67i]<%;

(9) for every i, there is (¢, 5;) € Tg, ¢, (a,) such that —0] Qi(a),oo(si)’ t] where « is least such that

s5; € [02]<w.
The pair (6,t) essentially defines a Wadge-initial segment of T'(Pg,II) that can define the pair
(MY, A*), where 7;(A;) = A* for some (any) 4. In fact, these parameters are inside I'(Py («), IT).
Let II; be the 7 o ¢;-pullback of j(IT). Hence,
EY <w HOZH:](H fV)] <w 1_[1 Sw](ﬂ TV)W
We can use the strategies II;’s to simultaneously execute a RM-genericity iterations. We outline

the process here. First we rename <77i+, QT, e ji+1,7rz-+ | i <w)to(P2,09,€0 0% 79 | i <w). We

91 = 01 0 g0, where g0 : My — wr(Py) is given by oo(rx,v (f)(a)) = n5(f)(7y(a)) for f € Pf and a € [Oy]<¥

and o1 : Te(Py) — §(PF) is defined as: o1(mr(f)(a)) = j(f)(a) for f € Pf and a € [rp(0)]<“. Here E is the
extender of length j(©) derived from j.
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fix in MCUR) (2, | i < w), a generic enumeration of RM. We get (PP, QF, &%, ¢, w77, k' | n <

YR R
w A1 < w) such that
(i) P¥ is the direct limit of the P’s under maps 7/*’s for all i < w.
ii) QY is the direct limit of the Q%’s under maps k*’s for all 7 < w.
1 (2 K3
iii) P™" is the direct limit of the P!"’s under maps 72'’s.
w 1 p 3
(iv) foralln < w, i <w, ¢f : P = Pl & PP — Qs mib + QF — PJy and ¢} = ' o &'

Then we start by iterating ’Pg above 5(758 to 736 to make xg-generic at 5§i1; say the tree is Tg. We
let 7§ : P§ — Pg be the iteration map. During this process, we lift 7o to all P, QY for n < w
using the maps f? , d)?. We pick branches for the trees on 73? , Q? according to the strategies II;. We
describe this process for the models @9, PY. Let W be the end model of the lift-up tree £J7 on Q.
Note that the tree )7 is according to I1;. We then iterate W to Q} (using (II;))y) to make zg
generic at (50%111. Let & : P4 — Q} be the natural embedding. Let 7; be the x(-genericity iteration
tree on W just described and W* be the last model of ¢>876A§T1, where £ is the natural map from
W to the last model of ¢J7y. We then iterate the end model of the lifted stack ¢g7, ¢71 on QF,
noting that this stack is according to Ils, to Q% to make x(y generic at 60%1. Let k:8 : QB — Q(l),
™+ PY — Pl be the iteration embeddings, 7} : Q) — P{ be the natural map, and ¢} = 7} o &}.
Continue this process of making x¢ generic for the later models Q%’s and P%’s for n < w. We then
start at 7301 and repeat the above process, iterating above 5(7;?:1 to make x; generic at images of
5§i2 etc. This whole process defines models and maps (P}, QF, &, o2, wl*, 7/ k' | n < w A i < w)
as described above.

The process yields a sequence of models <77;,rw =Py, Q: L = QY | i < w) and maps §Z-T L =&
P;fw — Q;fw, 71';;} =7 Q;Lw — P;;lyw, and QS;;-HM =¢¥ = W:woﬂ;:w. Furthermore, each P;fw, Q;fw
embeds into a j(II [ V)"-iterate of My and hence the direct limit Py of (P;fw, Q;fw | i,j < w)

under maps 7'&': . s and §i+7 » 8 is wellfounded. See the following figure.
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Let C; be the derived model of P;rw, D; be the derived model of Q:w (at the sup of the Woodin
cardinals of each model), then R = R = RP:. Furthermore, C;Np(R) C D;Np(R) C Ci11Np(R)
for all i.

(8), (9) and the construction above give us that there is a ¢ € [OR|<%, a formula 6(u,v) such

that

(10) for each i, in C;, for every (¢, s) such that s € 67, (¢,s) € Tp, 4, & oliz

Pila) (8),t] where a
is least such that s € [67]<%.

Let n be such that for all i > n, 5;;;(75) = t. Such an n exists because the direct limit Py is
wellfounded.?® By elementarity of §ZT , and the fact that 5: o | Pi=&,

(11) for all i > n, in D;, for every (¢, s) such that s € §<, (¢,s) € To, ¢4 & H[igi(a),oo(s)ﬂ

where « is least such that s € [621]<%.
However, using (9), we get

(12) for every i, in D;, there is a formula ¢; and some s; € [(5Qi]<“’ such that (¢;, s;) € To, (A
but ﬂgb[igz(a) (8),t] where o is least such that s € [§27]<%.

9We can arrange that Pe embeds into a j(II)*-iterate of j(Pg), where j(IT)" is the canonical extension of j(IT)
in N.
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Clearly (11) and (12) give us a contradiction. This shows that mx has A-condensation. Since A is

arbitrary, mx has condensation. This completes the proof of the theorem. O

From the above theorems, we obtain a nice, j-realizable iteration strategy A with the following

property:
letting Moo (H™, A) be the direct limit of (all countable) A-iterates of H* in M, then
there is an elementary map 7 : Moo (HT,A) — j(HT) such that 7o 7'('?/}[_‘_700 =j | H"
and if 7 is nontrivial, then crt(7) = §Me(PTA),

The map 7 is defined as follows: for any x € My (H',A), let R € M be a Y-iterate of HT
such that there is some y € R such that 777/%7’200 (y) = z. Now by construction of A, there is a map
TR : R — j(HT) such that j | PT = g o 71'7/_\[_,_7R and 7r | 0% agrees with the iteration map by
A. We then let 7(z) = mr(y). 7 is well-defined by the fact that some iterate of A has branch
condensation and is commuting.

The reason A is nice is because by construction and Theorem 6.17, whenever i : HT — R is
according to A, letting 7z : R — j(H™) be given by the construction of A, then 75 | 6 = ﬂ%?oo o
and Agisr = j(X)7. So (ii) of Definition 6.10 holds for Az (y) for all o < AR. From this and standard
theorems in the theory of hod mice, see [7, Theorem 3.26], we get that for all a < §%, AR(q) satisfies
(i) Definition 6.10. (iii) is also clear. Furthermore, if 7 : Moo (H',A) — j(H™) is as above and
is nontrivial, then since 7 is the “direct limit” of the 7r’s for non-dropping A-iterates R of H™T,
Theorem 6.17 implies that crt(r) = §Meo(PA),

There are two cases. The first case is when 7 is non-trivial, we then have that §Moe(PT.A)

is
a regular cardinal which is a limit of Woodin cardinals of Mo (PT,A). Furthermore, by fullness
preservation of A, ¢Me=(PT:A) — 2™ for some a and hence L(Muoo(PT,A),j(T)|6,) E “ADT + ©
is regular.” Contradiction to our smallness assumption.

The remaining case is when 7 is trivial. In other words, I'(H*, A) = j(T'). By elementarity, there
is a reasonable pair (P, A) in V such that A is fullness preserving, has hull and branch condensation,
is pullback consistent, commuting, and I'(P, A) = I". At this point, we remind the reader that our

assumption is A¥ has measurable cofinality in P (cf. Remark 6.9). We need to show.

Lemma 6.20. There is a reasonable hod pair (Q, V) such that Q € V' is countable, I' = T'(Q, ¥),

U has a unique extension T that acts on stacks in HXZ and ¥ is w1-UB.

Proof. Let (P, A) be a reasonable pair in V' such that A is fullness preserving, has hull and branch
condensation, is pullback consistent, commuting, and I'(P,A) = T'. Let (R,A’) be the result of
boolean comparing all “finite variations” of A i.e. for a V-generic G C Coll(w, w1 ), for a condition
¢, let Gy =G —G | dom(q)Ugq, let Ay = jg (A) and compare in V[G] all pairs (P, Ay) (see Section
3.6). o7

Claim 6.21. The boolean comparisons outlined above succeeds and hence (R, A’) above exists.

9"To be completely precise, we compare all pairs (P,A,) for ¢ < p, where p forces all relevant facts in V[G]
mentioned above. But we suppress the condition p for brevity.
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Proof. The argument is basically from [7, Theorem 2.47]. Suppose the comparison doesn’t succeed.
We can then build a “diamond sequence” of length w;. More precisely, we have a sequence B =
(Ras Sas Py Tooy Uy W, b, 1%, 58, €0 - @ < B < wi A g € Coll(w,w))), where

(1) Ro = P.

(2) Tg Uy is a minimal disagreement between {(Ro,A,) : ¢ € Coll(w,w))}. To is according to
all A, with last model Sy. For each ¢, bl = (Ag)7 (Uy) and i¢ + So — P& is the iteration

embedding according to (Ag)z g . ie. if = 0. We write o, for Ag.

(3) For a > 0, T Uy is a minimal disagreement between {(RasUay) : q € Coll(w,w))}. T
is according to all ¥, , with last model S,, where ¥, , is the appropriate tail of A, on R,
via the stack @5<a7—;ﬂ5{gl/_\’/g. For each ¢, b3 = (Yaq)7, s, (Us) and i, : S, — PY is the

corresponding iteration embedding according to (\Ila,q)f ,ie. g = izlj?.

(4) jd : PL — Ray are iteration maps via stack Wg according to (\Ifa,q)imzybq.

(5) For any «, for any 8 < ARe+1_ for any p # ¢,

(Yow)7rgc0n W8 Ross () = (Vo) 200240 We Rain (8)°

but for some p # g,

(Yop)zrgcmn wr Ross 7 (Youd) 200008 Wi R

(6) For each B < wy, &5 is the least & € (§(73), A5%)% such that Up is a stack on Sg(& + 1) and
there are p # ¢ such that L_iﬁ witnesses (‘I’a,p)ﬁ%sﬂ(g—ﬁ-l) a (\Ifa,q)%ﬁﬁ(gﬂ), so in particular

bh # bl, but for all p, g (\IIO‘»P)T'B,SB(@ = (\I’avq)ﬁg,sﬁ(g)‘

Clause (6) explains the term “minimal disagreement” used in (2) and (3). By our assumption, for
each «, there are p # ¢ such that b, # bl, equivalently U, witnesses (\PQ)TL Sa # (\I/’p)ﬁ S For each
@, q, let 3, be the appropriate tail of A, on P4 and A*7 be the order type of the Woodin cardinals of
P4. The maps j& (in (4)) exist by the process of simultaneously comparing all (Pd, (Ba<reaXq(a))
into a common hod pair construction inside j(I') (as described in Section 3.6). Furthermore,
the common model of the comparison exists and is called Rq+1, see [7, Theorem 2.47]. The
main point is {¢ : ¢ € Coll(w,w} )} is countable in M and the supremum of the Wadge ranks of
{@acraay(a) : g € Coll(w,w] )} is bounded in j(T'). That is why we can find a coarse Q-Woodin
mouse (N, ¥, §V) that Suslin captures {@q<raaXy(a) : ¢ € Coll(w,w])} (and a universal Q-set,
for  C 4(T), a Suslin co-Suslin pointclass containing all {Ba<raaXy(@) : ¢ € Coll(w,w])}) and
performs the above comparison with the hod pair construction done inside N to guarantee (5);
this process is further explained in Section 3.6. The comparison succeeds for each o < wi. So the

sequence is of length wy.

985('?73) is the supremum of generators used along ’T}g
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Figure 4: A Diamond sequence

Now, the proof of [7, Theorem 2.49] gives us a contradiction. We sketch the proof here for
the reader’s convenience. Let B be the sequence above and let X¢ < X; < H,,, be countable and
contain all relevant objects (recall we work in V[g]). Let m; : H; — X; be the uncollapse map,
wi = crt(m;) for i € {0,1} and let 7 : Hy — Hj be the map 77! o my. For each p € Coll(w,w}),
let j£, ., be the iteration embedding from R, to R, by Wko,p. It is easy to see that (see [7,

Theorem 2.49] for the simple calculations) for each such p:
jgo,m =7 [ R
Let then j¥ : Sy, — Ry, be the embeddings according to (Wi, )7 o . For each x € S, let
KQHICKQ
f € Ry and a € §(T,,)< such that z = w70 (f)(a), it is easy to see that

3P (x) = 7 (f)(5"(a)).
But note that the maps 57 | 6(ﬁ0) agree (by property (6)), so indeed, the maps jP agree on Sy, .
Using this and pullback consistency, an argument just as in [7, Theorem 2.48] shows that for all
p,q,

(lIlfvap)ﬁO’SHO (Eng+1) (Uso) = (‘I’Fumq)ﬁo Sro (Eng+1) (Zj{no)' (6.2)

This clearly contradicts (6).
The equality (6.2) above holds because, by pullback consistency, for each p

(‘I’nmp)ﬁoysﬁo(gm_,_l)(umo) = (\Illi17p)72n1(jp(£n0+1))(jpuNO)7
and by (5) and the fact that the maps jP’s agree on Sy,, for any p, g,

—

(P rer )R, (7 (€ng +1) (P Ug) = (Vs )R, (j(6g 1)) (T Uiy )-
This easily implies (6.2). O

By the claim, R € V and A’ [ V € V. By Lemma 3.36, A’ = j(A’)/. By elementarity, there
is a hod pair (Q,¥) such that Q@ € V is countable, an elementary embedding = : @ — R such
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that ¥ = (A/)™ and I'(Q, V) =T. ¥ is an (ws, ws)-strategy with branch condensation is I'-fullness

preserving.

Claim 6.22. ¥ is wi-UB.

Proof. Let My, be the direct limit of all non-dropping iterates of W and i : @ — M, be the
direct limit map. Let a = (Q, 1, Mo, ¥). We want to find a formula ¢z, a] such that for a club of
countable X < H,, containing all relevant objects, letting nx : Mx — X be the uncollapse and
(wi¥,a™) = 7! (w1, a), for any Mx-generic h C Coll(w,wsY) in V, for any T € Mx|h] according to
U and b € Mx/[h] a cofinal branch of T,

Mx[h] E o[(T,b),a¥] < V E ¢[(T,b),al. (6.3)

We describe the formula ¢. @[z, a] says:

e If z;x; is non-dropping, letting T =z and b = x1, then there is a map o : /\/lgi — ag such
that o o iZ = a;1. Here we think of x as an ordered pair (xo,z1) and a as an ordered tuple

(ao, ai, az, a3).

e If zjx; drops, letting T = rg, b = x1, and (7_;,73&,5@ ca < v A&, < APo) be the essential
components of '71,99 then for a < v, 7_2 does not drop and is based on P, (&a), 7; is a stack
based on P, (), & is a successor ordinal, with cofinal branch b. There is a Q’, a nondropping
iterate of ag according to as, with iteration map 7 : ag — @', and a o1 : P, — Q' such that
o1 0i7<v = 7, where T= = BacyTa, and letting ¥/ = (a3)G %, then b = V(7).

Now we show 6.3, suppose 7 b does not drop, then the equivalence follows easily. This is
because if Mx[h] E ©[(T,b),aX], then nx oo : M? — M is such that 7x oo o i? = Tx oai.
Tx oay = mx(a1) : @ — My is the direct limit map. By branch condensation, b = (7). If
V E ¢[(T,b),a], then again by branch condensation, b = U (7). Mx[h] E [(T,b),a*] by boolean
comparisons done inside Mx|[h].

Suppose b drops. Then clearly, Q(b,T,) exists. If Mx[h] £ ¢[(T,b),a*] then clearly V E
@[(71, b),a]. Conversely, by boolean comparison, we can find a 7,Q" € My and o1 € Mx|[h| that
satisfy the second clause above. Letting ¥’ = (a3)5 and ¢ = ¥ (T,), then since ¥ is fullness
preserving (see [7, Theorem 3.26]), Q(’f, ¢) must exist, and therefore ¢ = b as shown in the previous
section. In both cases, b= ¥ (7).

O

O]

98ee [7, Definition 2.37).
100We suppress from the notation the stack {f with iteration map 7 and last model Q, technically we should write

- . . - . ;
. = \ :
(a3)f; o- This case includes the case v =0 and 7,01 are the identity maps
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Let (Q,¥) be given by the above Lemma. We can then proceed with the CMI and show
Lp¥" (R) = AD". This implies then that U € I', contradicting the fact that I'(Q, ¥) = I'. This
completes the proof of Theorem 1.4.

7. OUTLINE OF THE PROOF OF THEOREM 1.10

We outline the argument constructing models of “ADg + O is regular” from the assumption that the
non-stationary ideal on g, (R) is strong and pseudo-homogeneous. We let Z be the non-stationary
ideal on p,,, (R). Let G C Pz be V-generic and j = jg : V — M = Ult(V,G) C V|[G] be the generic
embedding. Let k : M — N be the generic embedding given by an M-generic H C j(Pz). We note
that

e j(w1) = ¢t (by the strength of the ideal).
e The properties in Lemma 2.7 hold for j.

e Letting M = Ult(V,G). M need not be closed under w-sequences in V[G]. In particular, RM
may differ from R[], Also, ¢t may be > wy .

We let I' be defined as in Section 4 and operate under the smallness assumption (1) as before.

Our inductive hypothesis in this case is:

(**):  if J is a ¥-cmi operator for some reasonable hod pair (P, ¥) such that ¥ is definable in V'
from a countable sequence of ordinals, then J is definable in V' from a countable sequence of

ordinals.

The core model induction is very similar to the one given in the previous section; however, instead
of maintaining the inductive hypothesis (1), we maintain (**). We mention some key points below.
The details are left to the reader. We fix the pair (P,X) as in (xx*). (P,X) is allowed to be (0, 0).

e If J is a -cmi operator on (a cone above some a in) H), that satisfies (+*), then by pseudo-
homogeneity, we can show j(J) [ V € V and by strongness, j(J) [ V € V has domain the
cone above a over Hc‘i The definability calculations are done in M and V[G] plays no role in
the argument. For instance, one can show using pseudo-homogeneity (as the base case) that
jE)[veVv.

e One can then show the existence of le’ﬁ whenever F is a 3-cmi operator that satisfies (xx).
Using pseudo-homogeneity again, one shows the operator H : x — Mfﬁ(m) has the property
that j(H) [ V € V and (*x) holds for H. This is the analog of Theorem 5.1.

e Theorem 5.5 can be proved by a similar argument, though much simpler as Claim 5.6 follows
easily from pseudo-homogeneity. The proof of Lemmata 5.8 and 5.11 is also given in [34].
This gives also that o(Lp™(R)) < j(w;) = ¢*.
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e The above gives an analog of Theorem 5.12, namely the existence of a hod pair (P’,%’) such
that ¥’ is Lp™ (R)-fullness preserving, ¥’ ¢ Lp~(R), and ¥/ is definable in V' from a countable

sequence of ordinals.

e In the limit case, we can define in M the model H™' (see 6.1) from j | H. Since j | H is
independent of G and hence j | H € V, HT € V by pseudo-homogeneity.

e By an argument similar to that of Proposition 6.3, H* is countable in M. We can argue j is

continuous at o(H™) as follows.

Claim 7.1. Let vy = o(H™). Then j(v) = sup,~j(a).

Proof. We first claim j | HT € V. Let < be the canonical well-order of H*; < is definable over
HT. We think of < as a bijection from o(H") onto H*. Note that j(HT) € V (equivalently
j(=)eV)and j | o(H") € V (this follows from the above discussion). j | H* can be easily
computed from j [ o(H™),j(HT),j(<). Therefore, j | HT € V.

Suppose for contradiction that j(y) > sup,.,j(a). Let v = sup j[y]. Let C=(Cq:a<n)

be the canonical (g-sequence defined over H™ (see [13] for a construction of such a sequence).
Let D = j(C),. Since v < j(v), D is defined and is club in v. Furthermore, since j | Ht € V,

cof” (v) = cot” () > w.

Since j(H*) € V, cof’ (7#)(1/) > w. This, in particular, implies that the set of limit points of
D is non-empty and in fact a club in v. By the property of [J-sequences, for each limit point

a€eD,

Dna=j(C).
Since j | HT € V, E =4c¢ j7'[D] € V is an w-club in v with the property: for all limit point
a of E with cof¥ (a) = w,

Ena=C,.

By the construction of C, E induces a P <t HT = Lp>JT) (H), but also that every M < H™T
is an initial segment of P. So P ¢ HT. Contradiction.

O]

e We can show the corresponding claim in Section 6 that continuity of j at A implies cof” (A\*) =
w as follows. If k € [wi,¢| is a successor cardinal or a weakly inaccessible cardinal, then j
is discontinuous at . This is because j | kK € M and if j is continuous at s, then j(k) is
singular in M. This contradicts the fact that j(x) is successor or weakly inaccessible, hence
regular, in M. This implies cof” (A\") = w. The proof that |[H*| < ¢, £ [ V € V and does not
depend on G, Ht = Lp™7 D) (H) E “cof” (\M) is measurable” (if j is discontinuous at A\*) is

similar, using pseudo-homogeneity.
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From this point on, we assume j is discontinuous at A" and hence Ht = Lp™()(H) E

“cofV (A™) is measurable”. Otherwise, the argument is much easier.

Claim 7.1 and the above argument show cof(o(H")) = w.

By Lemma 2.7, arguments in Proposition 6.3 and the fact that j is continuous at o(H™), we
get that j | Ht e V. N M.

The analog of Lemma 6.11 is the following.

Lemma 7.2. A is j(T')-fullness preserving .

Proof. Suppose not. Let T be according to A with end model Q such that Q is not j(T')-full.
This means there is a strong cut point 7 such that letting o < A2 be the largest such that
62 < v, then without loss of generality, in j(I), there is a mouse M <1 Lp>2() (Q]y)'! such
that M ¢ Q. Let [ : Q — j(H™) be such that j | HT =10 i%; here by the above discussions,
JHT)=apg(HT) ={j(f)(a):a € [j(O)~“ A fe€HT} and [ is defined as:

T (f)(a) = 5(f) (052 (a)),

where f € H*, a € [09]<%. Here E is the (long) extender of length o(j(#)) derived from j.

We use i to denote i’ from now on.

Claim 7.3. There is a X-hod pair (P, ®) such that

(a) PeV,® VeV, and ® € j(T) is fullness preserving and has branch condensation.
(b) P is countable in M, NP is limit and coft (\F) is not measurable in P.

(c) in j(T'), T(P,®) witnesses A is not fullness preserving.

Proof. First note that in M, there is some « such that ¥4, the canonical strategy of M,
is in j(I)[6F", where P* = HOD%F)(Q) 103 and P* F 3B8a = B + w. Such P* and « exists
by our assumptions on I'. P* € V follows from pseudo-homogeneity. Let ¥ be the strategy
of P* which is the tail of some (equivalently, all) ¥-hod pair (R, ¥*) € j(I') ¥ is fullness
preserving and has branch condensation in j(I') and M (R,¥*) = P*. Note that U is
fullness preserving and has branch condensation in k(j(I')). It follows that ¥ [ V' € V. From
pseudo-homogeneity, we can ordinal define ¥ [ V' in M from ¥ and P with the prescription
above, using the fact that j(I") is OD in M and j(©), the Wadge rank of j(I'), doesn’t depend

on the choice of G.

191 The case where v = 8o and M < Lp®#<a®e® (Q|y) is similar.

2By & | V, we mean ® | Hc‘i.

103VWe identify HODé(F) with the direct limit of 3-hod pairs (R, ¥) and ¥ is fullness preserving and has branch
condensation in j(T').
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We also have that j(P*) € V. This is because j(P*) is definable in M from {j(«), j(Z),j(HT)},
but j(Z) and j(H') are both definable in M.'** By an argument similar to that of Claim
7.1, 7 I P* € V. We want to find a countable-in-M version of P* in V.

Let (T, Q, M, A) be Pz-names for (71, Q, M, A) and let p € Pz force all relevant facts about
these objects. Let X < (H,, €) where
— XA > ¢t is regular,
~ X% C X,
cUDUHTU{T, Q, M, T, (P*, ¥ [ V), (j(P*),j | P*)} C X, and
| X] <.

Let m: Mx — X be the transitive uncollapse map and for any = € X, let £ = 7~ (2). Note
that

Ht =HT.

Let P = Pz and h C P be Mx-generic such that h € M. Such an h exists by the properties
of X. 105

Work in Mx[h], (T,Q, M, A) be the interpretation of (T, 0, M,A). Let 0 = 7 | P*; so

let ,
@ : P* — j(P*). Let R be the image of P* under the extender F derived from i7, i.e.

={i"(f)(a): f € P* ANa € [§9]<¥).

=

Let ir : P* — R be the associated ultrapower map, and let [ : R — j(P*). Let 7: R — j(P*)

be 7 =mol. Note that com =T oip.

Let YT = j(¥ [ V) and U* = 7= YW | V). In MxIh], A is not full as witnessed by T,Q
inside j(T')|a, where j is the generic ultrapower induced by h. Therefore, letting j(
V)7°F =% and j(¥ | V)7 = X, we note that

M
v
¥ <y Xo.

In M,
I(P*, %) C T(R, %),
and letting X3 = j(2)7,

LC(P%, 51)) F “Mis a Sg-mouse and ~(M < Q)."

104This is one place where we use the ideal 7 is the non-stationary ideal, or just that it is definable in V. Technically,
j(H™) is definable in M from j(H) and a countable sequence of ordinals, namely any sequence (j(7,) : n < w), where
(7n : n < w) is cofinal in o(H ™) and there is j(H) < My, <t j(H™) such that o(M,,) = j(7x).

105WWe do not have a way of lifting « to all of Mx[h]. This creates complications and forces us to argue as below.
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Figure 5: Diagram for the proof of Claim 6.12. Here 7 = 7o [.

Finally, note that 7 is according to A as T is j-realizable. It is easy then to see that (a),(b),
(c) hold for (P*,%;). Therefore, the pair (P*,%;) is the desired (P, ®). See Figure 5 for an

illustration of the argument above.

O]

Now we proceed to finish the proof of Lemma 7.2. Let (P, ®) be as in the claim. We assume
that L(I'(P,®)) satisfies the statement: “Q is not full as witnessed by M”, i.e. we reuse the
notation for 71, 9O, M,l. By arguments similar to that used in Lemma 6.8, we see that no
levels of P projects across © and in fact, by the proof of Claim 6.12(e), o(H™) is a cardinal
of P.

In other words, P thinks H™ is full. Let ¥ = & | V and let
P =R

be the ultrapower map by the extender induced by i of length §9. Note that Q <R and R

is wellfounded since there is a natural map
I*:R—Pg

extending [ and g | P = [*o0i*; here I*(i*(f)(a)) = WE(f)(ig?w(a)) for f € P and a € [§9]<¥
and Prp = {rg(f)(a) : f € PAa € [j(0)]<“}. We note here that since 7g is continuous at
o(H™), j(HT) is a cardinal initial segment of Pg. Furthermore, there is a natural embedding
o~ : Pg — j(P) such that

j [’P:g*ol*oi*.

Here o~ (mr(f)(a)) = j(f)(a) for all f € P and a € [j(©)]<¥. The equality above just comes

from the fact that E is an extender derived from j.
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By the choice of (P, ®), M’s unique strategy X <,  and Xy € L(T'(P,®)); so in partic-
ular, L(I'(P, ®)) knows Q is not full as witnessed by (M, X ).

Let W= ./\/lej’ﬁ and A* be the unique strategy of W; again W € V', W is countable in M, and
A* |V € V. Furthermore, by fullness of P, o(P) is a cardinal of WW. Let W* be a A*-iterate
of W below its first Woodin cardinal that makes (Q,7T) generic via the (Q, 7 )-genericity
iteration. Letting K be the generic for the extender algebra of W* at its first Woodin
cardinal such that (Q,7) € W*[K], then the derived model D(W*|K]) (at the supremum of
the Woodin cardinals of W*[K]) satisfies

L(T(P,®),R) F Q is not full.}06107

So the above fact is forced over W*[K].

Now further extend i* to it : W — Y and extend [* to [T : Y — Wg so that 7g | W =
[T oi™; iT, 1T, Wg are defined in a similar manner as above. Again, there is a natural map
o : Wg — j(W) such that ool oi™ = j | W. Note that (), 0 0l™) are countable in M; this
is the key reason we need P is countable in M. Therefore, it makes sense to pullback in M

via o olt. Let
U* = j(A*)oeL
Now note that ® = (75(¥)"")" and A* = (¥*)", so
T(P,®) CT(R,mp(¥)") (7.1)

and
A<, T* (7.2)

Now iterate ) using U* to J* above Q to make RM generic (see Footnote 90). From 7.1 and
7.2, we get that in D(Y¥),

L(T(R,7e(¥)")) E Q is not full as witnessed by M.

This gives M is ODgéy*), so M € Y* and so M € R since R is a cardinal initial segment
of Y*. This contradicts the internal fullness of Q inside R (P thinks HT is full, so by

elementarity, R thinks Q is full). See Figure 6 for an illustration of the argument above.

O]

106Here we abuse notations a bit, by using the same notation for ® and its various restrictions.

107This is because we can continue iterating W* above the first Woodin cardinal to W** such that letting A be the
sup of the Woodin cardinals of W**, then there is a Col(w, < \)-generic h such that RV is the symmetric reals for
W**[h]. And in W**(RVI)), the derived model satisfies that L(I'(P,®)) E Q is not full. In the above, we have used
the fact that the interpretation of the UB-code of the strategy for P in W** to its derived model is ® | RV this
key fact is proved in [7, Theorem 3.26].
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Figure 6: Diagram for the proof of Lemma 7.2.

e Regarding the proof of the j-condensation lemma (Theorem 6.17), the following are the main
changes we need. Fix a bad tuple A = ((P;, Q;, 7, &, mi, 04 | i < w), MY) in M as in the
proof of Theorem 6.17; note that k(A) = ((P;, Q;, 7, &, mis 07 | 1 < w), k(ML) is also a bad
tuple in N.

We let (Pg,1I) be such that

(a)

(b)

()

()

(e)

Pl = HODgF) (o +w) for some limit ordinal o/ such that A € j(I')|0,. Note that Py
is countable in N and {k(P;),k | P} € M.

IT is the natural strategy of 738“ and is the tail of any YX-hod pair (R, ¥) such that
Moso(R, W) = Py

I MecMandII | M C k(I | M)*. The latter property follows from the fact that
(P, 1) is a hod pair of limit type, IT has branch condensation and is k(j(T')) fullness
preserving; therefore, basic theory of hod mice, e.g. the proof of [7, Theorem 3.26],
implies IT = k(IT)*. We do not know if the conclusion of Lemma 3.36 holds for all hod

pairs constructed in the core model induction here, but fortunately, we do not need it.'"
We will also write II for k(IT | M)* when interpreted in N.

Ay <y H’Pgr(a’) (so Ax, <y HPJ(D/) for all 7) in N. Note that we can extend Ay
(similarly Ay, for all i) in N as the realizable strategy (which we also call Ay) of Py
into k(j(H™)) using the map k o 7y

In N, Py is countable and I'(Py (), HPgr(o/)) F A is a bad tuple.

The rest of the proof is essentially the same as before, but now we run the “three dimensional

argument” using k (instead of j) and the argument takes place in N (instead of in M). We

leave the details to the reader.

This completes our outline.

10811y the context of DI, we need Lemma 3.36 in situations where the hod pair has successor type. In the case where
hod pairs are of limit type, we can argue as above.
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Remark 7.4. If one strengthens DI to the hypothesis in Footnote 8, then an easy modification of
the outline given above will also give the consistency of “ADr + O is regular”. In particular, one
maintains the inductive hypothesis (xx), instead of (), and one does not need Lemma 3.36. We

leave the details to our reader.

8. OPEN PROBLEMS AND QUESTIONS

As mentioned above, there are various important and intriguing questions concerning ideals on ws.
Woodin has conjectured that (see Theories (a) and (c) in [35, Question 12])

Conjecture 8.1. The following theories are equiconsistent.
1. ZFC+ MM(c) + Jng is weakly presaturated.
2. ZF + ADr + ‘O is reqular”.

In the above MM(¢) is Martin’s Maximum for posets of size at most ¢, and Jyg is the non-
stationary ideal on we concentrating on ordinals of cofinality w. Jyg is weakly presaturated if for
every function f : wy — wo, for every S € p(wz)/Jng, there exists a canonical function A : wo — wo
such that

{a€eS: fla) <h(a)} ¢ JIns.

See [35, Section 9.7] for a more detailed discussions on ideals on wy. [35, Theorem 9.137] has
established one direction of the conjecture. The converse most likely requires new techniques in

the core model induction.

Question 8.2. What is the consistency strength of the theory “ZFC + there is a dense ideal on

w9 7

Finally, as mentioned in the previous section, we do not know the exact consistency strength of

the theory “ZFC + there is a strong, pseudo-homogeneous ideal on g, (R)”, but we conjecture
Conjecture 8.3. The following theories are equiconsistent.
1. “ZFC + there is a strong, pseudo-homogeneous ideal on g, (R)”.

2. ZF + ADr+ “O is regular”.
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