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ABSTRACT 

 In the past decade, high-frequency water quality sondes have become more 

abundant in watersheds across North America and Europe and are gaining a foothold in 

Asia and South America. In this dissertation, three relevant topics associated with high-

frequency data are investigated, i.e., the impact of winter’s precipitation on surface water 

quality and stream metabolism, the longitudinal propagation of wildfire disturbances 

through a fluvial network, and the use of machine learning with high-frequency data to 

estimate fluvial nutrient processing. First, we found that significant snow precipitation 

can cause surface water anoxia and declines in stream metabolism. Second, our data 

illustrate that fluvial water quality and metabolic activity degradation can propagate 

hundreds of kilometers downstream from a wildfire. Lastly, our work demonstrates that 

recurrent neural networks can outperform traditional regression methods when using 

atmospheric parameters to estimate nitrate uptake.  
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Chapter 1: General Introduction 

1.1 Context 

In the “hydrological renaissance”, a term coined in Eos 100 (Gabrielle, 2019), 

there is an unprecedented access to high-frequency water quality data from semi-

continuous sensors, making hydrological research, watershed management, and risk 

assessments much more data-based than ever before (Kirchner et al., 2004; Pellerin et al., 

2016; Rode et al., 2016; Rundel et al., 2009). For example, the implementation of water 

quality sondes in fluvial systems has led to advances in our understanding of ecosystem 

control points, i.e., moments or areas within a system that experience elevated and 

disproportional biochemical processing (Bernhardt et al., 2018; Krause et al., 2017; 

McClain et al., 2003; Zhao et al., 2021). Similarly, sondes have been recently used for the 

quantification of nutrient, organic matter, and suspended sediment dynamics in response 

to atmospheric forcing, land-use change, or anthropogenic disturbances. Sondes are 

instrumental due to their ability to capture multiple temporal scales, from diel cycles to 

seasonal trends, while observing non-linear and cascading interactions by sampling an 

array of parameters. Due to their inherent benefit to hydrologists, the United States 

Geological Survey (USGS) has rapidly expanded its high-frequency water quality 

network with 2430 water quality sonde sites in operation across CONUS as of 2023.  

One relatively unexplored application of high-frequency sensors is the linkage of 

atmospheric forcing, terrestrial processes, and the response of aquatic ecosystems to their 

dynamics (Perdrial et al., 2014; Turcotte et al., 2017). By disproportionality performing 

research during summer months and focusing on in-stream functioning alone, stream 

restoration, watershed management, and contaminant remediation has unintentionally 
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overemphasized the physical restoration of streams and disincentivized restoration efforts 

that focus on terrestrial ecosystems and nonstationary atmospheric forcing (Palmer, et al., 

2014). The urgency for high-frequency multivariate water quality studies during the 

winter months is further exacerbated by the projected reduction of snowpack within the 

alpine watersheds of the American Southwest and other parts of the world, which will 

lead to alterations to terrestrial ecosystems, stream biota, water budgets, and 

environmental services (Elias et al., 2021). 

 The increase in air temperatures from anthropogenically driven climate change is 

not only changing the snowpack within alpine watersheds, but it is leading to an increase 

in wildfire frequency and severity (Reidmiller et al., 2017; Running, 2006). It is widely 

known that wildfires have direct impacts on hydrological processes and fluvial water 

quality. Wildfires cause reductions in infiltration and transpiration, resulting in an 

increase in surface runoff, erosion and elevated organic loads, changes in biological and 

chemical oxygen demand that may cause anoxic conditions, and an increase in suspended 

sediments along entire fluvial systems (Carr et al., 2012; Robinne et al., 2020; Sherson et 

al., 2015). Water quality sondes have been a vital method for quantifying wildfire 

disturbances at the watershed (Ball et al., 2021; Sherson et al., 2015). However, most 

wildfire research involving water quality sondes has been opportunistic. Therefore, there 

are gaps in our understanding of the spatial extent of the propagation of wildfire 

disturbances along fluvial networks. With wildfire frequency and burn areas forecasted to 

increase, it is imperative to further our understanding and predictive capabilities to better 

constrain models and help decrease their uncertainty. An improved understanding of how 
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aquatic processes are affected by wildfire disturbances can help decision makers 

determine best practices to mitigate impacts to their water sources.  

While water quality sondes and multi-parameter datasets are becoming more 

ubiquitous in some countries (Rode et al., 2016), there are still a vast array of parameters 

and metrics that cannot be measured at high-frequency in-situ due to epistemic, logistical, 

or technological constraints. Quantities such as the concentrations of emerging 

contaminants, heavy metal, solute transport processes, reaction rates, and stable isotope 

ratios often require discrete sampling methods and laboratory analysis, which culminates 

into temporally limited sampling frequency. Machine learning algorithms (MLA) present 

a novel opportunity to utilize high-frequency data from in-situ sensors as non-linear 

proxies to lower frequency discrete sample data, enabling higher frequency estimates of 

the latter and opening new ways to explore the coupling of atmospheric, terrestrial, 

aquatic, and human systems at scales relevant to watershed managing (Fan et al., 2020; 

Kirchner et al., 2004; Raghavendra & Deka, 2014; Shen, 2018; Xu & Liang, 2021). 

However, with the vast array of high-frequency parameters and MLA architectures 

available, there remains significant uncertainty on which architectures and parameters are 

needed to generate a robust methodology that relates high to low-frequency datasets 

while limiting information loss or requiring extensive domain knowledge. By minimizing 

uncertainty on parameter and architecture selection, we could then start to make 

inferences about subsampled parameters or relevant metrics, using datasets with higher 

observational frequencies.  

 

1.2 Objectives 
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This dissertation aims to address three research objectives using high-frequency 

data from water quality sondes and meteorological stations:  

  
Objective 1: Analyze how changes to winter precipitation patterns alters water 

quality and stream metabolism within an alpine watershed.  

Objective 2: Quantify longitudinal water quality and stream functioning 

degradation from catastrophic wildfires.   

Objective 3: Develop a machine learning framework to estimate the dynamics of 

nutrient uptake rates from high-frequency atmospheric and water quality parameters. 

 

1.3 Summary of Findings 

This dissertation is the result of the compilation of three manuscripts that are (or 

will be) published in peer-reviewed journals.  

Chapter 2, The Understudied Winter: Evidence of how precipitation differences 

affect stream metabolism in a headwater investigates how changes in winter precipitation 

affects water quality and stream metabolism in an alpine watershed in New Mexico. The 

research was conducted during a snow-abundant El Niño winter and snow-drought La 

Niña winter, and utilized high-frequency water quality sondes in conjunction with 

collocated meteorological stations that enabled the quantification of atmospheric forcing. 

We found that besides snow precipitation, atmospheric forcing was not significantly 

different between winters; however, during the El Niño winter, dissolved oxygen 

experienced prolonged anoxia and a sudden halt in diel cycling. Also, during the El Niño 

winter, there were increases in fluorescent dissolved organic matter, pH, and specific 



 5 

conductivity, while stream metabolism became metabolically inactive. In contrast, during 

the La Niña year, dissolved oxygen never reached anoxia, and its diel cycling increased 

in magnitude during the winter months. Also, stream metabolism remained relatively 

steady with slight, short-lived changes to its metabolic rate. Our research demonstrates 

the significant role of winter precipitation on fluvial water quality and stream 

metabolism, and reinforces the need for further research in winter hydrology as winter 

precipitation is projected to decline.  

 

Chapter 3, Longitudinal propagation of aquatic disturbances from the largest 

wildfire recorded in New Mexico studies water quality impact and degradation to stream 

metabolism across multiple stream orders in the Gallinas Creek-Pecos River-Santa Rosa 

Lake fluvial network during and after the Hermit’s Peak-Calf Canyon fire. Our results 

show that monitoring sites upstream of Santa Rosa Lake experienced significant 

increases in fluorescent dissolved organic matter and turbidity, concurrently with the high 

precipitation monsoon season. Our findings suggest that stream reaches within the burn 

scar experienced substantial scouring of the benthic zone, while reaches further from the 

burn scar experience reduced scouring of the benthic zone but elevated organic, nutrient, 

and suspended sediment fluxes. Lastly, our results demonstrate that Santa Rosa Lake 

buffered wildfire disturbances by attenuating water quality degradations and mitigating 

metabolic alterations experienced for up to180 km upstream of it.  

Lastly, Chapter 4, Bridging the gap in the data revolution: Leveraging artificial 

intelligence to estimate nitrate uptake in fluvial systems, explores the use of high-

frequency water quality and meteorological data with machine learning to estimate nitrate 



 6 

uptake rate dynamics within a fluvial system. Over two years, nutrient addition 

experiments were performed at two stream reaches of contrasting biotic and abiotic 

factors to quantify nitrate uptake rate at a three-week interval. Water quality sondes and 

meteorological stations were collocated at the nutrient addition sites, which quantified 

ambient water quality conditions and atmospheric forcing. Due to the high logistical and 

financial burden of performing a nutrient addition experiments, this research aimed at 

using machine learning algorithms of varying complexity to estimate nitrate uptake rates 

from high-frequency datasets, potentially reducing the costs and logistics of 

characterizing quantities that are not available at high-resolution. Our results show that a 

recurrent neural network with the highest model variance outperformed all other 

algorithms when utilizing meteorological data as model predictors. However, it 

performed the worst when water quality data was incorporated as predictors. When 

utilizing water quality predictors, algorithms with lower variance and higher bias had the 

best predictive performance. With the increase in spatial resolution of high-frequency 

meteorological data, our research demonstrates that recurrent neural networks can be 

used in conjunction with meteorological data to estimate nitrate uptake rate in fluvial 

systems across CONUS. However, while high-frequency meteorological data is 

becoming more ubiquitous, a national database of nutrient experiments that encompasses 

a wide array of varying stream reach heterogeneity is needed to scale effectively.  
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2.1. Introduction 

Climate warming in the US has been most pronounced during the winter, 

resulting in shortening of the snow season, a reduction in snow pack, and shifts in the 

timing and volume of snowmelt related runoff (Climate Central, 2022; Elias et al., 2021; 

Godsey et al., 2014; Grimm et al., 2013). The reduction in snowpack volume has been 

linked to increasing winter temperatures resulting in more frequent winter melt events 

(Musselman et al., 2021), shifts in precipitation from snow to rain (Berghuijs et al., 

2014), and lower total precipitation trends interwoven with climate patterns including El 

Niño and La Niña (Cortés & Margulis, 2017; Goddard & Gershunov, 2020). These 

changes in winter precipitation patterns affect in-stream freeze–thaw cycles, including ice 

and snow cover, and have the potential to trigger direct and indirect effects on in-stream 

physical, chemical, and biological processes (Prowse, 2001; Prowse et al., 2006) in ~60% 

of river basins in the Northern Hemisphere (Allard et al., 2011).  

While winter freeze-thaw cycles can trigger changes in pH, conductivity, 

dissolved oxygen and redox conditions, nutrient inputs, groundwater and surface-water 

interactions, and flood plain connectivity (Schreier, 1980; Prowse, 2001), a recent review 

by Tolonen et al. (2019) noted that since winter is the most understudied season in 

ecohydrology, we do not currently understand the short-to-long term ecological effects of 

ice and snow formation in streams. Considering stream metabolism as a proxy for 

ecological functioning (Bernhardt et al., 2018; Summers et al., 2020), based on 

fundamental principles we can expect that in-stream ice and snow cover during the winter 

could block the light that phototrophic communities need to grow, affecting primary 

production and autotrophy (Frenette et al., 2008), and triggering cascading effects on 
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local food webs. Similarly, ice and snow cover can disrupt atmosphere-water interactions, 

halting in-stream reaeration (Fang & Stefan, 2009; Price et al., 1995; Woods, 1992). 

When combined, in-stream aerobic respiration and the lack of oxygen availability from 

primary production and reaeration should gradually result in increasingly anoxic 

conditions, similar to what has been documented in lentic systems (Davis et al., 2020; 

Jansen et al., 2021). These seasonal changes, thus, could alter redox conditions and the 

overall ecological functioning of the stream by switching the main electron acceptor (i.e., 

from oxygen to nitrate to manganese, etc.) and the species that could thrive under such 

transient conditions.  

While fundamental principles suggest ice and snow cover likely shift stream 

metabolism and ecological functioning, little field data exists to verify these hypotheses 

and to determine when, for how long, and how frequently ice and snow cover control 

metabolism in streams that experience freeze-thaw cycles. Addressing these unknowns 

offers an opportunity to better understand and quantify the ecological relevance of 

freezing streams and winters, which are intuitively associated with ecological “cold-

spots” and “cold-moments”, i.e., lower than average ecological activity in space and time, 

but may regulate the timing and availability of key resources needed for metabolism and 

nutrient cycling. Thus, tackling the lack of research on winter metabolism in streams is 

timely because warming trends in high latitudes and altitudes indicate that freezing 

streams may become less abundant and frequent.  

The specific objectives of this study were to 1) determine interannual variability 

in physical, geochemical, and biological signals in a montane stream during contrasting 

winters, and 2) explore the implications of these findings in the context of climate change 
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on stream function. To meet these objectives, we used high-resolution, multi-parameter 

data collected in a headwater stream in New Mexico and its local environment (climate 

and soil) to link changes in winter precipitation regimes to changes in aerobic stream 

metabolism, a key indicator of stream functioning. We found that sustained winter anoxia 

and dormant aerobic stream metabolism were driven by ice and snow cover during the El 

Niño year (higher precipitation), and that even though freezing occurred at the top of the 

stream during the La Niña year (reduced precipitation), it did not cause winter anoxia and 

instead elevated winter aerobic metabolism. We also found that spring metabolism is 

highly dependent on winter precipitation. Our results suggest that a progressive decrease 

in winter snowpacks and the reduction of ice and snow cover on freezing streams may 

result in the loss of hot moments for anaerobic metabolism, which has the potential to 

alter food webs and ecological functioning, not only during the winter but before and 

after fully anoxic conditions are established. 

 

2.2 Methods  

2.2.1 Site Description   

Our study site is in the East Fork Jemez River (EFJR), within the Valles Caldera 

National Preserve, New Mexico (Figure 2.1). The EFJR watershed is small, high-altitude 

catchment, with a drainage area of 107 km! at an elevation range between 2,580 to 3,432 

m. The EFJR is a 3rd order stream with a mean annual discharge of 0.06-0.09 m3/s, 

featuring large flow fluctuations during spring snowmelt and summer monsoon storms of 

up to 3 m3/s. The average channel slope at the study site is 0.057 m/m and the sinuosity is 

2.04, making it a low gradient meandering stream. The sediments in the streambed are 
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mostly organic matter, silt, and pebbles, and the average stream bank height is 0.8 m. The 

riparian vegetation of the EFJR consists of non-woody grass with limited canopy cover 

with an average growing season between March and November, and the stream fluctuates 

between autotrophic and heterotrophic conditions, but is net autotrophic, averaging 0.3 

gO! m"!	d"# (Summers et al., 2020). The EFJR watershed is contained within a volcanic 

caldera and the vegetation is composed of extensive grasslands in the valley floors and 

evergreen forest biomes at higher elevations (48 and 52% of the land cover, respectively). 

The EFJR watershed experiences large seasonal climate variability with average monthly 

precipitation and air temperatures ranging between 3.1-10.6 cm and 4.1-15.9 ºC, as 

reported in Model my Watershed (Stroud Water Research Center, 2021).  

 

Figure 2.1: Map and picture of the East Fork Jemez River watershed, located in the 
Valles Caldera National Preserve in north central New Mexico (USA).   

 

2.2.2 Sensor Deployment and Processing of Raw Data 



 16 

We collected sensor and meteorological data in the EFJR during the winter of 

2018-2019, a weak to moderate El Niño year, and 2020-2021, a moderate La Niña year.  

Sensors used: We deployed a YSI EXO2 multiparameter water quality sonde and 

a HOBO U20 pressure logger ~10 cm above the streambed of the EFJR (Yellow Springs 

Instruments, n.d.). The EXO2 measured water temperature, specific conductivity, DO, 

fluorescent dissolved organic matter (fDOM), turbidity, and pH at 15-min intervals. The 

HOBO was set to log synchronously with the YSI EXO2 (Yellow Springs Instruments, 

n.d.). Meteorological data were collected 30 m away from the in-stream sensors at a 

climate station maintained by the Western Regional Climate Center (Western Regional 

Climate Center, 2021), which monitored air temperature, solar radiation, snow depth, 

barometric pressure, and soil temperature (20 cm depth) at 10-min intervals. All in-

stream sensors were cleaned and recalibrated every three weeks in accordance with 

USGS guidelines (Wagner et al., 2006). We equipped the study site with a solar panel, 

batteries, and a Campbell Scientific CR1000 datalogger to power the semi-continuous 

water quality sensors. During field visits, we also collected secondary DO measurements 

during ice- and snow-cover conditions using a YSI ProODO to validate the YSI EXO2 

records. Table 2.1 summarizes continuous parameters collected.  
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Table 2.1: Parameters and corresponding sensors and sampling frequencies available in 
our study. 

Instrument Parameter Abbreviation Units Sampling 

Frequency 

(min) 

HOBO U20 Stage Stage m  15 

YSI EXO2 

Dissolved oxygen DO ppm  15 

Specific conductivity  Sp Cond uS cm-1  15 

Water temperature Water Temp ºC  15 

Turbidity Turbidity FNU 15 

pH pH -  15 

Fluorescent dissolved organic 

matter 

fDOM RFU  15 

WRCC 

metrological 

station 

Air temperature Air Temp ºC 10 

Soil temperature Soil Temp ºC 10  

Barometric pressure Baro Press mmHg 10 

Snow depth Snow depth mm 10  

Photosynthetically Active 

Radiation  

PAR µmol m-2 

s-1 

10  

 Precipitation Precip mm 10 

 

Raw data analysis: fDOM was corrected by water temperature changes 

following (Watras et al., 2011):  
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fDOM$%&' =
fDOM

1 + ρ(W( − T))
 (1), 

 

where fDOM$%&' is the temperature corrected fDOM concentration (RFU), where fDOM 

is the uncorrected fDOM concentration (RFU), ρ is temperature-specific fluorescence 

coefficient of −7.545 × 10"* °C"# determined experimentally using EFJR water, W( is 

the water temperature (°C), and T) is the lab temperature of 22 °C when fDOM was 

calibrated. We present fDOM in RFU instead of quinine sulfate units (QSU) because 

QSU measurements exceeded the maximum detection limit from March 22nd to April 

30th, 2019.  

Total solar radiation was multiplied by a factor of 2.04 to estimate 

photosynthetically active radiation (PAR, Meek et al., 1984). To replicate conditions 

within the stream water column during periods of ice- and snow-cover, PAR was set to 

zero if snow depth was greater than 200 mm and if diel water temperature cycling ceased 

(Petrov et al., 2005).  

Discharge was derived from a rating curve that was developed by relating data 

collected during field visits with a Sontek FlowTracker and stage data (Equation 1). Due 

to logistical constraints, discharge measurements were not taken during periods of 

prolonged ice- and snow-cover. Therefore, we used stage data from a downstream USGS 

river gage (USGS Gage: 08324000, Jemez River near Jemez, NM) to establish a time-

lagged relationship between the two sites and estimate missing discharges (Summers et 

al., 2020) (Equation 2 and 3): 

 



 19 

Q = 0.0343 ∗ exp!.,-*∗/$01% (2), 

Q = 0.0343 ∗ exp!.,-*∗(#.*-3∗45!"#$%("'()) 	"	#.#,7) (3), 

 

where Q (m*	s"#) is the discharge at our study site; Stage (m) is the stage data derived 

from the HOBO pressure transducers within periods when flow could be measured in the 

field; and JR9$01% (m) is the stage data from the Jemez River USGS gage used to estimate 

Q when flow could not be measured at the study site. 

Data processing: Raw and converted data were processed for outliers and sensor 

drift with Aquarius Workstation 3.3 (Aquatic Informatics, Vancouver, British Columbia). 

Suspected outliers were eliminated by using a moving average filter targeting points 

deviating more than 20% from an hourly window (Wagner et al., 2006). We corrected for 

sensor drift and biofouling by comparing pre- and post-cleaning calibration values and 

applying a linear correction from the date of the previous maintenance. Linear 

interpolation was applied to data gaps that were less than 12 hours and an hourly 

resampling was performed to ensure consistent timestamps for all parameters. A final 

visual inspection of data quality was performed prior to any statistical analysis.  

2.2.3 Stream Metabolism  

The cumulative photosynthetic and heterotrophic activity of algal and bacterial 

communities can be estimated as stream metabolism, an indicator of ecological 

functioning. We estimated daily averages of stream metabolism using the USGS 

StreamMetabolizer model, which uses a one‐station model based on the open‐channel 

metabolism approach (Equations 4-6), combined with inverse Bayesian modeling of diel 

DO, to estimate gross primary production (GPP), ecosystem respiration (ER), and 
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reaeration coefficients (𝐾,::) (Appling et al., 2018; Odum, 1956). GPP quantifies DO 

production from phototrophic communities, ER quantifies DO losses due to autotrophic 

and heterotrophic respiration, and 𝐾,:: is a standardized oxygen gas exchange rate 

coefficient between the water column and the atmosphere. The modeling equations used 

in Stream Metabolizer are: 

𝑑𝐷𝑂;
𝑑𝑡 =

1
𝑍;
M
𝐺𝑃𝑃(𝑡# − 𝑡:) ∗ 𝑃𝑃𝐹𝐷;

∫ 𝑃𝑃𝐹𝐷<𝑑𝑢
;+
<=;,

+ 𝐸𝑅U +
𝐾,::(𝐷𝑂>?;,; − 𝐷𝑂ABC,;V

W𝑆D − 𝑆E𝑇; + 𝑆F𝑇;
! + 𝑆G𝑇;*

600

  (4), 

𝐷𝑂ABC,; = 𝐷𝑂ABC,;"∆; +[ (
𝑑𝐷𝑂ABC,<

𝑑𝑢 + 𝜀IJBK,<)
;

<=;"∆;
𝑑𝑢 (5), 

𝐷𝑂BL>,; = 𝐷𝑂ABC,; + 𝜀BL>,; (6), 

where 𝐷𝑂; is the observed dissolved oxygen (mg	L-#) at time 𝑡; 𝐷𝑂>?;,; is the 

hypothetical saturated dissolved oxygen concentration (mg	L-#); 𝐷𝑂ABC,; is the modeled 

dissolved oxygen concentration (mg	L"#);	𝜀BL>	  and 𝜀IJBK	  are the observation and 

processes errors; 𝑡:	𝑎𝑛𝑑	𝑡# are the beginning and end of the day (𝑑); 𝑍; is stage (𝑚); 

𝑃𝑃𝐹𝐷; is solar radiation as PAR (µmol	m"! d"#); 𝑇;	 is the water temperature (°C);  

𝑆D,E,F,G are dimensionless Schmidt coefficients (-); 𝐺𝑃𝑃 is the daily average areal rate of 

gross primary production (𝑔𝑂!	𝑚"!	𝑑"#); 𝐸𝑅 is the daily average areal rate of  

ecosystem respiration (𝑔𝑂!	𝑚"!	𝑑"#); and 𝐾,:: is the standardized gas exchange rate 

coefficient (	𝑑"#).	 
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Using results from one of our previous studies at the EFJR (Summers et al., 

2020), we set the prior probability distribution’s mean and standard deviations for GPP 

(3.9 and 1.5 𝑔𝑂!	𝑚"!	𝑑"#, respectively) and ER (3.6 and 1.7 𝑔𝑂!	𝑚"!	𝑑"#, 

respectively). We ran the model for 3000 iterations and 1500 burn-ins with a binned K600 

bounded by the minimum and maximum discharge. During periods when we observed 

ice and snow cover over the water column and daily maximum water temperature did not 

exceed 0.2°C, we constrained 𝐾,:: = 0, since reaeration cannot occur under such 

conditions. We verified the model’s fit by validating that it converged to stable solutions 

and by ensuring that each parameter’s Gelman‐Rubin R2 value was less than 1.1. We also 

checked for possible equifinality between ER and K600 by checking any potential 

covariances between the two parameters (Appling et al., 2018). The covariance between 

ER and K600 estimates was low with a linear correlation coefficient of -0.028 (Figure 

S2.1).  

 

2.2.4 Statistical Methods and Data Organization 

Templates and periods of analysis: We organized the results and discussion into 

three relevant templates: physical and atmospheric, geochemical, and DO and 

metabolism.  The physical and atmospheric template includes time series of discharge, 

snow depth, temperatures (air, soil, and water), turbidity and PAR. The geochemical 

template includes time series of fDOM, specific conductivity, pH and DO. The DO and 

stream metabolism template includes time series of DO, GPP, ER, and reaeration fluxes. 

All datasets are also classified by season to further organize the results and discussions. 

To test statistical differences between seasons, we used two-sample Student’s t-test 
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taking into account autocorrelation, thus reducing type-1 error, by using the equivalent 

sample size method on data that was aggregated daily mean values to remove seasonality 

in timeseries and meet autoregressive assumption (O’Shaughnessy & Cavanaugh, 2015). 

Prior to performing t-test, parameter’s seasonal daily mean values were visually inspected 

for normality using Q-Q plots, and if normality was not met, log transformations were 

performed for both the El Niño and La Niña season.  

Frequency analysis: We generated spectrograms using the pspectrum function in 

Matlab (The Mathworks Inc., Natick, Massachusetts) for all sensor-generated time series. 

Spectrograms use discrete, short-time Fourier transforms to quantify the significance of 

sinusoidal signals at multiple frequencies or periodicities within a time series (Kirchner et 

al., 2000). Since diel cycling often exhibits strong seasonality in water quality data, we 

extracted the spectral power of our time series at a periodicity of 24-h and categorized 

them as strong diel cycling (>0 dB), weak diel cycling (0 to -100 dB), and no discernable 

diel cycling (<-100 dB). Threshold limits for diel cycling classification were determined 

by using water temperature, a parameter with known shifts in diel cycling, as a 

benchmark enabling us to relate periods with varying diel cycling with their respective 

spectral power. We did not include stream metabolism estimates in the spectral analysis 

because they were comprised of daily averaged measurements and do not hold relevant 

information regarding diel cycling.  

Principal component analysis: We examined the relationships between 

parameters using a principal component analysis (PCA) conducted in Matlab. The first 

two principal components were determined sufficient for analysis based on the inflection 

point of variance percent explained (Figure S2.2). Since the correlation coefficient 
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between two parameters is equivalent to the cosine angle between their eigenvectors, 

parameters plotting in the same direction are positively correlated, those in opposite 

directions are negatively correlated, and those that are orthogonal are uncorrelated 

(Jolliffe & Cadima, 2016). We calculated 24 h averages for aquatic and meteorological 

parameters to be able to include daily estimates of stream metabolism, and standardized 

each parameter’s daily average by centering the mean at zero and scaling by a standard 

deviation of one to make parameters with varying magnitudes and units comparable:  

SN =
𝑋 − µN
σN

 (7), 

where SN is the standardized parameter 𝑋 (-), and µN and σN are the mean and standard 

deviation of parameter 𝑋. 

 

2.3. Results  

2.3.1 Physical and Atmospheric Template: 

Clear differences in snow accumulation occurred between the 2018-2019 El Niño 

and 2020-2021 La Niña years, with greater snow accumulation taking place during the 

former. During the El Niño year, a large winter precipitation event increased snow depth 

to ~800 mm during early January 2019, and, due to numerous precipitation events, a 

depth of ~500 mm persisted through the end of the winter (Figures 2.2 and S2.3). In 

contrast, during the La Niña year, snow depth remained low (~100 mm) throughout the 

January to March period, with very few precipitation events and several weeks both of ~0 

mm and ~200 mm snow depth (Figure 2.2). This between-year difference in winter snow 

depth was significant and represents an ~77% decrease in mean snow depth from the El 

Niño to La Niña year (Figure 2.3). Stream discharge (fall and spring), soil temperature 
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(winter), and turbidity (fall and winter) were also significantly higher during the El Niño 

year, while PAR (winter) was the only physical parameter that was significantly higher 

during La Niña year.  

 

2.3.2 Geochemical Template: 

Water chemistry parameters varied widely across seasons and between years. 

fDOM gradually increased during the spring of the El Niño year from winter values of 

~20 RFU, reaching sustained peak values of ~50 RFU during mid to late spring (Figure 

2.2). In contrast, during the La Niña year, fDOM values remained at ~20 RFU, except for 

a few short-lived increases to ~40 RFU (Figure 2.2). This between-year difference in 

spring fDOM was significant (Figure 2.3). Additionally, an absence of a diel fDOM 

signal was observed during the El Niño year, while a moderate to strong daily cycling 

signal was present in the La Niña year (Figure 2.4). Specific conductivity was 

significantly higher in the La Niña year during the spring (Figures 2.2 and 2.3), and 

during the winter of the El Niño year its diurnal cycling was suppressed (Figure 2.4). 

Lastly, during the El Niño year, pH initially decreased from fall values of ~7 to early 

winter values of ~6, before increasing to ~8 by the end of the winter season (Figure 2.2). 

Minimal diel cycling for pH was observed during the winter season (Figure 2.4). During 

the La Niña year, pH values remained between 7 and 7.5 for all seasons (Figure 2.2) and 

moderate diel cycling occurred (Figure 2.4).  

 

2.3.3 DO and Stream Metabolism Template: 
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    DO and stream metabolism values varied significantly among seasons within 

the El Niño year and between the El Niño and La Niña years. Dissolved oxygen 

concentrations fell from daily mean values of ~9 mg/L to ~4 mg/L in early January 2019, 

declining to anoxia (~0 mg/L) in late January 2019, which persisted through the end of 

February 2019 (Figure 2.2 and S2.3). While declines in DO were also observed during 

February 2021 in the La Niña year, concentrations rarely decreased below 4 mg/L (Figure 

2.2). These between-year differences in winter DO were significant (Figure 2.3). 

Additionally, diel cycling of DO differed greatly between years during the winter period, 

with moderate to no cycling occurring during the El Niño year, and moderate to strong 

cycling occurring during the La Niña year (Figure 2.4).  

Both GPP and ER were below 5 g O2 m-2d-1 during the fall of the El Niño year, 

however, during the winter these values decreased to ~ 0 g O2 m-2d-1from early January to 

mid-March, before increasing considerably during spring (Figure 2.2). During the La 

Niña year, GPP was lowest (~3-4 g O2 m-2d-1) during mid-fall, and highest (~5-10 g O2 m-

2d-1) during the winter (Figure 2.2). ER followed the same general pattern as GPP during 

the La Niña year, except for low ER values at the end of December 2020. Both ER and 

GPP were significantly higher during the spring in the El Niño year, and higher in the fall 

and winter in the La Niña year (Figure 2.3).  
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Figure 2.2: Post QA/QC time series from the I) El Niño 2018-2019 and II) La Niña 2020- 
2021 data organized in three templates: physical and atmospheric, geochemical and DO 
and stream metabolism. Dashed vertical lines delineate fall, winter, and spring. 
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Figure 2.3: Boxplots comparing seasonal trends between the 2018-2019 El Niño and the 
2020-2021 La Niña years. Asterisks represent quantities with statistically different means 
for the same season between years, and their location indicate which of the two years had 
a greater mean magnitude. Labels represent the physical and atmospheric (PAT), 
geochemical (GCT), and DO and stream metabolism (DST) templates. 
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Figure 2.4: Heatmap of spectral power at 24-hour periodicity for I) El Niño 2018-2019 
and II) La Niña 2020-2021 years organized by physical and atmospheric, and 
geochemical templates. For reference, we highlight examples of A: strong, B: moderate 
and C: no diel cycling for water temperature. Dashed vertical lines delineate fall, winter, 
and spring seasons. Missing pH values are shown as NA. 

 
2.3.4 Interactions Between Templates: 
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Based on the PCA for the El Niño year (Figure 2.5A), PC1 separated winter 

points (negative PC1) from fall and spring (positive PC1). Positive PC1 values were 

primarily associated with higher temperatures (air, soil, and water), higher metabolic 

activity (GPP and ER), and weaker loadings for DO and fDOM. Negative PC1 values 

were most strongly related to snow depth and specific conductivity. PC2 separated spring 

days (positive PC2) from fall days (negative PC2), with winter days spanning positive 

and negative PC2 values. Positive PC2 was most strongly associated with discharge and 

snow depth, while negative PC2 was most strongly associated with DO coupled with 

K600. 

           Consistent with the El Niño year, PC1 for the La Niña year (Figure 2.5B) 

separated winter points (negative PC1) from fall and spring days (positive PC1). Also 

consistent with the El Niño year, positive La Niña PC1 values were primarily associated 

with higher temperatures and DO. However, in contrast to the El Niño year, neither 

metabolic activity (GPP or ER) or fDOM were strongly loaded on PC1. 

Negative PC1 values for the La Niña year were most strongly related to discharge and 

snow depth. PC2 again separated spring days (positive PC2) from fall days 

(negative PC2), but positive PC2 was most strongly related to fDOM which coupled with 

PAR, while negative PC2 was most strongly related to specific conductivity. 
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Figure 2.5:  PCA biplot for daily averaged data for the I) 2018-2019 El Niño and II) 
2020-2021 La Niña years. Parameters plotting in the same direction are positively 
correlated, those in opposite directions are negatively correlated, and those that are 
orthogonal are uncorrelated. Principal components one and two explained I) 65.86% and 
II) 54.93% of the total variation. Score values were added to the PCA biplot and are 
color-coded based on their respective period of analysis.  
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2.4. Discussion  

2.4.1 Variable Interannual Snowpack Drives Lotic-Lentic Stream Transitions  

The difference in snowpack between the two winters in this study continues to 

highlight the criticality of planetary-scale climatic controls on montane ecosystems, and 

their relevant implications to ecohydrology. During the El Niño year, as snowpack 

accumulated during the winter, stream depth was higher due to the downstream formation 

of ice dams resulting in a backup of water under the ice cover (Figure S2.4 and S2.5). Ice 

dams are known to occur where changes in stream slope and increases in substrate size 

are encountered (Turcotte et al., 2017), both of which are present immediately 

downstream of the research site as the EFJ River exits the low-gradient, fine substrate 

conditions of the Valles Caldera and enters a higher gradient reach with large cobble and 

boulder substrates. In addition to the ice dam, thick ice cover and frozen riparian soils 

would trap water within the channel. Such blockages have been shown to shift streams 

from fast-flow to slow-flow environments (Stickler et al., 2010). Thus, we suggest that 

the muted diel discharge signature and the increase in depth for the El Niño year signals a 

shift in function from a primarily lotic to primarily lentic environment (Figure S2.5).  

 

2.4.2 Influence of Snowpack Variability on Stream Chemistry and Metabolism 

Differences in snowpack dynamics also influenced stream chemistry, most 

notably the onset of persistent anoxia during the El Niño winter. Since atmospheric 

exchange is effectively cut off by ice and snow accumulation over the otherwise free 

surface of the stream, and groundwater exchange is an unlikely source of oxygen, we 

suggest that oxic conditions were maintained during the La Niña winter by a combination 
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of oxygenated inputs from upstream fluxes and in-stream GPP. In stark contrast to the El 

Niño winter, ER and GPP peaked in January of the La Niña year, indicating that winter 

metabolism was an important control on oxygen despite ice cover and light snowpack 

(Figure 2.2 and S2.5). In contrast, the anoxic conditions observed during the El Niño year 

suggests that the combination of reduced reaeration due to ice cover, the cessation of 

GPP as light availability declined, and the continuation of heterotrophic respiration, 

together resulted in the depletion of dissolved oxygen in the newly formed lentic-like 

conditions. Similar winter anoxia has been observed in other ice covered, low-flow, 

aquatic environments, including beaver dam ponds (Devito & Dillon, 1993) and lakes 

(Deshpande et al., 2015, 2017; Jansen et al., 2019). The importance of atmospheric 

forcing during the winter on stream metabolism suggests that snowpack has the potential 

to be as important for metabolism as other in-stream (e.g., hyporheic flow, algal 

overgrowth) and upslope (e.g., post-fire/precipitation ash and debris mobilization) 

ecological processes, not only during the winter but into the spring. 

Using seven years of data collected between 2005-2011 during the spring and the 

fall seasons at the same study site (i.e., winter data were not available), we recently found 

unanticipated shifts from autotrophic to heterotrophic status within and across years 

(Summers et al., 2020). That study challenged previous paradigms where local attributes 

including geographic and landscape positioning (e.g., light and temperature regimes) 

were thought to control the trophic status of streams, and thus, streams were predicted to 

be either autotrophic or heterotrophic. Our findings from Summers et al. (2020) 

suggested that complex combinations of spatiotemporal factors, such as snow melt and 

summer precipitation, and their role in connecting terrestrial and aquatic ecosystems can 
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lead to substantial stream variation in metabolic status, which prompted us to start this 

winter-focused study, in an effort to fill the gap on the short and long-term ecological 

effects of winter dynamics noted in Tolonen et al. (2019) and Summers et al. (2020). Our 

findings are also consistent with previous research showing that reduced snowpack 

increases primary productivity in lakes (Garcia et al., 2019).  

 

2.4.3 Implications of Changing Snowpack on Stream Function 

Winter is the most rapidly changing season in the US, and its consistent warming 

causes reductions in snow pack, and shifts in the timing and volume of snowmelt 

(Climate Central, 2022; Elias et al., 2021; Godsey et al., 2014; Grimm et al., 2013; 

Reidmiller et al., 2018). The US Global Change Research Program indicate that 

atmospheric circulation patterns are changing due to global warming and will cause more 

aridity in the US southwest, where this study took place, particularly during La Niña 

years (Seager et al., 2007). Although our dataset represents two winter periods as 

examples, which limits our ability to comprehensively extrapolate our results to future 

climate predictions, we are able to gain some sense of expected physical, chemical, and 

metabolic responses to diminished winter snowpack. 

Our study shows that stream metabolism in the spring is highly dependent on 

what happens in the winter, and the results from Summers et al. (2020) indicate that those 

winter-driven changes can also extend into the first part of the summer, before the 

monsoon season begins. Thus, winter precipitation changes have the potential to trigger 

multi-season, direct and indirect effects on in-stream physical, chemical, and biological 

processes. Moreover, as aerobic metabolism decreases under persistent anoxic conditions, 
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it is likely that redox conditions and associated cycles (e.g., denitrification) also shift. 

Prior studies identify many biogeochemical responses to anoxic conditions, including  

changes in the speciation of solutes mobilization of greenhouse gases, accumulation of 

silica, reduction of manganese, iron, phosphorous, and sulfate, and altered lability of 

exported dissolved organic and inorganic carbon stocks (Bicknell et al., 2020; Briggs et 

al., 2015; Harvey et al., 2013; Lautz & Fanelli, 2008; Navel et al., 2010; P. Regier et al., 

2021; Sherson and Van Horn, et al., 2015; Zarnetske et al., 2011, 2012). Such significant 

shifts in biogeochemical cycles may paradoxically turn previously assumed winter “cold-

spots” and “cold-moments” into hot-spots and hot-moments for biogeochemical 

processing.  

Since our sensors did not capture the dynamics of anaerobic processes, and the 

winter ecology of streams remains understudied, we call for studies to focus on how 

winter driven anoxia activates ecological cycles that influence stream biogeochemistry 

through the rest of the year. This focus is timely because i) current data and climate 

projections suggest that winter is the most rapidly changing season and its warming is 

shifting the timing, amount, and type of precipitation, ii) in-stream freeze–thaw cycles, 

including ice and snow cover, occur in ~60% of river basins in the Northern Hemisphere 

and those ecosystems have evolved to sustain winter biogeochemical cycles, and iii) our 

study and others show that changes in winter precipitation patterns generate changes in 

stream metabolism, which propagate through the rest of the year. Accordingly, new 

studies should focus on investigating how losing the intermittency caused by freezing-

thawing cycles due to global warming could negatively affect streams in high latitudes 

and altitudes, where freezing streams may become less abundant and frequent. 
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2.5 Conclusions  

 Winters are intuitively associated with ecological “cold-spots” and “cold-

moments”, i.e., lower than average ecological activity in space and time, but the effects 

of winter precipitation on stream metabolism and functioning are drastically understudied 

due to logistical challenges. We found that atmospheric forcing in the form of significant 

ice and snow cover during the winter drove drastic changes in oxygen availability and 

stream metabolism during a weak to moderate El Niño year (2018-2019). Two years 

later, during a moderate La Niña year (2020-2021), the same site underwent a significant 

reduction of snow cover, which not only resulted in a lack of winter anoxia but even in 

peak ER and GPP fluxes during the winter. Combining the two years of data, we found 

that winter and post-winter stream metabolism was highly dynamic and dependent on 

atmospheric forcing, which is changing due to the impacts of global warming on 

snowpack volume and timing particularly in the winter, the most rapidly warming season 

in the US.  
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3.1 Introduction 

Wildfires are increasing in frequency and extent across the western United States 

(US) and other regions of Earth (Ball et al., 2021; Flannigan et al., 2009; Westerling, 

2016). These wildfires are associated with increased aridity and variability in 

precipitation patterns linked to global climate change (Cayan et al., 2001; Stewart et al., 

2004; Westerling et al., 2006; Seager et al., 2007b; Westerling, 2016) and have been 

triggered by natural and anthropogenic factors (Allen et al., 2010; Breshears et al., 2005; 

Raffa et al., 2008; Weed et al., 2013; Williams et al., 2010). In addition to the impacts of 

wildfires to terrestrial ecosystems, property, and infrastructure, there is growing evidence 

that wildfires trigger cascading effects that propagate across fluvial networks, impacting 

environmental processes and ecosystem services in aquatic environments (Ball et al., 

2021; Dahm et al., 2015b; Emmerton et al., 2020; Mast et al., 2016; Reale et al., 2015; 

Rhoades et al., 2019).  

Wildfire impacts to environmental processes act as a pulse disturbance due to 

runoff associated with discontinuous precipitation events and a press disturbance when 

water quality is chronically impaired. The severity and duration of these impacts vary 

based on the characteristics of the watershed, burn severity, and the rate of ecosystem 

recovery (Proctor et al., 2020; Rhoades et al., 2019). Early acute impacts to 

environmental processes include sedimentation, debris flows, loss of riparian vegetation, 

and changes to water quality (Burton et al., 2016; Cerrato et al., 2016; Dahm et al., 

2015b; Sherson and Horn, et al., 2015). Long-term, chronic impacts include increased 

rates of instream sediment loads, alterations of the habitat along the stream corridor, and 

long-term changes to water quality and nutrient loading (Mast et al., 2016; Neary et al., 
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2016; Reale et al., 2015; Rhoades et al., 2018; Rust et al., 2019; Yu et al., 2019). 

Wildfires also affect multiple ecosystem services, including water purification and 

supply, soil and sediment management, flood attenuation, carbon and nutrient cycling, 

primary production, water quality, disease regulation, aesthetics and scenic resources, and 

recreational use (Adams, 2013; Bixby et al., 2015a; Brauman et al., 2007; Leemans, 

2009).  

Wildfire disturbances contribute to at least ten of the top twenty most crucial 

stream disturbances listed in US EPA water quality assessments, i.e., 1) elevated 

sediment levels, 2) nutrient enrichment, 3) organic enrichment and oxygen depletion, 4) 

elevated temperature, 5) elevated instream metal concentrations, 6) habitat alterations, 7) 

elevated turbidity, 8) flow alterations, 9) elevated salinity and total dissolved solids, and 

10) changes to pH and conductivity. Paradoxically, while wildfire is known to contribute 

to these impairments and the disruption of vital ecosystem services, it is frequently 

excluded as a source of disturbance due to the unpredictable nature of wildfires and the 

logistical challenges of monitoring water quality post-fire (Ball et al., 2021). 

Post-fire water quality propagation data have only been fortuitously measured in a 

few study cases where sensors had been deployed to monitor other non-fire-related water 

quality issues. The limited data available have revealed impacts over hundreds of 

kilometers downstream of the burn scar (Abram et al., 2003; Dahm et al., 2015a; Reale et 

al., 2015), primarily affecting reservoirs and municipal water supply systems, with 

associated restoration costs in the millions of dollars (Bladon et al., 2014). Temporally, 

fire inputs can persist within streams for years post-fire, influencing ecosystems and 
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overall stream functioning (Bêche et al., 2005; Bixby et al., 2015b; Earl & Blinn, 2003; 

Spencer et al., 2007).  

Since current fire models consistently predict that the prevalence of wildfire and 

associated damage will continue to increase due to anthropogenic climate change and 

forest management practices (Abatzoglou & Williams, 2016; Adams, 2013; Calkin et al., 

2015; North et al., 2015; Westerling et al., 2011), we need to quantify and predict the 

propagation of wildfire disturbances through fluvial networks. This knowledge gap 

hinders our ability to mitigate wildfire impacts on water quality and protect vital aquatic 

ecosystem services(Murphy et al., 2023).  

We deployed a rapid response team to monitor first-flush watershed responses 

and longer-term trends associated with wildfire disturbance propagation from the 

Hermit’s Peak – Calf Canyon wildfire (HPCC), the current largest fire recorded in New 

Mexico (Figure 3.1). The HPCC wildfire began on April 6th, 2022, and was contained on 

August 21st, 2022, after burning 1,382 km2. Approximately 87% of the Gallinas Creek 

watershed burned, of which 19% was designated high severity, 25% moderate, and 43% 

low severity (Figure S3.1). We focused our monitoring along the 190km Gallinas Creek-

Pecos River-Santa Rosa Lake fluvial network because Gallinas Creek supplies 

approximately 95% of the municipal water supply to 7,200 people living in the City of 

Las Vegas, NM, located ~25 km downstream of its headwaters (Huey & Meyer, 2010).  
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Figure 3.1: Water quality and meteorological monitoring. The red area represents the 
burn scar boundary of the Hermit's Peak – Calf Canyon wildfire. GFT22 km, Gallinas 
Creek near La Placita fire station, 22 km downstream from the headwaters of Gallinas 
Creek; GMZ29 km, Gallinas Creek near Montezuma; GL56 km, Gallinas Creek near 
Lourdes; PSR170 km, Pecos River upstream of Santa Rosa Lake; PBS190 km, Pecos River 
downstream of Santa Rosa Lake. Gold triangles represent the locations of MesoWest 
climate stations used for atmospheric data.  Photos from PBS190 km are shown in the 
Supplementary Information. 

 

Two weeks after the fire began, we deployed YSI EXO multiparameter water 

quality sondes (Yellow Springs Instruments, n.d.) at three sites within the Gallinas Creek 

watershed, i.e., at La Placita fire station in Gallinas, NM (referred to as GFT22 km, as it is 

located 22 km from the headwaters of Gallinas Creek, our 0 km reference point), near 

Montezuma, NM (GMZ29 km), and near Lourdes, NM (GL56 km). Two additional sondes 
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on the Pecos River (PSR170 km and PBS190 km) were deployed in late 2020 to monitor water 

quality upstream and downstream of Santa Rosa Lake through a partnership between 

USACE and the University of New Mexico (Figure 3.1). We used those sites to compare 

changes pre- and post-fire. All EXO sondes measured water temperature, specific 

conductivity, dissolved oxygen (DO), turbidity, and pH at 15-min intervals. In addition, 

the sondes in the Gallinas Creek watershed measure fluorescent dissolved organic matter 

(fDOM) at 15-min intervals (Table S3.1). All sondes were cleaned and calibrated 

monthly, following guidelines from the U.S. Geological Survey (USGS) (Wagner et al., 

2006). Discharge and meteorological data from multiple stations near water quality 

monitoring sites were used to contextualize the generation and propagation of wildfire 

disturbances (see Methods). Gross primary production (GPP) and ecosystem respiration 

(ER) were estimated from sensor data using StreamMetabolizer (see Methods). Also, 

metabolic fingerprints(Bernhardt et al., 2018), which relate GPP and ER kernel 

distributions, were used to qualitatively compare metabolic regimes in response to 

changing site conditions and pulse events. 

Based on flow time-series analyses (see Methods), we defined a pre-monsoon 

period from the beginning of our monitoring on April 25th, 2022, to June 26th, 2022; a 

monsoon (high precipitation-runoff) period from June 26th, 2022, to September 13th, 

2022; and a post-monsoon from September 13th, 2022, to December 1st, 2022. The same 

three periods of analyses were used at PSR170 km and PBS190 km to compare the data from 

2021 and 2022. With the data collected, we addressed 1) how far downstream water 

quality disturbances propagate following a wildfire, 2) what is the role of seasonality in 
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that propagation, and 3) what is the impact of a downstream lake in mitigating further 

longitudinal propagation. 

 

3.2 Methods 

3.2.1 Site and Wildfire Descriptions  

Gallinas Creek is a perennial stream, and most of its flow is associated with 

snowmelt during the spring and monsoonal storms in the summer and fall. The catchment 

supplies approximately 95% of the municipal water supply to 7,200 people living in the 

City of Las Vegas, NM, located ~25 km downstream of its headwaters (Huey & Meyer, 

2010). Further downstream, Gallinas Creek flows through a mix of canyonlands and 

farmlands before joining the Pecos River, ~142 km from its headwaters (Figure 3.1). The 

Pecos River flows into Santa Rosa Lake, located ~ 43 km downstream of the confluence 

with Gallinas Creek. This reach of the Pecos River is perennial, except for short reaches 

of intermittent flow between Anton Chico and Colonias, NM (USBOR & NMISC, 2021). 

Santa Rosa Lake is operated by the U.S. Army Corp of Engineers (USACE) for flood 

control, irrigation, and sediment retention. Water releases from Santa Rosa Lake typically 

occur only during block releases, which are typically 15-40 m3/s for a period of 5-15 

days. The frequency of these releases depends on available reservoir storage and 

irrigation demand, but cannot exceed 65 days (Moore et al., 2022). However, the reach 

downstream of the Lake to the City of Santa Rosa remains perennial due to groundwater 

inputs.  

 

3.2.2 Monitoring Description  
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Discharge and meteorological data: Discharge and stage data were also 

collected at 15-minute intervals at stream gages maintained by the USGS (Nos. 

08380400, 08380500, 08382000, 08382650, and 08382830) collocated or proximal to 

sonde sites GFT22 km, GMZ29 km, GL56 km, PSR170 km, and PBS190 km, respectively (U.S. 

Geological Survey, 2022). During periods before the deployment of non-contact radar, 

the height at 08380400 was estimated using a 2-hour lagged relationship between heights 

from USGS gages 08380500 and 08380400.  

Meteorological data were exported from MesoWest with barometric pressure 

being measured at climate station KLVS, and precipitation and solar radiation were 

recorded at climate stations LVPN5, TR931, NMC06, and NMC08 at 10-min intervals 

(Figure 3.1 and Table S3.2) (MesoWest, 2022). Precipitation and solar radiation time 

series from multiple sites were aggregated to a single time series by taking the weighted 

average on the proximity of a sonde site to the respective climate station. Differences 

between the site’s readings and KLVS’s barometric pressure were accounted for by a 

factor of 0.16 KPa per 15.3 m elevation difference.   

Data quality control, assurance, and conversions: Raw and converted data 

were processed for outliers and sensor drift with Aquarius Timeseries 21.1 (Aquatic 

Informatics, Vancouver, Canada). Erroneous outliers were eliminated using a moving 

average filter targeting points deviating more than 20% from a two-hour moving window. 

We corrected sensor drift and biofouling by comparing pre- and post-cleaning and 

calibration values and applied a linear correction from the date of the previous 

maintenance (Wagner et al., 2006). Lastly, we performed a final visual inspection of data 

quality. 
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A high discharge event on September 10th, 2022, damaged the sonde at the GFT22 

km monitoring site, effectively terminating data collection on August 28th, 2022 (Table 

S3.4). At GL56 km, sensor connectivity issues halted data recording from June 20th to July 

11th, 2022.  Starting September 4th, 2022, the DO sensor at PSR170 km was damaged, 

producing negative values, and was excluded from the analysis. Also, at PSR170 km and 

PBS190 km, there were periods with data removed because the sondes were buried or out of 

the water column. On August 10th, 2022, the sonde at PBS190 km was pulled for routine 

calibration, but high flow prevented its redeployment until September 14th, 2022. Also, a 

firmware issue prevented data from being recorded from May 18th to June 17th, 2022.  

fDOM was corrected for changes in water temperature and turbidity using the 

following equations (Downing et al., 2012):  

fDOM$%&' =
OPQR

#ST(U-"(.)
    (1), 

fDOMKBJ =
OPQR"%/0

0SV∗WXI(1∗3456)
   (2), 

where fDOM$%&' is the temperature corrected fDOM concentration (QSU); fDOM is the 

uncorrected fDOM concentration (QSU); ρ is temperature-specific fluorescence 

coefficient of −7.545 × 10"* °C"#; W( is the water temperature (°C); T) is the lab 

temperature of 22 °C when fDOM was calibrated; fDOMYZ[ is the temperature and 

turbidity corrected fDOM concentration (QSU); 𝑡𝑢𝑟𝑏 is the water turbidity (FNU);  a, 𝑏, 

and 𝑐 are turbidity correction coefficients of 0.38901, 0.72842, and -0.00618 when 

turbidity is less than 600 FNU, or 0.17573, 0.25597, and -0.00038 when turbidity is 

greater than 600 FNU (P. J. Regier et al., 2020).  

Photosynthetically active radiation (PAR) was derived by multiplying total solar 

radiation by a factor of 2.04 (Meek et al., 1984b). Average stream depth was derived by 
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dividing the measured cross-sectional area by stream width from 2000 to 2022 USGS 

field measurements taken at each stream gage.  

 

3.2.3 Estimates of Stream Metabolism  

Stream metabolism modeling: We estimated daily averages of stream 

metabolism using the USGS streamMetabolizer model (Appling et al., 2018), which uses 

a one‐station model based on the open‐channel metabolism approach (Odum, 1956), and 

incorporates inverse Bayesian Markov Chain Monte Carlo modeling. The equations used 

in streamMetabolizer are: 

CG\3
C;

= #
]3
k^__(;+";,)∗__`G3

∫ __`G4C<
3+
473,

+ 𝐸𝑅l + b8,,(G\9:3,3"G\<=>,3c

d?@'?AB3C?DB3
EC?FB3

G

8,,

   (3), 

𝐷𝑂ABC,; = 𝐷𝑂ABC,;"∆; + ∫ (CG\<=>,4
C<

+ 𝜀IJBK,<)
;
<=;"∆; 𝑑𝑢   (4), 

𝐷𝑂BL>,; = 𝐷𝑂ABC,; + 𝜀BL>,;       (5), 

where 𝐷𝑂; is the observed dissolved oxygen (mg	L-#) at time 𝑡; 𝐷𝑂>?;,; is the 

hypothetical saturated DO concentration (mg	L-#); 𝐷𝑂ABC,; is the modeled DO 

concentration (mg	L"#);	𝜀BL>	  and 𝜀IJBK	  are the observation and processes error; 

𝑡:	𝑎𝑛𝑑	𝑡# are the beginning and end of the day (𝑑); 𝑍; is stage (𝑚); 𝑃𝑃𝐹𝐷; is 

photosynthetic photon flux density (µmol	m"! d"#); 𝑇;	 is the water temperature (°C);  

𝑆D,E,F,G are dimensionless Schmidt coefficients (-); 𝐺𝑃𝑃 is the daily average areal rate of 

gross primary production (𝑔𝑂!	𝑚"!	𝑑"#); 𝐸𝑅 is the daily average areal rate of ecosystem 

respiration (𝑔𝑂!	𝑚"!	𝑑"#); and 𝐾,:: is the standardized gas exchange rate coefficient 

(	𝑑"#).	 
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 Stream metabolic fingerprints: We used the stream metabolic fingerprint 

technique (Bernhardt et al., 2018) to compare stream metabolism patterns across periods 

of analysis and monitoring sites. This technique analyzes GPP and ER kernel 

distributions to qualitatively compare metabolic regimes in response to changing site 

conditions and pulse events (Figure 3.3F) (Bernhardt et al., 2018). We derived GPP and 

ER kernel distributions using the R package MASS’s kde2d function at a bandwidth of 

7.5. The kde2d function is a nonparametric representation of the probability density 

function that is useful when data do not fall within a Gaussian distribution (Venables & 

Ripley, 2002).   

 

3.2.4 Periods of Analysis and Statistical Tests 

Periods of Analysis: Due to the dominant influence of rainfall-runoff events in 

wildfire disturbance generation and longitudinal propagation, we used changes in mean 

discharge values to establish periods to guide our time-based comparisons. For this, we 

used MATLAB’s ischange function with discharge data from USGS stream gage 

08380500, which had the greatest number of records available near the burned perimeter. 

MATLAB’s ischange function determines points of significant change in a time series 

mean trend (Killick et al., 2012).  

Diel cycling analysis: We generated spectrograms using the pspectrum function 

in Matlab for water temperature, pH, and DO to monitor changes associated with 

physical, chemical, and biological signals (Nichols et al., 2022; Nimick et al., 2011). 

Spectrograms use discrete, short-time Fourier transforms to quantify the significance of 

sinusoidal signals at multiple frequencies or periodicities within a time series. We 
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extracted the spectral power at a periodicity of 24 hours to quantify diel cycling within 

the time series. We also generated heatmaps that quantify when a diel signal reached its 

peak value within 24 hours for the same time series used for frequency analysis. For this, 

we used Matlab’s findpeaks function with a minimum peak distance of 12 hours to 

determine the time diel cycling reached in maximum value during 24 hours. The daily 

peak times were then aggregated to weekly values by taking the median peak times for 

each week. These diel cycling analyses were combined with stream metabolism to 

understand the role of seasonality in the longitudinal propagation of wildfire 

disturbances.  

Maximum daily discharge exceedance probability: We computed exceedance 

probabilities of maximum daily discharge from recorded values upstream of Santa Rosa 

Lake to compare flow changes pre- and post-fire. Discharge records available spanned 

from October 1st, 1990, to December 1st, 2022, for stream gages 08380500 and 

08382650, and March 13th, 2006, to December 1st, 2022, for stream gage 08382000. We 

used the maximum daily value observed in 15-min during 24 hours to calculate 

exceedance probabilities, 𝑃WXK.: 

𝑃WXK. = 100 A
(eS#)

    (6), 

where 𝑚 is an index representing ranked values of discharge from highest to lowest for 

the total number of daily discharge observations 𝑛. Low 𝑃WXK. values indicate atypical 

high-flow events, and high values indicate commonly observed flows. In this work, when 

𝑃WXK. < 1%, the event is classified as a high-flow event.  

Principal component and multi-comparison analysis: We used Matlab’s pca 

function to generate principal component analysis (PCA) and examine relationships 
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between water quality parameters and stream metabolism estimates. The first two 

principal components were used for statistical analysis since they explained 

approximately 60% of the total variance at each sonde site. We plotted the first two 

principal components in a biplot. Parameters aligned in the same direction represent 

positive correlations, those in opposite directions represent negative correlations, and 

those orthogonal are uncorrelated (Jolliffe & Cadima, 2016). We also categorized by 

color the latent space daily points in each period of analysis to understand their 

dominance. Daily mean water quality values were derived to align with the timestep of 

stream metabolism estimates. Lastly, we standardized each parameter’s daily average by 

centering its mean at zero and scaling by its standard deviation to make parameters with 

varying magnitudes and units comparable:  

SN =
N"fH
gH

    (7), 

where SN is the standardized parameter 𝑋 (-), and µN and σN are the mean and standard 

deviation of parameter 𝑋. 

Comparison tests: We used Pairwise Wilcoxon Rank Sum tests to compare 

period-to-period changes. The Pairwise Wilcoxon Rank Sum is a nonparametric, multiple 

comparison test that determines if groups within the data are statically similar, the null 

hypothesis, or significantly different (Mast et al., 2016; Wickham & Grolemund, 2016). 

We used the Holm-Bonferroni method to calculate p-values to minimize family-wise 

error rates. Each time series was aggregated to 5-day averages to reduce autocorrelation 

and type one error, except for PBS190 km, which required 3-day averages due to a reduced 

number of days of observation during the pre-monsoon period.   
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3.3 Results 

3.3.1 Seasonal Changes in Flow  

There were no high-flow events during the pre-monsoon period (Figure S3.2). 

Discharges upstream of Santa Rosa Lake were at the lowest values in that period during 

the fire year, with average values ranging from 0.02 to 0.17 m3/s (Tables S3.2 and S3.3). 

In mid-June, a block release from Santa Rosa Lake increased the average discharge at 

PBS190 km to 2.81 m3/s for approximately 8 days. 

During the monsoon period, 243 mm of precipitation fell on the burn scar, mainly 

between July 26th-30th (70 mm) and August 17th to 18th (42 mm). Twelve high-flow 

events occurred at the GMZ29 km site, two at GL56 km, and one at PSR170 km in this period 

(Figures S3.2 and S3.3). Maximum discharges across the three sites were 66.0, 20.4, and 

68.0 m3/s, corresponding to high flow events with low exceedance probabilities of 0.06, 

0.58, and 0.75%, respectively (Figure S3.3). Average discharges across all sites ranged 

from 1.30 to 7.93 m3/s, with the lowest value measured at GL56 km and the highest at 

PSR170 km (Tables S3.2 and S3.3).  

During the post-monsoon period, 110 mm of precipitation fell within the burn 

scar. Most precipitation occurred between October 3rd-8th and October 16th, with 57 mm 

and 34 mm of precipitation, respectively. The highest peak discharge values were 6.8, 

3.8, and 15.1 m3/s at the GMZ29 km, GL56 km, or PSR170 km sites, with exceedance 

probabilities of 1.3, 2.3, and 6.2%, respectively (Figure S3.3). Average post-monsoon 

discharges across all sites ranged from 3x10-4 to 2.1m3/s, with the lowest value measured 

at PBS190 km and the highest at PSR170 km (Tables S3.2 and S3.3; Figure 3.2).  
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Figure 3.2: Boxplots of parameters and fluxes from all monitoring sites, grouped by 
analysis period. The statistical comparisons between periods are presented in Table 1. 
GFT22 km, Gallinas Creek near La Placita fire station, 22 km downstream from the 
headwaters of Gallinas Creek; GMZ29 km, Gallinas Creek near Montezuma; GL56 km, 
Gallinas Creek near Lourdes; PSR170 km, Pecos River upstream of Santa Rosa Lake; 
PBS190 km, Pecos River downstream of Santa Rosa Lake. 

 
3.3.2 Seasonal Changes in Water Quality Parameters  

During the pre-monsoon period, turbidity and fDOM were at their lowest values 

of the fire year at sites upstream of Santa Rosa Lake, with averages ranging from 5.93 to 
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62.7 FNU and 21.7 to 38.7 QSU (Tables S3.2 and S3.3). The PBS190 km site, downstream 

of the lake, had its highest turbidity of the fire year, with an average of 26.3 FNU. There 

was an increase in specific conductivity from the headwaters to the lower sites, with a 

1,870 uS/cm difference between GFT22 km and PBS190 km pre-monsoon averages (Figures 

3.2 and S3.2; Tables S3.2 and S3.3).  

With respect to the pre-monsoon, most water quality parameters significantly 

changed at the stations upstream of Santa Rosa Lake (i.e., GFT22 km, GMZ29 km, GL56 km, 

and PSR170 km) during the monsoon period, and only a few changed downstream of the 

lake at PBS190 km (Table 3.1). At GFT22 km, water temperature and fDOM were the only 

quantities that did not change significantly. At GMZ29 km, only the water temperature did 

not change. At GL56 km and PSR170 km, only DO, and pH did not change. At PBS190 km, 

DO, specific conductivity, pH, and turbidity did not change. Summarizing the main 

changes during the monsoon period, the average values of fDOM increased from 33 to 96 

QSU at GMZ29 km (Table S3.2) and from 39 to 83 QSU at GL56 km. Turbidity experienced 

a significant increase at the monitoring sites upstream of Santa Rosa Lake (Figures 3.2 

and S3.2), with period averages ranging from 149 to 574 FNU. However, unlike observed 

values at locations upstream of the lake, PBS190 km experienced minimal reductions in 

turbidity, with a period average of 16 FNU. Specific conductivity significantly decreased 

at monitoring sites upstream of Santa Rosa Lake, with average ranges of 172 to 442 

uS/cm, while it remained relatively high at PBS190 km, averaging 2087 uS/cm (Tables 3.1 

and S3.2).  
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Table 3.1: p-values from Pairwise Wilcoxon Rank Sum tests between periods of 
analysis, i.e., pre-M, M, and post-M indicating pre-monsoon, monsoon, and post-
monsoon. Light green shows statically significant differences at p-values <0.05. 

Site Season Stage 
and 

Discha
rge 

D
O 

Water 
Temp 

fDO
M 

Spec
ific 
Con
d. 

pH Turb
idity 

GP
P 

E
R 

GFT2

2 km 

Pre-M vs 
M 0.00 0.0

2 0.47 0.65 0.00 0.0
0 0.00 0.0

0 0.5 

M vs Post-
M NA N

A NA NA NA N
A NA NA N

A 
Pre-M vs 
Post-M NA N

A NA NA NA N
A NA NA N

A 

GMZ
29 km 

Pre-M vs 
M 0.00 0.0

3 0.37 0.00 0.00 0.0
0 0.04 0.0

0 
0.0
0 

M vs Post-
M 0.00 0.0

0 0.00 0.00 0.04 0.0
0 0.06 0.4

5 
0.7
4 

Pre-M vs 
Post-M 0.00 0.0

0 0.00 0.04 0.00 0.0
1 0.21 0.0

0 
0.0
0 

GL56 

km 

Pre-M vs 
M 0.00 0.2

3 0.02 0.04 0.00 0.6
0 0.00 0.0

0 
0.0
0 

M vs Post-
M 0.00 0.0

1 0.00 0.43 0.00 0.0
2 0.01 0.0

0 
0.0
0 

Pre-M vs 
Post-M 0.00 0.0

0 0.00 0.00 0.00 0.8
5 0.72 0.0

0 
0.0
0 

PSR1

70 km 

21 vs 22 
Pre-M 0.00 0.7

4 0.31 NA 0.83 0.0
0 0.21 0.9

8 
0.8
3 

21 vs 22 
M 0.00 0.4

6 0.98 NA 0.07 0.9
8 0.98 0.9

8 
0.0
0 

21 vs 22 
Post-M 0.00 0.0

2 0.98 NA 0.00 0.0
1 0.83 0.0

0 
0.0
0 

Pre-M vs 
M 0.00 0.4

6 0.00 NA 0.00 0.9
8 0.00 0.0

0 
0.0
1 

M vs Post-
M 0.00 0.0

2 0.00 NA 0.98 0.9
8 0.00 0.0

0 
0.0
0 

Pre-M vs 
Post-M 0.00 0.0

0 0.98 NA 0.00 0.9
8 0.98 0.0

2 
0.0
0 

PBS1

90 km 

21 vs 22 
Pre-M 0.00 0.9

8 0.59 NA 0.93 0.9
9 0.07 0.4

0 
0.4
0 

21 vs 22 
M 0.00 0.9

8 0.22 NA 0.88 0.9
4 0.42 0.0

0 
0.0
0 

21 vs 22 
Post-M 0.00 0.9

8 0.25 NA 0.00 0.0
0 0.00 0.0

8 
0.0
4 

Pre-M vs 
M 0.01 0.7

5 0.02 NA 0.98 0.9
6 0.98 0.9

8 
0.9
7 
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Table 3.1: p-values from Pairwise Wilcoxon Rank Sum tests between periods of 
analysis, i.e., pre-M, M, and post-M indicating pre-monsoon, monsoon, and post-
monsoon. Light green shows statically significant differences at p-values <0.05. 

Site Season Stage 
and 

Discha
rge 

D
O 

Water 
Temp 

fDO
M 

Spec
ific 
Con
d. 

pH Turb
idity 

GP
P 

E
R 

M vs Post-
M 0.00 0.0

0 0.00 NA 0.00 0.0
2 0.00 0.0

0 
0.0
0 

Pre-M vs 
Post-M 0.00 0.0

2 0.02 NA 0.98 0.9
8 0.03 0.0

2 
0.2
1 

 
Most water quality parameters significantly changed at all stations between the 

monsoon and post-monsoon periods. At GMZ29 km, turbidity changes had a marginal p-

value=0.06. At GL56 km, only fDOM did not change significantly. At PSR170 km, only DO, 

and pH did not change. At PBS190 km, all quantities changed (Table 3.1). Summarizing the 

main changes during the post-monsoon period, fDOM significantly decreased at GMZ29 

km (Table 3.1) with respect to the monsoon season, with an average period value of 58 

QSU. Turbidity increased near the burn scar to an average of 260 FNU at GMZ29 km but 

significantly decreased at the GL56 km, PSR170 km, and PBS190 km, averaging 85, 48, and 0.2 

FNU, respectively (Table S3.2). Specific conductivity experienced significant increases 

at GMZ29 km, GL56 km, PSR170 km, and PBS190 km, averaging 210, 992, 537, and 2573 

uS/cm, respectively (Tables 3.1, S3.2, S3.3; Figure 3.2).  

Between the pre-monsoon and post-monsoon periods, most parameters changed 

significantly. At GMZ29 km, only turbidity did not change. At GL56 km, only pH and 

turbidity did not change. At PSR170 km, water temperature, pH, and turbidity did not 

change. At PBS190 km, specific conductivity and pH did not change (Table 3.1). 

 

3.3.3 Seasonal Changes in Stream Metabolism 
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GPP averages ranged from 0.6 to 4.9 𝑔𝑂!	𝑚"!	𝑑"# during the pre-monsoon 

period, with the lowest and highest values occurring at PSR170 km and GL56 km, 

respectively (Tables S3.2 and S3.3). ER averages ranged from 3.1 to 9.5 𝑔𝑂!	𝑚"!	𝑑"#, 

with the lowest and highest values occurring at PSR170 km and GFT26 km, respectively 

(Figures 3.2 and S3.2). The metabolic fingerprint distributions across monitoring sites 

upstream of Santa Rosa Lake had centroids with larger ER vs. GPP values and uniform 

spreads (Figure 3.3). In contrast, PBS190 km had two centroids, i.e., one falling on the 1:1 

line (0.5, -0.5) and another with heightened ER (1, -15), which was associated with the 

block release period (Figure 3.3E). Conceptually, kernel distributions favoring high ER 

and low GPP indicate increased organic matter, nutrient, and sediment fluxes; 

distributions near zero GPP and ER indicate scouring of the benthic zone; distributions 

that fall on a 1:1 ratio between GPP and ER indicate metabolic equilibrium (Bernhardt et 

al., 2018).  

With respect to the pre-monsoon, GPP and ER changed at most sites during the 

monsoon period, except at PBS190 km. ER did not change significantly at GFT22 km (Table 

3.1). Upstream of Santa Rosa Lake, GPP was reduced with respect to the pre-monsoon, 

with average values ranging from 0.2 𝑔𝑂!	𝑚"!	𝑑"# at GMZ29 km and PSR170 km to 1.3 

𝑔𝑂!	𝑚"!	𝑑"#	at GL56 km (Figure 3.2; Tables S3.2 and S3.3). There was a reduction in ER 

at most monitoring sites along Gallinas Creek, with average values ranging from 0.1 

𝑔𝑂!	𝑚"!	𝑑"# at GMZ29 km to 6.6 𝑔𝑂!	𝑚"!	𝑑"#	at GFT22 km. ER increased at PSR170 km, 

reaching an average of 5.5 𝑔𝑂!	𝑚"!	𝑑"# (Tables 3.1, S3.2, and S3.3). Metabolic 

fingerprint distributions at monitoring sites upstream of Santa Rosa Lake shifted away 

from the 1:1 line. The GMZ29 km distribution moved near the zero-to-zero axis (Figure 
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3.3B). The distributions from GFT22 km, GL56 km, and PSR170 km shifted to lower GPP and 

higher ER magnitudes compared to the pre-monsoon period (Figure 3.3C-D). PBS190 km 

was the only site where metabolic fingerprint distributions in the pre-monsoon and 

monsoon periods overlapped, not including the dam release flow cluster, and its centroid 

had the same GPP with slightly higher ER, indicating little change between periods 

(Figure 3.3E).  
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Figure 3.3: Metabolic fingerprints at each monitoring site grouped by their respective 
temporal period. A) GFT22 km, Gallinas Creek near La Placita fire station, 22 km 
downstream from the headwaters of Gallinas Creek, B) GMZ29 km, Gallinas Creek near 
Montezuma, C) GL56 km, Gallinas Creek near Lourdes, D) PSR170 km, Pecos River 
upstream of Santa Rosa Lake, E) PBS190 km, Pecos River downstream of Santa Rosa Lake, 
F) Conceptual figure modified from Bernhardt et al. (2018) illustrating where forcing 
variables change the position of a metabolic distribution.  
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Between the monsoon and post-monsoon periods, GPP and ER changed at all 

sites except at GMZ29 km. GPP increased at GL56 km to an average of 1.9 𝑔𝑂!	𝑚"!	𝑑"#. 

PSR170 km and PBS190 km experienced a significant reduction in GPP, averaging 0.1 and 

0.3 𝑔𝑂!	𝑚"!	𝑑"#, respectively (Table S3.2 and Figure 3.2). ER at GL56 km, PSR170 km, and 

PBS190 km had a significant reduction to averages of 1.8, 1.0, and 0.6 𝑔𝑂!	𝑚"!	𝑑"#, 

respectively. There were little changes to the metabolic fingerprint distributions at GMZ29 

km, with a centroid near the zero axis. At GL56 km and PSR170 km, the distributions shifted 

back to the 1:1 line but stayed lower than in the pre-monsoon period (Figure 3.3). There 

were minor changes in metabolic clusters at PBS190 km, which overlapped with pre-

monsoon and monsoon clusters. Between the pre-monsoon and post-monsoon periods, 

GPP and ER changed at all sites except at PBS190 km, where ER did not change (Table 

3.1). 

 

3.4 Discussion 

3.4.1 Pre-Fire vs. Fire Year Differences at the Two Stations (PSR170 km and PBS190 

km) with Comparable Data 

With respect to the values observed in 2021, only stage and pH values were 

significantly different in 2022 at PSR170 km during the pre-monsoon period. While average 

stage values were similar (Table S3.2), they were more variable in 2021 (Figures 3.2 and 

S3.2; Table S3.3). Average pH values were greater in 2021 (i.e., 8.4 vs 8.0). At PBS190 km, 

only stage values differed and had a greater average in 2022 (i.e., 0.08 vs. 0.2m). All the 

other parameters and stream metabolism fluxes remained similar (Table 3.1).  
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During the monsoon period, only stage and ER values were significantly different 

at PSR170 km. Average stage and ER values were greater in 2022 (i.e., 0.2 vs 0.4 m; 3.1 vs. 

5.5 𝑔𝑂!	𝑚"!	𝑑"#, respectively) (Tables 3.1, S3.2, and S3.3). At PBS190 km, average stage, 

GPP, and ER values were greater in 2022 (i.e., 0.02 vs. 0.2 m; 0.4 vs. 0.8 𝑔𝑂!	𝑚"!	𝑑"#; 

and 0.6 vs. 2.8 𝑔𝑂!	𝑚"!	𝑑"#, respectively).  

During the post-monsoon period, average stage, DO, specific conductivity, pH, 

GPP, and ER values differed at PSR170 km. Average specific conductivity, pH, GPP, and 

ER values were greater in 2021 (i.e., 1847 vs. 536 uS/cm; 8.2 vs. 7.8; 0.4 vs. 0.1 

𝑔𝑂!	𝑚"!	𝑑"#; and 1.5 vs. 1.0 𝑔𝑂!	𝑚"!	𝑑"#, respectively) (Tables 3.1, S3.2, and S3.3). 

Average stage and DO values were greater in 2022 (i.e., 0.1 vs. 0.2 m; 8.5 vs. 10.2 mg/L, 

respectively). At PBS190 km, average stage, specific conductivity, pH, turbidity, and ER 

values were different.  Average stage, specific conductivity, and turbidity were greater in 

2021 (i.e., 0.03 vs. 0.02 m; 2630 vs. 2572 uS/cm; 12.6 vs. 0.2 FNU, respectively). 

Average pH and ER values were greater in 2022 (i.e., 7.6 vs. 8.0; 0.3 vs. 0.6 

𝑔𝑂!	𝑚"!	𝑑"#, respectively). 

 

3.4.2 Wildfire Disturbance Generation and Propagation: Impacts to Stream 

Metabolism and Ecosystem Services 

 The most significant changes observed in our study occurred during the monsoon 

period. We identified twelve high-flow events with exceedance probability < 1% at the 

GMZ29 km monitoring site (Figure S3.3), coupled with a rapid increase in turbidity from 

GFT22 km to PSR170 km and fDOM from GFT22 km to GL56 km. Due to the low probability 

nature of these flows with respect to historical records, they are likely associated with 
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altered hydrologic processes within the burn scar. Beyond flow increases, turbidity 

concentrations increased by 25x, 3x, 11x, and 20x at GFT22 km, GMZ29 km, GL56 km, and 

PSR170 km, respectively, with respect to the pre-monsoon period. Similarly, fDOM values 

increased by 2x, 3x, and 2x at GFT22 km, GMZ29 km, and GL56 km, respectively. Since 

fDOM and turbidity are common surrogates for dissolved organic carbon (DOC) and 

suspended sediment concentrations (SSC), these constituents were also likely elevated 

during the high-flow monsoonal events (Holliday et al., 2003; Lee et al., 2015). Specific 

conductivity further validates the increase DOC and SSC with it experiencing an 

significant decrease during the monsoon period, which indicates a reduction in baseflow 

and an increase in overland flow would mobilize allochthonous sediments and organics 

into the fluvial network.  

Impacts to stream metabolism: During the monsoon period, PSR170 km 

experienced similar increases in turbidity in 2021 and 2022 (Figure 3.2; Tables S3.2 and 

S3.3). This may suggest seasonal increases unrelated to wildfire disturbances. However, 

the metabolic fingerprint analysis indicates that during the 2022 monsoon season, the 

sites upstream of Santa Rosa Lake had high ER and low GPP patterns, and at PSR170 km 

the metabolic regime skewed to higher ER values compared to 2021 (Figure S3.5), 

indicating an increase in DOC, nutrients, and SSC post-fire, which together provide 

resources for heterotrophic respiration while limiting light availability for phototrophic 

production (Bernhardt et al., 2018).  

Our stream metabolism estimates show significant decreases in GPP during the 

monsoon period (Table 3.1), with an average reduction of 88%, 93%, 74%, and 45% at 

GFT22 km, GMZ29 km, GL56 km, and PSR170 km, respectively. Like GPP, ER showed a 
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significant decrease during the monsoon period at GFT22 km, GMZ29 km, and GL56 km, with 

an average attenuation of 31%, 98%, and 42%, respectively. However, at PSR170 km, ER 

experienced a significant increase of 44% during the monsoon period. The reductions in 

ER and GPP are most likely due to the scouring of autotrophic and heterotrophic 

communities and biofilms from the benthic zone but are also associated with changes in 

light penetration due to increased turbidity and greater flow depths (Dodds et al., 2013; 

Ganju et al., 2020; Solins & Cadenasso, 2022). Our principal component analysis shows 

strong relationships between discharge, turbidity, and fDOM during the monsoon period 

and inverse relationships between these variables and GPP and ER (Figure 3.4). Unlike 

the year of the fire, seasonal clusters at PSR170 km during 2021 had less separation and a 

weakened relationship between discharge and turbidity to ER (Figure S3.6).  

The weakening of DO diel cycling (see Methods) and its shift in peak diel values 

from 12:00 pm to 8:00 am validates the reduction in GPP at GFT22 km, GMZ29 km, and 

GL56 km, indicating that Gallinas Creek went from being biologically driven to being 

physically driven (Figure S3.7). These results suggest a reduction of phototrophic 

communities, which would typically increase DO during hours of peak solar radiation 

around noon. With losses in phototrophic biomass, the primary driver of DO diel cycling 

became gas solubility, which increases with lower water temperatures. As a result, DO 

concentrations peaked in the early morning. While many mechanisms can cause the loss 

of benthic phototrophic communities, our metabolic fingerprint analysis suggests that the 

loss of phototrophic communities was primarily due to scouring of the benthic zone. This 

was supported by increases in turbidity, fDOM, and stage values during the monsoon 

period. Cooccurring with the scouring of the benthic zone and loss of phototrophic 
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communities, there were distinct DO sags that resulted in short-term hypoxia within the 

water column. These DO sags can further exacerbate stressed aquatic communities that 

rely on high concentrations of DO for aerobic respiration.    

 

Figure 3.4. PCA biplots with parameter eigen vectors represented by blue lines. A) GFT22 

km, Gallinas Creek near La Placita fire station, 22 km downstream from the headwaters of 
Gallinas Creek, with a total of 64% variability explained; B) GMZ29 km, Gallinas Creek 
near Montezuma, with a total of 68% variability explained; C) GL56 km, Gallinas Creek 
near Lourdes, with a total of 70% variability explained; D) PSR170 km, Pecos River 
upstream of Santa Rosa Lake, with a total of 76% variability explained; E) PBS190 km, 
Pecos River downstream of Santa Rosa Lake, with a total of 87% variability explained; 
F) Conceptual figure explaining common positive, negative, and no correlations in PCA 
biplots. 
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Impacts to ecosystem services: Besides altering water quality, carbon and 

nutrient cycling, and stream metabolism fluxes, the propagation of wildfire disturbances 

affects ecosystem services. For example, increases in turbidity overburdens water 

purification in water treatment plants, disrupting day-to-day activities in affected 

locations(Murphy et al., 2023). During the HPCC fire, high turbidity and organics in 

Gallinas Creek forced the City of Las Vegas, NM, to halt its use as the primary source of 

potable water. This led to large-scale and restricted use of bottled water in the region and 

the installation of a 2-million-dollar filtration system at Storrie Lake, a nearby reservoir 

typically used for irrigation purposes, to be used as a backup water supply. Beyond these 

impacts, the HPCC wildfire caused soil and sediment management problems due to an 

increase in overland flow in the watershed, affecting ecosystem services associated with 

aesthetics, scenic, and recreational uses of the streams and lakes (Figure S3.4). 

Post-fire recovery: While GMZ29 km was still experiencing a reduction in stream 

metabolism in December 2022, monitoring sites farther downstream of the burn scar 

started to show signs of recovery in metabolic activity during the post-monsoon period. 

During that period, sites upstream of Santa Rosa Lake experienced an overall reduction in 

turbidity and reached values previously experienced during the pre-monsoon season 

(Table 3.1). Coupled with the shift of metabolic fingerprints from high ER and low GPP 

to a 1:1 ratio at GL56 km and PSR170 km (Figure 3.3), our data suggest metabolic signs of 

recovery near the end of 2022. However, GPP and ER post-monsoon values were 

significantly smaller than those observed during the 2021 post-monsoon period (Tables 

3.1, S3.2, and S3.3).   
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Other indications suggest that the fluvial network was still highly susceptible to 

post-fire precipitation events during the post-monsoon period. For example, on October 

23rd, 2022, a 3 mm precipitation event increased discharge to 6.7 m3/s at GMZ29 km, a 

flow with an exceedance probability of ~1%, and resulted in the highest turbidity value 

observed, i.e., 7247 FNU (Table S3.3). Likewise, another precipitation event on October 

8th, 2022, produced 5 mm of precipitation and resulted in a 3.76 m3/s increase in 

discharge at GL56 km, coinciding with the highest turbidity value measured at that site 

during the fire year, i.e., 3677 FNU, and a two-day reduction in GPP (Figures S3.2; Table 

S3.3). These post-monsoon data suggest that while some metabolic fluxes showed signs 

of recovery, the Gallinas Creek watershed had not fully recovered from the HPCC fire by 

the end of 2022.    

 

3.4.3 The Role of Santa Rosa Lake in Disturbance Attenuation  

The metabolic fingerprints during the 2021 and 2022 monsoon periods at PSR170 

km show distributions with higher ER in 2022. Unlike PSR170 km, the metabolic 

fingerprints between the two years remain unchanged at PBS190 km. In 2022, most water 

quality changes were decoupled between PSR170 km and PBS190 km (Table 3.1). For 

example, while only DO and pH did not change at PSR170 km between the pre-monsoon 

and monsoon periods, at PBS190 km DO, specific conductivity, pH, turbidity, GPP, and ER 

did not change between those two periods.  

The decoupling of and differences between water quality parameters and 

metabolic fluxes observed at PSR170 km and PBS190 km (Figures 3.2 and S3.2; Tables 3.1, 

S3.2, and S3.3) suggest that Santa Rosa Lake buffered wildfire disturbances originating 



 73 

from the HPCC wildfire burn scar. A separate study from our rapid response research 

team measured surface water quality longitudinal profiles at Santa Rosa Lake during the 

monsoon period using an autonomous vehicle (Khandelwal et al., in review) and 

registered turbidity reductions of up to 650 FNU in the delta of the Pecos River and Santa 

Rosa Lake, suggesting the existence of hyperpycnal flows, in which the higher density 

river water sinks below the lower density lake water, effectively mobilizing wildfire 

disturbance material from the water column into the lake’s bed. This deposition and 

hyperpycnal flow processes help explain why PSB has not shown signals indicating 

wildfire-related impacts to metabolic processes downstream of the lake and suggests that 

the lake substantially buffered the longitudinal propagation of wildfire disturbances along 

the Gallinas Creek-Pecos River continuum. 

In Ball et al. (2021), we proposed a simple model to estimate the total longitudinal 

stream length (𝑆𝐿hi) impacted inside and outside burned watersheds by a disturbance 

initiating at a stream order 𝜔:. Briefly, 𝑆𝐿hi = 𝐿qj,(1 − 𝑅h
k)/(1 − 𝑅h), where 𝑅h =

𝐿q(𝜔 + 1)/𝐿q(𝜔) and fluctuates between 1.5<𝑅h<3.5, and 𝐿q(𝜔) is the arithmetic average 

of the length of streams of order 𝜔. We applied 𝑆𝐿hi to the Las Conchas wildfire dataset 

presented in Dahm et al. (2015a), which burned first-order streams (𝜔: = 1) with 𝐿q#~1.3 

km in Peralta Canyon, to predict that the Rio Grande would still be affected where it was 

an 8th order stream, assuming the average value recommended of 𝑅h=2. From our data-

limited analysis, we proposed that 𝑆𝐿hi conservatively should be about equal to the river 

length impacted within burned areas 𝑆𝐿ED (Ball et al., 2021). From the HPCC wildfire 

dataset, we know that the wildfire disturbances generated in the headwaters of Gallinas 

Creek (where 𝐿q#~0.6 km) propagated to the 5th order stream Pecos River (𝜔=5) upstream 
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of Santa Rosa Lake. Since our data showed that PSR170 km was affected by the 

disturbances but PBS190 km was not affected, we assume 𝑆𝐿hi ~180 km. This propagation 

can be predicted with our 𝑆𝐿hi equation when 3.0<𝑅h3.5. Smaller 𝑅h values would 

consistently overestimate the stream order to which the disturbances propagated, 

highlighting the key role that lakes have in resetting water quality disturbances. 

While overestimations of 𝑆𝐿hi in watersheds with significant lakes are expected 

because Horton’s original equation predicts the uninterrupted growth of stream orders 

from headwaters to the ocean, our HPCC fire analysis suggests that such overestimations 

should be much more common in fluvial networks with lakes that are not bypassed by 

most flow paths draining the burned area. For example, compared to the dominant role 

that Santa Rosa Lake had in the longitudinal propagation of wildfire disturbances from 

the HPCC fire, Cochiti Lake played a less dominant role in resetting water quality after 

the 2011 Las Chochas Fire (Dahm et al., 2015a). This was because Cochiti Lake only 

received flow paths draining the east side of the burned Jemez Mountains, but multiple 

discharge-relevant flow paths draining the west side connected to the Jemez River, a 

tributary draining into the Rio Grande downstream of Cochiti Lake. Also, water 

operations (i.e., storage and releases) at those two reservoirs differ significantly, i.e., 

while Cochiti Dam allows continuous river flow, except during flood control operations, 

Santa Rosa Lake’s gates are closed, except during block releases. Therefore, while our 

equation to estimate 𝑆𝐿hi can be used as a first approximation to conservatively estimate 

the longitudinal propagation of wildfire disturbances, the role of lakes and similar 

reservoirs is not captured but may be dominant. In those cases, our Horton-based 

estimation of 𝑆𝐿hi would tend to overestimate the total length of streams and rivers 
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impacted. Given the lake-specific complexity of the relationships between lake size and 

the scheduling of water storage, water release, and sediment dredging operations, it is 

unlikely that a simple term to account for those relevant features can be added to our 

simplistic 𝑆𝐿hi model.  

 

3.5 Conclusions  

 The HPCC wildfire is currently the largest fire recorded in New Mexico, with a 

burn scar of 1,382 km2. The Gallinas Creek watershed was ~ 87% burned and holds the 

highest population density around the HPCC burn perimeter. About 19% of this 

watershed had a high severity burn, 25% a moderate severity, and 43% a low severity. 

From our monitoring of five instrumented sites located along a 198 km network of 

Gallinas Creek – Pecos River – and Santa Rosa Lake, we observed twelve high-flow 

events during the monsoon season, with exceedance probabilities smaller than 1%. These 

unusual high-flow events featured elevated turbidity and fDOM along Gallinas Creek, 

coupled with reductions in GPP and ER and a shift in metabolic fingerprints, indicating 

scouring of the benthic zone. The site on the Pecos River upstream of Santa Rosa Lake 

featured reductions in GPP and increases in ER associated with the propagation of 

wildfire disturbances, while water quality parameters and stream metabolism at the site 

downstream of the lake remained largely unchanged. Interestingly, the marked and 

decoupled differences between the sites upstream and downstream of Santa Rosa Lake 

suggest that the lake was able to buffer wildfire disturbances over the ten months post-

fire included in this study.  
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This work addresses critical recommendations for incorporating wildfires into the 

spatiotemporal analysis of water impairment along fluvial networks(Ball et al., 2021). We 

increased focus on longitudinal behaviors by capturing the propagation of wildfire 

disturbances over 190 km and incorporated high-frequency data to the monitoring of 

multiple water quality parameters and fluxes sub-hourly, at multiple sites, from ‘first-

flush’ events to multiple months after the fire was extinguished. This rapid-response and 

comprehensive research was possible due to the funding investment for preparation and 

readiness made available by the National Science Foundation before the historic 2022 fire 

season began.  
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Supplemental Information: 

Figure S3.1: The burn severity within Gallinas Creek's watershed. Gallinas Creek 
and Beaver Creek, a perennial tributary to Gallinas Creek, are both highlighted in 
blue.  
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Figure S3.2) Sonde time series of QA/QC data from monitoring sites. 
A) GFT22 km monitoring site 

 

B) GMZ29 km monitoring site 
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Pre-Monsoon Monsoon Post-Monsoon
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C) GL56 km monitoring site 

 

D) PSR170 km monitoring site during 2022  
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E) PSR170 km monitoring site during 2021  

 

F) PBS190 km monitoring site during 2022 
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G) PBS190 km monitoring site during 2021 
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Figure S3.3) Exceedance probability plots at the four USGS stream gages collocated 
to monitoring sites. The highest four daily discharge events during the study period 
are annotated. 
 

A) GMZ29 km 

 

 
B) GL56 km 

 

 
C) PSR170 km 

 

 
D) PBS190 km 
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Figure S3.4) Field Photos Taken During Site Maintenance 
 
A) Gabions constructed in the Gallinas River downstream of GMZ29 km. Photo taken: 
June 29th, 2022 

 
 
B) Backwatering occurring at gabions with sediment, organics, and woody debris 
depositing in the surrounding pools. Gallinas River downstream of GMZ29 km. Photo 
taken: July 20th, 2022 
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C) Scouring observed in one of the ephemeral tributaries connecting to the Gallinas 
River upstream of GMZ29 km. Photo taken: July 11th, 2022 
 

 
 
D) Overbank flooding observed at GFT22 km. Photo taken: July 11th, 2022 
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E) Dead aquatic vertebrates observed on the banks of GFT22 km. Photo taken: July 11th, 
2022 
 

 
 
 
F) Visible turbid water during the Monsoon period at GMZ29 km. Photo Taken: July 
11th, 2022 
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G) Visible turbid water during the Monsoon period at GL56 km. Photo Taken: July 11th, 
2022  
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Figure S3.5) Metabolic Fingerprints for PSR170 km and PBS190 km during 2021.  
 

 
 
 
 
 
Figure S3.6) PCA biplots for PSR170 km and PBS190 km during 2021 study period. 

 
 
 
 
 
 
 
 
 
 
 
 

A) Pecos River Upstream of Santa 
Rosa Lake

B) Pecos River Downstream of Santa 
Rosa Lake
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Figure S3.7) Diel spectrograms (top) and diel peak values (bottom) heatmap at each 
monitoring site. Grey coloring indicates periods of missing data due to sonde 
damage, burial, or firmware issues. A) GFT22 km, Gallinas Creek near La Placita fire 
station, 22 km downstream from the headwaters of Gallinas Creek, B) GMZ29 km, 
Gallinas Creek near Montezuma, C) GL56 km, Gallinas Creek near Lourdes, D) 
PSR170 km, Pecos River upstream of Santa Rosa Lake, E) PBS190 km, Pecos River 
downstream of Santa Rosa Lake. F) Conceptual figure generated from GFT data 
illustrating how spectrograms and peak time of day plots can be utilized to 
understand changes to diel cycling magnitude and timing.  
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Table S3.1) Parameters, corresponding sensors, and sampling frequencies available 
during the study. 

Source Parameter Abbreviati
on Units Sites 

Sampling 
frequency 

(min) 

USGS 

Discharge Discharge m3 s-1 GMZ29 km, GL56 km, 
PSR170 km, PBS190 km 

15 

Stage Stage m 
GFT22 km, GMZ29 km, 
GL56 km, PSR170 km, 

PBS190 km 
15 

YSI 
EXO2 

Dissolved 
oxygen DO ppm 

GFT22 km, GMZ29 km, 
GL56 km, PSR170 km, 

PBS190 km 
15 

Specific 
conductivity Sp Cond uS cm-1 

GFT22 km, GMZ29 km, 
GL56 km, PSR170 km, 

PBS190 km 
15 

Water 
temperature 

Water 
Temp ºC 

GFT22 km, GMZ29 km, 
GL56 km, PSR170 km, 

PBS190 km 
15 

Turbidity Turbidity FNU 
GFT22 km, GMZ29 km, 
GL56 km, PSR170 km, 

PBS190 km 
15 

pH pH - 
GFT22 km, GMZ29 km, 
GL56 km, PSR170 km, 

PBS190 km 
15 

Fluorescent 
dissolved 

organic matter 
fDOM RFU GFT22 km, GMZ29 km, 

GL56 km 15 

MesoW
est 

Barometric 
pressure Baro Press mmHg KLVS 10 

Solar radiation PAR µmol m-2 s-1 LVPN5, TR931, NMC06, 
NMC08 10 

Precipitation Precip mm LVPN5, TR931 NMC08, 
NMC06 10 
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Table S3.2) Temporal period average values by monitoring site. Pre-M, M, and 
post-M indicate pre-monsoon, monsoon, and post-monsoon. 

Site Seas
on 

Disch
arge 

(m3/s) 

Sta
ge 

(m) 

DO 
(mg
/L) 

Wa
ter 
Te
mp 
(C) 

fD
OM 
(QS
U)  

Sp 
Cond 
(uS/c

m)  

p
H 
 

Turbi
dity 

(FNU
)  

GPP 
(gO2/
m2d)  

ER 
(gO2
/m2d

)  

GFT2

2km 

Pre-
M NA 0.5 7.3 15.2 21.7 212.8 

8.
0 5.9 4.8 9.5 

M NA 0.7 7.9 15.3 32.9 178.4 
8.
0 149.0 0.6 6.6 

GMZ
29km 

Pre-
M 0.2 0.2 7.8 17.3 32.8 272.9 

8.
3 62.7 3.4 4.3 

M 2.0 0.4 8.2 16.2 95.8 171.8 
8.
0 182.2 0.2 0.1 

Post
-M 0.7 0.3 9.9 8.0 58.0 210.4 

8.
2 259.5 0.3 0.1 

GL56k

m 

Pre-
M 0.05 0.2 6.7 18.9 38.7 

1332.
9 

8.
7 23.8 4.9 7.6 

M 1.3 0.3 7.2 21.6 82.7 442.1 
8.
2 268.8 1.3 4.4 

Post
-M 0.1 0.2 9.6 10.5 79.2 992.4 

8.
5 85.0 1.9 1.8 

PSR1

70km 

Pre-
M 
21 0.09 0.1 6.7 20.3 

NA 1966.
9 

8.
4 53.8 0.6 2.2 

M 
21 3.4 0.2 6.1 23.7 NA 501.3 

8.
0 660.6 0.4 3.1 

Post
-M 
21 0.06 0.1 8.5 13.1 

NA 1847.
1 

8.
2 6.7 0.4 1.5 

Pre-
M 0.03 0.1 7.1 18.1 NA 1790.

4 
8.
0 28.5 0.6 3.1 

M 7.9 0.4 6.5 23.8 NA 218.0 
8.
0 574.1 0.2 5.5 

Post
-M 1.8 0.2 10.2 14.4 NA 536.6 

7.
8 48.4 0.1 1.0 

PBS1

90km 

Pre-
M 
21 0.01 

0.0
8 6.9 20.5 

NA 2624.
0 

7.
9 4.0 0.4 0.9 

M 
21 0.0007 

0.0
2 6.2 23.1 NA 2427.

9 
7.
9 25.5 0.4 0.6 

Post
-M 
21 0.0008 

0.0
3 7.7 14.7 

NA 2630.
2 

7.
6 12.6 0.1 0.3 
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Table S3.2) Temporal period average values by monitoring site. Pre-M, M, and 
post-M indicate pre-monsoon, monsoon, and post-monsoon. 

Site Seas
on 

Disch
arge 

(m3/s) 

Sta
ge 

(m) 

DO 
(mg
/L) 

Wa
ter 
Te
mp 
(C) 

fD
OM 
(QS
U)  

Sp 
Cond 
(uS/c

m)  

p
H 
 

Turbi
dity 

(FNU
)  

GPP 
(gO2/
m2d)  

ER 
(gO2
/m2d

)  
Pre-
M 2.8 0.2 6.3 21.3 NA 2088.

7 
7.
9 26.3 0.8 4.2 

M 5.5 0.2 6.1 23.8 NA 2086.
5 

7.
9 16.3 0.8 2.8 

Post
-M 0.0003 0.0

2 7.7 15.9 NA 2572.
5 

8.
0 0.2 0.3 0.6 

 
Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-
monsoon, monsoon, and post-monsoon.  

Site Seas
on 

Disc
harg

e 
(m3/

s) 

Sta
ge 

(m) 

DO 
(mg/
L) 

Wate
r 

Tem
p 

(C) 

fDO
M 

(QSU
) 
 

Sp 
Cond 
(uS/c

m) 
 

pH  

Tur
bidit

y 
(FN
U)  

GPP 
(gO2
/m2d

)  

ER 
(gO2
/m2d

)  

GF
T22k

m 

Pre-
M 

min 
NA 

0.4 3.9 7.7 16.4 180.9 7.7 0.01 0.1 2.1 
Pre-
M 

max 
NA 

0.5 9.6 20.9 127 369.7 8.5 871 7.7 17.3 
M  

min NA 0.5 5.5 9.6 2.2 133.3 7.6 6.0 0.1 0.2 
M  

max NA 1.6 9.2 22.5 163 298.6 8.2 2350 9.3 21.5 

GM
Z29k

m 

Pre-
M 

min 0.02 0.1 6.1 8.4 8.3 188.2 8.0 0.01 0.1 0.1 
Pre-
M 

max 3.5 0.5 9.6 26.4 200 669.5 8.7 1100 7.8 7.6 
M  

min 0.4 0.3 6.4 3.0 1.9 82.4 7.3 3.2 0.1 0.0 
M  

max 51.1 1.2 11.0 24.5 420 306.5 8.5 4920 4.8 1.5 
Post-

M 
min 0.04 0.1 7.6 -0.1 2.2 69.7 7.9 0.8 0.04 0.1 

Post-
M 4.0 0.5 12.3 19.0 166 267.1 8.6 7250 0.9 0.2 
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Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-
monsoon, monsoon, and post-monsoon.  

Site Seas
on 

Disc
harg

e 
(m3/

s) 

Sta
ge 

(m) 

DO 
(mg/
L) 

Wate
r 

Tem
p 

(C) 

fDO
M 

(QSU
) 
 

Sp 
Cond 
(uS/c

m) 
 

pH  

Tur
bidit

y 
(FN
U)  

GPP 
(gO2
/m2d

)  

ER 
(gO2
/m2d

)  
max 

GL5

6km 

Pre-
M 

min 0.01 0.1 1.9 9.5 5.5 1121 6.5 5.8 1.9 4.6 
Pre-
M 

max 0.2 0.2 10.9 30.8 63.0 1483 
11.
0 72.6 6.8 11.3 

M  
min 0.1 0.2 2.7 13.2 2.1 222.1 7.6 16.9 0.01 0.4 
M  

max 18.2 0.6 13.7 28.8 171.5 876.5 9.1 2583 8.7 8.7 
Post-

M 
min 0.01 0.1 5.5 -0.1 14.7 332.7 7.9 2.7 0.1 0.6 

Post-
M 

max 3.5 0.4 14.5 25.4 152.5 1537 9.1 3678 5.8 6.1 

PS
R170

km 

Pre-
M 
21 

Min 0.0 0.1 2.2 9.4 

NA 

291.4 7.9 0.0 0.0 0.5 
Pre-
M 
21 

Max 3.8 0.3 9.4 34.6 

NA 

2301 8.7 3602 2.1 4.8 
M 2

1 
Min 0.0 0.1 0.1 3.3 

NA 
80.1 7.0 0.0 0.0 0.3 

M 2
1 

Max 
101.

1 2.0 10.7 32.4 
NA 

2116 8.7 4264 5.1 10.1 
Post-

M 
Min 
21 0.0 0.1 6.5 2.2 

NA 

1265 8.1 0.0 0.2 0.7 
Post-

M 
Max 
21 0.1 0.1 11.4 29.0 

NA 

2095 8.5 171 0.7 2.4 
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Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-
monsoon, monsoon, and post-monsoon.  

Site Seas
on 

Disc
harg

e 
(m3/

s) 

Sta
ge 

(m) 

DO 
(mg/
L) 

Wate
r 

Tem
p 

(C) 

fDO
M 

(QSU
) 
 

Sp 
Cond 
(uS/c

m) 
 

pH  

Tur
bidit

y 
(FN
U)  

GPP 
(gO2
/m2d

)  

ER 
(gO2
/m2d

)  
Pre-
M 

min 0.01 0.1 4.0 8.2 
NA 

323.2 7.5 3.2 0.1 0.4 
Pre-
M 

max 0.5 0.1 9.7 28.6 
NA 

2246 8.3 
231.

3 1.3 7.6 
M  

min 0.02 0.1 3.5 18.8 NA 81.9 7.5 
106.

6 0.02 0.2 
M  

max 66.6 1.9 7.5 31.0 NA 592.7 8.2 3465 0.8 12.2 
Post-

M 
min 0.1 0.1 5.7 0.01 

NA 
119.8 7.1 0.01 0.03 -1.0 

Post-
M 

max 16.6 0.8 12.0 26.5 
NA 

1327 8.3 
972.

4 1.5 3.5 

PB
S190

km 

Pre-
M 
21 

Min 
0.00

3 0.1 4.7 14.4 

NA 

2479 7.7 0.0 -1.2 0.4 
Pre-
M 
21 

Max 0.02 0.1 9.9 26.8 

NA 

2667 8.1 24.9 1.1 1.4 
M 2

1 
Min 0 0.0 4.4 18.0 

NA 
687.8 7.2 3.7 0.0 0.2 

M 2
1 

Max 0.04 0.1 8.8 28.4 
NA 

2670 8.5 3225 1.4 2.0 
Post-

M  
21 

Min 0 0 5.6 8.4 

NA 

2352 7.4 2.6 0.1 0.1 
Post-

M 
21 

Max 
0.00

2 
0.0
5 9.9 23.0 

NA 

2676 7.8 90.7 0.2 0.5 
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Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-
monsoon, monsoon, and post-monsoon.  

Site Seas
on 

Disc
harg

e 
(m3/

s) 

Sta
ge 

(m) 

DO 
(mg/
L) 

Wate
r 

Tem
p 

(C) 

fDO
M 

(QSU
) 
 

Sp 
Cond 
(uS/c

m) 
 

pH  

Tur
bidit

y 
(FN
U)  

GPP 
(gO2
/m2d

)  

ER 
(gO2
/m2d

)  
Pre-
M 

min 0.01 0.1 4.9 17.5 
NA 

610.6 7.7 1.8 0.2 0.3 
Pre-
M 

max 38.5 1.2 8.5 25.7 
NA 

2659 8.3 
448.

2 1.8 16.2 
M  

min 0.00 
0.0
3 3.6 20.2 NA 624.7 7.7 0.01 0.3 0.9 

M  
max 43.3 1.2 7.9 28.2 NA 2597 8.3 

348.
8 2.0 14.6 

Post-
M 

min 0 0 5.5 7.6 
NA 

2467 7.8 0.01 0.05 0.1 
Post-

M 
max 

0.00
1 

0.0
4 10.0 24.1 

NA 
2612 8.3 9.4 0.8 1.9 

 
Table S3.4) Days of missing data due to sonde damage, burial, or firmware issue. 
Pre-M, M, and post-M indicate pre-monsoon, monsoon, and post-monsoon.   
Site GFT22km GMZ29km GL56km 

Season Pre-M M Post-M Pre-M M Post-M Pre-M M Post-M 
Days Missing 0 0 NA 15 8 0 6 15 0 
Days of Data 48 66 NA 48 70 78 52 64 58 
Site PSR170km PSR170km PBS190km 

Year 2021 2022 2021 
Season Pre-M M Post-M Pre-M M Post-M Pre-M M Post-M 
Days Missing 0 11 14 27 25 47 0 0 0 
Days of Data 59 69 62 29 54 32 59 80 76 
Site PBS190km       
Year 2022       
Season Pre-M M Post-M       
Days Missing 31 48 3       
Days of Data 11 31 64       
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4.1 Introduction  

 Anthropogenically sourced nutrients remain a significant water quality concern in 

fluvial systems across the globe, with excess levels leading to eutrophication, harmful 

algae blooms (HABs), health concerns from discrete and long-term exposure, and 

impaired ecosystem services (Lintern et al., 2020; Mulholland et al., 2008; Smith et al., 

2006). A 2010 study conducted by the U.S. Geological Survey estimated that excess 

nutrients impaired 90% of the 190 shallow aquifers that connect to fluvial systems 

(Burow et al., 2010). With the increasing evidence of nutrient pollution in fluvial 

systems, there has been a surge in research on fluvial nutrient processing and transport 

(Ensign & Doyle, 2006; Heathwaite, 2010; Pellerin et al., 2016). One of the primary 

nutrient species of concern and focus is nitrate due to its use as a fertilizer in industrial 

agriculture, leading to impairment with nitrogen-related eutrophication estimated to cost 

the U.S. 45–165 billion dollars a year in environmental service degradation and 

contamination of surface drinking water (Sobota et al., 2015).  

           While there has been extensive research on understanding spatial and temporal 

drivers of nitrate transport and uptake within fluvial systems, there have been limited 

studies on the use of high-frequency water quality and atmospheric parameters as 

surrogates to estimate transport processes. Researching possible high-frequency 

surrogates is vital because the current methodology of measuring nitrate transport 

processes is logistically and finically burdensome (Covino et al., 2010; Ensign & Doyle, 

2006; Newbold et al., 1981). The burden in performing such research comes from 

requiring multiple trained personnel to add known masses of a conservative tracer and 

nitrate to a study stream reach and collect multiple grab samples downstream to have 
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their conservative and nitrate concentrations measured in a lab (Workshop, 1990). Not 

only does performing such an experiment have a high logistical and financial cost (Figure 

S4.1), but it will only provide insight into a single moment in time and will not be 

informative of seasonal trends or hot moments of elevated nitrate uptake (Kirchner et al., 

2004; Zhao et al., 2021). By estimating nitrate uptake through the use of high-frequency 

surrogates one can increase the temporal and spatial resolution of nitrate uptake and 

further help scientists understand primary mechanisms of uptake and inform 

policymakers of best practices to reduce nitrate contamination within surface waters 

(Lintern et al., 2020; Neal et al., 2008; Rode et al., 2016).  

           To the best of our knowledge, there has not been a study that tries to utilize high-

frequency parameters as predictors to nitrate uptake rate. However, there have been 

studies that utilize traditional regression techniques, such as multivariate linear 

regression, to estimate solute concentrations with high-frequency parameters (Miller et 

al., 2007; Morel et al., 2020). One of the major limitations of such an approach is that it 

requires feature engineering of the high-frequency parameters to match the temporal 

resolution of the measured uptake rates to be able to perform one-to-one regression 

(Maulud & Abdulazeez, 2020; Raghavendra & Deka, 2014). Feature engineering often 

results in the aggregation, and thus the oversimplification, of the high-frequency datasets 

which often reduces temporal variances and cyclical patterns, or it requires extensive 

domain knowledge of the study reach to identify key predictive features, which due to 

watershed spatial heterogeneity and non-stationarity, often results in a site-specific model 

that requires routine adjustment (Blöschl & Sivapalan, 1995; McDonnell et al., 2007; 

Zheng & Casari, 2018). To move past extensive feature engineering and leverage the 
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temporal complexity inherent with high-frequency parameters, we propose using 

recurrent neural network (RNN) with high-frequency parameters to be used as model 

predictors in sequence-to-one regression to estimate nitrate uptake rate (Gao et al., 2020; 

Shen, 2018; Xu & Liang, 2021) (Figure 4.1).  

 

Figure 4.1: Conceptual diagram of one-to-one regression workflow vs sequence-to-one 
regression with varying model architectures of varying model variance. Traditional 
machine learning algorithms (MLA) rely on one-to-one regression, while recurrent neural 
networks (RNN) can perform sequence-to-one regression using high-frequency data as 
predictors. SVR stands for a support vector machine and GRU is a gated recurrent unit. 
All algorithms are performing regression analysis on continuous data. 

 

This study aims to compare tradition regression techniques that require timeseries 

aggregation to perform one-to-one regression with recurrent neural network that is 

capable of sequence-to-one regression to estimate nitrate uptake rate within two study 
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reaches of contrasting geomorphology, terrestrial ecosystems, and land use. The research 

questions of this study are:  

1. Will recurrent neural networks be able to leverage high-frequency data to improve uptake 

rate estimates compared to traditional one-to-one regression architectures? 

2. Does increasing the number of high-frequency sensors, thus increasing the number of 

predictors but increasing the associated data cost, improve model accuracy? 

 

4.2 Methods 

4.2.1 Site Description 

Both research sites were located within the snowmelt dominated Jemez Mountain 

watershed, which is located in north-central New Mexico. The most upstream research 

site was in the third order reach of the East Fork Jemez River (referred to as EFJR site 

from here on), within the Valles Caldera Hidden Valley Elk Enclosure (35.8409N, -

106.5013W), and is located approximately 8 km downstream of its headwaters (Figure 

4.2). The EFJR site has an average annual discharge of 100 L/s and is a low gradient, 

meandering and open canopy stream as it has an average channel slope of 0.57%, and 

non-woody riparian vegetation (Sherson et al., 2015; Summers et al., 2020; Van Horn et 

al., 2012). The catchment area to this site is 107 km2, which spans an elevation change of 

2,580 m to 3,432 m (Stroud Water Research Center, 2021).  
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Figure 4.2: Map of the two study sites located in North Central New Mexico. Both sites 
had water quality sondes deployed within the stream channel and were collocated near 
MesoWest climate stations. Over a two-year period nutrient addition experiments were 
performed at three week interval at both sites to quantify nitrate uptake rates. 

 

The downstream research site was in the Jemez River (referred to as JR site from 

here on), downstream of the confluence of the EFJR and the San Antonio stream 

increasing to a 4th order steam (Figure 4.2). The Jemez River's (JR) average annual 

discharge is 1400 L/s (2004–2015, USGS gage #08324000), with the study site being a 

high-gradient canyon stream reach with an average channel slope of 3.25% and woody 

riparian vegetation. Along this reach, there are significant geothermal inputs that 

contribute to high specific conductivity (Dyer, 2007; Golla, 2019). The catchment area to 

our study site is 473 km2, spanning an elevation of 1,903m to 3,432 m (Stroud Water 

Research Center, 2021). Note that this area encompasses the upstream site as they are a 

part of the same fluvial system.  

Third order EFRJ study sites  Fourth order JR study site  Highlighted area is JR watershed

EFJR study siteEFJR study site JR study siteJR study site
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4.2.2 Semi-Continuous Sensor Deployment and Maintenance 

Both EFJR and JR sites were equipped with YSI EXO 2 multiparameter water 

quality sondes (Yellow Springs Instruments, n.d.). Both EXOs measured water 

temperature, specific conductivity, dissolved oxygen (DO), fluorescence dissolved 

organic matter (fDOM), turbidity, and pH at 15-minute intervals. HOBO water level 

loggers were also deployed at each site to measure water depth fluctuations at 15-min 

intervals. All sensors were cleaned and recalibrated every three weeks per USGS 

guidelines (Jones et al., 2017; Wagner et al., 2006). Both sites were equipped with solar 

panels, batteries, and CR1000 dataloggers (Campbell Scientific,  n.d.) to power the semi-

continuous sensors and for data storage. Co-located at both sites were MesoWest climate 

stations that measured ambient air temperature, barometric pressure, wind velocity, total 

solar radiation, and cumulative precipitation at 10-minute intervals (Table 4.1).   

Table 4.1: Sensors and parameters being measured at both sites that can be used as 
predictors to nitrate uptake rate.  

Parameter Sensor 
Units Abbreviation  

Sampling 
Frequency 

(min) 

Sensor/ 
Database 

Discharge cms ---  15 USGS NWIS 
Dissolved oxygen ppm DO  15 

EX
O

 Specific 
conductivity  uS/cm Sp Cond  15 

Water temperature C Water Temp  15 
pH  ---  15 
fDOM ppm ---  15 
Air temperature C Air Temp 10 and 14.5  

M
es

oW
es

t Barometric 
pressure mmHg Baro Pres 10 and 14.5  

Wind Velocity m/s Wind Vel 10 and 14.5  
Total solar 
radiation  W/m2 Solar Rad 10 and 14.5  

Relative Humidity  mm Rel Hum  10 and 14.5 
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Approximately 1km downstream of the EFJR site, a stage sensor owned by the 

U.S Forest Service was used in conjunction with a rating curve to derive semi-continuous 

discharge measurements. The Forest Service stage measurements expanded from October 

23rd, 2017 to October 19th, 2018. After October 19th, 2018, a HOBO U20 pressure 

datalogger was deployed at the EFJR sonde site and used to quantify discharge by the 

development of a site-specific rating curve between average stage and discharge 

measurements made with a Sontek FlowTracker (Equation S2a). At the JR site, semi-

continuous discharge measurements were recorded by USGS stream gage Jemez River 

Near Jemez Springs (USGS gage #08324000), which is located downstream of the Jemez 

River and Guadalupe Rivers confluence, approximately 15.8 km downstream of the JR 

sonde site. To account for discharge inputs from the Guadalupe River, a measured 

discharge vs a time lagged USGS discharge relationship was developed (Equation S2b). 

 

4.2.3 Quality Assurance and Control of Sensor Data 

Data collected from the sondes were imported into Aquarius TimeSeries 

21.2.160.0 for data storage and to perform QA/QC procedures on the raw data (Aquatic 

Informatics, n.d.). Once in Aquarius, we used a spike filter to flag and remove values that 

were 20% greater than the mean of an hourly moving window. The data were then 

checked for sensor drift and biofouling by comparing pre to post clean and calibration 

records to quantify sudden changes within the data records during periods of cleaning and 

calibration of sensors. If these issues were noted within the dataset, a linear drift 

correction would be applied from the previous field day to the time of the current field 

day. After outliers were removed and drift corrections were made, a visual inspection was 
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performed to ensure that useful data were not accidentally identified as outliers and to 

ensure accurate corrections for sensor drift.  

 

4.2.4 Nutrient Addition Experiments  

Nitrate injections were performed to calculate nitrate uptake rates at a three-to-

four-week interval. In the field, discharge was measured before each injection using a 

SonTek FlowTracker, and the recorded discharge, stream width, and average water 

velocity were entered into the Tracer Injection Planning Tool solute transport toolbox to 

estimate the mass of conservative (NaBr) and reactive tracers needed (NaNO3), and the 

minimum distance between the injection site and the upstream sampling location required 

to achieve lateral and vertical mixing (González-Pinzón et al., 2022). The solute transport 

toolbox combines the advection dispersion equation with empirical relationships derived 

from an extensive USGS metanalysis (Jobson, 1997), within Microsoft Excel, to plan 

tracer injections to include nutrient addition experiments.   

Once the mixing length and tracer masses were known, the salts were mixed with 

stream water collected on-site and then an instantaneous tracer addition was performed 

following standard guidelines (Leibundgut et al., 2009). With all tracer addition 

experiments, the sampling location site was always co-located with our sensor site; for 

this, we moved the injection site as a function of mixing length requirements. Grab 

samples were collected by rinsing a 20 ml plastic syringe three times with stream water 

before each grab sample was taken. The collected water was immediately filtered using a 

0.45 μm nylon filter, then immediately stored in ice coolers and transferred to lab 
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refrigerator to prevent degradation. One to three days after grabs sampled were collected, 

the samples were analyzed for tracer anion concentrations using a Dionex ICS-1000 Ion 

Chromatographer, utilizing a AS23/AG23 analytical column combination.  

 

4.2.5 Solute Transport Model 

We used a one-dimensional, in-stream, reach-scale model to describe the transport 

and reactivity of the tracer compounds injected (Knapp et al., 2017; Runkel, 1998). This 

model simulates exchange with a transient storage zone using uniform and time-invariant 

coefficients. The model applied here is similar to the one made available as a MATLAB 

script in Knapp & Cirpka (2018). It considers the transient storage zone as a single, well-

mixed zone that undergoes linear exchange (generating an exponential transit time) with 

the main channel, and accounts for the compound specific behavior of 𝑁𝑂*.  

The coupled governing equations for the conservative tracer (i=0), and reactive tracer 

(i=1), are: 

𝜕𝑐l
𝜕𝑡 +

𝐴>
𝐴
𝜕𝑐;>,l
𝜕𝑡 + 𝑣

𝜕FI
𝜕𝑥 − 𝐷

𝜕!𝑐l
𝜕𝑥! =

𝐴>
𝐴 𝑟;>,l (1), 

𝜕𝑐l,;>
𝜕𝑡 = 𝑘y𝑐l − 𝑐;>,lV + 𝑟;>,l (2), 

subject to the following initial and boundary conditions of an instantaneous tracer 

injection: 
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𝑐l(𝑥, 𝑡 = 0) = 𝑐;>,l(𝑥, 𝑡 = 0) = 0	∀𝑥 (3), 

(𝑣𝑐l − 𝐷
𝜕𝑐l
𝜕𝑥)|X=: =

𝑀l

𝐴 𝛿(𝑡) (4), 

lim
X→n

𝑐l(𝑥, 𝑡) = 0	∀	𝑡 (5), 

where 𝑐l 	[𝑚𝑜𝑙	𝑚"*] denotes the solute concentration in the main channel; 

𝑐;>,l 	[𝑚𝑜𝑙	𝑚"*] represents the solute concentration in the transient storage zone; the in-

stream advective velocity is given by 𝑣	[𝑚	𝑠"#]; 𝐷	[𝑚!	𝑠"#] represents the dispersion 

coefficient; D?
D
	[−] represents the ratio of the cross-sectional area of the storage zone 

𝐴o	[𝑚!] to that of the stream 𝐴	[𝑚!]; the reaction rate is given by 𝑟;>,l 	[𝑚𝑜𝑙	𝑚"*𝑠"#]	the 

first-order mass-transfer rate coefficient for exchange with the storage zone is given by 

𝑘	[𝑠"#]; and 𝑀l 	[𝑚𝑜𝑙] represents the injected tracer mass. Nutrient uptake was assumed 

to follow first-order kinetics (González-Pinzón and Haggerty, 2013), resulting in the 

following reactions rates: 

𝑟pq,# = −𝜆#𝑐;>,# (6), 

where 𝜆#	[𝑠"#] is the total nitrate uptake rate coefficient. 

Lastly, due to total nitrate uptake rates often having small values, often less than 

1.0∗ 10"3, and non-normal distributions, the uptake rates were logged transformed prior 

to model training (Figure S4.3). After the model has made its predicted log uptake rate, 

its predictions are transformed back to a non-log scale and compared to the non-

transformed observed uptake rate. 
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4.2.6 Outlier Removal  

Outliers within nitrate uptake rates were identified as values having more than 1.5 

interquartile ranges above the upper or below the lower quartiles (Blázquez-García et al., 

2020). Data points flagged as possible outliers went through a visual inspection to 

identify if their BTCs were either poor fitting or irregular thus being verifying them as a 

true outlier. Out of the 40 nutrient addition experiments performed, six were identified 

and removed as outliers. If a nitrate uptake rate is verified to be a true outlier, then it and 

its associated high-frequency predictor sequence was removed from the dataset prior to 

model training.  

 

4.2.7 High-Frequency Parameter Templates  

Multiparameter predictors were selected to create multiple predictor templates 

that increased in dimensionality and associated logistical costs or data limitations of 

specific template (Table S4.4). These templates are then used as model predictors when 

estimates nitrate uptake rates. Atmospheric parameters were grouped into a single 

template (referred to as Atmos) due to large spatial extent in which meteorological 

stations cover the United States (MesoWest, 2022). Atmospheric parameters with 

discharge were combined into a single template (referred to as AtmosDis) due to 

discharge being the most ubiquitous surface water property measured in USGS stream 

gage network (U.S. Geological Survey, 2022). Water quality parameters were allocated 

into a separate template with discharge (referred to as Water), since water quality sondes 

measuring all five water quality parameters have a lower spatial resolution than that of 
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meteorological stations and are collocated with stream gages. Lastly, all available 

parameters were used combined to generate a template to maximize predictor 

dimensionality (referred to as AtmosWater). For non-recurrent neural networks 

algorithms that require one-to-one regression, a single feature was extracted per a 

predictor by averaging the high-frequency data to the day in which a nitrate addition was 

performed. For the recurrent neural networks that can perform sequence-to-one 

regression, 15-minute data for each predictor from 00:00 to 24:00 in which a nitrate 

addition was performed was used as sequence predictors. By utilizing a 24-hour 

sequences the predictors can leverage temporal dynamics such as diel cycling and rates of 

change that is filtered when taken a daily average value (Figure 4.1).   

 

4.2.8 Machine Learning Regression Analysis 

To test whether recurrent neural networks can leverage high-frequency data to 

increase model accuracy on estimating nitrate uptake, three non-neural network 

regression algorithms, linear regression, decision tree, and support vector regression 

(SVR), that require feature engineering were tested against a Gated Recurrent Unit 

(GRU) which is a recurrent neural networks that can perform sequence-to-one regression. 

Linear regression, decision tree, and SVR models were developed using Matlab’s 

Statistics and Machine Learning Toolbox, while GRU model was developed using 

Matlab’s Deep Learning Toolbox (Mathworks Inc, n.d.). Below is a brief description and 

mathematical functions of each algorithm tested.  
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Linear Regression: The algorithm with the highest model bias tested was linear 

regression, which aims to minimize the mean square error (MSE) between observed 

values and a hypothesized linear trend. Gradient decent is used to minimize the MSE by 

iterating the partial derivative of the MSE at a predefined learning rate until it converges 

to a minimum value (Equations 7-9). The benefit of linear regression models is that their 

hypothesized function is highly interpretable, and they are computationally inexpensive, 

but they prone to have high bias when fitting non-linear data sets (Maulud & Abdulazeez, 

2020). Prior to cross-validation, linear regression model assumptions of 

homoskedasticity, normally distributed residuals, and collinearity were checked. Out of 

the model assumptions, only collinearity was violated so parameters with high 

collinearity were removed per a parameter template (Table S4.5). 

 
𝑦 = 𝜃 + 𝜃#𝑥# +⋯+ 𝜃e𝑥e (7), 

𝜃e ≔ 𝜃e − 𝛼 ∗
𝜕
𝜕𝜃e

𝐽(𝜃) (8), 

𝐽(𝜃) =
1
2𝑚�y𝑦l − 𝑥lV!

A

l=#

 (9), 

 
where 𝑦 is the model estimate, 𝜃e are the model fitted parameters, 𝑥e are the training 

examples, 𝛼 is a learning rate constant, 𝐽(𝜃) is the MSE cost function, and 𝑚 is the 

number of observations.  

Decision tree: For an intermediate model bias a decision tree algorithm was 

tested, decision regression trees which aim to divide the training data into smaller 

subsets, known as leaf nodes, by model-defined conditions within the predictor variables. 

The model uses iterative variance reduction to define the conditions to use to split the 
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data (Equation 10-12). After the training data has been subdivided into leaf nodes, the 

target data in each leaf node is averaged to derive an output estimate for each node. The 

model makes estimates from the cross-validation data by subdividing the test data by the 

same model-defined conditions, and estimates are made based on which leaf node in 

which all conditions are met (Equation 16). Regression trees have high to medium 

interpretability and low computational expense, but they have low performance on linear 

relationships and are prone to converge on local optima, producing instability in model 

predictions. 

 

𝑉𝑎𝑟e =
1
𝑚�y𝑦l − 𝑦qV!

A

l=#

 (10), 

𝑉𝑅 = min	(𝑉𝑎𝑟e −�
𝑚eS#
l

𝑚e	
𝑉𝑎𝑟eS#l

!

l=#

) (11), 

𝑦 =�𝐶l𝐼{𝑥l ∈ 𝑅l}
A

l=#

 (12), 

 
where 𝑦 is the model estimate, 𝐶l is the average of the training examples that fall into 

subdivision 𝑅l, 𝐼{𝑥l ∈ 𝑅l} is a binary identity function of 𝑅l that equals 1 if training 

example 𝑥l falls within subdivision 𝑅l or a 0 if it fall into another subdivision, and 𝑚 is 

number of training examples.  

Support vector regression (SVR): The model with the lowest bias and highest 

variance of the non-neural network machine learning algorithms tested was a gaussian 

support vector machine (gSVM), which utilize large margin regression that aims to 

equally increase the positive and negative boundaries between the hypothesized gaussian 
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kernels and the observed data (Equations 13-15). The benefit of using gSVMs is that that 

they can fit non-linear data with a limited number of observations, while trying to 

minimize overfitting and are computationally less expensive compared to neural 

networks, but are less interpretable than linear regression and decision trees 

(Raghavendra. N & Deka, 2014). Prior to SVR training, parameter’s scales were 

standardized by centering the mean of a parameter at zero and scaling by its standard 

deviation. 

 

𝑦 =�(𝛼l − 𝛼l∗)𝐺(𝑥l , 𝑘l) + 𝑏
A

l=#

 (13), 

𝐺(𝑥l , 𝑘l) = exp	(−
�|𝑥l − 𝑘l|�

!

2𝜎! ) (14), 

�(𝛼l − 𝛼l∗) = 0
A

l=#

 (15), 

 
where 𝑦 is the model estimate, 𝛼l 	𝑎𝑛𝑑	𝛼l∗ are Lagrange multipliers, 𝐺(𝑥l , 𝑘l) is a kernel 

density function, 𝑘l is the kernel centroid, 𝜎 is a kernel scaling constant, and 𝑏 is a model 

base term.  

Gated recurrent unit (GRU): Recurrent neural networks have been proven to be 

effective at making estimates from sequential data minimizing the need for extensive 

feature engineering (Fan et al., 2020; Gao et al., 2020; Gharehbaghi et al., 2022). 

However, they are often suspectable to vanishing or exploding gradients when training 

from high dimensionality long sequential data, ultimately limiting their capability to learn 

(Shen, 2018). To avoid this problem, memory based recurrent neural networks such as 

gated recurrent unit (GRU) have been developed and widely used for time series 
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regression. A GRU utilizes on an update gate and reset gate, which allows them to 

discard noise from pervious observations within the training sequences while retaining 

important features that can be leveraged to make predictions (Chung et al., 2014). GRUs 

have been shown to outperform other machine learning algorithms when performing 

sequential regression, but can be prone to overfitting and slow convergence, and can 

produce differing estimates from the same training data due to stochastic gradient descent 

(Fan et al., 2020; Xu & Liang, 2021). Prior to GRU training, parameter’s scales were 

standardized by centering the mean of a parameter at zero and scaling by its standard 

deviation. The governing equations for a GRU architecture are: 

𝑟; = 𝜎(𝑊J ∙ [ℎ;"#, 𝑥;] (16), 

𝑧; = 𝜎(𝑊q ∙ [ℎ;"#, 𝑥;] (17), 

ℎ�; = 𝑡𝑎𝑛ℎ(𝑊p ∙ [𝑟; ∗ ℎ;"#, 𝑥;] (18), 

ℎ; = (1 − 𝑧;) ∗ ℎ;"# + 𝑧; ∗ ℎ�; (19), 

𝑦�; = 𝜎(𝑊B ∙ ℎ;) (20), 

where 𝑟; is the reset gate at time of t, 𝑧;is the update gate at time of t, 𝑥; is the cell input, 

ℎ; and ℎ;"# is the cell output for time t and the cell output from the previous timestep, 

respectively, 𝜎 is the sigmoid activation function, 𝑊 is the cell weights at each respective 

gate, 𝑦;	is cell estimate at time t.  

 

4.2.9 Hyperparameter Optimization 

 To optimize model performance, both SVR and GRU hyperparameters were 

tuned using a grid search through a range of expected hyperparameter values on a subset 
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of data truncated from the global data (Yang & Shami, 2020). Due to the large 

computation cost of grid searching, with thousands of separate model iterations of 

varying hyperparameter values, UNM’s Center for Advanced Research Computing 

supercomputer Wheeler was used during grid search optimization. Due to a limited 

number of dependent observations, the subset of data used for hyperparameter 

optimization was determined by randomly selecting 20% of the data ensuring that the 

subset’s dependent variable was representative of the global dependent distribution by 

comparing standard deviations and means of the two datasets. After optimal 

hyperparameters were determined (Table S4.6), the subset of data was reintroduced to the 

global dataset for model testing.  

 

4.2.10 Cross-Validation Technique 

 Leave-one-out cross validation (LOOCV) was utilized to test the performance of 

each model due to the limited number of measured dependent variable observations 

mitigating high-computational costs. LOOCV truncates the maximum amount of data to 

train the model by removing a single dependent observation and its respective high-

frequency sequence predictors to be used for testing. After the model has been trained on 

the training data, the trained model then is given the high-frequency predictors from the 

test dataset to make a nitrate uptake estimate. Afterwards, the test dataset in 

reinterrogated into the training dataset and the model is retrained and tested on a new set 

of data until each dependent observation, and its respective predictor sequences, is used 
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as the test dataset. Thus, allowing for the model to be trained and tested across the entire 

global dataset while mitigating data leakage in model testing (Roberts et al., 2017).  

Mean absolute error (MAE) and coefficient of determination (𝑅!) will be 

calculated from cumulative LOOCV observed vs model estimated nitrate uptake rates to 

compare model performance. The advantage of MAE is that it calculates an average 

magnitude of model error that is in the same units as the dependent variable the model is 

trying to predict and is more robust to outliers than RMSE (Willmott & Matsuura, 2005). 

𝑅! normalizes model error with 1 being a model with perfect predictive accuracy, and 𝑅! 

< 0, indicates a model’s performance worse than using an average uptake rate calculated 

from the global dataset (Dangeti, 2017). Lastly, past studies have shown order of 

magnitude difference in nitrate uptake rates when comparing across multiple sites of vary 

spatial heterogeneity(Ensign & Doyle, 2006; Mulholland et al., 2008); therefore, to test 

the model’s accuracy across both sites, the percentage of model estimates less than 0.5 

and 0.25 an order of magnitude difference from the observed uptake rates will be 

quantified as another metric of performance.  

𝑀𝐴𝐸 =
∑ |𝑦�l − 𝑦l|e
l=#

𝑛  
(21), 

𝑅! = 1 −
(𝑦�l − 𝑦l)!

(𝑦l − 𝑦r�)!
 

(22), 

where 𝑦�l 	[𝑠"#] is the model estimated nitrate uptake rate, 𝑦l		[𝑠"#] is the observed nitrate 

uptake rate, 𝑦r�	[𝑠"#] is the mean observed nitrate uptake rate, and 𝑛 is the number of 

observed nitrate uptake rates.  

 

4.3 Results 
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4.3.1 Nutrient Addition Experiments 

Out of the 40 total nutrient additions that were performed from 2018 to 2020, 6 

experiments were identified as outliers and removed, leaving a total of 34 uptake rates, 

i.e., 17 uptake rates from EFJR and 17 from JR. Out of the 34 measured uptake rates, 4 

were measured from during the spring months from April to June, 10 were measured 

during summer from June to September, 16 were measured during fall from September to 

November, and 4 were measured during the winter from November to April. It should be 

noted that nitrate uptake rate was not measured at EFJR during the winter months due to 

excessive snow and ice-cover (Nichols et al., 2022). The average uptake rates for the 

EFJR and JR were 7.05∗ 10"3 and 4.28∗ 10"3𝑠"#, respectively, and the difference 

between the two site’s measured uptake rates were statistically significant (p-value <0.05 

using Wilcoxon rank sum test). At EFJR, uptake rate was significantly higher during 

2018 compared to 2019 with year-to-year averages of 1.66∗ 10"3 and 3.31∗ 10"3 𝑠"#, 

respectively (p-value <0.05). However, at JR the decrease in uptake rate from 6.69∗ 10"3 

in 2018 to 3.46∗ 10"3 𝑠"# in 2019 was not statistically significant (p-value = 0.12) 

(Figure 4.3).  
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Figure 4.3: Boxplots of measured nitrate uptake rates at both sites. A) Nitrate uptake rates 
grouped by site. B) Nitrate uptake rates group by site and subgrouped by year. P-values 
from Wilcoxson rank sum test are between sites and between years are annotated above 
respective boxplot grouping.  

 
 
4.3.2 High Frequency Sequential Data 

Discharge across both sites varied significantly (p-value < 0.05) with 2018 flows 

averaging 0.08 and 0.32 𝑚*𝑠"#, and for 2019 averaging 0.20 and 1.18 at EFJR and JR, 

respectively (Table 4.2, Figure 4.4).  At both sites, fDOM concentrations increased 

concurrently with elevated discharge with 2018 fDOM values averaging 15.7 RFU at 

EFJR and 12.3 RFU at JR, while 2019 values averaged 24.0 RFU at EFJR and 14.5 RFU 

at JR. Unlike fDOM, turbidity generally decreased with discharge, averaging 13.5 FNU 

and 9.81 FNU in 2018, and averaging 5.60 FNU and 5.05 FNU in 2019 at EFJR and JR, 

respectively. Between 2018 and 2019, water temperature, pH, and dissolved oxygen did 

vary significantly as both sites (highest p-value =0.002) with an exception for dissolved 

oxygen EFJR (p-value=0.77). Overall, JR had higher water temperature, pH, and 

dissolved oxygen with averages of 10.6 C, 7.60, and 9.43 𝑚𝑔	𝐿"# compared to 10.2 C, 

7.31, and at 7.20 𝑚𝑔	𝐿"# EFJR. Specific conductivity at JR was significantly higher than 
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that at EFJR (p-value <0.05), with site averages of 624 us/cm and 92.2 us/cm at JR and 

EFJR, respectively. The difference in specific conductivity between sites is primarily due 

to upstream groundwater springs making a large contribution to baseflows.  

Table 4.2: Year-to-year and overall averages of 15-minute water quality sonde and 
meteorological data used for predictors in machine learning algorithms. Blue indicates 
the year that the predictor was significantly higher, green indicates the sites across both 
years that the predictor was significantly higher, and rows with no color indicates that 

there was not a significant change between years or between sites. 

Param Units EFJR JR 
2018 2019 Overall 2018 2019 Overall 

Discharge 𝑚*𝑠"# 0.08 0.2 0.14 0.32 1.18 0.9 
Water Temp C 8.72 11.43 10.2 11.1 10.2 10.6 
DO 𝑚𝑔	𝐿"# 7.21 7.18 7.2 9.17 9.4 9.43 
pH - 7.18 7.45 7.31 7.43 7.61 7.6 
Sp Cond 𝑢𝑠	𝑐𝑚"# 98.1 86.9 92.2 668 602 624 
fDOM RFU 15.7 24 20 12.3 14.5 13.5 
Turbidity FNU 13.5 5.6 9.46 9.81 5.05 7.01 
Air Temp C 2.97 8.97 5.78 12.2 9.58 9.79 
Baro Press kPa 562 561 562 609 607 608 
Wind Vel 𝑚	𝑠"# 0.53 0.561 0.545 0.681 0.64 0.655 
Rel Hum % 67.6 58.4 63.5 42.29 46.8 45.5 
Solar Rad 𝑊	𝑚"! 212 260 234 176 174 173 

 

Atmospheric parameters air temperature, solar radiation, wind velocity, 

barometric pressure, and relative humidity varied significantly across the two sites (p-

value <0.05). However, unlike the comparison between the two sites, barometric pressure 

(p-value=0.98) and wind velocity (p-value=0.92) between 2018 and 2019 were not 

significantly different at EFJR, while at JR there wasn’t a significant difference for solar 

radiation (p-value=0.97). Site averages for air temperature, solar radiation, wind velocity, 

barometric pressure, and relative humidity at EFJR were 5.78 C, 234 𝑊	𝑚"! , 0.545 
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𝑚	𝑠"#, 562 kPA, and 63.5%, respectively (Table 4.2, Figure 4.4). While at JR averages 

for air temperature, solar radiation, wind velocity, barometric pressure, and relative 

humidity were 9.79 C, 173 𝑊	𝑚"! , 0.655 𝑚	𝑠"#, 608 kPA, and 45.5%, respectively. 

 

 

Figure 4.4: Boxplot of water quality and atmospheric 15-minute data observed during the 
days in which nutrient addition experiments were performed. 

 

4.3.3 Model Results 

4.3.3.1 Differing Machine Learning Algorithms 

 When comparing average MAE across all parameter templates, SVR has the 

lowest average MAE of 5.7∗ 10"3 𝑠"# followed by decision tree with 6.26∗ 10"3 𝑠"#, 

linear regression with 6.34∗ 10"3 𝑠"#, and GRU with an average MAE of 1.22∗ 10"3 
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utilizing water quality and all available parameters as predictors. Decision tree had the 

highest MAE of 6.47∗ 10"3 𝑠"#  when utilizing all available parameters as predictors, 

and like linear regression, decision tree’s lowest MAE of 6.01∗ 10"3 𝑠"#  was measured 

when utilizing water quality predictors. SVR had its lowest MAE of 5.15∗ 10"3 𝑠"#  

across all models when utilizing water quality predictors, while its highest MAE of 6.26∗

10"3 𝑠"#  when using atmospheric predictors. Lasty, GRU had the second lowest MAE 

of 5.28∗ 10"3 𝑠"#  for atmospheric predictors, but also had the highest measured MAE of 

2.64∗ 10"7 𝑠"#  when using water quality predictors (Table 4.3). 
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Table 4.3: Performance metrics for each model with varying parameter templates.  Green 
indicates best model performance and yellow the worst for each respective parameter 
template and performance metrics. Oom represents the order of magnitude difference 

between the observed nitrate uptake rates and the estimated rates. 

 Atmos AtmosDis 

 MAE 𝑅! 
 % < 0.5 

OoM 
 % < 0.25 

OoM MAE 𝑅! 
 % < 0.5 

OoM 
 % < 0.25 

OoM 
Linea
r 

6.39∗
10"3 

0.1
2 78 50 6.90∗

10"3 
0.0
7 80 44 

Tree 
6.40∗
10"3 

0.1
1 75 47 6.15∗

10"3 
0.1
6 80 50 

SVR 

6.22∗
10"3 

-
0.0
3 

83 63 5.93∗
10"3 

-
0.0
2 

86 58 

GRU 
5.28∗
10"3 

0.4
8 86 63 5.33∗

10"3 
0.3
6 83 58 

 Water AtmosWater 

 MAE 𝑅! 
 % < 0.5 

OoM 
 % < 0.25 

OoM MAE 𝑅! 
 % < 0.5 

OoM 
 % < 0.25 

OoM 
Linea
r 

5.58∗
10"3 

0.2
3 86 63 6.12∗

10"3 
0.2
7 80 44 

Tree 
6.01∗
10"3 

0.0
8 75 58 6.47∗

10"3 
0.1
4 77 50 

SVR 
5.15∗
10"3 

0.1
7 88 66 5.44∗

10"3 
0.1
6 88 61 

GRU 

2.64∗
10"7 

-
5.7
3 

83 50 1.16∗
10"7 

-
6.6
1 

80 44 

 

 The 𝑅! values for linear regression ranged from 0.27 to 0.07 with the highest 

value being recorded when utilizing water quality predictors and its lowest when using all 

available parameters. Decision Tree had relatively low but consistent 𝑅! values when 

compared to the other model architectures that ranged from 0.08 to 0.16 when utilizing 

water quality and atmospheric parameters with discharge as predictors, respectively. SVR 

𝑅! values ranged from -0.02 to 0.17 when utilizing atmospheric and water quality 

predictors, respectively. Lastly, GRU had the highest and lowest 𝑅! values out of any 
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model with a range of 0.46 for atmospheric predictors to -6.61 when using all available 

parameters (Figure 4.5). When comparing model performance by the percentage of 

model estimates that were less than 0.5 and 0.25 an order of magnitude, linear regression 

had an average of 81.0% and 50.3%, respectively. Decision tree had the worst 

performance when comparing average 0.5 and 0.25 less than an order of magnitude with 

76.8% and 52.3%, respectably. Both SVR and GRU had improved performance than that 

of linear and decision tree regression when comparing orders of magnitude difference 

from observed values, but overall, the SVR outperformed GRU with 86.3% and 53.8% 

compared to 83.0% and 53.8% (Table 4.3). 
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Figure 4.5: Predicted vs. Observed scatter plots after leave one out cross validation. The 
best and worst models for each parameter template are plotted based on their respective 
MAE values. Oom represents the order of magnitude difference from the observed values 
with the green line illustrating the 0.25 order of magnitude difference threshold and the 
red line the 0.5 order of magnitude difference threshold.  

1 2 3 4 5 6
10-4

1

2

3

4

5

6

10-4 GRU, MAE = 5.28*10-5, R2 = 0.48

Observed Uptake Rate [sObserved Uptake Rate [s-1]
Es

tim
at

ed
 U

pt
ak

e 
Ra

te
 [s

Es
tim

at
ed

 U
pt

ak
e 

Ra
te

 [s
-1

]

Linear Regression, MAE = 6.90*10-5, R2 = 0.07

1 2 3 4 5 6
Observed Uptake Rate [sObserved Uptake Rate [s-1] 10-4

1

2

3

4

5

6

Es
tim

at
ed

 U
pt

ak
e 

Ra
te

 [s
Es

tim
at

ed
 U

pt
ak

e 
Ra

te
 [s

-1
]

10-4 GRU, MAE=5.33*10-5, R 2 = 0.36 

1 2 3 4 5 6
Observed Uptake Rate [sObserved Uptake Rate [s-1] 10-4

1

2

3

4

5

6

Es
tim

at
ed

 U
pt

ak
e 

Ra
te

 [s
Es

tim
at

ed
 U

pt
ak

e 
Ra

te
 [s

-1
]

10-4 SVR, MAE = 5.15*10-5, R2 = 0.17

1 2 3 4 5 6 7 8 9
Observed Uptake Rate [sObserved Uptake Rate [s-1] 10-4

2

4

6

8

10

Es
tim

at
ed

 U
pt

ak
e 

Ra
te

 [s
Es

tim
at

ed
 U

pt
ak

e 
Ra

te
 [s

-1
]

10-4 GRU, MAE = 2.64*10-4, R2 = -5.7

1 2 3 4 5 6
Observed Uptake Rate [sObserved Uptake Rate [s-1] 10-4

1

2

3

4

5

6

Es
tim

at
ed

 U
pt

ak
e 

Ra
te

 [s
Es

tim
at

ed
 U

pt
ak

e 
Ra

te
 [s

-1
]

10-4 SVR, MAE = 5.44*10-5, R2 = 0.16

1 2 3 4 5 6
Observed Uptake Rate [sObserved Uptake Rate [s-1] 10-4

1

2

3

4

5

6

Es
tim

at
ed

 U
pt

ak
e 

Ra
te

 [s
Es

tim
at

ed
 U

pt
ak

e 
Ra

te
 [s

-1
]

10-4 GRU, MAE = 1.16*10-4, R2 = -6.6

EFJR JR 1:1 Line 0.5 OoM 0.25 OoM

Best Performing
 Model

Worst Performing
 Model

At
m

os
 

At
m

os
D

is
W

at
er

At
m

os
W

at
er

-1Observed Uptake Rate [s   ]Observed Uptake Rate [s   ]

Es
tim

ate
d U

pta
ke

 R
ate

 [s
   ]

Es
tim

ate
d U

pta
ke

 R
ate

 [s
   ]-1

1 2 3 4 5 6
10-4

1

2

3

4

5

6

10-4 Decision Tree, MAE=6.40*10-5, R 2 = 0.11

Es
tim

at
ed

 U
pt

ak
e 

R
at

e 
[s

   
]

Es
tim

at
ed

 U
pt

ak
e 

R
at

e 
[s

   
]

Observed Uptake Rate [s   ]Observed Uptake Rate [s   ]

-1

-1

1 2 3 4 5 6

1

2

3

4

5

6

10-4

10-4



 133 

4.3.3.2 Model Performance Across Parameter Templates 

The average MAE values across the four model architectures when using 

atmospheric predictors was 6.03∗ 10"3 𝑠"#, atmospheric predictors with discharge 5.92∗

10"3 𝑠"#, water quality predictors 1.08∗ 10"7 𝑠"#, and all available parameters as 

predictors 7.73∗ 10"3 𝑠"#. Atmospheric parameter templates MAE values ranged from 

5.28∗ 10"3 𝑠"#  to 6.40∗ 10"3 𝑠"#, atmospheric predictors with discharge ranged from 

5.33∗ 10"3 𝑠"#  to 6.90∗ 10"3 𝑠"#, water quality predictors ranged from 5.15∗ 10"3 𝑠"#  

to 2.64∗ 10"7 𝑠"#, and all available parameters as predictors ranged from 5.44∗ 10"3 𝑠"#  

to 1.16∗ 10"7 𝑠"#. 𝑅! values averaged across all four models were 0.19, 0.17, -1.25, and 

-1.66 for atmospheric, atmospheric with discharge, water quality, and all available 

parameters as predictors, respectively. The parameter template with the highest 𝑅! value 

was atmospheric predictors with an 𝑅! of 0.48, while the template with the lowest 𝑅! 

was all available parameters as predictors with an 𝑅! of -6.61. The highest 𝑅! value for 

atmospheric with discharge as predictors, water quality, and all available parameters was 

0.36, 0.23, and 0.27, respectively (Figure 4.5). The parameter template that had the 

highest percent of estimated values less than 0.5 and 0.25 order of magnitude was water 

quality template when being utilized by SVR with 86% and 66%, respectively. The 

parameter templates that had the lowest percent of estimated values above 0.5 order of 

magnitude was atmospheric and water quality templates with both being 75% when being 

utilized by the decision tree model, while the template that had the lowest percent of 

estimated values above 0.25 order of magnitude was when utilizing all available 

parameters with the GRU model with 44% (Table 4.3).   
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4.4 Discussion 

4.4.1 Sequence-to-One Performance Compared to One-to-One Regression 

Algorithms for Predicting Nitrate Uptake 

When utilizing atmospheric parameters as model predictors, the GRU utilizing 

sequence-to-one regression outperformed all other model architectures (Figure 4.5, Table 

4.3). The improvement demonstrates that the recurrent neural network can leverage the 

information-rich atmospheric data to estimate fluvial nitrate uptake rates across 

monitoring sites of varying biotic and abiotic properties. We hypothesize that the 

improvement from the GRU is primarily due to the model leveraging diel cycling, trends, 

and antecedent conditions and events within the sequential data, which previous studies 

have shown to be essential features when understanding primary drivers of uptake rate 

variability (Drake et al., 2018; R. J. O. Hall & Tank, 2003; Wollheim et al., 2014). Since 

the only feature engineering performed for the one-to-one regression was taking the daily 

average for each predictor, the predictors would not have been able to encompass 

temporal seasonality and trends (Nimick et al., 2011). However, the GRU’s MAE 

increased an order of magnitude when incorporating water quality parameters as 

predictors. Further inspection validated that the high MAE and negative 𝑅! is due 

erroneous predictions from the model occurring on less than 10% of the test data that 

skewed the MAE and 𝑅! values for the water quality and all available parameter 

templates (Figure 4.5). 

While additional feature engineering can be performed to improve non-recurrent 

neural network model performance, which often requires extensive domain knowledge to 

identify key features that encompass nutrient processing mechanisms within a stream 
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reach, the resulting model may fail to generalize varying biotic and abiotic factors due to 

its training on site-specific predictor features. For example, past studies have shown that 

multiple factors such as gross primary production, nutrient stoichiometry, flow 

conditions, channel geomorphology, or land-use changes are common drivers in nitrate 

uptake, but their significance varies spatial and temporally, thus dictating which features 

to extract as predictors (Arango et al., 2008; Ensign & Doyle, 2006; R. O. Hall et al., 

2013; Heathwaite, 2010). 

 

4.4.2 Model Performance as a Function of Parameter Templates 

To test whether increasing the number of sensors, thus increasing the number of 

high-frequency parameters that can be used as predictors to estimate nitrate uptake rate, 

we subdivided the high-frequency parameters into separate templates based on their 

associated costs. The GRU model performance generally decreased as the number of 

predictors increased, with its best performance measured using atmospheric parameters 

and its worst performance using all available parameters as predictors. Unlike the GRU 

model, the support vector regression performance improved with an increase in the 

number of predictors, with considerable improvement when utilizing water quality 

parameters as predictors. The distinction between model performance across parameter 

templates is a critical consideration when scaling nitrate uptake predictions across more 

watersheds since each parameter template has unique data access and logistical cost 

constraints. For instance, currently, MesoWest operates approximately 40,000 climate 

stations across CONUS. In contrast, the USGS operates 8,500 stream gages across 

CONUS, and of those 2000 USGS stream gages monitor high-frequency water quality 
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parameters, with 1867 of those sites measuring water temp, 1060 measuring specific 

conductance, 628 measuring dissolved oxygen and turbidity, and only 52 measuring 

fDOM (MesoWest, 2022; U.S. Geological Survey, 2022).  

The discrepancy in spatial coverage between high-frequency water quality and 

climate data is further compounded by the fact that climate stations typically require less 

maintenance, thus, lowering the long-term logistical and financial costs of new site 

development in areas of limited instrumentation. The high costs associated with high-

frequency water quality monitoring has led to a disproportionate amount of monitoring 

sites being implemented in the east of the Mississippi and west of the Colorado River, 

with 49% and 25% of monitoring sites being located in those regions (U.S. Geological 

Survey, 2022), respectively, which further complicates scaling nutrient uptake predictions 

to a CONUS scale when utilizing water quality parameters as model predictors; therefore, 

determining a model architecture that performs well when only using atmospheric 

parameters as predictors, the GRU architecture, can be advantageous for development of 

a CONUS scale model to estimate nitrate uptake rates in stream reaches where nutrient 

addition experiments have not been performed to measure nitrate uptake rates directly. 

 

4.5 Conclusion   

Excess nitrate within fluvial systems has become a major water quality concern 

and can lead to eutrophication and harmful algae blooms occurring in lakes and estuaries 

when left untreated. Due to the risk high risk access nitrate imposes, there has been 

considerable research nitrate transport processes in fluvial system with a primary focus 

on nitrate uptake rate. By understanding nitrate uptake rates, researchers can quantify 
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nitrate sinks and key forcing variables in uptake variability allowing for more effective 

remediation efforts. However, to quantify nutrient uptake rate, one traditionally needs to 

perform a nutrient addition experiment, which can be financially and logistically 

expensive. Due to the high costs associated with such experiments, many experiments 

have been performed in low order streams that are not scalable to higher order streams. 

Compounding on the high costs, a single nutrient addition experiment only gives you a 

snapshot of uptake rate through time, which is known to be temporally dynamic.   

By developing a methodology that allows for semi-continuous estimates of nitrate 

uptake rate using sensors as proxies, we can relieve the difficulties associated with 

quantifying nitrate uptake rate variability. To do test the viability of using sensor data as 

proxies to uptake rate, we tested four machine learning algorithms of varying model bias 

and variance with parameters templates comprised of differing sensor configuration with 

accompanying costs and data accessibility restrictions. Our results demonstrate that when 

using atmospheric parameters as predictors, a gated recurrent neural network (GRU) 

using sequence-to-one regression had the best prediction performance. However, when 

utilizing water quality parameters, the GRU had poor performance due to erroneous 

predictions on less than 10% of the test data. When incorporating water quality 

parameters as predictors the model that had the best performance was support vector 

machine using one-to-one regression.  

Both high-frequency atmospheric and water quality data are increasing in 

accessibility, but there remains a large discrepancy between the two parameter sets 

spatial coverage. Since atmospheric parameters are more ubiquitous than water quality 

parameters, the most viable model architecture and parameter template for CONUS scale 
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modeling based on our result would be a GRU using atmospheric parameters as 

predictors to nitrate uptake rate. However, the current greatest limitation to implementing 

model on the CONUS scale is the lack of database that consolidates nitrate uptake rate 

measurements made from prior nutrient uptake experiments. Such a database in 

conjunction with high-frequency atmospheric parameters and static catchment 

characteristics could enable researchers to leverage the improved predictive capability of 

recurrent neural networks utilizing sequence-to-one regression to estimate nitrate uptake 

rates in fluvial system.  
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Supplemental Information 

Figure S4.1) Conceptual figure illustrating the traditional steps taken when 
measuring nitrate uptake rate in a fluvial system and an estimated cost associated 
with a single nitrate uptake measurement.  
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Equations S4.2) Equations used to calculate discharge based off of site-specific 
rating curves. 
 

𝑄i`45 = 1.21𝑒:.-!∗o;?sW (a), 
𝑄45 = 0.20 ∗ 𝑄:-*!7::: + 0.217	 (b), 

  

Where 𝑺𝒕𝒂𝒈𝒆 is the measured water column stage [m] at site EFJR, 𝑸𝑬𝑭𝑱𝑹 is the 
estimated discharge [𝒎𝟑𝒔"𝟏], 𝑸𝟎𝟖𝟑𝟐𝟒𝟎𝟎𝟎 is the 8-hour lagged recorded discharge 
[𝒎𝟑𝒔"𝟏] at USGS Streamgage 08324000, and 𝑸𝑱𝑹 is the estimated discharge [𝒎𝟑𝒔"𝟏] at 
JR. 
 
 
Figure S4.3) Distribution of measured nitrate uptake rates at both study sites. A) 
Non-transformed uptake rates histogram, B) QQ-plot of non-transformed uptake 
rates, C) logged-transformed uptake rates histogram, and D) QQ-plot of logged-
transformed uptake rates. 

 

A) B)

C) D)
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Table S4.4) Parameter templates used as predictors when training and testing the 
varying machine learning algorithms. 

Template Abbreviation Parameters 
Required 

Database or 
Sensors 

Atmospheric Atmos 

Air Temp, Solar 
Rad, Baro Pres, 
Wind Vel, Rel 
Humidity 

MesoWest 
(Database) 

Atmospheric and 
Discharge AtmosDis 

Discharge, Air 
Temp, Solar Rad, 
Baro Pres, Wind 
Vel, Rel Humidity 

USGS NWIS 
(Database), 
MesoWest 
(Database) 

Water Quality and 
Discharge Water 

Discharge, Water 
Temp, DO, pH, Sp 
Cond, fDOM, 
Turbidity 

USGS NWIS 
(Database), EXO 2 
(Sensor) 

Atmospheric, 
Discharge, and 
Water Quality 

AtmosWater 

Discharge, Air 
Temp, Solar Rad, 
Baro Pres, Wind 
Vel, Rel Humidity, 
Water Temp, DO, 
pH, Sp Cond, 
fDOM, Turbidity, 

USGS NWIS 
(Database), 
MesoWest 
(Database), EXO2 
(Sensor) 

 
 
Table S4.5) Parameters removed due to high multicollinearity during linear 
regression per a parameter template. 

Parameter Template Parameters Removed VIF Scores 
Atmos Baro Pres 8.07 
AtmosDis Baro Pres 8.05 
Water Water  Temp 18.7 
AtmosWater Water Temp, Sp Cond, 

Baro Pres, DO 
102, 35.6, 10.5, 9.25 
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Table S4.6) Hyperparameters used for SVR and GRU model architectures.  
SVR 

Hyperparameter Value 
Epsilon  0.109 
Alpha 1.09 

GRU 
Hyperparameter Value 

Hidden Layers 100 
Learning Rate 0.0005 
Gradient Threshold 2 
Max Number of Epochs 350 
Dropout Rate 0.3 
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Figure S4.7) Predicted vs. observed values of models that had intermediate in MAE 
cross-validation values per a parameter template.  
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Chapter 5: General Conclusions 

5.1 The High-Frequency Wave of the Present 

  In 2016, Michael Rode coined the term "the high-frequency wave of the present" 

in reference to the rapid advancements in water quality sondes and their use in novel 

hydrological research. Since then, water quality sondes have become more ubiquitous in 

watersheds across North America, Europe, and Asia. However, there remain topics of 

great hydrological interest but have limited studies that utilize high-frequency water 

quality data. While there are many such topics, three were explored in this dissertation. 

Those topics include 1) how changing snow precipitation between two contrasting 

winters affects surface water quality and stream metabolism, 2) quantifying longitudinal 

impacts of wildfire disturbances within a fluvial system, and 3) leveraging high-

frequency data with machine learning to estimate nitrate uptake rate. The research 

presented in this dissertation aims to move past the status quo and provide insight into 

fluvial biogeochemical processes that have limited research. 

 

5.2 Characterizing the Understudied Winter 

Chapter 2 explores the use of high-frequency water quality sensors in conjunction 

with meteorological stations to quantify interannual variability in physical, chemical, and 

biological signals in a montane stream during the winter of an El Niño and a La Niña 

year. We observed ~77% greater snow accumulation during the El Niño year, which 

caused the formation of an ice dam that shifted the system from a primarily lotic to a 

lentic environment. Water chemistry and stream metabolism parameters varied widely 

between years. They featured anoxic conditions lasting over a month, with no observable 
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gross primary production (GPP) occurring under the ice and snow cover in the El Niño 

year. In contrast, dissolved oxygen and GPP remained relatively high during the winter 

months of the La Niña year. These redox and metabolic changes driven by changes in 

winter precipitation have significant implications for water chemistry and biological 

functioning beyond the winter. Our study suggests that as snow accumulation and 

hydrologic conditions shift during the winter due to climate change, hot-spots and hot-

moments for biogeochemical processing may be reduced, with implications for the 

downstream movement of nutrients and transported materials.  

 

5.3 Quantifying Longitudinal Impacts of Fluvial Wildfire Disturbances 

In Chapter 3, we investigate hydro-geomorphological wildfires disturbances 

initiated by post-fire precipitation-runoff events. These disturbances are drivers of aquatic 

impairment over multiple months and years. While the impacts of wildfires on streams 

and rivers near burned areas have received increased attention in the last decades, it is 

still unclear how wildfire disturbances propagate longitudinally through fluvial networks; 

therefore, in Chapter 3 a high-frequency in-situ longitudinal sonde network is utilized to 

monitor water quality and stream metabolism changes over 190 km along the Gallinas 

Creek-Pecos River-Santa Rosa Lake fluvial network in response to the Hermit’s Peak - 

Calf Canyon (HPCC) wildfire, the largest in New Mexico’s recorded history. We 

assessed how far downstream water quality disturbances propagated along the fluvial 

network, the role of seasonality in that propagation, and the impact of lakes in mitigating 

further longitudinal propagation. Monitoring began a few days after the fire started in 

April 2022 and before any precipitation events had occurred. In the ten months post-fire, 
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there were significant increases in turbidity and fDOM and reductions in gross primary 

production and ecosystem respiration at all monitoring sites upstream of Santa Rosa 

Lake. Stream metabolic fingerprints suggest increased scouring, DOC, nutrients, and 

suspended sediments at these sites. In contrast, the site downstream of Santa Rosa Lake 

did not have altered turbidity, gross primary production, or ecosystem respiration, and the 

metabolic fingerprints remained unchanged. These results suggest that Santa Rosa Lake, 

and associated water operations, buffered the propagation of wildfire disturbances 

~180km downstream from the burn scar, resetting water quality parameters and 

metabolic activity for over ten months post-fire.  

 

5.4 Coupling High-Frequency Data with Machine Learning to Estimate Nitrate 

Uptake 

 In Chapter 4, we aim to move past the current limitations in quantifying nitrate 

uptake, we investigated using high-frequency water quality and atmospheric data at two 

stream reaches of differing biogeochemistry with varying machine learning algorithms to 

estimate nitrate uptake rate. Such research is critical as nitrate impairment is a leading 

concern in fluvial systems with excess nitrate concentrations causing eutrophication, 

harmful algae blooms, and methemoglobinemia; however, quantifying nitrate transport 

processes, such as nitrate uptake rates, in a fluvial system is often logistically 

burdensome and provides a single snapshot in time. The inherent difficulties and 

limitations in quantifying nitrate uptake have often led to low temporal resolution, thus, 

developing a non-direct method of measurement would enhance nutrient dynamic 

research. Our results show that when utilizing atmospheric parameters as model 
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predictors, a gated recurrent unit performing sequence-to-one regression outperformed all 

other algorithms (MAE= 5.28, =0.48). When water quality parameters were incorporated 

as predictors, a support vector machine and multivariate linear regression performing 

one-to-one regression were the best performing models (MAE=5.15, =0.17; and 

MAE=5.58, =0.23, respectively). With the increasing availability of high-frequency 

atmospheric data, a GRU using atmospheric predictors has great potential to estimate 

nitrate uptake in ungagged basins with limited uptake experiments.   
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Appendix A: Participation in Peer-Reviewed Manuscripts 

During my Ph.D. program, I participated in the following peer-reviewed manuscripts:  

 

A1) Regier, P. J., González-Pinzón, R., Van Horn, D. J., Reale, J. K., Nichols, J., & 

Khandewal, A. (2020). Water quality impacts of urban and non-urban arid-land runoff on 

the Rio Grande. Science of The Total Environment, 729, 138443. 

Abstract 

Urban surface runoff from storms impacts the water quality dynamics of 

downstream ecosystems. While these effects are well-documented in mesic regions, they 

are not well constrained for arid watersheds, which sustain longer dry periods, receive 

intense but short-lived storms, and where stormwater drainage networks are generally 

isolated from sewage systems. We used a network of high-frequency in situ water quality 

sensors located along the Middle Rio Grande to determine surface runoff origins during 

storms and track rapid changes in physical, chemical, and biological components of water 

quality. Specific conductivity (SpCond) patterns were a reliable indicator of source, 

distinguishing between runoff events originating primarily in urban (SpCond sags) or 

non-urban (SpCond spikes) catchments. Urban events were characterized by high 

fluorescent dissolved organic matter (fDOM), low dissolved oxygen (including short-

lived hypoxia <2 mg/L), smaller increases in turbidity and varied pH response. In 

contrast, non-urban events showed large turbidity spikes, smaller dissolved oxygen sags, 

and consistent pH sags. Principal component analysis distinguished urban and non-urban 

events by dividing physical and biogeochemical water quality parameters, and modeling 

of DO along the same reach demonstrated consistently higher oxygen demand for an 
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urban event compared to a non-urban event. Based on our analysis, urban runoff poses 

more potential ecological harm, while non-urban runoff poses a larger problem for 

drinking water treatment. The comparison of our results to other reports of urban 

stormwater quality suggest that water quality responses to storm events in urban 

landscapes are consistent across a range of regional climates. 

 

A2) Khandelwal, A., González‐Pinzón, R., Regier, P., Nichols, J., & Van Horn, D. J. 

(2020). Introducing the Self‐Cleaning FiLtrAtion for Water quaLity SenSors (SC‐

FLAWLeSS) system. Limnology and Oceanography: Methods, 18(9), 467-476. 

Abstract 

 Sensor‐based, semicontinuous observations of water quality parameters have 

become critical to understanding how changes in land use, management, and rainfall‐

runoff processes impact water quality at diurnal to multidecadal scales. While some 

commercially available water quality sensors function adequately under a range of 

turbidity conditions, other instruments, including those used to measure nutrient 

concentrations, cease to function in high turbidity waters (> 100 nephelometric turbidity 

units [NTU]) commonly found in large rivers, arid‐land rivers, and coastal areas. This is 

particularly true during storm events, when increases in turbidity are often concurrent 

with increases in nutrient transport. Here, we present the development and validation of a 

system that can affordably provide Self‐Cleaning FiLtrAtion for Water quaLity SenSors 

(SC‐FLAWLeSS), and enables long‐term, semicontinuous data collection in highly turbid 

waters. The SC‐FLAWLeSS system features a three‐step filtration process where: (1) a 

coarse screen at the inlet removes particles with diameter > 397 μm, (2) a settling tank 
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precipitates and then removes particles with diameters between 10 and 397 μm, and (3) a 

self‐cleaning, low‐cost, hollow fiber membrane technology removes particles ≥ 0.2 μm. 

We tested the SC‐FLAWLeSS system by measuring nitrate sensor data loss during 

controlled, serial sediment additions in the laboratory and validated it by monitoring 

soluble phosphate concentrations in the arid Rio Grande river (New Mexico, U.S.A.), at 

hourly sampling resolution. Our data demonstrate that the system can resolve turbidity‐

related interference issues faced by in situ optical and wet chemistry sensors, even at 

turbidity levels > 10,000 NTU. 

 

A3) Tunby, P., Gonzalez-Pinzon, R., Nichols, J., Kaphle, A., Khandelwal, A., and Van 

Horn, D. J. (2023). Development of a General Protocol for Rapid Response Research on 

Water Quality Disturbances and its Application for Monitoring the Largest Wildfire 

Recorded in New Mexico, USA. Frontiers in Water: Environmental Water Quality 

In Review at Frontiers in Water. 

Abstract  

Anthropogenic and natural disasters (e.g., wildfires, oil spills, mine spills, sewage 

treatment facilities) cause water quality disturbances in fluvial networks. These 

disturbances are highly unpredictable in space-time, with the potential to propagate 

through multiple stream orders and impact human and environmental health over days to 

years. Due to challenges in monitoring and studying these events, we need methods to 

strategize the deployment of rapid response research teams on demand. Rapid response 

research has the potential to close the gap in available water quality data and process 

understanding through time-sensitive data collection efforts. This manuscript presents a 
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protocol that can guide researchers in preparing for and researching water quality 

disturbance events. We tested and refined the protocol by assessing the longitudinal 

propagation of water quality disturbances from the 2022 Hermits Peak – Calf Canyon, 

NM, USA, the largest in the state's recorded history. Our rapid response research allowed 

us to collect high-resolution water quality data with semi-continuous sensors and 

synoptic grab sampling. The data collected has been used for traditional peer-reviewed 

publications and pragmatically to inform water utilities, restoration, and outreach 

program.
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