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By
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ABSTRACT

In the past decade, high-frequency water quality sondes have become more
abundant in watersheds across North America and Europe and are gaining a foothold in
Asia and South America. In this dissertation, three relevant topics associated with high-
frequency data are investigated, i.e., the impact of winter’s precipitation on surface water
quality and stream metabolism, the longitudinal propagation of wildfire disturbances
through a fluvial network, and the use of machine learning with high-frequency data to
estimate fluvial nutrient processing. First, we found that significant snow precipitation
can cause surface water anoxia and declines in stream metabolism. Second, our data
illustrate that fluvial water quality and metabolic activity degradation can propagate
hundreds of kilometers downstream from a wildfire. Lastly, our work demonstrates that
recurrent neural networks can outperform traditional regression methods when using

atmospheric parameters to estimate nitrate uptake.
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Chapter 1: General Introduction

1.1 Context

In the “hydrological renaissance”, a term coined in Eos 100 (Gabrielle, 2019),
there is an unprecedented access to high-frequency water quality data from semi-
continuous sensors, making hydrological research, watershed management, and risk
assessments much more data-based than ever before (Kirchner et al., 2004; Pellerin et al.,
2016; Rode et al., 2016; Rundel et al., 2009). For example, the implementation of water
quality sondes in fluvial systems has led to advances in our understanding of ecosystem
control points, i.e., moments or areas within a system that experience elevated and
disproportional biochemical processing (Bernhardt et al., 2018; Krause et al., 2017;
McClain et al., 2003; Zhao et al., 2021). Similarly, sondes have been recently used for the
quantification of nutrient, organic matter, and suspended sediment dynamics in response
to atmospheric forcing, land-use change, or anthropogenic disturbances. Sondes are
instrumental due to their ability to capture multiple temporal scales, from diel cycles to
seasonal trends, while observing non-linear and cascading interactions by sampling an
array of parameters. Due to their inherent benefit to hydrologists, the United States
Geological Survey (USGS) has rapidly expanded its high-frequency water quality
network with 2430 water quality sonde sites in operation across CONUS as of 2023.

One relatively unexplored application of high-frequency sensors is the linkage of
atmospheric forcing, terrestrial processes, and the response of aquatic ecosystems to their
dynamics (Perdrial et al., 2014; Turcotte et al., 2017). By disproportionality performing
research during summer months and focusing on in-stream functioning alone, stream

restoration, watershed management, and contaminant remediation has unintentionally



overemphasized the physical restoration of streams and disincentivized restoration efforts
that focus on terrestrial ecosystems and nonstationary atmospheric forcing (Palmer, et al.,
2014). The urgency for high-frequency multivariate water quality studies during the
winter months is further exacerbated by the projected reduction of snowpack within the
alpine watersheds of the American Southwest and other parts of the world, which will
lead to alterations to terrestrial ecosystems, stream biota, water budgets, and
environmental services (Elias et al., 2021).

The increase in air temperatures from anthropogenically driven climate change is
not only changing the snowpack within alpine watersheds, but it is leading to an increase
in wildfire frequency and severity (Reidmiller et al., 2017; Running, 2006). It is widely
known that wildfires have direct impacts on hydrological processes and fluvial water
quality. Wildfires cause reductions in infiltration and transpiration, resulting in an
increase in surface runoff, erosion and elevated organic loads, changes in biological and
chemical oxygen demand that may cause anoxic conditions, and an increase in suspended
sediments along entire fluvial systems (Carr et al., 2012; Robinne et al., 2020; Sherson et
al., 2015). Water quality sondes have been a vital method for quantifying wildfire
disturbances at the watershed (Ball et al., 2021; Sherson et al., 2015). However, most
wildfire research involving water quality sondes has been opportunistic. Therefore, there
are gaps in our understanding of the spatial extent of the propagation of wildfire
disturbances along fluvial networks. With wildfire frequency and burn areas forecasted to
increase, it is imperative to further our understanding and predictive capabilities to better

constrain models and help decrease their uncertainty. An improved understanding of how



aquatic processes are affected by wildfire disturbances can help decision makers
determine best practices to mitigate impacts to their water sources.

While water quality sondes and multi-parameter datasets are becoming more
ubiquitous in some countries (Rode et al., 2016), there are still a vast array of parameters
and metrics that cannot be measured at high-frequency in-situ due to epistemic, logistical,
or technological constraints. Quantities such as the concentrations of emerging
contaminants, heavy metal, solute transport processes, reaction rates, and stable isotope
ratios often require discrete sampling methods and laboratory analysis, which culminates
into temporally limited sampling frequency. Machine learning algorithms (MLA) present
a novel opportunity to utilize high-frequency data from in-situ sensors as non-linear
proxies to lower frequency discrete sample data, enabling higher frequency estimates of
the latter and opening new ways to explore the coupling of atmospheric, terrestrial,
aquatic, and human systems at scales relevant to watershed managing (Fan et al., 2020;
Kirchner et al., 2004; Raghavendra & Deka, 2014; Shen, 2018; Xu & Liang, 2021).
However, with the vast array of high-frequency parameters and MLA architectures
available, there remains significant uncertainty on which architectures and parameters are
needed to generate a robust methodology that relates high to low-frequency datasets
while limiting information loss or requiring extensive domain knowledge. By minimizing
uncertainty on parameter and architecture selection, we could then start to make
inferences about subsampled parameters or relevant metrics, using datasets with higher

observational frequencies.

1.2 Objectives



This dissertation aims to address three research objectives using high-frequency

data from water quality sondes and meteorological stations:

Objective 1: Analyze how changes to winter precipitation patterns alters water
quality and stream metabolism within an alpine watershed.

Objective 2: Quantify longitudinal water quality and stream functioning
degradation from catastrophic wildfires.

Objective 3: Develop a machine learning framework to estimate the dynamics of

nutrient uptake rates from high-frequency atmospheric and water quality parameters.

1.3 Summary of Findings

This dissertation is the result of the compilation of three manuscripts that are (or

will be) published in peer-reviewed journals.

Chapter 2, The Understudied Winter: Evidence of how precipitation differences
affect stream metabolism in a headwater investigates how changes in winter precipitation
affects water quality and stream metabolism in an alpine watershed in New Mexico. The
research was conducted during a snow-abundant El Nifio winter and snow-drought La
Nina winter, and utilized high-frequency water quality sondes in conjunction with
collocated meteorological stations that enabled the quantification of atmospheric forcing.
We found that besides snow precipitation, atmospheric forcing was not significantly
different between winters; however, during the El Nifio winter, dissolved oxygen
experienced prolonged anoxia and a sudden halt in diel cycling. Also, during the El Nifio

winter, there were increases in fluorescent dissolved organic matter, pH, and specific



conductivity, while stream metabolism became metabolically inactive. In contrast, during
the La Nifia year, dissolved oxygen never reached anoxia, and its diel cycling increased
in magnitude during the winter months. Also, stream metabolism remained relatively
steady with slight, short-lived changes to its metabolic rate. Our research demonstrates
the significant role of winter precipitation on fluvial water quality and stream
metabolism, and reinforces the need for further research in winter hydrology as winter

precipitation is projected to decline.

Chapter 3, Longitudinal propagation of aquatic disturbances from the largest
wildfire recorded in New Mexico studies water quality impact and degradation to stream
metabolism across multiple stream orders in the Gallinas Creek-Pecos River-Santa Rosa
Lake fluvial network during and after the Hermit’s Peak-Calf Canyon fire. Our results
show that monitoring sites upstream of Santa Rosa Lake experienced significant
increases in fluorescent dissolved organic matter and turbidity, concurrently with the high
precipitation monsoon season. Our findings suggest that stream reaches within the burn
scar experienced substantial scouring of the benthic zone, while reaches further from the
burn scar experience reduced scouring of the benthic zone but elevated organic, nutrient,
and suspended sediment fluxes. Lastly, our results demonstrate that Santa Rosa Lake
buffered wildfire disturbances by attenuating water quality degradations and mitigating
metabolic alterations experienced for up to180 km upstream of it.

Lastly, Chapter 4, Bridging the gap in the data revolution: Leveraging artificial
intelligence to estimate nitrate uptake in fluvial systems, explores the use of high-

frequency water quality and meteorological data with machine learning to estimate nitrate



uptake rate dynamics within a fluvial system. Over two years, nutrient addition
experiments were performed at two stream reaches of contrasting biotic and abiotic
factors to quantify nitrate uptake rate at a three-week interval. Water quality sondes and
meteorological stations were collocated at the nutrient addition sites, which quantified
ambient water quality conditions and atmospheric forcing. Due to the high logistical and
financial burden of performing a nutrient addition experiments, this research aimed at
using machine learning algorithms of varying complexity to estimate nitrate uptake rates
from high-frequency datasets, potentially reducing the costs and logistics of
characterizing quantities that are not available at high-resolution. Our results show that a
recurrent neural network with the highest model variance outperformed all other
algorithms when utilizing meteorological data as model predictors. However, it
performed the worst when water quality data was incorporated as predictors. When
utilizing water quality predictors, algorithms with lower variance and higher bias had the
best predictive performance. With the increase in spatial resolution of high-frequency
meteorological data, our research demonstrates that recurrent neural networks can be
used in conjunction with meteorological data to estimate nitrate uptake rate in fluvial
systems across CONUS. However, while high-frequency meteorological data is
becoming more ubiquitous, a national database of nutrient experiments that encompasses

a wide array of varying stream reach heterogeneity is needed to scale effectively.
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2.1. Introduction

Climate warming in the US has been most pronounced during the winter,
resulting in shortening of the snow season, a reduction in snow pack, and shifts in the
timing and volume of snowmelt related runoff (Climate Central, 2022; Elias et al., 2021;
Godsey et al., 2014; Grimm et al., 2013). The reduction in snowpack volume has been
linked to increasing winter temperatures resulting in more frequent winter melt events
(Musselman et al., 2021), shifts in precipitation from snow to rain (Berghuijs et al.,
2014), and lower total precipitation trends interwoven with climate patterns including El
Nifio and La Nina (Cortés & Margulis, 2017; Goddard & Gershunov, 2020). These
changes in winter precipitation patterns affect in-stream freeze—thaw cycles, including ice
and snow cover, and have the potential to trigger direct and indirect effects on in-stream
physical, chemical, and biological processes (Prowse, 2001; Prowse et al., 2006) in ~60%
of river basins in the Northern Hemisphere (Allard et al., 2011).

While winter freeze-thaw cycles can trigger changes in pH, conductivity,
dissolved oxygen and redox conditions, nutrient inputs, groundwater and surface-water
interactions, and flood plain connectivity (Schreier, 1980; Prowse, 2001), a recent review
by Tolonen et al. (2019) noted that since winter is the most understudied season in
ecohydrology, we do not currently understand the short-to-long term ecological effects of
ice and snow formation in streams. Considering stream metabolism as a proxy for
ecological functioning (Bernhardt et al., 2018; Summers et al., 2020), based on
fundamental principles we can expect that in-stream ice and snow cover during the winter
could block the light that phototrophic communities need to grow, affecting primary

production and autotrophy (Frenette et al., 2008), and triggering cascading effects on

12



local food webs. Similarly, ice and snow cover can disrupt atmosphere-water interactions,
halting in-stream reaeration (Fang & Stefan, 2009; Price et al., 1995; Woods, 1992).
When combined, in-stream aerobic respiration and the lack of oxygen availability from
primary production and reaeration should gradually result in increasingly anoxic
conditions, similar to what has been documented in lentic systems (Davis et al., 2020;
Jansen et al., 2021). These seasonal changes, thus, could alter redox conditions and the
overall ecological functioning of the stream by switching the main electron acceptor (i.e.,
from oxygen to nitrate to manganese, etc.) and the species that could thrive under such
transient conditions.

While fundamental principles suggest ice and snow cover likely shift stream
metabolism and ecological functioning, little field data exists to verify these hypotheses
and to determine when, for how long, and how frequently ice and snow cover control
metabolism in streams that experience freeze-thaw cycles. Addressing these unknowns
offers an opportunity to better understand and quantify the ecological relevance of
freezing streams and winters, which are intuitively associated with ecological “cold-
spots” and “cold-moments”, i.e., lower than average ecological activity in space and time,
but may regulate the timing and availability of key resources needed for metabolism and
nutrient cycling. Thus, tackling the lack of research on winter metabolism in streams is
timely because warming trends in high latitudes and altitudes indicate that freezing
streams may become less abundant and frequent.

The specific objectives of this study were to 1) determine interannual variability
in physical, geochemical, and biological signals in a montane stream during contrasting

winters, and 2) explore the implications of these findings in the context of climate change
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on stream function. To meet these objectives, we used high-resolution, multi-parameter
data collected in a headwater stream in New Mexico and its local environment (climate
and soil) to link changes in winter precipitation regimes to changes in aerobic stream
metabolism, a key indicator of stream functioning. We found that sustained winter anoxia
and dormant aerobic stream metabolism were driven by ice and snow cover during the El
Nifo year (higher precipitation), and that even though freezing occurred at the top of the
stream during the La Nifa year (reduced precipitation), it did not cause winter anoxia and
instead elevated winter aerobic metabolism. We also found that spring metabolism is
highly dependent on winter precipitation. Our results suggest that a progressive decrease
in winter snowpacks and the reduction of ice and snow cover on freezing streams may
result in the loss of hot moments for anaerobic metabolism, which has the potential to
alter food webs and ecological functioning, not only during the winter but before and

after fully anoxic conditions are established.

2.2 Methods
2.2.1 Site Description

Our study site is in the East Fork Jemez River (EFJR), within the Valles Caldera
National Preserve, New Mexico (Figure 2.1). The EFJR watershed is small, high-altitude
catchment, with a drainage area of 107 km? at an elevation range between 2,580 to 3,432
m. The EFJR is a 3™ order stream with a mean annual discharge of 0.06-0.09 m3/s,
featuring large flow fluctuations during spring snowmelt and summer monsoon storms of
up to 3 m?/s. The average channel slope at the study site is 0.057 m/m and the sinuosity is

2.04, making it a low gradient meandering stream. The sediments in the streambed are
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mostly organic matter, silt, and pebbles, and the average stream bank height is 0.8 m. The
riparian vegetation of the EFJR consists of non-woody grass with limited canopy cover
with an average growing season between March and November, and the stream fluctuates
between autotrophic and heterotrophic conditions, but is net autotrophic, averaging 0.3
g0, m~2 d~1 (Summers et al., 2020). The EFJR watershed is contained within a volcanic
caldera and the vegetation is composed of extensive grasslands in the valley floors and
evergreen forest biomes at higher elevations (48 and 52% of the land cover, respectively).
The EFJR watershed experiences large seasonal climate variability with average monthly
precipitation and air temperatures ranging between 3.1-10.6 cm and 4.1-15.9 °C, as

reported in Model my Watershed (Stroud Water Research Center, 2021).
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Figure 2.1: Map and picture of the East Fork Jemez River watershed, located in the
Valles Caldera National Preserve in north central New Mexico (USA).

2.2.2 Sensor Deployment and Processing of Raw Data
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We collected sensor and meteorological data in the EFJR during the winter of
2018-2019, a weak to moderate El Nifio year, and 2020-2021, a moderate La Nifia year.

Sensors used: We deployed a YSI EXO2 multiparameter water quality sonde and
a HOBO U20 pressure logger ~10 cm above the streambed of the EFJR (Yellow Springs
Instruments, n.d.). The EXO2 measured water temperature, specific conductivity, DO,
fluorescent dissolved organic matter (fDOM), turbidity, and pH at 15-min intervals. The
HOBO was set to log synchronously with the YSI EXO2 (Yellow Springs Instruments,
n.d.). Meteorological data were collected 30 m away from the in-stream sensors at a
climate station maintained by the Western Regional Climate Center (Western Regional
Climate Center, 2021), which monitored air temperature, solar radiation, snow depth,
barometric pressure, and soil temperature (20 cm depth) at 10-min intervals. All in-
stream sensors were cleaned and recalibrated every three weeks in accordance with
USGS guidelines (Wagner et al., 2006). We equipped the study site with a solar panel,
batteries, and a Campbell Scientific CR1000 datalogger to power the semi-continuous
water quality sensors. During field visits, we also collected secondary DO measurements
during ice- and snow-cover conditions using a YSI ProODO to validate the YSI EXO2

records. Table 2.1 summarizes continuous parameters collected.
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Table 2.1: Parameters and corresponding sensors and sampling frequencies available in

our study.
Instrument Parameter Abbreviation | Units Sampling
Frequency
(min)
HOBO U20 [Stage Stage m 15
Dissolved oxygen DO ppm 15
Specific conductivity Sp Cond uS cm™! 15
Water temperature Water Temp °C 15
YSI EXO2 [Turbidity Turbidity FNU 15
pH pH - 15
Fluorescent dissolved organic fDOM RFU 15
matter
Air temperature Air Temp °C 10
Soil temperature Soil Temp °C 10
WRCC
Barometric pressure Baro Press | mmHg 10
metrological
Snow depth Snow depth mm 10
station
Photosynthetically Active PAR umol m 10
Radiation st
Precipitation Precip mm 10

Raw data analysis: fDOM was corrected by water temperature changes

following (Watras et al., 2011):
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fDOM (1),

DOMeemp =1 Wy — )

where fDOMep,p is the temperature corrected fDOM concentration (RFU), where fDOM

is the uncorrected fDOM concentration (RFU), p is temperature-specific fluorescence
coefficient of —7.545 x 1073 °C~! determined experimentally using EFJR water, W is
the water temperature (°C), and Tj is the lab temperature of 22 °C when fDOM was
calibrated. We present fDOM in RFU instead of quinine sulfate units (QSU) because
QSU measurements exceeded the maximum detection limit from March 22" to April
30, 2019.

Total solar radiation was multiplied by a factor of 2.04 to estimate
photosynthetically active radiation (PAR, Meek et al., 1984). To replicate conditions
within the stream water column during periods of ice- and snow-cover, PAR was set to
zero if snow depth was greater than 200 mm and if diel water temperature cycling ceased
(Petrov et al., 2005).

Discharge was derived from a rating curve that was developed by relating data
collected during field visits with a Sontek FlowTracker and stage data (Equation 1). Due
to logistical constraints, discharge measurements were not taken during periods of
prolonged ice- and snow-cover. Therefore, we used stage data from a downstream USGS
river gage (USGS Gage: 08324000, Jemez River near Jemez, NM) to establish a time-
lagged relationship between the two sites and estimate missing discharges (Summers et

al., 2020) (Equation 2 and 3):
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Q = 0.0343 * exp?©83+Stage (2),

Q = 0.0343 eXp2.683*(1.385*]Rstage(t_8h) - 1.164) (3),

where Q (m3 s™1) is the discharge at our study site; Stage (m) is the stage data derived
from the HOBO pressure transducers within periods when flow could be measured in the

field; and JRgage (m) is the stage data from the Jemez River USGS gage used to estimate

Q when flow could not be measured at the study site.

Data processing: Raw and converted data were processed for outliers and sensor
drift with Aquarius Workstation 3.3 (Aquatic Informatics, Vancouver, British Columbia).
Suspected outliers were eliminated by using a moving average filter targeting points
deviating more than 20% from an hourly window (Wagner et al., 2006). We corrected for
sensor drift and biofouling by comparing pre- and post-cleaning calibration values and
applying a linear correction from the date of the previous maintenance. Linear
interpolation was applied to data gaps that were less than 12 hours and an hourly
resampling was performed to ensure consistent timestamps for all parameters. A final
visual inspection of data quality was performed prior to any statistical analysis.

2.2.3 Stream Metabolism

The cumulative photosynthetic and heterotrophic activity of algal and bacterial
communities can be estimated as stream metabolism, an indicator of ecological
functioning. We estimated daily averages of stream metabolism using the USGS
StreamMetabolizer model, which uses a one-station model based on the open-channel
metabolism approach (Equations 4-6), combined with inverse Bayesian modeling of diel

DO, to estimate gross primary production (GPP), ecosystem respiration (ER), and
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reaeration coefficients (Kgqo) (Appling et al., 2018; Odum, 1956). GPP quantifies DO
production from phototrophic communities, ER quantifies DO losses due to autotrophic
and heterotrophic respiration, and Kg( is a standardized oxygen gas exchange rate
coefficient between the water column and the atmosphere. The modeling equations used

in Stream Metabolizer are:

dDO; _ 1 (GPP(ty —t)) *PPFD; .\ . Ko0o(DOsate = DOmoa)

dt — Z, fut;to PPFD, du JSA — SpTy + ScT2 + SpT? @),
600
t dD0,,q
DOmod,t = DOmod,t—At + f (# + ‘Sproc,u) du (S)a
u=t—-At

DOobs,t = DOmod,t + Eobs,t (6),
where DO, is the observed dissolved oxygen (mg L) at time ¢; DOgq,  is the
hypothetical saturated dissolved oxygen concentration (mg L''); DO,,54 ¢ is the modeled
dissolved oxygen concentration (mg L™1); &,ps and eproc are the observation and
processes errors; t, and t; are the beginning and end of the day (d); Z; is stage (m);
PPF D, is solar radiation as PAR (umol m~2 d~1); T, is the water temperature (°C);
Sapcp are dimensionless Schmidt coefficients (-); GPP is the daily average areal rate of
gross primary production (g0, m~2 d~1); ER is the daily average areal rate of

ecosystem respiration (g0, m~2 d~1); and K, is the standardized gas exchange rate

coefficient (d~1).
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Using results from one of our previous studies at the EFJR (Summers et al.,
2020), we set the prior probability distribution’s mean and standard deviations for GPP
(3.9 and 1.5 g0, m~2 d~1, respectively) and ER (3.6 and 1.7 g0, m~2 d 1,
respectively). We ran the model for 3000 iterations and 1500 burn-ins with a binned Keoo
bounded by the minimum and maximum discharge. During periods when we observed
ice and snow cover over the water column and daily maximum water temperature did not
exceed 0.2°C, we constrained Kg,, = 0, since reaeration cannot occur under such
conditions. We verified the model’s fit by validating that it converged to stable solutions
and by ensuring that each parameter’s Gelman-Rubin R? value was less than 1.1. We also
checked for possible equifinality between ER and Keoo by checking any potential
covariances between the two parameters (Appling et al., 2018). The covariance between
ER and Keoo estimates was low with a linear correlation coefficient of -0.028 (Figure

S2.1).

2.2.4 Statistical Methods and Data Organization

Templates and periods of analysis: We organized the results and discussion into
three relevant templates: physical and atmospheric, geochemical, and DO and
metabolism. The physical and atmospheric template includes time series of discharge,
snow depth, temperatures (air, soil, and water), turbidity and PAR. The geochemical
template includes time series of fDOM, specific conductivity, pH and DO. The DO and
stream metabolism template includes time series of DO, GPP, ER, and reaeration fluxes.
All datasets are also classified by season to further organize the results and discussions.

To test statistical differences between seasons, we used two-sample Student’s t-test
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taking into account autocorrelation, thus reducing type-1 error, by using the equivalent
sample size method on data that was aggregated daily mean values to remove seasonality
in timeseries and meet autoregressive assumption (O’Shaughnessy & Cavanaugh, 2015).
Prior to performing t-test, parameter’s seasonal daily mean values were visually inspected
for normality using Q-Q plots, and if normality was not met, log transformations were
performed for both the El Nifio and La Nifia season.

Frequency analysis: We generated spectrograms using the pspectrum function in
Matlab (The Mathworks Inc., Natick, Massachusetts) for all sensor-generated time series.
Spectrograms use discrete, short-time Fourier transforms to quantify the significance of
sinusoidal signals at multiple frequencies or periodicities within a time series (Kirchner et
al., 2000). Since diel cycling often exhibits strong seasonality in water quality data, we
extracted the spectral power of our time series at a periodicity of 24-h and categorized
them as strong diel cycling (>0 dB), weak diel cycling (0 to -100 dB), and no discernable
diel cycling (<-100 dB). Threshold limits for diel cycling classification were determined
by using water temperature, a parameter with known shifts in diel cycling, as a
benchmark enabling us to relate periods with varying diel cycling with their respective
spectral power. We did not include stream metabolism estimates in the spectral analysis
because they were comprised of daily averaged measurements and do not hold relevant
information regarding diel cycling.

Principal component analysis: We examined the relationships between
parameters using a principal component analysis (PCA) conducted in Matlab. The first
two principal components were determined sufficient for analysis based on the inflection

point of variance percent explained (Figure S2.2). Since the correlation coefficient
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between two parameters is equivalent to the cosine angle between their eigenvectors,
parameters plotting in the same direction are positively correlated, those in opposite
directions are negatively correlated, and those that are orthogonal are uncorrelated
(Jolliffe & Cadima, 2016). We calculated 24 h averages for aquatic and meteorological
parameters to be able to include daily estimates of stream metabolism, and standardized
each parameter’s daily average by centering the mean at zero and scaling by a standard
deviation of one to make parameters with varying magnitudes and units comparable:

X —py
SX = (7)7

Ox

where Sy is the standardized parameter X (-), and py and oy are the mean and standard

deviation of parameter X.

2.3. Results
2.3.1 Physical and Atmospheric Template:

Clear differences in snow accumulation occurred between the 2018-2019 El Nifo
and 2020-2021 La Nifa years, with greater snow accumulation taking place during the
former. During the El Nifio year, a large winter precipitation event increased snow depth
to ~800 mm during early January 2019, and, due to numerous precipitation events, a
depth of ~500 mm persisted through the end of the winter (Figures 2.2 and S2.3). In
contrast, during the La Nifia year, snow depth remained low (~100 mm) throughout the
January to March period, with very few precipitation events and several weeks both of ~0
mm and ~200 mm snow depth (Figure 2.2). This between-year difference in winter snow
depth was significant and represents an ~77% decrease in mean snow depth from the El

Nifio to La Nifia year (Figure 2.3). Stream discharge (fall and spring), soil temperature
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(winter), and turbidity (fall and winter) were also significantly higher during the El Nifio
year, while PAR (winter) was the only physical parameter that was significantly higher

during La Nifa year.

2.3.2 Geochemical Template:

Water chemistry parameters varied widely across seasons and between years.
fDOM gradually increased during the spring of the El Nifio year from winter values of
~20 RFU, reaching sustained peak values of ~50 RFU during mid to late spring (Figure
2.2). In contrast, during the La Nifia year, fDOM values remained at ~20 RFU, except for
a few short-lived increases to ~40 RFU (Figure 2.2). This between-year difference in
spring fDOM was significant (Figure 2.3). Additionally, an absence of a diel fDOM
signal was observed during the El Nifio year, while a moderate to strong daily cycling
signal was present in the La Nifia year (Figure 2.4). Specific conductivity was
significantly higher in the La Nifia year during the spring (Figures 2.2 and 2.3), and
during the winter of the El Nifio year its diurnal cycling was suppressed (Figure 2.4).
Lastly, during the El Nifio year, pH initially decreased from fall values of ~7 to early
winter values of ~6, before increasing to ~8 by the end of the winter season (Figure 2.2).
Minimal diel cycling for pH was observed during the winter season (Figure 2.4). During
the La Nifia year, pH values remained between 7 and 7.5 for all seasons (Figure 2.2) and

moderate diel cycling occurred (Figure 2.4).

2.3.3 DO and Stream Metabolism Template:
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DO and stream metabolism values varied significantly among seasons within
the El Nifio year and between the El Nifio and La Nina years. Dissolved oxygen
concentrations fell from daily mean values of ~9 mg/L to ~4 mg/L in early January 2019,
declining to anoxia (~0 mg/L) in late January 2019, which persisted through the end of
February 2019 (Figure 2.2 and S2.3). While declines in DO were also observed during
February 2021 in the La Nifia year, concentrations rarely decreased below 4 mg/L (Figure
2.2). These between-year differences in winter DO were significant (Figure 2.3).
Additionally, diel cycling of DO differed greatly between years during the winter period,
with moderate to no cycling occurring during the El Nifio year, and moderate to strong
cycling occurring during the La Nifia year (Figure 2.4).

Both GPP and ER were below 5 g Oo md"! during the fall of the El Nifio year,
however, during the winter these values decreased to ~ 0 g O> md-'from early January to
mid-March, before increasing considerably during spring (Figure 2.2). During the La
Nifia year, GPP was lowest (~3-4 g O, md™!) during mid-fall, and highest (~5-10 g O, m’
2d'!) during the winter (Figure 2.2). ER followed the same general pattern as GPP during
the La Nifa year, except for low ER values at the end of December 2020. Both ER and
GPP were significantly higher during the spring in the El Nifio year, and higher in the fall

and winter in the La Nifa year (Figure 2.3).
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Figure 2.3: Boxplots comparing seasonal trends between the 2018-2019 El Nifio and the
2020-2021 La Nifa years. Asterisks represent quantities with statistically different means
for the same season between years, and their location indicate which of the two years had
a greater mean magnitude. Labels represent the physical and atmospheric (PAT),
geochemical (GCT), and DO and stream metabolism (DST) templates.
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and C: no diel cycling for water temperature. Dashed vertical lines delineate fall, winter,
and spring seasons. Missing pH values are shown as NA.

2.3.4 Interactions Between Templates:
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Based on the PCA for the El Nifio year (Figure 2.5A), PC1 separated winter
points (negative PC1) from fall and spring (positive PC1). Positive PC1 values were
primarily associated with higher temperatures (air, soil, and water), higher metabolic
activity (GPP and ER), and weaker loadings for DO and fDOM. Negative PC1 values
were most strongly related to snow depth and specific conductivity. PC2 separated spring
days (positive PC2) from fall days (negative PC2), with winter days spanning positive
and negative PC2 values. Positive PC2 was most strongly associated with discharge and
snow depth, while negative PC2 was most strongly associated with DO coupled with
K600.

Consistent with the El Nifio year, PC1 for the La Nifa year (Figure 2.5B)
separated winter points (negative PC1) from fall and spring days (positive PC1). Also
consistent with the El Nifio year, positive La Nifia PC1 values were primarily associated
with higher temperatures and DO. However, in contrast to the El Nifo year, neither
metabolic activity (GPP or ER) or fDOM were strongly loaded on PC1.

Negative PC1 values for the La Nifia year were most strongly related to discharge and
snow depth. PC2 again separated spring days (positive PC2) from fall days
(negative PC2), but positive PC2 was most strongly related to fDOM which coupled with

PAR, while negative PC2 was most strongly related to specific conductivity.

29



0.5 i
Discharge e Fal
®  Winter
0.4 Snow Depth Spring
— fDOM
T 03F
c
5
o
x 0.2 ER
° M
X o Water Terap
3 o1 0 — GpE
© 8a ©
z o PAR
’Gc: OF o .#..’.' .
c L] °
g o
£-0.1 .
S Soil Temp
(@)
202} Sp Cond
oY
-0.3
K600
_04 | | 1 1 1 1 DO | 1 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
1st Component (49.42% explained)
1)
05
fDOM
PAR
04r
i Air Temp
03 Dls.(:r.1arge

Water Temp

ie)
(0]
£
© L
3 02
x
)
X 01r °
%_ ° o Soil Tem.p
)
= Or L' ~:'
€ ° °
S-01 .
% pH
IS K600
Q -0.2 [ (J
] Snow Depth ¢
2
N -0.3 -
0.4 Sp Cond
®  Winter
05 1 1 1 1 1 1 1 Spnng ]
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1st Component (35.61% explained)

Figure 2.5: PCA biplot for daily averaged data for the I) 2018-2019 El Nifio and II)
2020-2021 La Nifa years. Parameters plotting in the same direction are positively
correlated, those in opposite directions are negatively correlated, and those that are
orthogonal are uncorrelated. Principal components one and two explained I) 65.86% and
I1) 54.93% of the total variation. Score values were added to the PCA biplot and are
color-coded based on their respective period of analysis.
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2.4. Discussion
2.4.1 Variable Interannual Snowpack Drives Lotic-Lentic Stream Transitions

The difference in snowpack between the two winters in this study continues to
highlight the criticality of planetary-scale climatic controls on montane ecosystems, and
their relevant implications to ecohydrology. During the El Nifio year, as snowpack
accumulated during the winter, stream depth was higher due to the downstream formation
of ice dams resulting in a backup of water under the ice cover (Figure S2.4 and S2.5). Ice
dams are known to occur where changes in stream slope and increases in substrate size
are encountered (Turcotte et al., 2017), both of which are present immediately
downstream of the research site as the EFJ River exits the low-gradient, fine substrate
conditions of the Valles Caldera and enters a higher gradient reach with large cobble and
boulder substrates. In addition to the ice dam, thick ice cover and frozen riparian soils
would trap water within the channel. Such blockages have been shown to shift streams
from fast-flow to slow-flow environments (Stickler et al., 2010). Thus, we suggest that
the muted diel discharge signature and the increase in depth for the El Nifio year signals a

shift in function from a primarily lotic to primarily lentic environment (Figure S2.5).

2.4.2 Influence of Snowpack Variability on Stream Chemistry and Metabolism
Differences in snowpack dynamics also influenced stream chemistry, most
notably the onset of persistent anoxia during the El Nifio winter. Since atmospheric
exchange is effectively cut off by ice and snow accumulation over the otherwise free
surface of the stream, and groundwater exchange is an unlikely source of oxygen, we

suggest that oxic conditions were maintained during the La Nifia winter by a combination

31



of oxygenated inputs from upstream fluxes and in-stream GPP. In stark contrast to the El
Nifo winter, ER and GPP peaked in January of the La Nifia year, indicating that winter
metabolism was an important control on oxygen despite ice cover and light snowpack
(Figure 2.2 and S2.5). In contrast, the anoxic conditions observed during the El Nifio year
suggests that the combination of reduced reaeration due to ice cover, the cessation of
GPP as light availability declined, and the continuation of heterotrophic respiration,
together resulted in the depletion of dissolved oxygen in the newly formed lentic-like
conditions. Similar winter anoxia has been observed in other ice covered, low-flow,
aquatic environments, including beaver dam ponds (Devito & Dillon, 1993) and lakes
(Deshpande et al., 2015, 2017; Jansen et al., 2019). The importance of atmospheric
forcing during the winter on stream metabolism suggests that snowpack has the potential
to be as important for metabolism as other in-stream (e.g., hyporheic flow, algal
overgrowth) and upslope (e.g., post-fire/precipitation ash and debris mobilization)
ecological processes, not only during the winter but into the spring.

Using seven years of data collected between 2005-2011 during the spring and the
fall seasons at the same study site (i.e., winter data were not available), we recently found
unanticipated shifts from autotrophic to heterotrophic status within and across years
(Summers et al., 2020). That study challenged previous paradigms where local attributes
including geographic and landscape positioning (e.g., light and temperature regimes)
were thought to control the trophic status of streams, and thus, streams were predicted to
be either autotrophic or heterotrophic. Our findings from Summers et al. (2020)
suggested that complex combinations of spatiotemporal factors, such as snow melt and

summer precipitation, and their role in connecting terrestrial and aquatic ecosystems can
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lead to substantial stream variation in metabolic status, which prompted us to start this
winter-focused study, in an effort to fill the gap on the short and long-term ecological
effects of winter dynamics noted in Tolonen et al. (2019) and Summers et al. (2020). Our
findings are also consistent with previous research showing that reduced snowpack

increases primary productivity in lakes (Garcia et al., 2019).

2.4.3 Implications of Changing Snowpack on Stream Function

Winter is the most rapidly changing season in the US, and its consistent warming
causes reductions in snow pack, and shifts in the timing and volume of snowmelt
(Climate Central, 2022; Elias et al., 2021; Godsey et al., 2014; Grimm et al., 2013;
Reidmiller et al., 2018). The US Global Change Research Program indicate that
atmospheric circulation patterns are changing due to global warming and will cause more
aridity in the US southwest, where this study took place, particularly during La Nifia
years (Seager et al., 2007). Although our dataset represents two winter periods as
examples, which limits our ability to comprehensively extrapolate our results to future
climate predictions, we are able to gain some sense of expected physical, chemical, and
metabolic responses to diminished winter snowpack.

Our study shows that stream metabolism in the spring is highly dependent on
what happens in the winter, and the results from Summers et al. (2020) indicate that those
winter-driven changes can also extend into the first part of the summer, before the
monsoon season begins. Thus, winter precipitation changes have the potential to trigger
multi-season, direct and indirect effects on in-stream physical, chemical, and biological

processes. Moreover, as aerobic metabolism decreases under persistent anoxic conditions,

33



it is likely that redox conditions and associated cycles (e.g., denitrification) also shift.
Prior studies identify many biogeochemical responses to anoxic conditions, including
changes in the speciation of solutes mobilization of greenhouse gases, accumulation of
silica, reduction of manganese, iron, phosphorous, and sulfate, and altered lability of
exported dissolved organic and inorganic carbon stocks (Bicknell et al., 2020; Briggs et
al., 2015; Harvey et al., 2013; Lautz & Fanelli, 2008; Navel et al., 2010; P. Regier et al.,
2021; Sherson and Van Horn, et al., 2015; Zarnetske et al., 2011, 2012). Such significant
shifts in biogeochemical cycles may paradoxically turn previously assumed winter “cold-
spots” and “cold-moments” into hot-spots and hot-moments for biogeochemical
processing.

Since our sensors did not capture the dynamics of anaerobic processes, and the
winter ecology of streams remains understudied, we call for studies to focus on how
winter driven anoxia activates ecological cycles that influence stream biogeochemistry
through the rest of the year. This focus is timely because i) current data and climate
projections suggest that winter is the most rapidly changing season and its warming is
shifting the timing, amount, and type of precipitation, ii) in-stream freeze—thaw cycles,
including ice and snow cover, occur in ~60% of river basins in the Northern Hemisphere
and those ecosystems have evolved to sustain winter biogeochemical cycles, and iii) our
study and others show that changes in winter precipitation patterns generate changes in
stream metabolism, which propagate through the rest of the year. Accordingly, new
studies should focus on investigating how losing the intermittency caused by freezing-
thawing cycles due to global warming could negatively affect streams in high latitudes

and altitudes, where freezing streams may become less abundant and frequent.
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2.5 Conclusions

Winters are intuitively associated with ecological “cold-spots™ and “cold-
moments”, i.e., lower than average ecological activity in space and time, but the effects
of winter precipitation on stream metabolism and functioning are drastically understudied
due to logistical challenges. We found that atmospheric forcing in the form of significant
ice and snow cover during the winter drove drastic changes in oxygen availability and
stream metabolism during a weak to moderate El Nifio year (2018-2019). Two years
later, during a moderate La Nifia year (2020-2021), the same site underwent a significant
reduction of snow cover, which not only resulted in a lack of winter anoxia but even in
peak ER and GPP fluxes during the winter. Combining the two years of data, we found
that winter and post-winter stream metabolism was highly dynamic and dependent on
atmospheric forcing, which is changing due to the impacts of global warming on
snowpack volume and timing particularly in the winter, the most rapidly warming season

in the US.
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3.1 Introduction

Wildfires are increasing in frequency and extent across the western United States
(US) and other regions of Earth (Ball et al., 2021; Flannigan et al., 2009; Westerling,
2016). These wildfires are associated with increased aridity and variability in
precipitation patterns linked to global climate change (Cayan et al., 2001; Stewart et al.,
2004; Westerling et al., 2006; Seager et al., 2007b; Westerling, 2016) and have been
triggered by natural and anthropogenic factors (Allen et al., 2010; Breshears et al., 2005;
Raffa et al., 2008; Weed et al., 2013; Williams et al., 2010). In addition to the impacts of
wildfires to terrestrial ecosystems, property, and infrastructure, there is growing evidence
that wildfires trigger cascading effects that propagate across fluvial networks, impacting
environmental processes and ecosystem services in aquatic environments (Ball et al.,
2021; Dahm et al., 2015b; Emmerton et al., 2020; Mast et al., 2016; Reale et al., 2015;
Rhoades et al., 2019).

Wildfire impacts to environmental processes act as a pulse disturbance due to
runoff associated with discontinuous precipitation events and a press disturbance when
water quality is chronically impaired. The severity and duration of these impacts vary
based on the characteristics of the watershed, burn severity, and the rate of ecosystem
recovery (Proctor et al., 2020; Rhoades et al., 2019). Early acute impacts to
environmental processes include sedimentation, debris flows, loss of riparian vegetation,
and changes to water quality (Burton et al., 2016; Cerrato et al., 2016; Dahm et al.,
2015b; Sherson and Horn, et al., 2015). Long-term, chronic impacts include increased
rates of instream sediment loads, alterations of the habitat along the stream corridor, and

long-term changes to water quality and nutrient loading (Mast et al., 2016; Neary et al.,
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2016; Reale et al., 2015; Rhoades et al., 2018; Rust et al., 2019; Yu et al., 2019).
Wildfires also affect multiple ecosystem services, including water purification and
supply, soil and sediment management, flood attenuation, carbon and nutrient cycling,
primary production, water quality, disease regulation, aesthetics and scenic resources, and
recreational use (Adams, 2013; Bixby et al., 2015a; Brauman et al., 2007; Leemans,
2009).

Wildfire disturbances contribute to at least ten of the top twenty most crucial
stream disturbances listed in US EPA water quality assessments, i.e., 1) elevated
sediment levels, 2) nutrient enrichment, 3) organic enrichment and oxygen depletion, 4)
elevated temperature, 5) elevated instream metal concentrations, 6) habitat alterations, 7)
elevated turbidity, 8) flow alterations, 9) elevated salinity and total dissolved solids, and
10) changes to pH and conductivity. Paradoxically, while wildfire is known to contribute
to these impairments and the disruption of vital ecosystem services, it is frequently
excluded as a source of disturbance due to the unpredictable nature of wildfires and the
logistical challenges of monitoring water quality post-fire (Ball et al., 2021).

Post-fire water quality propagation data have only been fortuitously measured in a
few study cases where sensors had been deployed to monitor other non-fire-related water
quality issues. The limited data available have revealed impacts over hundreds of
kilometers downstream of the burn scar (Abram et al., 2003; Dahm et al., 2015a; Reale et
al., 2015), primarily affecting reservoirs and municipal water supply systems, with
associated restoration costs in the millions of dollars (Bladon et al., 2014). Temporally,

fire inputs can persist within streams for years post-fire, influencing ecosystems and
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overall stream functioning (Béche et al., 2005; Bixby et al., 2015b; Earl & Blinn, 2003;
Spencer et al., 2007).

Since current fire models consistently predict that the prevalence of wildfire and
associated damage will continue to increase due to anthropogenic climate change and
forest management practices (Abatzoglou & Williams, 2016; Adams, 2013; Calkin et al.,
2015; North et al., 2015; Westerling et al., 2011), we need to quantify and predict the
propagation of wildfire disturbances through fluvial networks. This knowledge gap
hinders our ability to mitigate wildfire impacts on water quality and protect vital aquatic
ecosystem services(Murphy et al., 2023).

We deployed a rapid response team to monitor first-flush watershed responses
and longer-term trends associated with wildfire disturbance propagation from the
Hermit’s Peak — Calf Canyon wildfire (HPCC), the current largest fire recorded in New
Mexico (Figure 3.1). The HPCC wildfire began on April 6th, 2022, and was contained on
August 21st, 2022, after burning 1,382 km?. Approximately 87% of the Gallinas Creek
watershed burned, of which 19% was designated high severity, 25% moderate, and 43%
low severity (Figure S3.1). We focused our monitoring along the 190km Gallinas Creek-
Pecos River-Santa Rosa Lake fluvial network because Gallinas Creek supplies
approximately 95% of the municipal water supply to 7,200 people living in the City of

Las Vegas, NM, located ~25 km downstream of its headwaters (Huey & Meyer, 2010).
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Figure 3.1: Water quality and meteorological monitoring. The red area represents the
burn scar boundary of the Hermit's Peak — Calf Canyon wildfire. GFT22 km, Gallinas
Creek near La Placita fire station, 22 km downstream from the headwaters of Gallinas
Creek; GMZ29 km, Gallinas Creek near Montezuma; GLs6 km, Gallinas Creek near
Lourdes; PSR170m, Pecos River upstream of Santa Rosa Lake; PBS190 xm, Pecos River
downstream of Santa Rosa Lake. Gold triangles represent the locations of MesoWest
climate stations used for atmospheric data. Photos from PBSi9 xm are shown in the
Supplementary Information.

Two weeks after the fire began, we deployed YSI EXO multiparameter water
quality sondes (Yellow Springs Instruments, n.d.) at three sites within the Gallinas Creek
watershed, i.e., at La Placita fire station in Gallinas, NM (referred to as GFT22 km, as it is
located 22 km from the headwaters of Gallinas Creek, our 0 km reference point), near

Montezuma, NM (GMZ39 «m), and near Lourdes, NM (GLs6 km). Two additional sondes
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on the Pecos River (PSR170 km and PBS190 km) were deployed in late 2020 to monitor water
quality upstream and downstream of Santa Rosa Lake through a partnership between
USACE and the University of New Mexico (Figure 3.1). We used those sites to compare
changes pre- and post-fire. All EXO sondes measured water temperature, specific
conductivity, dissolved oxygen (DO), turbidity, and pH at 15-min intervals. In addition,
the sondes in the Gallinas Creek watershed measure fluorescent dissolved organic matter
(fDOM) at 15-min intervals (Table S3.1). All sondes were cleaned and calibrated
monthly, following guidelines from the U.S. Geological Survey (USGS) (Wagner et al.,
2006). Discharge and meteorological data from multiple stations near water quality
monitoring sites were used to contextualize the generation and propagation of wildfire
disturbances (see Methods). Gross primary production (GPP) and ecosystem respiration
(ER) were estimated from sensor data using StreamMetabolizer (see Methods). Also,
metabolic fingerprints(Bernhardt et al., 2018), which relate GPP and ER kernel
distributions, were used to qualitatively compare metabolic regimes in response to
changing site conditions and pulse events.

Based on flow time-series analyses (see Methods), we defined a pre-monsoon
period from the beginning of our monitoring on April 25th, 2022, to June 26th, 2022; a
monsoon (high precipitation-runoff) period from June 26", 2022, to September 13,
2022; and a post-monsoon from September 13, 2022, to December 1%, 2022. The same
three periods of analyses were used at PSR170 km and PBS190 km to compare the data from
2021 and 2022. With the data collected, we addressed 1) how far downstream water

quality disturbances propagate following a wildfire, 2) what is the role of seasonality in
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that propagation, and 3) what is the impact of a downstream lake in mitigating further

longitudinal propagation.

3.2 Methods
3.2.1 Site and Wildfire Descriptions

Gallinas Creek is a perennial stream, and most of its flow is associated with
snowmelt during the spring and monsoonal storms in the summer and fall. The catchment
supplies approximately 95% of the municipal water supply to 7,200 people living in the
City of Las Vegas, NM, located ~25 km downstream of its headwaters (Huey & Meyer,
2010). Further downstream, Gallinas Creek flows through a mix of canyonlands and
farmlands before joining the Pecos River, ~142 km from its headwaters (Figure 3.1). The
Pecos River flows into Santa Rosa Lake, located ~ 43 km downstream of the confluence
with Gallinas Creek. This reach of the Pecos River is perennial, except for short reaches
of intermittent flow between Anton Chico and Colonias, NM (USBOR & NMISC, 2021).
Santa Rosa Lake is operated by the U.S. Army Corp of Engineers (USACE) for flood
control, irrigation, and sediment retention. Water releases from Santa Rosa Lake typically
occur only during block releases, which are typically 15-40 m3/s for a period of 5-15
days. The frequency of these releases depends on available reservoir storage and
irrigation demand, but cannot exceed 65 days (Moore et al., 2022). However, the reach
downstream of the Lake to the City of Santa Rosa remains perennial due to groundwater

inputs.

3.2.2 Monitoring Description

51



Discharge and meteorological data: Discharge and stage data were also
collected at 15-minute intervals at stream gages maintained by the USGS (Nos.
08380400, 08380500, 08382000, 08382650, and 08382830) collocated or proximal to
sonde sites GFT22 km, GMZ29 km, GL56 km, PSR170 km, and PBS190 km, respectively (U.S.
Geological Survey, 2022). During periods before the deployment of non-contact radar,
the height at 08380400 was estimated using a 2-hour lagged relationship between heights
from USGS gages 08380500 and 08380400.

Meteorological data were exported from MesoWest with barometric pressure
being measured at climate station KLVS, and precipitation and solar radiation were
recorded at climate stations LVPN5, TR931, NMC06, and NMCO08 at 10-min intervals
(Figure 3.1 and Table S3.2) (MesoWest, 2022). Precipitation and solar radiation time
series from multiple sites were aggregated to a single time series by taking the weighted
average on the proximity of a sonde site to the respective climate station. Differences
between the site’s readings and KLVS’s barometric pressure were accounted for by a
factor of 0.16 KPa per 15.3 m elevation difference.

Data quality control, assurance, and conversions: Raw and converted data
were processed for outliers and sensor drift with Aquarius Timeseries 21.1 (Aquatic
Informatics, Vancouver, Canada). Erroneous outliers were eliminated using a moving
average filter targeting points deviating more than 20% from a two-hour moving window.
We corrected sensor drift and biofouling by comparing pre- and post-cleaning and
calibration values and applied a linear correction from the date of the previous
maintenance (Wagner et al., 2006). Lastly, we performed a final visual inspection of data

quality.
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A high discharge event on September 10%, 2022, damaged the sonde at the GFT2,
xm monitoring site, effectively terminating data collection on August 28", 2022 (Table
S3.4). At GLse km, sensor connectivity issues halted data recording from June 20 to July
11" 2022. Starting September 4", 2022, the DO sensor at PSR 70 km was damaged,
producing negative values, and was excluded from the analysis. Also, at PSR170 km and
PBSi90 km, there were periods with data removed because the sondes were buried or out of
the water column. On August 10%, 2022, the sonde at PBS199 km Was pulled for routine
calibration, but high flow prevented its redeployment until September 14", 2022. Also, a
firmware issue prevented data from being recorded from May 18" to June 17, 2022.

fDOM was corrected for changes in water temperature and turbidity using the

following equations (Downing et al., 2012):

fDOM
=— 1
_ fDOMtemp
fDOM;o, = at+brexp(crturb) ),

where fDOM ey, is the temperature corrected fDOM concentration (QSU); fDOM is the

uncorrected fDOM concentration (QSU); p is temperature-specific fluorescence
coefficient of —7.545 x 1073 °C~1; W is the water temperature (°C); T is the lab
temperature of 22 °C when fDOM was calibrated; fDOM_,, is the temperature and
turbidity corrected fDOM concentration (QSU); turb is the water turbidity (FNU); a, b,
and c are turbidity correction coefficients of 0.38901, 0.72842, and -0.00618 when
turbidity is less than 600 FNU, or 0.17573, 0.25597, and -0.00038 when turbidity is
greater than 600 FNU (P. J. Regier et al., 2020).

Photosynthetically active radiation (PAR) was derived by multiplying total solar

radiation by a factor of 2.04 (Meek et al., 1984b). Average stream depth was derived by
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dividing the measured cross-sectional area by stream width from 2000 to 2022 USGS

field measurements taken at each stream gage.

3.2.3 Estimates of Stream Metabolism

Stream metabolism modeling: We estimated daily averages of stream
metabolism using the USGS streamMetabolizer model (Appling et al., 2018), which uses
a one-station model based on the open-channel metabolism approach (Odum, 1956), and
incorporates inverse Bayesian Markov Chain Monte Carlo modeling. The equations used

in streamMetabolizer are:

dDO; _ 1 ( GPP(ty—to)*PPFD; L ER )+ K600(DOsat.t—=DOmod.t) 3)
at  z t1 — 2 3 )
t =t PPFDydu Sa—SBTt+ScTi+SpTt
0 600
_ t dDOmod,u
DOmod,t — DOmod,t—At + fu=t—At( du + gproc,u) du (4)3
DOobs,t = Domod,t + é":obs,t (5),

where DO, is the observed dissolved oxygen (mg L) at time ¢; DOgq,  is the
hypothetical saturated DO concentration (mg L*); DO,p0q ¢ is the modeled DO
concentration (mg L™1); &ops and eproc are the observation and processes error;

to and t; are the beginning and end of the day (d); Z; is stage (m); PPFD, is
photosynthetic photon flux density (umol m~2 d=1); T, is the water temperature (°C);
Sapcp are dimensionless Schmidt coefficients (-); GPP is the daily average areal rate of
gross primary production (g0, m~2 d~1); ER is the daily average areal rate of ecosystem

respiration (g0, m~2 d~1); and Ky, is the standardized gas exchange rate coefficient

(d7h).
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Stream metabolic fingerprints: We used the stream metabolic fingerprint
technique (Bernhardt et al., 2018) to compare stream metabolism patterns across periods
of analysis and monitoring sites. This technique analyzes GPP and ER kernel
distributions to qualitatively compare metabolic regimes in response to changing site
conditions and pulse events (Figure 3.3F) (Bernhardt et al., 2018). We derived GPP and
ER kernel distributions using the R package MASS’s kde2d function at a bandwidth of
7.5. The kde2d function is a nonparametric representation of the probability density
function that is useful when data do not fall within a Gaussian distribution (Venables &

Ripley, 2002).

3.2.4 Periods of Analysis and Statistical Tests

Periods of Analysis: Due to the dominant influence of rainfall-runoff events in
wildfire disturbance generation and longitudinal propagation, we used changes in mean
discharge values to establish periods to guide our time-based comparisons. For this, we
used MATLAB’s ischange function with discharge data from USGS stream gage
08380500, which had the greatest number of records available near the burned perimeter.
MATLAB’s ischange function determines points of significant change in a time series
mean trend (Killick et al., 2012).

Diel cycling analysis: We generated spectrograms using the pspectrum function
in Matlab for water temperature, pH, and DO to monitor changes associated with
physical, chemical, and biological signals (Nichols et al., 2022; Nimick et al., 2011).
Spectrograms use discrete, short-time Fourier transforms to quantify the significance of

sinusoidal signals at multiple frequencies or periodicities within a time series. We
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extracted the spectral power at a periodicity of 24 hours to quantify diel cycling within
the time series. We also generated heatmaps that quantify when a diel signal reached its
peak value within 24 hours for the same time series used for frequency analysis. For this,
we used Matlab’s findpeaks function with a minimum peak distance of 12 hours to
determine the time diel cycling reached in maximum value during 24 hours. The daily
peak times were then aggregated to weekly values by taking the median peak times for
each week. These diel cycling analyses were combined with stream metabolism to
understand the role of seasonality in the longitudinal propagation of wildfire
disturbances.

Maximum daily discharge exceedance probability: We computed exceedance
probabilities of maximum daily discharge from recorded values upstream of Santa Rosa
Lake to compare flow changes pre- and post-fire. Discharge records available spanned
from October 1st, 1990, to December 1st, 2022, for stream gages 08380500 and
08382650, and March 13th, 2006, to December 1st, 2022, for stream gage 08382000. We
used the maximum daily value observed in 15-min during 24 hours to calculate

exceedance probabilities, P, :

m
(n+1)

P,... =100

(6),

where m is an index representing ranked values of discharge from highest to lowest for
the total number of daily discharge observations n. Low P,,. values indicate atypical
high-flow events, and high values indicate commonly observed flows. In this work, when
P,... < 1%, the event is classified as a high-flow event.

Principal component and multi-comparison analysis: We used Matlab’s pca

function to generate principal component analysis (PCA) and examine relationships
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between water quality parameters and stream metabolism estimates. The first two
principal components were used for statistical analysis since they explained
approximately 60% of the total variance at each sonde site. We plotted the first two
principal components in a biplot. Parameters aligned in the same direction represent
positive correlations, those in opposite directions represent negative correlations, and
those orthogonal are uncorrelated (Jolliffe & Cadima, 2016). We also categorized by
color the latent space daily points in each period of analysis to understand their
dominance. Daily mean water quality values were derived to align with the timestep of
stream metabolism estimates. Lastly, we standardized each parameter’s daily average by
centering its mean at zero and scaling by its standard deviation to make parameters with

varying magnitudes and units comparable:
X_
Sx == % (7,

where Sy is the standardized parameter X (-), and py and oy are the mean and standard
deviation of parameter X.

Comparison tests: We used Pairwise Wilcoxon Rank Sum tests to compare
period-to-period changes. The Pairwise Wilcoxon Rank Sum is a nonparametric, multiple
comparison test that determines if groups within the data are statically similar, the null
hypothesis, or significantly different (Mast et al., 2016; Wickham & Grolemund, 2016).
We used the Holm-Bonferroni method to calculate p-values to minimize family-wise
error rates. Each time series was aggregated to 5-day averages to reduce autocorrelation
and type one error, except for PBS190 km, which required 3-day averages due to a reduced

number of days of observation during the pre-monsoon period.
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3.3 Results
3.3.1 Seasonal Changes in Flow

There were no high-flow events during the pre-monsoon period (Figure S3.2).
Discharges upstream of Santa Rosa Lake were at the lowest values in that period during
the fire year, with average values ranging from 0.02 to 0.17 m%/s (Tables S3.2 and S3.3).
In mid-June, a block release from Santa Rosa Lake increased the average discharge at
PBSi90 km to 2.81 m?/s for approximately 8 days.

During the monsoon period, 243 mm of precipitation fell on the burn scar, mainly
between July 26"-30" (70 mm) and August 17" to 18" (42 mm). Twelve high-flow
events occurred at the GMZag i site, two at GLse km, and one at PSR170 km in this period
(Figures S3.2 and S3.3). Maximum discharges across the three sites were 66.0, 20.4, and
68.0 m?/s, corresponding to high flow events with low exceedance probabilities of 0.06,
0.58, and 0.75%, respectively (Figure S3.3). Average discharges across all sites ranged
from 1.30 to 7.93 m?/s, with the lowest value measured at GLss«m and the highest at
PSR 170 km (Tables S3.2 and S3.3).

During the post-monsoon period, 110 mm of precipitation fell within the burn
scar. Most precipitation occurred between October 3™-8™ and October 16", with 57 mm
and 34 mm of precipitation, respectively. The highest peak discharge values were 6.8,
3.8, and 15.1 m?*/s at the GMZ29 km, GLs6 km, or PSR170 km sites, with exceedance
probabilities of 1.3, 2.3, and 6.2%, respectively (Figure S3.3). Average post-monsoon
discharges across all sites ranged from 3x10* to 2.1m3/s, with the lowest value measured

at PBS190 km and the highest at PSR170 «m (Tables S3.2 and S3.3; Figure 3.2).
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Figure 3.2: Boxplots of parameters and fluxes from all monitoring sites, grouped by
analysis period. The statistical comparisons between periods are presented in Table 1.
GFT22 km, Gallinas Creek near La Placita fire station, 22 km downstream from the
headwaters of Gallinas Creek; GMZ29 km, Gallinas Creek near Montezuma; GLs6 km,

Gallinas Creek near Lourdes; PSR170 km, Pecos River upstream of Santa Rosa Lake;
PBSi90km, Pecos River downstream of Santa Rosa Lake.

3.3.2 Seasonal Changes in Water Quality Parameters
During the pre-monsoon period, turbidity and fDOM were at their lowest values

of the fire year at sites upstream of Santa Rosa Lake, with averages ranging from 5.93 to

59



62.7 FNU and 21.7 to 38.7 QSU (Tables S3.2 and S3.3). The PBS19 km site, downstream
of the lake, had its highest turbidity of the fire year, with an average of 26.3 FNU. There
was an increase in specific conductivity from the headwaters to the lower sites, with a
1,870 uS/cm difference between GFT22 km and PBS190 km pre-monsoon averages (Figures
3.2 and S3.2; Tables S3.2 and S3.3).

With respect to the pre-monsoon, most water quality parameters significantly
changed at the stations upstream of Santa Rosa Lake (i.e., GFT22 km, GMZ29 km, GL56 km,
and PSR 170 km) during the monsoon period, and only a few changed downstream of the
lake at PBS190 km (Table 3.1). At GFT22 km, water temperature and fDOM were the only
quantities that did not change significantly. At GMZ39 km, only the water temperature did
not change. At GLs6 km and PSR170 xm, only DO, and pH did not change. At PBS190 km,
DO, specific conductivity, pH, and turbidity did not change. Summarizing the main
changes during the monsoon period, the average values of fDOM increased from 33 to 96
QSU at GMZ29 km (Table S3.2) and from 39 to 83 QSU at GLse km. Turbidity experienced
a significant increase at the monitoring sites upstream of Santa Rosa Lake (Figures 3.2
and S3.2), with period averages ranging from 149 to 574 FNU. However, unlike observed
values at locations upstream of the lake, PBS190 xm €xperienced minimal reductions in
turbidity, with a period average of 16 FNU. Specific conductivity significantly decreased
at monitoring sites upstream of Santa Rosa Lake, with average ranges of 172 to 442
uS/cm, while it remained relatively high at PBS190 km, averaging 2087 uS/cm (Tables 3.1

and S3.2).
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Table 3.1: p-values from Pairwise Wilcoxon Rank Sum tests between periods of
analysis, i.e., pre-M, M, and post-M indicating pre-monsoon, monsoon, and post-

monsoon. Light green shows statically significant differences at p-values <0.05.

Site Season Stage D Water DO Spec pH Turb GP E
and O Temp M ific idity P R
Discha Con
rge d.

oMy 000 | %] 047 | 065 | 0.00 0(')0 0.00 0(')0 0.5

CiFkIZ ﬁvs Post-1 - Na IZ NA | NA | NA IZ NA | NA I:
llzgﬁ;'tl_\ﬁ/lvs NA IZ NA | NA | NA IZ NA | NA I:
oMy 000 | %0 037 | 000 | 000 | %7 00a | 000

fjv:f Mvsreslo00 | %01 000 | 000 | o004 | %0 | 00s | O |0
oMY 1000 [ %0] 000 | 004 | 000 | %0 021 | 0000
oMY 000 | %2 ] 002 | 004 | 000 | %0 000 | 000

G::jé vvsreslo00 | %01 000 | 043 000 | % 0or | 9000
oMY 1000 | %] 000 | 000 | 000 | %% 0r2 | 000
2w 000 | %] 031 | Na foss | %0 oar | 0019
222 oo | %% 0os | Na 007 | ] oss | %7 |0

bR, o2 Looo |9 098 | Na 0o | %] oss | %0 |00
o | BEMYS 0,00 064 000 | NA | 0.00 0é9 0.00 0(')0 o0
MvsPeslio00 | %01 000 | Na | 098 0é9 0.00 0(')0 8'0

pre MY | 0.0 0(')0 098 | NA | 0.00 0é9 0.98 | % 8'0
w2 oo |%0] 0so | Na 093 | ] 007 | %04

oS, 212 oo |%0] 022 | Na |oss |9 | 042 | %0 |0
o [ B1¥522 000 | %] 025 | Na | 000 | % | 000 | 0%
oMy oo |97 002 | Na | ogs | %7 | oss | 00 |07
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Table 3.1: p-values from Pairwise Wilcoxon Rank Sum tests between periods of
analysis, i.e., pre-M, M, and post-M indicating pre-monsoon, monsoon, and post-
monsoon. Light green shows statically significant differences at p-values <0.05.

Site Season Stage D Water DO Spec pH Turb GP E

and O Temp M ific idity P R
Discha Con
rge d.
M vs Post- 0.0 0.0 0.0 { 0.0
M 0.00 0 0.00 NA | 0.00 ) 0.00 0 0
Pre-M vs 0.0 0.9 0.0 |02
Post-M 0.00 ) 0.02 NA | 0.98 3 0.03 ) 1

Most water quality parameters significantly changed at all stations between the
monsoon and post-monsoon periods. At GMZ29 km, turbidity changes had a marginal p-
value=0.06. At GLs6 km, only fDOM did not change significantly. At PSR170m, only DO,
and pH did not change. At PBS190km, all quantities changed (Table 3.1). Summarizing the
main changes during the post-monsoon period, f{DOM significantly decreased at GMZz9
«m (Table 3.1) with respect to the monsoon season, with an average period value of 58
QSU. Turbidity increased near the burn scar to an average of 260 FNU at GMZ29 km but
significantly decreased at the GLs6 km, PSR170 km, and PBS190 km, averaging 85, 48, and 0.2
FNU, respectively (Table S3.2). Specific conductivity experienced significant increases
at GMZ29 km, GLs6 km, PSR170 km, and PBS190 «m, averaging 210, 992, 537, and 2573
uS/cm, respectively (Tables 3.1, S3.2, S3.3; Figure 3.2).

Between the pre-monsoon and post-monsoon periods, most parameters changed
significantly. At GMZ29 km, only turbidity did not change. At GLs6 km, only pH and
turbidity did not change. At PSR170 km, Water temperature, pH, and turbidity did not

change. At PBS190 km, specific conductivity and pH did not change (Table 3.1).

3.3.3 Seasonal Changes in Stream Metabolism
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GPP averages ranged from 0.6 to 4.9 g0, m~2 d~! during the pre-monsoon
period, with the lowest and highest values occurring at PSR170 km and GLs6 km,
respectively (Tables S3.2 and S3.3). ER averages ranged from 3.1 t0 9.5 g0, m™2 d ™1,
with the lowest and highest values occurring at PSR170 km and GFT26 km, respectively
(Figures 3.2 and S3.2). The metabolic fingerprint distributions across monitoring sites
upstream of Santa Rosa Lake had centroids with larger ER vs. GPP values and uniform
spreads (Figure 3.3). In contrast, PBS190 km had two centroids, i.e., one falling on the 1:1
line (0.5, -0.5) and another with heightened ER (1, -15), which was associated with the
block release period (Figure 3.3E). Conceptually, kernel distributions favoring high ER
and low GPP indicate increased organic matter, nutrient, and sediment fluxes;
distributions near zero GPP and ER indicate scouring of the benthic zone; distributions
that fall on a 1:1 ratio between GPP and ER indicate metabolic equilibrium (Bernhardt et
al., 2018).

With respect to the pre-monsoon, GPP and ER changed at most sites during the
monsoon period, except at PBSi90xm. ER did not change significantly at GFT22 km (Table
3.1). Upstream of Santa Rosa Lake, GPP was reduced with respect to the pre-monsoon,
with average values ranging from 0.2 g0, m~2 d~1 at GMZ29 m and PSR 70 km to 1.3
g0, m™2 d~1 at GLse m (Figure 3.2; Tables S3.2 and S3.3). There was a reduction in ER
at most monitoring sites along Gallinas Creek, with average values ranging from 0.1
g0, m~% d~1 at GMZ29km t0 6.6 gO, m~2 d~1 at GFT22 km. ER increased at PSR 170 km,
reaching an average of 5.5 g0, m~2? d~1 (Tables 3.1, S3.2, and S3.3). Metabolic
fingerprint distributions at monitoring sites upstream of Santa Rosa Lake shifted away

from the 1:1 line. The GMZ29 km distribution moved near the zero-to-zero axis (Figure
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3.3B). The distributions from GFT22 km, GL56 km, and PSR 70 km shifted to lower GPP and
higher ER magnitudes compared to the pre-monsoon period (Figure 3.3C-D). PBS190 km
was the only site where metabolic fingerprint distributions in the pre-monsoon and
monsoon periods overlapped, not including the dam release flow cluster, and its centroid
had the same GPP with slightly higher ER, indicating little change between periods

(Figure 3.3E).
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Figure 3.3: Metabolic fingerprints at each monitoring site grouped by their respective
temporal period. A) GFT22 «m, Gallinas Creek near La Placita fire station, 22 km
downstream from the headwaters of Gallinas Creek, B) GMZ39 «m, Gallinas Creek near
Montezuma, C) GLse6 km, Gallinas Creek near Lourdes, D) PSR 170 km, Pecos River
upstream of Santa Rosa Lake, E) PBS190 km, Pecos River downstream of Santa Rosa Lake,
F) Conceptual figure modified from Bernhardt et al. (2018) illustrating where forcing
variables change the position of a metabolic distribution.
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Between the monsoon and post-monsoon periods, GPP and ER changed at all
sites except at GMZ29 km. GPP increased at GLs¢ km to an average of 1.9 g0, m=2 d 1.
PSR 170 km and PBS190 km €xperienced a significant reduction in GPP, averaging 0.1 and
0.3 g0, m~% d™1, respectively (Table S3.2 and Figure 3.2). ER at GLs6 km, PSR170 km, and
PBS190km had a significant reduction to averages of 1.8, 1.0, and 0.6 g0, m~2 d 1,
respectively. There were little changes to the metabolic fingerprint distributions at GMZ29
km, With a centroid near the zero axis. At GLsekm and PSR170 km, the distributions shifted
back to the 1:1 line but stayed lower than in the pre-monsoon period (Figure 3.3). There
were minor changes in metabolic clusters at PBS190 km, which overlapped with pre-
monsoon and monsoon clusters. Between the pre-monsoon and post-monsoon periods,
GPP and ER changed at all sites except at PBS190 km, where ER did not change (Table

3.1).

3.4 Discussion
3.4.1 Pre-Fire vs. Fire Year Differences at the Two Stations (PSR170 km and PBS199
km) With Comparable Data

With respect to the values observed in 2021, only stage and pH values were
significantly different in 2022 at PSR170 km during the pre-monsoon period. While average
stage values were similar (Table S3.2), they were more variable in 2021 (Figures 3.2 and
S3.2; Table S3.3). Average pH values were greater in 2021 (i.e., 8.4 vs 8.0). At PBS190 km,
only stage values differed and had a greater average in 2022 (i.e., 0.08 vs. 0.2m). All the

other parameters and stream metabolism fluxes remained similar (Table 3.1).

66



During the monsoon period, only stage and ER values were significantly different
at PSR170 km. Average stage and ER values were greater in 2022 (i.e., 0.2 vs 0.4 m; 3.1 vs.
5.5 g0, m~2 d~1, respectively) (Tables 3.1, S3.2, and S3.3). At PBS190 km, average stage,
GPP, and ER values were greater in 2022 (i.e., 0.02 vs. 0.2 m; 0.4 vs. 0.8 g0, m~2 d~1;
and 0.6 vs. 2.8 g0, m~2 d~1, respectively).

During the post-monsoon period, average stage, DO, specific conductivity, pH,
GPP, and ER values differed at PSR170 km. Average specific conductivity, pH, GPP, and
ER values were greater in 2021 (i.e., 1847 vs. 536 uS/cm; 8.2 vs. 7.8; 0.4 vs. 0.1
g0, m~%2d 1;and 1.5 vs. 1.0 g0, m~2 d~1, respectively) (Tables 3.1, S3.2, and S3.3).
Average stage and DO values were greater in 2022 (i.e., 0.1 vs. 0.2 m; 8.5 vs. 10.2 mg/L,
respectively). At PBS190 km, average stage, specific conductivity, pH, turbidity, and ER
values were different. Average stage, specific conductivity, and turbidity were greater in
2021 (i.e., 0.03 vs. 0.02 m; 2630 vs. 2572 uS/cm; 12.6 vs. 0.2 FNU, respectively).
Average pH and ER values were greater in 2022 (i.e., 7.6 vs. 8.0; 0.3 vs. 0.6

g0, m~% d™1, respectively).

3.4.2 Wildfire Disturbance Generation and Propagation: Impacts to Stream
Metabolism and Ecosystem Services

The most significant changes observed in our study occurred during the monsoon
period. We identified twelve high-flow events with exceedance probability < 1% at the
GMZ29 km monitoring site (Figure S3.3), coupled with a rapid increase in turbidity from
GFT22 km to PSR170km and fDOM from GFT22 km to GLs6 km. Due to the low probability

nature of these flows with respect to historical records, they are likely associated with
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altered hydrologic processes within the burn scar. Beyond flow increases, turbidity
concentrations increased by 25x, 3x, 11x, and 20x at GFT22 km, GMZ29 km, GL56 km, and
PSR 170 km, respectively, with respect to the pre-monsoon period. Similarly, fDOM values
increased by 2x, 3x, and 2x at GFT22 km, GMZ29 km, and GLse km, respectively. Since
fDOM and turbidity are common surrogates for dissolved organic carbon (DOC) and
suspended sediment concentrations (SSC), these constituents were also likely elevated
during the high-flow monsoonal events (Holliday et al., 2003; Lee et al., 2015). Specific
conductivity further validates the increase DOC and SSC with it experiencing an
significant decrease during the monsoon period, which indicates a reduction in baseflow
and an increase in overland flow would mobilize allochthonous sediments and organics
into the fluvial network.

Impacts to stream metabolism: During the monsoon period, PSR170 km
experienced similar increases in turbidity in 2021 and 2022 (Figure 3.2; Tables S3.2 and
S3.3). This may suggest seasonal increases unrelated to wildfire disturbances. However,
the metabolic fingerprint analysis indicates that during the 2022 monsoon season, the
sites upstream of Santa Rosa Lake had high ER and low GPP patterns, and at PSR170 xm
the metabolic regime skewed to higher ER values compared to 2021 (Figure S3.5),
indicating an increase in DOC, nutrients, and SSC post-fire, which together provide
resources for heterotrophic respiration while limiting light availability for phototrophic
production (Bernhardt et al., 2018).

Our stream metabolism estimates show significant decreases in GPP during the
monsoon period (Table 3.1), with an average reduction of 88%, 93%, 74%, and 45% at

GFT22 km, GMZ29 km, GL56 km, and PSR170 km, respectively. Like GPP, ER showed a
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significant decrease during the monsoon period at GFT22 km, GMZ29 km, and GLs6 km, with
an average attenuation of 31%, 98%, and 42%, respectively. However, at PSR170 km, ER
experienced a significant increase of 44% during the monsoon period. The reductions in
ER and GPP are most likely due to the scouring of autotrophic and heterotrophic
communities and biofilms from the benthic zone but are also associated with changes in
light penetration due to increased turbidity and greater flow depths (Dodds et al., 2013;
Ganju et al., 2020; Solins & Cadenasso, 2022). Our principal component analysis shows
strong relationships between discharge, turbidity, and fDOM during the monsoon period
and inverse relationships between these variables and GPP and ER (Figure 3.4). Unlike
the year of the fire, seasonal clusters at PSR170 km during 2021 had less separation and a
weakened relationship between discharge and turbidity to ER (Figure S3.6).

The weakening of DO diel cycling (see Methods) and its shift in peak diel values
from 12:00 pm to 8:00 am validates the reduction in GPP at GFT22 km, GMZ29 km, and
GLse km, indicating that Gallinas Creek went from being biologically driven to being
physically driven (Figure S3.7). These results suggest a reduction of phototrophic
communities, which would typically increase DO during hours of peak solar radiation
around noon. With losses in phototrophic biomass, the primary driver of DO diel cycling
became gas solubility, which increases with lower water temperatures. As a result, DO
concentrations peaked in the early morning. While many mechanisms can cause the loss
of benthic phototrophic communities, our metabolic fingerprint analysis suggests that the
loss of phototrophic communities was primarily due to scouring of the benthic zone. This
was supported by increases in turbidity, fDOM, and stage values during the monsoon

period. Cooccurring with the scouring of the benthic zone and loss of phototrophic
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communities, there were distinct DO sags that resulted in short-term hypoxia within the

water column. These DO sags can further exacerbate stressed aquatic communities that

rely on high concentrations of DO for aerobic respiration.
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Figure 3.4. PCA biplots with parameter eigen vectors represented by blue lines. A) GFT2
km, Gallinas Creek near La Placita fire station, 22 km downstream from the headwaters of
Gallinas Creek, with a total of 64% variability explained; B) GMZ9 «m, Gallinas Creek
near Montezuma, with a total of 68% variability explained; C) GLs6 xm, Gallinas Creek
near Lourdes, with a total of 70% variability explained; D) PSR170 km, Pecos River
upstream of Santa Rosa Lake, with a total of 76% variability explained; E) PBS190 km,
Pecos River downstream of Santa Rosa Lake, with a total of 87% variability explained;
F) Conceptual figure explaining common positive, negative, and no correlations in PCA

biplots.
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Impacts to ecosystem services: Besides altering water quality, carbon and
nutrient cycling, and stream metabolism fluxes, the propagation of wildfire disturbances
affects ecosystem services. For example, increases in turbidity overburdens water
purification in water treatment plants, disrupting day-to-day activities in affected
locations(Murphy et al., 2023). During the HPCC fire, high turbidity and organics in
Gallinas Creek forced the City of Las Vegas, NM, to halt its use as the primary source of
potable water. This led to large-scale and restricted use of bottled water in the region and
the installation of a 2-million-dollar filtration system at Storrie Lake, a nearby reservoir
typically used for irrigation purposes, to be used as a backup water supply. Beyond these
impacts, the HPCC wildfire caused soil and sediment management problems due to an
increase in overland flow in the watershed, affecting ecosystem services associated with
aesthetics, scenic, and recreational uses of the streams and lakes (Figure S3.4).

Post-fire recovery: While GMZ39 m was still experiencing a reduction in stream
metabolism in December 2022, monitoring sites farther downstream of the burn scar
started to show signs of recovery in metabolic activity during the post-monsoon period.
During that period, sites upstream of Santa Rosa Lake experienced an overall reduction in
turbidity and reached values previously experienced during the pre-monsoon season
(Table 3.1). Coupled with the shift of metabolic fingerprints from high ER and low GPP
to a 1:1 ratio at GLs¢ km and PSR170«m (Figure 3.3), our data suggest metabolic signs of
recovery near the end of 2022. However, GPP and ER post-monsoon values were
significantly smaller than those observed during the 2021 post-monsoon period (Tables

3.1, S3.2, and S3.3).
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Other indications suggest that the fluvial network was still highly susceptible to
post-fire precipitation events during the post-monsoon period. For example, on October
23,2022, a 3 mm precipitation event increased discharge to 6.7 m*/s at GMZ29 km, a
flow with an exceedance probability of ~1%, and resulted in the highest turbidity value
observed, i.e., 7247 FNU (Table S3.3). Likewise, another precipitation event on October
8th, 2022, produced 5 mm of precipitation and resulted in a 3.76 m3/s increase in
discharge at GLs6 km, coinciding with the highest turbidity value measured at that site
during the fire year, i.e., 3677 FNU, and a two-day reduction in GPP (Figures S3.2; Table
S3.3). These post-monsoon data suggest that while some metabolic fluxes showed signs
of recovery, the Gallinas Creek watershed had not fully recovered from the HPCC fire by

the end of 2022.

3.4.3 The Role of Santa Rosa Lake in Disturbance Attenuation

The metabolic fingerprints during the 2021 and 2022 monsoon periods at PSR17¢
tm show distributions with higher ER in 2022. Unlike PSR170 km, the metabolic
fingerprints between the two years remain unchanged at PBS190 km. In 2022, most water
quality changes were decoupled between PSR 170 km and PBS190 «m (Table 3.1). For
example, while only DO and pH did not change at PSR170 km between the pre-monsoon
and monsoon periods, at PBS190tm DO, specific conductivity, pH, turbidity, GPP, and ER
did not change between those two periods.

The decoupling of and differences between water quality parameters and
metabolic fluxes observed at PSR 170 xm and PBS190 km (Figures 3.2 and S3.2; Tables 3.1,

S3.2, and S3.3) suggest that Santa Rosa Lake buffered wildfire disturbances originating
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from the HPCC wildfire burn scar. A separate study from our rapid response research
team measured surface water quality longitudinal profiles at Santa Rosa Lake during the
monsoon period using an autonomous vehicle (Khandelwal et al., in review) and
registered turbidity reductions of up to 650 FNU in the delta of the Pecos River and Santa
Rosa Lake, suggesting the existence of hyperpycnal flows, in which the higher density
river water sinks below the lower density lake water, effectively mobilizing wildfire
disturbance material from the water column into the lake’s bed. This deposition and
hyperpycnal flow processes help explain why PSB has not shown signals indicating
wildfire-related impacts to metabolic processes downstream of the lake and suggests that
the lake substantially buffered the longitudinal propagation of wildfire disturbances along
the Gallinas Creek-Pecos River continuum.

In Ball et al. (2021), we proposed a simple model to estimate the total longitudinal
stream length (SL; ) impacted inside and outside burned watersheds by a disturbance
initiating at a stream order w,. Briefly, SL;; = Zwo (1-RY)/(1 —R,),where R, =
L(w + 1)/L(w) and fluctuates between 1.5<R;<3.5, and L(w) is the arithmetic average
of the length of streams of order w. We applied SL;; to the Las Conchas wildfire dataset
presented in Dahm et al. (2015a), which burned first-order streams (w, = 1) with L;~1.3
km in Peralta Canyon, to predict that the Rio Grande would still be affected where it was
an 8" order stream, assuming the average value recommended of R;=2. From our data-
limited analysis, we proposed that SL; ; conservatively should be about equal to the river
length impacted within burned areas SLg, (Ball et al., 2021). From the HPCC wildfire
dataset, we know that the wildfire disturbances generated in the headwaters of Gallinas

Creek (where L;~0.6 km) propagated to the 5" order stream Pecos River (w=>5) upstream
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of Santa Rosa Lake. Since our data showed that PSR170 km Was affected by the
disturbances but PBS190 km Was not affected, we assume SL;; ~180 km. This propagation
can be predicted with our SL;; equation when 3.0<R;3.5. Smaller R; values would
consistently overestimate the stream order to which the disturbances propagated,
highlighting the key role that lakes have in resetting water quality disturbances.

While overestimations of SL; ; in watersheds with significant lakes are expected
because Horton’s original equation predicts the uninterrupted growth of stream orders
from headwaters to the ocean, our HPCC fire analysis suggests that such overestimations
should be much more common in fluvial networks with lakes that are not bypassed by
most flow paths draining the burned area. For example, compared to the dominant role
that Santa Rosa Lake had in the longitudinal propagation of wildfire disturbances from
the HPCC fire, Cochiti Lake played a less dominant role in resetting water quality after
the 2011 Las Chochas Fire (Dahm et al., 2015a). This was because Cochiti Lake only
received flow paths draining the east side of the burned Jemez Mountains, but multiple
discharge-relevant flow paths draining the west side connected to the Jemez River, a
tributary draining into the Rio Grande downstream of Cochiti Lake. Also, water
operations (i.e., storage and releases) at those two reservoirs differ significantly, i.e.,
while Cochiti Dam allows continuous river flow, except during flood control operations,
Santa Rosa Lake’s gates are closed, except during block releases. Therefore, while our
equation to estimate SL;; can be used as a first approximation to conservatively estimate
the longitudinal propagation of wildfire disturbances, the role of lakes and similar
reservoirs is not captured but may be dominant. In those cases, our Horton-based

estimation of SL;; would tend to overestimate the total length of streams and rivers
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impacted. Given the lake-specific complexity of the relationships between lake size and
the scheduling of water storage, water release, and sediment dredging operations, it is
unlikely that a simple term to account for those relevant features can be added to our

simplistic SL;z model.

3.5 Conclusions

The HPCC wildfire is currently the largest fire recorded in New Mexico, with a
burn scar of 1,382 km?. The Gallinas Creek watershed was ~ 87% burned and holds the
highest population density around the HPCC burn perimeter. About 19% of this
watershed had a high severity burn, 25% a moderate severity, and 43% a low severity.
From our monitoring of five instrumented sites located along a 198 km network of
Gallinas Creek — Pecos River — and Santa Rosa Lake, we observed twelve high-flow
events during the monsoon season, with exceedance probabilities smaller than 1%. These
unusual high-flow events featured elevated turbidity and fDOM along Gallinas Creek,
coupled with reductions in GPP and ER and a shift in metabolic fingerprints, indicating
scouring of the benthic zone. The site on the Pecos River upstream of Santa Rosa Lake
featured reductions in GPP and increases in ER associated with the propagation of
wildfire disturbances, while water quality parameters and stream metabolism at the site
downstream of the lake remained largely unchanged. Interestingly, the marked and
decoupled differences between the sites upstream and downstream of Santa Rosa Lake
suggest that the lake was able to buffer wildfire disturbances over the ten months post-

fire included in this study.
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This work addresses critical recommendations for incorporating wildfires into the
spatiotemporal analysis of water impairment along fluvial networks(Ball et al., 2021). We
increased focus on longitudinal behaviors by capturing the propagation of wildfire
disturbances over 190 km and incorporated high-frequency data to the monitoring of
multiple water quality parameters and fluxes sub-hourly, at multiple sites, from ‘first-
flush’ events to multiple months after the fire was extinguished. This rapid-response and
comprehensive research was possible due to the funding investment for preparation and
readiness made available by the National Science Foundation before the historic 2022 fire

season began.
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Supplemental Information:

Figure S3.1: The burn severity within Gallinas Creek's watershed. Gallinas Creek

and Beaver Creek, a perennial tributary to Gallinas Creek, are both highlighted in
blue.
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Figure S3.2) Sonde time series of QA/QC data from monitoring sites.
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C) GLs6 km monitoring site
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E) PSR170 km monitoring site during 2021
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G) PBS190 km monitoring site during 2021
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Figure S3.3) Exceedance probability plots at the four USGS stream gages collocated
to monitoring sites. The highest four daily discharge events during the study period
are annotated.

A) GMZs9im B) GLsskm
USGS Stream Gage 08380500 USGS Stream Gage 08382000
164021 @ :
2022-09-10 '
2022-07-29 teso2 | |
[ ]
]
Month 2022-07-30 Month
2022-07-10
Te+01 1 © o 2022-08-04 oo
o 02 2022-07-27 o 02
* 03 e 03
‘@ @
£ o 04 £ o 04
S, S,
® e 05 © 16+00 o 05
< <
£ 1e400 - ° 0% 3 o 06
8 o 07 2 o 07
a fa}
> ° 08 > o 08
8 o 09 8 o 09
3 s 10 3 o 10
= =
o 11 o 11
1e-01 . 12 o 12
1e-02 q
L]
L]
1e-02 4
0 25 50 75 100 0 25 50 75 100
Exceedance Proballity Exceedance Proballity
C) PSRi70km D) PBSi90km
USGS Stream Gage 08382650 USGS Stream Gage 08382830
1e+02
L]
2022-08-11
2022-06-24
1e+02 4
Month Month
o 01 e 0o
2 e 02
1e+01 1 e 0 16400 4
e 03 _ ° 03
@ (%)
£ ° 04 £ ° 04
S S,
= 05
% e 05 :193’ .
S 1e+00 A ° 06 % o 06
8 o 07 k] 2022-06-13 e 07
a a 2022-06-02
2 . 08 > o 08
8 ° 09 8 o 09
x
3 1e-01 e 10 Sie-02 1 °
= o 11 o 1
o 12 e 12
S
1e-02 A -
s -
° ey
0 25 50 75 100 0 25 50 75 100

Exceedance Proballity Exceedance Proballity

82



Figure S3.4) Field Photos Taken During Site Maintenance

A) Gabions constructed in the Gallinas River downstream of GMZ29 km. Photo taken:
June 29t 2022

B) Backwatering occurring at gabions with sediment, organics, and woody debris
depositing in the surrounding pools. Gallinas River downstream of GMZ39 «m. Photo
taken: July 20", 2022
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C) Scouring observed in one of the ephemeral tributaries connecting to the Gallinas
River upstream of GMZ29 km. Photo taken: July 111, 2022
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E) Dead aquatic vertebrates observed on the banks of GFT2; km. Photo taken: July 11,
2022

F) Visible turbid water during the Monsoon period at GMZ39 «m. Photo Taken: July
11, 2022
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G) Visible turbid water during the Monsoon period at GLs6 km. Photo Taken: July 11%,
2022
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Figure S3.5) Metabolic Fingerprints for PSR170 km and PBS199 km during 2021.

A) Pecos River Upstream of Santa B) Pecos River Downstream of C) Conceptual figure of metabolic
Rosa Lake Santa Rosa Lake regime forcing variables.
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Figure S3.6) PCA biplots for PSR170 km and PBS199 km during 2021 study period.
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Figure S3.7) Diel spectrograms (top) and diel peak values (bottom) heatmap at each
monitoring site. Grey coloring indicates periods of missing data due to sonde
damage, burial, or firmware issues. A) GFT22 km, Gallinas Creek near La Placita fire
station, 22 km downstream from the headwaters of Gallinas Creek, B) GMZ.29 km,
Gallinas Creek near Montezuma, C) GLs6 km, Gallinas Creek near Lourdes, D)

PSR 170 km, Pecos River upstream of Santa Rosa Lake, E) PBS19 km, Pecos River
downstream of Santa Rosa Lake. F) Conceptual figure generated from GFT data
illustrating how spectrograms and peak time of day plots can be utilized to
understand changes to diel cycling magnitude and timing.
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Table S3.1) Parameters, corresponding sensors, and sampling frequencies available
during the study.

.. Sampling
Source| Parameter Abb:)'leatl Units Sites frequency
(min)
) ) GMZ29 km, GLs6
3 o1 ) m,
Discharge | Discharge m’s PSR 170 km. PBS 100 kon 15
USGS GFT22 km, GMZ29 km,
Stage Stage m GL56 km, PSR170 km, 15
PBS190 km
. GFTZZ km, GMZZ‘) km,
D;iSOI;:cld DO ppm GLs6 km, PSR170 km, 15
ve PBS190 km
Specific GFT22 km, GMZ29 «m,
- SpCond | uScm’! GLs6 km, PSR170 km 15
ductivit > i
conductivity PBS 190 (1
GFT22 km, GMZ29 «m,
temW:;qure }P:;Ler C GLs36 ks PSR 170 am, 15
YSI P P PBS190 km
EXO2 GFT22 km, GMZ29 km,
Turbidity Turbidity FNU GL56 km, PSR170 km, 15
PBS190 km
GFT22 km, GMZ29 «m,
pH pH - GL56 km, PSR170 km, 15
PBS190 km
Fluorescent
dissolved | fDOM RFU GFT22kam, GMZ29 i, 15
i GLs6km
organic matter
Barometric Baro Press mmHg KLVS 10
pressure
MesoW .. 5 1 ILVPNS5, TR931, NMCO06,
ost Solar radiation PAR pmol m™=s NMCO8 10
C. . LVPN5, TR931 NMCO08,
Precipitation Precip mm NMC06 10
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Table S3.2) Temporal period average values by monitoring site. Pre-M, M, and

post-M indicate pre-monsoon, monsoon, and post-monsoon.

Wa
. | Sp Turbi ER
. Seas Disch | Sta | DO | ter OM | Cond | P dity GPP (02
Site arge | ge | (mg | Te H g0/ 2
on 3 (QS | (uS/c (FNU N /m*d
(m°/s) | (m) | /L) | mp i m-d)
) | m ) )
©
Pre- 8.
GFT, | M | NA 105 53l iso 217 2128 0 59 | 48 | 95
2km 8
Mo NA 070 50 115313201784 | 0 | 1490 | 06 | 66
Pre- 8.
M| 92 |02 5e 1173328 27293 | 627 | 34 | 43
GMZ 8.
o | M| 20 1040 ey 1619581718 | 0| 1822 | 02 | o1
Post 8.
M| %7 103099 | 80 58021042255 | 03 | 01
Pre- 1332. | 8.
M| 005 1020 01890387 9 | 7] 238 | 49 | 76
GLsek 8.
o | M3 03 16 807 4400 | 2 | 2688 | 13 | 44
Post 8.
M| %1920 96 1105]792 9924 5] 850 | 19 | 18
Pre-
M NA | 1966. | 8.
21 | 009 | 01| 67 |203 9o |4 538 | 06 | 22
M A 8.
21 | 34 |02 61 |237 5013 | 0 | 660.6 | 04 | 3.1
Post
PSR, | -M NA | 1847. | 8.
o | 21 1 006 | 01] 85 [ 131 1 2] 67 | 04 | 15
Pre- 1790. | 8.
M| 003 0L g [ NAL o 285 | 06 | 31
3.
Mo 79 1040 cs 1038 | N2 (o180 0| 5741 | 02 | 55
Post 7.
M| 192 00 144 N2 5366 | 8| 484 | 01 | 1.0
Pre-
M 0.0 NA | 2624. | 7.
21 | 001 | 8 | 69 |205 0 |9 40 | 04 | 09
PBS; | M 0.0 A | 24277
oon | 21 10.0007] 2 | 62 [23.1 9o |9 255 | 04 | 06
Post
M 0.0 NA | 2630. | 7.
21 [00008| 3 | 77 | 147 2> 16| 126 | 01 | 03
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Table S3.2) Temporal period average values by monitoring site. Pre-M, M, and
post-M indicate pre-monsoon, monsoon, and post-monsoon.

Wa
. fD | Sp Turbi ER
. Seas Disch | Sta | DO | ter OM | Cond | P dity GPP (02
Site arge | ge | (mg | Te H g0/ 2
on 3 (QS | (uS/c (FNU N /m*d
(m°/s) | (m) | /L) | mp m-d)
ol v | m ) )
(9]
Pre- 2088. | 7.
M 2.8 0.2 6.3 | 213 NA 7 9| 263 0.8 42
2086. | 7.
Mopss 1020 61 138 NA s 1o 163 | 08 | 28
Post 0.0 2572. | 8.
M 000035 g Tiso [ NA L s o] 02 | 03 | 06

Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-

monsoon, monsoon, and post-monsoon.
Disc Wate | fDO Sp Tur
Seas harg | Sta | DO r M | Cond bidit gl())l: (;:ORZ
Site on e ge | (mg/ | Tem | (QSU | (uS/c |[pH| vy /m2d | /md
(m* | (m) | L) p ) m) (FN ) )
s) © U)
Pre-
M | NA
min 04 | 39 7.7 164 | 1809 | 7.7 ] 0.01 | 0.1 2.1
Pre-
F
max 0.5 ] 9.6 | 209 127 1369.7 | 85| 871 | 7.7 | 173
" M
min NA 0.5 ] 55 9.6 22 | 133376 6.0 | 0.1 0.2
M NA
max 1.6 | 92 | 225 163 | 298.6 | 822350 | 93 | 215
Pre-
M
min | 0.02 | 0.1 | 6.1 8.4 83 |188.2 8.0 0.01 | 0.1 0.1
Pre-
M
max | 3.5 | 05 ] 9.6 | 264 | 200 | 669.5 |8.7 1100 | 7.8 7.6
GM | M
Zyk | min | 04 | 03 | 64 3.0 1.9 824 |73 ] 32 | 0.1 0.0
m M
max | 51.1 | 1.2 | 11.0 | 24.5 | 420 | 306.5 | 8.5 4920 | 4.8 1.5
Post-
M
min | 0.04 | 0.1 | 7.6 -0.1 2.2 69.7 |79] 0.8 | 0.04 | 0.1
Post-
M 4.0 | 05 ] 123 ] 19.0 166 | 267.1 | 8.6 7250 | 09 | 0.2
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Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-

monsoon, monsoon, and

pOSt-monsoon.

Site

Seas
on

Disc
harg
e
(m3/

s)

Sta
ge
(m)

DO
(mg/
L)

Wate
r
Tem
P
©

fDO
M
(QSU
)

Sp
Cond
(uS/c

m)

pH

Tur
bidit
Yy
(FN
U)

GPP

(g0

/m2d
)

ER
(g0
/m2d

)

max

GLs

6km

Pre-

min

0.01

0.1

1.9

9.5

5.5

1121

6.5

5.8

1.9

4.6

Pre-

max

0.2

0.2

10.9

30.8

63.0

1483

72.6

6.8

11.3

min

0.1

0.2

2.7

13.2

2.1

222.1

7.6

16.9

0.01

0.4

max

18.2

0.6

13.7

28.8

171.5

876.5

9.1

2583

8.7

8.7

Post-

min

0.01

0.1

5.5

14.7

332.7

7.9

2.7

0.1

0.6

Post-

max

3.5

0.4

14.5

254

152.5

1537

9.1

3678

5.8

6.1

PS
Ri70
km

Pre-

21
Min

0.0

0.1

2.2

94

NA

291.4

7.9

0.0

0.0

0.5

Pre-

21
Max

3.8

0.3

94

34.6

NA

2301

8.7

3602

2.1

4.8

M2

Min

0.0

0.1

0.1

3.3

NA

80.1

7.0

0.0

0.0

0.3

M2

Max

101.

2.0

10.7

32.4

NA

2116

8.7

4264

5.1

10.1

Post-

Min
21

0.0

0.1

6.5

2.2

NA

1265

8.1

0.0

0.2

0.7

Post-

Max
21

0.1

0.1

114

29.0

NA

2095

8.5

171

0.7

24
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Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-

monsoon, monsoon, and

pOSt-monsoon.

Site

Seas
on

Disc
harg
e
(m3/

s)

Sta
ge
(m)

DO
(mg/
L)

Wate
r
Tem
P
©

fDO
M
(QSU
)

Sp
Cond
(uS/c

m)

pH

Tur
bidit
Yy
(FN
U)

GPP

(g0

/m2d
)

ER
(g0
/m2d

)

Pre-

min

0.01

0.1

4.0

8.2

NA

323.2

7.5

3.2

0.1

0.4

Pre-

max

0.5

0.1

9.7

28.6

NA

2246

8.3

231.

1.3

7.6

min

0.02

0.1

3.5

18.8

NA

81.9

7.5

106.

0.02

0.2

max

66.6

1.9

7.5

31.0

NA

592.7

8.2

3465

0.8

12.2

Post-

min

0.1

0.1

5.7

0.01

NA

119.8

7.1

0.01

0.03

-1.0

Post-

max

16.6

0.8

12.0

26.5

NA

1327

8.3

972.

1.5

3.5

PB

S190
km

Pre-

21
Min

0.00

0.1

4.7

14.4

NA

2479

7.7

0.0

-1.2

0.4

Pre-

21
Max

0.02

0.1

9.9

26.8

NA

2667

8.1

24.9

1.1

1.4

M2

Min

0.0

4.4

18.0

NA

687.8

7.2

3.7

0.0

0.2

M2

Max

0.04

0.1

8.8

28.4

NA

2670

8.5

3225

1.4

2.0

Post-

21
Min

5.6

8.4

NA

2352

7.4

2.6

0.1

0.1

Post-

21
Max

0.00

0.0

9.9

23.0

NA

2676

7.8

90.7

0.2

0.5
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Table S3.3) Range values by monitoring site. Pre-M, M, and Post-M indicate pre-

monsoon, monsoon, and post-monsoon.

Disc Wate | fDO Sp Tur

Seas harg | Sta | DO r M | Cond bidit gl())l: (EORZ

Site on e ge | (mg/ | Tem | (QSU | (uS/c |[pH| Yy /m2d | /m2d

(m* | (m) | L) p ) m) (FN ) )
s) © U)

Pre-

M NA

min | 0.01 | 0.1 | 49 17.5 610.6 | 7.7 | 1.8 02 | 03

Pre-

M NA 448.

max | 385 | 1.2 | 85 | 257 2659 | 8.3 2 1.8 | 16.2

M 0.0 NA

min | 0.00 | 3 3.6 | 20.2 624.7 | 7.7 0.01 | 0.3 0.9

M NA 348.

max | 433 | 1.2 | 7.9 | 282 2597 | 8.3 8 2.0 | 14.6

Post-

M NA

min 0 0 5.5 7.6 2467 | 7.8 1 0.01 [ 0.05 | 0.1

Post-

M | 0.00 | 0.0 NA

max 1 4 | 10.0 | 24.1 2612 |83 ] 94 | 0.8 1.9

Table S3.4) Days of missing data due to sonde damage, burial, or firmware issue.
Pre-M, M, and post-M indicate pre-monsoon, monsoon, and post-monsoon.

94

Site GFT2xm GMZ29xm GLs6km
Season Pre-M | M | Post-M | Pre-M | M | Post-M | Pre-M | M | Post-M
Days Missing 0 0 NA 15 8 0 6 15 0
Days of Data 48 66| NA 48 |70 78 52 | 64 58
Site PSR170km PSR170km PBS190km
Year 2021 2022 2021

Season Pre-M | M | Post-M | Pre-M | M | Post-M | Pre-M | M | Post-M
Days Missing 011 14 27125 47 0] 0 0
Days of Data 59 | 69 62 29 | 54 32 59| 80 76
Site PBS190km

Year 2022

Season Pre-M | M | Post-M

Days Missing 31148 3

Days of Data 11131 64
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4.1 Introduction

Anthropogenically sourced nutrients remain a significant water quality concern in
fluvial systems across the globe, with excess levels leading to eutrophication, harmful
algae blooms (HABs), health concerns from discrete and long-term exposure, and
impaired ecosystem services (Lintern et al., 2020; Mulholland et al., 2008; Smith et al.,
2006). A 2010 study conducted by the U.S. Geological Survey estimated that excess
nutrients impaired 90% of the 190 shallow aquifers that connect to fluvial systems
(Burow et al., 2010). With the increasing evidence of nutrient pollution in fluvial
systems, there has been a surge in research on fluvial nutrient processing and transport
(Ensign & Doyle, 2006; Heathwaite, 2010; Pellerin et al., 2016). One of the primary
nutrient species of concern and focus is nitrate due to its use as a fertilizer in industrial
agriculture, leading to impairment with nitrogen-related eutrophication estimated to cost
the U.S. 45-165 billion dollars a year in environmental service degradation and
contamination of surface drinking water (Sobota et al., 2015).

While there has been extensive research on understanding spatial and temporal
drivers of nitrate transport and uptake within fluvial systems, there have been limited
studies on the use of high-frequency water quality and atmospheric parameters as
surrogates to estimate transport processes. Researching possible high-frequency
surrogates is vital because the current methodology of measuring nitrate transport
processes is logistically and finically burdensome (Covino et al., 2010; Ensign & Doyle,
2006; Newbold et al., 1981). The burden in performing such research comes from
requiring multiple trained personnel to add known masses of a conservative tracer and

nitrate to a study stream reach and collect multiple grab samples downstream to have
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their conservative and nitrate concentrations measured in a lab (Workshop, 1990). Not
only does performing such an experiment have a high logistical and financial cost (Figure
S4.1), but it will only provide insight into a single moment in time and will not be
informative of seasonal trends or hot moments of elevated nitrate uptake (Kirchner et al.,
2004; Zhao et al., 2021). By estimating nitrate uptake through the use of high-frequency
surrogates one can increase the temporal and spatial resolution of nitrate uptake and
further help scientists understand primary mechanisms of uptake and inform
policymakers of best practices to reduce nitrate contamination within surface waters
(Lintern et al., 2020; Neal et al., 2008; Rode et al., 2016).

To the best of our knowledge, there has not been a study that tries to utilize high-
frequency parameters as predictors to nitrate uptake rate. However, there have been
studies that utilize traditional regression techniques, such as multivariate linear
regression, to estimate solute concentrations with high-frequency parameters (Miller et
al., 2007; Morel et al., 2020). One of the major limitations of such an approach is that it
requires feature engineering of the high-frequency parameters to match the temporal
resolution of the measured uptake rates to be able to perform one-to-one regression
(Maulud & Abdulazeez, 2020; Raghavendra & Deka, 2014). Feature engineering often
results in the aggregation, and thus the oversimplification, of the high-frequency datasets
which often reduces temporal variances and cyclical patterns, or it requires extensive
domain knowledge of the study reach to identify key predictive features, which due to
watershed spatial heterogeneity and non-stationarity, often results in a site-specific model
that requires routine adjustment (Bloschl & Sivapalan, 1995; McDonnell et al., 2007;

Zheng & Casari, 2018). To move past extensive feature engineering and leverage the
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temporal complexity inherent with high-frequency parameters, we propose using
recurrent neural network (RNN) with high-frequency parameters to be used as model
predictors in sequence-to-one regression to estimate nitrate uptake rate (Gao et al., 2020;

Shen, 2018; Xu & Liang, 2021) (Figure 4.1).
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Figure 4.1: Conceptual diagram of one-to-one regression workflow vs sequence-to-one
regression with varying model architectures of varying model variance. Traditional
machine learning algorithms (MLA) rely on one-to-one regression, while recurrent neural
networks (RNN) can perform sequence-to-one regression using high-frequency data as
predictors. SVR stands for a support vector machine and GRU is a gated recurrent unit.
All algorithms are performing regression analysis on continuous data.

This study aims to compare tradition regression techniques that require timeseries
aggregation to perform one-to-one regression with recurrent neural network that is

capable of sequence-to-one regression to estimate nitrate uptake rate within two study
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reaches of contrasting geomorphology, terrestrial ecosystems, and land use. The research
questions of this study are:

1. Will recurrent neural networks be able to leverage high-frequency data to improve uptake
rate estimates compared to traditional one-to-one regression architectures?
2. Does increasing the number of high-frequency sensors, thus increasing the number of

predictors but increasing the associated data cost, improve model accuracy?

4.2 Methods

4.2.1 Site Description

Both research sites were located within the snowmelt dominated Jemez Mountain
watershed, which is located in north-central New Mexico. The most upstream research
site was in the third order reach of the East Fork Jemez River (referred to as EFJR site
from here on), within the Valles Caldera Hidden Valley Elk Enclosure (35.8409N, -
106.5013W), and is located approximately 8 km downstream of its headwaters (Figure
4.2). The EFJR site has an average annual discharge of 100 L/s and is a low gradient,
meandering and open canopy stream as it has an average channel slope of 0.57%, and
non-woody riparian vegetation (Sherson et al., 2015; Summers et al., 2020; Van Horn et
al., 2012). The catchment area to this site is 107 km?, which spans an elevation change of

2,580 m to 3,432 m (Stroud Water Research Center, 2021).
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Figure 4.2: Map of the two study sites located in North Central New Mexico. Both sites
had water quality sondes deployed within the stream channel and were collocated near
MesoWest climate stations. Over a two-year period nutrient addition experiments were
performed at three week interval at both sites to quantify nitrate uptake rates.

The downstream research site was in the Jemez River (referred to as JR site from
here on), downstream of the confluence of the EFJR and the San Antonio stream
increasing to a 4™ order steam (Figure 4.2). The Jemez River's (JR) average annual
discharge is 1400 L/s (2004-2015, USGS gage #08324000), with the study site being a
high-gradient canyon stream reach with an average channel slope of 3.25% and woody
riparian vegetation. Along this reach, there are significant geothermal inputs that
contribute to high specific conductivity (Dyer, 2007; Golla, 2019). The catchment area to
our study site is 473 km?, spanning an elevation of 1,903m to 3,432 m (Stroud Water
Research Center, 2021). Note that this area encompasses the upstream site as they are a

part of the same fluvial system.
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4.2.2 Semi-Continuous Sensor Deployment and Maintenance

Both EFJR and JR sites were equipped with YSI EXO 2 multiparameter water
quality sondes (Yellow Springs Instruments, n.d.). Both EXOs measured water
temperature, specific conductivity, dissolved oxygen (DO), fluorescence dissolved
organic matter (fDOM), turbidity, and pH at 15-minute intervals. HOBO water level
loggers were also deployed at each site to measure water depth fluctuations at 15-min
intervals. All sensors were cleaned and recalibrated every three weeks per USGS
guidelines (Jones et al., 2017; Wagner et al., 2006). Both sites were equipped with solar
panels, batteries, and CR1000 dataloggers (Campbell Scientific, n.d.) to power the semi-
continuous sensors and for data storage. Co-located at both sites were MesoWest climate
stations that measured ambient air temperature, barometric pressure, wind velocity, total

solar radiation, and cumulative precipitation at 10-minute intervals (Table 4.1).

Table 4.1: Sensors and parameters being measured at both sites that can be used as
predictors to nitrate uptake rate.

Sensor Sampling Sensor/
Parameter Units Abbreviation F reqlfency Database
(min)

Discharge cms — 15 USGS NWIS
Dissolved oxygen ppm DO 15
Sp e01ﬁc. . uS/cm Sp Cond 15
conductivity %
Water temperature C Water Temp 15 54
pH --- 15
fDOM ppm — 15
Air temperature C Air Temp 10 and 14.5
Barometric mmHg Baro Pres 10 and 14.5 o

ressure é)
'Wind Velocity m/s Wind Vel 10 and 14.5 o

(]

Totgl §01ar W/m? Solar Rad 10 and 14.5 s
radiation
Relative Humidity | mm Rel Hum 10 and 14.5
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Approximately 1km downstream of the EFJR site, a stage sensor owned by the
U.S Forest Service was used in conjunction with a rating curve to derive semi-continuous
discharge measurements. The Forest Service stage measurements expanded from October
23,2017 to October 19, 2018. After October 19", 2018, a HOBO U20 pressure
datalogger was deployed at the EFJR sonde site and used to quantify discharge by the
development of a site-specific rating curve between average stage and discharge
measurements made with a Sontek FlowTracker (Equation S2a). At the JR site, semi-
continuous discharge measurements were recorded by USGS stream gage Jemez River
Near Jemez Springs (USGS gage #08324000), which is located downstream of the Jemez
River and Guadalupe Rivers confluence, approximately 15.8 km downstream of the JR
sonde site. To account for discharge inputs from the Guadalupe River, a measured

discharge vs a time lagged USGS discharge relationship was developed (Equation S2b).

4.2.3 Quality Assurance and Control of Sensor Data

Data collected from the sondes were imported into Aquarius TimeSeries
21.2.160.0 for data storage and to perform QA/QC procedures on the raw data (Aquatic
Informatics, n.d.). Once in Aquarius, we used a spike filter to flag and remove values that
were 20% greater than the mean of an hourly moving window. The data were then
checked for sensor drift and biofouling by comparing pre to post clean and calibration
records to quantify sudden changes within the data records during periods of cleaning and
calibration of sensors. If these issues were noted within the dataset, a linear drift
correction would be applied from the previous field day to the time of the current field

day. After outliers were removed and drift corrections were made, a visual inspection was
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performed to ensure that useful data were not accidentally identified as outliers and to

ensure accurate corrections for sensor drift.

4.2.4 Nutrient Addition Experiments

Nitrate injections were performed to calculate nitrate uptake rates at a three-to-
four-week interval. In the field, discharge was measured before each injection using a
SonTek FlowTracker, and the recorded discharge, stream width, and average water
velocity were entered into the Tracer Injection Planning Tool solute transport toolbox to
estimate the mass of conservative (NaBr) and reactive tracers needed (NaNQO3), and the
minimum distance between the injection site and the upstream sampling location required
to achieve lateral and vertical mixing (Gonzélez-Pinzon et al., 2022). The solute transport
toolbox combines the advection dispersion equation with empirical relationships derived
from an extensive USGS metanalysis (Jobson, 1997), within Microsoft Excel, to plan

tracer injections to include nutrient addition experiments.

Once the mixing length and tracer masses were known, the salts were mixed with
stream water collected on-site and then an instantaneous tracer addition was performed
following standard guidelines (Leibundgut et al., 2009). With all tracer addition
experiments, the sampling location site was always co-located with our sensor site; for
this, we moved the injection site as a function of mixing length requirements. Grab
samples were collected by rinsing a 20 ml plastic syringe three times with stream water
before each grab sample was taken. The collected water was immediately filtered using a

0.45 pm nylon filter, then immediately stored in ice coolers and transferred to lab
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refrigerator to prevent degradation. One to three days after grabs sampled were collected,
the samples were analyzed for tracer anion concentrations using a Dionex ICS-1000 Ion

Chromatographer, utilizing a AS23/AG23 analytical column combination.

4.2.5 Solute Transport Model

We used a one-dimensional, in-stream, reach-scale model to describe the transport
and reactivity of the tracer compounds injected (Knapp et al., 2017; Runkel, 1998). This
model simulates exchange with a transient storage zone using uniform and time-invariant
coefficients. The model applied here is similar to the one made available as a MATLAB
script in Knapp & Cirpka (2018). It considers the transient storage zone as a single, well-
mixed zone that undergoes linear exchange (generating an exponential transit time) with

the main channel, and accounts for the compound specific behavior of NO5.

The coupled governing equations for the conservative tracer (i=0), and reactive tracer

(i=1), are:

aCi AS aCtS,i aci aZCi AS

— — — —_ — . 1 b

gt VAo T Vax Paee T A D
ac;

al;:ts = k(c; — Cesi) + Tesi (2),

subject to the following initial and boundary conditions of an instantaneous tracer

injection:
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c;(x,t =0) = c¢5;(x,t =0) =0 Vx (3),
dc; M;
(vei = D5 ) lemo = — 8(0) ),
lim c;(x,t) =0Vt (%),
X—00

where ¢; [mol m~3] denotes the solute concentration in the main channel;
Ces.i [mol m™3] represents the solute concentration in the transient storage zone; the in-

stream advective velocity is given by v [m s~1]; D [m? s™1] represents the dispersion
. A . .
coefficient; 75 [—] represents the ratio of the cross-sectional area of the storage zone

Ag [m?] to that of the stream A [m?]; the reaction rate is given by 1;5; [mol m™3s71] the
first-order mass-transfer rate coefficient for exchange with the storage zone is given by
k [s~1]; and M; [mol] represents the injected tracer mass. Nutrient uptake was assumed
to follow first-order kinetics (Gonzélez-Pinzon and Haggerty, 2013), resulting in the

following reactions rates:

Thz1 = —MCesa (6),

where A, [s™1] is the total nitrate uptake rate coefficient.

Lastly, due to total nitrate uptake rates often having small values, often less than
1.0 10™>, and non-normal distributions, the uptake rates were logged transformed prior
to model training (Figure S4.3). After the model has made its predicted log uptake rate,
its predictions are transformed back to a non-log scale and compared to the non-

transformed observed uptake rate.
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4.2.6 Outlier Removal

Outliers within nitrate uptake rates were identified as values having more than 1.5
interquartile ranges above the upper or below the lower quartiles (Blazquez-Garcia et al.,
2020). Data points flagged as possible outliers went through a visual inspection to
identify if their BTCs were either poor fitting or irregular thus being verifying them as a
true outlier. Out of the 40 nutrient addition experiments performed, six were identified
and removed as outliers. If a nitrate uptake rate is verified to be a true outlier, then it and
its associated high-frequency predictor sequence was removed from the dataset prior to

model training.

4.2.7 High-Frequency Parameter Templates

Multiparameter predictors were selected to create multiple predictor templates
that increased in dimensionality and associated logistical costs or data limitations of
specific template (Table S4.4). These templates are then used as model predictors when
estimates nitrate uptake rates. Atmospheric parameters were grouped into a single
template (referred to as Atmos) due to large spatial extent in which meteorological
stations cover the United States (MesoWest, 2022). Atmospheric parameters with
discharge were combined into a single template (referred to as AtmosDis) due to
discharge being the most ubiquitous surface water property measured in USGS stream
gage network (U.S. Geological Survey, 2022). Water quality parameters were allocated
into a separate template with discharge (referred to as Water), since water quality sondes

measuring all five water quality parameters have a lower spatial resolution than that of
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meteorological stations and are collocated with stream gages. Lastly, all available
parameters were used combined to generate a template to maximize predictor
dimensionality (referred to as AtmosWater). For non-recurrent neural networks
algorithms that require one-to-one regression, a single feature was extracted per a
predictor by averaging the high-frequency data to the day in which a nitrate addition was
performed. For the recurrent neural networks that can perform sequence-to-one
regression, 15-minute data for each predictor from 00:00 to 24:00 in which a nitrate
addition was performed was used as sequence predictors. By utilizing a 24-hour
sequences the predictors can leverage temporal dynamics such as diel cycling and rates of

change that is filtered when taken a daily average value (Figure 4.1).

4.2.8 Machine Learning Regression Analysis

To test whether recurrent neural networks can leverage high-frequency data to
increase model accuracy on estimating nitrate uptake, three non-neural network
regression algorithms, linear regression, decision tree, and support vector regression
(SVR), that require feature engineering were tested against a Gated Recurrent Unit
(GRU) which is a recurrent neural networks that can perform sequence-to-one regression.
Linear regression, decision tree, and SVR models were developed using Matlab’s
Statistics and Machine Learning Toolbox, while GRU model was developed using
Matlab’s Deep Learning Toolbox (Mathworks Inc, n.d.). Below is a brief description and

mathematical functions of each algorithm tested.
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Linear Regression: The algorithm with the highest model bias tested was linear
regression, which aims to minimize the mean square error (MSE) between observed
values and a hypothesized linear trend. Gradient decent is used to minimize the MSE by
iterating the partial derivative of the MSE at a predefined learning rate until it converges
to a minimum value (Equations 7-9). The benefit of linear regression models is that their
hypothesized function is highly interpretable, and they are computationally inexpensive,
but they prone to have high bias when fitting non-linear data sets (Maulud & Abdulazeez,
2020). Prior to cross-validation, linear regression model assumptions of
homoskedasticity, normally distributed residuals, and collinearity were checked. Out of
the model assumptions, only collinearity was violated so parameters with high

collinearity were removed per a parameter template (Table S4.5).

y=0+0;x; ++0,x, (7),
0
Hn = en —ax a@n](e) (8),
1w,
@ =5 (v - )’ ©)
i=1

where y is the model estimate, 6,, are the model fitted parameters, x,, are the training
examples, « is a learning rate constant, J(6) is the MSE cost function, and m is the

number of observations.

Decision tree: For an intermediate model bias a decision tree algorithm was
tested, decision regression trees which aim to divide the training data into smaller
subsets, known as leaf nodes, by model-defined conditions within the predictor variables.

The model uses iterative variance reduction to define the conditions to use to split the
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data (Equation 10-12). After the training data has been subdivided into leaf nodes, the
target data in each leaf node is averaged to derive an output estimate for each node. The
model makes estimates from the cross-validation data by subdividing the test data by the
same model-defined conditions, and estimates are made based on which leaf node in
which all conditions are met (Equation 16). Regression trees have high to medium
interpretability and low computational expense, but they have low performance on linear
relationships and are prone to converge on local optima, producing instability in model

predictions.

m
1 N
Var, = EZ(yl ~5) (10),
i=1
2 ml
VR = min (Var, — Z "L yari,) (11)
- mTL ’
i=1
m
y = Z CiI{x! € RY} (12),
i=1

where y is the model estimate, C; is the average of the training examples that fall into
subdivision R;, I{x' € R} is a binary identity function of R; that equals 1 if training
example x; falls within subdivision R; or a 0 if it fall into another subdivision, and m is

number of training examples.

Support vector regression (SVR): The model with the lowest bias and highest
variance of the non-neural network machine learning algorithms tested was a gaussian
support vector machine (gSVM), which utilize large margin regression that aims to

equally increase the positive and negative boundaries between the hypothesized gaussian
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kernels and the observed data (Equations 13-15). The benefit of using gSVMs is that that
they can fit non-linear data with a limited number of observations, while trying to
minimize overfitting and are computationally less expensive compared to neural
networks, but are less interpretable than linear regression and decision trees
(Raghavendra. N & Deka, 2014). Prior to SVR training, parameter’s scales were
standardized by centering the mean of a parameter at zero and scaling by its standard

deviation.

y =) (@~ )G k) +b 13).
i=1
Al
G(xi ki) = exp (- —5——) (14),
D @-a)=0 (15),

i=1
where y is the model estimate, @; and «; are Lagrange multipliers, G (x;, k;) is a kernel

density function, k; is the kernel centroid, o is a kernel scaling constant, and b is a model

base term.

Gated recurrent unit (GRU): Recurrent neural networks have been proven to be
effective at making estimates from sequential data minimizing the need for extensive
feature engineering (Fan et al., 2020; Gao et al., 2020; Gharehbaghi et al., 2022).
However, they are often suspectable to vanishing or exploding gradients when training
from high dimensionality long sequential data, ultimately limiting their capability to learn
(Shen, 2018). To avoid this problem, memory based recurrent neural networks such as

gated recurrent unit (GRU) have been developed and widely used for time series
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regression. A GRU utilizes on an update gate and reset gate, which allows them to
discard noise from pervious observations within the training sequences while retaining
important features that can be leveraged to make predictions (Chung et al., 2014). GRUs
have been shown to outperform other machine learning algorithms when performing
sequential regression, but can be prone to overfitting and slow convergence, and can
produce differing estimates from the same training data due to stochastic gradient descent
(Fan et al., 2020; Xu & Liang, 2021). Prior to GRU training, parameter’s scales were
standardized by centering the mean of a parameter at zero and scaling by its standard

deviation. The governing equations for a GRU architecture are:

re = oW, - [he—1, %] (16),

ze = (W, " [he-1, %] (17),

h, = tanh(W, - [y * he_q, %] (18),
he=(1—2z)%he_q +2 %h (19),
Ve =W, - he) (20),

where 17 is the reset gate at time of't, z,is the update gate at time of't, x; is the cell input,
h; and h;_; is the cell output for time t and the cell output from the previous timestep,
respectively, o is the sigmoid activation function, W is the cell weights at each respective

gate, y, is cell estimate at time t.

4.2.9 Hyperparameter Optimization

To optimize model performance, both SVR and GRU hyperparameters were

tuned using a grid search through a range of expected hyperparameter values on a subset
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of data truncated from the global data (Yang & Shami, 2020). Due to the large
computation cost of grid searching, with thousands of separate model iterations of
varying hyperparameter values, UNM’s Center for Advanced Research Computing
supercomputer Wheeler was used during grid search optimization. Due to a limited
number of dependent observations, the subset of data used for hyperparameter
optimization was determined by randomly selecting 20% of the data ensuring that the
subset’s dependent variable was representative of the global dependent distribution by
comparing standard deviations and means of the two datasets. After optimal
hyperparameters were determined (Table S4.6), the subset of data was reintroduced to the

global dataset for model testing.

4.2.10 Cross-Validation Technique

Leave-one-out cross validation (LOOCYV) was utilized to test the performance of
each model due to the limited number of measured dependent variable observations
mitigating high-computational costs. LOOCYV truncates the maximum amount of data to
train the model by removing a single dependent observation and its respective high-
frequency sequence predictors to be used for testing. After the model has been trained on
the training data, the trained model then is given the high-frequency predictors from the
test dataset to make a nitrate uptake estimate. Afterwards, the test dataset in
reinterrogated into the training dataset and the model is retrained and tested on a new set

of data until each dependent observation, and its respective predictor sequences, is used
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as the test dataset. Thus, allowing for the model to be trained and tested across the entire

global dataset while mitigating data leakage in model testing (Roberts et al., 2017).

Mean absolute error (MAE) and coefficient of determination (R?) will be
calculated from cumulative LOOCV observed vs model estimated nitrate uptake rates to
compare model performance. The advantage of MAE is that it calculates an average
magnitude of model error that is in the same units as the dependent variable the model is
trying to predict and is more robust to outliers than RMSE (Willmott & Matsuura, 2005).
R? normalizes model error with 1 being a model with perfect predictive accuracy, and R?
<0, indicates a model’s performance worse than using an average uptake rate calculated
from the global dataset (Dangeti, 2017). Lastly, past studies have shown order of
magnitude difference in nitrate uptake rates when comparing across multiple sites of vary
spatial heterogeneity(Ensign & Doyle, 2006; Mulholland et al., 2008); therefore, to test
the model’s accuracy across both sites, the percentage of model estimates less than 0.5
and 0.25 an order of magnitude difference from the observed uptake rates will be

quantified as another metric of performance.

MAE = =y — vil (21),
n
RZ=1— (Vi — y)? (22),
(i —3)?

where §; [s 1] is the model estimated nitrate uptake rate, y; [s~1] is the observed nitrate
uptake rate, 3, [s~1] is the mean observed nitrate uptake rate, and n is the number of

observed nitrate uptake rates.

4.3 Results
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4.3.1 Nutrient Addition Experiments

Out of the 40 total nutrient additions that were performed from 2018 to 2020, 6
experiments were identified as outliers and removed, leaving a total of 34 uptake rates,
i.e., 17 uptake rates from EFJR and 17 from JR. Out of the 34 measured uptake rates, 4
were measured from during the spring months from April to June, 10 were measured
during summer from June to September, 16 were measured during fall from September to
November, and 4 were measured during the winter from November to April. It should be
noted that nitrate uptake rate was not measured at EFJR during the winter months due to
excessive snow and ice-cover (Nichols et al., 2022). The average uptake rates for the
EFJR and JR were 7.05% 107> and 4.28« 107551, respectively, and the difference
between the two site’s measured uptake rates were statistically significant (p-value <0.05
using Wilcoxon rank sum test). At EFJR, uptake rate was significantly higher during
2018 compared to 2019 with year-to-year averages of 1.66* 107> and 3.31% 107> s~ 1,
respectively (p-value <0.05). However, at JR the decrease in uptake rate from 6.69* 107>
in 2018 to 3.46* 107> s~ in 2019 was not statistically significant (p-value = 0.12)

(Figure 4.3).
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Figure 4.3: Boxplots of measured nitrate uptake rates at both sites. A) Nitrate uptake rates
grouped by site. B) Nitrate uptake rates group by site and subgrouped by year. P-values
from Wilcoxson rank sum test are between sites and between years are annotated above

respective boxplot grouping.

4.3.2 High Frequency Sequential Data

Discharge across both sites varied significantly (p-value < 0.05) with 2018 flows
averaging 0.08 and 0.32 m3s~1, and for 2019 averaging 0.20 and 1.18 at EFJR and JR,
respectively (Table 4.2, Figure 4.4). At both sites, fDOM concentrations increased
concurrently with elevated discharge with 2018 fDOM values averaging 15.7 RFU at
EFJR and 12.3 RFU at JR, while 2019 values averaged 24.0 RFU at EFJR and 14.5 RFU
at JR. Unlike fDOM, turbidity generally decreased with discharge, averaging 13.5 FNU
and 9.81 FNU in 2018, and averaging 5.60 FNU and 5.05 FNU in 2019 at EFJR and JR,
respectively. Between 2018 and 2019, water temperature, pH, and dissolved oxygen did
vary significantly as both sites (highest p-value =0.002) with an exception for dissolved
oxygen EFJR (p-value=0.77). Overall, JR had higher water temperature, pH, and
dissolved oxygen with averages of 10.6 C, 7.60, and 9.43 mg L™ compared to 10.2 C,

7.31, and at 7.20 mg L~ EFJR. Specific conductivity at JR was significantly higher than
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that at EFJR (p-value <0.05), with site averages of 624 us/cm and 92.2 us/cm at JR and
EFJR, respectively. The difference in specific conductivity between sites is primarily due

to upstream groundwater springs making a large contribution to baseflows.

Table 4.2: Year-to-year and overall averages of 15-minute water quality sonde and
meteorological data used for predictors in machine learning algorithms. Blue indicates
the year that the predictor was significantly higher, green indicates the sites across both
years that the predictor was significantly higher, and rows with no color indicates that

there was not a significant change between years or between sites.

Param Units EFJR JR

2018 | 2019 | Overall | 2018 | 2019 | Overall
Discharge m3s~1 0.08 0.2 0.14] 0.32] 1.18 0.9
Water Temp C 8.72 | 11.43 10.2 11.1 | 10.2 10.6
DO mg L1 7.21 7.18 721 9.17 9.4 9.43
pH - 7.18 | 7.45 7.31 743 7.61 7.6
Sp Cond uscm™! | 98.1 86.9 92.2 668 | 602 624
fDOM RFU 15.7 24 20| 123 ] 145 13.5
Turbidity FNU 13.5 5.6 946 | 9.81 | 5.05 7.01
Air Temp C 297 | 8.97 5.78 12.2 | 9.58 9.79
Baro Press kPa 562 561 562 609 | 607 608
Wind Vel ms~1 0.53 | 0.561 0.545 | 0.681 | 0.64 0.655
Rel Hum % 67.6 | 584 63.5| 42.29 | 46.8 45.5
Solar Rad W m™2 212 260 234 176 | 174 173

Atmospheric parameters air temperature, solar radiation, wind velocity,
barometric pressure, and relative humidity varied significantly across the two sites (p-
value <0.05). However, unlike the comparison between the two sites, barometric pressure
(p-value=0.98) and wind velocity (p-value=0.92) between 2018 and 2019 were not
significantly different at EFJR, while at JR there wasn’t a significant difference for solar
radiation (p-value=0.97). Site averages for air temperature, solar radiation, wind velocity,

barometric pressure, and relative humidity at EFJR were 5.78 C, 234 W m™2 , 0.545
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m s~1, 562 kPA, and 63.5%, respectively (Table 4.2, Figure 4.4). While at JR averages

for air temperature, solar radiation, wind velocity, barometric pressure, and relative

humidity were 9.79 C, 173 W m™2, 0.655 m s~1, 608 kPA, and 45.5%, respectively.
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Figure 4.4: Boxplot of water quality and atmospheric 15-minute data observed during the
days in which nutrient addition experiments were performed.

4.3.3 Model Results
4.3.3.1 Differing Machine Learning Algorithms

When comparing average MAE across all parameter templates, SVR has the
lowest average MAE of 5.7+ 1075 s~ followed by decision tree with 6.26% 1075 s71,
linear regression with 6.34* 107> s~1, and GRU with an average MAE of 1.22x 107>

s™1. Linear regression’s MAE ranged from 5.58+ 1075 s™1 t0 6.90* 107> s~! when
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utilizing water quality and all available parameters as predictors. Decision tree had the
highest MAE of 6.47+ 1075 s~1 when utilizing all available parameters as predictors,

1 was measured

and like linear regression, decision tree’s lowest MAE of 6.01x 107> s~
when utilizing water quality predictors. SVR had its lowest MAE of 5.15+ 107> s~1
across all models when utilizing water quality predictors, while its highest MAE of 6.26x*
107> s~ when using atmospheric predictors. Lasty, GRU had the second lowest MAE

0f 5.28% 107> s~ for atmospheric predictors, but also had the highest measured MAE of

2.64% 10~* s~1 when using water quality predictors (Table 4.3).
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Table 4.3: Performance metrics for each model with varying parameter templates. Green
indicates best model performance and yellow the worst for each respective parameter
template and performance metrics. Oom represents the order of magnitude difference

between the observed nitrate uptake rates and the estimated rates.

Atmos AtmosDis
% <05 %<0.25 % < 0.5 % <0.25
MAE | R? OoM OoM MAE R? OoM OoM
Linea | 6.39% | 0.1 6.90% 0.0
. 10-5 ) 78 50 10-5 7 80 44
6.40% | 0.1 6.15% 0.1
Tree | 107> | 1 [= <7 1073 6 e >0
61'33: 0.0 | 83 63 51'3§§ 0.0 86 58
SVR 3 2
528+ | 0.4 5.33% 0.3
GRU | 10-5 | 8 86 63 1075 | 6 83 >8
Water AtmosWater
% <05 %<0.25 % < 0.5 % <0.25
MAE | R? OoM OoM MAE R? OoM OoM
Linea | 5.58% | 0.2 6.12% 0.2
. 10-5 3 86 63 10-5 7 80 44
6.01« | 0.0 6.47% 0.1
Tree | 107> | 8 = >8 1073 4 L >0
5.15+« | 0.1 5.44% 0.1
SVR | 10-5 | 7 e 9 105 | 6 = ol
51| s 50 0% fes | w0 44
GRU 3 1

The R? values for linear regression ranged from 0.27 to 0.07 with the highest

value being recorded when utilizing water quality predictors and its lowest when using all

available parameters. Decision Tree had relatively low but consistent R? values when

compared to the other model architectures that ranged from 0.08 to 0.16 when utilizing

water quality and atmospheric parameters with discharge as predictors, respectively. SVR

R? values ranged from -0.02 to 0.17 when utilizing atmospheric and water quality

predictors, respectively. Lastly, GRU had the highest and lowest R? values out of any
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model with a range of 0.46 for atmospheric predictors to -6.61 when using all available
parameters (Figure 4.5). When comparing model performance by the percentage of
model estimates that were less than 0.5 and 0.25 an order of magnitude, linear regression
had an average of 81.0% and 50.3%, respectively. Decision tree had the worst
performance when comparing average 0.5 and 0.25 less than an order of magnitude with
76.8% and 52.3%, respectably. Both SVR and GRU had improved performance than that
of linear and decision tree regression when comparing orders of magnitude difference
from observed values, but overall, the SVR outperformed GRU with 86.3% and 53.8%

compared to 83.0% and 53.8% (Table 4.3).
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Figure 4.5: Predicted vs. Observed scatter plots after leave one out cross validation. The
best and worst models for each parameter template are plotted based on their respective
MAE values. Oom represents the order of magnitude difference from the observed values
with the green line illustrating the 0.25 order of magnitude difference threshold and the
red line the 0.5 order of magnitude difference threshold.
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4.3.3.2 Model Performance Across Parameter Templates

The average MAE values across the four model architectures when using
atmospheric predictors was 6.03* 107> s~1, atmospheric predictors with discharge 5.92*
1075 s71, water quality predictors 1.08* 10™* s~1, and all available parameters as
predictors 7.73% 1075 s~1. Atmospheric parameter templates MAE values ranged from
528+ 107° s71 to 6.40% 107> s~1, atmospheric predictors with discharge ranged from
5.33x107° s t0 6.90% 107> s~1, water quality predictors ranged from 5.15% 107> s~1
to 2.64* 10~* 571, and all available parameters as predictors ranged from 5.44* 107> s~1
to 1.16% 10™* s~1. R? values averaged across all four models were 0.19, 0.17, -1.25, and
-1.66 for atmospheric, atmospheric with discharge, water quality, and all available
parameters as predictors, respectively. The parameter template with the highest R? value
was atmospheric predictors with an R? of 0.48, while the template with the lowest R?
was all available parameters as predictors with an R? of -6.61. The highest R? value for
atmospheric with discharge as predictors, water quality, and all available parameters was
0.36, 0.23, and 0.27, respectively (Figure 4.5). The parameter template that had the
highest percent of estimated values less than 0.5 and 0.25 order of magnitude was water
quality template when being utilized by SVR with 86% and 66%, respectively. The
parameter templates that had the lowest percent of estimated values above 0.5 order of
magnitude was atmospheric and water quality templates with both being 75% when being
utilized by the decision tree model, while the template that had the lowest percent of
estimated values above 0.25 order of magnitude was when utilizing all available

parameters with the GRU model with 44% (Table 4.3).
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4.4 Discussion
4.4.1 Sequence-to-One Performance Compared to One-to-One Regression
Algorithms for Predicting Nitrate Uptake

When utilizing atmospheric parameters as model predictors, the GRU utilizing
sequence-to-one regression outperformed all other model architectures (Figure 4.5, Table
4.3). The improvement demonstrates that the recurrent neural network can leverage the
information-rich atmospheric data to estimate fluvial nitrate uptake rates across
monitoring sites of varying biotic and abiotic properties. We hypothesize that the
improvement from the GRU is primarily due to the model leveraging diel cycling, trends,
and antecedent conditions and events within the sequential data, which previous studies
have shown to be essential features when understanding primary drivers of uptake rate
variability (Drake et al., 2018; R. J. O. Hall & Tank, 2003; Wollheim et al., 2014). Since
the only feature engineering performed for the one-to-one regression was taking the daily
average for each predictor, the predictors would not have been able to encompass
temporal seasonality and trends (Nimick et al., 2011). However, the GRU’s MAE
increased an order of magnitude when incorporating water quality parameters as
predictors. Further inspection validated that the high MAE and negative R? is due
erroneous predictions from the model occurring on less than 10% of the test data that
skewed the MAE and R? values for the water quality and all available parameter
templates (Figure 4.5).

While additional feature engineering can be performed to improve non-recurrent
neural network model performance, which often requires extensive domain knowledge to

identify key features that encompass nutrient processing mechanisms within a stream
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reach, the resulting model may fail to generalize varying biotic and abiotic factors due to
its training on site-specific predictor features. For example, past studies have shown that
multiple factors such as gross primary production, nutrient stoichiometry, flow
conditions, channel geomorphology, or land-use changes are common drivers in nitrate
uptake, but their significance varies spatial and temporally, thus dictating which features
to extract as predictors (Arango et al., 2008; Ensign & Doyle, 2006; R. O. Hall et al.,

2013; Heathwaite, 2010).

4.4.2 Model Performance as a Function of Parameter Templates

To test whether increasing the number of sensors, thus increasing the number of
high-frequency parameters that can be used as predictors to estimate nitrate uptake rate,
we subdivided the high-frequency parameters into separate templates based on their
associated costs. The GRU model performance generally decreased as the number of
predictors increased, with its best performance measured using atmospheric parameters
and its worst performance using all available parameters as predictors. Unlike the GRU
model, the support vector regression performance improved with an increase in the
number of predictors, with considerable improvement when utilizing water quality
parameters as predictors. The distinction between model performance across parameter
templates is a critical consideration when scaling nitrate uptake predictions across more
watersheds since each parameter template has unique data access and logistical cost
constraints. For instance, currently, MesoWest operates approximately 40,000 climate
stations across CONUS. In contrast, the USGS operates 8,500 stream gages across

CONUS, and of those 2000 USGS stream gages monitor high-frequency water quality
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parameters, with 1867 of those sites measuring water temp, 1060 measuring specific
conductance, 628 measuring dissolved oxygen and turbidity, and only 52 measuring
fDOM (MesoWest, 2022; U.S. Geological Survey, 2022).

The discrepancy in spatial coverage between high-frequency water quality and
climate data is further compounded by the fact that climate stations typically require less
maintenance, thus, lowering the long-term logistical and financial costs of new site
development in areas of limited instrumentation. The high costs associated with high-
frequency water quality monitoring has led to a disproportionate amount of monitoring
sites being implemented in the east of the Mississippi and west of the Colorado River,
with 49% and 25% of monitoring sites being located in those regions (U.S. Geological
Survey, 2022), respectively, which further complicates scaling nutrient uptake predictions
to a CONUS scale when utilizing water quality parameters as model predictors; therefore,
determining a model architecture that performs well when only using atmospheric
parameters as predictors, the GRU architecture, can be advantageous for development of
a CONUS scale model to estimate nitrate uptake rates in stream reaches where nutrient

addition experiments have not been performed to measure nitrate uptake rates directly.

4.5 Conclusion

Excess nitrate within fluvial systems has become a major water quality concern
and can lead to eutrophication and harmful algae blooms occurring in lakes and estuaries
when left untreated. Due to the risk high risk access nitrate imposes, there has been
considerable research nitrate transport processes in fluvial system with a primary focus

on nitrate uptake rate. By understanding nitrate uptake rates, researchers can quantify
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nitrate sinks and key forcing variables in uptake variability allowing for more effective
remediation efforts. However, to quantify nutrient uptake rate, one traditionally needs to
perform a nutrient addition experiment, which can be financially and logistically
expensive. Due to the high costs associated with such experiments, many experiments
have been performed in low order streams that are not scalable to higher order streams.
Compounding on the high costs, a single nutrient addition experiment only gives you a
snapshot of uptake rate through time, which is known to be temporally dynamic.

By developing a methodology that allows for semi-continuous estimates of nitrate
uptake rate using sensors as proxies, we can relieve the difficulties associated with
quantifying nitrate uptake rate variability. To do test the viability of using sensor data as
proxies to uptake rate, we tested four machine learning algorithms of varying model bias
and variance with parameters templates comprised of differing sensor configuration with
accompanying costs and data accessibility restrictions. Our results demonstrate that when
using atmospheric parameters as predictors, a gated recurrent neural network (GRU)
using sequence-to-one regression had the best prediction performance. However, when
utilizing water quality parameters, the GRU had poor performance due to erroneous
predictions on less than 10% of the test data. When incorporating water quality
parameters as predictors the model that had the best performance was support vector
machine using one-to-one regression.

Both high-frequency atmospheric and water quality data are increasing in
accessibility, but there remains a large discrepancy between the two parameter sets
spatial coverage. Since atmospheric parameters are more ubiquitous than water quality

parameters, the most viable model architecture and parameter template for CONUS scale
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modeling based on our result would be a GRU using atmospheric parameters as
predictors to nitrate uptake rate. However, the current greatest limitation to implementing
model on the CONUS scale is the lack of database that consolidates nitrate uptake rate
measurements made from prior nutrient uptake experiments. Such a database in
conjunction with high-frequency atmospheric parameters and static catchment
characteristics could enable researchers to leverage the improved predictive capability of
recurrent neural networks utilizing sequence-to-one regression to estimate nitrate uptake

rates in fluvial system.
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Supplemental Information

Figure S4.1) Conceptual figure illustrating the traditional steps taken when
measuring nitrate uptake rate in a fluvial system and an estimated cost associated
with a single nitrate uptake measurement.
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Equations S4.2) Equations used to calculate discharge based off of site-specific
rating curves.

QEF]R - 1_2190.82*Stage (a),
Qjr = 0.20 * Qpg324000 + 0.217 (b),

Where Stage is the measured water column stage [m] at site EFJR, Qggyp is the
estimated discharge [m3s~1], Qog324000 is the 8-hour lagged recorded discharge
[m3s~1] at USGS Streamgage 08324000, and Q;p is the estimated discharge [m3s~1] at
JR.

Figure S4.3) Distribution of measured nitrate uptake rates at both study sites. A)
Non-transformed uptake rates histogram, B) QQ-plot of non-transformed uptake
rates, C) logged-transformed uptake rates histogram, and D) QQ-plot of logged-
transformed uptake rates.
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Table S4.4) Parameter templates used as predictors when training and testing the
varying machine learning algorithms.

Required
Template Abbreviation Parameters Database or
Sensors
Air Temp, Solar
) Rad, Baro Pres, MesoWest
Atmospheric Atmos Wind Vel, Rel (Database)
Humidity
Discharge, Air USGS NWIS
Atmospheric and . Temp, Solar Rad, (Database),
Discharge AtmosDis Baro Pres, Wind MesoWest
Vel, Rel Humidity | (Database)
Discharge, Water
Water Quality and Water Temp, DO, pH, Sp g)sact}ai;\;gI]SEX 02
Discharge Cond, fDOM, (Sensor) ’
Turbidity
Discharge, Air
Temp, Solar Rad, USGS NWIS
Atmospheric, Baro Pres, Wind (Database),
Discharge, and AtmosWater Vel, Rel Humidity, | MesoWest
Water Quality Water Temp, DO, (Database), EXO2
pH, Sp Cond, (Sensor)
fDOM, Turbidity,

Table S4.5) Parameters removed due to high multicollinearity during linear
regression per a parameter template.

Parameter Template Parameters Removed VIF Scores
Atmos Baro Pres 8.07
AtmosDis Baro Pres 8.05
Water Water Temp 18.7
AtmosWater Water Temp, Sp Cond, 102, 35.6, 10.5, 9.25
Baro Pres, DO
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Table S4.6) Hyperparameters used for SVR and GRU model architectures.

SVR
Hyperparameter Value
Epsilon 0.109
Alpha 1.09
GRU
Hyperparameter Value
Hidden Layers 100
Learning Rate 0.0005
Gradient Threshold 2
Max Number of Epochs 350
Dropout Rate 0.3
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Figure S4.7) Predicted vs. observed values of models that had intermediate in MAE
cross-validation values per a parameter template.
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Chapter 5: General Conclusions

5.1 The High-Frequency Wave of the Present

In 2016, Michael Rode coined the term "the high-frequency wave of the present"
in reference to the rapid advancements in water quality sondes and their use in novel
hydrological research. Since then, water quality sondes have become more ubiquitous in
watersheds across North America, Europe, and Asia. However, there remain topics of
great hydrological interest but have limited studies that utilize high-frequency water
quality data. While there are many such topics, three were explored in this dissertation.
Those topics include 1) how changing snow precipitation between two contrasting
winters affects surface water quality and stream metabolism, 2) quantifying longitudinal
impacts of wildfire disturbances within a fluvial system, and 3) leveraging high-
frequency data with machine learning to estimate nitrate uptake rate. The research
presented in this dissertation aims to move past the status quo and provide insight into

fluvial biogeochemical processes that have limited research.

5.2 Characterizing the Understudied Winter

Chapter 2 explores the use of high-frequency water quality sensors in conjunction
with meteorological stations to quantify interannual variability in physical, chemical, and
biological signals in a montane stream during the winter of an El Nifio and a La Nifa
year. We observed ~77% greater snow accumulation during the El Nifio year, which
caused the formation of an ice dam that shifted the system from a primarily lotic to a
lentic environment. Water chemistry and stream metabolism parameters varied widely

between years. They featured anoxic conditions lasting over a month, with no observable
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gross primary production (GPP) occurring under the ice and snow cover in the El Nifio
year. In contrast, dissolved oxygen and GPP remained relatively high during the winter
months of the La Nifia year. These redox and metabolic changes driven by changes in
winter precipitation have significant implications for water chemistry and biological
functioning beyond the winter. Our study suggests that as snow accumulation and
hydrologic conditions shift during the winter due to climate change, hot-spots and hot-
moments for biogeochemical processing may be reduced, with implications for the

downstream movement of nutrients and transported materials.

5.3 Quantifying Longitudinal Impacts of Fluvial Wildfire Disturbances

In Chapter 3, we investigate hydro-geomorphological wildfires disturbances
initiated by post-fire precipitation-runoff events. These disturbances are drivers of aquatic
impairment over multiple months and years. While the impacts of wildfires on streams
and rivers near burned areas have received increased attention in the last decades, it is
still unclear how wildfire disturbances propagate longitudinally through fluvial networks;
therefore, in Chapter 3 a high-frequency in-situ longitudinal sonde network is utilized to
monitor water quality and stream metabolism changes over 190 km along the Gallinas
Creek-Pecos River-Santa Rosa Lake fluvial network in response to the Hermit’s Peak -
Calf Canyon (HPCC) wildfire, the largest in New Mexico’s recorded history. We
assessed how far downstream water quality disturbances propagated along the fluvial
network, the role of seasonality in that propagation, and the impact of lakes in mitigating
further longitudinal propagation. Monitoring began a few days after the fire started in

April 2022 and before any precipitation events had occurred. In the ten months post-fire,
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there were significant increases in turbidity and fDOM and reductions in gross primary
production and ecosystem respiration at all monitoring sites upstream of Santa Rosa
Lake. Stream metabolic fingerprints suggest increased scouring, DOC, nutrients, and
suspended sediments at these sites. In contrast, the site downstream of Santa Rosa Lake
did not have altered turbidity, gross primary production, or ecosystem respiration, and the
metabolic fingerprints remained unchanged. These results suggest that Santa Rosa Lake,
and associated water operations, buffered the propagation of wildfire disturbances
~180km downstream from the burn scar, resetting water quality parameters and

metabolic activity for over ten months post-fire.

5.4 Coupling High-Frequency Data with Machine Learning to Estimate Nitrate
Uptake

In Chapter 4, we aim to move past the current limitations in quantifying nitrate
uptake, we investigated using high-frequency water quality and atmospheric data at two
stream reaches of differing biogeochemistry with varying machine learning algorithms to
estimate nitrate uptake rate. Such research is critical as nitrate impairment is a leading
concern in fluvial systems with excess nitrate concentrations causing eutrophication,
harmful algae blooms, and methemoglobinemia; however, quantifying nitrate transport
processes, such as nitrate uptake rates, in a fluvial system is often logistically
burdensome and provides a single snapshot in time. The inherent difficulties and
limitations in quantifying nitrate uptake have often led to low temporal resolution, thus,
developing a non-direct method of measurement would enhance nutrient dynamic

research. Our results show that when utilizing atmospheric parameters as model
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predictors, a gated recurrent unit performing sequence-to-one regression outperformed all
other algorithms (MAE= 5.28, =0.48). When water quality parameters were incorporated
as predictors, a support vector machine and multivariate linear regression performing
one-to-one regression were the best performing models (MAE=5.15, =0.17; and
MAE=5.58, =0.23, respectively). With the increasing availability of high-frequency
atmospheric data, a GRU using atmospheric predictors has great potential to estimate

nitrate uptake in ungagged basins with limited uptake experiments.
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Appendix A: Participation in Peer-Reviewed Manuscripts

During my Ph.D. program, I participated in the following peer-reviewed manuscripts:

Al) Regier, P. J., Gonzalez-Pinzon, R., Van Horn, D. J., Reale, J. K., Nichols, J., &
Khandewal, A. (2020). Water quality impacts of urban and non-urban arid-land runoff on
the Rio Grande. Science of The Total Environment, 729, 138443.
Abstract

Urban surface runoff from storms impacts the water quality dynamics of
downstream ecosystems. While these effects are well-documented in mesic regions, they
are not well constrained for arid watersheds, which sustain longer dry periods, receive
intense but short-lived storms, and where stormwater drainage networks are generally
isolated from sewage systems. We used a network of high-frequency in situ water quality
sensors located along the Middle Rio Grande to determine surface runoff origins during
storms and track rapid changes in physical, chemical, and biological components of water
quality. Specific conductivity (SpCond) patterns were a reliable indicator of source,
distinguishing between runoff events originating primarily in urban (SpCond sags) or
non-urban (SpCond spikes) catchments. Urban events were characterized by high
fluorescent dissolved organic matter (fDOM), low dissolved oxygen (including short-
lived hypoxia <2 mg/L), smaller increases in turbidity and varied pH response. In
contrast, non-urban events showed large turbidity spikes, smaller dissolved oxygen sags,
and consistent pH sags. Principal component analysis distinguished urban and non-urban
events by dividing physical and biogeochemical water quality parameters, and modeling

of DO along the same reach demonstrated consistently higher oxygen demand for an
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urban event compared to a non-urban event. Based on our analysis, urban runoff poses
more potential ecological harm, while non-urban runoff poses a larger problem for
drinking water treatment. The comparison of our results to other reports of urban
stormwater quality suggest that water quality responses to storm events in urban

landscapes are consistent across a range of regional climates.

A2) Khandelwal, A., Gonzalez-Pinzo6n, R., Regier, P., Nichols, J., & Van Horn, D. J.
(2020). Introducing the Self-Cleaning FiLtrAtion for Water quaLity SenSors (SC-
FLAWLeSS) system. Limnology and Oceanography: Methods, 18(9), 467-476.
Abstract

Sensor-based, semicontinuous observations of water quality parameters have
become critical to understanding how changes in land use, management, and rainfall-
runoff processes impact water quality at diurnal to multidecadal scales. While some
commercially available water quality sensors function adequately under a range of
turbidity conditions, other instruments, including those used to measure nutrient
concentrations, cease to function in high turbidity waters (> 100 nephelometric turbidity
units [NTU]) commonly found in large rivers, arid-land rivers, and coastal areas. This is
particularly true during storm events, when increases in turbidity are often concurrent
with increases in nutrient transport. Here, we present the development and validation of a
system that can affordably provide Self-Cleaning FiLtrAtion for Water quaLity SenSors
(SC-FLAWLeSS), and enables long-term, semicontinuous data collection in highly turbid
waters. The SC-FLAWLeSS system features a three-step filtration process where: (1) a

coarse screen at the inlet removes particles with diameter > 397 um, (2) a settling tank
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precipitates and then removes particles with diameters between 10 and 397 pm, and (3) a
self-cleaning, low-cost, hollow fiber membrane technology removes particles > 0.2 pm.
We tested the SC-FLAWLeSS system by measuring nitrate sensor data loss during
controlled, serial sediment additions in the laboratory and validated it by monitoring
soluble phosphate concentrations in the arid Rio Grande river (New Mexico, U.S.A.), at
hourly sampling resolution. Our data demonstrate that the system can resolve turbidity-
related interference issues faced by in situ optical and wet chemistry sensors, even at

turbidity levels > 10,000 NTU.

A3) Tunby, P., Gonzalez-Pinzon, R., Nichols, J., Kaphle, A., Khandelwal, A., and Van
Horn, D. J. (2023). Development of a General Protocol for Rapid Response Research on
Water Quality Disturbances and its Application for Monitoring the Largest Wildfire
Recorded in New Mexico, USA. Frontiers in Water: Environmental Water Quality
In Review at Frontiers in Water.
Abstract

Anthropogenic and natural disasters (e.g., wildfires, oil spills, mine spills, sewage
treatment facilities) cause water quality disturbances in fluvial networks. These
disturbances are highly unpredictable in space-time, with the potential to propagate
through multiple stream orders and impact human and environmental health over days to
years. Due to challenges in monitoring and studying these events, we need methods to
strategize the deployment of rapid response research teams on demand. Rapid response
research has the potential to close the gap in available water quality data and process

understanding through time-sensitive data collection efforts. This manuscript presents a
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protocol that can guide researchers in preparing for and researching water quality
disturbance events. We tested and refined the protocol by assessing the longitudinal
propagation of water quality disturbances from the 2022 Hermits Peak — Calf Canyon,
NM, USA, the largest in the state's recorded history. Our rapid response research allowed
us to collect high-resolution water quality data with semi-continuous sensors and
synoptic grab sampling. The data collected has been used for traditional peer-reviewed
publications and pragmatically to inform water utilities, restoration, and outreach

program.
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