
Reimagining Mutual Information for Defense
against Data Leakage in Collaborative Inference

Lin Duan1∗, Jingwei Sun1∗, Jinyuan Jia2, Yiran Chen1, Maria Gorlatova1

1 Department of Electrical and Computer Engineering, Duke University
2 College of Information Sciences and Technology, Pennsylvania State University

1 {lin.duan, jingwei.sun, yiran.chen, maria.gorlatova}@duke.edu
2 jinyuan@psu.edu

Abstract

Edge-cloud collaborative inference empowers resource-limited IoT devices to
support deep learning applications without disclosing their raw data to the cloud
server, thus protecting user’s data. Nevertheless, prior research has shown that
collaborative inference still results in the exposure of input and predictions from
edge devices. To defend against such data leakage in collaborative inference, we
introduce InfoScissors, a defense strategy designed to reduce the mutual information
between a model’s intermediate outcomes and the device’s input and predictions.
We evaluate our defense on several datasets in the context of diverse attacks. Besides
the empirical comparison, we provide a theoretical analysis of the inadequacies of
recent defense strategies that also utilize mutual information, particularly focusing
on those based on the Variational Information Bottleneck (VIB) approach. We
illustrate the superiority of our method and offer a theoretical analysis of it.

1 Introduction

Edge devices are becoming smarter and more versatile. These devices are expected to efficiently
perform a wide range of deep learning (DL) inference tasks with remarkable performance. However,
implementing DL inference applications on such edge devices is challenging due to the constraints
imposed by the on-device resource availability. As we see the rise of state-of-the-art (SOTA) DL
models, such as Large Language Models [1, 2], they are becoming increasingly complex, housing
a colossal number of parameters. This escalation in complexity and size makes it difficult to store
a DL model on an edge device, which typically has limited memory space. Furthermore, the restricted
computational resources could lead to prolonged latency during inference. One potential solution
to this predicament is to transmit the input data directly from the edge device to a cloud server. The
server, which houses the DL model, then conducts inference and sends the prediction back to the
device. However, this approach carries a risk of data leakage, particularly if the input data are sensitive
in nature - such as facial images. In addition, the output data (i.e., predictions) can also contain
confidential information, such as the patient’s diagnostic results.

Collaborative inference [3–9] has emerged as an approach to prevent data leakage when deploying
DL inference applications on commodity edge devices with constrained computing resources. Fig. 1
shows a general collaborative inference system. Suppose an edge device and a cloud server conduct
collaborative inference. The deep learning model can be divided into three parts2. The first and last
few layers of the network are deployed on the edge device, while the remaining layers are offloaded

∗Co-first authors.
2Note that some applications might divide the model into two parts, and the edge devices might hold the first or

the last few layers, which have different data leakage problems. This paper considers the general setting.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

𝑧𝑧

𝑦𝑦

𝜃𝜃𝑒𝑒

𝜃𝜃𝑐𝑐

𝑟𝑟

𝑥𝑥
𝜃𝜃ℎ

𝑥𝑥𝑥 𝑦𝑦
Cloud
Server

Edge
device

fox

fox

Figure 1: A general framework of collaborative in-
ference. The malicious server can infer input and
predictions on the edge device. Our method defends
against data leakage by reducing the mutual infor-
mation between the model’s intermediate outcomes
and the edge device’s data and predictions.

to the cloud server. This division allows most of the computational tasks to be handled by the server,
effectively mitigating the resource limitations on the device. The edge device and the cloud server
communicate only the intermediate outputs of the model, ensuring that the raw input and predictions
remain inaccessible to the server. However, recent works [10, 11] have revealed that sharing these
intermediate outputs can still lead to data leakage from edge devices, including input data and
predictions. A malicious server can, for instance, reconstruct input data from the representations (i.e., r
in Fig. 1) uploaded by the device through Model Inversion (MI) attacks [12, 13, 11]. Furthermore, the
high-level features (i.e., z in Fig. 1) contain rich information about the predictions, making it feasible
for a malicious server to infer the device’s predictions through these features [14–16]. While there
have been considerable explorations into data protection in collaborative inference [10, 11, 17, 18],
existing defenses tend to significantly degrade model utility. This degradation is particularly evident
in scenarios where attacks are relatively strong. For example, when the head model on the device (i.e.,
θh in Fig. 1) is shallow, existing defenses [10, 11, 19, 20, 20, 18] cannot guarantee robustness against
MI attacks without a significant drop in model accuracy as shown in our results.

We propose InfoScissors, a defense method designed from a mutual information perspective to protect
the edge device’s data in collaborative inference. This approach works by protecting both the device’s
input data and its predictions. The goal of our method is to preserve user privacy in collaborative
inference, and privacy preservation is achieved by manipulating the training phase (i.e., collaborative
training). By applying our defense, the model is normalized to filter the private information when
extracting features and representations, such that privacy is preserved during the inference phase. To
protect the input data, we regularize the head model on the device to extract representations that contain
less mutual information with the input. To protect the prediction, we regularize the features extracted
by the server’s encoder to minimize the mutual information they contain with the label. We derive a
variational mutual information upper bound and develop an adversarial training method to minimize this
bound on the device side. There are works [21, 17, 18] that prevent input leakage from the mutual infor-
mation perspective, and most of them are based on Variational Information Bottleneck (VIB) [22]. Our
work is not a simple replacement of the mutual information approximation compared with these works.
We analyze the inadequacies of the VIB-based methods in protecting input data in the context of collab-
orative inference and illustrate the superiority of our method. We evaluate our method on CIFAR10 and
CIFAR100 against input leakage using both black-box and white-box MI attacks. The results show that
our method can effectively defend the attacks with less than a 3% drop in model accuracy even when
the head model on the device has only one convolutional layer, where the attacks are extremely strong.
We also evaluate our defense against prediction leakage using multiple Model Completion (MC) at-
tacks [14, 15]. The results show that our defense achieves the best trade-off between the model accuracy
and the defense effectiveness compared to the baselines. Our contributions are summarized as follows:

• We propose InfoScissors, a defense method against data leakage in collaborative inference
from the mutual information perspective, encompassing both input leakage and prediction
leakage.

• We offer a theoretical analysis of our defense against input recovery attacks and prediction
inference attacks. We also analyze the superiority of our method compared with the
VIB-based methods.

• We empirically evaluate InfoScissors across multiple datasets and against multiple attacks.
Our method effectively defends against MI and MC attacks, outperforming the baselines.

2 Related Work

Data Leakage in Collaborative Inference Data leakage is drawing more and more attention as the
rapid growth of commercial deployment of DL, especially in collaborative learning scenarios, whose

2

primary concern is data safety. In collaborative inference, we categorize data leakage into two types, i.e.,
input leakage [23, 10, 24, 25] and prediction leakage [14–16]. For input leakage, [23] proposes general
attack methods for complex models, such as Neural Networks, by matching the correlation between
adversary features and target features, which can be seen as a variant of model inversion [26, 27].
[10, 28, 25, 29, 30, 24] also propose variants of model inversion attack. While all these attacks are
in the inference phase, [25] proposes a variant of DLG [12], which can perform attacks in the training
phase. For prediction leakage, [15] proposes an attack and defense method for two-party split learning
on binary classification problems, a special collaborative inference setting. Additionally, [14] proposes
three different label inference attack methods considering different settings in collaborative inference:
direct label inference attack, passive label inference attack, and active label inference attack.

Defense in Collaborative Inference Defensive methods have been proposed against data leakage
in collaborative inference. To defend against input leakage, some works apply differential privacy
(DP) [10, 11, 19, 31] and compression [10, 11, 17, 32] to the representations and models. While
these methods can successfully defend against input leakage from the representations, they cause
substantial model performance degradation because they weaken the knowledge/information in the
representations. Some recent works also try to prevent input leakage by regularizing the representations
from the mutual information perspective [17, 18, 21]. However, their methods only achieve decent
results when the head model on the edge device is deep, which is not practical when the computation
power is constrained on the edge device. Our paper analyzes that such a disadvantage comes from
the inadequacies of VIB in the context of input protection. Some other works [33–35] apply mutual
information on input space to protect input data, but their methods are only feasible with limited input
dimension in the context of collaborative inference due to computational constrain on edge devices.
One recent work [36] studies inference defense under a similar setting to our paper. But they only
focus on prediction protection. They add noise to the training label by randomly sampling a class label,
which is intuitively inspired by DP. Our training method is theoretically derived from the perspective
of mutual information, and we provide a theoretical analysis of our defense performance. To defend
against prediction leakage, [16] manipulates the labels following specific rules to defend the direct
label inference attack, which can be seen as a variant of label differential privacy (label DP) [37, 38]
in collaborative inference. Compression and quantization of the gradients [14, 18] are also applied
to prevent prediction leakage. However, similar to the defense against input leakage, these defenses
cause substantial model performance degradation to achieve decent defense performance.

3 Preliminary

3.1 Collaborative Inference Setting

Suppose an edge device and a cloud server conduct collaborative inference. Following the setting
in Fig. 1, the deep learning model is divided into a head model fhθh , an encoder feθe and a classifier
f cθc . The head model and classifier are deployed on the edge device, and the encoder is on the cloud
server. Given an input xi, the edge device first calculates the representation ri= fhθh(xi) and sends
ri to the server. Then the server extracts the feature from the received representation zi=feθe(ri) and
sends zi back to the edge device. After receiving the feature, the edge device calculates the prediction
ŷi = f cθc(zi). In this paper, the results of fhθh sent from the device to the server are referred to as
representations, and features refer to the results of feθe sent from the server to the device. The overall
inference procedure is formulated as:

ŷi=f
c
θc(f

e
θe(f

h
θh(xi))). (1)

In the real world, the input xi and prediction ŷi are important intellectual properties of the edge device
and may contain personal information. In the inference procedure, the edge device does not send raw
input to the server, and the inference results are also inaccessible to the server.

3.2 Threat Model

Our goal is to protect the edge device’s input and predictions from being inferred by the cloud server.
The device only uploads the representations to the server and never leaks raw input or predictions
to the server. However, the cloud server is untrusted, attempting to steal input and predictions. We
assume the untrusted server strictly follows the collaborative inference protocols, and it cannot

3

compromise the inference process conducted by the device. Nevertheless, the adversary (i.e., malicious
server) is capable of training a surrogate classifier and generator to mimic the victim’s data. With the
received representation ri, the server can reconstruct the input xi on the device by conducting MI
attacks [12, 13, 10]. Notably, the head model on the device is usually shallow due to the computation
resource limitation, which aggravates the input leakage from the representation [11]. The encoder on
the server extracts high-level features containing rich information about the prediction, which enables
the server to infer predictions of the device. We conduct preliminary experiments to illustrate the data
leakage in collaborative inference, which can be found in Appendix A.

4 Method

4.1 Defense Formulation

To defend against data leakage, we propose InfoScissors, a learning algorithm that regularizes the
model during the training phase. Following the setup of 3.1, suppose the edge device has sample pairs
{(xi,yi)}Ni=1 drawn from a distribution p(x,y). The representation is calculated as r=fhθh(x) by the
edge device, and the cloud server computes features z= feθe(r). We apply x,y,r,z here to represent
random variables, while xi,yi,ri,zi are deterministic values. To defend against the leakage of the edge
device’s input data and inference results, InfoScissors is designed to achieve three goals:

• Goal 1: To preserve the performance of collaborative inference, the main objective loss
should be minimized.

• Goal 2: To prevent the input leakage from the representations, θh should not extract
representations r containing much information about the input data x.

• Goal 3: To reduce the leakage of the predictions on the edge device, θe on the cloud server
should not be able to extract features z containing much information about the true label y.

Formally, we have three training objectives:

Prediction: min
θh,θe,θc

L
(
f cθc

(
feθe

(
fhθh(x)

))
,y
)
,

Input protection:min
θh

I(r;x),

Prediction protection:min
θh,θe

I(z;y),

(2)

where I(r;x) is the mutual information between the representation and the input, which indicates how
much information r retains about the input data x. Similarly, I(z;y) is the mutual information between
the feature and the label. We minimize these mutual information terms to prevent the cloud server
from inferring the input x and label y from r and z, respectively.

The prediction objective is usually easy to optimize (e.g., cross-entropy loss for classification).
However, the mutual information terms are hard to calculate in practice for two reasons: 1. r and x
are high-dimensional, and it is extremely computationally heavy to compute their joint distribution; 2.
Calculating the mutual information requires knowing the distributions p(x|r) and p(y|z), which are both
difficult to compute. We do not follow existing works [18, 21, 17] to employ VIB to derive tractable
estimations of the mutual information objectives. We analyze the inadequacies of VIB in protecting
input, which can be found in Sec. 4.4, and leverage CLUB [39] to formulate variational upper bounds
of mutual information terms. We first formulate a variational upper bound of I(r;x):

I(r;x)≤ IvCLUB(r;x) :=Ep(r,x)logqψ(x|r)−Ep(r)p(x)logqψ(x|r), (3)

where qψ(x|r) is a variational distribution with parameters ψ to approximate p(x|r). To guarantee the
inequality of Eq. (3), qψ(x|r) should satisfy:

KL(p(r,x)||qψ(r,x))≤KL(p(r)p(x)||qψ(r,x)), (4)

which can be achieved by minimizing KL(p(r,x)||qψ(r,x)):
ψ = argmin

ψ
KL(p(r,x)||qψ(r,x))=argmax

ψ
Ep(r,x)log(qψ(x|r)). (5)

With sample pairs {(xi,yi)}Ni=1, we apply the sampled vCLUB (vCLUB-S) mutual information
estimator in [39] to reduce the computational overhead, which is an unbiased estimator of IvCLUB and

4

is formulated as:

ÎvCLUB-S(r;x)=
1

N

N∑
i=1

[
logqψ(xi|ri)−logqψ

(
xk′i |ri

)]
, (6)

where k′i is uniformly sampled from indices {1,...,N}. With Eq. (3), Eq. (5) and Eq. (6), the objective
of input protection is formulated as:

min
θh

I(r;x)⇔ min
θh

ÎvCLUB-S(r;x)=min
θh

1

N

N∑
i=1

[
max
ψ

logqψ(xi|ri)−logqψ
(
xk′i |ri

)]
. (7)

Similarly, we can use a variational distribution qϕ(y|z) with parameter ϕ to approximate p(y|z), and
formulate the objective of label protection as:

min
θh,θe

I(z;y)⇔ min
θh,θe

ÎvCLUB-S(z;y)= min
θh,θe

1

N

N∑
i=1

[
max
ϕ

logqϕ(yi|zi)−logqϕ
(
yn′
i
|zi

)]
. (8)

Suppose we use gψ, hϕ to parameterize qψ and qϕ, respectively. By combining Eq. (7), Eq. (8) and
the prediction objective with weight hyper-parameters λd and λl, the overall optimizing objective is:

min
θh,θe,θc

(1−λd−λl)
1

N

N∑
i=1

L
(
fcθc

(
feθe

(
fhθh(xi)

))
,yi

)
︸ ︷︷ ︸

Lc

+min
θh

max
ψ
λd

1

N

N∑
i=1

loggψ
(
xi|fhθh(xi)

)
︸ ︷︷ ︸

Ld_a

+min
θh
λd

1

N

N∑
i=1

−loggψ
(
xk′i |f

h
θh(xi)

)
︸ ︷︷ ︸

Ld_r

+min
θh,θe

max
ϕ
λl

1

N

N∑
i=1

loghϕ
(
yi|feθe

(
fhθh(xi)

))
︸ ︷︷ ︸

Ll_a

+min
θh,θe

λl
1

N

N∑
i=1

−loghϕ
(
yn′
i
|feθe

(
fhθh(xi)

))
︸ ︷︷ ︸

Ll_r

.

(9)

hϕ can be easily constructed to estimate p (y|z) given the task of inference (e.g., classifier for
classification task). To estimate p(x|r), we assume that x follows the Gaussian distribution of which
the mean vector is determined by r and the variance is 1. Under this assumption, we apply a generator
gψ to estimate the mean vector of x given r.

𝑧𝑧
𝜃𝜃𝑒𝑒

𝜃𝜃𝑐𝑐

𝑟𝑟

𝑥𝑥
𝜃𝜃ℎ

Cloud Server

Edge device

𝜓𝜓

𝜙𝜙

Goal 2: Input protection
ℒ𝑑𝑑_𝑎𝑎 = log𝑔𝑔𝜓𝜓 𝑥𝑥 𝑟𝑟
ℒ𝑑𝑑_𝑟𝑟 = − log𝑔𝑔𝜓𝜓 𝑥𝑥𝑘𝑘′ 𝑟𝑟

Goal 3: Prediction
protection
ℒ𝑙𝑙_𝑎𝑎 = logℎ𝜙𝜙 𝑦𝑦 𝑧𝑧
ℒ𝑙𝑙_𝑟𝑟 = −logℎ𝜙𝜙 𝑦𝑦𝑛𝑛′ 𝑧𝑧

Goal 1: Prediction
ℒ𝑐𝑐 = ℒ(𝑓𝑓𝜃𝜃𝑐𝑐

𝑐𝑐 (𝑧𝑧),𝑦𝑦)

Figure 2: An overview of InfoScissors. Training step 1: Optimize the classifiers θc and ϕ by minimizingLc and
maximizingLl_a, respectively. Step 2: Optimize the generatorψ by maximizingLd_a. Step 3: Optimize θh and
θe by minimizing (1−λd−λl)Lc+λlLl_a+λlLl_r+λdLd_a+λdLd_r .

4.2 Learning Algorithm

The overall objective has five terms. For simplicity, we denote these five objective terms asLc,Ld_a,
Ld_r, Ll_a and Ll_r, respectively, as shown in Eq. (9). Lc is the prediction objective. Ld_a and Ld_r
comprise the input data protection objective. Ld_a is an adversarial training objective where an
auxiliary generator gψ is trained to capture input information while the head layers fhθh are trained
to extract as little input information as possible. Ld_r regularizes fhθh to extract representations that
can be used to generate randomly picked samples. Ll_a and Ll_r have similar effect with Ld_a and

5

Ld_r, respectively. We can reorganize the overall training objective as:

θh,θe,θc,ψ,ϕ

= argmin
θh,θe

[(1−λd−λl)min
θc
Lc+λlmax

ϕ
Ll_a+λlLl_r+λdmax

ψ
Ld_a+λdLd_r].

(10)

Based on Eq. (10), we develop a collaborative learning algorithm. For each batch of data, the device
first optimizes the classifiers θc and ϕ by minimizing Lc and maximizing Ll_a, respectively. Then,
the device optimizes the generator ψ by maximizing Ld_a. Finally, θh and θe are optimized by
minimizing (1−λd−λl)Lc+λlLl_a+λlLl_r+λdLd_a+λdLd_r. The detailed algorithm can be
found in Appendix B. Note that θh,θc,ψ, and ϕ are deployed on devices, and their training does not
need additional information from the cloud server compared with training without our defense. The
training procedure of θe does not change, which makes our defense concealed from the cloud server.

4.3 Theoretical Analysis

We provide a theoretical analysis of our defenses against prediction and input leakage. Following
the notations in Sec. 4.1, we have the following theorem of defense performance for prediction leakage
after applying InfoScissors. All the proofs can be found in Appendix C.
Theorem 1. Let hϕ parameterize qϕ in Eq. (8). Suppose the malicious server optimizes an auxiliary
model hm(y|z) to estimate p(y|z). For any hm(y|z), we always have:

1

N

N∑
i=1

loghm(yi|zi)<
1

N

N∑
i=1

logp(yi)+ϵ, (11)

where
ϵ= IvCLUBhϕ

(z;y)+KL(p(y|z)||hϕ(y|z)). (12)

Specifically, if the task of collaborative inference is classification, we have the following corollary:
Corollary 1. Suppose the task of collaborative inference is classification. Following the notations
in Theorem 1 and let epsilon be defined therein, we have:

1

N

N∑
i=1

CE[hm(zi),yi]>CErandom−ϵ, (13)

where CE denotes the cross-entropy loss, and CErandom is the cross-entropy loss of random guessing.

For input leakage, we have the following theorem.
Theorem 2. Let the assumption of p(x|r) in Sec. 4.1 hold and gψ parameterize the mean of qψ in
Eq. (7). Q denotes the dimension of x. Suppose the malicious server optimizes an auxiliary model
gm(x|r) to estimate the mean of p(x|r). For any gm(x|r), we always have:

1

N

N∑
i=1

MSE[gm(ri),xi]>
2(κ−ϵ)
Q

, (14)

where MSE denotes the mean square error, and

κ=− 1

N

N∑
i=1

log

√
2π

p(xi)
, ϵ= IvCLUBgψ

(r;x)+KL(p(x|r)||gψ(x|r)). (15)

4.4 Superiority over VIB

Recent works also try to prevent input leakage by regularizing the representations from the mutual infor-
mation perspective [21, 17, 18]. The ultimate goal of these works is the same as our method, which is to
minimize I(r;x). However, most of these works apply Variational Information Bottleneck (VIB) [22] to
derive the upper bound of I(r;x). Even though VIB is commonly applied in DNN feature regularization,
we analyze that it is not optimal in defending against input leakage in collaborative inference.

The variational upper bound of I(r;x), which is also an objective to minimize, derived through VIB
is formulated as

6

I(r;x)≤Eϵ∼p(ϵ),x∼p(x)KL[pθh(r|x,ϵ),r(r)], (16)

where ϵ is the Gaussian random variable used to reparameterize the randomness of representation
extractor θh. r(r) is the variational approximation of the marginal distribution p(r). In practice,
without any prior information, r(r) is set to be a fixed spherical Gaussian, r(r) = N (r|0, I). To
minimize I(r;x), the VIB-based works [21, 17, 18] regularize the representation distribution to be
close to a fixed Gaussian. This will cause the complementary loss of information contained by r,
including the mutual information with y, which is crucial for the primary inference task. In contrast,
the training objective derived in our method is to only filter out the information in r that is crucial
for reconstructing x, which will cause less information loss and inference performance drop.

We can also analyze the difference between VIB-based methods and our method from a high level, which
also motivates us to choose CLUB approximation. The mutual information I(r;x) can be expanded as

I(r;x)=
∫
drdxp(r,z)log

p(r|x)
p(r)

=

∫
drdxp(r,z)log

p(x|r)
p(x)

.

(17)

VIB follows the first equality to derive a tractable upper bound of I(r;x) based on a parameterized
variational p̂(r|x). Subsequently, the training objective is focused on minimizing this variational
p̂(r|x). We follow the second equality to parameterize p(x|r) and derive an upper bound based on
CLUB. Our training goal is centered on minimizing the variational p̂(x|r). Importantly, in the context
of defending against model inversion attacks, the primary aim is to attain a low p(x|r). This aim is more
closely aligned with our training objective compared to VIB-based methods. This alignment, alongside
the empirical results presented in the subsequent section, highlights the superiority of our method.

5 Experiments

We first evaluate our method against input leakage and prediction leakage, both separately and in an
integrated manner. The experiments are conducted on a server with 4 RTX TITAN GPUs.

5.1 Experimental Setup

DP AN DC MID InfoScissors

Acc(%) 76.82 76.68 76.69 75.95 76.56

SSIM 0.4779 0.3181 0.7479 0.7373 0.159

Acc(%) 71.63 73.26 73.38 72.17 75.62

SSIM 0.2035 0.2535 0.5244 0.4576 0.145

Acc(%) 65.31 67.56 69.55 61.3 75.56

SSIM 0.1882 0.2082 0.4074 0.3713 0.1425

Figure 3: Images reconstructed by the KA attack on CIFAR10 under different defenses. Each row represents a
different defense level. The bottom row applies the strongest defense, resulting in lower-quality reconstructed
images and a sacrifice in accuracy.

Attack methods For input leakage, we evaluate InfoScissors against two Model Inversion (MI)
attacks: (1) Knowledge Alignment (KA) [17] is a black-box MI attack, in which the malicious server
trains an inversion model that swaps the input and output of the target model using an auxiliary dataset.
The inversion model is then used to reconstruct the input given any representation. (2) Regularized
Maximum Likelihood Estimation (rMLE) [11] is a white-box MI attack that the malicious server
has access to the device’s extractor model θh. The server trains input to minimize the distance between
the fake representations and the received ground-truth representations. It is an unrealistic assumption
that the server can access the model on the device, and we apply this white-box attack to evaluate our
defense against extremely strong attacks. For prediction leakage, we evaluate our defense against
two Model Completion (MC) attacks: (1) Passive Model Completion (PMC) [14] attack assumes

7

that the malicious server has access to an auxiliary labeled dataset and utilizes this auxiliary dataset
to fine-tune a classifier that can be applied to its encoder. (2) Active Model Completion (AMC) [14]
attack is included as an adaptive attack against our defense. The primary goal of our defense is to
reduce the collaborative model’s reliance on the server-side encoder for specific tasks, allowing data
and prediction information to be filtered during inference. Under the adaptive attack setting, the
adversary is allowed to modify the training profiling such that it can trick the collaborative model
into relying more on its encoder, thereby extracting more private data information from the encoder’s
features. In this setting, the adversary is directly confronting the fundamental principles of our defense
method, constituting a highly potent form of adaptive attack.

Baselines We compare InfoScissors with five existing defense baselines: (1) Differential
Privacy (DP) [10, 11, 19], (2) Adding Noise (AN) [40], (3) Data Compression (DC) [20], (4)
Privacy-preserving Deep Learning (PPDL) [41], and (5) Mutual Information Regularization
Defense (MID) [18], which is the SOTA defense against data leakage in collaborative inference based
on Variational Information Bottleneck (VIB). The details of the baselines can be found in Appendix D.

Dataset & Hyperparameter configurations We evaluate on CIFAR10 and CIFAR100. For both
datasets, we apply ResNet18 as the backbone model. The first convolutional layer and the last basic
block are deployed on the device as the representation extractor and the classifier, respectively. We
set batch sizeB as 32 for both datasets. We apply SGD as the optimizer with the learning rate η set
to be 0.01. The server has 40 and 400 labeled samples to conduct KA and MC attacks for CIFAR10
and CIFAR100, respectively. For InfoScissors, we apply a 1-layer decoder and a 3-layer MLP to
parameterize ψ and ϕ. For AN, we apply Laplacian noise with a mean of zero and a scale between
0.0001-0.01. For DC, we set the compression rate from 90% to 100%. For PPDL, we set the Laplacian
noise with a scale of 0.0001-0.01, τ =0.001 and θ between 0 and 0.01. For MID, we set the weight
of mutual information regularization between 0-0.1.

Evaluation metrics (1) Utility metric (Model accuracy): We use the test data accuracy of the
classifier on the device to measure the performance of the collaborative model. (2) Robustness metric
(SSIM): We use SSIM (structural similarity) between the reconstructed images and the raw images
to evaluate the effectiveness of the defense against input leakage. The lower the SSIM, the better the
defense performance. (3) Robustness metric (Attack accuracy): We use the test accuracy of the
server’s classifier after conducting MC attacks to evaluate the defense against prediction leakage. The
lower the attack accuracy, the higher the robustness against prediction leakage.

5.2 Results of Input Protection

We conduct experiments on CIFAR10 and CIFAR100 to evaluate our defense against the KA attack and
the rMLE attack. We set different defense levels for our methods (i.e., different λd values in Eq. (9))
and baselines to conduct multiple experiments to show the trade-off between the model accuracy and
SSIM of reconstruction. The results are shown in Fig. 4.

60 64 68 72 76 80
0.2

0.4

0.6

0.8

66 68 70 72 74 76 78 800.0
0.2
0.4
0.6
0.8
1.0

38 39 40 41 42 43 44 45 46 47 48
0.2
0.4
0.6
0.8
1.0

38 39 40 41 42 43 44 45 46 47 480.0
0.2
0.4
0.6
0.8
1.0

(d) rMLE attack on CIFAR100(c) KA attack on CIFAR100(b) rMLE attack on CIFAR10

SS
IM

Accuracy(%)
(a) KA attack on CIFAR10

SS
IM

Accuracy(%)

 DP AN PPDL DC MID InfoScissors

SS
IM

Accuracy(%)

SS
IM

Accuracy(%)

Figure 4: Model accuracy v.s. SSIM on CIFAR10 and CIFAR100 against MI attacks.

For defense against KA attack, our InfoScissors can reduce the SSIM of reconstruction to lower than
0.2 with a model accuracy drop of less than 2% for CIFAR10. In contrast, the other baselines reduce
model accuracy by more than 10% and cannot achieve the same defense effect even with an accuracy
drop of more than 10%. Notably, the malicious server has more auxiliary data on CIFAR100 than
CIFAR10, making the defense harder on CIFAR100. However, InfoScissors can still achieve an SSIM
of lower than 0.2 with a model accuracy drop of less than 2%. We also evaluate our defense against the
KA attack with a larger auxiliary dataset on the malicious server, and the results, which can be found

8

in Appendix D, show that our defense can effectively defend against the KA attack when the server
has more auxiliary samples. For defense against rMLE attacks, InfoScissors achieves similar results
of reducing the SSIM to lower than 0.2 with a model accuracy drop of less than 2% for CIFAR10 and
1% for CIFAR100, respectively, which outperforms the other baselines significantly.

To perceptually demonstrate the effectiveness of our defense, we show the reconstructed images by
the KA attack on CIFAR10 after applying baseline defenses and our defense in Fig. 3. It is shown
that by applying the baseline defenses, the reconstructed images still contain enough information to
be recognizable with the model accuracy of lower than 70%. For our method, the reconstructed images
do not contain much information about the raw images, with the model accuracy higher than 76%.

5.3 Results of Prediction Protection

We evaluate InfoScissors on two datasets against the PMC attack and the AMC attack. We set different
defense levels for our methods (i.e., different λl values in Eq. (9)) and baselines to conduct multiple
experiments to show the trade-off between the model accuracy and attack accuracy. The defense results
against PMC and AMC attacks are shown in Fig. 5 and Fig. 6, respectively. To simulate the realistic
settings where the malicious server uses different model architectures to conduct MC attacks, we apply
different model architectures (MLP & MLP_sim) for MC attacks. The detailed model architectures
can be found in Appendix D.

64 68 72 76 800
10
20
30
40
50
60

68 70 72 74 76 78 80
10
20
30
40
50
60
70

36 38 40 42 44 46 480
4
8

12
16

36 38 40 42 44 46 480
5

10
15
20
25

(d) PMC-CIFAR100-MLP_sim(b) PMC-CIFAR10-MLP_sim (c) PMC-CIFAR100-MLP

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

 DP AN PPDL MID DC InfoScissors

(a) PMC-CIFAR10-MLP

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

Figure 5: Model accuracy v.s. attack accuracy on CIFAR10 and CIFAR100 against PMC attack.

68 70 72 74 76 78 800
10
20
30
40
50
60

72 73 74 75 76 77 78
10
20
30
40
50
60
70

38 40 42 44 46 480

5

10

15

38 40 42 44 46 480
5

10
15
20
25

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

 DP AN PPDL MID DC InfoScissors

(d) AMC-CIFAR100-MLP_sim(c) AMC-CIFAR100-MLP(b) AMC-CIFAR10-MLP_sim(a) AMC-CIFAR10-MLP

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

Att
ack

 ac
cur

acy
 (%

) ↓

Accuracy (%) ↑

Figure 6: Model accuracy v.s. attack accuracy on CIFAR10 and CIFAR100 against AMC attack.

For defense against PMC on CIFAR10, InfoScissors achieves 10% attack accuracy (equal to random
guess) by sacrificing less than 0.5% model accuracy, while the other baselines suffer a model accuracy
drop by more than 4% to achieve the same defense effect. Similarly, InfoScissors achieves 1% attack
accuracy on CIFAR100 by sacrificing less than 1% model accuracy, while the other baselines achieve
the same defense effect by sacrificing more than 6% model accuracy.

InfoScissors also shows robustness against AMC attack. InfoScissors achieves attack accuracy of
the rate of random guess by sacrificing less than 1% and 0.5% model accuracy on CIFAR10 and
CIFAR100, respectively. The other baselines achieve the same defense performance by sacrificing
more than 5% and 4% model accuracy, respectively.

5.4 Integration of Input and Prediction Protection

We evaluate the integration of input and prediction protection of InfoScissors. We set λd and λl
between 0.05-0.4 and evaluate the defenses. The results of defense against the KA and PMC attacks

9

on CIFAR10 and CIFAR100 are shown in Fig. 7. It is shown that InfoScissors can effectively protect
input data and predictions simultaneously with less than a 2% accuracy drop for both datasets.

75 76 77 780.0

0.2

0.4

0.6

0.8
 KA
 PMC KA

 PMC

Accuracy (%) ↑
SS

IM
 ↓

0

20

40

60

 At
tac

k a
ccu

rac
y (

%)
 ↓

45 46 470.0
0.2
0.4
0.6
0.8
1.0

Accuracy (%) ↑

SS
IM

 ↓

0

5

10

15

(b) CIFAR100

 At
tac

k a
ccu

rac
y (

%)
 ↓

(a) CIFAR10
Figure 7: InfoScissors against KA and PMC.

6 Conclusion and Limitation

We propose a defense method (InfoScissors) to defend against data leakage in collaborative inference
by reducing the mutual information between the model’s intermediate outcomes and the device’s input
data and predictions. The experimental results show that our method can defend against input leakage
and prediction leakage effectively. Our work can make the public aware of the risk of privacy leakage
posed by collaborative inference, which is considered a positive societal impact. One limitation of
this paper is that we only focus on the scenario where there is only one edge device, even though our
defense can be easily applied to the collaborative inference scenario with multiple edge devices.

Acknowledgments and Disclosure of Funding

This material is based upon work supported by the U.S. National Science Foundation under award
CNS-2112562 and NAIAD Award 2332744. This work is also supported by ARO W911NF-23-2-0224.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the U.S. National Science Foundation, ARO,
and their contractors.

References
[1] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,

D. Zhou, D. Metzler, et al., “Emergent abilities of large language models,” arXiv preprint
arXiv:2206.07682, 2022.

[2] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer, U. Gasser, G. Groh,
S. Günnemann, E. Hüllermeier, et al., “Chatgpt for good? on opportunities and challenges of large
language models for education,” Learning and individual differences, vol. 103, p. 102274, 2023.

[3] G. Li, L. Liu, X. Wang, X. Dong, P. Zhao, and X. Feng, “Auto-tuning neural network quantization
framework for collaborative inference between the cloud and edge,” in Artificial Neural Networks
and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Net-
works, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp. 402–411, Springer, 2018.

[4] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 1, pp. 615–629, 2017.

[5] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An efficient training and
inference engine for intelligent mobile cloud computing services,” IEEE Transactions on Mobile
Computing, vol. 20, no. 2, pp. 565–576, 2019.

[6] A. Banitalebi-Dehkordi, N. Vedula, J. Pei, F. Xia, L. Wang, and Y. Zhang, “Auto-split: A general
framework of collaborative edge-cloud ai,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pp. 2543–2553, 2021.

[7] M. Li, Y. Li, Y. Tian, L. Jiang, and Q. Xu, “Appealnet: An efficient and highly-accurate
edge/cloud collaborative architecture for dnn inference,” in 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 409–414, IEEE, 2021.

10

[8] N. Shlezinger, E. Farhan, H. Morgenstern, and Y. C. Eldar, “Collaborative inference via
ensembles on the edge,” in ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8478–8482, IEEE, 2021.

[9] H. Zhou, W. Zhang, C. Wang, X. Ma, and H. Yu, “Bbnet: a novel convolutional neural network
structure in edge-cloud collaborative inference,” Sensors, vol. 21, no. 13, p. 4494, 2021.

[10] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against collaborative inference,” in
Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162, 2019.

[11] Z. He, T. Zhang, and R. B. Lee, “Attacking and protecting data privacy in edge–cloud collaborative
inference systems,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9706–9716, 2020.

[12] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural information
processing systems, vol. 32, 2019.

[13] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from gradients,” arXiv
preprint arXiv:2001.02610, 2020.

[14] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu, and T. Wang, “Label inference
attacks against vertical federated learning,” in 31st USENIX Security Symposium (USENIX
Security 22), pp. 1397–1414, 2022.

[15] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and C. Wang, “Label leakage and
protection in two-party split learning,” arXiv preprint arXiv:2102.08504, 2021.

[16] Y. Liu, Z. Yi, Y. Kang, Y. He, W. Liu, T. Zou, and Q. Yang, “Defending label inference and
backdoor attacks in vertical federated learning,” arXiv preprint arXiv:2112.05409, 2021.

[17] T. Wang, Y. Zhang, and R. Jia, “Improving robustness to model inversion attacks via mutual
information regularization,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, pp. 11666–11673, 2021.

[18] T. Zou, Y. Liu, and Y.-Q. Zhang, “Mutual information regularization for vertical federated
learning,” arXiv preprint arXiv:2301.01142, 2023.

[19] S. Oh, J. Park, S. Baek, H. Nam, P. Vepakomma, R. Raskar, M. Bennis, and S.-L. Kim,
“Differentially private cutmix for split learning with vision transformer,” arXiv preprint
arXiv:2210.15986, 2022.

[20] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu, and T. Wang, “Label inference
attacks against vertical federated learning,” in 31st USENIX Security Symposium (USENIX
Security 22), (Boston, MA), pp. 1397–1414, USENIX Association, Aug. 2022.

[21] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard, “From the information bottleneck
to the privacy funnel,” in 2014 IEEE Information Theory Workshop (ITW 2014), pp. 501–505,
IEEE, 2014.

[22] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottleneck,”
arXiv preprint arXiv:1612.00410, 2016.

[23] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on model predictions in vertical
federated learning,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pp. 181–192, IEEE, 2021.

[24] X. Jiang, X. Zhou, and J. Grossklags, “Comprehensive analysis of privacy leakage in vertical
federated learning during prediction,” Proceedings on Privacy Enhancing Technologies,
vol. 2022, no. 2, pp. 263–281, 2022.

[25] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catastrophic data leakage in vertical
federated learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 994–1006,
2021.

11

[26] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pp. 1322–1333, 2015.

[27] J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable defense against privacy
leakage in federated learning from representation perspective,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9311–9319, 2021.

[28] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how easy is it
to break privacy in federated learning?,” Advances in Neural Information Processing Systems,
vol. 33, pp. 16937–16947, 2020.

[29] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through gradients:
Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

[30] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature leakage
in collaborative learning,” in 2019 IEEE symposium on security and privacy (SP), pp. 691–706,
IEEE, 2019.

[31] F. Mireshghallah, M. Taram, P. Ramrakhyani, A. Jalali, D. Tullsen, and H. Esmaeilzadeh,
“Shredder: Learning noise distributions to protect inference privacy,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 3–18, 2020.

[32] A. Singh, A. Chopra, E. Garza, E. Zhang, P. Vepakomma, V. Sharma, and R. Raskar, “Disco:
Dynamic and invariant sensitive channel obfuscation for deep neural networks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12125–12135, 2021.

[33] B. Rassouli and D. Gündüz, “Optimal utility-privacy trade-off with total variation distance
as a privacy measure,” IEEE Transactions on Information Forensics and Security, vol. 15,
pp. 594–603, 2019.

[34] Q. Wu, J. Tang, S. Dang, and G. Chen, “Data privacy and utility trade-off based on mutual
information neural estimator,” Expert Systems with Applications, vol. 207, p. 118012, 2022.

[35] F. Mireshghallah, M. Taram, A. Jalali, A. T. T. Elthakeb, D. Tullsen, and H. Esmaeilzadeh,
“Not all features are equal: Discovering essential features for preserving prediction privacy,” in
Proceedings of the Web Conference 2021, pp. 669–680, 2021.

[36] M. Malekzadeh and F. Kawsar, “Salted inference: Enhancing privacy while maintaining
efficiency of split inference in mobile computing,” in Proceedings of the 25th International
Workshop on Mobile Computing Systems and Applications, pp. 14–20, 2024.

[37] K. Chaudhuri and D. Hsu, “Sample complexity bounds for differentially private learning,” in
Proceedings of the 24th Annual Conference on Learning Theory, pp. 155–186, JMLR Workshop
and Conference Proceedings, 2011.

[38] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang, “Deep learning with
label differential privacy,” Advances in neural information processing systems, vol. 34,
pp. 27131–27145, 2021.

[39] P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “Club: A contrastive log-ratio upper
bound of mutual information,” in International conference on machine learning, pp. 1779–1788,
PMLR, 2020.

[40] M. Yang, Z. Li, J. Wang, H. Hu, A. Ren, X. Xu, and W. Yi, “Measuring data reconstruction
defenses in collaborative inference systems,” Advances in Neural Information Processing
Systems, vol. 35, pp. 12855–12867, 2022.

[41] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, (New York,
NY, USA), p. 1310–1321, Association for Computing Machinery, 2015.

12

A Data Leakage in Collaborative Inference

A.1 Input Leakage from the Representation

Input
images

Reconstruc
ted images

Figure 8: Reconstructed im-
ages of KA attack.

With the received representation ri, the server can reconstruct the input
dataxi on the edge device by conducting model inversion (MI) attacks [17].
Notably, the head model on the edge device is usually shallow due to the
computation resource limitation, which aggravates input leakage from the
representation [11]. We conduct experiments on CIFAR10 with ResNet18
to demonstrate the input leakage problem. One convolutional layer is
deployed on the device as the head model, and one basic block is deployed
as the classifier. The malicious server conducts Knowledge Alignment
(KA) attack [17] to recover the input image from the received representation
through a generator. The detailed experimental settings can be found in
Sec. 5. The reconstructed images are shown in Fig. 8. The high-quality
reconstructed images illustrate the collaborative inference’s vulnerability
to the device’s input leakage from the representation.

A.2 Prediction Leakage from the Feature

The training process enables the cloud server to extract high-level features useful for the collaborative
inference task. These high-level features allow the malicious server to fine-tune a classifier head with
very few labeled data and accurately conduct inference. The leakage of the prediction makes the edge
device holder’s privacy, including behavior and preference, exposed to the cloud server. For example,
prediction leakage of a collaborative inference-based navigation mobile app allows the cloud server to
infer the positions and destinations of the app users. To demonstrate the extent of prediction leakage by
the features, we follow the experimental setup in Appendix A.1 and let the cloud server conduct model
completion (MC) attack [14] to train a classifier using a small number of auxiliary labeled samples. We
also let the cloud server train an entire model with the auxiliary dataset from scratch for comparison.
The results are shown in Tab. 1.

Table 1: Compared accuracy of the classifier on the device and the models on the cloud server by conducting MC
attack and training from scratch.

Accuracy(%)
Classifier on the device (clean accuracy) 77.20
MC attack on the server(40 labels) 69.31
Train from scratch on the server(40 labels) 15.34

It is shown that by fine-tuning a classifier with the collaboratively trained encoder, the cloud server can
achieve an accuracy of nearly 70% using an auxiliary dataset with only 40 labeled samples. However,
training from scratch cannot achieve decent accuracy using the same auxiliary dataset, which shows
that the high-level features extracted by the encoder on the server cause prediction leakage.

13

B Algorithm

Algorithm 1 Training algorithm of InfoScissors. ← means information is sent to the server;←
means information is sent to the device; red steps are conducted on the cloud server.

Input: Dataset {(xi,yi)}Ni=1; Learning rate η.
Output: θh;θe;θc;ψ;ϕ.
1: Initialize θh,θe,θc,ψ,ϕ;
2: for a batch of data {(xi,yi)}i∈B do
3: {ri}i∈B←{fhθh(xi)}i∈B;
4: Ld_a← 1

|B|
∑
i∈B

loggψ(xi|ri);

5: ψ←ψ+η∇ψLd_a;
6: {zi}i∈B←{feθe(ri)}i∈B;
7: Lc← 1

|B|
∑
i∈B
L(fcθc(zi),yi);

8: Ll_a← 1
|B|

∑
i∈B

loghϕ(yi|zi);

9: θc←θc−η∇θcLc;
10: ϕ←ϕ+η∇ϕLl_a;
11: {yn′

i
}i∈B← randomly sample {yn′

i
}i∈B from {yi}i∈[N];

12: {xk′i}i∈B← randomly sample {xk′i}i∈B from {xi}i∈[N];

13: Ld_r← 1
|B|

∑
i∈B
−loggψ

(
xk′i |r

2
i

)
;

14: Ll_r← 1
|B|

∑
i∈B
−loghϕ

(
yn′
i
|z2i

)
;

15: {∇ziL}i∈B←{∇zi [(1−λd−λl)Lc+λlLl_a+λlLl_r;
+λdLd_a+λdLd_r]}i∈B;

16: ∇θeL← 1
|B|

∑
i∈B
∇ziL∇θezi;

17: θe←θe−η∇θeL;
18: {∇riL}i∈B←{∇ziL∇rizi}i∈B;
19: ∇θhL← 1

|B|
∑
i∈B
∇riL∇θhri;

20: θh←θh−η∇θhL;
21: end for

14

C Proofs of theorems

Proof. According to Corollary 3.3 in [39], we have:

I(z;y)< IvCLUB(z;y)+KL(p(y|z)||hϕ(y|z)). (18)

Then we have

I(z;y)=Ep(z,y)logp(y|z)−Ep(y)logp(y)<ϵ, (19)

where ϵ = IvCLUB(z;y) +KL(p(y|z)||hϕ(y|z)). With the samples {xi,yi}, I(z;y) has an unbiased
estimation as:

1

N

N∑
i=1

logp(yi|zi)−
1

N

N∑
i=1

logp(yi)<ϵ. (20)

Suppose the adversary has an optimal model hm to estimate p(yi|zi) such that hm(yi|zi)=p(yi|zi)
for any i, then

1

N

N∑
i=1

loghm(yi|zi)−
1

N

N∑
i=1

logp(yi)<ϵ. (21)

For classification tasks, we have

1

N

N∑
i=1

CE[hm(zi),yi]>CErandom−ϵ. (22)

Proof. Similar with Eq. (20), we derive the following for data protection:

1

N

N∑
i=1

logp(xi|ri)−
1

N

N∑
i=1

logp(xi)<ϵ, (23)

where ϵ = IvCLUB(r; x) + KL(p(x|r)||gψ(x|r)). Following the assumption that p(x|r) follows a
Gaussian distribution of variance 1, suppose the adversary obtains an optimal estimator gm of the mean
of p(x|r) such that gm(xi|ri)=p(xi|ri) for any i. Then we have

1

N

N∑
i=1

loggm(xi|ri)<
1

N

N∑
i=1

logp(xi)+ϵ

1

N

N∑
i=1

log
1√
2π
e−

1
2 [xi−g

m(ri)]
T [xi−gm(ri)]<

1

N

N∑
i=1

logp(xi)+ϵ

− 1

N

N∑
i=1

log
√
2π− 1

2N

N∑
i=1

[xi−gm(ri)]
T
[xi−gm(ri)]<

1

N

N∑
i=1

logp(xi)+ϵ

1

2N

N∑
i=1

[xi−gm(ri)]
T
[xi−gm(ri)]>

1

N

N∑
i=1

log

√
2π

p(xi)
−ϵ.

(24)

We denote the dimension of x as Q and 1
N

N∑
i=1

log
√
2π

p(xi)
as κ. Then we have

1

N

N∑
i=1

MSE[gm(ri),xi]>
2(κ−ϵ)
Q

. (25)

15

D Baselines and Additional Experimental Results

D.1 Baselines

We compare InfoScissors with five existing defense baselines: (1) Differential Privacy (DP) [10, 11,
19] protects the data with a theoretical guarantee by clipping the representation and gradients norm and
injecting perturbations to the representations and gradients. (2) Adding Noise (AN) [40] is proven
effective against data leakage in collaborative learning by adding Laplacian noise to the representations
and gradients. (3) Data Compression (DC) [20] prunes representations and gradients that are below a
threshold magnitude, such that only a part of the representations and gradients are sent to the server.
(4) Privacy-preserving Deep Learning (PPDL) [41] is a comprehensive privacy-enhancing method
including three defense strategies: differential privacy, data compression, and random selection. (5)
Mutual Information Regularization Defense (MID) [18] is the SOTA defense against data leakage
in split learning and collaborative inference. MID is also based on mutual information regularization
by applying Variational Information Bottleneck (VIB).

D.2 Additional results

The malicious server uses models with different architectures (MLP and MLP_sim) to conduct MC
attacks. MLP_sim has one FC layer. MLP has three FC layers with a hidden layer of size 512×256.

Besides the experiments in Sec. 5, we also evaluate our defense against the KA attack with a larger
auxiliary dataset on the malicious server. The server has 80 and 800 labeled samples to conduct KA
and MC attacks for CIFAR10 and CIFAR100, respectively, and the results are shown in Fig. 9.

38 40 42 44 46 48
0.2
0.4
0.6
0.8
1.0

60 64 68 72 76 80
0.2

0.4

0.6

0.8

SS
IM

Accuracy(%)
(b) CIFAR100

SS
IM

Accuracy(%)
(a) CIFAR10

Figure 9: Model accuracy v.s. SSIM on CIFAR10 and CIFAR100 against KA attack with double numbers of
auxiliary samples in Fig. 3.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions in the introduction conclude the main contributions of this
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]

17

Justification: Please check Sec. 4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please check Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

18

Answer: [Yes]
Justification: Please check our supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please check Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please check Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: Please check Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Please check Sec. 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

20

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release a model or scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the corresponding papers when using the pre-trained models and existing
datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets

21

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not have new datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Related Work
	Preliminary
	Collaborative Inference Setting
	Threat Model

	Method
	Defense Formulation
	Learning Algorithm
	Theoretical Analysis
	Superiority over VIB

	Experiments
	Experimental Setup
	Results of Input Protection
	Results of Prediction Protection
	Integration of Input and Prediction Protection

	Conclusion and Limitation
	Data Leakage in Collaborative Inference
	Input Leakage from the Representation
	Prediction Leakage from the Feature

	Algorithm
	Proofs of theorems
	Baselines and Additional Experimental Results
	Baselines
	Additional results

