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Abstract

Large language models (LLMs) have demonstrated remarkable capabilities, but
their outputs can sometimes be unreliable or factually incorrect. To address this, we
introduce Self Logits Evolution Decoding (SLED), a novel decoding framework
that enhances the truthfulness of LLMs without relying on external knowledge
bases or requiring further fine-tuning. From an optimization perspective, our
SLED framework leverages the latent knowledge embedded within the LLM by
contrasting the output logits from the final layer with those from early layers.
It then utilizes an approximate gradient approach to enable latent knowledge to
guide the self-refinement of outputs, thereby effectively improving factual accuracy.
Extensive experiments have been conducted on established benchmarks across
a diverse range of model families (LLaMA 2, LLaMA 3, Gemma) and scales
(from 2B to 70B), including more advanced architectural configurations such as the
mixture of experts (MoE). Our evaluation spans a wide variety of tasks, including
multi-choice, open-generation, and adaptations to chain-of-thought reasoning tasks.
The results demonstrate that SLED consistently improves factual accuracy by up to
20% compared to existing decoding methods while maintaining natural language
fluency and negligible latency overhead. Furthermore, it can be flexibly combined
with other decoding methods to further enhance their performance.

1 Introduction

Large Language Models (LLMs) have achieved remarkable breakthroughs in recent years, demon-
strating exceptional performance across various domains [1, 2, 35, 36, 44, 47, 48]. How-
ever, a significant challenge associated with LLMs is their tendency to hallucinate or distort
the truth, resulting in outputs that are not factual [15, 17, 65]. This issue of hallucination
undermines the reliability and trustworthiness of LLMs in practical applications. A popu-
lar strategy for improving the LLM factuality involves refining the decoding process [43, 53].
Decoding focuses on how the model selects the next to-
ken during the generation process, which can significantly

influence the factual accuracy of the output. The decod- izilnrl).:l:

ing methods can be cost-effective since (a) they do not RSB Con

rely on external knowledge and (b) no additional train- ~ 'mplicitLeaming \E"P“‘“T'a‘"‘"g
ing is required. Furthermore, decoding methods can be ‘ ) !
synergistically combined with other techniques aimed at ,_:t::',t M -
improving the LLM factuality, such as retrieving infor- Knowledge Inference 2
mation from external knowledge bases [24, 25], various  What the LLM knows What the LLM tells
fine-tuning strategies for better alignment [46, 48], or en-

semble learning methods [10]. Figure 1: Factuality decoding overview.
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Figure 2: Illustration of our Self Logits-Evolution Decoding (SLED) workflow.

Recent studies [22, 26, 42, 50] suggest that LLMs sometimes have learned the factual content based
on extensive pretraining or fine-tuning, although they fail to produce the correct answer when a
user queries the model. This has inspired the development of several factuality decoding methods
[7, 26, 27, 64] to reveal what the model implicitly "knows." Figure 1 summarizes the underlying
mechanism of these factuality decoding methods. The LLMs’ output distribution is derived by
applying the softmax function to the output logits from the final layer. During the training phase, this
distribution is optimized based on the real-world factuality distribution represented by the training
dataset. However, during the inference phase, "what the LLM tells" might still contain factual errors,
which implies a discrepancy between the output distribution and the real-world factuality distribution.
While the real-world distribution remains inaccessible during the inference phase, the model’s latent
knowledge ("what the model knows") may have implicitly learned some factual content correctly
during the training phase [22, 50]. Therefore, a key challenge for factuality decoding strategies lies in
effectively harnessing the latent knowledge embedded within LLMs to refine the output distribution
(logits) during inference.

To address this challenge, we propose Self Logits Evolution Decoding (SLED), a novel factuality
decoding approach that leverages the latent knowledge within LLMs by contrasting the final layer’s
logits with early layers’ logits. During the decoding process, as LLMs progress from early to final
layers, they progressively incorporate factual information stored in each layer into the output. SLED
tracks this evolution process to unearth the latent knowledge within LLMs, and enables the “self-
evolution” of the output distribution further to align it more closely with real-world facts. Furthermore,
our approach recognizes that the latent knowledge within LLMs, while valuable, may not always be
perfect. Therefore, instead of simply replacing the original outputs with this latent knowledge, SLED
integrates it into the original logits through an operation similar to “single-step gradient descent”
over the output logits during the inference time. This operation minimizes the Kullback-Leibler
(KL) divergence between the latent knowledge distribution and the output distribution, effectively
balancing the two and mitigating potential drawbacks such as overfitting or biased outputs. Figure
2 illustrates the SLED workflow, highlighting how SLED optimizes the output logits, leading to a
more factual output distribution. We evaluate SLED on various LLMs (e.g., LLaMA 2 [48], LLaMA
3 [1], Gemma [31]) and benchmarks to demonstrate its state-of-the-art performance in layer-wise
contrastive decoding methods. In summary, our main contributions are:

* We propose SLED, a novel decoding method that aligns LLMs outputs with factual knowl-
edge without requiring an external knowledge base or fine-tuning data.

* We conduct extensive experiments across a range of LLLMs, with varying configurations
and scales. The results demonstrate that SLED consistently improves factual accuracy
on various tasks and benchmarks, including multiple-choice, open-ended generation, and
chain-of-thought reasoning tasks.

e SLED can be flexibly integrated with other factuality decoding methods to enhance their
effectiveness further.

* We provide a new interpretable perspective for understanding layer-wise contrastive decoding
methods, paving the way for further developments in factuality decoding.
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Figure 3: We analyze the next-token predictions of three LLaMA-2-base models using the logits from
each layer individually. This analysis is performed on 200 true claims from the FACTOR dataset.
The results verify that the logits distribution at the final layer is closer to the real-world distribution
than all the early layers in terms of KL divergence.

2 Self Logits Evolution Decoding

A large language model, equipped with N layers and a vocabulary V = [v1,ve, ..., v4], typically
generates text in the next-token prediction fashion. For each given prefix, the model computes the
logits at the final (N-th) layer, logits 5 2 (Cc1,nys L2,N)s - - - » £(a,n))» Which are obtained by applying
a linear transformation to the hidden states of the final layer, projecting the high-dimensional hidden
state vectors onto the space of the vocabulary size. Subsequently, the output distribution Py, at
the final (IV-th) layer for the next token is derived by applying softmax function on the logits,

Plogitsy = (P18 - - > P(a,n)) = softmaz (logits 5 /T)

where 7 is the temperature parameter. Therefore, for each p(; ) (1 <14 <d), we have

d
PNy = exp(li,Ny/T)/S, where S = Zj:1 exp(€(j,n) /7).

Similarly, we can also derive the logits from early layers by applying the same linear transformation
mentioned above to their hidden states. For any early layer n (n < N), we denote its logits as

logits, = (¢c1,nys - - - (d,n)) and the corresponding distribution as Pjogiss = (PAn)s -+ Didyn))-

2.1 Logits Evolution

To improve factual accuracy, it is crucial that the correct token v; receives a higher value of logits 5
to ensure a higher probability value p(; y) in the output distribution Pjegits - From a mathematical
perspective, this means aligning the model’s output distribution Py, . closely with the real-world
factuality distribution P,.,;. Specifically, we can formulate this goal as optimizing the following loss
function £ regarding the logits:

L(logits) £ K L(Preal, Piogits ), Where logits = ({1, ..., £q), Piogits = softmax(logits/T) (1)

We describe the above optimization as Logits Evolution. Interestingly, the training of LLMs also
aims at minimizing the divergence (typically the KL divergence, as the training loss function is often
the cross-entropy loss) between the ground truth P,,; and the output distribution Py, . During the
training phase, the logits evolution is driven externally by the real-world distribution P,.,; presented
in the training dataset, and the corresponding solution is logits = logits ;. However, Pyeq is not
accessible during the inference phase. To address this challenge, SLED utilizes the model’s latent
knowledge to estimate P,..,; and enables "self-evolution” of the logits. We denote the estimation as
Pratent and the self logits evolution can be achieved by the following gradient-descent operation:

logitSN = lOngSN — Q- vlogitsN KL(Plutent7 7)logits,\, ) (2)

The parameter «, termed the Evolution Rate, governs the magnitude of adjustments applied to
logits y in the direction of the gradient Vogiss, K L(Piatent Piogits v ). In the following Section 2.2
and 2.3, we discuss how we derive the Pj et as the estimation of the real-world distribution P,q;.



2.2 Estimate P,., by Tracking the Logits Evolution Direction throughout Layers

The core principle of our method involves leveraging the difference between each early layer’s logits
and the final layer’s logit, logits,, — logits y to approximate the gradient of K L(Preai, Piogits) at
logits = logits,,. Then we estimate Py, based on this approximation.

This is inspired by a new perspective of interpreting the training phase of LLMs as the evolution
of logits described in Problem 1. As mentioned above, the solution derived by the training phase
is the final layer’s logits logits = logits 5, since the final layer’s logits 5, directly engage with the
real-world distribution P,.,; through the loss function in training. This implies that we can generally
consider the final logits logits 5 to be a better solution than the logits from an early layer logits,,, with
K L(Preats Piogits),) < K L(Preat, Piogits, ). We present some examples in Figure 3 to demonstrate
this. Based on this discussion, if we contrast the final layer’s logits with the early layer’s logits,
we can consider the direction (orientation) of logits, — logits, can approximately align with the
direction of the gradient Vogits X L(Preat, Plogits )| togits=1ogits, - To further verify this motivation,
we calculate the cosine similarity between logits, — logits y and Viogits, KX L(Preats Piogits,) for
thousands of tokens across different models in Figure 7. We find that the majority of these values are
positive, which means that the directions of these two vectors are close.

Hence, for each early layer n, we propose to maximize the following function of cosine similarity
and derive the P\ to estimate the P,eq:.

latent

p) arg max (CosSim(logitsn — logits 5, Viegits, KL(P, Plogits. ), 0) 3)

latent
2.3 Achieving the Self Logits Evolution in Three Phases

Based on the above analysis, we can introduce the procedures of SLED: First, we estimate Pl(:t)em
for each early layer n using the gradient approximation in Section 2.2. Subsequently, we apply a
weighted average on {Pz(;?em} across all early layers n < N to derive Pjqtent, Which serves as the
final estimation of the real-world distribution. Finally, we apply Pj4¢cn: in Equation 2 to facilitate the
self-evolution of logits , thereby derive the updated logits, lgg;z_’t/s N-

in direction

lOgitSn — lOgitSN ~ vlogitsn KL(Preah ,Plogits,,,,)
Phase 1 (n) Phase 2 Phase 3 o
— Platent logits
Estimate latent Ensemble aven Self-evolution in Eq 2 g N

Phase 1:  An exhaustive search for an exact solution to the complex optimization problem (Equation
3) is computationally impractical. We can reduce the solution space by the following. Suppose
the real-world factuality distribution dictates that the next word to be generated is the -th token v;
from the vocabulary V. Thus Pyeq = P.,, where P, represents a standard basis vector (one-hot
vector) with the ¢-th component set to 1 and all other components set to 0. Then, we can simplify the
aforementioned optimization problem by limiting the solution space to {P., };izo and decide which
token ¢ should be selected. The corresponding gradient when P = P, has the following formulation.

Proposition 1. The gradient of K L(Pe,, Plogits) at logits = logits,, is:

vlogitsnKL(Pe,,vPlogitsn) = (Plogits" - Pei)/T = (p(l,n)’ <y Plin) — 1,... 7p(d,n)) /7— 4
We calculate the cosine similarity between the gradient V4545, K L(P.,, Plogitsn) and the difference
logits,, — logits 5 for each token in the vocabulary V. Then we select the P.,. of which the gradient

is closest to logits,, — logits  as the estimation P;:}t)em. Mathematically, this involves selecting *
according to the following criterion

i* = arg max ml(.”), where ™
i<i<d

i

= max (CosSim(logits,, — logits y, Piogits, — Pe.),0) ,

(n)

and adopting P Pe,.. as the "hard estimation" of P,..q;. Drawing from the concept of hard and

latent —
soft targets in label smoothing and knowledge distillation, we further extend it to the "soft estimation",
(n) () (n) M) /(0 (n) _ (5 ()32 N
P o= mi", o oom™ o my! )/m™, where m;" = (m;"’)* and m = Zi:l m;"

We square {mg")} to moderately amplify their differences. Prior studies prove that soft targets usually
offer stronger generalization capabilities, more information, and more robustness to noise than hard
targets [13, 34, 45, 59, 62]. Hence, we adopt the soft estimation in lieu of the hard estimation.



Question (The ground truth is $460) For 5 hours of overtime, her earnings
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Figure 4: An example from GSM8K demonstrating SLED’s mechanism. SLED derives the estima-

tions Pl(:;)em by contrasting final layer’s logits logits( N) with early layers’ logits {logits,, }. We list the

latent

token with the highest probability value from the P for different early layers. As shown, SLED

downplays incorrect tokens by assigning lower weights s(™) to the corresponding Pl(:t)ent' Conversely,
if the estimation is correct, the weights are relatively larger. The parameter evaluation scale is set to 2.

Phase 2: We ensemble Pl(:t)em across all layers by computing a weighted average of the set
{P(n) } and adopt it as the final estimation of the Pjgzent:

latent
N . . .
Platent = Y o sMP) where s = m/ O

This estimation suggests that the weight s(™ of certain layer n will be larger if the corre-
sponding gradient approximation logits,, — logitsy is more closely aligned with the gradients
{Viogits, KL(Pe;, Piogits, ) } for the tokens in the vocabulary. This in turn amplifies the influence
of layer n on the final estimation, which is a desirable effect in our method. Figure 4 demonstrates
that SLED can downplay incorrect tokens based on the gradient alignment. One can further validate
that for each component m; in the final estimation Pjgtent L (m1,ma, ..., mg), the following
relationship holds: m; = Zﬁ;o mgn) / (Zg:o ijl m§")). This property simplifies the description
in Algorithm 1.

N
(n)
n=0 m )

Phase 3:  Applying Piatent in Equation 2 enables us to derive the gradient necessary for steering
the self-evolution on the final layer’s logits logits y .

Proposition 2. The gradient of K L(Piqtent, Plogits) at logits = logits y is:
Viogits y K L(Piatent Piogits ) = (Plogitsy — Platent)/T = (Pa,n) — M1, .- -, D(a,n) — Md) /T
Then we can derive the self-evolved logits lgﬁs N
logits 2 (Lanys-- > Ly - Biany)s where 0 vy = €6 ny — (P ny —ma) /7. (5)
2.4 Computational Complexity and Design Decisions

For each layer, computing CosSim(logits,, — logits Piogits, — P.,) for every token v; in the
vocabulary V needs O(d?) operations. To reduce the computational complexity, we select only a
subset Vr, , where the token v; € Vy, has the top-£ highest logits in the final layer. In this scenario,
we only initiate the self-evolution in Equation 2 of the logits corresponding to these top-k tokens.
For the remaining tokens, which have lower probabilities, their logits are adjusted to a very lower
numerical value, e.g., —1000. This strategy significantly reduces the computational complexity, while
maintaining focus on the most relevant tokens. We name the parameter k, as Evolution Scale, since
it determines the number of top-probability tokens active for self-evolution.

Q 2.1: Why SLED contrast the final layer with all the early layers, instead of picking one premature
layer to contrast based on JSD?

DolLa selects a subset of early layers to form a candidate set. Then it calculates the Jensen-Shannon
Divergence (JSD) between the final layer and each layer in this set. Their strategy is to choose the



Algorithm 1 Self Logits Evolution Decoding

1: Initialization: LLM with N layers, tnputs, evolution rate «, evolution scale £ > 0, n < 0,
temperature parameter 7, and the one-hoc vectors {P,, } defined in Section 2.3.

2: Feed the inputs into the LLM to obtain the logits logits,, = (£(1 n), . . -, {(4,n)) and probabilities
Piogits, = (P(1,n)» - - - »P(d,n)) = s0ftmax(logits, /T) at each layer n, where n < N.

3: Identify the tokens with the top-k largest values in logits 5 and denote their indices by Ij,.

4: for each early layer n, (n < N) do

5 Compute differences for top-k logits logits,, — logits .

6: Calculate mﬁ") = [max (CosSim(logits,, — logits , Plogits, — Pe,),0)] *iel.

7: end for

8

N m(m . .

: Compute weighted average m; = % across different layers for each ¢ € Ij.
n=12-je1;, My
9: for each i from 1 to d do ' ~
10: Set E(i,N) = g(i,N) - %(p(,;’N) — ml) if i € I}, else Set g(i,N) =n<0.

11: end for

12: Output: The self-evolved logits are logAth/sN = (2(1,N)7 ce E(in)’ . 757(,1_,]\,)).

layer with the highest JSD as the premature layer, and the chosen layer will be contrasted with the
final layer to update probabilities. Obviously, if this strategy is reasonable, a larger candidate set
should lead to a better choice of the premature layer and, consequently, enhanced overall performance.
However, a paradoxical finding from their experimental results, which our tests also confirm in the
discussion in Section 3.5, is that a larger candidate set for DoLa leads to decreased performance.
Specifically, when the candidate set for DoLa ranged from O to 32 layers for LLaMA-2-7B-Base, the
performance was inferior compared to a smaller set of O to 16 layers. This fundamental flaw indicates
that selecting a good candidate set remains a challenge when applying DoLa. In contrast, our method
does not face this concern as it applies an ensemble approach to all early layers. It is also important
to note that our method works well even when only contrasting the final layer with part of the early
layers, as demonstrated in Section 3.5 and A, proving the robustness of our approach.

Q 2.2: Why not use Piatent directly as the model’s output distribution?

It is crucial to understand that P, is merely an estimation of the real-world distribution based
on the model’s latent knowledge instead of the exact P,.,;. Consequently, relying solely on Pjutent,
similar to DoLa, might lead to inaccuracies, as the latent knowledge can be imperfect. The original
logits logits ,; are still important as they are refined directly by real-world data during training. The
evolution rate o in Equation 2, serves to balance this trade-off, enabling a reciprocal enhancement
between Pjqien: and the original logits ;. More ablation studies are provided in Section 3.5 and A.

Q 2.2: Considering that SLED adopts logits,, — logits y; as the estimation of the gradient, why not
directly apply it in Equation 2?

It is important to note that while logits,, — logits y is unconstrained, the gradients estimated in
Equation 2 (e.g., p(1,n) — ™M1, -, P,N) — myq) are constrained within [—1, 1]. Thus, direct substi-
tution could lead to a mismatch in magnitudes and might also introduce unexpected noise. Proper
normalization and subsequent aggregation of estimations from different layers are precisely what our
method addresses in Section 2.2 and 2.3. Further analysis is provided in Section A.

3 Experiments

As a novel layer-wise contrastive decoding approach, we first benchmark SLED against the state-
of-the-art approach DoLa [7] across a diverse range of model families (LLaMA 2, LLaMA 3,
Gemma) and model scales (from 2B to 70B), including the more advanced mixture of experts (MoE)
architecture, as detailed in Section 3.2 and 3.3. The results showcase notable factuality improvements
across a variety of tasks, including multi-choice, open-generation, and adaptations to chain-of-thought
reasoning tasks. Then, in Section 3.4, we integrate our method with other established factuality
decoding techniques, illustrating that SLED can further enhance their performance. In Section 3.5, we
further conduct in-depth studies on mitigating the repetition issue, layer selection, various parameter
settings, and latency overhead to gain more comprehensive insights into SLED’s performance. We



Table 1: Comparison on LLaMA 2 model family. The best results are in bold for each dataset/metric.
SLED outperforms DoLa and vanilla greedy decoding.

Model&Method Truthful QA (MC) FACTOR Truthful QA (Open-Ended) CoT
MC1 MC2 MC3 %Truth  %Info  %T*I %Reject StrQA GSMS8K
LLaMA-2-7B-Base  33.17 59.42 31.78 58.15 32.80  90.09 23.99 8.45 60.96 14.03
+DoLa 32.56 63.03 30.57 62.49 35.74 9523 3231 2.57 60.61 14.71
+SLED (ours) 34.15 62.57 31.89 67.27 55.81 94.61 52.87 0.12 61.31 15.01
LLaMA-2-7B-Chat  35.62 57.46 32.07 56.78 59.24 7895 38.68 17.50 63.67 21.08
+DoLa 3341 61.93 30.35 56.65 58.02  87.03 45.78 13.10 64.32 21.00
+SLED (ours) 37.08 63.86 32.90 64.70 67.07 88.13 55.69 11.02 64.67 21.15
LLaMA-2-13B-Base  33.69 62.75 31.74 63.69 31.21 91.55 23.26 7.96 66.07 28.66
+DoLa 29.25 62.13 3029 57.08 37.58 9241 30.11 7.47 65.55 18.88
+SLED (ours) 34.15 63.62 31.89 70.91 38.31 94.85 33.29 5.02 66.81 29.34
LLaMA-2-13B-Chat  36.47 63.05 32.77 62.06 60.34  86.54 47.12 13.59 69.87 36.47
+DoLa 3452 6324 3148 58.08 60.22  90.33 51.16 9.67 67.90 34.57
+SLED (ours) 37.09 63.75 32.60 67.50 63.65 95.23 58.87 5.26 69.96 36.54
LLaMA-2-70B-Base  33.66 61.10 32.33 72.78 55.45 62.55 18.48 36.74 75.20 56.33
+DoLa 2693 60.33 29.42 61.92 60.95 70.62 32.07 17.72 73.45 43.37
+SLED (ours) 3513 64.92 33.52 77.49 59.24 8299 43.70 13.10 75.20 57.09
LLaMA-2-70B-Chat 35.98 64.18 32.99 69.07 49.57  81.27 31.33 29.13 77.25 54.59
+DoLa 31.58 5440 3231 58.28 61.44 7797 39.90 21.28 74.41 49.05
+SLED (ours) 38.31 66.71 34.66 73.98 62.55 84.70 47.74 14.98 77.38 54.81

also extend our analysis with additional ablation studies and results across more benchmarks in
Section A and C in the Appendix, and provide several examples of generated text as the qualitative
study in Section B.

3.1 Experimental Setup

Benchmarks We compare our method with baselines on several multiple-choice and open-ended
generation tasks. For multiple-choice question tasks, we use the Truthful QA [29] and FACTOR (Wiki)
[33] datasets to assess the LLMs’ factuality in short-answer/long-paragraph scenario, respectively.
For open-ended generation tasks, we adopt TruthfulQA [29] and tasks involving chain-of-thought
reasoning [52]: StrategyQA [12] and GSMS8K [8].

Models & Baselines We evaluate the performance of SLED on six LLaMA-2 models [48]
({7B,13B,70B }-Base, {7B,13B,70B }-Chat), four LLaMA-3 family models [1] ({8B,70B}-Base,
{8B,70B}-IT), two Gemma models (2B,7B), two MoE models (Mixtral-8 x7B, Mixtral-8 x7B-
IT) [18]. We adopt the following baselines: 1) standard decoding (greedy decoding or sampling
depending on the tasks), 2) DoLa [7], 3) Inference Time Intervention (ITT) [26], 4) Activation Decod-
ing (AD) [4], 5) Contrastive Decoding (CD) [27], and 6) Induce-then-Contrast Decoding (ICD) [64].

Metrics We adopt the factual accuracy evaluation implemented in [7] for multiple-choice tasks
and chain-of-thought reasoning tasks. For the open-ended generation task on TruthfulQA, we follow
the evaluation procedure in [7, 29], using “finetuned-GPT3-judge”’s to measure the truthfulness,
informativeness, and rejection rate of generated outputs respectively.

3.2 Evaluation on a Broad Range of LLM Benchmarks

Multiple-Choices Tasks The objective of these tasks is to employ decoding methods that enable
LLM:s to assign higher probabilities to correct completions/answers over incorrect alternatives. We
demonstrate the effectiveness of SLED for both Short-Answer Factuality on the Truthful QA and
Long-Paragraph Factuality on the FACTOR dataset. For both DoLa and our SLED, we contrast the
results from the final layer against all preceding layers. We randomly sample approximately 5% of
the data for validation regarding parameter selection. The results, as shown in Table 1, indicate that
SLED achieves superior outcomes in almost all metrics across six LLaMA-2 models. Notably, SLED



Table 2: Using SLED with other LLM families also improves the factuality.

Truthful QA Truthful QA
Model FACTOR ML MCZ  MC3 Model FACTOR MCT MCZ M3
LLaMA-3-8B 64.33 3378 63.00 32.59 | Mixtral-8x7B 71.41 35.13 4998 34.17
+DoLa 68.04 3329 63.35 32.16 | +DoLa 58.28 3244 3591 33.68
+SLED (ours) 68.67 35.13 64.09 32.50 | +SLED (ours) 74.92 35.86 57.26 32.96
LLaMA-3-8B-IT  59.49 3892 68.16 36.50 | Mixtral-8x7B-IT  70.51 37.94 6251 3525
+DoLa 61.06 35.86 65.30 33.78 | +DoLa 56.15 32.19 39.17 33.76
+SLED (ours) 67.17 42.23 69.03 37.97 | +SLED (ours) 75.55 41.73 68.52 37.70
LLaMA-3-70B 78.72 35.62 65.66 34.18 | Gemma-2B 50.87 2338 37.16 1742
+DoLa 77.56 3329 64.83 32.81 | +DoLa 32.93 26.07 4897 26.55
+SLED (ours) 80.83 37.58 66.19 34.11 | +SLED (ours) 57.05 2521 50.20 26.94
LLaMA-3-70B-IT  73.95 44.80 70.29 41.02 | Gemma-7B 60.42 31.58 47.63 2275
+DoLa 71.51 38.43 68.70 35.21 | +DoLa 36.07 2521 43.14 26.13
+SLED (ours) 76.85 48.35 74.03 43.16 | +SLED (ours) 65.56 32.31 49.88 25.22

achieves better performance under the MC1/MC3 metrics on TruthfulQA, which are more sensitive
to fluctuations and pose a greater challenge. For long sentences in FACTOR, our method shows
improvements over baselines by 5-13%. These results not only underscore the benefits of our method
for factuality but also demonstrate its robustness across different lengths of text.

Open-Ended Generation Tasks In open-ended settings, we prompt the model to generate answers
for the same questions from TruthfulQA, following the settings outlined in [29, 7, 27]. In Table 1, we
compare the performance of six LLaMA-2 models using standard greedy decoding, (greedy) DoLa,
and (greedy) SLED. All the generated answers are then evaluated by a fine-tuned GPT-3 model for
both truthfulness and informativeness scores. Considering that a 100% truthful score can be easily
achieved by simply responding with I have no comment,” which would result in a 0% informative
score and thus is not very useful, we have introduced additional metrics—%Truth x Info and the
rejection ratio %Reject —to demonstrate that SLED is a mutual-gains approach to achieve better both
truthful and informative scores. We have improved the overall %Truth x Info scores by 3-20% across
different models and reduced the rejection ratio by up to 95%. These enhancements demonstrate that
our method effectively avoids the "rejection pitfall,” making it more helpful.

Adaptation to Chain-of-thought Reasoning Tasks Although the StrategyQA and GSMS8K tasks
are also open-ended and require factual accuracy, the primary focus here is to evaluate how different
decoding methods adapt to the Chain-of-Thought (COT) approach for handling complex reasoning
tasks. We maintain a repetition penalty of 1, as we will discuss the repetition flaws associated
with DoLa in Section 3.5. StrategyQA demands multi-hop reasoning, and as shown in Table 1, our
method boosts accuracy across six models, whereas DoLa generally worsens it without a repetition
penalty. GSMS8K, a benchmark for math word problems that require arithmetic reasoning, also shows
consistent accuracy improvement with SLED in 7B, 13B and 70B models.

3.3 Evaluation Across Diverse LLM Configurations

As discussed above and shown in Table 1, our method, SLED, demonstrates strong generalization
capabilities across the LLaMA-2 model family, proving robust from 7B to 70B model sizes. In
Table 2, we further showcase SLED’s impressive performance on the more recent LLaMA-3 family
models, both at 8B and 70B sizes, in terms of long paragraph factuality and short answer factuality.
Interestingly, SLED is also applicable to different pre-trained models, such as Gemma at both 2B and
7B sizes, and can even be adapted to the increasingly popular Mixture of Experts (MoE) architectures.
These results confirm the exceptional adaptability of our method across various LLM configurations.

3.4 Evaluation on Integrating SLED with Other LLM Factuality Decoding Methods

SLED exclusively focuses on contrasting differences between layers without altering other parts of
the model. Thus, it remains compatible with other techniques that incorporate additional strategies or
utilize auxiliary models. This compatibility allows SLED to be seamlessly integrated into existing



Table 3: Comparison of decoding strategies on Truthful QA datasets. SLED can also be seamlessly
combined with other decoding strategies to improve performance further.

Model | LLaMA-2-7B-base | LLaMA-2-7B-chat
AD  AD AD  AD ITI 1CD
Method | AD,pora +sLED| AP +Dola +SLED‘ m +sLep| P isiED

MC1 3280 2558  33.29 | 3537 3341  36.23
MC2 59.59  39.06 62.55 | 58.14 5031  63.15
MC3 31.05 17.89 3180 | 31.84 23.15  32.23

36.60 4333 | 4632  46.87
65.62 6575 | 69.08  72.09
3489  37.66 | 41.25 43.64

Model | LLaMA-2-13B-base | LLaMA-2-13B-chat
AD AD D CD AD AD D CD
+DolLa +SLED +SLED +DolLa +SLED +SLED

MC1 3390 2472 3390 | 30.11 3378 | 36.84 3472 3635 | 28.15 36.47
MC2 6293 3774 63.69 | 50.31 63.22 | 63.75 5042 64.83 | 54.87 64.93
MC3 31.61 17.66 3138 | 28.18 3221 | 32,69 23.83 32.85 | 29.75  33.39

Method | AD ‘ AD

Table 4: Accuracy of LLaMA 2 13B Base on StrategyQA with Varying Repetition Penalties

Metric Method 1 1.02 1.04 106 1.08 1.1 1.2 2
Accuracy(%) DoLa 65.55 6598 6637 6598 6559 6637 67.16 66.64
SLED (Ours) | 66.81 69.39 6851 6847 67.07 6572 6087 5475
Repetition-4(%) DoLa 763 719 645 598 550 510 373 205
SLED (Ours) | 3.73 245 189 136 105 0.69 020 0.10
Repetition-Sen(%) DoLa 216 204 166 137 .12 0.89 023 0.03
SLED (Ours) | 0.88 039 0.10 0.02 0.03 0 0 0

methods, enhancing factuality further without the need for modifications to SLED. We integrate
SLED with the following approaches: ITI, AD, CD and ICD. Table 3 shows that SLED leads to
accuracy improvements from 1% to 12% across four LLaMA-2 models.

3.5 Ablation Studies and Analysis

Mitigating Repetition Issues Table 4 demonstrates that our method, SLED, effectively addresses
a significant issue in Dola: repetitive content in open-ended generation tasks. Our approach
outperforms DoLa without the need for excessive repetition penalty. While a slight increase in the
repetition penalty further enhances the performance of our method, excessive penalties, such as
1.1, tend to degrade it. This suggests that SLED does not inherently require heavy adjustments for
repetition issues. In contrast, DoLa’s performance improves with higher penalties (e.g., 1.1, 1.2,
2), indicating a more critical need for addressing repetitive content. We also employ two intuitive
metrics, Repetition-4 and Repetition-Sen, to gauge the severity of repetition issues, following prior
research [55]. Regardless of the repetition penalty imposed, our method consistently exhibits lower
repetition rates. Table 7 includes some examples of generated text to illustrate this further.

Layer Selection As discussed in Section 2.4, how to choose a good candidate set is still a para-
doxically difficult task when applying DoLa. Our method does not exhibit this issue. Instead of
selecting a single premature layer from the candidate set like DoLa, SLED contrasts the final layer
with all layers in the candidate set and then ensembles all the results. Figure 5 shows that setting a
larger candidate set, such as all the 32 layers for LLaMA-2-7B-Base, yields better performance than
focusing solely on either the first [0, 16) or second half [16, 32). This implies that our layer-wise
contrast approach captures more useful information in a more scientific manner. Furthermore, our
tests confirm the robustness of our method even when the candidate set is minimal, such as a single
layer, consistently demonstrating strong performance. Our settings mirror those of DoLa.

Parameter Analysis We next investigate the impact of parameters — evolution rate « and evolution
scale k£ — on the performance of SLED using a subset of the FACTOR dataset. We test evolution
rates from {0.01,0.1, 1,2, 5,10} and evolution scale values from {5, 10, 20, 50}. Without extreme



Figure 5: Evaluating using different premature layers for SLED and DoLa on a 10% subset of the
GSMSK dataset. Contrasting all layers for SLED is better than using only the first half [0, 16) or
the second half [16, 32). Hence, there are no improvements for SLED from strategic layer subset
selection.
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Figure 6: WE explore the impact of evolution scale and rate based on the factual accuracy of a subset
of the FACTOR dataset. (G: Greedy, D: DoLa)
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Evolutlon Scale

evolution rates (e.g., 10), our method performs well, confirming its robustness. As analyzed in
our methodology and Eq. 2, the evolution rate balances the logit distribution (Pxr) with the latent
knowledge distribution (Pjgzent). A lower evolution rate works better for larger models (13B) and
chat models as their logits already better represent real-world distributions.

Latency Our method, SLED, does not incur significant latency overhead. The latencies presented
in Table 5 demonstrate that our method, SLED, just increases the decoding time of DoLa by factors
ranging from 0.1% to 10%. Notably, even with an atypical setting such as evolution scale = 100,
which is seldom used, the increase remains around 10%. The latency for DoLa and SLED is much
higher compared to the vanilla greedy decoding because we set all early layers as candidate layers set
for both DoLa and SLED for a fair comparison.

Table 5: Latency (ms/token) comparison across different configurations. (ES: evolution scale)

Model Greedy DolLa SLED (ES=5) SLED (ES=20) SLED (ES=50) SLED (ES=100)
LLaMA-2-7B 23.64 29.93 30.41 31.15 32.70 34.63
LLaMA-2-13B 30.41 39.57 39.61 41.14 43.30 45.09
LLaMA-2-70B  82.63  136.42 138.33 140.24 143.12 148.85

4 Related Work

There have been many advances in improving training and inference to develop better out-of-the-box
LLMs [47,48, 1,44, 36, 28, 63, 51, 20]. Unfortunately, LLMs still suffer from hallucinations and
producing non-factual text. This has led researchers to develop many methods to improve factuality.

Retrieval, Fine-tuning, and Preferences. Many techniques use additional knowledge graphs or
fine-tuning data to increase factuality by updating the model parameters for this goal. One method is
Retrieval-Augmented Generation (RAG) to use external knowledge to improve generation [3, 5, 9, 25].
Another option is to use post-generation retrieval and editing for improving attribution [11]. Other
directions that use additional training or preference data are supervised fine-tuning (SFT) [38, 46],
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RLHF [37], DPO [40] or self-rewarding [58]. Complementary to these approaches, we wish to
improve the LLM output distribution directly without needing any additional data.

Decoding and Factuality Decoding For each prefix, the LLM generates a probability distribution
for the next token on a fixed vocabulary list, and a decoding method determines how the next token is
derived based on the estimated distribution. Decoding methods were initially developed to enhance
the fluency and coherence of text generation, such as Beam Search (BS), which maintains the £ most
probable sequences at each time step. Common decoding methods also include Diverse Beam Search
(DBS) [49], Contrastive Decoding [27], Top-p Sampling [14] and so on.

Recently, the potential of decoding has extended beyond merely improving text readability, with
some factuality decoding methods being proposed. These methods modify the generation process to
focus on truthful statements rather than unsupported claims during the inference phase, aiming to
reduce hallucinations. Notable recent works include Inference-Time Intervention (ITI) [26], Induced-
Contrastive Decoding [64], Decoding by Contrasting Layers (DoLa) [7] and so on. ITT adjusts model
activations during inference by following learned directions across a limited number of attention
heads to improve truthfulness. Some researchers have extended previous Contrastive Decoding [27]
methods to improve factual accuracy, such as Frustratingly Easy Model Decoding [56] and Induced-
Contrastive Decoding [64], leveraging differences between expert and amateur models. Most closely
related to our work is DoLa, which also employs contrasting logits from different layers. However,
significant distinctions exist: Firstly, our method diverges in how to utilize those differences between
logits to extract latent knowledge. Secondly, whereas DoLa directly substitutes the original output
distribution with the latent knowledge distribution, our approach recognizes potential inaccuracies in
this estimated distribution and adopts gradient descent within an optimization framework to integrate
the model’s latent knowledge with the original output.

Limitations. As we continue to refine our approach, several aspects of our method can be further
developed and enhanced. Our method, SLED, achieves better factuality at the cost of operating
slightly slower. Ideally, we could improve the output logits without incurring any computational cost
compared to performing inference on the base LLM model. Another aspect is that currently, our
experimental results support the superiority of SLED on multiple datasets. Parameter optimization
using Bayesian methods [54, 30, 60, 61, 66], evolutionary algorithms [16, 32, 41] or reinforcement
learning [67, 6, 19, 39] might also lead to more robust performance. It would also be ideal to back up
our results with more theoretical analysis of SLED.

5 Conclusion

We introduced Self Logits Evolution Decoding (SLED), which is a new method to improve accuracy
and factuality without requiring external knowledge (e.g., RAG) or fine-tuning (e.g., SFT). The key
idea is to optimize the output logits based on the LLMs’ latent knowledge to improve factuality
during inference. On several datasets, SLED achieved the SOTA results, improving over the vanilla
decoding and DoLa. We also show that SLED does not increase the inference time significantly
and that it can be combined with other factuality decoding methods. For future work, it would be
interesting to combine SLED with supervised fine-tuning methods, e.g., to adapt to other domains.
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A Additional Analysis and Ablation Studies

Justification on the Gradients Approximation of SLED in Section 2.2 To further sup-
port our method’s mechanism, which utilizes logits,, — logits; to approximate the gradient of
K L(Preal, Piogits) at logits = logits,,, we manually calculate the Cosine_similarity(logits, —
logits y, Viegits K L(Preat, Plogits )| iogits—=logits, ) among thousands of tokens and layers. We plot the
density function for different models. We find that the majority of these values are positive, demon-
strating that the directions of these two vectors are very close. Hence, our gradient approximation
strategy in Section 2.2 is reasonable.
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Figure 7: We collect 10k pairs of (logits,, — logits y, Viogits, K L(Preat, Piogits, )) on different tokens
in FACTOR and different early layers. We calculate their cosine similarity values and draw the
density function for each LLM. Most of the pairs have positive Cosine similarity values, which
verifies that the approximation strategy of SLED is reasonable.

Further Ablation Studies for Section 2.4 We design the following two ablation studies to support
our claims in Section 2.4. The first study, referred to as *Ablation 1°, directly employs Pjatens as
the output distribution as discussed in Q 2.2. The second study, denoted as *Ablation 2’, involves
directly scaling the differences, {logits,, — logits 5 }, to constrain their magnitudes within [—1, 1].
Then, we simply average these scaled differences across different layers and apply them to Equation
2 as mentioned in Q 2.3. The results presented in Table 6 demonstrate that the design of our SLED is
reasonable.

FACTOR Truthful QA
MC1 MC2 MC3
LLaMA-2-7B-Chat + Ablation 1 63.59 25.21 51.09 26.25

+ Ablation 2 62.73 33.66 39.83 31.47
+ SLED 65.16 37.08 63.86 32.90
LLaMA-2-13B-Chat + Ablation 1 66.70 27.05 5272 28.46
+ Ablation 2 66.29 37.33 45.00 31.98
+ SLED 67.06 37.09 63.75 32.60

Table 6: Performance comparison of ablation studies and SLED on FACTOR and Truthful QA.

B Qualitative Studies

We present some examples from the StrategyQA dataset in Table 7 to illustrate that our method
addresses the repetition issue of DoLa.
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Q: Can you buy a fair trade laptop?

A laptop is a portable computer. A portable computer is a handheld computer. A
handheld computer is a palmtop computer. A palmtop computer is a PDA. A PDA is a
personal digital assistant. A personal digital assistant is a PDA. A PDA is a handheld

DoLa computer. A handheld computer is a palmtop computer. A palmtop computer is a PDA.
A PDA is a personal digital assistant. A personal digital assistant is a PDA. Thus, a
PDA is a PDA. A PDA is a PDA. A PDA is a PDA. A PDA is a PDA. A PDA is a PDA.
A PDA is a PDA ...

Fair Trade is a certification for coffee. Laptops are not coffee. Thus, you cannot buy a
SLED . .
fair trade laptop. So the answer is no.

Q: Can you see the moon in Wembley Arena?

Wembley Arena is in London, England. The moon is a celestial body, and the moon is
in the sky. The moon is in the sky, and Wembley Arena is in London, England. London,
England is on Earth, and the moon is in the sky. The moon is in the sky, and Wembley
Arena is on Earth. Wembley Arena is on Earth, and the moon is in the sky. The moon is
in the sky, and Wembley Arena is on Earth. The moon is in the sky, and Wembley Arena

DoLa is on Earth. Wembley Arena is on Earth, and the moon is in the sky. The moon is in the
sky, and Wembley Arena is on Earth. Wembley Arena is on Earth, and the moon is in
the sky. The moon is in the sky, and Wembley Arena is on Earth. Wembley Arena is on
Earth, and the moon is in the sky. The moon is in the sky, and Wembley Arena is on
Earth. Wembley Arena is on Earth, and the moon is in the sky. The moon is in the sky,
and Wembley Arena is on Earth. Wembley Arena

Wembley Arena is in London. London is in the Northern Hemisphere, and the moon is
SLED in the Southern Hemisphere. Thus, you cannot see the moon in Wembley Arena. So the
answer is no.

Q: Does Thiago Moises May 13 2020 submission move hypothetically hurt Achilles?

Thiago Moises is a MMA fighter. He is 1.73 m tall, and Achilles is about

DolLa 0.00000000000000000000000000000000000000000000000000000000000000000000....

Thiago Moises’s submission was a rear naked choke, which is a blood choke. A
SLED blood choke can cause a fighter to pass out. Thus, Thiago Moises’s submission could
hypothetically hurt Achilles. So the answer is yes.

Table 7: We present three examples of the generated text from LLaMA-2-13B-Base on StrategyQA
dataset. SLED method can mitigate the repetition issue.

C Further Results from Open-ended Generation Task Benchmarks

We have conducted additional experiments on more realistic open-ended generations datasets, Hot-
PotQA [57], Natural Question (NQ) [23], TriviaQA [21]. We adopt the Exact Match(EM) and the
F1 score. Different from the setting in the Section 3, we adopt [0, 2, 4, 6, 8, 10, 12, 14] as candidate
layers for LLaMA 2 7B Chat model and [0, 2,4, 6, 8, 10, 12, 14, 18] as candidate layers for LLaMA 2
13B Chat model for both DoLa and SLED. Our method still has robust performance across different
datasets and metrics.
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Table 8: Performance comparison on HotPotQA, Natural Question (NQ) and TriviaQA.

HotpotQA NQ TriviaQA
Model EM FI EM FlI EM FI
LLaMA 27B Chat 19.6 201 21.8 204 444 443
+ DolLa 204 213 235 215 452 453
+ SLED (ours) 209 215 244 222 47.6 463
Llama2 13B Chat 238 217 33.1 289 630 609
+DolLa 245 232 331 289 632 615
+ SLED (ours) 250 245 346 316 633 622

D Implementation Details

We conducted all experiments utilizing NVIDIA A100 GPUs and implemented our method based
on the following repositories: DoLa', AD?, and ICD?. For decoding responses from the LLMs on
TruthfulQA, StrategyQA, and GSMS8K, we employed greedy decoding. The models were operated
with 16-bit floating-point precision and a batch size of 1. For the LLaMA 2 models sized 7B, 13B,
and 70B, we utilized 1, 1, and 3 GPUs respectively. Cross-GPU inference, involving model weight
sharding, was facilitated by the Hugging Face Accelerate package®.

Regarding the details in Section 3.4, we evaluate the 7B-chat model for ITI, as the checkpoint is
publicly available. Combining ITI with SLED results in better performance compared to using ITI
alone. AD employs an entropy-based metric to measure the ‘sharpness’ of in-context hidden states
and incorporates it into the decoding process. Combining AD with SLED surpasses both the original
AD and its combination with DoLa across four model types. For CD, we have conducted experiments
in two distinct configurations: (i) the LLaMA 2 13B base model is contrasted with that of the Llama 2
7B base model, and (ii) the LLaMA 2 13B chat model and the LLaMA 2 7B chat model are compared.
Applying SLED to the larger models (13B) boosts performance beyond vanilla CD. ICD contrasts a
trustworthy 7B model with a fine-tuned, untrustworthy 7B model, and again, applying SLED on the
trustworthy 7B model improves factual accuracy further.

E Additional Results of DoLa

Table 9 presents some additional results of DoLa across various benchmarks. > Specifically, DoLa
in Table 9 selects a subset of early layers as candidates for calculating the Jensen-Shannon Diver-
gence (JSD) instead of using all layers. For example, for the LLaMA 2 7B Chat model, layers
[0,2,4,6,8,10, 12, 14] are designated as candidate layers. Notably, a specific trick implemented in
DoLa is omitting the post-softmax step on logits for the Truthful QA multiple-choice task to enhance
accuracy. This trick is not applied to the vanilla greedy decoding in Table 9. In contrast, for the results
presented in our Tables 1, 2, and 3, this technique is also been applied to vanilla greedy decoding to
ensure a fair comparison.

"https://github.com/voidism/DoLa
*https://github.com/hkust-nlp/Activation_Decoding/tree/main
Shttps://github.com/HillZhang1999/ICD?tab=readme-ov-file
*https://github.com/huggingface/accelerate

These results are provided by Yung-Sung Chuang.
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Table 9: The Performance of DoLLa Across Various Benchmarks

Model Truthful QA GSMSK StrQA
MC1 MC2 MC3

LLaMA-2-7B-Base ~ 28.40 43.39 20.52 14.03 60.96

+ DoLa 31.21 62.12 29.73 14.63 60.74
LLaMA-2-13B-Base 29.01 44.27 20.71 28.66 66.07
+ DoLa 29.38 63.95 33.63 28.81 66.59
LLaMA-2-70B-Base 37.70 53.60 27.36 56.33 75.20
+ DoLa 27.05 60.26 31.64 56.94 74.93
LLaMA-2-7B-Chat  33.66 51.29 2491 21.08 63.67
+ DoLa 33.29 60.86 29.77 20.55 64.37
LLaMA-2-13B-Chat  35.37 53.31 26.71 36.47 69.87
+ DoLa 3195 6244 31.23 35.79 69.48
LLaMA-2-70B-Chat 37.33 56.33 27.94 54.59 77.25
+ DoLa 31.33 5448 34.43 54.44 76.86
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