
Proceedings of Machine Learning Research vol 288:1–12, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Efficient Neuro-Symbolic Policy using In-Memory Computing

Tergel Molom-Ochir†
TERGEL.MOLOM-OCHIR@DUKE.EDU

Department of ECE, Duke University, USA

Naman Saxena†
NAMAN.SAXENA@DUKE.EDU

Department of ECE, Duke University, USA

Jiwoo Kim JIWOO.KIM@DUKE.EDU

Department of ECE, Duke University, USA

Yiran Chen YIRAN.CHEN@DUKE.EDU

Department of ECE, Duke University, USA

Zhangyang Wang ATLASWANG@UTEXAS.EDU

Department of ECE, University of Texas Austin, USA

Miroslav Pajic MIROSLAV.PAJIC@DUKE.EDU

Department of ECE, Duke University, USA

Hai ”Helen” Li HAI.LI@DUKE.EDU

Department of ECE, Duke University, USA

† These authors contributed equally.

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract
As artificial intelligence (AI) systems grow in complexity, achieving computationally efficient and

interpretable decision-making is crucial. Neuro-Symbolic AI (NeSy) offers a promising frame-

work by integrating symbolic representation with neural learning, but its execution on traditional

hardware remains inefficient due to memory bottlenecks and high computational costs. This pa-

per advocates for a paradigm shift in AI acceleration—moving beyond traditional von Neumann

architectures toward memory-centric computation, unlocking real-time, scalable, and interpretable

decision-making for next-generation AI applications. We envision a future where In-Memory Com-

puting (IMC)-based acceleration fundamentally transforms Neuro-Symbolic policy acceleration by

mapping it onto hardware-associative memory, enabling O(1) complexity decision-making with

drastically reduced energy consumption and latency. Our preliminary results show that IMC-based

symbolic policies achieve up to 100× speedup and six orders of magnitude better energy efficiency

than CPU and GPU implementations. Moreover, we discuss how probabilistic symbolic policies

can be realized within IMC architectures, enabling AI systems to handle uncertainty while main-

taining efficiency.

Keywords: Neuro-Symbolic AI, In-Memory Computing, Hardware-Accelerated AI, Energy-Efficient

AI

© 2025 T. Molom-Ochir†, N. Saxena†, J. Kim, Y. Chen, Z. Wang, M. Pajic & H.”. Li.



MOLOM-OCHIR† SAXENA† KIM CHEN WANG PAJIC LI

Figure 1: (a) Illustration of the exponential growth in the computational demands of neural network

policies, highlighting an unsustainable trend in power and resource consumption; (b) In contrast,

the steady advancements in In-Memory Computing (IMC) architectures, which are becoming in-

creasingly capable of handling complex workloads. These trends underscore the timeliness and

necessity of transitioning from purely neural network-based policies to neuro-symbolic policies, as

modern IMC architectures now offer the efficiency and computational capacity required to support

such hybrid models effectively.

1. Introduction

The reinforcement learning (RL) paradigm has proven effective at designing closed-loop controllers

based on the feedback from the task at hand in the form of a reward. The rise of neural networks en-

abled deep RL, powering breakthroughs like AlphaGo (Silver et al. (2017)) and DQN (Van Hasselt

et al. (2016)). Not only did deep RL-based controllers breach the ceiling of performance, but at the

same time, they allowed RL-based policies to be used in a wide variety of applications. With the

growing applicability, apart from the performance of the RL-based controllers, several other issues

have become important, such as interpretability, safety, and energy consumption of controllers.

Most of the time, while designing the controller, the energy consumption is not considered,

and it has become the default assumption that the platform used for the deployment of the controller

will have sufficient resources to support the controller. This no longer holds as NN-based controllers

grow in size. Consequently, we focus on the use of Neuro-Symbolic reinforcement learning to cre-

ate energy efficient controllers. Neuro-Symbolic (NeSy) paradigm uses interpretable structures such

as finite state machines or decision trees to represent the controller. Such interpretable structures,

by taking advantage of specialized hardware development, such as In-memory computing, could be

used to reduce the energy consumption of controllers in general.

To alleviate the computational inefficiencies of traditional hardware for NeSy AI, we employ

In-Memory Computing (IMC) architectures to accelerate controllers. Unlike traditional CPUs and

GPUs, which suffer from high data movement overhead due to the von Neumann bottleneck, IMC

executes computations within memory itself with reduced latency and power. By mapping NeSy

policies onto IMC, we demonstrate that symbolic structure computations—such as decision-tree

inference and rule-based logic execution—can be performed in O(1) complexity using specialized

hardware. Not only is this energy efficient, but it enables real-time operation of interpretable sym-

bolic policies. This work presents a comparative analysis that stresses the performance enhancement

of IMC-based NeSy controllers over their NN-based equivalent, highlighting the scalability of IMC

for low-power artificial intelligence applications. In particular, in this paper, we propose the use of

2



NEURO-SYMBOLIC POLICY USING IMC

Table 1: Generalized Neuro-Symbolic Architectures (Hamilton et al. (2024); Bhuyan et al. (2024))

Category Example Architectures
Rule-Based & Symbolic AI Integration Decision Tree-Augmented Neural Networks, Deep Symbolic Regres-

sion

Automata & Sequential Processing Neural Turing Machines (NTM), FSM-Enhanced RNNs

Program Synthesis & Inductive Learning Neural Program Induction, Program Synthesis Networks

Logic-Based Neural Networks Logic Neural Networks (LNN), Logic Tensor Networks (LTN), Tensor

Product Representation (TPR)

Graph & Knowledge Representation Mod-

els

Graph Neural Networks (GNNs) with Symbolic Reasoning, Recursive

Neural Knowledge Networks (RNKN)

Reinforcement Learning & Decision-

Making

AlphaZero, Neuro-symbolic Policy Learning

Neural-Symbolic Compilation & Theorem

Proving

Neural Theorem Provers (NTP), Expression Trees from Neural Models

a Neuro-Symbolic decision tree controller, followed by its deployment on IMC, to demonstrate the

benefits of energy consumption and execution time.

This paper is organized as follows. In Section 2, we provide an overview of NeSy RL and

IMC architectures. Section 3 describes the proposed pipeline for NeSy policy design using IMC. In

Section 4, we present a comparison between the energy consumption and throughput performance

of the NeSy and NN-based controllers. Lastly, we delineate the challenges due to the current state

of IMC architectures and discuss areas for improvement.

2. Related Works

2.1. Neuro-Symbolic Approaches and Architectures

NeSy approaches comprise of several different methods (see Table 1). For decision making, most

NeSy approaches rely on the use of controllers based on discrete structures such as grammar. A

grammar G is defined as {T ,N ,P, s}. Here, T denotes the set of terminal symbols. Terminal

symbols are tantamount to constants and cannot be replaced by any other symbol while evaluating

grammar. N represents the set of non-terminal symbols that function as variables and can be replace

with other non-terminal or terminal symbols. Further, P denotes production rules that are mapping

from the set of non-terminal symbols to a combined set of all the symbols. Lastly, s is the start

symbol that is the first symbol to be replaced by a terminal or a non-terminal symbol.

Once a grammar is assumed for a particular task, a finite-state machine (Inala et al. (2020)), a

decision tree (Silva et al. (2020); Bastani et al. (2018); Vos and Verwer (2024)), or a simple program

(Verma et al. (2019, 2018)) could be derived as the controller. Inala et al. (2020) uses a finite-state

machine to obtain a hierarchical controller for tasks that require repetitive actions. It uses grammar

to define the state-switching conditions and controller applicable in the state. Further, several works

focus on program synthesis using grammar. Verma et al. (2019) uses an NN policy and imitation

learning to update the programmatic policy. Moreover, Carvalho et al. (2024) learns a programmatic

policy by performing a search in the space of programmatic policies using search methods such as

beam search, hill climbing, etc. A decision tree could be seen as a special case of a programmatic

policy where the program only consists of if-and-else statements. Our work uses decision tree

policies, which we discuss in more detail in the next subsection.

3



MOLOM-OCHIR† SAXENA† KIM CHEN WANG PAJIC LI

2.2. Decision Tree-based Controllers

Qiu and Zhu (2022) uses a grammar with if-and-else statements with affine conditions to obtain a

decision tree policy. The work proposes to learn the probability of introducing nested if-and-else
conditions, increasing the decision tree’s depth. Moreover, if-and-else conditions are also evaluated

based on learned probability. Finally, the action is produced as a weighted sum of actions according

to the probability of all if-and-else statements across all trees up to a certain depth.

The previous work is an example of learning a stochastic decision tree. However, there are

several works that explore deterministic trees and will be more suitable for taking advantage of the

current state of IMC architectures. Vos and Verwer (2024) obtains the decision tree by using a deci-

sion tree classifier (DTC). First, the decision tree acts in the environment and produces a trajectory.

Later on, the actions in the trajectory are modified using the objective function of the Proximal

Policy Optimization (Schulman et al. (2017)) algorithm. The next action generator becomes a tar-

get for the decision tree classifier corresponding to a particular state, and a DTC is learned using

supervised learning. Bastani et al. (2018) distills decision tree policies from NN policies. In this

work, we focus on demonstrating how we can obtain symbolic policies (Craven and Shavlik (1995))

with performance comparable to NN policies and show their efficiency with specialized hardware

such as IMC architecture. Therefore, the algorithm proposed by Bastani et al. (2018) is used as the

base for our work. Next, we will discuss the development related to IMC architectures that supports

symbolic policies.

2.3. Hardware Acceleration for Neuro-Symbolic AI

NeSy AI poses distinctive computational challenges that demand hardware acceleration tailored

beyond general deep learning accelerators such as GPUs and TPUs. Unlike deep neural networks

(DNNs), which are built on enormous matrix multiplications structured for parallel computation,

NeSy models use symbolic structures incorporating rule-based decision-making, graph traversal,

and logical operations. These tasks incur heavy memory access overhead and computational non-

uniformity, which render them inefficient on general AI accelerators.

One such approach is IMC, which sidesteps the data transfer bottleneck by computing directly

in the memory itself (Khan et al. (2024)). IMC architectures are especially suited to executing

decision trees, finite-state machines, and symbolic policies, all of which are typical elements in

NeSy models. New studies show that symbolic models tuned for IMC can achieve comparable

performances to deep learning models at significantly lower energy consumptions, as demonstrated

through experiments with decision tree classifiers on IMC accelerators (Pedretti et al. (2021); Yin

et al. (2021)). Also, new hardware architectures, such as Resistive RAM (ReRAM)-based IMC, Fer-

roelectric Field-Effect Transistors (FeFETs), and coupled oscillator arrays, offer novel approaches

to advancing the implementation of tasks related to symbolic reasoning. These hardware options

provide high-density storage of memory, parallelization of logic, and symbolic computation at low

energy, making them highly compatible with NeSy workloads.

A hybrid computing paradigm that unifies neural accelerators with special-purpose symbolic

processors is essential to developing NeSy AI. Neuromorphic chips and logic-based co-processors

are viable options for handling tasks with high reasoning demand, while maintaining low power

consumption. As NeSy AI evolves, hardware-software co-design approaches will be essential for

improving efficiency, scalability, and real-time execution in diverse applications such as robotics,

autonomous systems, and edge AI. Future work requires enhancing heterogeneous architectures and

4



NEURO-SYMBOLIC POLICY USING IMC

Figure 2: General workflow of accelerating Neuro-Symbolic policies using In-Memory Computing

(IMC) hardware. The left section illustrates diverse task environments requiring decision-making,

such as robotics and autonomous control. The middle section represents different Neuro-Symbolic

models and policy expressions, including decision trees, finite state machines (FSMs), and Logic

Neural Network (LNN) structures. The right section depicts the deployment of these policies onto an

IMC-based accelerator, leveraging crossbars, content-addressable memory (CAM), and specialized

logic arrays for efficient symbolic reasoning and real-time execution.

developing hardware-efficient symbolic execution techniques to fully harness the power of NeSy AI.

In the next section, we will discuss the proposed symbolic policy design pipeline.

3. Proposed Methodology

The approach presented in this work focuses on the replacement of energy-hungry NN policies with

symbolic policies that can be efficiently accelerated by leveraging specialized hardware. As shown

in Fig. 2, a two-step process is followed: first, an NN policy is distilled into a symbolic policy using

the VIPER algorithm (Bastani et al. (2018)), ensuring interpretable decision-making capabilities.

Then, the symbolic policy is embedded into an IMC architecture, leveraging its parallel execution

and memory-aware execution to enhance performance while reducing power consumption. This

approach enables the use of NeSy models in low-power, real-time decision-making scenarios. In

the following, we discuss how to distill an NN policy into a symbolic policy and deploy it on IMC.

3.1. Neural Network to Symbolic Policy

We use the VIPER algorithm proposed in Bastani et al. (2018). In this work, first, an NN policy

is trained using the Deep Q-Learning algorithm (Van Hasselt et al. (2016)) for tasks with discrete

action spaces. Subsequently, the DAGGER algorithm (Ross et al. (2011)) is used to imitate the

NN policy using a decision tree policy. Here, the decision tree policy is a classifier because of the

discrete action space. During training, trajectories are generated from a mixture policy consisting of

both the NN policy and decision tree policy. As the training progresses, the contribution of the NN

policy is annealed to allow the decision tree policy to take over. This training allows the tree policy

to handle trajectories deviating from the NN. At the end of the training, we obtain a deterministic

5



MOLOM-OCHIR† SAXENA† KIM CHEN WANG PAJIC LI

policy with branching of nodes dependent on checking a single Boolean condition. The use of

simple operations in the decision tree policy makes it amenable to the IMC architectures.

3.2. IMC-Based Acceleration

IMC-based architectures provide a possible solution to accelerating NeSy models by eliminating

data movement overhead and enabling O(1) complexity operations. Crossbar-based IMC is best

suited for Type I operations such as addition and multiplication for vector-matrix multiplications.

CAM-enhanced IMC with O(1) complexity lookup enables fast symbolic rule lookups and Type II

operations such as comparison-based logic (<, >, =) and hierarchical decision-making. Apart from

these, Ternary Content-Addressable Memory (TCAM) goes one step further in enabling CAM’s

functionality with the support of multi-value symbolic matching, which finds application in proba-

bilistic rule evaluation in NeSy AI. Associative Processing Units (APUs) enhance symbolic reason-

ing flexibility by reducing dependence on rule tables (Fouda et al. (2022); Austin (1996)).

To effectively enhance symbolic decision policies, this study investigates the potential for de-

terministic trees to be executed on IMC accelerators through logic execution on Analog Content-

Addressable Memory (aCAM). aCAMs support the parallel evaluation of several decision nodes,

thereby condensing memory lookup latency to O(1), a key benefit for symbolic reasoning appli-

cations (Pedretti et al. (2021)). This method enables the complete execution of decision trees in

memory, thereby minimizing costly data transfers and lowering energy consumption by a consider-

able amount (Yin et al. (2021)). At the circuit level, there is a discussion of how symbolic policies

are implemented physically. Decision trees are encoded into lookup tables (LUTs) and then instan-

tiated in content-addressable memory (CAM) architectures, thereby enabling state-based decisions

to be executed quickly.

4. Case Studies

The proposed IMC-based NeSy pipeline demonstrates an order-of-magnitude improvement in la-

tency and energy-efficiency compared to conventional CPU and GPU systems. The arrangement

reduces data movement overhead and enhances real-time AI performance, making it extremely

scalable to diverse NeSy models beyond the evaluated benchmarks.

4.1. Deterministic Policy Acceleration

We conducted experiments using DQN (Van Hasselt et al. (2016)) and VIPER (Bastani et al. (2018))

algorithms on four different control tasks with discrete action spaces: CartPole, Xor, TrafficInter-

section, and FrozenLake8x8. For DQN, we use an NN with 3 layers and for decision trees, we

employ decision tree classifier from Scikit Learn python package (Pedregosa et al. (2011)) with no

limit on the depth. Our decision tree policy includes Type II operations involving logical tests (<,

>, =) and binary rule checks (see Fig. 3).

In hardware, Type II operations can be accelerated using Analog CAMs. Analog CAMs with

6T2M cells, comprising of six transistors (T1–T6) and two memristors (M1, M2), allow analog

data storage, and range based comparison which support Type II operations in memory (Li et al.

(2020)). We evaluate energy efficiency, latency, and throughput using HSPICE simulations. Python-

and HSPICE-based simulations analyze aCAM performance, while CACTI modeling validates en-

ergy consumption at the peripheral and SRAM levels. Additionally, we synthesized key Verilog

6



NEURO-SYMBOLIC POLICY USING IMC

Figure 3: Illustration of the workflow from a reinforcement learning control task (CartPole) to

the synthesis of a deterministic decision-tree policy, followed by its deployment onto a compute-in-

memory (CIM) accelerator. The CIM architecture stores and evaluates the decision tree nodes within

analog content-addressable memory (aCAM) arrays to achieve efficient inference performance.

modules using Synopsys Design Compiler, obtaining realistic power estimates under standard-cell

constraints. Each environment required a customized CAM array size and memory configuration,

optimizing efficiency. Experimental results show that CAM-based processing achieves superior

power efficiency with minimal peripheral overhead. The pre-charge, compare, and discharge oper-

ations facilitate fast symbolic rule evaluation, while memristor tuning at 1/64 precision (0.015 per

step) enables 64-level storage, balancing hardware efficiency and accuracy. While real-world mem-

ristor variations may introduce minor fluctuations, our analysis assumes an ideal scenario to assess

intrinsic system capabilities.

We benchmarked CPU (Intel Xeon E5-2687W v4) and GPU (NVIDIA TITAN RTX) infer-

ence performance across four environments (CartPole-v1, Xor, TrafficIntersection, FrozenLake8x8)

using decision trees (Scikit-learn) and deep reinforcement learning models (JAX/Flax).

Each model ran 1000 inference iterations, measuring latency and power via nvidia-smi (GPU)

and psutil.cpu percent() (CPU). Hardware specs were retrieved using platform and

nvidia-smi. DQN used jax.device put() for CPU/GPU inference, while decision trees

ran on CPU. Trimmed mean (removing top/bottom 25%) was computed for latency and power.

Our results demonstrate that the IMC-based NeSy models achieve ∼100× lower latency and

over six orders of magnitude improved energy efficiency than conventional CPU and GPU imple-

mentations (see Table 2). IMC accelerators maintain competitive reward performance1 while dras-

tically reducing power consumption, confirming their viability for high-speed, efficient decision-

making in NeSy AI. These findings highlight IMC’s potential for energy-constrained applications,

paving the way for NeSy AI in edge computing, robotics, and autonomous systems.

4.2. Probabilistic Policy Acceleration

VIPER Bastani et al. (2018) allows us to distill an NN into a deterministic decision tree policy.

However, for the decision tree to be applicable for more complex tasks, we need a stochastic variant

as proposed in Qiu and Zhu (2022). The stochastic variant assigns probability for trees with different

1. For reward-based performance decision tree policy was executed on CPU.

7



MOLOM-OCHIR† SAXENA† KIM CHEN WANG PAJIC LI

Table 2: Comparison of Execution Power, Throughput, and Energy Per Decision

Task Setup Model Process Power Throughput Energy
(nm) (mW) (Dec/s) (nJ/Dec)

CartPole-v1

CPU NN 14 2.936E+04 3.636E+03 8.075E+06

CPU NeSy 14 2.693E+04 1.783E+03 1.511E+07

GPU NN 12 1.074E+05 1.567E+03 6.852E+07

IMC NeSy 65 1.063E+01 1.250E+05 8.503E+01

Xor

CPU NN 14 2.934E+04 3.636E+03 8.068E+06

CPU NeSy 14 3.140E+04 1.635E+03 1.933E+07

GPU NN 12 1.081E+05 1.593E+03 6.784E+07

IMC NeSy 65 4.911E+00 1.250E+05 6.139E+01

TrafficIntersection

CPU NN 14 2.908E+04 3.448E+03 8.348E+06

CPU NeSy 14 2.928E+04 1.724E+03 1.698E+07

GPU NN 12 1.090E+05 1.564E+03 6.960E+07

IMC NeSy 65 1.158E+01 1.250E+05 9.232E+01

Frozenlake8x8

CPU NN 14 2.921E+04 3.425E+03 8.473E+06

CPU NeSy 14 2.845E+04 1.698E+03 1.678E+07

GPU NN 12 1.061E+05 1.566E+03 6.774E+07

IMC NeSy 65 6.457E+00 1.250E+05 8.072E+01

Table 3: Comparison of Decision tree (NeSy) and DQN (NN) policies

Task Reward Performance Drop(%)
NeSy (a) NN (b)

CartPole-v1 384.12 305.57 -25.7

Xor 979.93 980.28 0.003

TrafficIntersection 27.65 31.16 11.2

Frozenlake8x8 0.456 0.401 -13.7

Note: The performance drop is computed as (NN Reward − NeSy Reward)/NN Reward × 100. Negative
values indicate NeSy outperforms NN.

depth as well as to the evaluation of if-and-else condition. Effectively, the final output is a weighted

average of different actions produced with different probabilities. Hence, we obtain a powerful

policy compared to the deterministic decision tree policy.

In this work, we did not obtain the results by implementing the stochastic decision tree on the

IMC architecture. Mapping stochastic decision trees to IMC requires specialized memory and rule-

checking for probabilistic operation evaluation. Unlike deterministic trees, where decision nodes

execute fixed boolean conditions, stochastic trees require sampling from probability distributions.

This can be implemented using TCAM, which supports multi-level state encoding, or by incorporat-

ing stochastic computing units (SCUs) within the IMC. CAM-based parallel lookup can efficiently

retrieve probability-weighted actions, reducing the latency of probabilistic decision-making.

To support random sampling operations, we propose integrating low-power digital random num-

ber generators (RNGs) or memristor-based entropy sources directly within IMC. These RNGs can

8



NEURO-SYMBOLIC POLICY USING IMC

drive Monte Carlo sampling for probabilistic branching decisions in hardware, eliminating the need

for external computation. Additionally, probabilistic rule tables can be preloaded into CAM arrays,

enabling ultra-fast lookups with O(1) complexity. Future IMC architectures could also leverage

stochastic ferroelectric or phase-change memory devices, which inherently exhibit tunable prob-

abilistic switching behaviors, making them ideal for implementing uncertainty-driven decision-

making. By embedding stochastic trees within IMC, we can extend NeSy AI to handle complex,

uncertain environments while maintaining energy efficiency and real-time execution.

5. Challenges and Prospects

Using VIPER (Bastani et al. (2018)) algorithm, we were able to show that we can obtain per-

formance comparable to the derived NN policy (see Table 3) on control task with discrete action

spaces using deterministic decision trees, reaping the benefits of computational efficiency (see Ta-

ble 2) from the use of the IMC architectures. However, to obtain controllers for more complicated

task, we need to use stochastic decision tree (Qiu and Zhu (2022)). The IMC architecture used in

the current work does not support sampling from a probability distribution. Therefore, we were not

able to demonstrate the performance on more complex control task. Although, we have briefly dis-

cussed how to handle stochastic policies on IMC hardware, there is still a need of concerted effort

on extending the capabilities of IMC architectures to support probabilistic operations.

Moreover, in this paper, we considered purely symbolic policies by distilling an NN-based pol-

icy. In order to reap the benefits of both NN policies and symbolic policies, the focus can be shifted

to neuro-symbolic policies. For example, finite state-machines (FSM) with a small NN policy for

each state could be used. The computational demands of FSM-based policies would be lower due

to the usage of symbolic components and a small NN. However, to support the execution of FSM-

based policy there is a need for hybrid hardware architecture that can support both IMC operation

and the need of small NNs. Therefore, we need to focus on developments from both the algorithmic

and hardware perspectives.

As a future work from the algorithmic side, we would like to work on FSM-based policy design

by combining the contribution of Qiu and Zhu (2022) in utilizing a small NN with symbolic policy

and contribution of Inala et al. (2020) in learning an FSM. As an additional step toward accom-

modating both symbolic and NN models on the same platform, we envision developing a unified

system-on-chip (SoC) for accelerating a variety of neuro-symbolic workloads. On the hardware

side, our approach involves integrating circuits such as CAMs, crossbar arrays, and systolic arrays

in a single computing substrate. CAMs can natively handle discrete lookups for symbolic models

like decision trees or state machines, while crossbars and systolic arrays can be leveraged for neural

operations. By co-locating these specialized compute blocks, we aim to minimize data movement

and optimize a holistic metric that balances energy cost, chip size, and reward performance. This

fully integrated design would permit a range of policy expressions—from purely symbolic to hybrid

neuro-symbolic models—to run efficiently under strict power or latency budgets, making it suitable

for edge scenarios and real-time control.

Ultimately, our plan is to develop a complete methodology, as illustrated in Figure 4, that spans

the compilation of neuro-symbolic models to hardware, the design of custom SoC modules for logic

and arithmetic, and the tuning of final applications for maximum energy-efficiency and interpretabil-

ity. By refining each link in this chain, we seek to deliver a robust framework that provides a trade-

off between symbolic AI’s inherent explainability and neural AI’s adaptiveness that collectively

9



MOLOM-OCHIR† SAXENA† KIM CHEN WANG PAJIC LI

Figure 4: Trade-off between symbolic AI and neural AI components yield a neuro-symbolic policy,

then mapped onto an SoC-based hardware accelerator composed of specialized modules for both

logical and arithmetic operations. This hardware-software co-design targets high reward, low energy

cost, and robust real-time performance in a unified framework.

thrive on a specialized, compact, and low-power substrate. We believe this hardware-algorithm

co-design strategy will empower next-generation AI applications, enabling real-time, interpretable

decision-making at scale.

6. Conclusion

This vision paper advocates for a paradigm shift toward In-Memory Computing (IMC)-based ac-

celeration for Neuro-Symbolic AI, enabling specialized hardware to efficiently execute symbolic

policies with O(1) complexity decision-making. Our analysis demonstrates that IMC-based sym-

bolic policies achieve up to 100× lower latency and six orders of magnitude better energy efficiency

compared to traditional CPU and GPU execution. By extending IMC architectures to support prob-

abilistic symbolic policies, we open the door for energy-efficient, sustainable AI systems capable

of real-time reasoning under uncertainty. This work highlights the urgent need for co-designing AI

models with specialized hardware, paving the way for next-generation energy-efficient, real-time,

and interpretable AI that can be deployed in edge computing, robotics, and autonomy.

Acknowledgments

This work is sponsored in part by the ONR under agreement N00014-23-1-2206, AFOSR under the

award number FA9550-19-1-0169, and by the NSF under NAIAD Award 2332744 as well as the

National AI Institute for Edge Computing Leveraging Next Generation Wireless Networks, Grant

CNS-2112562. The views, opinions, and/or findings contained in this article are those of the authors

and should not be interpreted as representing the official views or policies, expressed or implied, by

the funding agencies.

10



NEURO-SYMBOLIC POLICY USING IMC

References

Jim Austin. Distributed associative memories for high-speed symbolic reasoning. Fuzzy
Sets and Systems, 82(2):223–233, 1996. ISSN 0165-0114. doi: https://doi.org/10.

1016/0165-0114(95)00258-8. URL https://www.sciencedirect.com/science/
article/pii/0165011495002588. Connectionist and Hybrid Connectionist Systems for

Approximate Reasoning.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via pol-

icy extraction. Advances in neural information processing systems, 31, 2018.

Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi Tomar, and T. P. Singh. Neuro-symbolic

artificial intelligence: a survey. Neural Comput. Appl., 36(21):12809–12844, June 2024.

ISSN 0941-0643. doi: 10.1007/s00521-024-09960-z. URL https://doi.org/10.1007/
s00521-024-09960-z.

Tales H Carvalho, Kenneth Tjhia, and Levi HS Lelis. Reclaiming the source of programmatic

policies: Programmatic versus latent spaces. arXiv preprint arXiv:2410.12166, 2024.

Mark Craven and Jude Shavlik. Extracting tree-structured representations of trained

networks. In D. Touretzky, M.C. Mozer, and M. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8. MIT Press, 1995. URL

https://proceedings.neurips.cc/paper_files/paper/1995/file/
45f31d16b1058d586fc3be7207b58053-Paper.pdf.

Mohammed E. Fouda, Hasan Erdem Yantır, Ahmed M. Eltawil, and Fadi Kurdahi. In-memory

associative processors: Tutorial, potential, and challenges. IEEE Transactions on Circuits and
Systems II: Express Briefs, 69(6):2641–2647, 2022. doi: 10.1109/TCSII.2022.3170468.

Kyle Hamilton, Aparna Nayak, Bojan Božić, and Luca Longo. Is neuro-symbolic ai meeting its

promises in natural language processing? a structured review. Semantic Web, 15(4):1265–1306,

October 2024. ISSN 1570-0844. doi: 10.3233/sw-223228. URL http://dx.doi.org/10.
3233/SW-223228.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing

programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, 2020.

Asif Ali Khan, João Paulo C. De Lima, Hamid Farzaneh, and Jeronimo Castrillon. The landscape

of compute-near-memory and compute-in-memory: A research and commercial overview, 2024.

URL https://arxiv.org/abs/2401.14428.

Can Li, Catherine E. Graves, Xia Sheng, Darrin Miller, Martin Foltin, Giacomo Pedretti, and

John Paul Strachan. Analog content-addressable memories with memristors. Nature Com-
munications, 11(1), April 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-15254-4. URL

http://dx.doi.org/10.1038/s41467-020-15254-4.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:

Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

11



MOLOM-OCHIR† SAXENA† KIM CHEN WANG PAJIC LI

Giacomo Pedretti, Catherine E. Graves, Sergey Serebryakov, Ruibin Mao, Xia Sheng, Mar-

tin Foltin, Can Li, and John Paul Strachan. Tree-based machine learning performed in-

memory with memristive analog cam. Nature Communications, 12(1), October 2021. ISSN

2041-1723. doi: 10.1038/s41467-021-25873-0. URL http://dx.doi.org/10.1038/
s41467-021-25873-0.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In The Tenth
International Conference on Learning Representations, 2022.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-

tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference

Proceedings, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Opti-

mization methods for interpretable differentiable decision trees applied to reinforcement learn-

ing. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third In-
ternational Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pages 1855–1865. PMLR, 26–28 Aug 2020. URL https:
//proceedings.mlr.press/v108/silva20a.html.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go

without human knowledge. nature, 550(7676):354–359, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-

learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.

Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pages 5045–5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic

reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Daniël Vos and Sicco Verwer. Optimizing interpretable decision tree policies for reinforcement

learning. arXiv preprint arXiv:2408.11632, 2024.

Xunzhao Yin, Franz Müller, Ann Franchesca Laguna, Chao Li, Wenwen Ye, Qingrong Huang, Qin-

ming Zhang, Zhiguo Shi, Maximilian Lederer, Nellie Laleni, Shan Deng, Zijian Zhao, Michael

Niemier, Xiaobo Sharon Hu, Cheng Zhuo, Thomas Kämpfe, and Kai Ni. Deep random forest

with ferroelectric analog content addressable memory, 2021. URL https://arxiv.org/
abs/2110.02495.

12


