Proceedings of Machine Learning Research vol 288:1-12, 2025 2nd International Conference on Neuro-symbolic Systems (NeuS)

Efficient Neuro-Symbolic Policy using In-Memory Computing

Tergel Molom-Ochir’ TERGEL.MOLOM-OCHIR @ DUKE.EDU
Department of ECE, Duke University, USA
Naman Saxena* NAMAN.SAXENA @DUKE.EDU
Department of ECE, Duke University, USA

Jiwoo Kim JIWOO.KIM@DUKE.EDU
Department of ECE, Duke University, USA

Yiran Chen YIRAN.CHEN @DUKE.EDU
Department of ECE, Duke University, USA

Zhangyang Wang ATLASWANG @UTEXAS.EDU
Department of ECE, University of Texas Austin, USA

Miroslav Pajic MIROSLAV.PAJIC @ DUKE.EDU
Department of ECE, Duke University, USA

Hai ”Helen” Li HAI.LI@DUKE.EDU
Department of ECE, Duke University, USA

T These authors contributed equally.

Editors: G. Pappas, P. Ravikumar, S. A. Seshia

Abstract

As artificial intelligence (Al) systems grow in complexity, achieving computationally efficient and
interpretable decision-making is crucial. Neuro-Symbolic AI (NeSy) offers a promising frame-
work by integrating symbolic representation with neural learning, but its execution on traditional
hardware remains inefficient due to memory bottlenecks and high computational costs. This pa-
per advocates for a paradigm shift in Al acceleration—moving beyond traditional von Neumann
architectures toward memory-centric computation, unlocking real-time, scalable, and interpretable
decision-making for next-generation Al applications. We envision a future where In-Memory Com-
puting (IMC)-based acceleration fundamentally transforms Neuro-Symbolic policy acceleration by
mapping it onto hardware-associative memory, enabling O(1) complexity decision-making with
drastically reduced energy consumption and latency. Our preliminary results show that IMC-based
symbolic policies achieve up to 100x speedup and six orders of magnitude better energy efficiency
than CPU and GPU implementations. Moreover, we discuss how probabilistic symbolic policies
can be realized within IMC architectures, enabling Al systems to handle uncertainty while main-
taining efficiency.

Keywords: Neuro-Symbolic Al, In-Memory Computing, Hardware-Accelerated Al, Energy-Efficient
Al

© 2025 T. Molom-Ochir', N. Saxena', J. Kim, Y. Chen, Z. Wang, M. Pajic & H.”. Li.

MoLoM-OCHIRT SAXENAT KiM CHEN WANG PAJIC L1

2016 2017 2018 2019

Year

2020 2021 2022 2023

TG
B CNN B GPU rerift wis
A Transformer P A IMC
; @
109, @ Hybrid NFN?-F:‘H— g % &
v A
g 2, BRI SRAM, W4
Swin-B ;5 g A
£ EfficioniNotv2 L b=l e RRAM, W4
O 102 =) u
= VGG-19 e O BoTNetT5 AE Tesla V100
L) B EfficientNet-B7Bo 7QCCa|“T—S!'ﬁ ? a o e:a
© ResNeL-10Xception VITB/16 DeiTBM6 CrossViTle 3 O RRAM, W16 gram, W1 4
Inception V3| h AAA S o 102 SRAM, W8
101 ResNel-50 2
Eo
S
(SR GeForce GTX 1080 Nvidia Titan RTX
\leaNel MobileNet mGeForce GTX 1080 Ti
10 n []
(a) 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 (b)

Year

Figure 1: (a) Illustration of the exponential growth in the computational demands of neural network
policies, highlighting an unsustainable trend in power and resource consumption; (b) In contrast,
the steady advancements in In-Memory Computing (IMC) architectures, which are becoming in-
creasingly capable of handling complex workloads. These trends underscore the timeliness and
necessity of transitioning from purely neural network-based policies to neuro-symbolic policies, as
modern IMC architectures now offer the efficiency and computational capacity required to support
such hybrid models effectively.

1. Introduction

The reinforcement learning (RL) paradigm has proven effective at designing closed-loop controllers
based on the feedback from the task at hand in the form of a reward. The rise of neural networks en-
abled deep RL, powering breakthroughs like AlphaGo (Silver et al. (2017)) and DQN (Van Hasselt
et al. (2016)). Not only did deep RL-based controllers breach the ceiling of performance, but at the
same time, they allowed RL-based policies to be used in a wide variety of applications. With the
growing applicability, apart from the performance of the RL-based controllers, several other issues
have become important, such as interpretability, safety, and energy consumption of controllers.

Most of the time, while designing the controller, the energy consumption is not considered,
and it has become the default assumption that the platform used for the deployment of the controller
will have sufficient resources to support the controller. This no longer holds as NN-based controllers
grow in size. Consequently, we focus on the use of Neuro-Symbolic reinforcement learning to cre-
ate energy efficient controllers. Neuro-Symbolic (NeSy) paradigm uses interpretable structures such
as finite state machines or decision trees to represent the controller. Such interpretable structures,
by taking advantage of specialized hardware development, such as In-memory computing, could be
used to reduce the energy consumption of controllers in general.

To alleviate the computational inefficiencies of traditional hardware for NeSy Al, we employ
In-Memory Computing (IMC) architectures to accelerate controllers. Unlike traditional CPUs and
GPUs, which suffer from high data movement overhead due to the von Neumann bottleneck, IMC
executes computations within memory itself with reduced latency and power. By mapping NeSy
policies onto IMC, we demonstrate that symbolic structure computations—such as decision-tree
inference and rule-based logic execution—can be performed in O(/) complexity using specialized
hardware. Not only is this energy efficient, but it enables real-time operation of interpretable sym-
bolic policies. This work presents a comparative analysis that stresses the performance enhancement
of IMC-based NeSy controllers over their NN-based equivalent, highlighting the scalability of IMC
for low-power artificial intelligence applications. In particular, in this paper, we propose the use of

NEURO-SYMBOLIC POLICY USING IMC

Table 1: Generalized Neuro-Symbolic Architectures (Hamilton et al. (2024); Bhuyan et al. (2024))

Category

Example Architectures

Rule-Based & Symbolic Al Integration

Decision Tree-Augmented Neural Networks, Deep Symbolic Regres-
sion

Automata & Sequential Processing

Neural Turing Machines (NTM), FSM-Enhanced RNNs

Program Synthesis & Inductive Learning

Neural Program Induction, Program Synthesis Networks

Logic-Based Neural Networks

Logic Neural Networks (LNN), Logic Tensor Networks (LTN), Tensor
Product Representation (TPR)

Graph & Knowledge Representation Mod-

Graph Neural Networks (GNNs) with Symbolic Reasoning, Recursive

els Neural Knowledge Networks (RNKN)

Reinforcement Learning & Decision- | AlphaZero, Neuro-symbolic Policy Learning

Making

Neural-Symbolic Compilation & Theorem | Neural Theorem Provers (NTP), Expression Trees from Neural Models
Proving

a Neuro-Symbolic decision tree controller, followed by its deployment on IMC, to demonstrate the
benefits of energy consumption and execution time.

This paper is organized as follows. In Section 2, we provide an overview of NeSy RL and
IMC architectures. Section 3 describes the proposed pipeline for NeSy policy design using IMC. In
Section 4, we present a comparison between the energy consumption and throughput performance
of the NeSy and NN-based controllers. Lastly, we delineate the challenges due to the current state
of IMC architectures and discuss areas for improvement.

2. Related Works

2.1. Neuro-Symbolic Approaches and Architectures

NeSy approaches comprise of several different methods (see Table 1). For decision making, most
NeSy approaches rely on the use of controllers based on discrete structures such as grammar. A
grammar G is defined as {7, N,P,s}. Here, T denotes the set of terminal symbols. Terminal
symbols are tantamount to constants and cannot be replaced by any other symbol while evaluating
grammar. N represents the set of non-terminal symbols that function as variables and can be replace
with other non-terminal or terminal symbols. Further, P denotes production rules that are mapping
from the set of non-terminal symbols to a combined set of all the symbols. Lastly, s is the start
symbol that is the first symbol to be replaced by a terminal or a non-terminal symbol.

Once a grammar is assumed for a particular task, a finite-state machine (Inala et al. (2020)), a
decision tree (Silva et al. (2020); Bastani et al. (2018); Vos and Verwer (2024)), or a simple program
(Verma et al. (2019, 2018)) could be derived as the controller. Inala et al. (2020) uses a finite-state
machine to obtain a hierarchical controller for tasks that require repetitive actions. It uses grammar
to define the state-switching conditions and controller applicable in the state. Further, several works
focus on program synthesis using grammar. Verma et al. (2019) uses an NN policy and imitation
learning to update the programmatic policy. Moreover, Carvalho et al. (2024) learns a programmatic
policy by performing a search in the space of programmatic policies using search methods such as
beam search, hill climbing, etc. A decision tree could be seen as a special case of a programmatic
policy where the program only consists of if-and-else statements. Our work uses decision tree
policies, which we discuss in more detail in the next subsection.

MoLoM-OCHIRT SAXENAT KiM CHEN WANG PAJIC L1

2.2. Decision Tree-based Controllers

Qiu and Zhu (2022) uses a grammar with if-and-else statements with affine conditions to obtain a
decision tree policy. The work proposes to learn the probability of introducing nested if-and-else
conditions, increasing the decision tree’s depth. Moreover, if-and-else conditions are also evaluated
based on learned probability. Finally, the action is produced as a weighted sum of actions according
to the probability of all if-and-else statements across all trees up to a certain depth.

The previous work is an example of learning a stochastic decision tree. However, there are
several works that explore deterministic trees and will be more suitable for taking advantage of the
current state of IMC architectures. Vos and Verwer (2024) obtains the decision tree by using a deci-
sion tree classifier (DTC). First, the decision tree acts in the environment and produces a trajectory.
Later on, the actions in the trajectory are modified using the objective function of the Proximal
Policy Optimization (Schulman et al. (2017)) algorithm. The next action generator becomes a tar-
get for the decision tree classifier corresponding to a particular state, and a DTC is learned using
supervised learning. Bastani et al. (2018) distills decision tree policies from NN policies. In this
work, we focus on demonstrating how we can obtain symbolic policies (Craven and Shavlik (1995))
with performance comparable to NN policies and show their efficiency with specialized hardware
such as IMC architecture. Therefore, the algorithm proposed by Bastani et al. (2018) is used as the
base for our work. Next, we will discuss the development related to IMC architectures that supports
symbolic policies.

2.3. Hardware Acceleration for Neuro-Symbolic Al

NeSy Al poses distinctive computational challenges that demand hardware acceleration tailored
beyond general deep learning accelerators such as GPUs and TPUs. Unlike deep neural networks
(DNNs), which are built on enormous matrix multiplications structured for parallel computation,
NeSy models use symbolic structures incorporating rule-based decision-making, graph traversal,
and logical operations. These tasks incur heavy memory access overhead and computational non-
uniformity, which render them inefficient on general Al accelerators.

One such approach is IMC, which sidesteps the data transfer bottleneck by computing directly
in the memory itself (Khan et al. (2024)). IMC architectures are especially suited to executing
decision trees, finite-state machines, and symbolic policies, all of which are typical elements in
NeSy models. New studies show that symbolic models tuned for IMC can achieve comparable
performances to deep learning models at significantly lower energy consumptions, as demonstrated
through experiments with decision tree classifiers on IMC accelerators (Pedretti et al. (2021); Yin
etal. (2021)). Also, new hardware architectures, such as Resistive RAM (ReRAM)-based IMC, Fer-
roelectric Field-Effect Transistors (FeFETs), and coupled oscillator arrays, offer novel approaches
to advancing the implementation of tasks related to symbolic reasoning. These hardware options
provide high-density storage of memory, parallelization of logic, and symbolic computation at low
energy, making them highly compatible with NeSy workloads.

A hybrid computing paradigm that unifies neural accelerators with special-purpose symbolic
processors is essential to developing NeSy Al Neuromorphic chips and logic-based co-processors
are viable options for handling tasks with high reasoning demand, while maintaining low power
consumption. As NeSy Al evolves, hardware-software co-design approaches will be essential for
improving efficiency, scalability, and real-time execution in diverse applications such as robotics,
autonomous systems, and edge Al. Future work requires enhancing heterogeneous architectures and

NEURO-SYMBOLIC POLICY USING IMC

Task Environment & Neuro-Symbolic Model & IMC-Based Hardware
Decision-Making Policy Expression Acceleration

Deterministic Tree
01 <=0.021 Finite-state Machine @ == ==escccccccccac-- »

y Cmsshar
02 <= 0.027 02 <=-0.027
a 02 <= 000t <=0317] Gong o1 <= 0.478]

NPU
u
D
right [lefi] [left| right might left

P
7. % Memory Controller /
S

59
S
#Core_ £ Tore /" Core Core

Shared Cache /

Logic Neural Network (LNN)

(Tail X Whiskers X (Fish -> Excited)) > Cat (me anﬂe) > Pet

FZX\ E X Pel J
Tail) h]ske@ = Cat) (Turtle)

Figure 2: General workflow of accelerating Neuro-Symbolic policies using In-Memory Computing
(IMC) hardware. The left section illustrates diverse task environments requiring decision-making,
such as robotics and autonomous control. The middle section represents different Neuro-Symbolic
models and policy expressions, including decision trees, finite state machines (FSMs), and Logic
Neural Network (LNN) structures. The right section depicts the deployment of these policies onto an
IMC-based accelerator, leveraging crossbars, content-addressable memory (CAM), and specialized
logic arrays for efficient symbolic reasoning and real-time execution.

developing hardware-efficient symbolic execution techniques to fully harness the power of NeSy Al
In the next section, we will discuss the proposed symbolic policy design pipeline.

3. Proposed Methodology

The approach presented in this work focuses on the replacement of energy-hungry NN policies with
symbolic policies that can be efficiently accelerated by leveraging specialized hardware. As shown
in Fig. 2, a two-step process is followed: first, an NN policy is distilled into a symbolic policy using
the VIPER algorithm (Bastani et al. (2018)), ensuring interpretable decision-making capabilities.
Then, the symbolic policy is embedded into an IMC architecture, leveraging its parallel execution
and memory-aware execution to enhance performance while reducing power consumption. This
approach enables the use of NeSy models in low-power, real-time decision-making scenarios. In
the following, we discuss how to distill an NN policy into a symbolic policy and deploy it on IMC.

3.1. Neural Network to Symbolic Policy

We use the VIPER algorithm proposed in Bastani et al. (2018). In this work, first, an NN policy
is trained using the Deep Q-Learning algorithm (Van Hasselt et al. (2016)) for tasks with discrete
action spaces. Subsequently, the DAGGER algorithm (Ross et al. (2011)) is used to imitate the
NN policy using a decision tree policy. Here, the decision tree policy is a classifier because of the
discrete action space. During training, trajectories are generated from a mixture policy consisting of
both the NN policy and decision tree policy. As the training progresses, the contribution of the NN
policy is annealed to allow the decision tree policy to take over. This training allows the tree policy
to handle trajectories deviating from the NN. At the end of the training, we obtain a deterministic

MoLoM-OCHIRT SAXENAT KiM CHEN WANG PAJIC L1

policy with branching of nodes dependent on checking a single Boolean condition. The use of
simple operations in the decision tree policy makes it amenable to the IMC architectures.

3.2. IMC-Based Acceleration

IMC-based architectures provide a possible solution to accelerating NeSy models by eliminating
data movement overhead and enabling O(1) complexity operations. Crossbar-based IMC is best
suited for Type I operations such as addition and multiplication for vector-matrix multiplications.
CAM-enhanced IMC with O(1) complexity lookup enables fast symbolic rule lookups and Type II
operations such as comparison-based logic (<, >, =) and hierarchical decision-making. Apart from
these, Ternary Content-Addressable Memory (TCAM) goes one step further in enabling CAM’s
functionality with the support of multi-value symbolic matching, which finds application in proba-
bilistic rule evaluation in NeSy Al Associative Processing Units (APUs) enhance symbolic reason-
ing flexibility by reducing dependence on rule tables (Fouda et al. (2022); Austin (1996)).

To effectively enhance symbolic decision policies, this study investigates the potential for de-
terministic trees to be executed on IMC accelerators through logic execution on Analog Content-
Addressable Memory (aCAM). aCAMs support the parallel evaluation of several decision nodes,
thereby condensing memory lookup latency to O(1), a key benefit for symbolic reasoning appli-
cations (Pedretti et al. (2021)). This method enables the complete execution of decision trees in
memory, thereby minimizing costly data transfers and lowering energy consumption by a consider-
able amount (Yin et al. (2021)). At the circuit level, there is a discussion of how symbolic policies
are implemented physically. Decision trees are encoded into lookup tables (LUTs) and then instan-
tiated in content-addressable memory (CAM) architectures, thereby enabling state-based decisions
to be executed quickly.

4. Case Studies

The proposed IMC-based NeSy pipeline demonstrates an order-of-magnitude improvement in la-
tency and energy-efficiency compared to conventional CPU and GPU systems. The arrangement
reduces data movement overhead and enhances real-time Al performance, making it extremely
scalable to diverse NeSy models beyond the evaluated benchmarks.

4.1. Deterministic Policy Acceleration

We conducted experiments using DQN (Van Hasselt et al. (2016)) and VIPER (Bastani et al. (2018))
algorithms on four different control tasks with discrete action spaces: CartPole, Xor, TrafficInter-
section, and FrozenLake8x8. For DQN, we use an NN with 3 layers and for decision trees, we
employ decision tree classifier from Scikit Learn python package (Pedregosa et al. (2011)) with no
limit on the depth. Our decision tree policy includes Type II operations involving logical tests (<,
>, =) and binary rule checks (see Fig. 3).

In hardware, Type II operations can be accelerated using Analog CAMs. Analog CAMs with
6T2M cells, comprising of six transistors (T1-T6) and two memristors (M1, M2), allow analog
data storage, and range based comparison which support Type II operations in memory (Li et al.
(2020)). We evaluate energy efficiency, latency, and throughput using HSPICE simulations. Python-
and HSPICE-based simulations analyze aCAM performance, while CACTI modeling validates en-
ergy consumption at the peripheral and SRAM levels. Additionally, we synthesized key Verilog

NEURO-SYMBOLIC POLICY USING IMC

Control Task Deterministic Policy Compute-In-Memory

01 <=0.021

|
: K Oy
| X : »
1 L :
| Deploy I N
la @4
[62 <=0.001][p1 <=-0.317][e1 <= 0,659 ' Y
'
na AN e .
PE: Processing

83 <=-2.207| [left | [left | right [left | right right |62 <=0.195 CiCas
Element

CP: CoProcessor
81 <=-1.339| | left ight |81 <=0.478
[p1 <= 1.339] et L aCAM: Analog CAM SRAM: memory to

Amay store the output

01 <=0.124

[left right right left P-Ch: Pre- DAC: Digital-to-
Charge Analog Converter

Figure 3: Illustration of the workflow from a reinforcement learning control task (CartPole) to
the synthesis of a deterministic decision-tree policy, followed by its deployment onto a compute-in-
memory (CIM) accelerator. The CIM architecture stores and evaluates the decision tree nodes within
analog content-addressable memory (aCAM) arrays to achieve efficient inference performance.

modules using Synopsys Design Compiler, obtaining realistic power estimates under standard-cell
constraints. Each environment required a customized CAM array size and memory configuration,
optimizing efficiency. Experimental results show that CAM-based processing achieves superior
power efficiency with minimal peripheral overhead. The pre-charge, compare, and discharge oper-
ations facilitate fast symbolic rule evaluation, while memristor tuning at 1/64 precision (0.015 per
step) enables 64-level storage, balancing hardware efficiency and accuracy. While real-world mem-
ristor variations may introduce minor fluctuations, our analysis assumes an ideal scenario to assess
intrinsic system capabilities.

We benchmarked CPU (Intel Xeon E5-2687W v4) and GPU (NVIDIA TITAN RTX) infer-
ence performance across four environments (CartPole-v1, Xor, TrafficIntersection, FrozenLake8x8)
using decision trees (Scikit—-learn) and deep reinforcement learning models (JAX/Flax).
Each model ran 1000 inference iterations, measuring latency and power via nvidia-smi (GPU)
and psutil.cpu_percent () (CPU). Hardware specs were retrieved using plat form and
nvidia-smi. DQN used jax.device_put () for CPU/GPU inference, while decision trees
ran on CPU. Trimmed mean (removing top/bottom 25%) was computed for latency and power.

Our results demonstrate that the IMC-based NeSy models achieve ~100x lower latency and
over six orders of magnitude improved energy efficiency than conventional CPU and GPU imple-
mentations (see Table 2). IMC accelerators maintain competitive reward performance' while dras-
tically reducing power consumption, confirming their viability for high-speed, efficient decision-
making in NeSy Al These findings highlight IMC’s potential for energy-constrained applications,
paving the way for NeSy Al in edge computing, robotics, and autonomous systems.

4.2. Probabilistic Policy Acceleration

VIPER Bastani et al. (2018) allows us to distill an NN into a deterministic decision tree policy.
However, for the decision tree to be applicable for more complex tasks, we need a stochastic variant
as proposed in Qiu and Zhu (2022). The stochastic variant assigns probability for trees with different

1. For reward-based performance decision tree policy was executed on CPU.

MoLoM-OCHIRT SAXENAT KiM CHEN WANG PAJIC L1

Table 2: Comparison of Execution Power, Throughput, and Energy Per Decision

Task Setup | Model | Process Power Throughput Energy
(nm) (mW) (Decl/s) (nJ/Dec)
CPU NN 14 2.936E+04 | 3.636E+03 8.075E+06
CPU NeSy 14 2.693E+04 1.783E+03 1.511E+07
CartPole-v1
GPU | NN 12 1.074E+05 1.567E+03 | 6.852E+07
IMC NeSy 65 1.063E+01 | 1.250E+05 | 8.503E+01
CPU NN 14 2.934E+04 | 3.636E+03 8.068E+06
Xor CPU NeSy 14 3.140E+04 1.635E+03 1.933E+07
GPU | NN 12 1.081E+05 1.593E+03 | 6.784E+07
IMC NeSy 65 4.911E+00 | 1.250E+05 | 6.139E+01
CPU NN 14 2.908E+04 | 3.448E+03 8.348E+06
. CPU NeSy 14 2.928E+04 1.724E+03 1.698E+07
TrafficIntersection
GPU | NN 12 1.090E+05 1.564E+03 | 6.960E+07
IMC NeSy 65 1.158E+01 | 1.250E+05 | 9.232E+01
CPU NN 14 2.921E+04 | 3.425E+03 8.473E+06
CPU NeSy 14 2.845E+04 1.698E+03 1.678E+07
Frozenlake8x8
GPU | NN 12 1.061E+05 1.566E+03 | 6.774E+07
IMC NeSy 65 6.457E+00 | 1.250E+05 | 8.072E+01

Table 3: Comparison of Decision tree (NeSy) and DQN (NN) policies

Task Ne SyltgvarlgN) Performance Drop(%)
CartPole-v1 384.12 | 305.57 -25.7
Xor 979.93 | 980.28 0.003
TrafficIntersection 27.65 31.16 11.2
Frozenlake8x8 0.456 0.401 -13.7

Note: The performance drop is computed as (NN Reward — NeSy Reward) /NN Reward x 100. Negative
values indicate NeSy outperforms NN.

depth as well as to the evaluation of if-and-else condition. Effectively, the final output is a weighted
average of different actions produced with different probabilities. Hence, we obtain a powerful
policy compared to the deterministic decision tree policy.

In this work, we did not obtain the results by implementing the stochastic decision tree on the
IMC architecture. Mapping stochastic decision trees to IMC requires specialized memory and rule-
checking for probabilistic operation evaluation. Unlike deterministic trees, where decision nodes
execute fixed boolean conditions, stochastic trees require sampling from probability distributions.
This can be implemented using TCAM, which supports multi-level state encoding, or by incorporat-
ing stochastic computing units (SCUs) within the IMC. CAM-based parallel lookup can efficiently
retrieve probability-weighted actions, reducing the latency of probabilistic decision-making.

To support random sampling operations, we propose integrating low-power digital random num-
ber generators (RNGs) or memristor-based entropy sources directly within IMC. These RNGs can

NEURO-SYMBOLIC POLICY USING IMC

drive Monte Carlo sampling for probabilistic branching decisions in hardware, eliminating the need
for external computation. Additionally, probabilistic rule tables can be preloaded into CAM arrays,
enabling ultra-fast lookups with O(/) complexity. Future IMC architectures could also leverage
stochastic ferroelectric or phase-change memory devices, which inherently exhibit tunable prob-
abilistic switching behaviors, making them ideal for implementing uncertainty-driven decision-
making. By embedding stochastic trees within IMC, we can extend NeSy Al to handle complex,
uncertain environments while maintaining energy efficiency and real-time execution.

5. Challenges and Prospects

Using VIPER (Bastani et al. (2018)) algorithm, we were able to show that we can obtain per-
formance comparable to the derived NN policy (see Table 3) on control task with discrete action
spaces using deterministic decision trees, reaping the benefits of computational efficiency (see Ta-
ble 2) from the use of the IMC architectures. However, to obtain controllers for more complicated
task, we need to use stochastic decision tree (Qiu and Zhu (2022)). The IMC architecture used in
the current work does not support sampling from a probability distribution. Therefore, we were not
able to demonstrate the performance on more complex control task. Although, we have briefly dis-
cussed how to handle stochastic policies on IMC hardware, there is still a need of concerted effort
on extending the capabilities of IMC architectures to support probabilistic operations.

Moreover, in this paper, we considered purely symbolic policies by distilling an NN-based pol-
icy. In order to reap the benefits of both NN policies and symbolic policies, the focus can be shifted
to neuro-symbolic policies. For example, finite state-machines (FSM) with a small NN policy for
each state could be used. The computational demands of FSM-based policies would be lower due
to the usage of symbolic components and a small NN. However, to support the execution of FSM-
based policy there is a need for hybrid hardware architecture that can support both IMC operation
and the need of small NNs. Therefore, we need to focus on developments from both the algorithmic
and hardware perspectives.

As a future work from the algorithmic side, we would like to work on FSM-based policy design
by combining the contribution of Qiu and Zhu (2022) in utilizing a small NN with symbolic policy
and contribution of Inala et al. (2020) in learning an FSM. As an additional step toward accom-
modating both symbolic and NN models on the same platform, we envision developing a unified
system-on-chip (SoC) for accelerating a variety of neuro-symbolic workloads. On the hardware
side, our approach involves integrating circuits such as CAMs, crossbar arrays, and systolic arrays
in a single computing substrate. CAMs can natively handle discrete lookups for symbolic models
like decision trees or state machines, while crossbars and systolic arrays can be leveraged for neural
operations. By co-locating these specialized compute blocks, we aim to minimize data movement
and optimize a holistic metric that balances energy cost, chip size, and reward performance. This
fully integrated design would permit a range of policy expressions—from purely symbolic to hybrid
neuro-symbolic models—to run efficiently under strict power or latency budgets, making it suitable
for edge scenarios and real-time control.

Ultimately, our plan is to develop a complete methodology, as illustrated in Figure 4, that spans
the compilation of neuro-symbolic models to hardware, the design of custom SoC modules for logic
and arithmetic, and the tuning of final applications for maximum energy-efficiency and interpretabil-
ity. By refining each link in this chain, we seek to deliver a robust framework that provides a trade-
off between symbolic AI’s inherent explainability and neural AI’s adaptiveness that collectively

MoLoM-OCHIRT SAXENAT KiM CHEN WANG PAJIC L1

. . SoC-Based High Reward
Symbolic AI Trade-Off Neuro-Symbolic Model & Hardware —

Engine Policy Expression Acceleration @

p e Low Cost
- Expert knowledge
- Explainability e d Optimize
- Reasoning a $
()

Accelerate

Neural AI
ints: . \ J
C]r;l:zt;::ts - High reward
~ Model size - Optimal model size Real Time
- Level of Explainability
- Training Cost
- Scalable
- Generalizable \ J

- Perception

Figure 4: Trade-off between symbolic Al and neural AI components yield a neuro-symbolic policy,
then mapped onto an SoC-based hardware accelerator composed of specialized modules for both
logical and arithmetic operations. This hardware-software co-design targets high reward, low energy
cost, and robust real-time performance in a unified framework.

thrive on a specialized, compact, and low-power substrate. We believe this hardware-algorithm
co-design strategy will empower next-generation Al applications, enabling real-time, interpretable
decision-making at scale.

6. Conclusion

This vision paper advocates for a paradigm shift toward In-Memory Computing (IMC)-based ac-
celeration for Neuro-Symbolic Al, enabling specialized hardware to efficiently execute symbolic
policies with O(7) complexity decision-making. Our analysis demonstrates that IMC-based sym-
bolic policies achieve up to 100x lower latency and six orders of magnitude better energy efficiency
compared to traditional CPU and GPU execution. By extending IMC architectures to support prob-
abilistic symbolic policies, we open the door for energy-efficient, sustainable Al systems capable
of real-time reasoning under uncertainty. This work highlights the urgent need for co-designing Al
models with specialized hardware, paving the way for next-generation energy-efficient, real-time,
and interpretable Al that can be deployed in edge computing, robotics, and autonomy.

Acknowledgments

This work is sponsored in part by the ONR under agreement N00014-23-1-2206, AFOSR under the
award number FA9550-19-1-0169, and by the NSF under NATAD Award 2332744 as well as the
National Al Institute for Edge Computing Leveraging Next Generation Wireless Networks, Grant
CNS-2112562. The views, opinions, and/or findings contained in this article are those of the authors
and should not be interpreted as representing the official views or policies, expressed or implied, by
the funding agencies.

10

NEURO-SYMBOLIC POLICY USING IMC

References

Jim Austin. Distributed associative memories for high-speed symbolic reasoning. Fuzzy
Sets and Systems, 82(2):223-233, 1996. ISSN 0165-0114. doi: https://doi.org/10.
1016/0165-0114(95)00258-8. URL https://www.sciencedirect.com/science/
article/pii/0165011495002588. Connectionist and Hybrid Connectionist Systems for
Approximate Reasoning.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via pol-
icy extraction. Advances in neural information processing systems, 31, 2018.

Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi Tomar, and T. P. Singh. Neuro-symbolic
artificial intelligence: a survey. Neural Comput. Appl., 36(21):12809—-12844, June 2024.
ISSN 0941-0643. doi: 10.1007/s00521-024-09960-z. URL https://doi.org/10.1007/
s00521-024-09960-z.

Tales H Carvalho, Kenneth Tjhia, and Levi HS Lelis. Reclaiming the source of programmatic
policies: Programmatic versus latent spaces. arXiv preprint arXiv:2410.12166, 2024.

Mark Craven and Jude Shavlik. Extracting tree-structured representations of trained
networks. In D. Touretzky, M.C. Mozer, and M. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8. MIT Press, 1995. URL
https://proceedings.neurips.cc/paper_files/paper/1995/file/
45£31d16b1058d586£c3be7207b58053-Paper.pdf.

Mohammed E. Fouda, Hasan Erdem Yantir, Ahmed M. Eltawil, and Fadi Kurdahi. In-memory
associative processors: Tutorial, potential, and challenges. IEEE Transactions on Circuits and
Systems 11: Express Briefs, 69(6):2641-2647, 2022. doi: 10.1109/TCSII1.2022.3170468.

Kyle Hamilton, Aparna Nayak, Bojan BoZi¢, and Luca Longo. Is neuro-symbolic ai meeting its
promises in natural language processing? a structured review. Semantic Web, 15(4):1265-1306,
October 2024. ISSN 1570-0844. doi: 10.3233/sw-223228. URL http://dx.doi.org/10.
3233/SW-223228.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, 2020.

Asif Ali Khan, Jodo Paulo C. De Lima, Hamid Farzaneh, and Jeronimo Castrillon. The landscape
of compute-near-memory and compute-in-memory: A research and commercial overview, 2024.
URL https://arxiv.org/abs/2401.14428.

Can Li, Catherine E. Graves, Xia Sheng, Darrin Miller, Martin Foltin, Giacomo Pedretti, and
John Paul Strachan. Analog content-addressable memories with memristors. Nature Com-
munications, 11(1), April 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-15254-4. URL
http://dx.doi.org/10.1038/s41467-020-15254-4.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 12(Oct):2825-2830, 2011.

11

MoLoM-OCHIRT SAXENAT KiM CHEN WANG PAJIC L1

Giacomo Pedretti, Catherine E. Graves, Sergey Serebryakov, Ruibin Mao, Xia Sheng, Mar-
tin Foltin, Can Li, and John Paul Strachan. Tree-based machine learning performed in-
memory with memristive analog cam. Nature Communications, 12(1), October 2021. ISSN
2041-1723. doi: 10.1038/s41467-021-25873-0. URL http://dx.doi.org/10.1038/
s41467-021-25873-0.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In The Tenth
International Conference on Learning Representations, 2022.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pages 627-635. JIMLR Workshop and Conference
Proceedings, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Opti-
mization methods for interpretable differentiable decision trees applied to reinforcement learn-
ing. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third In-
ternational Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pages 1855-1865. PMLR, 26-28 Aug 2020. URL https:
//proceedings.mlr.press/v108/silva20a.html.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pages 5045-5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected programmatic
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Daniél Vos and Sicco Verwer. Optimizing interpretable decision tree policies for reinforcement
learning. arXiv preprint arXiv:2408.11632, 2024.

Xunzhao Yin, Franz Miiller, Ann Franchesca Laguna, Chao Li, Wenwen Ye, Qingrong Huang, Qin-
ming Zhang, Zhiguo Shi, Maximilian Lederer, Nellie Laleni, Shan Deng, Zijian Zhao, Michael
Niemier, Xiaobo Sharon Hu, Cheng Zhuo, Thomas Kédmpfe, and Kai Ni. Deep random forest
with ferroelectric analog content addressable memory, 2021. URL https://arxiv.org/
abs/2110.02495.

12

