Boosting Adversarial Robustness with CLAT:
Criticality-Leveraged Adversarial Training

Bhavna Gopal' Huanrui Yang? Jingyang Zhang' Mark Horton' Yiran Chen'

Abstract

Adversarial training (AT) enhances neural net-
work robustness. Typically, AT updates all train-
able parameters, but can lead to overfitting and
increased errors on clean data. Research sug-
gests that fine-tuning specific parameters may be
more effective; however, methods for identifying
these essential parameters and establishing effec-
tive optimization objectives remain inadequately
addressed. We present CLAT, an innovative adver-
sarial fine-tuning algorithm that mitigates adver-
sarial overfitting by integrating “criticality” into
the training process. Instead of tuning the entire
model, CLAT identifies and fine-tunes fewer pa-
rameters in robustness-critical layers—those pre-
dominantly learning non-robust features—while
keeping the rest of the model fixed. Additionally,
CLAT employs a dynamic layer selection process
that adapts to changes in layer criticality during
training. Empirical results demonstrate that CLAT
can be seamlessly integrated with existing adver-
sarial training methods, enhancing clean accuracy
and adversarial robustness by over 2% compared
to baseline approaches.

1. Introduction

Advancements in deep learning models have markedly im-
proved image classification accuracy. Despite this, their
vulnerability to adversarial attacks — subtle modifications
to input images that mislead the model — remains a sig-
nificant concern (Goodfellow et al., 2015; Szegedy et al.,
2014). The research community has been rigorously explor-
ing theories to comprehend the mechanics behind adversar-
ial attacks (Bai et al., 2021). Ilyas et al. (2019) uncover

"Department of Electrical and Computer Engineering, Duke
University, Durham, NC, USA *Department of Electrical and Com-
puter Engineering, University of Arizona, Tucson, AZ, USA. Cor-
respondence to: Bhavna Gopal <bhavna.gopal @duke.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

the coexistence of robust and non-robust features in stan-
dard datasets. Adversarial vulnerability largely stems from
the presence of non-robust features in models trained on
standard datasets, which, while highly predictive and bene-
ficial for clean accuracy, are susceptible to noise (Szegedy
et al., 2014). Unfortunately, it is observed that deep learning
models tend to preferentially learn these non-robust fea-
tures. Inkawhich et al. (2019; 2020) further demonstrate
that adversarial images derived from the hidden features
of certain intermediate non-robust/“critical” layers exhibit
enhanced transferability to unseen models. This suggests a
commonality in the non-robust features captured by these
layers. While identifying these critical layers to improve
their robustness is appealing, this process often requires the
time-consuming generation of attacks against each individ-
ual layer. Methods to identify and effectively address the
criticality of such layers are still lacking.

In contrast to layer-wise feature vulnerability analysis, ad-
versarial training (Athalye et al., 2018; Madry et al., 2019;
Croce & Hein, 2020), involves training entire neural net-
works with adversarial examples generated in real-time.
This approach inherently encourages all layers in the model
to learn robust features from adversarial images, thereby
enhancing the model’s resilience against attacks. However,
given the more challenging optimization process of learning
from adversarial examples than from clean ones, adversarial
training also brings hurdles such as heightened errors on
clean data and susceptibility to overfitting, ultimately dimin-
ishing its effectiveness in practical applications (Schmidt
et al., 2018; Zhang et al., 2019; Raghunathan et al., 2019;
Javanmard et al., 2020). Despite various efforts to enhance
adversarial training, such as modifying input data and ad-
justing loss functions (Hitaj et al., 2021; Raghunathan et al.,
2019; Zhang et al., 2019; Wang et al., 2020; Wu et al.,
2020b; Pang et al., 2022), these approaches still frequently
fall short in alleviating the aforementioned issues.

In light of these challenges, we introduce CLAT, a paradigm
shift in adversarial training, where we mitigate overfitting
during adversarial training by identifying and tuning only
the robustness-critical model layers. CLAT commences by
pinpointing critical layers within a model using our novel,
theoretically grounded, and easily computable,*“criticality

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

index”, which we developed to identify layers which have
learned non-robust features dominantly. Subsequently, our
algorithm meticulously fine-tunes these critical layers to
remove their non-robust features and reduce their critical-
ity, while freezing the other, non-critical layers. Dynamic
selection of critical layers is conducted during the training
process to always focus fine-tuning on the most-in-need
layers, avoiding the overfitting of full-model adversarial
training. CLAT therefore achieves both clean and adversar-
ial state-of-the-art (SOTA) accuracy compared to previous
adversarial training methods.

In summary, we make the following contributions:

* We introduce the “criticality index”, a quantitative met-
ric designed to identify critical layers for the adversar-
ial vulnerability of a model with minimal overhead.

* We develop a specialized adversarial training objective
focused on reducing the criticality of the identified
critical layers to bolster overall model robustness.

* We propose CLAT, an adversarial fine-tuning algorithm
that mitigates overfitting by focusing on reducing the
criticality of fewer than 4% of trainable parameters.
CLAT integrates seamlessly into diverse model training
scenarios and baseline adversarial training methods.

CLAT markedly reduces overfitting risks, boosting both
clean accuracy and adversarial resilience by up to 2%.

2. Related Work

Adversarial training: Adversarial Training (AT) was first
introduced by Goodfellow et al. (2015), who demonstrated
how the integration of adversarial examples into the train-
ing process could substantially improve model robustness.
This idea evolved into a sophisticated minimax optimiza-
tion approach with Projected Gradient Descent Adversarial
Training (PGD-AT) (Madry et al., 2019), which employs
PGD attacks in training. Regarded as the gold standard in
AT, PGD-AT generates adversarial training samples using
multiple steps of projected gradient descent, leading to sub-
stantially improved empirical robustness (Carlini & Wagner,
2017; Athalye et al., 2018; Croce & Hein, 2020). Further
refining this approach, TRADES (Zhang et al., 2019) op-
timizes a novel loss function to balance classification ac-
curacy with adversarial robustness. Recent enhancements
in AT, including model ensemble and data augmentation,
have also produced notable improvements in model re-
silience. (Xie et al., 2020; Yang et al., 2020; Carmon et al.,
2022). Inkawhich et al. (2019) propose “Activation Attacks”
(AA) which underscore the efficacy of leveraging intermedi-
ate model layers for generating stronger adversarial attacks,
suggesting that incorporating AA in adversarial training

could fortify defenses. Their findings provide a foundation
for our method which integrates these intermediate critical
layers into our adversarial training strategy.

Adversarial training improvements and robust over-
fitting: Adversarial training methods like PGD-AT and
TRADES are computationally expensive and prone to over-
fitting, requiring multi-step adversary generation, complex
objectives, and extensive model tuning (Shafahi et al., 2019).
To improve efficiency, Shafahi et al. (2019) proposed “Free”
AT, which accelerates training by using a single backpropa-
gation step for both training and PGD adversary generation.
However, gradient alignment issues led to reduced robust-
ness and increased overfitting. Similarly, Wong et al. (2020)
introduced “Fast” AT, but it also suffered from similar weak-
nesses (Andriushchenko & Flammarion, 2020), prompting
the development of GradAlign. Unfortunately, GradAlign
tripled training time due to second-order gradient compu-
tation. Later efforts sought to address robust overfitting.
RiFT (Zhu et al., 2023) improved general performance by
leveraging layer redundancies but was constrained by heuris-
tic redundancy measurements. Xu et al. (2024) mitigated
overfitting by disentangling natural and adversarial objec-
tives, yet model-wide adjustments still limited robustness.
In contrast, CLAT uses a theoretically grounded, dynamic,
critical layer selection mechanism, resulting in improved
robust generalization by tuning a critical subset of layers.
Furthermore, CLAT is agnostic to attack generation meth-
ods in the AT processing, making it an ideal complement to
existing fast-AT methods to mitigate overfitting.

3. Methods

Building on prior attack and defense research (Inkawhich
et al., 2019; 2020; Zhu et al., 2023) which demonstrates
that not all model layers equally learn non-robust features
and having all layers learn robust features leads to overfit-
ting, we aim to improve model robustness by identifying
and fine-tuning only those critical layers that are prone to
learning non-robust features, while keeping the non-critical
layers frozen. In this section, we begin by defining and
identifying critical layers, then outline our objectives for
reducing their criticality. Finally, we present our complete
CLAT algorithm, which effectively mitigates overfitting.

3.1. Layer Criticality

Consider a deep learning model with n layers, and an input
x, defined as:

F(x):fn(fn—l(fl(x)))v (D

where the functionality of the i-th layer is denoted as f;.
During the standard training process, all layers learn useful
features which contribute to the correct outputs of the model.

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

We denote the hidden feature learned at the output of the
i-th layer as F;(x) = fi(fi—1(... f1(z))).

Under adversarial perturbation, features from all layers will
be altered, leading to incorrect outputs. Following previous
work (Hein & Andriushchenko, 2017; Finlay et al., 2018),
the robustness, or weakness, of the feature can be linked to
the local Lipschitz constant of function F;(-). For a easier
computation, we consider the worst-case feature difference
under a fixed input perturbation budget of e. This leads to
our definition of the e-weakness of layer ¢’s feature as:

1
We(F;) = —E, | sup |[|Fi(z+0) — F(2)|l2], 2
Ni ™ jjollp<e

where N, denotes the dimensionality of the output features
at layer 1, therefore normalizing the weakness measurement
of layers with different output sizes. The weakness mea-
surement is proportional to the local Lipschitz constant. A
higher weakness value indicates that the feature vector is
more vulnerable to input perturbations. The functionality of
cascading layers from 1 to ¢ affects the vulnerability of the
hidden features, as described by this formulation.

Alternatively, Moosavi-Dezfooli et al. (2019) suggests the
local curvature can be a more accurate estimation of ro-
bustness. However, the computation and optimization of
curvature involves costly higher-order gradient computa-
tion. We provide additional derivations in Appendix F to
show the feature weakness defined in Equation (2) is also
an effective approximation to the local curvature value.

For the purpose of mitigating overfitting, we want to identify
the layers that are the most critical to the lack of robustness,
characterized by their increased susceptibility to adversarial
perturbations. Other already-robust layers shall then be
fixed to avoid further overfitting to the adversarial training
objective. We therefore provide the following definition:

Definition 3.1. Critical layer: A layer is considered critical
if it exhibits a greater propensity to learn non-robust features
or demonstrates diminished robustness to adversarial input
perturbations relative to other layers in the model.

To this end, we single out the contribution of each layer’s
functionality to the weakness of the features after it with a
Layer Criticality Cy,, which is formulated as

¢, _ W)

= —". 3
T WEL 3

For the first layer, we define C;, = W, (F}) as only the first
layer contributes to the weakness.

As a sanity check, the feature weakness at the output of layer
1 can be attributed to the criticality of all previous layers
as W.(F;) = [[}._, Cy,. Conversely, a layer with a larger

criticality will increase the weakness of the features after it,
indicating the layer is critical according to Definition 3.1.

One drawback of the formulation in Equation (3) is that
computing the feature weakness involves finding the worst-
case perturbation against the hidden features at each layer,
which is a costly process to conduct sequentially for all
layers. In practice, we approximate the worst-case perturba-
tion against features with an untargeted PGD attack against
the model output, so that we can use the same PGD per-
turbation § to estimate the feature weakness of all layers
following Equation (2). In this way, with a reasonably suf-
ficient batch size, we can compute the critical indices for
all layers in a model with two forward passes: one with the
clean input « and one with the PGD attack input = + §. We
make the following proposition:

Proposition 3.2. Critical layers defined as in Definition 3.1
can be identified as the layers with the largest criticality.

To verify Proposition 3.2, we conduct an ablation study
in Table 8, where we show that model robustness is im-
proved more by CLAT fine-tuning of critical layers com-
pared to equivalent fine-tuning of randomly selected layers.
We will discuss how to reduce the criticality of the critical
layers and make them more robust in the next subsection.

3.2. Criticality-targeted Fine-tuning

Once the critical layers are identified, we fine-tune them to
reduce their criticality, thereby decreasing the weakness of
subsequent hidden features and enhancing model robustness.
For a critical layer 7, we optimize the trainable parameters
to minimize Cy,. Note that in the criticality formulation
in Equation (3), the weakness of the previous layer’s out-
put, W.(F;_1), is constant with respect to f;. Thus, the
optimization objective for f; can be simplified as

Lo(fi) =Ea | sup [[Fi(z+6) = Fi(z)ll2| .)

l1p<e

In the case where multiple critical layers are considered
in the fine-tuning process, the fine-tuning objective can be
expanded to accommodate all critical layers simultaneously.
Formally, suppose we have a set S where layers ¢ € S are all
selected for fine-tuning, the fine-tuning objective for these
critical layers can be formulated as

Lo(fs) =Eq | sup Y ||Fy(@+0) = Fi(a)ll2|, ()

[16]]p<e icS
where a single perturbation is utilized to capture the weak-
ness across all critical layers. A projected gradient ascent
with random start is used for the inner maximization.

Minimizing the objective in Equation (5) by adjusting the
trainable variables of the critical layers will reduce their

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

feature weaknesses. However, the removal of non-robust
features in these layers may affect the functionality of the
model on clean inputs. As a tradeoff, we also include the
cross entropy loss £(-) in the final optimization objective,
which derives the optimization objective on the critical lay-
ers during the fine-tuning process

n}isnEz,yE(F(m),y) +Ac(fs), (6)

where the hyperparameter A\ balances the two loss terms.
Note that only the selected critical layers fg are optimized
in Equation (6) while the other non-critical layers are frozen,
preventing them from further overfitting.

3.3. CLAT Adversarial Training

We design CLAT as a fine-tuning approach, which is applied
to neural networks that have undergone preliminary train-
ing. The pretraining phase allows all layers in the model
to capture useful features, which will facilitate the identi-
fication of critical layers in the model. Notably, CLAT’s
versatility allows it to adapt to various types of pretrained
models, either adversarially trained or trained on a clean
dataset only. In practice, we find that models do not need to
fully converge during the pretraining phase to benefit from
CLAT fine-tuning. For example, in case of the CIFAR-10
dataset, 50 epochs of PGD-AT training would be adequate.
We consider the number of adversarial pretraining epochs as
a hyperparameter and provide further analysis on the impact
of pretraining epochs in Section 4.2.

After the pretraining, CLAT begins by identifying and se-
lecting critical layers in the pretrained model. Please see
Appendix A and Algorithm 1 in Appendix C for more
clarity. As fine-tuning progresses, the critical layers will be
updated to reduce their criticality, making them less critical
than some of the previously frozen layers. Subsequently,
we perform periodic reevaluation of the top & critical in-
dices, ensuring continuous adaptation and optimization of
the layers that are the most in need in the training process.
Through hyperparameter optimization, we find 10 epochs
to be adequate to optimize the selected critical layers for all
models that we tested.

4. Experiments and Settings

Datasets and models We conducted experiments using
CIFAR10 and CIFAR100, typical choice for previous robust-
ness research. Each dataset includes 60,000 color images,
each 32x32 pixels, divided into 10 and 100 classes respec-
tively (Krizhevsky & Hinton, 2009). For our experiments,
we deployed a suite of network architectures: WideResnets
(34-10, 70-16) (Zagoruyko & Komodakis, 2017), ResNets
(50, 18) (He et al., 2016b), DenseNet-121 (Huang et al.,
2017), PreAct ResNet-18(He et al., 2016a), and VGG-19

(Simonyan & Zisserman, 2015). In this paper, these archi-
tectures are referred to as WRN34-10, WRN70-16, RN50,
RN18, DN121, Preact RN18 and VGG19 respectively.

Training and evaluation Since CLAT can be layered over
clean pretraining, partial training, or other adversarial meth-
ods, results incorporating CLAT are denoted in our tables
as "X + CLAT,” where ”X” refers to the baseline method
applied prior to CLAT. Typically, this baseline method is
run for the first 50 epochs, followed by fine-tuning during
which CLAT is applied for an additional 50 epochs. The
total number of epochs is in line with the 100 epochs used
in previous PGD-based adversarial training work (Zhang
etal., 2019; Zhu et al., 2023).

For our baseline, we use PGD for attack generation during
training, following a random start (Madry et al., 2019), with
an attack budget of ¢ = 0.03 under the ¢, norm, a step size
of o = 0.007, and 10 attack steps. The same settings apply
to PGD attack evaluations. AutoAttack evaluations (Croce
& Hein, 2020) also use a budget of ¢ = 0.03 under the /.,
norm, with no restarts for untargeted APGD-CE, 9 target
classes for APGD-DLR, 3 target classes for Targeted FAB,
and 5000 queries for Square Attack. These settings remain
consistent unless explicitly noted otherwise.

Experiments were conducted on a Titan XP GPU, starting
with an initial learning rate of 0.1, which was adjusted ac-
cording to a cosine decay schedule. To ensure the reliability
of robustness measurements, we conducted each experiment
a minimum of 10 times, reporting the lowest adversarial
accuracies we observed.

CLAT settings We select critical layers as described
in Section 3.1. Table 10 outlines the Top-5 most critical
layers for some of the models and corresponding datasets at
the start of the CLAT fine-tuning, after adversarially train-
ing with PGD-AT for 50 epochs. In customizing the CLAT
methodology to various network sizes, we select approx-
imately 5% of layers as critical through hyperparameter
optimization. For instance, DN121 uses 5 critical layers,
while WRN70-16, RN50, WRN34-10, VGG19, and RN18
use 4, 3, 2, 1, and 1 critical layers, respectively.

4.1. CLAT Performance

White-box robustness Table 1, Table 2, and Table 3
present white-box evaluation results using the PGD and
Auto Attack frameworks across CIFAR and ImageNet.
These tables illustrate CLAT’s versatility and effectiveness
when combined with various standard adversarial training
methods, including state-of-the-art benchmarks from Ro-
bustBench (Croce et al., 2020), and when applied to larger
datasets such as ImageNet (see Table 2). CLAT consistently
mitigates the overfitting observed in traditional adversar-

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

Table 1. Adversarial accuracy on CIFAR-10 and CIFAR-100 when subjected to PGD-20 attack.

NETWORK METHOD CIFAR-10 (%) CIFAR-100 (%)
CLEAN ADV. CLEAN ADV.
DNI121 PGD-AT (MADRY ET AL., 2019) 80.05 58.15 57.18 31.76
PGD-AT + CLAT 81.03 60.60 58.79 33.23
WRN70-16 PGD-AT (PENG ET AL., 2023) 93.27 71.07 70.20 42.61
PGD-AT + CLAT 93.56 72.25 71.94 44.12
BAIET AL. (BAIET AL., 2024) 92.23 64.55 69.17 40.86
BAIET AL. + CLAT 92.77 64.92 70.17 41.64
RN50 PGD-AT 81.38 56.35 58.16 33.01
PGD-AT + CLAT 83.78 59.54 61.88 36.23
WRN34-10 PGD-AT 87.41 55.40 59.19 31.66
PGD-AT + LORA (ALEEM ET AL., 2024) 73.36 56.17 55.56 31.43
PGD-AT + RIFT (ZHU ET AL., 2023) 87.89 55.41 62.35 31.64
PGD-AT + CLAT 88.97 57.11 62.38 32.05
TRADES (ZHANG ET AL., 2019) 87.60 56.61 60.56 31.85
TRADES + RIFT 87.55 56.72 61.01 32.03
TRADES + CLAT 88.23 57.89 61.45 33.56
VGG19 PGD-AT 78.38 50.35 50.16 26.54
PGD-AT + CLAT 79.88 52.54 50.98 28.41
RNI18 PGD-AT 81.46 53.63 57.10 30.15
PGD-AT + LORA 76.57 55.38 48.49 32.36
PGD-AT + RIFT 83.44 53.65 58.74 30.17
PGD-AT + CLAT 83.89 55.37 59.22 32.04
TRADES 81.54 53.31 57.44 30.20
TRADES + RIFT 81.87 53.30 57.78 30.22
TRADES + CLAT 81.89 54.57 58.82 31.06
PREACT RN18 FAST-AT (WONG ET AL., 2020) 81.46 45.55 50.10 27.72
FAST-AT + CLAT 84.46 52.13 54.33 29.22
FAST-AT + CLAT (FAST) 82.72 49.62 52.10 27.99

ial training, enhancing both clean and adversarial accuracy
compared to baseline methods.

Table 1 further highlights that reducing trainable parameters
alone does not necessarily lead to improved performance.
CLAT surpasses LoRA (Aleem et al., 2024) and RiFT (Zhu
et al., 2023) thanks to its ability to precisely identify critical
layers and eliminate non-robust features from these layers.
We also show that fast adversarial training techniques, as dis-
cussed by Wong et al. (2020), can be applied to address the
inner maximization problem in the CLAT training objective
described in Equation (5). The “CLAT (Fast)”” method not
only enhances performance but also improves robustness
compared to Fast-AT baselines.

Notably, CLAT models are trained with PGD-like attacks
on hidden features without seeing Auto Attacks directly,
but their robustness persists under these attacks (see Ta-
ble 3). This suggests that different attacks across various
networks share similarities in exploiting non-robust features.
By addressing these non-robust features through critical
layer fine-tuning, CLAT’s robustness is adaptable across
different attack settings and models. Similarly, CLAT also
helps preserve a higher clean accuracy, benefiting from the
reduced overfitting. Lastly, we evaluate robustness across

more attack strengths and datasets in Appendix D.

Table 2. Clean and Adversarial Accuracies (PGD-20) performance
comparison on ImageNet.

MODEL METHOD CLEAN Acc. ADvV. Acc.
DN121 PGD-AT 63.25 32.56
PGD-AT + CLAT 66.10 35.48
RN50 PGD-AT 65.88 33.18
PGD-AT + CLAT 67.12 36.91
WRN34-10 PGD-AT 64.31 31.08
PGD-AT + CLAT 66.12 33.59

Black-box robustness Table 4 and Table 5 evaluate the
robustness against black-box attacks (Auto Attack and PGD-
AT respectively) between models trained solely using PGD-
AT and those augmented with CLAT. Attack settings are
the same as those of the white-box attacks. As a sanity
check, the accuracies under black-box attack surpass those
observed under white-box scenarios, indicating that gradient
masking does not appear in the CLAT model, and that the
white-box robustness evaluation is valid. More significantly,
models trained with CLAT consistently outperform those

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

Table 3. Adversarial accuracy on CIFAR-10 and CIFAR-100 when subjected to AutoAttack (AA).

NETWORK METHOD

CIFAR-10 (%) CIFAR-100 (%)

CLEAN ADV. CLEAN ADV.
DNI121 PGD-AT 80.05 47.56 57.18 23.13
PGD-AT + CLAT 81.03 49.91 58.79 25.74
WRN70-16 PGD-AT 93.27 54.32 70.20 28.25
PGD-AT + CLAT 93.56 57.64 71.94 30.98

(CARLINI & WAGNER, 2017) - 66.10 - -

(CARLINI & WAGNER, 2017) + CLAT - 68.43 - -
RN50 PGD-AT 81.38 46.22 58.16 23.48
PGD-AT + CLAT 83.78 4945 61.88 25.81
WRN34-10 PGD-AT 87.41 51.50 59.19 25.56
PGD-AT + CLAT 88.97 52.88 62.38 27.62
VGG19 PGD-AT 78.38 40.42 50.16 19.54
PGD-AT + CLAT 79.88 41.72 50.98 20.45
RN18 PGD-AT 81.46 40.48 57.10 20.21
PGD-AT + CLAT 83.89 42.86 59.22 21.76
TWINS (LIU ET AL., 2023) 76.57 47.89 48.49 25.45
TWINS + CLAT 83.44 51.39 58.74 28.12
AUTOLORA (XU ET AL., 2024) 84.20 48.95 62.10 27.48
AUTOLORA + CLAT 86.45 53.21 64.91 30.49

trained with PGD-AT, maintaining superior resilience in
both black-box and white-box settings, regardless of the
attack method or models employed.

4.2. Ablation Studies

Ablating on pretraining epochs before CLAT As dis-
cussed in Section 3.3, we apply CLAT after the model has
been adversarially trained for some epochs. Here, we ana-
lyze how the number of pretraining epochs affects CLAT
performance. Figure 1 shows the training curves for dif-
ferent allocations of PGD pretraining epochs and CLAT
fine-tuning epochs within a 100-epoch training budget. The
overfitting of PGD-AT is evident as adversarial accuracy
plateaus and declines towards the end, as documented in
previous research (Rice et al., 2020). In contrast, CLAT
continues to improve adversarial accuracy, effectively ad-
dressing this issue. Including CLAT at any stage of training
results in higher clean accuracy and robustness at conver-
gence. Additional results on pretrained clean models are
provided in Appendix E.

Furthermore, an intriguing aspect of our experiments in-
volves running CLAT from scratch (0 PGD-AT epochs).
Although CLAT ultimately surpasses PGD-AT with suffi-
cient epochs, using CLAT without any prior adversarial
training results in significantly slower model convergence.
We believe this suggests that “layer criticality”” emerges dur-
ing the adversarial training process, allowing critical layers
to be identified as the model undergoes adversarial training.
This phenomenon supports our theoretical insight that criti-

cality can be linked to the curvature of the local minima to
which each layer converges during adversarial training.

Ablating on critical layer selection The choice of critical
layer selection is another important feature impacting the
performance of CLAT. We begin by examining the effect
of dynamic layer selection. Table 6 and Table 7 highlight
that dynamic selection is crucial to CLAT’s performance.
Using the same layers throughout the process tends to cause
overfitting and results in lower accuracies compared to the
PGD-AT baseline.

To verify the significance of the selected critical layers, we
compare CLAT with an alternative approach in which ran-
dom layers are dynamically selected for fine-tuning instead
of the critical layers. The results of this comparison are
detailed in Table 8.

The data demonstrates that selecting critical layers signif-
icantly enhances the model’s adversarial robustness and
clean accuracy. This observation is bolstered by our ab-
lation study in Appendix E (Table 19), illustrating the
performance effect of choosing the smallest versus largest
critical indices for fine-tuning. Furthermore, Table 10 indi-
cates near-identical critical layer selections within the same
model, even across diverse datasets. This evidence supports
our assertion that the variation in layer criticality arises from
inherent properties within the model architecture, where cer-
tain layers are predisposed to learning non-robust features.

Lastly, we conduct an ablation study on the number of lay-
ers used in CLAT for fine-tuning. Figure 2 and Figure 8

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

Table 4. Comparative Black-box Auto attack accuracy on CIFAR-10 and CIFAR-100, with rows as attackers and columns as victims.

NETWORK METHOD

CIFAR-10 (%)

CIFAR-100 (%)

DN121 RN50 VGG19 RNI18 DNI121 RN50 VGG19 RNI18
DN121 PGD-AT - 52.50 4421 4545 - 27.64 23.21 24.26
PGD-AT + CLAT - 55.83 47.53 48.92 - 29.89 26.71 26.93
RN50 PGD-AT 54.23 - 43.56 43.24 2791 - 23.02 23.51
PGD-AT + CLAT 56.72 - 46.21 47.01 30.11 - 26.34 25.86
VGG19 PGD-AT 55.32 55.45 - 46.72 27.84 28.15 - 24.20
PGD-AT + CLAT 59.83 59.72 - 49.31 30.20 29.79 - 26.55
RN18 PGD-AT 53.21 51.73 43.21 - 29.31 26.75 22091 -
PGD-AT + CLAT 56.75 54.45 46.53 - 31.25 29.41 25.95 -

Table 5. Comparative Black-box PGD accuracy on CIFAR-10 and CIFAR-100, with rows as attackers and columns as victims.

NETWORK METHOD

CIFAR-10 (%)

CIFAR-100 (%)

RN50 DNI121 VGG19 RNI8 RN50 DNI121 VGG19 RNI8
RN50 PGD-AT - 74.83 68.01 67.44 - 46.82 40.55 40.10
PGD-AT + CLAT - 76.45 71.25 70.12 - 48.49 44.34 4391
DN121 PGD-AT 72.24 - 69.53 68.38 44.45 - 40.63 41.22
PGD-AT + CLAT 74.55 - 71.78 70.56 46.78 - 43.62 42.88
VGG19 PGD-AT 65.72 67.56 - 62.26 47.86 46.56 - 40.55
PGD-AT + CLAT 66.46 70.72 - 65.78 49.25 48.72 - 42.72
RN18 PGD-AT 74.82 70.21 61.83 - 46.28 45.59 39.21 -
PGD-AT + CLAT 76.23 73.19 63.96 - 48.89 47.72 41.78 -

Table 6. PGD-10 Adversarial accuracy of PGD-AT, PGD-AT +
CLAT, and its Non-dynamic variant.

Table 7. Auto Attack Adversarial accuracy of PGD-AT, PGD-AT +
CLAT, and its Non-dynamic variant.

METHOD CIFAR-10 (%) CIFAR-100 (%) METHOD CIFAR-10 (%) CIFAR-100 (%)

DNI21 RN50 DNI21 RN50 DNI21 RN50 DNI21 RN50
PGD-AT 58.15 56.35 31.76 33.01 PGD-AT 47.56 46.22 23.13 23.48
PGD-AT + CLAT 60.60 59.54 33.23 36.23 PGD-AT + CLAT 49.91 49.45 2574 25.81
CLAT (ND) 57.01 54.22 30.34 32.98 CLAT (ND) 47.12 46.08 22.26 22.91

illustrate the trade-offs between adversarial accuracy and
the number of layers selected, as well as clean accuracy
and the number of layers, respectively. Interestingly, both
adversarial and clean accuracy are optimized with the same
number of layers. Initially, fine-tuning more layers enhances
model performance by increasing flexibility; however, this
eventually diminishes CLAT’s effectiveness, likely because
attention is diverted to less crucial layers at the expense of
more important ones. This pattern underscores the critical
role of specific layers in network robustness and empha-
sizes the need for deeper research into the dynamics of
individual layers. Furthermore, we highlight that although
the number of layers chosen impacts the learned robustness,
CLAT still achieves robustness gains over the early-stopping
baseline (no fine-tuning) with up to 10% of the layers se-

lected, demonstrating its stability under small variations in
the number of selected layers.

Overhead and stability analysis CLAT only updates a
small subset of model parameters—under 5% across all
architectures (see Table 9)—highlighting the effectiveness
of selective fine-tuning over full-model retraining. When
considering optimization cost, the CLAT objective remains
comparable to standard adversarial training, as it shares the
same min-max formulation (see Equation (6)). CLAT’s
layer selection process is also highly stable: as shown in
Table 11, criticality indices can be reliably estimated using
a single batch of just 10 training examples, with top-ranked
layers nearly identical to those obtained using much larger
batches. To quantify this consistency, we ran over 1000

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

CLAT Starting Point vs. Clean Accuracy

53
S

90
80
2 T
=,
z
g 60
=
E
51
o
s 50
=
2
Cw - CLAT epochs
‘,/' —— 70 epochs (post PGD-AT for 30 epochs)
30 //— - === 50 epochs (post PGD-AT for 50 epochs)

-, —_

30 epochs (post PGD-AT for 70 epochs)
10 epochs (post PGD-AT for 90 epochs)
=0 epochs (PGD-AT for 100 epochs)
=== 100 epochs (CLAT for 100 epochs)

40
Total epochs

80 100

CLAT Starting Point vs. Adversarial Accuracy

60
~ 50
g
7
I
s
=
S 4
S
L
K]
=
3
4
< 30
= - = CLAT epochs
< e =70 epochs (post PGD-AT for 30 epochs)
I’l ==+ 50 epochs (post PGD-AT for 50 epochs)
20 o === 30 epochs (post PGD-AT for 70 epochs)
L I . 10 epochs (post PGD-AT for 90 epochs)
-
_r . —— 0 epochs (PGD-AT for 100 epochs)
”~ ~ =+ 100 epochs (CLAT for 100 epochs)

0 20 40

Total epochs

80 100

Figure 1. CLAT on WRN34-10: CIFAR-10 comparative performance across partially trained models.

Table 8. Ablation of CLAT layer choices across datasets and models. Each model is trained using either critical or random layers. Columns
report clean accuracy and adversarial accuracy under PGD-10 and AutoAttack (AA).

MODEL DATASET LAYER SELECTION CLEAN Acc. PGD-10 AA
DNI121 CIFAR-10 CRITICAL 81.03 60.60 49.91
RANDOM 78.85 51.35 39.81

CIFAR-100 CRITICAL 58.79 33.23 25.74
RANDOM 50.45 25.48 20.21

RN50 CIFAR-10 CRITICAL 83.78 59.54 49.45
RANDOM 79.01 51.44 40.29

CIFAR-100 CRITICAL 61.88 36.23 25.81
RANDOM 52.20 25.51 20.45

RNI18 CIFAR-10 CRITICAL 83.89 55.37 42.86
RANDOM 78.02 51.03 33.50

CIFAR-100 CRITICAL 50.98 28.41 20.45
RANDOM 43.15 20.24 15.89

Table 9. Trainable parameters during CLAT

NETWORK TRAINABLE PARAMS % USED
ToTAL CLAT
DN121 6.96M 217K 3.1%
WRN70-16 267M 8.29M 3.0%
RN50 23.7M 823K 3.4%
WRN34-10 46.16M 1.24M 2.7%
RNI18 11.2M 590K 5.2%
VGG19 39.3M 236K 0.6%

trials per model with different random batches and observed
that the top five selected layers varied in fewer than 5% of
cases—typically involving only a single-layer swap. This
stability allows CLAT to recompute critical layers using
only 0.0002 % of training data every 10 epochs, incurring a
negligible 0.4% time overhead compared to standard adver-
sarial training.

Table 10. Top-5 critical layers by model and dataset; CLAT layers
bolded.

Model CIFAR-10 CIFAR-100
DN121 39,14,1,3,88 39,15,1,2,91
WRN70-16 4,17,1,59,62 3,17,2,59, 61
RN50 34,41,48,3,36 34,43,45,6,32
WRN34-10 26,1,30,3,28 26,2, 30,3,27
VGG19 9,11,5,3,1 8,13,5,3,1
RNI18 11, 10,4, 2, 12 12,9,5,2,13

5. Conclusions

This work introduces CLAT, an innovative adversarial train-
ing approach that addresses robust overfitting issues by
fine-tuning only the critical layers vulnerable to adversar-
ial perturbations. This method not only emphasizes layer-
specific interventions for enhanced network robustness but
also sheds light on the commonality in non-robust features
captured by these layers, offering a targeted and effective

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

CIFAR-10

—— RN50
==- DN-121

CIFAR-100
35 —— RNb50

Adv Acc
w
[=]

25

1 357 911 15 20
No. critical layers

Figure 2. CLAT accuracy vs. number of critical layers used.

Table 11. DenseNet-121 critical layers identified with different
amounts of data. Time taken to compute critical layers evaluated
on a TITAN RTX GPU. 1 PGD-AT epoch takes 67s.

BATCH S1ZE CRITICAL LAYERS TIME (S)
CIFAR-10
10 39,14, 1, 3,90 2.64
30 39,14, 1, 3, 88 2.72
50 39,14,1, 3,89 2.83
100 39,14, 1, 3, 88 3.15
CIFAR-100
10 39,15,1,2,91 2.82
30 39,15, 1, 2, 88 291
50 39,15,1,3,91 3.14
100 39,15,1,2,91 3.54

defense strategy. This targeted intervention enhances net-
work robustness while highlighting the shared non-robust
features captured by these layers. CLAT selects less than
5% of trainable variables yet significantly improves clean
accuracy and adversarial robustness across diverse archi-
tectures and adversarial training methods. While this work
focuses on empirical robustness, open questions remain on
why certain layers are critical, how to refine their identifica-
tion, and whether architectural or training modifications can
address these issues. We leave these theoretical directions
for future work.

Acknowledgements

This work was made possible through the support of NSF
2112562 and ARO W911NF-23-2-0224.

Impact Statement

There are many potential societal consequences of our work,
particularly as adversarial robustness becomes critical for
the safe deployment of machine learning systems. Robust
models can help prevent harmful failures in high-stakes
settings such as healthcare or autonomous navigation. How-
ever, stronger defenses may also incentivize more adaptive
and sophisticated attacks. We encourage further study on
how robustness techniques generalize over time and interact
with evolving threat landscapes.

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

References

Aleem, S., Dietlmeier, J., Arazo, E., and Little, S. Con-
vlora and adabn based domain adaptation via self-training.
arXiv preprint arXiv:2402.04964, 2024.

Andriushchenko, M. and Flammarion, N. Understanding
and improving fast adversarial training, 2020.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples, 2018.

Bai, T., Luo, J., Zhao, J., Wen, B., and Wang, Q. Recent
advances in adversarial training for adversarial robustness,
2021.

Bai, Y., Anderson, B. G., Kim, A., and Sojoudi, S. Improv-
ing the accuracy-robustness trade-off of classifiers via
adaptive smoothing, 2024.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks, 2017.

Carmon, Y., Raghunathan, A., Schmidt, L., Liang, P., and
Duchi, J. C. Unlabeled data improves adversarial robust-
ness, 2022.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks, 2020.

Croce, F., Andriushchenko, M., Sehwag, V., Flammarion,
N., Chiang, M., Mittal, P., and Hein, M. Robustbench: a
standardized adversarial robustness benchmark. CoRR,
abs/2010.09670, 2020. URL https://arxiv.org/
abs/2010.09670.

Finlay, C., Calder, J., Abbasi, B., and Oberman, A. Lips-
chitz regularized deep neural networks generalize and are
adversarially robust. arXiv preprint arXiv:1808.09540,
2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016b.

Hein, M. and Andriushchenko, M. Formal guarantees on the
robustness of a classifier against adversarial manipulation.
Advances in neural information processing systems, 30,
2017.

10

Hitaj, D., Pagnotta, G., Masi, 1., and Mancini, L. V.
Evaluating the robustness of geometry-aware instance-
reweighted adversarial training, 2021.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700-4708, 2017.

Hwang, J.-W., Lee, Y., Oh, S., and Bae, Y. Adversarial
training with stochastic weight average, 2020. URL
https://arxiv.org/abs/2009.10526.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. Advances in neural information processing
systems, 32, 2019.

Inkawhich, N., Wen, W., Li, H. H., and Chen, Y. Feature
space perturbations yield more transferable adversarial
examples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Inkawhich, N., Liang, K., Wang, B., Inkawhich, M., Carin,
L., and Chen, Y. Perturbing across the feature hierarchy to
improve standard and strict blackbox attack transferabil-

ity. Advances in Neural Information Processing Systems,
33:20791-20801, 2020.

Javanmard, A., Soltanolkotabi, M., and Hassani, H. Pre-
cise tradeoffs in adversarial training for linear regression,
2020.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Li, L. and Spratling, M. Data augmentation alone can
improve adversarial training, 2023. URL https://
arxiv.org/abs/2301.09879.

Liu, Z., Xu, Y., Ji, X., and Chan, A. B. Twins: A fine-tuning
framework for improved transferability of adversarial
robustness and generalization, 2023. URL https://
arxiv.org/abs/2303.11135.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks, 2019.

Moosavi-Dezfooli, S.-M., Fawzi, A., Uesato, J., and
Frossard, P. Robustness via curvature regularization, and
vice versa. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9078—
9086, 2019.

Pang, T., Lin, M., Yang, X., Zhu, J., and Yan, S. Robustness
and accuracy could be reconcilable by (proper) definition,
2022.

Boosting Adversarial Robustness with CLAT:

Criticality-Leveraged Adversarial Training

Peng, S., Xu, W., Cornelius, C., Hull, M., Li, K., Duggal, R.,
Phute, M., Martin, J., and Chau, D. H. Robust principles:
Architectural design principles for adversarially robust
cnns, 2023.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and
Liang, P. Adversarial training can hurt generalization.
arXiv preprint arXiv:1906.06032, 2019.

Rice, L., Wong, E., and Kolter, J. Z. Overfitting in adversar-
ially robust deep learning, 2020.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data, 2018.

Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J.,
Studer, C., Davis, L. S., Taylor, G., and Goldstein, T.
Adpversarial training for free!, 2019.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In 3rd Inter-
national Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, 2015.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, 1., and Fergus, R. Intriguing properties
of neural networks, 2014.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu,
Q. Improving adversarial robustness requires revisit-
ing misclassified examples. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rk10g6EFwWS.

Wang, Z., Pang, T., Du, C., Lin, M., Liu, W., and Yan,
S. Better diffusion models further improve adversarial
training, 2023. URL https://arxiv.org/abs/
2302.04638.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free:
Revisiting adversarial training, 2020.

Wu, D, tao Xia, S., and Wang, Y. Adversarial weight
perturbation helps robust generalization, 2020a. URL
https://arxiv.org/abs/2004.05884.

Wu, D., tao Xia, S., and Wang, Y. Adversarial weight
perturbation helps robust generalization, 2020b.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., and Le,
Q. V. Adversarial examples improve image recognition,
2020.

Xu, X., Zhang, J., and Kankanhalli, M. Autolora: An
automated robust fine-tuning framework. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
1d=09xFexjhqgE.

11

Yang, H., Zhang, J., Dong, H., Inkawhich, N., Gardner, A.,
Touchet, A., Wilkes, W., Berry, H., and Li, H. Dverge: di-
versifying vulnerabilities for enhanced robust generation

of ensembles. Advances in Neural Information Process-
ing Systems, 33:5505-5515, 2020.

Zagoruyko, S. and Komodakis, N. Wide residual networks,
2017.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and
Jordan, M. I. Theoretically principled trade-off between
robustness and accuracy, 2019.

Zhu, K., Wang, J., Hu, X., Xie, X., and Yang, G. Improving
generalization of adversarial training via robust critical
fine-tuning, 2023.

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

Appendix
A. Method Diagram

Frozen
non-critical layers

Clean

input

Adversarial
input

Critical layers finetuning with

criticality-aware loss Recompute

with|new critical layers layers every

Clean
input
Adversarial
input

Recomputed critical
layers

Figure 3. CLAT overview. CLAT fine-tunes the selected critical layers (red) while freezing other layers (grey). fine-tuning objective is
computed per Equation (6). Critical layers are adjusted periodically. Pseudocode is provided in Appendix C.

B. Hyperparameter Selection

Our fine-tuning algorithm is primarily governed by three hyperparameters:

Percentage of Critical Layers For each network, we conducted experiments selecting 1, 2, ..., up to all layers as critical
(full fine-tuning). As noted in the main paper, allowing more layers to be fine-tuned enhances model flexibility, initially
improving CLAT performance. However, fine-tuning more layers diminishes CLAT’s effectiveness, likely due to the
diversion of attention toward less-critical layers at the expense of more critical ones. Based on this, we set 5% as a general
threshold to balance performance across architectures. Figure 8 and Figure 2 both support this selection.

Number of Fine-Tuning Epochs Based on Figure 1, fine-tuning for 30 epochs provides optimal performance. This trend
persists when extending fine-tuning to 150 epochs, where the learning rate decays to zero, across all tested networks.

Frequency of Computing Critical Indices We determine critical indices every 10 epochs, based on variance analysis
conducted at every training epoch. We found that critical layers typically require about 10 epochs to reduce their criticality
through CLAT, making this interval effective for recomputation.

C. Pseudocode of CLAT

To better facilitate an understanding of the CLAT process, we illustrate the pseudocode of the dynamic critical layer
identification process and the criticality-targeted fine-tuning process in Algorithm 1. Only the selected critical layers are
being fine-tuned while all the other layers are frozen.

12

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

Algorithm 1 CLAT Algorithm
1: Input: Dataset D, pre-trained model F', batch size bs, total epochs N.

2: for epoch = 1to N do

3: if epoch%10 == 1 then

4 # Find critical layers

5: x <— Batch of training data in D

6: x + 9 < PGD attack against F

7: Compute W, (F;) for all layers with Equation (2)
8 Compute Cy, for all layers with Equation (3)

9: Critical layers S < T'opK (Cy,)

10: endif

11: # fine-tune critical layers

12: minibatches <— CreateMinibatches(D, bs)
13: for x,y in minibatches do

14: Perturbation § < Equation (5) inner maximization
15: Lc(fs) < Equation (5)

16: Weight update w[S] with Equation (6)

17: end for

18: end for

D. Additional Experiment Results
D.1. CLAT Generalization over Attack Strengths

We further compare the CLAT model robustness with the robustness of the PGD-AT model against white-box attacks of
various strengths. As illustrated in Figure 4, though both models are only trained against an attack of one strength (e =
0.03), the improved robustness of CLAT is consistent across the full spectrum of attack strengths. This shows that CLAT is
not overfitting to the specific attack strength used in training.

DN-121 RN-50 WRN-34-10 RN-18 VGG-19
Method
—e— CLAT

Method Method Method
—— CLAT

Method

—0— CLAT

£

—@— CLAT

2

Ko Lo Q 60 = ~e— CLAT
S —8— PGD-AT S —8— PGD-AT S —8— PGD-AT S —8— PGD-AT S —8— PGD-AT
$ $ # g g5
<g <5 <% <50 <
= I = = =
£ £ £ £ £
& & 24 40 40
5w g 5 5 5
z = z] z
& 2 E E E
30 30
30 30 »
002 003 004 005 006 007 002 003 004 005 006 007 002 003 004 005 006 007 002 003 004 005 006 007 002 003 004 005 006 0.07
Epsilon Epsilon Epsilon Epsilon Epsilon

Figure 4. White-box adversarial accuracy (y-axis) on CIFAR-10 for models trained with CLAT (red) and pgd-at (blue), against PGD
attacks of varying strengths (x-axis)

D.2. Full Training Curves

Figure 5 presents the full WRN34-10 training curves for both clean and adversarial accuracy on CIFAR-10. Overfitting
remains the primary challenge, as it leads to the degradation of both clean and adversarial accuracy. This occurs when the
model becomes overly tailored to adversarial examples, diminishing its generalization ability and impacting robustness over
time. To further illustrate this, we extend the learning curve experiments from Figure 1 to 150 adversarial training epochs,
using a cosine learning rate scheduler that decays to zero by epoch 150. As shown in Figure 5, PGD-AT models exhibit a
steady decline in performance with additional adversarial training, highlighting the effects of overfitting. In contrast, CLAT
maintains stable performance and robustness throughout training. Notably, CLAT models achieve higher peak and final

accuracies, exhibiting significantly less overfitting. Additionally, the orange line in Fig. 5 represents CLAT trained from
scratch without prior adversarial training.

13

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

" Full Training Curve Clean Accuracy - Full Training Curve Adv. Accuracy
= CLAT ft from epoch 70

~—— CLAT from scratch
—— PGD-AT

—— CLAT ft from epoch 70
~—— CLAT from scratch
—— PGD-AT

Accuracy (%)
Adv. Accuracy (%)

40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs Epochs

o
!
8

Figure 5. White-box PGD-10 adversarial accuracy (y-axis) on CIFAR-10 for WRN34-10 models trained with CLAT fine-tuning starting at
Epoch 70 (blue), CLAT from scratch (orange), and PGD-AT (green). The learning rate decays to 0 by Epoch 150.

D.3. Reduced Learning Rate Performance

We ensure fair comparison by reporting early stop performance at Epoch 100 in all main tables, recognizing that early
stopping is effective in standard adversarial training and represents its best achievable performance. To further clarify the
reporting of best and final accuracies, we present Figure 6, where we adjust the learning rate at Epoch 70—reducing it by a
factor of 10—to demonstrate that our results are not merely a consequence of early stopping.

Figure 6 compares CLAT with its original learning rate, CLAT with a reduced learning rate, and PGD-AT with a reduced
learning rate, all trained for 150 epochs with eventual decay of the learning rate to zero. Across both clean and adversarial
accuracies, CLAT consistently outperforms all configurations, demonstrating its effectiveness beyond the benefits of learning
rate reduction. Additionally, standard PGD-AT (purple line) plateaus around Epochs 80-100 before declining significantly,

whereas CLAT continues improving with additional fine-tuning, achieving a higher final accuracy by mitigating robust
overfitting.

While lowering the learning rate may yield short-term improvements, it does not prevent further overfitting. In contrast,
CLAT enables continuous performance gains throughout training, independent of learning rate adjustments.

" Clean Performance w Adversarial Performance
1

—— PGD-AT Lower LR @ EP. 70

—— PGD-AT Lower LR @ EP. 70
—— PGD-AT Standard Decay LR
—— CLAT Lower LR @ EP 70

—— PGD-AT Standard Decay LR
—— CLAT Lower LR @ EP 70

Accuracy (%)

Adversarial Accuracy (%)

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Epochs Epochs

Figure 6. White-box accuracies (y-axis) for WRN34-10 on CIFAR-10 for models trained with the original learning rate multiplied by 0.1
at Epoch 70, using CLAT (green) and PGD-AT (red), compared to normal PGD-AT learning rate (purple).

14

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

D.4. Performance on Other Datasets

This section presents results for Imagenette and ImageNet, using the same CIFAR training setup—selecting 5% of layers as
critical and a random batch of 50 data points for criticality measurements. Our improvements align with CIFAR experiments,
reinforcing that criticality appears to be architecture-specific.

D.4.1. IMAGENETTE

Results in Table 12.

Table 12. Comparative performance of CLAT across various net-
works on Imagenette. Robustness is evaluated with white-box PGD-

10 and Auto Attack.
MODEL METHOD CLEAN Acc. PGD-10 AA
DNI121 PGD-AT 83.40 61.78 51.23
PGD-AT + CLAT 86.91 65.45 54.82
WRN70-16 PGD-AT 90.20 67.96 58.91
PGD-AT + CLAT 93.52 72.39 61.43
RN50 PGD-AT 84.02 62.10 50.45
PGD-AT + CLAT 87.11 64.89 54.31
WRN34-10 PGD-AT 90.45 65.45 56.31
PGD-AT + CLAT 93.21 69.82 60.04
VGG19 PGD-AT 85.45 56.71 46.53
PGD-AT + CLAT 89.72 59.45 51.22
RNI18 PGD-AT 83.01 60.04 49.01

PGD-AT + CLAT 86.42 62.91 51.23

D.5. Robustness against Other Attacks

We report the performance on varying strengths of PGD-10 in Appendix D Figure 4. Table 13 highlights the robustness
against stronger white-box attacks, including those not limited to /,-bounded constraints.

Table 13. Adversarial accuracy across attacks on CIFAR-10. Blue values indicate the improvement achieved with CLAT.

ATTACK METHOD DNI121 (%) WRN34-10 (%)
FAB PGD-AT 44.80 40.12
PGD-AT + CLAT +3.70 +5.03
STADV PGD-AT 48.50 45.15
PGD-AT + CLAT +0.91 +1.89
PIXLE PGD-AT 10.40 9.50
PGD-AT + CLAT +2.21 +1.90
PGD-/2 (e =0.03) PGD-AT 61.79 60.25
PGD-AT + CLAT +1.92 +1.45
PGD-/s (¢ =0.03, 50 STEPS) PGD-AT 57.01 54.01
PGD-AT + CLAT +1.92 +2.03
PGD-/ (¢ =0.03, 100 STEPS) PGD-AT 56.89 53.12
PGD-AT + CLAT +1.63 +1.89

D.6. Additional Performance Comparisons to Baselines

We consider CLAT complementary to existing overfitting reduction techniques applied in full model optimization.Table 14
shows results when CLAT is augmented with SWA (Hwang et al., 2020) and AWP (Wu et al., 2020a) techniques. CLAT
consistently enhances performance across all cases, demonstrating its effectiveness alongside other approaches. We note

15

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

that omitted values are not reported in the original work.

Additionally, Table 15 shows augmentation techniques applied in conjunction with CLAT. While augmentations effectively
mitigate adversarial training, they focus on data, whereas our work optimizes the model and objective. Nonetheless, we
showcase CLAT’s performance when used with augmentations, further improving robustness over baseline methods.

D.6.1. STOCHASTIC WEIGHT AVERAGING AND ADVERSARIAL WEIGHT PERTURBATION

Please see Table 14.

Table 14. PGD-10 adversarial accuracy on CIFAR-10 and CIFAR-100 for PreAct RN-18 and WRN34-10 compared to baselines.

NETWORK METHOD CIFAR-10 (%) CIFAR-100 (%)

PREACT RN-18 AWP (WU ET AL., 2020A) 55.39 30.71
AWP + CLAT 58.41 33.97
SWAAT (HWANG ET AL., 2020) 58.32 28.43
SWAAT + CLAT 60.76 30.74

WRN34-10 AWP 58.10 -
AWP + CLAT 60.89 -
SWAAT 61.45 31.97
SWAAT + CLAT 63.82 34.55

D.6.2. DATA AUGMENTATION TECHNIQUES

Please see Table 15.

Table 15. Adversarial accuracy on CIFAR-10 for PreAct RN-18 (PGD-10) and WRN70-16 (Auto Attack).

NETWORK METHOD ADV. AccC. (%)

PREACT RN-18 DATA AUG (WEAK) (L1 & SPRATLING, 2023) 50.34
DATA AUG (WEAK) + CLAT 54.01
DATA AUG (STRONG) 49.99
DATA AUG (STRONG) + CLAT 52.37

WRN70-16 DIFFUSION (WANG ET AL., 2023) 70.69
DIFFUSION + CLAT 72.34

D.7. Critical Index Variation over Time

Table 16 presents the computed critical indices for DN121, RN50, and RN 18, recalculated at epochs 70, 80, and 90 during
the 30-epoch fine-tuning phase. Prior to this, adversarial training is conducted without freezing any layers. We observe
that critical layer distribution shifts throughout training, though no consistent trend emerges regarding their prominence
in earlier or later layers. Combined with our ablation study, where critical layers remain fixed, these results highlight the
importance of dynamic layer selection in CLAT.

Table 16. Critical layers identified at different epochs for various networks.

NETWORK Epr. 70 Ep. 80 EP. 90
DN121 [39,14,1,3,88] [38,1,5,88,15] [I1,5,88,2,15]
RN50 [34, 41, 48] [48, 3, 36] [36, 2, 40]
RN18 [11] [11] 4]

D.8. Critical Index Consistency across Attack Types

To evaluate the robustness of our layer selection metric, we compare the identified indices under different adversarial
perturbation strategies. Specifically, we compute the critical indices/layers using untargeted PGD and AutoAttack for three

16

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

networks—DenseNet-121 (DN121), ResNet-50 (RN50), and ResNet-18 (RN18)—on CIFAR-10. As shown in Table 17
below, the selected layers remain identical across both attack types, demonstrating that our metric exhibits strong consistency
and is not overly sensitive to the choice of adversarial attack.

Table 17. The same layers are identified by PGD and AutoAttack for all three networks on CIFAR-10, indicating that the metric is stable
and not sensitive to the choice of adversarial attack.

NETWORK PGD cIDX AA CIDX

DNI121 (39,14, 1,3,88] [39, 14, 1, 3, 88]
RNS50 [34,41,48,3,36] [34,41, 48, 3, 36]
RN18 [11,10,4,2,12] [11,10,4,2, 12]

D.9. Critical Layer Visualization

We validate our layer selection by comparing against low-criticality layers in Table 19. Additionally, we include a
visualization of the criticality index for RN50 at the start of fine-tuning (post 70 epochs of AT), showing clear separation
between high- and low-criticality layers (e.g., 34, 41, 48). Similar patterns hold across architectures and throughout
fine-tuning.

Layerwise Criticality Index

34
® Criticality Index Py 41 4‘8
0.30 1 L]
® Top 5 Layers
36
[
3
0251 .
x
L)
]
5
> 0.20
T
u
5
0.15
(] Y N ° e o
° L [™ ')
3 . L . . ° o «® ° °
°
0101 L oe o e ¢ * oo So e
L8 =] LIPS . L] L] -
T
0 10 20 30 40 50

Layer Number

Figure 7. Criticality index for ResNet-50 after 70 epochs of adversarial training. High-scoring layers (e.g., 34, 41, 48) are distinct from
low scoring layers.

D.10. Timing Comparisons

For a fair comparison, we use the same GPU configuration and number of GPUs across all methods, as described in the
methods section. For DN121, one epoch of PGD-AT takes 67 seconds, RiFT takes 56 seconds per epoch, CLAT takes
69 seconds per epoch, and AutoLoRA also takes 69 seconds per epoch. As performed in the original paper for optimal
performance, RiFT models were adversarially trained for 110 epochs, each taking 67 seconds, followed by fine-tuning for
an additional 10 epochs at 56 seconds per epoch. Consequently, the total training time for RiFT is 132 minutes, compared to
112 minutes for CLAT (70 epochs of adversarial training and 30 epochs of fine-tuning).

E. Additional Ablation Studies
E.1. CLAT on Pretrained Clean Model

Besides the discussion on performing CLAT after adversarial pretraining in Section 4.2, Table 18 details the performance
of CLAT on clean pretrained models. Although the adversarial accuracies of clean pretrained models are relatively low

17

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

compared to those of adversarially trained models, CLAT demonstrates its capability to facilitate adversarial fine-tuning on
clean models effectively to some extent. This is a novel achievement, showcasing the algorithm’s versatility.

Table 18. Adversarial and clean accuracies for performing CLAT on
various PyTorch pretrained models on the CIFAR-10 dataset.

MODEL ADV. Acc. CLEAN Acc.
DN-121 39.21% 80.89%
WRN70-16 42.1% 83.35%
RN-50 35.67% 78.23%
WRN34-10 40.1% 81.78%
VGG-19 32.67% 75.05%
RN-18 34.45% 76.51%

E.2. Effect of Choosing the Largest Critical Indices/ Most Critical Layers

In our experiments, we fine-tune layers with the highest C'y; values, identifying them as the most critical. Fine-tuning layers
with the lowest C'y; values, in some sense, aligns with RiFT, which targets the most robust layers and fine-tunes them using
clean training objectives. Our method consistently outperforms RiFT across all benchmarks, reinforcing the effectiveness of

our approach.

However, since RiFT is fundamentally different, the relevance of C; is better demonstrated through an ablation study where
we fine-tune the “least critical” layers using the CLAT objective, as shown in Table 19. As expected, tuning layers with
lower C'y; values results in worse performance than tuning the most critical layers but still improves upon the vanilla model.

Table 19. Ablation study of CLAT layer choices on CIFAR-10. Comparison of clean, PGD-10, and Auto Attack (AA) accuracies when
selecting layers with the largest vs. smallest criticality indices. The optimal number of layers per network was chosen for both approaches.
All settings follow Table 1.

NETWORK LARGEST CIDX SMALLEST CIDX PGD-AT
CLEAN PGD-10 AA |CLEAN PGD-10 AA |CLEAN PGD-10 AA

DN121 81.03 60.60 49.91 | 80.50 59.25 48.81| 80.05 58.15 47.56
RN50 83.78 59.54 4945 | 82.30 57.01 47.10| 81.38 56.35 46.22
RN18 83.89 55.37 4286 | 82.56 54.01 40.91| 81.46 53.63 40.48

E.3. Ablation Study: Dynamic and Fixed Critical Indices

Table 20 presents the computed critical indices for DN121, RN50, and RN 18, recalculated at epochs 70, 80, and 90 during
the 30-epoch fine-tuning phase. Prior to this, adversarial training is conducted without freezing any layers. We observe
that critical layer distribution shifts throughout training, though no consistent trend emerges regarding their prominence in
earlier or later layers. These results highlight the importance of dynamic layer selection in CLAT. Across the board, CLAT
conducted with dynamic layers outperforms CLAT with fixed layer selection throughout finetuning.

E.4. Clean Accuracy and Critical Layer Selection

Figure 2 illustrates adversarial accuracy trends on CIFAR-10 and CIFAR-100 as a function of the number of selected critical
layers. Similarly, Figure 8 presents the corresponding clean accuracy trends. Notably, the optimal number of critical indices
for CLAT is consistent across both clean and adversarial accuracy considerations. Highest values are bolded on all of the
trend lines.

18

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

CIFAR 10 CIFAR 100

84 62
—— DNI121 —— DNI121

—&— RN50 —#— RN50
82 60

@

S
5
=

~
©
Accuracy
e
=2

Accuracy

=

=)
o
-~

52
74

i H i 50p i I i
1 3 5 7 9 11 15 1 3 5 7 9 1 15
Critical Layers Critical Layers

Figure 8. Comparative analysis on CLAT performance clean accuracies with respect to the number of critical layers used during CLAT.

Table 20. Comparison of CIFAR-100 clean and adversarial accuracy (PGD-10) on
different networks with fixed and dynamic layers for CLAT.

MODEL METRIC FIXED LAYERS DYNAMIC LAYERS
DN121 CLEAN 53.21 58.79

ADV. 39.45 44.12
RN50 CLEAN 55.72 61.88

ADV. 31.89 36.23
WRN34-10 CLEAN 56.45 62.38

ADV. 28.56 32.05

F. Curvature-based Weakness Measurement

The main paper defines feature weakness based on the feature variation under worst-case perturbation. However, due to the
non-linear and non-convex nature of the neural network model, the weakness measurement may not be precise in more
complicated model architectures with a mixed layer type, such as the Vision Transformer model. To this end, this section
provides a more accurate curvature-based formulation on feature weakness, and shows how the proposed weakness metric is
an approximation. We leave the utilization of the curvature-based weakness measurement on more complicated models as
future work.

Let’s start by considering the feature perturbation function G;(+), which is defined at the output of layer 4 on inputs close to
a clean data point x:

Gi(2) = ||Fy(2) — Fi(2)][5. Q)

The worst-case curvature of the function GG; at the neighborhood of z = x can be estimated following the formulation
by Moosavi-Dezfooli et al. (2019) as

| VGi(a)) - VGi(x) VGi(a)

v; (.f) =

®)

o —alla [l — a2

where 2’ is a worst-case perturbation (adversarial attack) maximizing G;(z) in the vicinity of x, and VG;(x) = 0 by
definition given it is a minimum. Following the observation by Moosavi-Dezfooli et al. (2019), a higher curvature indicates
the feature to be more non-robust to adversarial examples. We can therefore use the curvature formulation v;(x) under a
fixed perturbation budget ||z" — z||,, < € to estimate the layer non-robustness, or weakness.

As we use the feature weakness to derive both the layer criticality metric and the finetuning objective, having a gradient term
in the layer weakness leads to the costly computation of higher-order gradients in the optimization. To avoid the high cost of

19

Boosting Adversarial Robustness with CLAT: Criticality-Leveraged Adversarial Training

computing higher-order gradients when optimizing with the curvature, the numerator in the curvature formulation can be
further derived as

8F7~, .T/ T
s (Fi(a') - Fi(x))

©))

vile) = o — s

In practice, it is also difficult to explicitly instantiate 6%75”) for a neural network. To this end, we simplify the formulation
in Equation (9) by assuming d%iiff) as a uniform vector. This leads to our definition of the e-weakness of layer ¢’s feature

as:

We(F;) = iEx sup ||F;(z+98) — Fi(2)|]2] , (10)
N ™ |18l e
where IV; denotes the dimensionality of the output features at layer ¢, therefore normalizing the weakness measurement of
layers with different output sizes. The weakness measurement is proportional to the curvature estimation in Equation (9).
A higher weakness value indicates that the feature vector is more vulnerable to input perturbations. The functionality of
cascading layers from 1 to ¢ affects the vulnerability of the hidden features, as described by this formulation.

20

