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Abstract—While current Speech Large Language Models
(Speech LLMs) excel at short-form tasks, they struggle with
the computational and representational demands of longer
audio clips. To advance the model’s capabilities with long-form
speech, we introduce Speech Information Retrieval (SIR), a
long-context task for Speech LLMs, and present SPIRAL, a
1,012-sample benchmark testing models’ ability to extract critical
details from long spoken inputs. To overcome the challenges of
processing long speech sequences, we propose SPEECHPRUNE,
a training-free token pruning strategy that uses speech-text
similarity and approximated attention scores to efficiently discard
irrelevant tokens. In SPIRAL, SPEECHPRUNE achieves accuracy
improvements of 29% and up to 47% over the original model and
the random pruning model at a pruning rate of 20%, respectively.
SPEECHPRUNE can maintain network performance even at a
pruning level of 80%. This highlights the potential of token-level
pruning for efficient and scalable long-form speech understanding.

Index Terms—Speech LLM, speech information retrieval,
SPIRAL, SPEECHPRUNE, token pruning.

I. INTRODUCTION

Speech Large Language Models (Speech LLMs) represent a

significant advancement in speech-language understanding and

processing, as they leverage contextual reasoning capabilities

of large language models to process audio inputs. Unlike tradi-

tional cascaded pipelines, where automatic speech recognition

(ASR) and language modeling are handled by separate modules,

Speech LLMs unify audio processing, cross-modal fusion, and

language modeling in a single architecture [1]. These unified

models can perform multiple tasks like speech recognition,

speech translation, speaker identification and emotion recogni-

tion, while maintaining end-to-end trainability [2–5].

Despite the broad applications of Speech LLMs, one de-

sirable functionality for these models remains unexplored in

existing work. Specifically, it is the capability of extracting
crucial information within long-context audio, which we term

Speech Information Retrieval (SIR). SIR is particularly relevant

to real-world scenarios, which often require extracting key

information from extended audio content, such as meetings,

lectures, interviews, and customer service calls. For instance,

∗Equal Contribution. This work was supported in part by NSF 2112562
and ARO W911NF-23-2-0224.

the user may want the model (as an AI assistant) to accurately

note down the time for a future event mentioned in a long

conversation, so as to help them optimize their schedule. While

straightforward to be accomplished by us humans, SIR is

non-trivial and challenging for Speech LLMs. First, the target

information will likely exist only in one short audio segment

among the whole, extensively long audio inputs. Precisely

recognizing the relevant parts and ignoring the irrelevant parts

is intuitively challenging for the models. Second, as we will

discuss later, a more prohibitive limitation for Speech LLMs

to perform SIR is their significant computational inefficiency

when processing long audio token sequences.

To fill the research gap for SIR, our first contribution is
a concrete task formulation and a rigorously constructed
benchmark. Note that this effort is necessary and valuable

because existing benchmarks for Speech LLMs mostly focus on

tasks such as basic speech recognition, translation, and emotion

detection, which all emphasize short-term capabilities. For

example, 93% of the audio files in the Dynamic-superb phase-

2 benchmark [6] have a duration of less than 30 seconds. More

recent benchmarks such as MMAU [7] (for complex reasoning)

and AudioBench [8] (for instruction following) are still limited

to short audio inputs (averaging 14.22 and 12.60 seconds

respectively). These benchmarks contain only short audio clips

and thus do not reflect the complexity of achieving long-context

understanding and extracting precise information from lengthy

audio sequences. To systematically assess the unique challenges

posed by SIR, we present SPIRAL (Speech Informational

Retrieval and Lookup), a 1,012-sample benchmark specifically

crafted to evaluate Speech LLM performance on long-form

audio sequences (around 90 seconds in duration). On a high

level, SPIRAL constructs SIR questions by embedding a critical

piece of information within lengthy and potentially distracting

dialogues, thereby assessing the model ability to pinpoint and

retrieve essential content from long-form inputs.

Preliminary experiments on SPIRAL reveal limitations of

current models in handling SIR tasks, due to fundamental archi-

tectural constraints. Regardless of how audio inputs are encoded,

Speech LLMs concatenate the derived audio tokens/embeddings

with text tokens for later processing. However, audio signals
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typically yield substantially longer token sequences than text

inputs, dominating the computational cost and leading to

significant inefficiency due to the quadratic complexity of

attention with respect to the input length [9]. In fact, most

existing models limit the length of input audio files to only 30

seconds [6] (about 1500 raw tokens when using Whisper [10]

for speech encoding, and models typically add adapters to

downscale the number of tokens), as otherwise the audio token

sequence could easily cause out-of-memory error on GPU.

Obviously, such a limitation is restrictive for Speech LLMs to

handle long-form audio inputs longer than 30 seconds.

To address the limitation, our second technical contribution
is SPEECHPRUNE, a training-free token pruning method that
enables off-the-shelf Speech LLMs to handle lengthy audio
input efficiently and effectively. Unlike existing vision-centric

pruning methods (e.g., PruMerge [11]) that are incompatible

with speech encoders, SPEECHPRUNEis specifically designed

to preserve the temporal nature of audio signals. SPEECH-

PRUNE features a two-phase process, where it first removes

semantically irrelevant speech tokens by examining the cosine

similarity between speech and text token embeddings, and

then further selects the most important tokens by approx-

imating token importance with binarized attention weights

from the first layer. This plug-and-play approach maintains

semantic fidelity while substantially reducing computational

overhead, making the processing of long audio inputs possible

without any additional training upon pre-trained models. Our

SPEECHPRUNE, which, to the best of our knowledge is the first

token pruning method for Speech LLMs, achieves nearly 29%

(and 47%) higher accuracy than the original model (and the

random pruning baseline) at a 20% pruning rate and sustains

performance even when pruning 80% of the input on our

SPIRAL benchmark.

II. SPEECH INFORMATION RETRIEVAL

A. Task Formulation

We propose the SIR task to evaluate the ability of Speech

LLMs to identify and extract critical information from extended

spoken dialogues. This task addresses the practical challenge of

finding key details within lengthy conversations, akin to finding

a “needle in a haystack,” which is particularly challenging given

most models’ constraint of processing only 30-second audio

segments.

The task is formulated as follows. Inputs include (1) a long-

form speech input A = a1, a2, . . . , an comprising sequential

audio segments ai, where each ai represents a continuous

segment of the spoken dialogue, and (2) a textual query q that

targets a specific piece of information mentioned or discussed

at some unknown time within the speech. The model must

process the entire sequence A to locate the relevant information

that answers the query q.

This can be formally expressed as

r∗ = f(A, q), (1)

where r∗ stands for the correct response, f represents the

model’s function of processing speech, identifying salient

information, and reasoning about the query. The critical

information is contained within some segment al at position

l, but this location is not provided to the model explicitly, it

must learn to identify and attend to relevant segments while

processing the complete sequence.

To ensure accurate evaluation without ambiguity, we structure

all queries as multiple-choice questions, following the estab-

lished practice of multiple existing benchmarks [6–8]. Note,

however, that the proposed SIR task can be easily generalized

to open-ended questions as well. For each query q, the model

selects from four possible responses R = {r1, r2, r3, r4}. This

format allows for an objective evaluation of the model’s dual

capabilities: identifying relevant information in extended audio

and understanding its semantic meaning.

B. Benchmark Construction

We introduce SPIRAL (Speech Information Retrieval And

Lookup), a novel benchmark designed to evaluate Speech

LLMs’ ability to process long and realistic spoken inputs. The

samples in our dataset feature three representative scenarios,

including lectures, meetings, and daily conversations. Within

each scenario, there are various fine-grained and specific

topics that ultimately form a diverse and hierarchical topic

structure for SPIRAL. Unlike existing approaches that simply

apply speech synthesis to transform text datasets into speech

datasets, we specifically design our data to reflect the unique

characteristics of oral communication through a systematic

two-stage pipeline, namely transcript generation and speech

sample synthesis, in our construction.

Transcript Generation The transcript generation process em-

ploys the advanced capabilities of GPT-4o to simulate dialogues

that are indistinguishable from natural human conversations.

This simulation covers a wide array of topics ranging from

everyday life scenarios to professional exchanges and social

interactions. The methodology unfolds as follows:

1) Topic Curation: A comprehensive array of topics is

meticulously selected to capture the breadth and complex-

ity of human interactions, with hierarchial orgnization

to ensure diverse coverage across domains.

2) Dialogue Generation: Using GPT-4o, we generate multi-

turn dialogues incorporating natural speech elements

(fillers like “uh” and “oh”) to enhance authenticity. Our

prompt engineering specifically guides the model to

create realistic conversational dynamics with variable

turn lengths and contextual continuity. Multiple-choice

questions are generated for evaluation purposes.

Speech Sample Synthesis The speech synthesis process utilizes

the capabilities of StyleTTS 2 [12], a state-of-the-art zero-shot

text-to-speech engine trained on the LibriTTS dataset [13]. Our

synthesis pipeline comprises the following steps:

1) Speaker Selection: Speakers are randomly selected from

the train-clean-100 dataset in LibriTTS with balanced

gender representation from the LibriTTS dataset to ensure

diversity and avoid gender bias in our audio samples.

2) Speech Generation: Using StyleTTS 2, we generate

speech with fixed diffusion steps and embedding scale
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Fig. 1: The proposed SPEECHPRUNE, with two phases of token pruning.

parameters. Dialogue turns are concatenated to create

continuous speech while preserving conversational flow.

The SPIRAL dataset is open-source,1 facilitating further

research on SIR tasks. In addition, we propose SPIRAL-H, a

challenging subset consisting of 401 cases in which the original

Qwen-2 Audio model used in our experiments fails completely,

achieving 0% accuracy.

C. Quality Assessment

The generated SPIRAL dataset contains 1,012 samples, with

an average duration of 87.89 seconds. To assess the quality

of our generated SPIRAL dataset, we evaluate the synthesized

samples using two complementary metrics: automatic speech

recognition accuracy via Whisper-v3-large [10], which achieves

a word error rate of 0.0389, and perceptual quality via UTMOS-

22 [14], a widely used surrogate objective metric of mean

opinion score (MOS), yielding a predicted MOS of 3.91 in

a five-point-scale. These metrics respectively quantify the

transcription accuracy of the speech content by a state-of-

the-art recognition system and the naturalness/human-likeness

of the speech, as evaluated by a perceptual quality model.

SPIRAL demonstrates strong performance in both metrics.

III. SPEECHPRUNE

A. Preliminaries

Audio Encoder Speech LLMs typically consist of an audio

encoder (such as Whisper [10]) which transforms raw audio

with high sampling rates into lower-dimensional embeddings.

1The dataset and its construction details can be accessed through our website.

Taking Whisper as an example, an audio input (with maximum

length) is first processed and transformed into an 80-channel

melspectrogram in the time-frequency domain. This 80-channel

melspectrogram, generated with a window size of 25 ms and

a hop size of 10 ms, is then fed into the Transformer-based

encoder. A pooling layer with a stride of two follows to reduce

the length of the audio representation. As a result, each frame

of the encoder output approximately corresponds to a 40ms

segment of the original audio signal. Thus, a 30-second audio

yields 750 encoding embeddings. This temporal correspondence

between audio frames and encoder outputs provides a natural

foundation for our frame-level pruning strategy, as we can

leverage the inherent structure of how speech information is

encoded to maintain temporal coherence during pruning.
Language Modeling After extracting the audio token, it is

typically projected by an MLP [15] or Q-Former [16] to align

the feature-wise dimensionality with text tokens. The audio

token is then concatenated with the text token and other system

prompts before being input to the LLM backbone [17]. In

transformer-based models, the self-attention mechanism for

each layer is computed as

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (2)

where Q, K, and V are the query, key, and value derived from

the input sequence X through learnable projections:

Q = XWQ, K = XWK , V = XWV . (3)

The quadratic complexity O(n2) of self-attention mecha-

nisms [18, 19] makes the length of audio tokens a critical



computational bottleneck. For instance, a 10-minute conversa-

tion with approximately 15,000 tokens requires 58.66 TFLOPS

for Qwen-2 network [2], highlighting the need for efficient

pruning strategies [11, 20].

B. SPEECHPRUNE Methodology

We propose a two-phase token pruning approach, as shown

in Fig. 1 and the following parts.

First Phase Pruning by Token-Text Similarity The first

phase utilizes the correlation between audio and text tokens

to identify semantically important audio segments. Recent

research has shown that such audio-text token alignment enables

effective cross-modal reasoning in speech-language models [3].

More formally, we process the input to get speech embedding

S ∈ R
N×D and text embedding T ∈ R

L×D, where N is the

number of speech tokens before pruning, L is the number

of text tokens, and D is the embedding dimensionality. Here,

we only consider real text query as T and exclude system

prompt and special tokens. The token-level similarity matrix

F ∈ R
N×L between speech and text tokens is computed using

cosine similarity:

F =
S

‖S‖2 · T�

‖T‖2 . (4)

We introduce an adaptive frame-level approach to enhance

natural continuity and temporal correspondence. This method

evaluates speech segments as one-second frames, aligning

with the delta-band oscillations (1-2 Hz) that naturally process

lexical and phrasal units in speech perception [21]. Given the

speech embedding S, we obtain m = �N/f� frames, where

f is the frame size per second. For each frame i, the mean

similarity score across text tokens is first computed, followed

by frame-wise accumulation:

F̂i =
∑

j = 0f−1 mean(Fi·f+j,:, axis = 1), (5)

where Fi·f+j,: represents the similarity scores between the j-th

token in frame i and all text tokens. Token retention within

each frame is determined by a softmax function applied to the

accumulated frame scores:

p = softmax(F̂). (6)

The expected number of tokens to retain from each frame is

ni = �Npi� , (7)

where N denotes the overall number of tokens to be retained.

For each frame i, we select the top-ni tokens based on their

mean similarity scores:

indicesfirst,i = topk(mean(Fi·f :(i+1)·f,:, axis = 1), ni),
for i = 1, . . . ,m,

(8)

where Fi·f :(i+1)·f,: represents the similarity scores of tokens

within frame i across all text tokens.

The speech token remaining after first phase pruning is:

Sp1 = S[∪m
i=1indicesfirst,i]. (9)

Second Phase Pruning by Binarized Attention Estimation
Building on the first-phase pruning results, we introduce

a second pruning phase to further select important tokens

based on approximated attention scores. This phase exclusively

focuses on speech tokens, as the text-speech relationships have

already been captured in the first pruning phase, enabling

efficient modeling of internal dependencies within speech

segments while minimizing computational overhead. The

second phase utilizes the binarized attention from the network’s

first transformer layer. Specifically, we compute the scores

using the signed binarized Query and Key weights, and also

the pruned speech embeddings:

(Wb
Q, Wb

K , Sb) = sign(WQ, WK , Sp1). (10)

Then the approximate attention scores are computed through

binarized matrix operations:

Q′ = SbWb
Q, K′ = SbWb

K , (11)

A = softmax(
Q′K′�
√
dk

). (12)

The final token selection is determined by

Sp2 = Sp1[topk(mean(A, axis = 1), k)]. (13)

This simplified attention mechanism accounts for less than

1% of the network’s total computational complexity, which is

highly efficient. The final pruned input merges selected audio

tokens Sp2 with other essential tokens.

IV. EXPERIMENTS

We conduct our main experiments using Qwen-2 Audio

[2], a state-of-the-art Speech LLM with extensive speech

understanding task coverage. Our primary results are presented

in Section IV-A, with qualitative analyses discussed in Sec-

tion IV-B. Additionally, we perform ablation studies examining

the performance impact of each pruning phase in Section IV-C.

Finally, Section IV-D demonstrates the generalizability of our

proposed method across different models and benchmarks.

A. Main Experiments

Setup We evaluate our method using Qwen-2 Audio, comparing

our SPEECHPRUNE method against several baselines, compar-

ing our two-phase pruning strategy (SPEECHPRUNE) against

three baselines: (1) Original: full audio trimmed at 30 seconds

(750 tokens); (2) RAP: random audio pruning that selects non-

contiguous segments to reach target rate; and (3) RAC: random

audio cropping that selects a single contiguous segment at

target rate. Our SPEECHPRUNE’s two-phase pruning strategy is

set as follows: the first phase prunes the input tokens to match

the original method’s input length (which is 750 tokens), while

the second phase removes additional tokens according to the

specified pruning rate. We evaluate computational efficiency

using TFLOPS2, measure prefill time on a Quadro RTX6000

2Calculated using calflops: https://github.com/MrYxJ/calculate-flops.pytorch



TABLE I: Comparison of different audio pruning methods

across various metrics. PR: Pruning Rate, TF: TFLOPS, PT:

Prefill time (ms), TM: Total memory (GB), SA: Storing

activation (GB), RAP: Random Audio Pruning, RAC: Random

Audio Cropping.

Method PR TF ↓ PT ↓ TM ↓ SA ↓ SPIRAL ↑ SPIRAL-H ↑
Original – 12.2 779 13.40 0.19 60.38% 0%

RAP
0.2 10.06 662 13.32 0.15

42.49% 21.45%
RAC 65.71% 48.13%
Ours 89.23% 81.64%

RAP
0.4 7.93 511 13.24 0.11

42.89% 22.19%
RAC 62.45% 41.90%
Ours 85.97% 76.43%

RAP
0.6 5.79 419 13.17 0.07

42.39% 21.45%
RAC 58.20% 35.41%
Ours 75.89% 63.77%

RAP
0.8 3.66 278 13.09 0.04

45.26% 23.19%
RAC 55.83% 33.67%
Ours 62.45% 46.15%

GPU, and assess memory usage (total and activations) using

LLM-Viewer [22].

Results Our results in Table I demonstrate that SPEECHPRUNE

outperforms all baseline methods across different pruning rates,

achieving 89.23% accuracy on the SPIRAL benchmark and

81.64% on the more challenging SPIRAL-H subset when

pruning 20% of the input, compared to the original model’s

60.38% and 0% respectively. SPIRAL-H is particularly notable

as it consists of 401 challenging cases where the original model

completely fails (having 0% accuracy). Even with aggressive

pruning (80% pruning rate), our method maintains the network

accuracy while reducing 70% computational costs (from 12.2
to 3.66 TFLOPS), 64% prefill time (from 779 to 278 ms), and

saving 79% activation storage (from 0.19 to 0.04 GB) compared

to the original model. The inherent randomness of RAP and

RAC often fails to identify crucial information, resulting

in an inconsistent relationship between network accuracy

and pruning rate. In contrast, SPEECHPRUNE demonstrates

a more systematic approach by effectively selecting critical

information, which leads to a more predictable and gradual

decline in network performance as pruning rates increase.

Furthermore, SPEECHPRUNE consistently outperforms random

pruning strategies in terms of accuracy, with up to 46.74% in

SPIRAL and 60.19% in SPIRAL-H.

B. Qualitative Analysis

To visualize the effectiveness of our pruning strategy, we

project token embeddings from one sample in the SPIRAL

dataset into a 2D space using t-SNE visualization, comparing

distributions between SPEECHPRUNE and RAP (Fig. 2). Our

method demonstrates more structured token selection, where

preserved audio tokens (blue) exhibit stronger clustering around

text tokens (red) compared to the scattered distribution in

random pruning, suggesting effective retention of semantically

relevant audio information. This visualization corroborates our

quantitative results, showing SPEECHPRUNE’s capability to

maintain semantic relationships in the pruned representation.
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Fig. 2: Qualitative analysis of token embeddings via t-SNE vi-

sualization, where high-dimensional embeddings are projected

into 2D space for visualization. (a) SPEECHPRUNE (b) Random

pruning. Gray, blue, and red points represent pruned audio

tokens, preserved audio tokens, and text tokens, respectively.

C. Ablation Studies

To evaluate the effectiveness of our two-phase pruning

approach, we conduct ablation studies on the SPIRAL-H dataset.

We examine three variants of our method: using only the first

phase pruning, using only the second phase pruning, and the

complete two-phase approach. Fig. 3 presents the performance

comparison across different pruning rates. When using the

complete set of unpruned input tokens, the model achieves

an accuracy of 43.6%. The combined approach consistently

outperforms both individual pruning phases across most pruning

rates, achieving peak performance of 81.64% at 0.2 pruning

rate compared to 48.13% and 72.45% for first phase and second

phase only, respectively. This significant improvement over the

original model’s 0% accuracy on SPIRAL-H indicates that our

pruning strategy not only reduces computational cost but also

enhances the model’s ability to identify and process critical

information. Second, we observe interesting behavioral patterns

for each variant: the first phase only approach shows relatively

stable but lower performance (45-55%), while the second

phase only method starts with higher accuracy but degrades

more rapidly as pruning rate increases. Finally, the combined

approach exhibits the most robust performance, maintaining

superior accuracy until around 0.7 pruning rate, after which all

methods converge to similar performance levels. This suggests

that our two-phase design leverages complementary information

from both token-level similarity and attention patterns, resulting

in more robust and efficient pruning even on challenging cases

where the original model fails.

D. Generalization Analysis

To evaluate the generalization capability of our method,

we test SPEECHPRUNE on both different benchmarks and

a different Speech LLM model. For additional benchmarks,

we select two representative long-form speech understanding

datasets: DREAM-TTS and CN-College-Listen. DREAM-TTS

is derived from the text-based dialogue comprehension dataset

DREAM [23], converted to speech using state-of-the-art TTS
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on SPIRAL-H dataset. The plot shows the accuracy of
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SPEECHPRUNE. The dotted line shows the accuracy when

using the complete, unpruned set of input tokens.

technology with 60 different speakers while maintaining gender

consistency as described by [8]. CN-College-Listen is sourced

from WavLLM’s [24] test set, comprising English listening

comprehension questions from China’s national college en-

trance examinations. For both datasets, we specifically use test

samples that exceed 60 seconds in length to evaluate long-form

speech understanding capabilities.

We also evaluate our method on DiVA [3], a recently

proposed Speech LLM trained without instruction data using

text-only LLM responses as self-supervision. As shown in

Table II, SPEECHPRUNE demonstrates consistent improvements

across all benchmarks and models. For Qwen-2 Audio with

0.2 pruning rate, our method improves accuracy from 53.69%
to 65.19% on DREAM-TTS and from 52.91% to 62.86% on

CN-College-Listen. When applied to DiVA with 0.15 pruning

rate, SPEECHPRUNE similarly enhances performance across

all three benchmarks, demonstrating its effectiveness even on

models trained with different paradigms. These results suggest

that our pruning strategy generalizes well across different

types of speech understanding tasks and model architectures,

even though these benchmarks were not originally designed

specifically for SIR tasks.

TABLE II: Performance comparison on SPIRAL, DREAM-

TTS (DTTS), and CN-College-Listen (CCL) benchmark using

Qwen-2 Audio (pruning rate: 0.2) and DiVA (pruning rate:

0.15). The symbol * indicates results obtained on a subset of

the benchmark where the audio duration exceeds 60 seconds.

Model
Accuracy (%)

SPIRAL DTTS* CCL*

Qwen-2 Audio 60.38 53.69 52.91
+ SPEECHPRUNE 89.23 65.19 62.86

DiVA 48.62 45.72 55.24
+ SPEECHPRUNE 57.51 53.10 56.19

V. CONCLUSION

In this work, we introduced the SIR task to target long-form

speech comprehension, presented SPIRAL as a benchmark

for evaluating such capabilities, and proposed SPEECHPRUNE,

a training-free token pruning method leveraging speech-text

similarity and approximate attention. Experimental results

showed that SPEECHPRUNE not only reduces computational

costs but can also enhance model performance, achieving

network accuracy improvements of nearly 29% and up to

47% over the original model and the random pruning model,

respectively. While promising, further exploration is needed

to improve robustness under diverse audio conditions, explore

additional token selection methods, and adapt pruning strategies

to specific input characteristics or fine-tuned models.
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