
Analyzing PDFs like Binaries: Adversarially Robust PDF Malware
Analysis via Intermediate Representation and Language Model

Side Liu
∗

Wuhan University

Wuhan, China

sidelau@whu.edu.cn

Jiang Ming
†

Tulane University

New Orleans, USA

jming@tulane.edu

Guodong Zhou
∗

Wuhan University

Wuhan, China

zhouguodong@whu.edu.cn

Xinyi Liu
∗

Wuhan University

Wuhan, China

xinyiliu@whu.edu.cn

Jianming Fu
∗

Wuhan University

Wuhan, China

jmfu@whu.edu.cn

Guojun Peng
∗‡

Wuhan University

Wuhan, China

guojpeng@whu.edu.cn

Abstract
Malicious PDF files have emerged as a persistent threat and be-

come a popular attack vector in web-based attacks. While machine

learning-based PDF malware classifiers have shown promise, these

classifiers are often susceptible to adversarial attacks, undermining

their reliability. To address this issue, recent studies have aimed

to enhance the robustness of PDF classifiers. Despite these efforts,

the feature engineering underlying these studies remains outdated.

Consequently, even with the application of cutting-edge machine

learning techniques, these approaches fail to fundamentally resolve

the issue of feature instability.

To tackle this, we propose a novel approach for PDF feature

extraction and PDF malware detection. We introduce the PDFObj

IR (PDF Object Intermediate Representation), an assembly-like lan-

guage framework for PDF objects, from which we extract semantic

features using a pretrained language model. Additionally, we con-

struct an Object Reference Graph to capture structural features,

drawing inspiration from program analysis. This dual approach

enables us to analyze and detect PDF malware based on both se-

mantic and structural features. Experimental results demonstrate

that our proposed classifier achieves strong adversarial robustness

while maintaining an exceptionally low false positive rate of only

0.07% on baseline dataset compared to state-of-the-art PDFmalware

classifiers.

CCS Concepts
• Security and privacy → Web application security; Malware
and its mitigation.
∗
The Key Laboratory of Aerospace Information Security and Trusted Computing,

Ministry of Education, School of Cyber Science and Engineering, Wuhan University.

†
Department of Computer Science, School of Science and Engineering, Tulane

University.

‡
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744829

Keywords
Web Security, PDF Security, PDF Malware, Language Model

ACM Reference Format:
Side Liu, Jiang Ming, Guodong Zhou, Xinyi Liu, Jianming Fu, and Guojun

Peng. 2025. Analyzing PDFs like Binaries: Adversarially Robust PDF Mal-

ware Analysis via Intermediate Representation and Language Model. In

Proceedings of the 2025 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3744829

1 Introduction
The Portable Document Format (PDF) is among the most widely

used file formats on the web [20], making it an attractive target

for cybercriminals due to its ubiquity and versatility [5, 12, 40, 49].

PDFs now dominate as the most commonly used malicious attach-

ments in phishing campaigns, with nearly 70% of these emails evad-

ing network-based defenses and 15% bypassing endpoint security

measures [9]. Moreover, the increasing prevalence of cloud-based

collaboration and remote work has led to the widespread integra-

tion of PDF readers within modern browsers, further heightening

the threat posed by malicious PDFs. Attackers can exploit vulner-

abilities in web applications, such as cross-site scripting (XSS), or

browser-specific security flaws to execute malicious code through

carefully crafted PDFs [52, 62].

Machine learning (ML) is now extensively applied in various

security contexts, including traffic detection, intrusion detection,

vulnerability search, and other critical areas. In the face of PDF

malware, numerous countermeasures have explored ML-based ap-

proaches [7, 31, 50, 51, 53, 55, 57]. However, despite significant

progress in PDF malware analysis, several critical challenges re-

main unresolved.

Firstly, one major challenge is the limited scope of existing fea-

ture analysis, which tends to be confined to surface-level inspection.

Unlike the advanced feature analysis methods employed in binary

code analysis—where researchers strive to extract semantic features

from disassembled code and structural features from control flow

graphs (CFGs)—PDF malware analysis often remains comparatively

rudimentary. Current approaches typically involve computing spe-

cific keywords [50] or analyzing structural paths [53], which, while

useful, fall short of the sophistication needed for gaining deeper

https://doi.org/10.1145/3719027.3744829
https://doi.org/10.1145/3719027.3744829

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

insights. While the structure of PDF files differs from that of exe-

cutable file formats, it presents its own set of unique complexities.

Therefore, there is a pressing need for more advanced analysis

techniques to effectively address the nuances of PDF malware.

Secondly, the superficial nature of current feature analysis leaves

existing PDF malware classifiers highly susceptible to adversar-

ial attacks [11, 32, 54, 60]. While some studies [7, 57] have at-

tempted to enhance the adversarial robustness of ML-based classi-

fiers through specialized techniques like adversarial training, they

have not substantially advanced feature engineering. Instead, these

efforts continue to rely on the simplistic features extracted in earlier

work [50, 53]. Research [33, 54, 60] has consistently demonstrated

that these features are vulnerable to adversarial manipulation. Ad-

ditionally, retraining PDF malware classifiers using adversarial

samples has significantly compromised their usability, leading to

false positive rates (FPR) as high as 85% [15].

Lastly, the feature extraction process of existingmachine learning-

based PDF malware classifiers [7, 23, 26, 55] is heavily dependent

on the parsing capabilities of PDF parsers [2, 6]. PDF malware that

exploits vulnerabilities in PDF readers often results in so-called "bad

PDFs." Attackers craft the original bytes of these PDFs to exploit

specific vulnerabilities, which frequently results in malformed file

formats [2]. Such malformed PDFs can challenge existing parsers,

rendering them unable to correctly process these files, even though

the malicious payload can still be successfully executed. Carmony

et al. [6] tested multiple parsers on PDFmalware datasets and found

that each parser failed to correctly process hundreds of samples.

Consequently, PDF malware classifiers relying on these parsers

cannot extract features from these samples, making it impossible

to determine their maliciousness. This limitation is unacceptable in

practical applications, where comprehensive detection and analysis

of malware are crucial.

To overcome the above first issue, we design the first intermedi-

ate language framework, termed PDFObj IR, to convert PDFs into a

CFG-like structure. We observed that in PDFs, individual objects op-

erate similarly to basic blocks in traditional program analysis, with

reference relationships linking these objects. This similarity enables

the construction of a graph structure akin to a CFG for effective

analysis. Leveraging this analogy, we developed PDFObj IR, which

converts each PDF object into a form similar to assembly language,

describing each key-value pair in the object while preserving the

inter-object reference relationships. Building on this framework,

we constructed an Object Reference Graph (ORG), which allows

for binary-like analysis of PDFs.

To address the second issue, we developed the PDFObj IR rep-

resentation learning method, PDFObj2Vec, a novel PDF feature

engineering approach. We designed three representation learn-

ing schemes for this PDFObj2Vec, based on Word2Vec [35], PV-

DM [24], and BERT [13]. Additionally, we supported PDFObj2Vec

with general text embedding models such as CodeT5 [59] and text-

embedding-3 [39], to directly obtain embeddings of PDFObj IR at

the ORG node level. We then designed a Graph Isomorphism Net-

work (GIN) to extract structural features at the graph level of the

ORG for PDF malware classification.

Graph structures typically exhibit stronger adversarial robust-

ness, making it challenging for attackers to disguise their behavior

within such structures [1]. Therefore, our feature engineering ap-

proach, which combines semantic and structural features, demon-

strates robust performance. This robustness is evidenced by our

experimental results, which show strong resilience against various

adversarial attacks. While language models have been extensively

researched in the context of binary code analysis [8, 14, 25, 34, 63],

their application to PDF malware analysis has been limited. Our

research bridges this gap by applying popular language models,

including large language models, to PDF malware analysis. Pre-

vious features did not integrate well with these language models,

but PDFObj IR demonstrates excellent compatibility, improving the

performance of PDF malware analysis tasks.

To address the third issue, we developed a new PDF parser tool

for extracting and converting PDFObj IR, called Poir. Poir is immune

to bad format issues affecting conventional parsers. By analyzing

various types of bad-format PDF files, we identified three main

types of errors that cause PDF parsers to fail. Poir automatically

detects and fixes these errors, ensuring smooth feature extraction.

We applied ORG and PDFObj2Vec to the task of PDF malware

classification and implement a GIN-based classifier that achieves

well consistent performance on both the baseline and extended

datasets. Our most robust classifier attains an accuracy of 99.93%

on the baseline dataset and 96.62% on the extended dataset. We

also conducted extensive comparative and ablation experiments.

The results indicate the effectiveness of PDFObj IR in PDF malware

analysis, as our classifiers achieved a 2.2% to 8.9% accuracy im-

provement on the extended dataset compared to classifiers without

PDFObj IR. Furthermore, even when faced with the most power-

ful realizable adversarial sample attacks, our classifier maintained

100% adversarial robustness with a remarkably low FPR of only

0.07%. This performance is significantly more efficient compared

to state-of-the-art PDF malware classifiers [7, 57] with comparable

adversarial robustness, whose FPR is 71 times higher than ours. In

a nutshell, we make the following key contributions:

• We designed the PDFObj IR framework, which, to the best of

our knowledge, is the first intermediate representation used

for PDF analysis. To facilitate IR conversion, we developed

a new PDF parser, Poir. This parser is capable of correctly

handling malformed PDFs and automatically completing

missing content.

• We developed PDFObj2Vec, a method that utilizes language

models to learn representations of PDF objects. This ap-

proach was applied to PDF analysis, with a particular focus

on evaluating its performance in PDF malware classification

tasks.

• Leveraging the Object Reference Graph and PDFObj2Vec, we

implemented a Graph Isomorphism Network for PDF mal-

ware classification. Experimental results demonstrate that

our approach achieves high accuracy and strong adversarial

robustness, all while maintaining an exceptionally low false

positive rates.

We release a prototype of PDFObj2Vec and evaluation datasets to

facilitate reproduction, as all are found at Zenodo. The full version

with Appendix of this paper is available at [27].

https://zenodo.org/records/15532394

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan

2 Background, Motivation and Related Work
2.1 PDF Basics
PDF Structure PDF is one of the most commonly used document

formats on the web [20], with widespread applications in both per-

sonal and business contexts. Figure 1(a) illustrates a typical structure

of a PDF file, which consists of the following four parts [18]:

• Header This is the first line of a PDF file, specifying the

version of the PDF specification used for the document.

• Body The body of a PDF file comprises various types of

objects, forming a collection of objects. The core component

of a PDF file is the collection of these objects, also known as

COS (Carousel Object System) [28] objects.

• Cross-reference Table This table contains references to all

objects within the document, listing the byte offsets of each

object within the file’s body.

• Trailer The trailer enables quick identification of the cross-

reference table’s location, thus facilitating precise object

location. The last line of the file only contains the file’s end

symbol: %%EOF.

The Body is the key part of a PDF, containing the primary data

in the document. It comprises a series of objects, with each object

enclosed by the ≪ and ≫, demarcated by the obj and endobj.
Conceptually, it can be viewed as an object graph, where each object

performs specific operations (e.g., displaying text, rendering images,

executing code, etc.) [32]. Each object is composed of a series of key-

value pairs, which can be represented in the form of a dictionary.

For instance, in Figure 1(a), the first object begins with 1 0 obj
and ends with endobj. The content of this object is enclosed within
≪ ≫ and contains four key-value pairs. The keys in the object are

the name type, and the values can be any type. For example, The

first key in 1 0 obj is /Type, which is a name type with the value

of /Catalog, also a name type. The second key, /Outlines, has a
value that is an indirect reference type, where R signifies an indirect

reference. In a PDF object, values encompass five categories of basic

types, as shown in Table 7 of Appendix A. Moreover, values can

be composite types, such as arrays and dictionaries, with the basic

elements of arrays and dictionaries being the aforementioned basic

objects, compression parameters, and other information.

PDF-based Attack PDF-based attack is a type of document-based

attack where threat actors exploit PDFs as carriers for malicious

activities. These attacks leverage the functionalities of PDF files

or vulnerabilities in PDF readers to execute malicious code. PDF

malware refers to PDF carriers with malicious functionalities.

The body of Figure 1(a) is an example of a PDF malware that

exploits JavaScript to execute malicious activities. In Figure 1(a), we

illustrate five objects, amongwhich the first object’s /OpenAction’s
value encompasses information about malicious payloads. The

value of /OpenAction is a dictionary composite type containing

two keys: /JS and /S. Here, the value of /JS is 5 0 R, indirectly
reference to 5 0 obj, and the value of /S is /JavaScript. The
value indicates the presence of JavaScript within this PDF malware,

with the scripts located at 5 0 obj. The object of 5 0 obj is

typically a stream object, which stores the malicious JavaScript of

this PDF malware.

In this example of PDF malware, fields related to JavaScript se-

mantics are key indicators of malicious characteristics. Additionally,

the JavaScript data are stored in 5 0 R, indicating a reference re-
lationship between 1 0 obj and 5 0 obj. In Figure 1(a), we use

red arrows to indicate this reference relationship and blue arrows

to mark the references between other objects. Figure 1(b) more

intuitively demonstrates the structural relationship between these

objects in Figure 1(a). Fields related to JavaScript semantics and

the reference structure collectively constitute the malicious char-

acteristics. However, semantic features alone are insufficient to

determine whether a PDF is malicious, as JavaScript functionality

is common in PDFs and can be used in benign samples. Therefore,

it is also necessary to consider the structural relationships between

objects. In Figure 1(a), the malicious JavaScript script data is stored

in the stream object 5 0 obj, which is used for complex malicious

purposes. In contrast, simple JavaScript scripts in benign PDFs

may appear as literal strings in 1 0 obj, with no indirect refer-

ence to a stream object. These differences in structural reference

relationships help further distinguish malicious PDFs from benign

ones.

2.2 Motivation and Insight
There are rich features used for binary malware analysis, such as

API call sequences, control flow graphs (CFGs), data flow graphs,

and disassembly instructions. In contrast, analytical features for

PDF malware analysis are relatively limited. Current methods often

rely on customized statistical features of keywords or objects, or

on binary features derived from hierarchical structural paths.

This disparity raises an important question: can we apply the

methods used in binary malware analysis to PDF malware analy-

sis? To explore this, we reexamined the structure of PDFs, which

are primarily composed of a series of objects. These objects have

complex reference relationships, as indicated by the blue arrows

in Figure1(a). Essentially, this forms a directed graph connected by

different objects. If we consider each object as a basic block of a

PDF and the reference relationships between objects as control flow

relationships, the resulting graph, as shown in Figure 1(b), would

resemble a control flow graph used in binary analysis, as shown

in Figure 1(c). This similarity suggests that leveraging methods

from binary analysis to analyze PDFs is feasible. However, a critical

question remains: how do we represent a basic block in the context

of PDF analysis?

In binary analysis, the disassembled code is often scrutinized.

For instance, when analyzing a sample in IDA Pro [17], the soft-

ware typically presents a CFG of the entry point function after

loading the sample. Each basic block corresponds to a disassembled

code block, representing the smallest unit of code, as illustrated

in Figure 1(c). This raises the question: can we transform the con-

tent of a PDF object into a form similar to disassembled code or

intermediate code? To explore this, we examined the structure of

PDF objects. These objects consist of key-value pairs with fixed

data formats and types. By defining a fixed format to describe each

object in a manner akin to natural or programming languages, we

can convert the object into an intermediate representation. We

can then designate the values containing reference relationships

as jump instructions. This approach allows us to construct a graph

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

3 0 obj << /Type /Pages /Kids
[4 0 R] /Count 1 >> endobj

4 0 obj << /Type /Page /
Parent 3 0 R /MediaBox [0 0
612 792] >> endobj

5 0 obj << /Filter /
FlateDecode /Length 2560 >>
stream ... endstream endobj

Header

Body

Cross-reference
Table

Trailer

1 0 obj << /Type /
Catalog /Outlines
2 0 R /Pages 3 0 R /
OpenAction << /JS
5 0 R /S /Malicous
JavaScript >> >>
endobj

2 0 obj << /Type /
Outlines /Count 0 >>
endobj

%PDF-1.7

Xref 0 1 00000000012 65535 f

Trailer <</Size 86/Root 1 0 R>>
startxref 23572 %%EOF

3 0 obj << /Type /
Pages /Kids [4 0
R] /Count 1 >>
endobj

1 0 obj << /Type /
Catalog /Outlines
2 0 R /Pages 3 0 R /
OpenAction << /JS
5 0 R /S /Malicous
JavaScript >> >>
endobj

2 0 obj << /Type /
Outlines /Count 0
>> endobj

4 0 obj << /Type /Page /
Parent 3 0 R /MediaBox
[0 0 612 792] >> endobj

5 0 obj << /Filter /
FlateDecode /Length
2560 >> stream ...
endstream endobj

(a)

push ebp
mov ebp, esp
mov eax, 10F8h
jz short loc_4D3B65

push eax
call ds:FunctionA

cmp [esp+1100h],0
jz short loc_4D3B85

call sub_4D1D60
pop edi
pop es

push 0
push 1
call FunctionB

(b) (c)

Figure 1: An example of the PDF structure, PDF object graph, and control flow graph: (a) displays the basic format of a PDF; (b)
depicts the references between objects in PDF; (c) showcases a piece of CFG of a binary file.

structure that is closely analogous to a CFG, which we refer to as an

Object Reference Graph (ORG). Given that we propose converting

objects into an intermediate representation, we can leverage pow-

erful language models to process this representation. In the field

of program analysis, there has been considerable research using

language models to represent disassembled code. We will elaborate

on our design philosophy and processing approach in the following

sections.

Key Insight Our key insight is that by treating each object in a

PDF as a basic block and converting its content into an intermediate

language, we can construct a graph analogous to a CFG. This graph

encapsulates the reference relationships among different objects,

with each node representing the semantics of an object. Thus, this

approach enables us to analyze PDFs both at the semantic level of

individual nodes and at the structural level of the graph.

2.3 PDF Malware Analysis
Currently, research on PDF malware analysis mainly builds upon

two prior works: PDFrate [50] and Hidost [53]. PDFrate utilizes

content-based features, extracting specific keyword positions and

counts from metadata and content within PDF files. It manually

defines 202 features, which are extracted using regular expressions.

While these features are more general and not affected by the

parsing capabilities of parsers, they remain at a surface level, not

delving into the deeper structure of PDFs. Moreover, defining these

202 features requires extensive expert knowledge, and the reliability

of these features is not always guaranteed [54, 57]. Hidost, on

the other hand, employs structure-based features by extracting

object structural paths from PDFs and using binary counts of these

paths as features. It leverages Poppler [45] to extract hierarchical

structural paths and selects 6, 087 paths from a corpus of 9 million as

features. Despite the authors’ claims that hierarchical path features

are robust [53, 55], selecting only a portion of the paths from the

corpus may result in a lack of path semantics. Xu et al.’s study [60]

indicates that such features remain vulnerable to adversarial attacks.

Furthermore, Hidost relies on Poppler for PDF parsing, whichmakes

feature extraction more susceptible to the parsing capabilities of

the parser.

Due to the susceptibility of PDFrate and Hidost to adversarial

attacks, researchers have sought to enhance the adversarial robust-

ness of PDF malware classifiers based on their features. Tong et

al. [57] proposed a PDF malware classifier that leverages conserved

feature training, focusing on features derived from PDFrate and

Hidost. They identified features closely related to malicious func-

tionalities in PDF execution as conserved features through expert

experience. By employing iterative adversarial training, they im-

proved the classifier’s adversarial robustness. However, while Tong

et al.’s method enhances robustness against adversarial attacks, it

compromises classification performance on regular samples, result-

ing in a higher FPR of 4.96%.

Additionally, Chen et al. [7] proposed a robust training approach

based on robust properties targeting the features of Hidost. They de-

fined five categories of robust properties and used symbolic interval

analysis to train combinations of different robust properties, result-

ing in a classifier with adversarial robustness. However, Chen et

al.’s method, while achieving adversarial robustness, also sacrifices

the classification performance on regular samples, increasing the

FPR by 1.78%. Moreover, when facing state-of-the-art unbounded

adversarial sample attacks [33], it only achieved a 50.8% adver-

sarial success rate. Both Tong et al. and Chen et al. attempted to

enhance the classifier’s adversarial robustness based on PDFrate

and Hidost features, addressing the training issues of the classifier.

However, they did not resolve the fundamental problem of insuffi-

ciently robust features and the limitations imposed by the parser

dependencies in classifiers based on Hidost.

2.4 Learning-based Embedding
Drawing inspiration from representation learning in binary analy-

sis [8, 14, 34, 63], we aim to develop semantic representations for

PDFObj IR nodes in the ORG and apply them to downstream tasks

such as PDF malware detection. Notably, this type of representation

learning remains unexplored in PDF analysis. In binary analysis,

approaches like Word2Vec [35] have been used to learn instruction-

level representations by treating each instruction as aword and each

function as a document [34, 63]. Asm2Vec [14] extends this by rep-

resenting assembly instructions as opcodes and operands, using the

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan

Raw PDFs

Parse

❶ IR Conversion

❸ Representation Learning

Error
repair

30 Type name
Pages
30 Kids ref_list [40]
30 Count num 1
······

obj_3-0
3-0 Type name Pages
3-0 Kids ref_list [40]
3-0 Count num 1

obj_1-0
1-0 Type name Catalog
1-0 Outlines ref 20
1-0 Pages ref 30

obj_2-0
2-0 Type name Outlines
2-0 Count num 0

❷ ORG Building

PDFObj IRs

1 ref 20

References
Relationships

Inputs

2 ref 30

3 ······

ORGsEmbeddings

Language
ModelsAttributed Object

Reference Graph
(AORG)

Figure 2: Overall workflow of PDFObj2Vec.

PV-DM model [24] to learn embeddings. Similarly, PalmTree [25]

treats assembly instructions as sentences, decomposing them into

tokens (e.g., opcodes, registers, immediate values) and employing

BERT [13] to capture control flow and data dependencies.

In this paper, we applied Word2Vec, PV-DM, and BERT to learn

representations for PDFObj IR, generating embeddings for down-

stream tasks. Additionally, we used general embedding models

without pre-training to directly derive embeddings for PDFObj

IR. The evaluation of these embedding models in PDF malware

classification is detailed in §6.

3 Overview
The overall workflow of PDFObj2Vec is depicted in Figure 2. This

framework primarily consists of two parts: 1) PDFObj intermediate

representation (IR) conversion and 2) representation learning.

PDFObj Intermediate Representation (IR) Conversion For the

conversion of PDFObj to IR, PDFObj2Vec starts by taking a raw

PDF file as input, then parses it, correcting formatting errors to

ensure the integrity of the extracted IR. The parsed content is then

converted into IR format (1 in Figure 2). Following this, based on

the reference relationships in the IR, an Object Reference Graph

(ORG) is constructed (2). In the ORG, each node represents an

object, with the node’s content being the IRs of that object.

Representation Learning In the process of representation learn-

ing, we embed the nodes of the ORG (3). To achieve this, We

pre-trained Word2Vec, PV-DM, and BERT models specifically for

PDFObj IR to obtain node embeddings. Additionally, we integrated

general embedding models such as the standard BERT, CodeT5, and

text-embedding-3 to directly obtain node embeddings. Once the

node embeddings are obtained, we can generate the Attributed Ob-

ject Reference Graph (AORG). Then, we can perform downstream

tasks such as PDF malware classification.

4 PDFObj IR Conversion
We designed the first intermediate representation (IR) framework

for PDFs, aimed at enhancing the analysis and understanding of

PDFs by enriching the semantics of the objects of PDFs. In this

framework, each object in a PDF is converted into multiple fixed-

length IRs to represent the corresponding object. In this section,

we first define the fields and conversion rules of the IR, and then

Table 1: Basic type description.

Type VType Mark

Atomic num, str, name, ref, bool, null
Stream stream

Composite list, dict

Derived

num_list, str_list, name_list
ref_list, bool_list, mix_list

we introduce the new parser we developed for this purpose, named

Poir.

4.1 Field Definitions
Based on the structure of objects, we define the four fields of PDFObj

IR: Index, Attribute, VType, and Value, as described in the following:

• Index. This field indicates the index of the current IR within

the object. Its value is uniquely determined by the combi-

nation of the object’s number and version, calculated as

< 𝑛𝑢𝑚𝑏𝑒𝑟 −𝑣𝑒𝑟𝑠𝑖𝑜𝑛 >. For instance, all IRs within the object

3 0 obj have an Index of 3-0, and within 8 2 obj, all IRs
have an Index of 8-2.

• Attribute. This field represents the attributes of the IR, cor-

responding to the keys in the associated object. It is of the

Name type, such as /Type and /Pages.

• VType. This field represents the type of the Value. We have

defined a total of 6 atomic types, 1 stream type, 2 composite

types, and 6 derived types, as shown in Table 1.

• Value. This field represents the values associated with the

Attribute. The type of Value is VType, and we defined 15

VTypes, as shown in Table 1.

Among these VTypes in Table 1, list and dict are basic com-

posite types, and their values may consist of a mix of multiple

atomic types and basic composite types. Elements in list are typi-

cally of a single type in most cases, but occasionally, mixed-type

values occur. Based on this phenomenon, we defined six derived

types based on list, as shown in Table 1. Please note that we have

not defined null_list as it does not exist. Since a dict consists

of a series of key-value pairs of various types, it is inherently a

structure with mixed types. Therefore, there is no need to design

derived types based on dict. We have defined the format and basic

fields of PDFObj IR, with 15 types for the VType field. Thus, each

object can be represented using 𝑛 IR entries. In the next subsection,

we provide a detailed description of how we convert a PDF into a

series of IR entries.

4.2 Conversion
Following the definition of fields and formats of PDFObj IR, we

initiate the conversion of each key-value pair within an object into

𝑛 IR entries, where 𝑛 ≥ 1. The conversion form varies according to

the VType. We define the atomic IR as follows:

Definition 1: An atomic IR is an IR with an atomic type or a value
of the basic object, representing the most basic expression of PDFObj
IR that cannot be further decomposed.

We first use the atomic IR conversion as an example to illustrate

the basic conversion principle. Its conversion is the most direct and

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

7 0 obj <<
 /Type /DictExp
 /Version 0.1
 /IntItem 32
 /StrItem (en-us)
 /BoolItem TRue
 /Parent 3 0 R
>> endobj

Index Attribute VType Value

8-0 <Blank> null <Blank>
8 0 obj
null
endobj

Type name DictExp
Version num 0.1
IntItem num 32
StrItem str (en-us)

7-0
7-0
7-0
7-0

Parent ref 3-07-0
BoolItem bool True7-0

Figure 3: Basic conversion paradigm. Please note that this
example is designed to illustrate the basic conversion princi-
ple and may not necessarily represent data found in actual
PDFs.

fundamental. We tend to convert each PDFObj IR into an atomic

form, ensuring that each IR maintains the same structural form.

Basic Conversion Paradigm (P1) For basic object types such as

numeric, string, name, boolean, null, and ID object, as mentioned

in §2.1, the VType is assigned as num, str, name, bool, and null,
respectively, with the Value maintaining its original form. For an

indirectly referenced object, its type is assigned as ref, and the

value is the index value of the referenced object. Figure 3 illustrates

a basic conversion paradigm, which serves as the foundational

transformation. All subsequent complex conversions are built upon

this paradigm. The conversion process varies depending onwhether

the object is a stream, dictionary, single-element array, or mixed-

element array, as will be discussed in detail later.

Stream Object Conversion Paradigm (P2) A stream object

consists of two parts. The first part utilizes a dictionary to store basic

information about the stream, such as encoding method, stream

length, etc. The second part is the byte sequence data of the stream.

When the object is a stream, the conversion process begins with

outputting the following line:

<Index>, <Blank>, stream, <Blank>

The IR above declares that it is a stream object. Subsequently, the

conversion of the first part of the dictionary content follows P1.
The byte sequence data are stored in an additional data file, named

according to its Index.

Array Object Conversion Paradigm (P3) As illustrated in Fig-

ure 1(a), the value of /MediaBox in 4 0 obj is an array of single

elements, all numeric. For this, we use the following representation:

4-0, /MediaBox, num_list, [0,0,612,792]

The conversions of other single-element arrays follow the sameway.

Arrays can also contain a mix of types, such as /Names [(Notice)
14 9 R], featuring str and ref types. We represent this pair as

the following IR:

4-0, /Names, mix_list, [(Notice),149]

Dictionary Object Conversion Paradigm (P4) Take for instance
the /OpenAction value in 1 0 obj from Figure 1(a), which is a

dictionary. We begin with an IR entry:

1-0, /OpenAction, dict, <Blank>

The IR above indicates that the value of /OpenAction is a dictionary
type.When converting such dictionaries, we prepend the key of this

dict (/OpenAction in this case), to the new Attribution, resulting

in:

obj_3-0:
3-0 Type name Pages
3-0 Kids ref_list [4-0]
3-0 Count num 1

obj_1-0:
1-0 Type name Catalog
1-0 Outlines ref 2-0
1-0 Pages ref 3-0
1-0 OpenAction dict <Blank>
1-0 OpenAction/JS ref 5-0
1-0 OpenAction/S name Malicious JavaScript

obj_2-0:
2-0 Type name Outlines
2-0 Count num 0

obj_4-0:
4-0 Type name Page
4-0 Parent ref 3-0
4-0 MediaBox num_list [0,0,612,792]

obj_5-0:
5-0 <Blank> stream <Blank>
5-0 Filter name FlateDecode
5-0 Length num 2560

......

Figure 4: Object reference graph with PDFObj IR.

1-0, /OpenAction/JS, ref, 5-0
1-0, /OpenAction/S, name, /JavaScript

Please note that in the conversion example above, a dict may

contain another dict, resulting in multi-level nested dictionaries.

We employ a recursive algorithm to resolve such nested dictionaries,

ensuring that the IR can record the path of keys within nested

dictionaries.

So far, we have achieved a comprehensive conversion of the

PDF’s core content. We can convert the representation from Fig-

ure 1(b) to that of Figure 4. Subsequently, we can analyze the PDF

from both semantic and structural perspectives.

4.3 PDFObj IR Parsing
After finalizing the design and conversion paradigm of PDFObj IR,

we developed a parsing tool named Poir. This tool converts PDF

files into an intermediate representation format and is uniquely de-

signed to handle malformed PDFs by performing necessary repairs.

PDF malware, particularly those exploiting vulnerabilities, often

fails to maintain a valid PDF format, causing traditional parsers to

malfunction. To address this, we analyzed malformed PDF malware

and identified three common types of errors in the PDF body. Poir

incorporates specific processes to handle these errors, ensuring the

integrity of the IR is preserved as much as possible.

E1: String Overflow String content overflow is the most common

exception, and it occurs frequently in malicious PDFs. Figure 5(a)

illustrates a typical situation of string overflow where the excessive

length of a string causes the omission of crucial keywords such

as the right parenthesis and endobj. The cause of string content

overflowmay be related to the content, oftenmalicious code. In such

cases, we automatically fill in the missing structure and keywords,

appending “)” at the end. If the overflow results in the absence of “≪”

and endobj, we supplement them as well, as shown in Figure 5(b).

E2: Mising obj In the event of this error, an illegal indirect ref-

erence occurs. For instance, in the case of /Metadata 9 0 R, it
references to a non-existent obj. We can not deduce the specific

content of 9 0 obj. Therefore, we introduce a new obj with the

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan

76 0 obj <<
 /S /JavaScript
 /JS (w='s';w+='l';w+='i';…

76 0 obj <<
 /S /JavaScript
 /JS (w='s';w+='l';w+='i';…)
>> endobj

(a) (b)

Figure 5: An example of string overflow (a) and the comple-
tion method (b).

7 0 obj <<
 /Pages 6 0 R
 /Info <<
 /Marked true
 /Ty null
 >>
>> endobj

9 0 obj <<
 /Type /Page
 /MediaBox [0 0 6]
>> endobj

(a) (b)

Figure 6: An example of incomplete key-value pairs and the
completion method.

number and version set to 9 and 0, respectively, and the content is

set to null.

E3: Incomplete Key-Value Pairs Our analysis has identified cases

where either the key or the value is missing. The corresponding

value is also missing when the key is absent. To address this, we

fill the original key-value position with null as the missing value,

as illustrated in Figure 6(a). In cases where the value part is incom-

plete, such as an array with only the front portion, as depicted in

Figure 6(b), we append ‘]’ at the end to complete its structure. For

incompletely nested dictionaries, we first supplement the missing

parts based on the aforementioned principles and subsequently

complete the structure of the dictionary. Additionally, if the omis-

sion of key-value pairs results in the absence of “≫” and endobj
in the object, we also rectify these omissions.

In addition to these three main error handling measures, we have

also listed other parsing errors and their corresponding handling

strategies in Table 8 of Appendix B.

5 Design of PDFObj2Vec
We have developed two modes for PDFObj2Vec: pre-trained mode

and general mode. We first introduce the preprocessing and tok-

enization strategies for PDFObj IR. Subsequently, we outline the

design of the pre-trained mode and general mode. Lastly, we dis-

cuss the ORG embedding and the classifier architecture based on

PDFObj2Vec.

5.1 Preprocessing and Tokenization
In §4, we fixed the length of PDFObj IR and have already standard-

ized it, so we do not require additional special tokens for normal-

ization. To adapt PDFObj IR for pre-training, we need to perform

tokenization. We employ the following tokenization strategy to

mitigate the Out-Of-Vocabulary (OOV) issues caused by values:

For each IR, we retain the Attribute and VType, and connect them

with an underscore to form a single word. For example, in Figure 3,

7-0 Type name DictExp would be represented as Type_name.
Multiple IRs form an object, and multiple words form a sentence;

therefore, we treat an object as a sentence. The contextual relation-

ships between sentences are determined by the reference relation-

ships between objects. We extract these relationships from the ref,

[CLS] Type_
name

Kids_
ref_list

Type_
name

Parent_
ref

MediaBox
_num_lsit[SEP] [ESP]

E
[CLS]

E
Type_
name

E
Kids_
ref_list

E
[MASK]

E
[ESP]

E
Type_
name

E
Parent_

ref

E
MediaBox
_num_list

E
[SEP]

E
[ESP]

EA EA EA EA EA EB EB EB EB

E0 E1 E2 E3 E4 E5 E6 E7 E8

Input

Token

Segment

Position

Object A Object B

+ + + + + + + + +

+ + + + + + + + +

C T1A T2A T3A T[ESP] T5B T6B T7B T[ESP]

❷ NOP ❶ MLMIs ObjectB? Is
Count_num? ❸ Representation

Count_
num

[MASK]

Figure 7: BERT input and training tasks.

ref_list, and mix_list (where mix_list may include reference

types) to generate the context of the sentences.

5.2 Pre-trained Mode
Wedevised three schemes for the pre-trainedmode, namelyWord2Vec,

PV-DM, and BERT, with a particular emphasis on the BERT scheme.

Prior feature embedding methods, such as Hidost, rely on binary

embeddings that generate sparse 0-1 vectors. These representations

are inherently fragile and lack the rich semantic information re-

quired for robust malware detection. In this paper, we leverage

learning-based embedding techniques from natural language pro-

cessing. Trained via self-supervised learning tasks, these models

convert the PDFObj IR into dense vector representations, thereby

enhancing the classifier’s ability to detect PDF malware.

BERT-Based Scheme After preprocessing and tokenization, we

then input the sentences into the BERT model, as depicted in Fig-

ure 7. The first token of this input is a special token, [CLS], which
signifies the start of the sequence. Following this, we use another

token, [SEP], to separate Object A from Object B. Additionally,

we augment token embeddings with position embeddings and seg-

ment embeddings, and this combined vector is used as the input

for the bidirectional transformer network, as shown in Figure 7.

Segment embeddings help BERT differentiate between the vector

representations of the two sentences in the input, while position

embeddings enable BERT to learn the sequential properties of the

input. As for pre-training, we designed following two training tasks

for BERT-based PDFObj2Vec: MLM (Masked Language Model, 1

in Figure 7) and NOP (Next Object Prediction, 2).

1 Masked Language Model To enable BERT to comprehend the

internal structure of PDFObj IR, we first employed the Masked Lan-

guageModel (MLM) training task. This task randomlymasks tokens

in the PDFObj IR text, forcing BERT to predict the masked con-

tent through bidirectional contextual inference. And it enables the

model to learn deep semantic relationships between key-value pairs

within objects. We began by pre-training BERT-based PDFObj2Vec

using the MLM, following masking strategies from previous stud-

ies [13, 25]. For the input IR sequences 𝑆𝑒𝑞𝐼𝑅 = 𝐼𝑅1, 𝐼𝑅2, ..., 𝐼𝑅𝑖 , in

which 𝐼𝑅𝑖 denotes a token, we randomly select 15% of the tokens to

be masked. Of these tokens to be masked, 80% are replaced with the

[MASK] token, 10% are replaced with a random IR token, and the

remaining 10% are left unchanged. Subsequently, BERT’s encoder

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

learns to predict the masked tokens:

𝑃 (ˆ𝐼𝑅𝑖 | 𝑆𝑒𝑞𝐼𝑅) =
𝑒𝑥𝑝 (𝑤𝑖Θ(𝑆𝑒𝑞𝐼𝑅)𝑖)∑𝐾

𝑘=1
𝑒𝑥𝑝 (𝑤𝑘Θ(𝑆𝑒𝑞𝐼𝑅)𝑖))

where ˆ𝐼𝑅𝑖 represents the prediction for 𝐼𝑅𝑖 , Θ(𝑆𝑒𝑞𝐼𝑅)𝑖 denotes the
𝑖-th vector from the last hidden layer of the transformer network Θ,
𝑤𝑖 represents the weight, and 𝐾 is the size of the vocabulary. The

loss L𝑀𝐿𝑀 for this task is the cross-entropy loss. Given a PDFObj

IR pair, Object A and Object B, we first add special tokens [CLS] and
[SEP], and then replace the token for Count_num with a [MASK]
token. Next, we input this modified PDFObj IR pair into the BERT

model, which will then make predictions for the [MASK] token, as

shown in Figure 7.

2 Next Object Prediction To enable BERT to capture the ref-

erence relationships between objects, we designed a training task

based on the Next Sentence Prediction called Next Object Prediction

(NOP). This task treats inter-referenced object IRs as continuous

sequences and trains BERT to determine the likelihood of object ref-

erence relationship. Through this process, BERT learns the logical

structure of the ORG graph. When constructing the input PDFObj

IR pair for the NOP task, we select pairs with real reference re-

lationships with a probability of 50%. Specifically, we input two

objects: 𝑜𝑏 𝑗1 and 𝑜𝑏 𝑗2, starting with the [CLS] token and separated

by a [SEP] token. This method trains the BERT-based PDFObj2Vec

model to predict the probability that a reference relationship exists

between two objects:

𝑃 (𝑦 | 𝑜𝑏 𝑗1, 𝑜𝑏 𝑗2) =
𝑒𝑥𝑝𝑆 (𝑦 | 𝑜𝑏 𝑗1, 𝑜𝑏 𝑗2)∑

𝑦∈ (0,1) 𝑒𝑥𝑝𝑆 (𝑦 | 𝑜𝑏 𝑗1, 𝑜𝑏 𝑗2)

where 𝑦 denotes the reference relationship prediction of 𝑜𝑏 𝑗1 and

𝑜𝑏 𝑗2, 𝑆 () denotes the function of attention head in transformer. The

loss L𝑁𝑂𝑃 for this task is the cross-entropy loss. We select the

first output vector in Figure 7 to predict whether the two objects

have a reference relationship. In the case of Figure 7, where there

is a reference relationship between the two objects, the correct

prediction would be 1; otherwise, it would be 0. The loss function

of BERT scheme is the combination of L𝑁𝑂𝑃 and L𝑀𝐿𝑀 .

3 PDFObj IR Representation Through the MLM and NOP pre-

training tasks, BERT-based PDFObj2Vec learns the semantics of the

IRs of objects and references relationships between these objects

in ORG. Then, we can generate contextually enriched object em-

bedding vectors. Specifically, an object IR beginning with a [CLS]
token is inputted into PDFObj2Vec-Bert. We then compute the pool-

ing of the [CLS] token at the last hidden layer of PDFObj2Vec-Bert

and use this pooling value as the semantic embedding vector for

the object IR. This approach allows for a nuanced representation

that captures both the individual characteristics of the object and

its relational context within the ORG.

Word2Vec and PV-DM-Based Schemes The preprocessing and

tokenization for Word2Vec and PV-DM are consistent with those

for BERT. In Word2Vec, we utilized the CBOW model that trains

Word2Vec by predicting the center word from a given context. The

Word2Vec scheme can only generate embedding of the word, so to

obtain the embedding of an object in a PDF, we use TF-IDFweighted

averaging. The fundamental idea behind the PV-DM model is simi-

lar to CBOW, and it combines paragraph vectors and context word

GIN Layer 1 Linear LayerAORG Input Prediction probability

P () = 0.95

···

P () = 0.95
Softmax

GIN Layer 2

Figure 8: The network structure of our proposed GIN-based
classifier.

vectors to jointly predict the target word and train the model accord-

ingly. During the PV-DM training process, each object is treated

as a paragraph composed of multiple words. The representation of

the paragraph vector is similar to that of Word2Vec, which adopts

a TF-IDF weighted average of word vectors in the paragraph. De-

tailed model structures and parameter specifications are provided

in Appendix C.

Transforming PDFObj IR text into vector embeddings through

learning-based methods is essential, as it yields a substantially

more effective feature set. These embeddings capture the intrinsic

properties of PDF objects as well as the contextual dependencies

between objects, both of which are critical for accurate and robust

malware classification. Without this transformation, the resulting

features would be too fragile and simplistic to effectively detect

sophisticated adversarial attacks.

5.3 General Mode
We also integrated three general embedding schemes to obtain

embeddings for PDFObj IR: the BERT Base [13, 47], CodeT5 [59],

and text-embedding-3 [39]. These general embedding models have

been trained on extensive and diverse corpora. We downloaded

the BERT Base and CodeT5 models to compute the embeddings

for PDFObj IR. We also integrated the most popular conversational

model, ChatGPT’s embedding model, text-embedding-3, which is

OpenAI’s latest third-generation embedding model. We used the

API provided by OpenAI to obtain IR embeddings directly. For

preprocessing and tokenization, we adopted the same methods

used in the previous pre-trained models.

5.4 Graph Embedding and Classification
After obtaining the semantic embeddings for all objects in the ORG,

we transform it into a semantic Attributed Object Reference Graph

(AORG) suitable for a graph neural network. We designed a Graph

Isomorphism Network (GIN) to compute the graph representation

of the AORG and classify PDF malware, as illustrated in Figure 8.

The core concept of GIN is to aggregate the features of each node to

capture the graph’s topological structure. We employ a Multi-Layer

Perceptron (MLP) as the aggregation function, enabling GIN to

optimally distinguish graph isomorphisms. This structure allows

GIN to effectively learn and represent complex patterns within the

data, facilitating accurate classification of the entire graph. Detailed

parameters and technical specifications of the GIN classifier are

provided in Appendix E.

6 Experimental Evaluation
We conducted a comprehensive set of experiments to evaluate the ef-

fectiveness of PDFObj IR and PDFObj2Vec. Our evaluation covered

the following six aspects: 1) parsing capability of Poir; 2) evalu-

ation of pre-trained PDFObj2Vec; 3) performance of pre-trained

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan

PDFObj2Vec in the PDF malware classification task; 4) performance

of general PDFObj2Vec in the PDF malware classification task; 5)

evaluation against adversarial attacks; 6) ablation studies.

6.1 Experimental Setup
Dataset We used the contagio [41] dataset as our baseline dataset,

which was commonly used in PDF malware analysis studies [7, 50,

57]. It has a balanced distribution of benign and malicious samples,

comprising 9k benign samples and 11k malicious samples. Addi-

tionally, we collected an extended dataset for testing that includes

21k malicious samples from the CIC-PDFMal2022 dataset [16, 19]

and 24k benign samples gathered from the internet. These benign

samples include a diverse array of PDF types, such as bills, test files,

books, and interactive forms, obtained from sources like GitHub,

the PDF Association [3], and the gov PDF dataset [38]. We used

MD5 checksums to ensure that there was no overlap between the

baseline and extended datasets. And we also used timestamps to

confirm that samples in the extended dataset were collected after

those in the baseline dataset.

Baseline PDF Parsers To compare the parsing completeness with

Poir, we select six popular PDF parsing tools, namely pdfrw [44],

Poppler [45], pdfminer [42], MuPDF [36], borb [22], and QPDF [46],

as baseline parsers. Among these six baseline parsers, pdfrw, pdfminer,

and borb are written purely in Python, while Poppler and QPDF

are written in C++, and MuPDF is written in C.

PDFObj2Vec Configurations We implemented two modes of

PDFObj2Vec: pre-trained and general. For the first mode, we pre-

trained PDFObj2Vec schemes based on Word2Vec, PV-DM, and

BERT, setting the embedding dimension of each model to 512. The

specific training hyperparameters for these three pre-trained mod-

els are provided in Appendix D. For the general mode, we applied

three off-the-shelf general embedding models: BERT Base [13, 47],

CodeT5 [59], and text-embedding-3 [39]. BERT Base is a general

embedding model for natural language, CodeT5 is a pre-trained em-

bedding model for programming languages based on the T5 archi-

tecture, and text-embedding-3 is OpenAI’s latest third-generation

embedding model. For these three schemes, we used their default

embedding dimensions of 768, 256, and 1536, respectively.

PDF Malware Classifiers ConfigurationsWe reproduced two

state-of-the-art PDF robustmalware classifiers [7, 57], which demon-

strate excellent adversarial robustness. One is robustly trained

classifier (RTC). Chen et al. [7] used symbolic interval analysis

to robustly retrain a deep neural network based on the robustness

attributes defined by the structural paths. The other is conserved

features trained classifier (CFTC). Tong et al. [57] adversarially

retrained a support vector machine classifier based on the conserva-

tive features defined by the structural paths. Both RTC and CFTC’s

reproduction details and hypermeters are provided in Appendix F.

We followed the training setup on the baseline contagio dataset, as

used by RTC and CFTC. Our implementation of the GIN-based clas-

sifier was also trained on this baseline dataset with hyperparameter

details provided in Appendix E. All experiments were conducted

on a machine with an Intel Core i7-12700K, NVIDIA GeForce GTX

3090, and 64 GB RAM running Ubuntu 20.04.

Table 2: Parser performance comparison results.

Parser Language Version Errors

pdfrw Python 2018 4640

poppler C++ 2024 632

pdfminer Python 2023 937

MuPDF C 2024 238

borb Python 2024 5971

QPDF C++ 2024 592

Poir (Ours) Python 2024 0

6.2 Parser Performance
We selected the latest versions of six baseline parsers, with the ex-

ception of pdfrw, which was last updated in 2018. Parsing tests were

conducted on both the baseline dataset and an extended dataset

containing malicious samples with malformed formats that do not

impact their malicious functionality. The experimental results are

presented in Table 2. An error refers to a failure that occurs when

the parser encounters a malformed PDF, causing the parsing pro-

cess to terminate prematurely. As a result, the parser is unable to

complete the full analysis of the document, which further disrupts

the extraction of PDF features.

Poir has the highest tolerance among these baseline parsers.

Unlike other Python-based parsers, Poir does not rely solely on

the cross-reference table to retrieve objects. When there are errors

or incorrect references in the cross-reference table, these Python-

based parsers fail to correctly retrieve object references. Poir ad-

dresses this issue by scanning each object and performing error

correction. Our approach minimizes the failure or incompleteness

of feature extraction due to parser errors during the extraction

process, demonstrating the highest tolerance for poorly formatted

files. We have made efforts to avoid parsing errors and pave the

way for the conversion and pre-training of PDFObj IR.

6.3 Evaluation of Embedding Models
We used two size of corpus to pre-train PDFObj2Vec: one consist-

ing solely of the baseline dataset with 20k samples, and another

combining both the baseline and extended datasets into a larger

corpus of 65k samples. The minimum word frequency was set to 1,

resulting in vocabulary sizes of 5,554 and 32,347, respectively, to

ensure coverage of less frequent malicious terms. Both corpus sizes

were split into training, testing, and validation sets in a 7:2:1 ratio.

Due to the differing training objectives of the three embedding

models, we devised a unified evaluation strategy. Specifically, we

designed cloze tasks on the validation set by randomly generating

sentences with missing words and having the models predict these

missing words. All models were trained for 100 epochs, and we

observed convergence after 20 epochs; therefore, evaluations were

based on the performance at the final epoch. The experimental

results, presented in Table 3, show that BERT achieved the highest

predictive accuracy for both corpus sizes. Interestingly, all three

embedding schemes exhibited better performance on the smaller

corpus than on the larger one. Word2Vec and PV-DM experienced a

drop in accuracy of approximately 6.5% to 6.8% when transitioning

from the smaller to the larger corpus. This decline can be attrib-

uted to the fact that the vocabulary size of the larger corpus is six

times that of the smaller corpus, making the prediction task more

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

Table 3: Prediction accuracy of pre-trained PDFObj2Vec.

Embedding Schemes Corpus size = 20k Corpus size = 65k

Word2Vec 0.7395 0.6745

PV-DM 0.8857 0.8159

BERT 0.9802 0.9796

complex. In contrast, BERT demonstrated superior and consistent

performance, effectively overcoming this issue.

6.4 Evaluation of PDF Malware Classification
In this subsection, we evaluated the performance of PDFObj2Vec,

with different pre-training schemes, corpus sizes, and embedding

modes, in the downstream task of PDF malware classification.

Classification Experiment Setup Following the settings of prior

research [7, 57], we splited the baseline dataset into training and

test sets with a 7:3 ratio. We embedded the ORG nodes of the sam-

ples using various modes and schemes of PDFObj2Vec to generate

AORG. Subsequently, we trained the GIN classifiers on the baseline

training set, then we test and evaluate these GIN classifiers on both

the baseline test set and the extended dataset. The comprehensive

experimental results are summarized in Table 4.

Impact of Pre-Trained Schemes and Corpus Size on Perfor-
mance In the pre-trained mode, regardless of corpus size (20k or

65k), BERT demonstrated the best overall performance, achieving

the highest metrics across both the baseline and extended datasets.

As the corpus size increased from 20k to 65k, all three schemes

showed improvements in their metrics on the baseline dataset. How-

ever, performance on the extended dataset varied. Word2Vec and

BERT showed notable gains: Word2Vec-65k improved accuracy by

2.02% over Word2Vec-20k, and BERT-65k by 2.22% over BERT-20k.

In contrast, PV-DM-65k showed a drop in accuracy compared to

PV-DM-20k. Experimental results show that a larger pre-training

corpus enhances the BERT scheme’s ability to represent PDFObj IR,

thereby improving the generalization of the GIN classifier. On the

extended dataset, both true positive rate (TPR) and true negative

rate (TNR) improved, with TNR much higher than those of the

Word2Vec and PV-DM schemes. TPR and TNR present each classi-

fier’s ability to correctly identify bothmalicious and benign samples.

This indicates that the BERT-integrated GIN classifier offers supe-

rior classification and generalization performance, particularly for

benign samples.

Additionally, we evaluated downstream task performance using

intermediate models from different stages of the pre-training pro-

cess, with results shown in Figure 12 in Appendix G. For the BERT

scheme, performance gradually stabilized as training progressed

and the model converged. In contrast, Word2Vec and PV-DM ex-

hibited less stable, indicating a more erratic convergence. BERT’s

consistent outperformance can be attributed to its bidirectional

encoder architecture and pre-training objectives, which enable it

to capture complex semantic relationships and model structural

dependencies among PDF objects in the ORG structure.

General EmbeddingModes We evaluated three widely-used, gen-

eral embedding models: BERT Base, CodeT5, and text-embedding-3,

on the PDFObj IR to assess the effectiveness of applying general

embeddings directly to classification. The results are presented in

Table 4: PDF malware classification results.

Classifiers / Baseline Dataset (%) Extended Dataset (%)

Emb. Schemes Acc TPR TNR Acc TPR TNR

RTC [7] 99.15 99.97 98.11 85.15 97.04 74.72

CFTC [57] 97.58 99.75 95.04 92.04 97.31 87.41

Word2Vec-20k 99.67 99.57 99.78 93.00 96.94 89.54

PV-DM-20k 99.79 99.71 99.81 93.29 97.26 89.80

BERT-20k 99.90 99.97 99.89 94.40 97.82 91.40

Word2Vec-65k 99.82 99.68 99.85 95.02 97.65 92.72

PV-DM-65k 99.84 99.94 99.74 91.71 97.45 86.68

BERT-65k 99.93 99.94 99.93 96.62 98.14 95.23

BERT Base 99.84 99.83 99.85 92.67 97.98 88.02

CodeT5 99.89 99.91 99.85 94.56 98.34 91.24

text-emb.-3 99.99 99.99 99.99 97.31 98.33 96.42

the last three rows of Table 4. The experimental results show that

among the models tested on PDFObj IR, text-embedding-3 achieves

the best performance in the downstream task of PDF malware clas-

sification. This can be attributed to its pre-training on a large-scale

corpus, which provides it with numerous parameters that enhance

its capability. However, text-embedding-3 is computationally ex-

pensive and cannot be deployed locally. In contrast, both BERT Base

and CodeT5 are more cost-effective and can be deployed locally.

Additionally, since CodeT5 is specifically pre-trained for program-

ming languages, and PDFObj IR represents program-like structures,

CodeT5 outperforms the general BERT model in PDF malware clas-

sification tasks. In the pre-training mode of PDFObj2Vec, the BERT

scheme, which is specifically pre-trained for PDFObj IR, outper-

forms both the general BERT Base and CodeT5 models in down-

stream tasks. Although it slightly lags behind text-embedding-3 in

overall accuracy, it performs better against adversarial attacks, a

point we will discuss in the next subsection. Furthermore, we also

explored the performance of directly embedding the raw content of

PDF objects using these general embedding models. We evaluated

their classification performance under the same experimental setup,

and we will discuss these results in our ablation study (see §6.6).
Compared to Existing Classifiers Although RTC and CFTC

achieve lower accuracy than our proposed classifier on the baseline

dataset, their adversarial robustness is second only to BERT-65k,

which we will discuss in the next subsection. On the extended

dataset, RTC shows a significant drop in accuracy, while CFTCmain-

tains a moderate level of performance, comparable toWord2Vec and

PV-DM. Both RTC and CFTC experience only slight decreases in

TPR, remaining around 0.97. However, their low accuracy is mainly

due to a sharp decline in TNR, indicating a significant increase in

the false positive rate (FPR). This due to that these methods overem-

phasize detecting adversarial malicious samples, at the expense

of accurately classifying benign samples. In contrast, our method

demonstrates better generalization in identifying benign samples,

which are more diverse in the extended dataset compared to the

baseline.

6.5 Adversarial Attack
In this subsection, we evaluate the robustness of our proposed

PDF malware classifier against four distinct types of adversarial

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan
Te

st
 ro

bu
st

ne
ss

 a
cc

ur
ac

y
(T

R
A

)

0

0.2

0.4

0.6

0.8

1.0

Relative perturbation ratio (RPR)
0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

Number of queries
0 500 1000

0

0.2

0.4

0.6

0.8

1.0

Number of queries
0 500 1000

Word2Vec−20k
PV-DM−20k
BERT−20k
Word2Vec−65k
PV-DM−65k
BERT−65k
CodeT5
BERT Base
text-embedding-3

(a) GradArgmax (b) GeneticAlg (c) RandomNoise

0.98

0.99

1.00

0 500 1000

Figure 9: Result of gradient-based attack (a), genetic algorithm-based attack (b), and random noise attack (c).

0.51

0.97

0 0

0.42

0.2 0.15

1

0 0

0.32

TR
A

0

0.5

1.0

RTC
CFTC

Word2Vec-20k

PV-DM-20k

BERT-20k

Word2Vec-65k

PV-DM-65k

BERT-65k

BERT Base
CodeT5

text-embedding-3

Figure 10: Result of reverse mimicry attack.

attacks: gradient-based attack, genetic algorithm-based attack, ran-

dom noise attack, and reverse mimicry attack. We present a sum-

mary of these adversarial attacks in Table 11 in Appendix H. The

primary aim of this evaluation is to understand how different at-

tack strategies affect the model’s performance and to assess the

effectiveness of the model’s design in enhancing robustness. Ad-

versarial robustness was assessed using test robustness accuracy

(TRA), which measures the proportion of samples that the model

can still classify correctly given a specific test input.

Gradient-Based Attack We adapted gradient-based white-box at-

tack method (GradArgmax) from graph classification tasks [10, 58]

for PDF classification based on AORG. GradArgmax attack uses

classifier gradient information to generate adversarial samples,

aiming to reduce the model’s confidence in classifying the target

sample. This approach evaluates the robustness of the integrated

PDFObj2Vec graph classifier under fine-tuned adversarial exam-

ples. In this scenario, we assume the attacker has full access to

the model’s gradient information, with no perturbation distance

constraints. The attack budget is set to 1000, consistent with other

graph attack study [58]. The goal is to identify which graph edges

most influence the target classification by evaluating their effect

on the loss function using greedy strategy. Specifically, for each

candidate edge, its gradient value is computed: if negative, the edge

is considered for removal; if positive, it is considered for addition.

Since the number of nodes and edges in AORG varies, smaller

graphs may require only slight perturbations, while larger graphs

need more significant ones. To address this, we introduce the rela-

tive perturbation ratio (RPR), defined as the ratio of perturbations

to the maximum number of edges in the AORG.

We computed the RPR for adversarial samples generated by

the GradArgmax attack and plotted the RPR-TRA curve, shown in

Figure 9(a). A higher RPR at the same TRA level indicates that more

perturbations are needed. The results show that BERT-65k, PV-DM-

65k, and text-embedding-3 achieved the best TRA performance,

with scores of 0.98, 0.95, and 0.93, respectively. Notably, PV-DM-65k

had a lower RPR than BERT-65k and text-embedding-3 at similar

TRA levels, indicating that it requires more perturbations to be

bypassed. Among the models, Word2Vec and PV-DM-20k showed

a sharp decline in TRA when RPR < 0.2, showing the weakest

performance.

Genetic Algorithm-Based Attack We implemented a genetic

algorithm-based black-box attack (GeneticAlg) [10], where the at-

tacker has no access to the model’s internal details, only the output

confidence scores. GeneticAlg leverages a genetic algorithm to op-

timize the structure of the input graph, effectively bringing the

sample closer to the model’s decision boundary. This approach is

used to evaluate the defensive capabilities of our proposed graph

classifier against adversarial samples generated through complex

search strategies. And, GeneticAlg consists of five key components:

population, fitness function, selection, crossover, and mutation. The

attack involves edge flipping, node injection, and deletion. Each

generation evolves based on the fitness of the mutated samples,

guiding the direction for subsequent generations. Following the

experimental setup in [10], we set the attacker query limit to 1000,

the population size to 100, and the number of generations to 10.

The results, shown in Figure9(b), indicate that Word2Vec-20k and

PV-DM-20k performed the worst in terms of TRA, while the other

models maintained TRA values above 0.98, with text-embedding-3

and BERT-65k performing the best. Overall, the results suggest that

our proposed classifier demonstrates strong defenses against the

GeneticAlg attack.

Random Noise Attack We extended node classification attack

methods from [30] to perturb node features for whole-graph clas-

sification. Specifically, we injected Gaussian noise into the node

features of the AORG graph to evaluate the model’s resistance to

random perturbations, thereby testing its robustness under noisy

conditions. To select the attack nodes, we employed degree central-

ity, as it provides a reasonable baseline for graph-based attacks [37].

High-degree nodes were prioritized because they play a crucial

role in information propagation and are more likely to significantly

impact the overall graph structure. Gaussian noise was then in-

troduced to perturb the features of these nodes. In this black-box

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

Table 5: TRA under GradArgmax and GeneticAlg attacks at
maximum query budget.

Attack Classifiers / Emb. Schemes

Method RTC CFTC BERT-65k text-embedding-3

GradArgmax 0 0.94 0.98 0.93

GeneticAlg 0.81 0.71 0.99 0.99

attack scenario, the attacker only has access to the model’s binary

output (0 or 1) and is limited to a maximum of 1000 queries. The

experimental results, shown in Figure 9(c), indicate that Word2Vec

exhibited the lowest robustness under these conditions. In con-

trast, BERT-65k and BERT-20k showed the highest performance,

with TRA values of 1 and 0.999, respectively. It suggests that BERT

scheme are more resilient to adversarial noise, particularly with re-

spect to node feature perturbations. The TRA of text-embedding-3

showed a significant decline under the random noise attack, com-

pared to the GradArgmax and GeneticAlg attacks. This indicates

that its embeddings are highly susceptible to noise interference.

Reverse Mimicry Attack We used the reverse mimicry adversar-

ial attack [33] for evaluation, which has been evaluated in previous

state-of-the-art robust PDF malware classifiers [7, 57]. This black-

box attack is independent of specific classifiers or features, making

it suitable for evaluating our proposed graph classifier as well as

the RTC and CFTC classifiers, which employ different models and

features. Unlike other attacks, reverse mimicry directly manipulates

the sample space by injecting malicious payloads into benign sam-

ples, thereby generating realizable adversarial examples designed

to evade classification boundaries. This approach enables a rigorous

evaluation of the model’s robustness against intentionally disguised

adversarial samples.

We followed the adversarial evaluation settings from [7, 57],

using 500 seed samples to create adversarial samples. A Cuckoo

sandbox [48] was set up to test the adversarial examples. If they

generated the expected network communication metrics, they were

deemed legitimate. The experimental results, shown in Figure 10,

reveal that with a 20k corpus size, only BERT-20k demonstrated

some resistance to adversarial samples. However, with a 65k cor-

pus size, all three PDFObj2Vec pre-training models successfully

detected adversarial samples. BERT-65k achieved a TRA of 1, while

the other models had TRA values below 0.2. These findings suggest

that BERT-65k is particularly effective at capturing the semantic

information of nodes. When malicious payloads are injected into

benign samples, the corresponding malicious nodes are also present

in the adversarial samples. BERT-65k accurately represents these

embeddings and, through the node propagation and aggregation

process in GIN, successfully identifies the adversarial samples. No-

tably, RTC and CFTC achieved a TRA of over 0.5 but at the cost of

significantly reduced classification accuracy, as shown in Table 4.

Specifically, CFTC achieved only 97.58% accuracy on the baseline

dataset. And both CFTC and RTC exhibited significantly lower TNR

compared to our proposed classifier. This indicates a higher FPR

for CFTC and RTC, for instance, CFTC reached an FPR of 4.96% on

the baseline dataset and an FPR of 12.59% on the extended dataset,

substantially higher than that of BERT-65k.

Results Analysis We evaluated our proposed classifier using

four adversarial attack methods that target different space. Among

Table 6: Results of ablation study. 𝑅 refers to embeddings
applied directly on raw content.

Emb.

Classifiers

Baseline Extended Adv Samples

Schemes Acc(%) Acc(%) TRA

BERT
𝑅
-20k GIN 99.48 92.33 0.42 → 0

BERT Base
𝑅

GIN 98.55 85.11 0 → 0

CodeT5
𝑅

GIN 99.71 91.75 0 → 0

BERT-20k DNN 99.80 89.85 0.42 → 0

PV-DM-65k DNN 99.66 92.84 0.15 → 0

BERT-65k DNN 99.92 96.10 1 → 0

text-emb.-3 DNN 99.82 89.75 0.32 → 0

these, the reverse mimicry attack operates in the sample space and

simulates a realistic black-box scenario. In contrast, GradArgmax,

GeneticAlg, and RandomNoise are feature-space attacks that, while

less realistic, are widely used to stress-test classifiers under strong

assumptions [7, 10, 30, 58]. These attacks help reveal how vulnerable

a model may be when its decision boundaries are exploited, offering

valuable insights into worst-case robustness.

The graph features used in our proposed GIN classifier differ

fundamentally from the Hidost features employed by RTC and

CFTC. Consequently, the aforementioned feature-space attacks

(GradArgmax, GeneticAlg, and Random Noise) are not directly

applicable to RTC and CFTC, as they are designed to perturb graph

nodes and structures. To enable a fair comparison, we implemented

GradArgmax and GeneticAlg attacks specifically tailored for Hidost

features using bit-flipping as the basic operation with the same

attack intensity. The TRA results are shown in Table 5, with TRA-

versus-perturbation curves shown in Figure 13 in Appendix H. Since

Hidost features are binary (0 or 1), adding random noise would

produce non-binary values, invalidating the feature representation;

thus, RandomNoise attacks were not evaluated for these classifiers.

The results indicate that under GradArgmax, RTC’s TRA drops to

0 while CFTC achieves a TRA of 0.94. Under GeneticAlg, both RTC

and CFTC maintain relatively high TRA, though their robustness

remains lower than that of the classifiers based on BERT-65k and

text-embedding-3.

Overall, classifiers utilizing pre-trained embedding schemes ex-

hibit stronger adversarial robustness than those using general em-

beddings. In particular, the graph classifier integrated with BERT-

65k demonstrates the highest adversarial resilience. This can be

attributed to the architecture of BERT and the design of the NOP

and MLM training tasks, which not only enable BERT to learn node

semantic embeddings but also capture the contextual relationships

between nodes. As a result, the BERT-65k integrated graph classifier

achieves superior robustness to both graph structure perturbations

and node feature disturbances.

6.6 Ablation Study
In this section, we conduct ablation studies to evaluate the im-

pact of PDFObj IR and ORG on the performance of PDF malware

classification. Specifically, we design two experiments: 1) remov-

ing PDFObj IR and using standard BERT pre-training and general

embedding schemes on the raw content of PDF objects; and 2) re-

moving the ORG structure and GIN classifier, replacing them with

a conventional deep neural network (DNN) classifier.

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan

Impact of Embedding Raw Content on Classification In this

experiment, we first pre-trained the raw content of the PDF object,

shown in Figure 1(b), using the standard BERT pre-training method

with default preprocessing and tokenization configurations. This

pre-training was performed on the baseline dataset (with a cor-

pus size of 20k samples). Then, we applied the general embedding

schemes from §5.3 to embed the raw content of PDF objects, obtain-

ing node embeddings. We then evaluated their performance on the

PDF malware classification task, maintaining the same GIN model

and training settings as described in §5.4. The results, presented
in the first three rows of Table 6, indicate that the BERT

𝑅
scheme,

pre-trained on raw content, performs worse than the BERT scheme

pre-trained on PDFObj IR (as shown in Table 4). Specifically, with

a corpus size of 20k, the accuracy on the baseline dataset decreased

by 0.42%, and on the extended dataset, it dropped by 2.07%. Further-

more, the results show that directly applying general embedding

schemes to raw content performs worse than applying them at

the PDFObj IR level. For instance, the BERT Base
𝑅
scheme demon-

strated a significant performance drop: compared to BERT Base in

Table 4, accuracy on the baseline and extended datasets decreased

by 1.29% and 8.56%, respectively. Similarly, CodeT5
𝑅
saw accuracy

reductions of 0.18% and 2.84%, respectively. Detailed results are

provided in Appendix I.

Additionally, we tested the resistance of these schemes to ad-

versarial samples generated by reverse mimicry. None of these

schemes showed resistance to adversarial samples. The TRA of the

BERT-20k scheme on PDFObj IR against the reverse mimicry attack

dropped from 0.42 to 0. The results from our experiments highlight

the pivotal role of PDFObj IR in enhancing the performance of PDF

malware classification tasks. Compared to raw content, PDFObj

IR provides a more abstract and refined representation of the PDF

object content by removing irrelevant strings such as symbols,

special characters, and escape sequences. In contrast, embeddings

applied directly to raw content are influenced by these extraneous

strings, which are incorporated into the node embeddings, lead-

ing to inaccuracies in classification. The pre-training process on

PDFObj IR enables embedding schemes to more precisely capture

the semantics of PDF objects, ultimately improving classification

performance.

Impact of ORG Structure on Classification To evaluate the

impact of graph structures on classifier robustness, we removed

the ORG structure and GIN classifier. Given the variability in the

number of objects across PDF samples, we represented each PDF by

averaging the semantic vectors of all objects and used this represen-

tation as input to a DNN classifier. We selected four PDFObj2Vec

schemes that demonstrated some adversarial robustness, as dis-

cussed in §6.5. We trained the DNN classifier on the baseline dataset

and assessed its performance. The experimental results highlight

the critical importance of the ORG structure in enhancing both the

performance and robustness of PDF malware classification. When

the ORG structure was removed and a DNN classifier was used

with semantic vectors of PDF objects, the classification accuracy on

both the baseline and extended datasets declined. Furthermore, the

DNN classifiers completely failed to exhibit resistance to adversarial

samples, rendering them unable to detect such attacks effectively.

The strength of ORG lies in its ability to model the inter-object

relationships and structural dependencies within a PDF. Unlike

simple vector averaging, which treats objects as independent and

unstructured entities, ORG represents PDFs as a graph, where nodes

capture the semantic properties of objects and edges encode their

reference relationships. This structured representation enables the

classifier to capture global patterns and contextual dependencies

that are crucial for distinguishing between benign and malicious

PDFs, especially in complex attack scenarios. Additionally, ORG is

well-suited for integration with graph neural networks, such as the

GIN classifier, which are inherently designed to learn from graph-

structured data. By combining semantic and structural modeling,

this approach allows the classifier to achieve high accuracy while

robustly defending against adversarial attacks, as evidenced by the

notable performance gains in the experiments.

7 Discussion & Conclusion
Obfuscation Obfuscation is a common tactic in malware to evade

detection, and similar techniques, such as keyword obfuscation, are

used in PDF malware to bypass detection mechanisms [29, 43, 56].

For example, replacing Name /URIwith /#55RI, prevents classifiers
that rely on keyword statistical features from obtaining correct

statistical features and also hinders analyzers that use Hidost path

features from extracting the correct path features. Our method

mitigates such obfuscation by retaining the obfuscated keyword

data in the PDFObj IR corpus, allowing us to learn the obfuscated

semantics. Additionally, we integrate the structural features of

ORG to classify PDF malware, enhancing the precise detection of

obfuscated PDF malware.

Concept Drift Over time, the effectiveness of traditional ma-

chine learning models trained on outdated datasets tends to de-

cline [4, 21, 61]. As multimedia evolves, benign PDFs are advanc-

ing faster than malicious ones, altering their characteristics sig-

nificantly. Consequently, SOTA classifiers, including RTC [7] and

CFTC [57], struggle to accurately identify new benign samples of

the extended dataset, leading to lower accuracy, as shown in Ta-

ble 4. Since PDFObj2Vec is trained on PDFObj IR, a fundamental

representation of PDF objects, the basic changes in PDFObj IR are

minimal, regardless of variations in the PDF structure. Therefore,

our proposed method is minimally affected by concept drift. The

experimental results presented in Table 4 demonstrate that our pro-

posed approaches, which leverage PDFObj IR, not only outperform

methods that do not utilize this representation but also surpass

SOTA classifiers across all metrics on the most recent extended

dataset.

Conclusion In this paper, we present PDFObj IR, an intermediate

representation framework specifically tailored for PDF analysis.

Leveraging PDFObj IR, we constructed an Object Reference Graph

(ORG) and developed amethod for node semantic extraction, termed

PDFObj2Vec. Additionally, we designed a classifier based on the

Graph Isomorphism Network (GIN) and evaluated the performance

of PDFObj2Vec-GIN across multiple datasets and against adversarial

samples. The results demonstrate that PDFObj2Vec-GIN achieves

exceptional classification performance and exhibits significant ad-

versarial robustness, highlighting the effectiveness of our proposed

analytical framework.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Side Liu et al.

Acknowledgment
We thank all anonymous reviewers for their valuable comments to

improve this paper. This work is supported by the National Nature

Science Foundation of China under Grant No.62172308, 62272351,

61972297, and 62172144. Jiang Ming is supported by NSF grants

2312185 & 2417055, Google Research Scholar Award, and Tulane

COR Fellowships.

References
[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph Based Anomaly

Detection and Description: A Survey. Data Mining and Knowledge Discovery 29

(2015), 626–688.

[2] Prashant Anantharaman, Robert Lathrop, Rebecca Shapiro, andMichael E Locasto.

2023. PolyDoc: Surveying PDF Files from the PolySwarm Network. In Proceeding
of the 2023 IEEE Security and Privacy Workshops. IEEE, 117–134.

[3] PDF Association. 2020. https://pdfa.org/stressful-pdf-corpus/.

[4] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.

2022. Transcending Transcend: Revisiting Malware Classification in the Presence

of Concept Drift. In Proceedings of the 2022 IEEE Symposium on Security and
Privacy (S&P ’22).

[5] Bernard Bautista. 2023. Threat-Loaded: Malicious PDFs Never Go Out of Style.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/threat-

loaded-malicious-pdfs-never-go-out-of-style/.

[6] Curtis Carmony, Mu Zhang, Xunchao Hu, Abhishek Vasisht Bhaskar, and Heng

Yin. 2016. Extract Me If You Can: Abusing PDF Parsers in Malware Detectors.

In Proceedings of the 23rd Network and Distributed System Security Symposium
(NDSS ’16).

[7] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana. 2020. On Training

Robust PDF Malware Classifiers. In Proceedings of the 29th USENIX Security
Symposium (USENIX Security ’20).

[8] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural

Nets Can Learn Function Type Signatures from Binaries. In Proceedings of the
26th USENIX Security Symposium (USENIX Security 17).

[9] CISA. 2022. Phishing Infographic. https://www.cisa.gov/sites/default/files/2023-

02/phishing-infographic-508c.pdf.

[10] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

2018. Adversarial Attack on Graph Structured Data. In Proceedings of the 2018
International Conference on Machine Learning (ICML ’18).

[11] Hung Dang, Yue Huang, and Ee-Chien Chang. 2017. Evading Classifiers by

Morphing in the Dark. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’17).

[12] VIPRE Security Group David Bloxberg, Senior Global Marketing Manager. 2024.

PDFs: Why They Are Such a Popular Attack Vector. https://safesendsoftware.c

om/pdf-exploit-popular-attack-vector/.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.

[14] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec:

Boosting Static Representation Robustness for Binary Clone Search against Code

Obfuscation and Compiler Optimization. In Proceeding of the 2019 IEEE Sympo-
sium on Security and Privacy (SP ’19).

[15] David Evans, Weilin Xu, and Yanjun Qi. 2017. Adversarial Machine Learning:

Are We Playing the Wrong Game? https://www.cs.virginia.edu/~evans/talks/cis

pa2017/.

[16] Canadian Institute for Cybersecurity. 2022. CIC-Evasive-PDFMal2022. https:

//www.unb.ca/cic/datasets/pdfmal-2022.html.

[17] Hex-Rays. 2025. Hex Rays - State-of-the-Art Binary Code Analysis Solutions.

https://hex-rays.com/ida-pro/.

[18] ISO. 2008. ISO 32000-1:2008 - Document management — Portable document

format — Part 1: PDF 1.7. https://www.iso.org/standard/51502.html.

[19] Maryam Issakhani, Princy Victor, Ali Tekeoglu, and Arash Habibi Lashkari. 2022.

PDF Malware Detection based on Stacking Learning. In Proceedings of the 8th
International Conference on Information Systems Security and Privacy (ICISSP ’22).

[20] Duff Johnson. 2021. PDF’s Popularity Online. https://pdfa.org/pdfs-popularity-

online/.

[21] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia

Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting Concept Drift

in Malware Classification Models. In Proceedings of the 26th USENIX Security
Symposium (USENIX Security ’17).

[22] jorisschellekens/borb. 2024. https://github.com/jorisschellekens/borb.

[23] Pavel Laskov and Nedim Šrndić. 2011. Static Detection of Malicious JavaScript-

Bearing PDF Documents. In Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC ’11).

[24] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences

and Documents. In Proceedings of the 31st International Conference on Machine
Learning (ICML ’14).

[25] Xuezixiang Li, Yu Qu, and Heng Yin. 2021. PalmTree: Learning an Assembly

Language Model for Instruction Embedding. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’21).

[26] Daiping Liu, Haining Wang, and Angelos Stavrou. 2014. Detecting Malicious

Javascript in PDF through Document Instrumentation. In Proceedings of the 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN ’14).

[27] Side Liu, Jiang Ming, Guodong Zhou, Xinyi Liu, Jianming Fu, and Guojun

Peng. 2025. Analyzing PDFs like Binaries: Adversarially Robust PDF Malware

Analysis via Intermediate Representation and Language Model. arXiv preprint
arXiv:2506.17162 (2025).

[28] Bruno Lowagie. 2010. iText in Action. Simon and Schuster.

[29] Xun Lu, Jianwei Zhuge, Ruoyu Wang, Yinzhi Cao, and Yan Chen. 2013. De-

obfuscation and Detection of Malicious PDF Files with High Accuracy. In 2013
46th Hawaii International Conference on System Sciences. IEEE, 4890–4899.

[30] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Towards More Practical Adver-

sarial Attacks on Graph Neural Networks. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (NIPS ’20).

[31] Davide Maiorca, Davide Ariu, Igino Corona, and Giorgio Giacinto. 2015. A Struc-

tural and Content-ased Approach for a Precise and Robust Detection of Malicious

PDF Files. In Proceedings of the 2015 International Conference on Information
Systems Security and Privacy (ICISSP ’15).

[32] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. 2019. Towards Adversarial

Malware Detection: Lessons Learned from PDF-based Attacks. ACM Computing
Surveys (CSUR) 52, 4 (2019), 1–36.

[33] Davide Maiorca, Igino Corona, and Giorgio Giacinto. 2013. Looking at the

Bag is not Enough to Find the Bomb: An Evasion of Structural Methods for

Malicious PDF Files Detection. In Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security (ASIA CCS ’13).

[34] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and

Leonardo Querzoni. 2019. Safe: Self-Attentive Function Embeddings for Binary

Similarity. In International Conference on the 16th Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA ’19). 309–329.

[35] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations ofWords and Phrases and Their Compositionality. In

Proceedings of the 26th International Conference on Neural Information Processing
Systems (NIPS ’13).

[36] MuPDF. 2025. https://mupdf.com/.

[37] Mark Newman. 2018. Networks. Oxford University Press.

[38] Library of Congress. 2019. 1000 .gov PDF Dataset. https://www.loc.gov/item/202

0445568/.

[39] OpenAI. 2024. New Embedding Models and API Updates. https://openai.com/i

ndex/new-embedding-models-and-api-updates/.

[40] Palo Alto Networks. 2023. 2023 Unit 42 Network Threat Trends Research Report.

https://start.paloaltonetworks.com/unit-42-network-threat-trends-report-

malware-2023.html.

[41] Mila Parkour. 2013. 16,800 Clean and 11,960 Malicious Files for Signature Testing

and Research. https://contagiodump.blogspot.com/2013/03/16800-clean-and-

11960-malicious-files.html.

[42] pdfminer/pdfminer.six. 2025. https://github.com/pdfminer/pdfminer.six.

[43] Filipi Pires. 2020. Malware Analysis | Dissecting PDF file. https://medium.com/c

oreshield/malware-analysis-dissecting-pdf-file-a95a0ffa0dce.

[44] pmaupin/pdfrw. 2017. https://github.com/pmaupin/pdfrw.

[45] Poppler. 2025. https://poppler.freedesktop.org/.

[46] qpdf/qpdf. 2024. https://github.com/qpdf/qpdf.

[47] Google Research. 2018. https://github.com/google-research/bert.

[48] Cuckoo Sandbox. 2018. https://github.com/cuckoosandbox.

[49] Yashvi Shah and Preksha Saxena. 2024. Rise in Deceptive PDF: The Gateway

to Malicious Payloads. https://www.mcafee.com/blogs/other-blogs/mcafee-

labs/rise-in-deceptive-pdf-the-gateway-to-malicious-payloads/.

[50] Charles Smutz and Angelos Stavrou. 2012. Malicious PDF Detection Using

Metadata and Structural Features. In Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC ’12).

[51] Chad Smutz and Angelos Stavrou. 2016. When a Tree Falls: Using Diversity in

Ensemble Classifiers to Identify Evasion in Malware Detectors. In Proceedings of
the 23rd Network and Distributed System Security Symposium (NDSS ’16).

[52] SOCRadar. 2024. CVE-2024-4367 in PDF.js Allows JavaScript Execution, Poten-

tially Affecting Millions of Websites: Update Now. https://socradar.io/cve-2024-

4367-in-pdf-js-allows-javascript-execution-potentially-affecting-millions-of-

websites-update-now/.

[53] Nedim Šrndic and Pavel Laskov. 2013. Detection of Malicious PDF Files Based

on Hierarchical Document Structure. In Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS ’13).

https://pdfa.org/stressful-pdf-corpus/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/threat-loaded-malicious-pdfs-never-go-out-of-style/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/threat-loaded-malicious-pdfs-never-go-out-of-style/
https://www.cisa.gov/sites/default/files/2023-02/phishing-infographic-508c.pdf
https://www.cisa.gov/sites/default/files/2023-02/phishing-infographic-508c.pdf
https://safesendsoftware.com/pdf-exploit-popular-attack-vector/
https://safesendsoftware.com/pdf-exploit-popular-attack-vector/
https://www.cs.virginia.edu/~evans/talks/cispa2017/
https://www.cs.virginia.edu/~evans/talks/cispa2017/
https://www.unb.ca/cic/datasets/pdfmal-2022.html
https://www.unb.ca/cic/datasets/pdfmal-2022.html
https://hex-rays.com/ida-pro/
https://www.iso.org/standard/51502.html
https://pdfa.org/pdfs-popularity-online/
https://pdfa.org/pdfs-popularity-online/
https://github.com/jorisschellekens/borb
https://mupdf.com/
https://www.loc.gov/item/2020445568/
https://www.loc.gov/item/2020445568/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://start.paloaltonetworks.com/unit-42-network-threat-trends-report-malware-2023.html
https://start.paloaltonetworks.com/unit-42-network-threat-trends-report-malware-2023.html
https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
https://github.com/pdfminer/pdfminer.six
https://medium.com/coreshield/malware-analysis-dissecting-pdf-file-a95a0ffa0dce
https://medium.com/coreshield/malware-analysis-dissecting-pdf-file-a95a0ffa0dce
https://github.com/pmaupin/pdfrw
https://poppler.freedesktop.org/
https://github.com/qpdf/qpdf
https://github.com/google-research/bert
https://github.com/cuckoosandbox
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/rise-in-deceptive-pdf-the-gateway-to-malicious-payloads/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/rise-in-deceptive-pdf-the-gateway-to-malicious-payloads/
https://socradar.io/cve-2024-4367-in-pdf-js-allows-javascript-execution-potentially-affecting-millions-of-websites-update-now/
https://socradar.io/cve-2024-4367-in-pdf-js-allows-javascript-execution-potentially-affecting-millions-of-websites-update-now/
https://socradar.io/cve-2024-4367-in-pdf-js-allows-javascript-execution-potentially-affecting-millions-of-websites-update-now/

Analyzing PDFs like Binaries: Adversarially Robust PDF Malware Analysis via Intermediate Representation and Language Model CCS ’25, October 13–17, 2025, Taipei, Taiwan

[54] Nedim Šrndić and Pavel Laskov. 2014. Practical Evasion of a Learning-Based

Classifier: A Case Study. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy (SP ’14).

[55] Nedim Šrndić and Pavel Laskov. 2016. Hidost: A Static Machine-Learning-Based

Detector of Malicious Files. EURASIP Journal on Information Security 2016 (2016),

1–20.

[56] Phil Stokes. 2019. Malicious PDFs | Revealing the Techniques Behind the Attacks.

https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-

behind-attacks/.

[57] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorob-

eychik. 2019. Improving Robustness of ML Classifiers Against Realizable Evasion

Attacks Using Conserved Features. In Proceedings of 28th USENIX Security Sym-
posium (USENIX Security ’19).

[58] Xingchen Wan, Henry Kenlay, Binxin Ru, Arno Blaas, Michael A. Osborne, and

Xiaowen Dong. 2021. Adversarial Attacks on Graph Classification via Bayesian

Optimisation. In Proceedings of the 35th International Conference on Neural Infor-
mation Processing Systems (NIPS ’21).

[59] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-

standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP ’21).

[60] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically Evading Classifiers:

A Case Study on PDF Malware Classifiers. In Proceedings of the 23rd Network and
Distributed Systems Symposium (NDSS ’16).

[61] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,

Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining Concept

Drift Samples for Security Applications. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security ’21).

[62] Adeline Zhang. 2019. Chrome PDF File Parsing 0-Day Vulnerability Threat Alert.

https://nsfocusglobal.com/chrome-pdf-file-parsing-0-day-vulnerability-

threat-alert/.

[63] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.

2019. Neural Machine Translation Inspired Binary Code Similarity Comparison

beyond Function Pairs. In Proceedings of the 26th Network and Distributed System
Security Symposium (NDSS ’19).

https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://nsfocusglobal.com/chrome-pdf-file-parsing-0-day-vulnerability-threat-alert/
https://nsfocusglobal.com/chrome-pdf-file-parsing-0-day-vulnerability-threat-alert/

	Abstract
	1 Introduction
	2 Background, Motivation and Related Work
	2.1 PDF Basics
	2.2 Motivation and Insight
	2.3 PDF Malware Analysis
	2.4 Learning-based Embedding

	3 Overview
	4 PDFObj IR Conversion
	4.1 Field Definitions
	4.2 Conversion
	4.3 PDFObj IR Parsing

	5 Design of PDFObj2Vec
	5.1 Preprocessing and Tokenization
	5.2 Pre-trained Mode
	5.3 General Mode
	5.4 Graph Embedding and Classification

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Parser Performance
	6.3 Evaluation of Embedding Models
	6.4 Evaluation of PDF Malware Classification
	6.5 Adversarial Attack
	6.6 Ablation Study

	7 Discussion & Conclusion
	References

