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Abstract

Malicious PDF files have emerged as a persistent threat and be-
come a popular attack vector in web-based attacks. While machine
learning-based PDF malware classifiers have shown promise, these
classifiers are often susceptible to adversarial attacks, undermining
their reliability. To address this issue, recent studies have aimed
to enhance the robustness of PDF classifiers. Despite these efforts,
the feature engineering underlying these studies remains outdated.
Consequently, even with the application of cutting-edge machine
learning techniques, these approaches fail to fundamentally resolve
the issue of feature instability.

To tackle this, we propose a novel approach for PDF feature
extraction and PDF malware detection. We introduce the PDFODbj
IR (PDF Object Intermediate Representation), an assembly-like lan-
guage framework for PDF objects, from which we extract semantic
features using a pretrained language model. Additionally, we con-
struct an Object Reference Graph to capture structural features,
drawing inspiration from program analysis. This dual approach
enables us to analyze and detect PDF malware based on both se-
mantic and structural features. Experimental results demonstrate
that our proposed classifier achieves strong adversarial robustness
while maintaining an exceptionally low false positive rate of only
0.07% on baseline dataset compared to state-of-the-art PDF malware
classifiers.
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1 Introduction

The Portable Document Format (PDF) is among the most widely
used file formats on the web [20], making it an attractive target
for cybercriminals due to its ubiquity and versatility [5, 12, 40, 49].
PDFs now dominate as the most commonly used malicious attach-
ments in phishing campaigns, with nearly 70% of these emails evad-
ing network-based defenses and 15% bypassing endpoint security
measures [9]. Moreover, the increasing prevalence of cloud-based
collaboration and remote work has led to the widespread integra-
tion of PDF readers within modern browsers, further heightening
the threat posed by malicious PDFs. Attackers can exploit vulner-
abilities in web applications, such as cross-site scripting (XSS), or
browser-specific security flaws to execute malicious code through
carefully crafted PDFs [52, 62].

Machine learning (ML) is now extensively applied in various
security contexts, including traffic detection, intrusion detection,
vulnerability search, and other critical areas. In the face of PDF
malware, numerous countermeasures have explored ML-based ap-
proaches [7, 31, 50, 51, 53, 55, 57]. However, despite significant
progress in PDF malware analysis, several critical challenges re-
main unresolved.

Firstly, one major challenge is the limited scope of existing fea-
ture analysis, which tends to be confined to surface-level inspection.
Unlike the advanced feature analysis methods employed in binary
code analysis—where researchers strive to extract semantic features
from disassembled code and structural features from control flow
graphs (CFGs)—PDF malware analysis often remains comparatively
rudimentary. Current approaches typically involve computing spe-
cific keywords [50] or analyzing structural paths [53], which, while
useful, fall short of the sophistication needed for gaining deeper
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insights. While the structure of PDF files differs from that of exe-
cutable file formats, it presents its own set of unique complexities.
Therefore, there is a pressing need for more advanced analysis
techniques to effectively address the nuances of PDF malware.

Secondly, the superficial nature of current feature analysis leaves
existing PDF malware classifiers highly susceptible to adversar-
ial attacks [11, 32, 54, 60]. While some studies [7, 57] have at-
tempted to enhance the adversarial robustness of ML-based classi-
fiers through specialized techniques like adversarial training, they
have not substantially advanced feature engineering. Instead, these
efforts continue to rely on the simplistic features extracted in earlier
work [50, 53]. Research [33, 54, 60] has consistently demonstrated
that these features are vulnerable to adversarial manipulation. Ad-
ditionally, retraining PDF malware classifiers using adversarial
samples has significantly compromised their usability, leading to
false positive rates (FPR) as high as 85% [15].

Lastly, the feature extraction process of existing machine learning-
based PDF malware classifiers [7, 23, 26, 55] is heavily dependent
on the parsing capabilities of PDF parsers [2, 6]. PDF malware that
exploits vulnerabilities in PDF readers often results in so-called "bad
PDFs." Attackers craft the original bytes of these PDFs to exploit
specific vulnerabilities, which frequently results in malformed file
formats [2]. Such malformed PDFs can challenge existing parsers,
rendering them unable to correctly process these files, even though
the malicious payload can still be successfully executed. Carmony
etal. [6] tested multiple parsers on PDF malware datasets and found
that each parser failed to correctly process hundreds of samples.
Consequently, PDF malware classifiers relying on these parsers
cannot extract features from these samples, making it impossible
to determine their maliciousness. This limitation is unacceptable in
practical applications, where comprehensive detection and analysis
of malware are crucial.

To overcome the above first issue, we design the first intermedi-
ate language framework, termed PDFObj IR, to convert PDFs into a
CFG-like structure. We observed that in PDFs, individual objects op-
erate similarly to basic blocks in traditional program analysis, with
reference relationships linking these objects. This similarity enables
the construction of a graph structure akin to a CFG for effective
analysis. Leveraging this analogy, we developed PDFODbj IR, which
converts each PDF object into a form similar to assembly language,
describing each key-value pair in the object while preserving the
inter-object reference relationships. Building on this framework,
we constructed an Object Reference Graph (ORG), which allows
for binary-like analysis of PDFs.

To address the second issue, we developed the PDFODb;j IR rep-
resentation learning method, PDFObj2Vec, a novel PDF feature
engineering approach. We designed three representation learn-
ing schemes for this PDFObj2Vec, based on Word2Vec [35], PV-
DM [24], and BERT [13]. Additionally, we supported PDFObj2Vec
with general text embedding models such as CodeT5 [59] and text-
embedding-3 [39], to directly obtain embeddings of PDFODb;j IR at
the ORG node level. We then designed a Graph Isomorphism Net-
work (GIN) to extract structural features at the graph level of the
ORG for PDF malware classification.

Graph structures typically exhibit stronger adversarial robust-
ness, making it challenging for attackers to disguise their behavior
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within such structures [1]. Therefore, our feature engineering ap-
proach, which combines semantic and structural features, demon-
strates robust performance. This robustness is evidenced by our
experimental results, which show strong resilience against various
adversarial attacks. While language models have been extensively
researched in the context of binary code analysis [8, 14, 25, 34, 63],
their application to PDF malware analysis has been limited. Our
research bridges this gap by applying popular language models,
including large language models, to PDF malware analysis. Pre-
vious features did not integrate well with these language models,
but PDFObj IR demonstrates excellent compatibility, improving the
performance of PDF malware analysis tasks.

To address the third issue, we developed a new PDF parser tool
for extracting and converting PDFODb;j IR, called Poir. Poir is immune
to bad format issues affecting conventional parsers. By analyzing
various types of bad-format PDF files, we identified three main
types of errors that cause PDF parsers to fail. Poir automatically
detects and fixes these errors, ensuring smooth feature extraction.

We applied ORG and PDFObj2Vec to the task of PDF malware
classification and implement a GIN-based classifier that achieves
well consistent performance on both the baseline and extended
datasets. Our most robust classifier attains an accuracy of 99.93%
on the baseline dataset and 96.62% on the extended dataset. We
also conducted extensive comparative and ablation experiments.
The results indicate the effectiveness of PDFObj IR in PDF malware
analysis, as our classifiers achieved a 2.2% to 8.9% accuracy im-
provement on the extended dataset compared to classifiers without
PDFODbj IR. Furthermore, even when faced with the most power-
ful realizable adversarial sample attacks, our classifier maintained
100% adversarial robustness with a remarkably low FPR of only
0.07%. This performance is significantly more efficient compared
to state-of-the-art PDF malware classifiers [7, 57] with comparable
adversarial robustness, whose FPR is 71 times higher than ours. In
a nutshell, we make the following key contributions:

e We designed the PDFODbj IR framework, which, to the best of
our knowledge, is the first intermediate representation used
for PDF analysis. To facilitate IR conversion, we developed
a new PDF parser, Poir. This parser is capable of correctly
handling malformed PDFs and automatically completing
missing content.

We developed PDFObj2Vec, a method that utilizes language

models to learn representations of PDF objects. This ap-

proach was applied to PDF analysis, with a particular focus
on evaluating its performance in PDF malware classification
tasks.

e Leveraging the Object Reference Graph and PDFObj2Vec, we
implemented a Graph Isomorphism Network for PDF mal-
ware classification. Experimental results demonstrate that
our approach achieves high accuracy and strong adversarial
robustness, all while maintaining an exceptionally low false
positive rates.

We release a prototype of PDFObj2Vec and evaluation datasets to
facilitate reproduction, as all are found at Zenodo. The full version
with Appendix of this paper is available at [27].
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2 Background, Motivation and Related Work
2.1 PDF Basics

PDF Structure PDF is one of the most commonly used document
formats on the web [20], with widespread applications in both per-
sonal and business contexts. Figure 1(a) illustrates a typical structure
of a PDF file, which consists of the following four parts [18]:

o Header This is the first line of a PDF file, specifying the
version of the PDF specification used for the document.

e Body The body of a PDF file comprises various types of
objects, forming a collection of objects. The core component
of a PDF file is the collection of these objects, also known as
COS (Carousel Object System) [28] objects.

e Cross-reference Table This table contains references to all
objects within the document, listing the byte offsets of each
object within the file’s body.

e Trailer The trailer enables quick identification of the cross-
reference table’s location, thus facilitating precise object
location. The last line of the file only contains the file’s end
symbol: %%EOF.

The Body is the key part of a PDF, containing the primary data
in the document. It comprises a series of objects, with each object
enclosed by the « and >, demarcated by the obj and endobj.
Conceptually, it can be viewed as an object graph, where each object
performs specific operations (e.g., displaying text, rendering images,
executing code, etc.) [32]. Each object is composed of a series of key-
value pairs, which can be represented in the form of a dictionary.
For instance, in Figure 1(a), the first object begins with 1 @ obj
and ends with endobj. The content of this object is enclosed within
< > and contains four key-value pairs. The keys in the object are
the name type, and the values can be any type. For example, The
firstkey in 1 @ obj is /Type, which is a name type with the value
of /Catalog, also a name type. The second key, /Outlines, has a
value that is an indirect reference type, where R signifies an indirect
reference. In a PDF object, values encompass five categories of basic
types, as shown in Table 7 of Appendix A. Moreover, values can
be composite types, such as arrays and dictionaries, with the basic
elements of arrays and dictionaries being the aforementioned basic
objects, compression parameters, and other information.

PDF-based Attack PDF-based attack is a type of document-based
attack where threat actors exploit PDFs as carriers for malicious
activities. These attacks leverage the functionalities of PDF files
or vulnerabilities in PDF readers to execute malicious code. PDF
malware refers to PDF carriers with malicious functionalities.

The body of Figure 1(a) is an example of a PDF malware that
exploits JavaScript to execute malicious activities. In Figure 1(a), we
illustrate five objects, among which the first object’s /OpenAction’s
value encompasses information about malicious payloads. The
value of /OpenAction is a dictionary composite type containing
two keys: /JS and /S. Here, the value of /JSis 5 @ R, indirectly
reference to 5 @ obj, and the value of /S is /JavaScript. The
value indicates the presence of JavaScript within this PDF malware,
with the scripts located at 5 @ obj. The object of 5 @ obj is
typically a stream object, which stores the malicious JavaScript of
this PDF malware.

In this example of PDF malware, fields related to JavaScript se-
mantics are key indicators of malicious characteristics. Additionally,
the JavaScript data are stored in 5 @ R, indicating a reference re-
lationship between 1 @ obj and 5 @ obj. In Figure 1(a), we use
red arrows to indicate this reference relationship and blue arrows
to mark the references between other objects. Figure 1(b) more
intuitively demonstrates the structural relationship between these
objects in Figure 1(a). Fields related to JavaScript semantics and
the reference structure collectively constitute the malicious char-
acteristics. However, semantic features alone are insufficient to
determine whether a PDF is malicious, as JavaScript functionality
is common in PDFs and can be used in benign samples. Therefore,
it is also necessary to consider the structural relationships between
objects. In Figure 1(a), the malicious JavaScript script data is stored
in the stream object 5 @ obj, which is used for complex malicious
purposes. In contrast, simple JavaScript scripts in benign PDFs
may appear as literal strings in 1 @ obj, with no indirect refer-
ence to a stream object. These differences in structural reference
relationships help further distinguish malicious PDFs from benign
ones.

2.2 Motivation and Insight

There are rich features used for binary malware analysis, such as
API call sequences, control flow graphs (CFGs), data flow graphs,
and disassembly instructions. In contrast, analytical features for
PDF malware analysis are relatively limited. Current methods often
rely on customized statistical features of keywords or objects, or
on binary features derived from hierarchical structural paths.

This disparity raises an important question: can we apply the
methods used in binary malware analysis to PDF malware analy-
sis? To explore this, we reexamined the structure of PDFs, which
are primarily composed of a series of objects. These objects have
complex reference relationships, as indicated by the blue arrows
in Figurel(a). Essentially, this forms a directed graph connected by
different objects. If we consider each object as a basic block of a
PDF and the reference relationships between objects as control flow
relationships, the resulting graph, as shown in Figure 1(b), would
resemble a control flow graph used in binary analysis, as shown
in Figure 1(c). This similarity suggests that leveraging methods
from binary analysis to analyze PDFs is feasible. However, a critical
question remains: how do we represent a basic block in the context
of PDF analysis?

In binary analysis, the disassembled code is often scrutinized.
For instance, when analyzing a sample in IDA Pro [17], the soft-
ware typically presents a CFG of the entry point function after
loading the sample. Each basic block corresponds to a disassembled
code block, representing the smallest unit of code, as illustrated
in Figure 1(c). This raises the question: can we transform the con-
tent of a PDF object into a form similar to disassembled code or
intermediate code? To explore this, we examined the structure of
PDF objects. These objects consist of key-value pairs with fixed
data formats and types. By defining a fixed format to describe each
object in a manner akin to natural or programming languages, we
can convert the object into an intermediate representation. We
can then designate the values containing reference relationships
as jump instructions. This approach allows us to construct a graph
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endstream endobj
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Figure 1: An example of the PDF structure, PDF object graph, and control flow graph: (a) displays the basic format of a PDF; (b)
depicts the references between objects in PDF; (c) showcases a piece of CFG of a binary file.

structure that is closely analogous to a CFG, which we refer to as an
Object Reference Graph (ORG). Given that we propose converting
objects into an intermediate representation, we can leverage pow-
erful language models to process this representation. In the field
of program analysis, there has been considerable research using
language models to represent disassembled code. We will elaborate
on our design philosophy and processing approach in the following
sections.

Key Insight Our key insight is that by treating each object in a
PDF as a basic block and converting its content into an intermediate
language, we can construct a graph analogous to a CFG. This graph
encapsulates the reference relationships among different objects,
with each node representing the semantics of an object. Thus, this
approach enables us to analyze PDFs both at the semantic level of
individual nodes and at the structural level of the graph.

2.3 PDF Malware Analysis

Currently, research on PDF malware analysis mainly builds upon
two prior works: PDFrate [50] and Hidost [53]. PDFrate utilizes
content-based features, extracting specific keyword positions and
counts from metadata and content within PDF files. It manually
defines 202 features, which are extracted using regular expressions.
While these features are more general and not affected by the
parsing capabilities of parsers, they remain at a surface level, not
delving into the deeper structure of PDFs. Moreover, defining these
202 features requires extensive expert knowledge, and the reliability
of these features is not always guaranteed [54, 57]. Hidost, on
the other hand, employs structure-based features by extracting
object structural paths from PDFs and using binary counts of these
paths as features. It leverages Poppler [45] to extract hierarchical
structural paths and selects 6, 087 paths from a corpus of 9 million as
features. Despite the authors’ claims that hierarchical path features
are robust [53, 55], selecting only a portion of the paths from the
corpus may result in a lack of path semantics. Xu et al’s study [60]
indicates that such features remain vulnerable to adversarial attacks.
Furthermore, Hidost relies on Poppler for PDF parsing, which makes
feature extraction more susceptible to the parsing capabilities of
the parser.

Due to the susceptibility of PDFrate and Hidost to adversarial
attacks, researchers have sought to enhance the adversarial robust-
ness of PDF malware classifiers based on their features. Tong et
al. [57] proposed a PDF malware classifier that leverages conserved
feature training, focusing on features derived from PDFrate and
Hidost. They identified features closely related to malicious func-
tionalities in PDF execution as conserved features through expert
experience. By employing iterative adversarial training, they im-
proved the classifier’s adversarial robustness. However, while Tong
et al’s method enhances robustness against adversarial attacks, it
compromises classification performance on regular samples, result-
ing in a higher FPR of 4.96%.

Additionally, Chen et al. [7] proposed a robust training approach
based on robust properties targeting the features of Hidost. They de-
fined five categories of robust properties and used symbolic interval
analysis to train combinations of different robust properties, result-
ing in a classifier with adversarial robustness. However, Chen et
al’s method, while achieving adversarial robustness, also sacrifices
the classification performance on regular samples, increasing the
FPR by 1.78%. Moreover, when facing state-of-the-art unbounded
adversarial sample attacks [33], it only achieved a 50.8% adver-
sarial success rate. Both Tong et al. and Chen et al. attempted to
enhance the classifier’s adversarial robustness based on PDFrate
and Hidost features, addressing the training issues of the classifier.
However, they did not resolve the fundamental problem of insuffi-
ciently robust features and the limitations imposed by the parser
dependencies in classifiers based on Hidost.

2.4 Learning-based Embedding

Drawing inspiration from representation learning in binary analy-
sis [8, 14, 34, 63], we aim to develop semantic representations for
PDFODbj IR nodes in the ORG and apply them to downstream tasks
such as PDF malware detection. Notably, this type of representation
learning remains unexplored in PDF analysis. In binary analysis,
approaches like Word2Vec [35] have been used to learn instruction-
level representations by treating each instruction as a word and each
function as a document [34, 63]. Asm2Vec [14] extends this by rep-
resenting assembly instructions as opcodes and operands, using the
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Figure 2: Overall workflow of PDFObj2Vec.

PV-DM model [24] to learn embeddings. Similarly, PalmTree [25]
treats assembly instructions as sentences, decomposing them into
tokens (e.g., opcodes, registers, immediate values) and employing
BERT [13] to capture control flow and data dependencies.

In this paper, we applied Word2Vec, PV-DM, and BERT to learn
representations for PDFODbj IR, generating embeddings for down-
stream tasks. Additionally, we used general embedding models
without pre-training to directly derive embeddings for PDFODbj
IR. The evaluation of these embedding models in PDF malware
classification is detailed in §6.

3 Overview

The overall workflow of PDFObj2Vec is depicted in Figure 2. This
framework primarily consists of two parts: 1) PDFObj intermediate
representation (IR) conversion and 2) representation learning.

PDFODbj Intermediate Representation (IR) Conversion For the
conversion of PDFOb;j to IR, PDFObj2Vec starts by taking a raw
PDF file as input, then parses it, correcting formatting errors to
ensure the integrity of the extracted IR. The parsed content is then
converted into IR format (@) in Figure 2). Following this, based on
the reference relationships in the IR, an Object Reference Graph
(ORG) is constructed (@). In the ORG, each node represents an
object, with the node’s content being the IRs of that object.

Representation Learning In the process of representation learn-
ing, we embed the nodes of the ORG (e) To achieve this, We
pre-trained Word2Vec, PV-DM, and BERT models specifically for
PDFODbj IR to obtain node embeddings. Additionally, we integrated
general embedding models such as the standard BERT, CodeT5, and
text-embedding-3 to directly obtain node embeddings. Once the
node embeddings are obtained, we can generate the Attributed Ob-
ject Reference Graph (AORG). Then, we can perform downstream
tasks such as PDF malware classification.

4 PDFODbj IR Conversion

We designed the first intermediate representation (IR) framework
for PDFs, aimed at enhancing the analysis and understanding of
PDFs by enriching the semantics of the objects of PDFs. In this
framework, each object in a PDF is converted into multiple fixed-
length IRs to represent the corresponding object. In this section,
we first define the fields and conversion rules of the IR, and then

Table 1: Basic type description.

Type VType Mark

Atomic num, str, name, ref, bool, null
Stream stream
Composite list, dict

num_list, str_list, name_list

Derived ref_list, bool_list, mix_list

we introduce the new parser we developed for this purpose, named
Poir.

4.1 Field Definitions

Based on the structure of objects, we define the four fields of PDFObj
IR: Index, Attribute, VType, and Value, as described in the following:

o Index. This field indicates the index of the current IR within
the object. Its value is uniquely determined by the combi-
nation of the object’s number and version, calculated as
< number —version >. For instance, all IRs within the object
3 0 obj have an Index of 3-0, and within 8 2 obj, all IRs
have an Index of 8-2.

o Attribute. This field represents the attributes of the IR, cor-
responding to the keys in the associated object. It is of the
Name type, such as /Type and /Pages.

e VType. This field represents the type of the Value. We have
defined a total of 6 atomic types, 1 stream type, 2 composite
types, and 6 derived types, as shown in Table 1.

e Value. This field represents the values associated with the
Attribute. The type of Value is VType, and we defined 15
VTypes, as shown in Table 1.

Among these VTypes in Table 1, 1ist and dict are basic com-
posite types, and their values may consist of a mix of multiple
atomic types and basic composite types. Elements in 1ist are typi-
cally of a single type in most cases, but occasionally, mixed-type
values occur. Based on this phenomenon, we defined six derived
types based on 1ist, as shown in Table 1. Please note that we have
not defined null_list as it does not exist. Since a dict consists
of a series of key-value pairs of various types, it is inherently a
structure with mixed types. Therefore, there is no need to design
derived types based on dict. We have defined the format and basic
fields of PDFODbj IR, with 15 types for the VType field. Thus, each
object can be represented using n IR entries. In the next subsection,
we provide a detailed description of how we convert a PDF into a
series of IR entries.

4.2 Conversion

Following the definition of fields and formats of PDFODbj IR, we
initiate the conversion of each key-value pair within an object into
n IR entries, where n > 1. The conversion form varies according to
the VType. We define the atomic IR as follows:

Definition 1: An atomic IR is an IR with an atomic type or a value
of the basic object, representing the most basic expression of PDFObj
IR that cannot be further decomposed.

We first use the atomic IR conversion as an example to illustrate
the basic conversion principle. Its conversion is the most direct and
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Index Attribute  VType Value

7 0 obj << .
[Type /DictExp 7-0 Type name DictExp
/Version 0.1 7-0 Version num 0.1
/Intitem 32 7-0 Intltem num 32
/Strltem (en-us) 7-0 Stritem str (en-us)
/Boolltem TRue 7-0  Boolltem  bool True
/Parent 3 0 R 7-0  Parent ref 3-0

>> endobj

8 0 obj

null 8-0 <Blank>  null <Blank>

endobj

Figure 3: Basic conversion paradigm. Please note that this
example is designed to illustrate the basic conversion princi-
ple and may not necessarily represent data found in actual
PDFs.

fundamental. We tend to convert each PDFODbj IR into an atomic
form, ensuring that each IR maintains the same structural form.

Basic Conversion Paradigm (P1) For basic object types such as
numeric, string, name, boolean, null, and ID object, as mentioned
in §2.1, the VType is assigned as num, str, name, bool, and null,
respectively, with the Value maintaining its original form. For an
indirectly referenced object, its type is assigned as ref, and the
value is the index value of the referenced object. Figure 3 illustrates
a basic conversion paradigm, which serves as the foundational
transformation. All subsequent complex conversions are built upon
this paradigm. The conversion process varies depending on whether
the object is a stream, dictionary, single-element array, or mixed-
element array, as will be discussed in detail later.

Stream Object Conversion Paradigm (P2) A stream object
consists of two parts. The first part utilizes a dictionary to store basic
information about the stream, such as encoding method, stream
length, etc. The second part is the byte sequence data of the stream.
When the object is a stream, the conversion process begins with
outputting the following line:

<Index>, <Blank>, stream, <Blank>

The IR above declares that it is a stream object. Subsequently, the
conversion of the first part of the dictionary content follows P1.
The byte sequence data are stored in an additional data file, named
according to its Index.
Array Object Conversion Paradigm (P3) As illustrated in Fig-
ure 1(a), the value of /MediaBox in 4 @ obj is an array of single
elements, all numeric. For this, we use the following representation:
4-0, /MediaBox, num_list, [0,0,612,792]
The conversions of other single-element arrays follow the same way.
Arrays can also contain a mix of types, such as /Names [(Notice)
14 9 R], featuring str and ref types. We represent this pair as
the following IR:
4-0, /Names, mix_list, [(Notice),149]

Dictionary Object Conversion Paradigm (P4) Take for instance
the /OpenAction value in 1 @ obj from Figure 1(a), which is a
dictionary. We begin with an IR entry:

1-0, /OpenAction, dict, <Blank>
The IR above indicates that the value of /OpenActionisadictionary
type. When converting such dictionaries, we prepend the key of this

dict (/OpenAction in this case), to the new Attribution, resulting
in:
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obj_1-0:

1-0 Type name Catalog

1-0 Outlines ref 2-0

1-0 Pages ref 3-0

1-0 OpenAction dict <Blank>

1-0 OpenAction/JS ref 5-0

1-0 OpenAction/S name Malicious JavaScript

\ 4

obj_3-0: 0obj_2-0: )
3-0 Type name Pages 2-0 Type name Outlines
3-0 Kids ref_list [4-0] 2-0 Count num 0

3-0 Count num 1

¥ v

obj_4-0: obj_5-0:

4-0 Type name Page 5-0 <Blank> stream <Blank>
4-0 Parent ref 3-0 5-0 Filter name FlateDecode
4-0 MediaBox num_list [0,0,612,792] 5-0 Length num 2560

Figure 4: Object reference graph with PDFObj IR.

1-0, /OpenAction/JS, ref, 5-0
1-0, /OpenAction/S, name, /JavaScript

Please note that in the conversion example above, a dict may
contain another dict, resulting in multi-level nested dictionaries.
We employ a recursive algorithm to resolve such nested dictionaries,
ensuring that the IR can record the path of keys within nested
dictionaries.

So far, we have achieved a comprehensive conversion of the
PDF’s core content. We can convert the representation from Fig-
ure 1(b) to that of Figure 4. Subsequently, we can analyze the PDF
from both semantic and structural perspectives.

4.3 PDFODbj IR Parsing

After finalizing the design and conversion paradigm of PDFODbj IR,
we developed a parsing tool named Poir. This tool converts PDF
files into an intermediate representation format and is uniquely de-
signed to handle malformed PDFs by performing necessary repairs.
PDF malware, particularly those exploiting vulnerabilities, often
fails to maintain a valid PDF format, causing traditional parsers to
malfunction. To address this, we analyzed malformed PDF malware
and identified three common types of errors in the PDF body. Poir
incorporates specific processes to handle these errors, ensuring the
integrity of the IR is preserved as much as possible.

E1: String Overflow String content overflow is the most common
exception, and it occurs frequently in malicious PDFs. Figure 5(a)
illustrates a typical situation of string overflow where the excessive
length of a string causes the omission of crucial keywords such
as the right parenthesis and endobj. The cause of string content
overflow may be related to the content, often malicious code. In such
cases, we automatically fill in the missing structure and keywords,
appending “)” at the end. If the overflow results in the absence of “<”
and endobj, we supplement them as well, as shown in Figure 5(b).
E2: Mising obj In the event of this error, an illegal indirect ref-
erence occurs. For instance, in the case of /Metadata 9 @ R, it
references to a non-existent obj. We can not deduce the specific
content of 9 @ obj. Therefore, we introduce a new obj with the
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) 76 0 obj <<
76 0 obj << . /S /JavaScript
/S IJavaScript T
NS (w="s';w+="Tw+="7"; NS (WEStwr=Tiws=T:...)
’ ! e >> endobj

(a) (b)
Figure 5: An example of string overflow (a) and the comple-
tion method (b).

7 0 obj <<
/Pages 60R 9.0 obj <<
/info << [Type [Page
/Marked "true MediaBox [006]
/Ty null >> endobi
o> endobj
>> endobj

(a) (b)

Figure 6: An example of incomplete key-value pairs and the
completion method.

number and version set to 9 and 0, respectively, and the content is
set to null.

E3:Incomplete Key-Value Pairs Our analysis has identified cases
where either the key or the value is missing. The corresponding
value is also missing when the key is absent. To address this, we
fill the original key-value position with null as the missing value,
as illustrated in Figure 6(a). In cases where the value part is incom-
plete, such as an array with only the front portion, as depicted in
Figure 6(b), we append ‘] at the end to complete its structure. For
incompletely nested dictionaries, we first supplement the missing
parts based on the aforementioned principles and subsequently
complete the structure of the dictionary. Additionally, if the omis-
sion of key-value pairs results in the absence of “>” and endobj
in the object, we also rectify these omissions.

In addition to these three main error handling measures, we have
also listed other parsing errors and their corresponding handling
strategies in Table 8 of Appendix B.

5 Design of PDFObj2Vec

We have developed two modes for PDFObj2Vec: pre-trained mode
and general mode. We first introduce the preprocessing and tok-
enization strategies for PDFObj IR. Subsequently, we outline the
design of the pre-trained mode and general mode. Lastly, we dis-
cuss the ORG embedding and the classifier architecture based on
PDFObj2Vec.

5.1 Preprocessing and Tokenization

In §4, we fixed the length of PDFObj IR and have already standard-
ized it, so we do not require additional special tokens for normal-
ization. To adapt PDFODbj IR for pre-training, we need to perform
tokenization. We employ the following tokenization strategy to
mitigate the Out-Of-Vocabulary (OOV) issues caused by values:
For each IR, we retain the Attribute and VType, and connect them
with an underscore to form a single word. For example, in Figure 3,
7-0 Type name DictExp would be represented as Type_name.
Multiple IRs form an object, and multiple words form a sentence;
therefore, we treat an object as a sentence. The contextual relation-
ships between sentences are determined by the reference relation-
ships between objects. We extract these relationships from the ref,

r Object A 1 r Object B 1
Type, Kids. Count, Type, Parent MediaBox
Input [cLs] n?:m; ref_list num [SEP] n’;’:n; ref ~ _numisit [ESP]
- MASK]
E E E E E E H E
Token [cLs] Type_ Kids_ [MASK] [SEP] Type_ Parent_  MediaBox [ESP]
name ref_list ame ref _num_list
+ + + + + + + + +
segment | EA || Ea | Ea |[ Ea |[ Ea || Es |[ Ee |[ Ee |[ Es |
+ + + + + + + + +

Position

o MLM b

i—) @ Representation

Figure 7: BERT input and training tasks.

ref_list, and mix_list (where mix_list may include reference
types) to generate the context of the sentences.

5.2 Pre-trained Mode

We devised three schemes for the pre-trained mode, namely Word2Vec,
PV-DM, and BERT, with a particular emphasis on the BERT scheme.
Prior feature embedding methods, such as Hidost, rely on binary
embeddings that generate sparse 0-1 vectors. These representations
are inherently fragile and lack the rich semantic information re-
quired for robust malware detection. In this paper, we leverage
learning-based embedding techniques from natural language pro-
cessing. Trained via self-supervised learning tasks, these models
convert the PDFODbj IR into dense vector representations, thereby
enhancing the classifier’s ability to detect PDF malware.

BERT-Based Scheme After preprocessing and tokenization, we
then input the sentences into the BERT model, as depicted in Fig-
ure 7. The first token of this input is a special token, [CLS], which
signifies the start of the sequence. Following this, we use another
token, [SEP], to separate Object A from Object B. Additionally,
we augment token embeddings with position embeddings and seg-
ment embeddings, and this combined vector is used as the input
for the bidirectional transformer network, as shown in Figure 7.
Segment embeddings help BERT differentiate between the vector
representations of the two sentences in the input, while position
embeddings enable BERT to learn the sequential properties of the
input. As for pre-training, we designed following two training tasks
for BERT-based PDFObj2Vec: MLM (Masked Language Model, €
in Figure 7) and NOP (Next Object Prediction, @).

@© Masked Language Model To enable BERT to comprehend the
internal structure of PDFODbj IR, we first employed the Masked Lan-
guage Model (MLM) training task. This task randomly masks tokens
in the PDFODj IR text, forcing BERT to predict the masked con-
tent through bidirectional contextual inference. And it enables the
model to learn deep semantic relationships between key-value pairs
within objects. We began by pre-training BERT-based PDFObj2Vec
using the MLM, following masking strategies from previous stud-
ies [13, 25]. For the input IR sequences Seqjr = IR1, IRy, ..., IR;, in
which IR; denotes a token, we randomly select 15% of the tokens to
be masked. Of these tokens to be masked, 80% are replaced with the
[MASK] token, 10% are replaced with a random IR token, and the
remaining 10% are left unchanged. Subsequently, BERT’s encoder
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learns to predict the masked tokens:
exp(w;O(SeqlIR);)
SK exp(wpO(SeqIR);)

P(IR; | Seqir) =

where IR; represents the prediction for IR;, ©(SeqgIR); denotes the
i-th vector from the last hidden layer of the transformer network ©,
w; represents the weight, and K is the size of the vocabulary. The
loss Ly for this task is the cross-entropy loss. Given a PDFObj
IR pair, Object A and Object B, we first add special tokens [CLS] and
[SEP], and then replace the token for Count_num with a [MASK]
token. Next, we input this modified PDFODbj IR pair into the BERT
model, which will then make predictions for the [MASK] token, as
shown in Figure 7.

© Next Object Prediction To enable BERT to capture the ref-
erence relationships between objects, we designed a training task
based on the Next Sentence Prediction called Next Object Prediction
(NOP). This task treats inter-referenced object IRs as continuous
sequences and trains BERT to determine the likelihood of object ref-
erence relationship. Through this process, BERT learns the logical
structure of the ORG graph. When constructing the input PDFObj
IR pair for the NOP task, we select pairs with real reference re-
lationships with a probability of 50%. Specifically, we input two
objects: obj; and ob jo, starting with the [CLS] token and separated
by a [SEP] token. This method trains the BERT-based PDFObj2Vec
model to predict the probability that a reference relationship exists
between two objects:

expS(y | obj1,0bj2)

P(§ | objr,0bj2) =
(4 | obj1,0bjz) Y ye(01) expS(y | objr.objz)

where ¢ denotes the reference relationship prediction of 0bj; and
obja, S() denotes the function of attention head in transformer. The
loss Lnop for this task is the cross-entropy loss. We select the
first output vector in Figure 7 to predict whether the two objects
have a reference relationship. In the case of Figure 7, where there
is a reference relationship between the two objects, the correct
prediction would be 1; otherwise, it would be 0. The loss function
of BERT scheme is the combination of Lnop and Ly pm.

© PDFObj IR Representation Through the MLM and NOP pre-
training tasks, BERT-based PDFObj2Vec learns the semantics of the
IRs of objects and references relationships between these objects
in ORG. Then, we can generate contextually enriched object em-
bedding vectors. Specifically, an object IR beginning with a [CLS]
token is inputted into PDFObj2Vec-Bert. We then compute the pool-
ing of the [CLS] token at the last hidden layer of PDFObj2Vec-Bert
and use this pooling value as the semantic embedding vector for
the object IR. This approach allows for a nuanced representation
that captures both the individual characteristics of the object and
its relational context within the ORG.

Word2Vec and PV-DM-Based Schemes The preprocessing and
tokenization for Word2Vec and PV-DM are consistent with those
for BERT. In Word2Vec, we utilized the CBOW model that trains
Word2Vec by predicting the center word from a given context. The
Word2Vec scheme can only generate embedding of the word, so to
obtain the embedding of an object in a PDF, we use TF-IDF weighted
averaging. The fundamental idea behind the PV-DM model is simi-
lar to CBOW, and it combines paragraph vectors and context word
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Figure 8: The network structure of our proposed GIN-based
classifier.

vectors to jointly predict the target word and train the model accord-
ingly. During the PV-DM training process, each object is treated
as a paragraph composed of multiple words. The representation of
the paragraph vector is similar to that of Word2Vec, which adopts
a TF-IDF weighted average of word vectors in the paragraph. De-
tailed model structures and parameter specifications are provided
in Appendix C.

Transforming PDFODbj IR text into vector embeddings through
learning-based methods is essential, as it yields a substantially
more effective feature set. These embeddings capture the intrinsic
properties of PDF objects as well as the contextual dependencies
between objects, both of which are critical for accurate and robust
malware classification. Without this transformation, the resulting
features would be too fragile and simplistic to effectively detect
sophisticated adversarial attacks.

5.3 General Mode

We also integrated three general embedding schemes to obtain
embeddings for PDFODbj IR: the BERT Base [13, 47], CodeT5 [59],
and text-embedding-3 [39]. These general embedding models have
been trained on extensive and diverse corpora. We downloaded
the BERT Base and CodeT5 models to compute the embeddings
for PDFODbj IR. We also integrated the most popular conversational
model, ChatGPT’s embedding model, text-embedding-3, which is
OpenAT’s latest third-generation embedding model. We used the
API provided by OpenAl to obtain IR embeddings directly. For
preprocessing and tokenization, we adopted the same methods
used in the previous pre-trained models.

5.4 Graph Embedding and Classification

After obtaining the semantic embeddings for all objects in the ORG,
we transform it into a semantic Attributed Object Reference Graph
(AORG) suitable for a graph neural network. We designed a Graph
Isomorphism Network (GIN) to compute the graph representation
of the AORG and classify PDF malware, as illustrated in Figure 8.
The core concept of GIN is to aggregate the features of each node to
capture the graph’s topological structure. We employ a Multi-Layer
Perceptron (MLP) as the aggregation function, enabling GIN to
optimally distinguish graph isomorphisms. This structure allows
GIN to effectively learn and represent complex patterns within the
data, facilitating accurate classification of the entire graph. Detailed
parameters and technical specifications of the GIN classifier are
provided in Appendix E.

6 Experimental Evaluation

We conducted a comprehensive set of experiments to evaluate the ef-
fectiveness of PDFObj IR and PDFObj2Vec. Our evaluation covered
the following six aspects: 1) parsing capability of Poir; 2) evalu-
ation of pre-trained PDFObj2Vec; 3) performance of pre-trained
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PDFODbj2Vec in the PDF malware classification task; 4) performance
of general PDFObj2Vec in the PDF malware classification task; 5)
evaluation against adversarial attacks; 6) ablation studies.

6.1 Experimental Setup

Dataset We used the contagio [41] dataset as our baseline dataset,
which was commonly used in PDF malware analysis studies [7, 50,
57]. It has a balanced distribution of benign and malicious samples,
comprising 9k benign samples and 11k malicious samples. Addi-
tionally, we collected an extended dataset for testing that includes
21k malicious samples from the CIC-PDFMal2022 dataset [16, 19]
and 24k benign samples gathered from the internet. These benign
samples include a diverse array of PDF types, such as bills, test files,
books, and interactive forms, obtained from sources like GitHub,
the PDF Association [3], and the gov PDF dataset [38]. We used
MD5 checksums to ensure that there was no overlap between the
baseline and extended datasets. And we also used timestamps to
confirm that samples in the extended dataset were collected after
those in the baseline dataset.

Baseline PDF Parsers To compare the parsing completeness with
Poir, we select six popular PDF parsing tools, namely pdfrw [44],
Poppler [45], pdfminer [42], MuPDF [36], borb [22], and QPDF [46],
as baseline parsers. Among these six baseline parsers, pdfrw, pdfminer,
and borb are written purely in Python, while Poppler and QPDF
are written in C++, and MuPDF is written in C.

PDFObj2Vec Configurations We implemented two modes of
PDFObj2Vec: pre-trained and general. For the first mode, we pre-
trained PDFObj2Vec schemes based on Word2Vec, PV-DM, and
BERT, setting the embedding dimension of each model to 512. The
specific training hyperparameters for these three pre-trained mod-
els are provided in Appendix D. For the general mode, we applied
three off-the-shelf general embedding models: BERT Base [13, 47],
CodeT5 [59], and text-embedding-3 [39]. BERT Base is a general
embedding model for natural language, CodeT5 is a pre-trained em-
bedding model for programming languages based on the T5 archi-
tecture, and text-embedding-3 is OpenATr’s latest third-generation
embedding model. For these three schemes, we used their default
embedding dimensions of 768, 256, and 1536, respectively.

PDF Malware Classifiers Configurations We reproduced two
state-of-the-art PDF robust malware classifiers [7, 57], which demon-
strate excellent adversarial robustness. One is robustly trained
classifier (RTC). Chen et al. [7] used symbolic interval analysis
to robustly retrain a deep neural network based on the robustness
attributes defined by the structural paths. The other is conserved
features trained classifier (CFTC). Tong et al. [57] adversarially
retrained a support vector machine classifier based on the conserva-
tive features defined by the structural paths. Both RTC and CFTC’s
reproduction details and hypermeters are provided in Appendix F.
We followed the training setup on the baseline contagio dataset, as
used by RTC and CFTC. Our implementation of the GIN-based clas-
sifier was also trained on this baseline dataset with hyperparameter
details provided in Appendix E. All experiments were conducted
on a machine with an Intel Core i7-12700K, NVIDIA GeForce GTX
3090, and 64 GB RAM running Ubuntu 20.04.

Table 2: Parser performance comparison results.

Parser Language Version Errors
pdfrw Python 2018 4640
poppler C++ 2024 632
pdfminer Python 2023 937
MuPDF C 2024 238
borb Python 2024 5971
QPDF C++ 2024 592
Poir (Ours) Python 2024 0

6.2 Parser Performance

We selected the latest versions of six baseline parsers, with the ex-
ception of pdfrw, which was last updated in 2018. Parsing tests were
conducted on both the baseline dataset and an extended dataset
containing malicious samples with malformed formats that do not
impact their malicious functionality. The experimental results are
presented in Table 2. An error refers to a failure that occurs when
the parser encounters a malformed PDF, causing the parsing pro-
cess to terminate prematurely. As a result, the parser is unable to
complete the full analysis of the document, which further disrupts
the extraction of PDF features.

Poir has the highest tolerance among these baseline parsers.
Unlike other Python-based parsers, Poir does not rely solely on
the cross-reference table to retrieve objects. When there are errors
or incorrect references in the cross-reference table, these Python-
based parsers fail to correctly retrieve object references. Poir ad-
dresses this issue by scanning each object and performing error
correction. Our approach minimizes the failure or incompleteness
of feature extraction due to parser errors during the extraction
process, demonstrating the highest tolerance for poorly formatted
files. We have made efforts to avoid parsing errors and pave the
way for the conversion and pre-training of PDFODbj IR.

6.3 Evaluation of Embedding Models

We used two size of corpus to pre-train PDFObj2Vec: one consist-
ing solely of the baseline dataset with 20k samples, and another
combining both the baseline and extended datasets into a larger
corpus of 65k samples. The minimum word frequency was set to 1,
resulting in vocabulary sizes of 5,554 and 32,347, respectively, to
ensure coverage of less frequent malicious terms. Both corpus sizes
were split into training, testing, and validation sets in a 7:2:1 ratio.

Due to the differing training objectives of the three embedding
models, we devised a unified evaluation strategy. Specifically, we
designed cloze tasks on the validation set by randomly generating
sentences with missing words and having the models predict these
missing words. All models were trained for 100 epochs, and we
observed convergence after 20 epochs; therefore, evaluations were
based on the performance at the final epoch. The experimental
results, presented in Table 3, show that BERT achieved the highest
predictive accuracy for both corpus sizes. Interestingly, all three
embedding schemes exhibited better performance on the smaller
corpus than on the larger one. Word2Vec and PV-DM experienced a
drop in accuracy of approximately 6.5% to 6.8% when transitioning
from the smaller to the larger corpus. This decline can be attrib-
uted to the fact that the vocabulary size of the larger corpus is six
times that of the smaller corpus, making the prediction task more
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Table 3: Prediction accuracy of pre-trained PDFObj2Vec.

Embedding Schemes  Corpus size = 20k  Corpus size = 65k

Word2Vec 0.7395 0.6745
PV-DM 0.8857 0.8159
BERT 0.9802 0.9796

complex. In contrast, BERT demonstrated superior and consistent
performance, effectively overcoming this issue.

6.4 Evaluation of PDF Malware Classification

In this subsection, we evaluated the performance of PDFObj2Vec,
with different pre-training schemes, corpus sizes, and embedding
modes, in the downstream task of PDF malware classification.

Classification Experiment Setup Following the settings of prior
research [7, 57], we splited the baseline dataset into training and
test sets with a 7:3 ratio. We embedded the ORG nodes of the sam-
ples using various modes and schemes of PDFObj2Vec to generate
AORG. Subsequently, we trained the GIN classifiers on the baseline
training set, then we test and evaluate these GIN classifiers on both
the baseline test set and the extended dataset. The comprehensive
experimental results are summarized in Table 4.

Impact of Pre-Trained Schemes and Corpus Size on Perfor-
mance In the pre-trained mode, regardless of corpus size (20k or
65k), BERT demonstrated the best overall performance, achieving
the highest metrics across both the baseline and extended datasets.
As the corpus size increased from 20k to 65k, all three schemes
showed improvements in their metrics on the baseline dataset. How-
ever, performance on the extended dataset varied. Word2Vec and
BERT showed notable gains: Word2Vec-65k improved accuracy by
2.02% over Word2Vec-20x, and BERT-65K by 2.22% over BERT-20K.
In contrast, PV-DM-65k showed a drop in accuracy compared to
PV-DM-20xk. Experimental results show that a larger pre-training
corpus enhances the BERT scheme’s ability to represent PDFObj IR,
thereby improving the generalization of the GIN classifier. On the
extended dataset, both true positive rate (TPR) and true negative
rate (TNR) improved, with TNR much higher than those of the
Word2Vec and PV-DM schemes. TPR and TNR present each classi-
fier’s ability to correctly identify both malicious and benign samples.
This indicates that the BERT-integrated GIN classifier offers supe-
rior classification and generalization performance, particularly for
benign samples.

Additionally, we evaluated downstream task performance using
intermediate models from different stages of the pre-training pro-
cess, with results shown in Figure 12 in Appendix G. For the BERT
scheme, performance gradually stabilized as training progressed
and the model converged. In contrast, Word2Vec and PV-DM ex-
hibited less stable, indicating a more erratic convergence. BERT’s
consistent outperformance can be attributed to its bidirectional
encoder architecture and pre-training objectives, which enable it
to capture complex semantic relationships and model structural
dependencies among PDF objects in the ORG structure.

General Embedding Modes We evaluated three widely-used, gen-
eral embedding models: BERT Base, CodeT5, and text-embedding-3,
on the PDFODj IR to assess the effectiveness of applying general
embeddings directly to classification. The results are presented in
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Table 4: PDF malware classification results.

Classifiers / Baseline Dataset (%) | Extended Dataset (%)
Emb. Schemes | Acc TPR TNR | Acc TPR  TNR

RTC [7] 99.15 99.97 98.11 | 85.15 97.04 74.72
CFTC [57] 97.58 99.75 95.04 | 92.04 9731 87.41

Word2Vec-20k | 99.67 99.57 99.78 | 93.00 96.94 89.54
PV-DM-20k 99.79 99.71 99.81 | 93.29 97.26 89.80
BERT-20kx 99.90 99.97 99.89 | 9440 97.82 91.40

Word2Vec-65k | 99.82  99.68 99.85 | 95.02 97.65 92.72
PV-DM-65k 99.84 9994 99.74 | 91.71 97.45 86.68

BERT-65k 99.93 9994 9993 | 96.62 98.14 95.23
BERT Base 99.84 99.83 99.85 | 92.67 97.98 88.02
CodeT5 99.89 9991 99.85 | 9456 98.34 91.24
text-emb.-3 99.99  99.99 99.99 | 97.31 9833 96.42

the last three rows of Table 4. The experimental results show that
among the models tested on PDFODbj IR, text-embedding-3 achieves
the best performance in the downstream task of PDF malware clas-
sification. This can be attributed to its pre-training on a large-scale
corpus, which provides it with numerous parameters that enhance
its capability. However, text-embedding-3 is computationally ex-
pensive and cannot be deployed locally. In contrast, both BERT Base
and CodeT5 are more cost-effective and can be deployed locally.
Additionally, since CodeT5 is specifically pre-trained for program-
ming languages, and PDFODb;j IR represents program-like structures,
CodeT5 outperforms the general BERT model in PDF malware clas-
sification tasks. In the pre-training mode of PDFObj2Vec, the BERT
scheme, which is specifically pre-trained for PDFObj IR, outper-
forms both the general BERT Base and CodeT5 models in down-
stream tasks. Although it slightly lags behind text-embedding-3 in
overall accuracy, it performs better against adversarial attacks, a
point we will discuss in the next subsection. Furthermore, we also
explored the performance of directly embedding the raw content of
PDF objects using these general embedding models. We evaluated
their classification performance under the same experimental setup,
and we will discuss these results in our ablation study (see §6.6).
Compared to Existing Classifiers Although RTC and CFTC
achieve lower accuracy than our proposed classifier on the baseline
dataset, their adversarial robustness is second only to BERT-65K,
which we will discuss in the next subsection. On the extended
dataset, RTC shows a significant drop in accuracy, while CFTC main-
tains a moderate level of performance, comparable to Word2Vec and
PV-DM. Both RTC and CFTC experience only slight decreases in
TPR, remaining around 0.97. However, their low accuracy is mainly
due to a sharp decline in TNR, indicating a significant increase in
the false positive rate (FPR). This due to that these methods overem-
phasize detecting adversarial malicious samples, at the expense
of accurately classifying benign samples. In contrast, our method
demonstrates better generalization in identifying benign samples,
which are more diverse in the extended dataset compared to the
baseline.

6.5 Adversarial Attack

In this subsection, we evaluate the robustness of our proposed
PDF malware classifier against four distinct types of adversarial
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Figure 10: Result of reverse mimicry attack.

attacks: gradient-based attack, genetic algorithm-based attack, ran-
dom noise attack, and reverse mimicry attack. We present a sum-
mary of these adversarial attacks in Table 11 in Appendix H. The
primary aim of this evaluation is to understand how different at-
tack strategies affect the model’s performance and to assess the
effectiveness of the model’s design in enhancing robustness. Ad-
versarial robustness was assessed using test robustness accuracy
(TRA), which measures the proportion of samples that the model
can still classify correctly given a specific test input.

Gradient-Based Attack We adapted gradient-based white-box at-
tack method (GradArgmax) from graph classification tasks [10, 58]
for PDF classification based on AORG. GradArgmax attack uses
classifier gradient information to generate adversarial samples,
aiming to reduce the model’s confidence in classifying the target
sample. This approach evaluates the robustness of the integrated
PDFObj2Vec graph classifier under fine-tuned adversarial exam-
ples. In this scenario, we assume the attacker has full access to
the model’s gradient information, with no perturbation distance
constraints. The attack budget is set to 1000, consistent with other
graph attack study [58]. The goal is to identify which graph edges
most influence the target classification by evaluating their effect
on the loss function using greedy strategy. Specifically, for each
candidate edge, its gradient value is computed: if negative, the edge
is considered for removal; if positive, it is considered for addition.
Since the number of nodes and edges in AORG varies, smaller
graphs may require only slight perturbations, while larger graphs
need more significant ones. To address this, we introduce the rela-
tive perturbation ratio (RPR), defined as the ratio of perturbations
to the maximum number of edges in the AORG.

We computed the RPR for adversarial samples generated by
the GradArgmax attack and plotted the RPR-TRA curve, shown in

performance.

Genetic Algorithm-Based Attack We implemented a genetic
algorithm-based black-box attack (GeneticAlg) [10], where the at-
tacker has no access to the model’s internal details, only the output
confidence scores. GeneticAlg leverages a genetic algorithm to op-
timize the structure of the input graph, effectively bringing the
sample closer to the model’s decision boundary. This approach is
used to evaluate the defensive capabilities of our proposed graph
classifier against adversarial samples generated through complex
search strategies. And, GeneticAlg consists of five key components:
population, fitness function, selection, crossover, and mutation. The
attack involves edge flipping, node injection, and deletion. Each
generation evolves based on the fitness of the mutated samples,
guiding the direction for subsequent generations. Following the
experimental setup in [10], we set the attacker query limit to 1000,
the population size to 100, and the number of generations to 10.
The results, shown in Figure9(b), indicate that Word2Vec-20x and
PV-DM-20K performed the worst in terms of TRA, while the other
models maintained TRA values above 0.98, with text-embedding-3
and BERT-65k performing the best. Overall, the results suggest that
our proposed classifier demonstrates strong defenses against the
GeneticAlg attack.

Random Noise Attack We extended node classification attack
methods from [30] to perturb node features for whole-graph clas-
sification. Specifically, we injected Gaussian noise into the node
features of the AORG graph to evaluate the model’s resistance to
random perturbations, thereby testing its robustness under noisy
conditions. To select the attack nodes, we employed degree central-
ity, as it provides a reasonable baseline for graph-based attacks [37].
High-degree nodes were prioritized because they play a crucial
role in information propagation and are more likely to significantly
impact the overall graph structure. Gaussian noise was then in-
troduced to perturb the features of these nodes. In this black-box
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Table 5: TRA under GradArgmax and GeneticAlg attacks at
maximum query budget.

Attack Classifiers / Emb. Schemes

Method RTC CFTC BERT-65k text-embedding-3
GradArgmax 0 0.94 0.98 0.93
GeneticAlg 0.81 0.71 0.99 0.99

attack scenario, the attacker only has access to the model’s binary
output (0 or 1) and is limited to a maximum of 1000 queries. The
experimental results, shown in Figure 9(c), indicate that Word2Vec
exhibited the lowest robustness under these conditions. In con-
trast, BERT-65k and BERT-20k showed the highest performance,
with TRA values of 1 and 0.999, respectively. It suggests that BERT
scheme are more resilient to adversarial noise, particularly with re-
spect to node feature perturbations. The TRA of text-embedding-3
showed a significant decline under the random noise attack, com-
pared to the GradArgmax and GeneticAlg attacks. This indicates
that its embeddings are highly susceptible to noise interference.

Reverse Mimicry Attack We used the reverse mimicry adversar-
ial attack [33] for evaluation, which has been evaluated in previous
state-of-the-art robust PDF malware classifiers [7, 57]. This black-
box attack is independent of specific classifiers or features, making
it suitable for evaluating our proposed graph classifier as well as
the RTC and CFTC classifiers, which employ different models and
features. Unlike other attacks, reverse mimicry directly manipulates
the sample space by injecting malicious payloads into benign sam-
ples, thereby generating realizable adversarial examples designed
to evade classification boundaries. This approach enables a rigorous
evaluation of the model’s robustness against intentionally disguised
adversarial samples.

We followed the adversarial evaluation settings from [7, 57],
using 500 seed samples to create adversarial samples. A Cuckoo
sandbox [48] was set up to test the adversarial examples. If they
generated the expected network communication metrics, they were
deemed legitimate. The experimental results, shown in Figure 10,
reveal that with a 20k corpus size, only BERT-20x demonstrated
some resistance to adversarial samples. However, with a 65k cor-
pus size, all three PDFObj2Vec pre-training models successfully
detected adversarial samples. BERT-65k achieved a TRA of 1, while
the other models had TRA values below 0.2. These findings suggest
that BERT-65k is particularly effective at capturing the semantic
information of nodes. When malicious payloads are injected into
benign samples, the corresponding malicious nodes are also present
in the adversarial samples. BERT-65k accurately represents these
embeddings and, through the node propagation and aggregation
process in GIN, successfully identifies the adversarial samples. No-
tably, RTC and CFTC achieved a TRA of over 0.5 but at the cost of
significantly reduced classification accuracy, as shown in Table 4.
Specifically, CFTC achieved only 97.58% accuracy on the baseline
dataset. And both CFTC and RTC exhibited significantly lower TNR
compared to our proposed classifier. This indicates a higher FPR
for CFTC and RTC, for instance, CFTC reached an FPR of 4.96% on
the baseline dataset and an FPR of 12.59% on the extended dataset,
substantially higher than that of BERT-65k.

Results Analysis We evaluated our proposed classifier using
four adversarial attack methods that target different space. Among
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Table 6: Results of ablation study. R refers to embeddings
applied directly on raw content.

Emb. Classifiers Baseline Extended Adv Samples
Schemes Acc(%) Acc(%) TRA

BERTR-20x GIN 99.48 92.33 0.42 — 0
BERT BaseR GIN 98.55 85.11 0-0
CodeT5R GIN 99.71 91.75 00
BERT-20k DNN 99.80 89.85 042 -0
PV-DM-65k DNN 99.66 92.84 0.15—0
BERT-65k DNN 99.92 96.10 1-0
text-emb.-3 DNN 99.82 89.75 032—0

these, the reverse mimicry attack operates in the sample space and
simulates a realistic black-box scenario. In contrast, GradArgmax,
GeneticAlg, and RandomNoise are feature-space attacks that, while
less realistic, are widely used to stress-test classifiers under strong
assumptions [7, 10, 30, 58]. These attacks help reveal how vulnerable
amodel may be when its decision boundaries are exploited, offering
valuable insights into worst-case robustness.

The graph features used in our proposed GIN classifier differ
fundamentally from the Hidost features employed by RTC and
CFTC. Consequently, the aforementioned feature-space attacks
(GradArgmax, GeneticAlg, and Random Noise) are not directly
applicable to RTC and CFTC, as they are designed to perturb graph
nodes and structures. To enable a fair comparison, we implemented
GradArgmax and GeneticAlg attacks specifically tailored for Hidost
features using bit-flipping as the basic operation with the same
attack intensity. The TRA results are shown in Table 5, with TRA-
versus-perturbation curves shown in Figure 13 in Appendix H. Since
Hidost features are binary (0 or 1), adding random noise would
produce non-binary values, invalidating the feature representation;
thus, RandomNoise attacks were not evaluated for these classifiers.
The results indicate that under GradArgmax, RTC’s TRA drops to
0 while CFTC achieves a TRA of 0.94. Under GeneticAlg, both RTC
and CFTC maintain relatively high TRA, though their robustness
remains lower than that of the classifiers based on BERT-65k and
text-embedding-3.

Overall, classifiers utilizing pre-trained embedding schemes ex-
hibit stronger adversarial robustness than those using general em-
beddings. In particular, the graph classifier integrated with BERT-
65k demonstrates the highest adversarial resilience. This can be
attributed to the architecture of BERT and the design of the NOP
and MLM training tasks, which not only enable BERT to learn node
semantic embeddings but also capture the contextual relationships
between nodes. As a result, the BERT-65k integrated graph classifier
achieves superior robustness to both graph structure perturbations
and node feature disturbances.

6.6 Ablation Study

In this section, we conduct ablation studies to evaluate the im-
pact of PDFODbj IR and ORG on the performance of PDF malware
classification. Specifically, we design two experiments: 1) remov-
ing PDFOD;j IR and using standard BERT pre-training and general
embedding schemes on the raw content of PDF objects; and 2) re-
moving the ORG structure and GIN classifier, replacing them with
a conventional deep neural network (DNN) classifier.
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Impact of Embedding Raw Content on Classification In this
experiment, we first pre-trained the raw content of the PDF object,
shown in Figure 1(b), using the standard BERT pre-training method
with default preprocessing and tokenization configurations. This
pre-training was performed on the baseline dataset (with a cor-
pus size of 20k samples). Then, we applied the general embedding
schemes from §5.3 to embed the raw content of PDF objects, obtain-
ing node embeddings. We then evaluated their performance on the
PDF malware classification task, maintaining the same GIN model
and training settings as described in §5.4. The results, presented
in the first three rows of Table 6, indicate that the BERTR scheme,
pre-trained on raw content, performs worse than the BERT scheme
pre-trained on PDFODj IR (as shown in Table 4). Specifically, with
a corpus size of 20k, the accuracy on the baseline dataset decreased
by 0.42%, and on the extended dataset, it dropped by 2.07%. Further-
more, the results show that directly applying general embedding
schemes to raw content performs worse than applying them at
the PDFODbj IR level. For instance, the BERT BaseR scheme demon-
strated a significant performance drop: compared to BERT Base in
Table 4, accuracy on the baseline and extended datasets decreased
by 1.29% and 8.56%, respectively. Similarly, CodeT5® saw accuracy
reductions of 0.18% and 2.84%, respectively. Detailed results are
provided in Appendix L.

Additionally, we tested the resistance of these schemes to ad-
versarial samples generated by reverse mimicry. None of these
schemes showed resistance to adversarial samples. The TRA of the
BERT-20k scheme on PDFODj IR against the reverse mimicry attack
dropped from 0.42 to 0. The results from our experiments highlight
the pivotal role of PDFObj IR in enhancing the performance of PDF
malware classification tasks. Compared to raw content, PDFObj
IR provides a more abstract and refined representation of the PDF
object content by removing irrelevant strings such as symbols,
special characters, and escape sequences. In contrast, embeddings
applied directly to raw content are influenced by these extraneous
strings, which are incorporated into the node embeddings, lead-
ing to inaccuracies in classification. The pre-training process on
PDFODj IR enables embedding schemes to more precisely capture
the semantics of PDF objects, ultimately improving classification
performance.

Impact of ORG Structure on Classification To evaluate the
impact of graph structures on classifier robustness, we removed
the ORG structure and GIN classifier. Given the variability in the
number of objects across PDF samples, we represented each PDF by
averaging the semantic vectors of all objects and used this represen-
tation as input to a DNN classifier. We selected four PDFObj2Vec
schemes that demonstrated some adversarial robustness, as dis-
cussed in §6.5. We trained the DNN classifier on the baseline dataset
and assessed its performance. The experimental results highlight
the critical importance of the ORG structure in enhancing both the
performance and robustness of PDF malware classification. When
the ORG structure was removed and a DNN classifier was used
with semantic vectors of PDF objects, the classification accuracy on
both the baseline and extended datasets declined. Furthermore, the
DNN classifiers completely failed to exhibit resistance to adversarial
samples, rendering them unable to detect such attacks effectively.

The strength of ORG lies in its ability to model the inter-object
relationships and structural dependencies within a PDF. Unlike
simple vector averaging, which treats objects as independent and
unstructured entities, ORG represents PDFs as a graph, where nodes
capture the semantic properties of objects and edges encode their
reference relationships. This structured representation enables the
classifier to capture global patterns and contextual dependencies
that are crucial for distinguishing between benign and malicious
PDFs, especially in complex attack scenarios. Additionally, ORG is
well-suited for integration with graph neural networks, such as the
GIN classifier, which are inherently designed to learn from graph-
structured data. By combining semantic and structural modeling,
this approach allows the classifier to achieve high accuracy while
robustly defending against adversarial attacks, as evidenced by the
notable performance gains in the experiments.

7 Discussion & Conclusion

Obfuscation Obfuscation is a common tactic in malware to evade
detection, and similar techniques, such as keyword obfuscation, are
used in PDF malware to bypass detection mechanisms [29, 43, 56].
For example, replacing Name /URI with /#55RI, prevents classifiers
that rely on keyword statistical features from obtaining correct
statistical features and also hinders analyzers that use Hidost path
features from extracting the correct path features. Our method
mitigates such obfuscation by retaining the obfuscated keyword
data in the PDFODj IR corpus, allowing us to learn the obfuscated
semantics. Additionally, we integrate the structural features of
ORG to classify PDF malware, enhancing the precise detection of
obfuscated PDF malware.

Concept Drift Over time, the effectiveness of traditional ma-
chine learning models trained on outdated datasets tends to de-
cline [4, 21, 61]. As multimedia evolves, benign PDFs are advanc-
ing faster than malicious ones, altering their characteristics sig-
nificantly. Consequently, SOTA classifiers, including RTC [7] and
CFTC [57], struggle to accurately identify new benign samples of
the extended dataset, leading to lower accuracy, as shown in Ta-
ble 4. Since PDFODbj2Vec is trained on PDFODbj IR, a fundamental
representation of PDF objects, the basic changes in PDFODbj IR are
minimal, regardless of variations in the PDF structure. Therefore,
our proposed method is minimally affected by concept drift. The
experimental results presented in Table 4 demonstrate that our pro-
posed approaches, which leverage PDFODbj IR, not only outperform
methods that do not utilize this representation but also surpass
SOTA classifiers across all metrics on the most recent extended
dataset.

Conclusion In this paper, we present PDFOb;j IR, an intermediate
representation framework specifically tailored for PDF analysis.
Leveraging PDFODbj IR, we constructed an Object Reference Graph
(ORG) and developed a method for node semantic extraction, termed
PDFObj2Vec. Additionally, we designed a classifier based on the
Graph Isomorphism Network (GIN) and evaluated the performance
of PDFObj2Vec-GIN across multiple datasets and against adversarial
samples. The results demonstrate that PDFObj2Vec-GIN achieves
exceptional classification performance and exhibits significant ad-
versarial robustness, highlighting the effectiveness of our proposed
analytical framework.
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