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Abstract

The Partial Credit Model (PCM) of Andrich
(1978) and Masters (1982) is a fundamental
model within the psychometric literature with
wide-ranging modern applications. It models the
integer-valued response that a subject gives to an
item where there is a natural notion of monotonic
progress between consecutive response values,
such as partial scores on a test and customer rat-
ings of a product. In this paper, we introduce a
novel, time-efficient and accurate statistical spec-
tral algorithm for inference under the PCM model.
We complement our algorithmic contribution with
in-depth non-asymptotic statistical analysis, the
first of its kind in the literature. We show that
the spectral algorithm enjoys the optimal error
guarantee under three different metrics, all under
reasonable sampling assumptions. We leverage
the efficiency of the spectral algorithm to propose
a novel EM-based algorithm for learning mix-
tures of PCMs. We perform comprehensive exper-
iments on synthetic and real-life datasets covering
education testing, recommendation systems, and
financial investment applications. We show that
the proposed spectral algorithm is competitive
with previously introduced algorithms in terms of
accuracy while being orders of magnitude faster.

1. Introduction

Item Response Theory (IRT) is the study of how people
make choices in the presence of uncertainty. Since its popu-
larization in the psychometric literature in the 1960s with the
Rasch model for binary response data (Rasch, 1960), IRT
has been utilized in many applications such as education
testing, recommendation systems, evaluation of machine
learning models, among others. Our work focuses on a
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fundamental IRT model known as the Partial Credit Model
(PCM) (Andrich, 1978; Masters, 1982). The PCM is a gen-
eralization of the Rasch model to multi-level response data.
It models the ordered discrete response of an individual
[ to an object 7. Examples of ordered discrete responses
include product ratings and test scores where there is a
natural notion of monotonic progress from one level of re-
sponse to the next (e.g., a product receiving 3 stars out of
5 stars review, a student scoring 6 out of 10 in a test). Let
X, €40,1,2,..., K}, where K is a fixed integer, denote

the response of individual [ with parameter 6; € R to item
T
i with parameter 3; = (B;‘(l)7...,6;‘(K)) € RX. The

PCM assumes that

Qu™M..Q; %

i ifk=0
Pr(Xy = k) = { el if k= K
Pl(,il)-..P[(ik)]%f(;Jrl) Q(K) otherwise
(H
where Pl(lk) = % ((") =1~ Pl(ik) and Nj; =

[T Q(’“ D+ TSR R Q)
e, h is a normahzatlon factor. To build an intu-
tion behind (1), consider the context of education testing,
P( ) is the probability that a student solves the k-th step of
a problem The probability that a student receives partial
grade k € [K] is proportional to the probability that the
student simultaneously solves all the steps 1, ..., k while
simulatenously fails to solve steps k£ + 1, ..., K where solv-
ing each step is independent of one another. In this sense,
we can loosely interpret 6 as the knowledge of student /
and B;‘(k) as the difficulty of step k of problem .

In this work and many classic papers in the PCM literature,
the focus is on the one-sided item estimation problem where
the goal is to estimate 3* accurately. Knowledge of 5*
can be used to calibrate the scores/difficulty of different
versions of a standardized test, or to characterize items for
recommendation systems applications. The user parameters
can also be easily recovered from the data given an estimate
of 3* (Andrich, 1978; Masters, 1982). Previous inference
approaches in the PCM literature include the Maximum
Marginal Likelihood Estimate (MMLE) (Johnson, 2007)
and Joint Maximum Likelihood Estimate (JMLE) (Andrich,
1978; Masters, 1982). In JMLE, both the user parameters
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0* and the item parameters 3* are jointly estimated by
maximizing the full log likelihood function.
91 ) ﬁz) .

On the other hand, in MMLE, the statistician first speci-
fies a prior distribution over the user parameters Dg-. The
marginal likelihood is a function over 3 which is obtained
by integrating the joint likelihood function with respect to
the measure Dy~. The item estimate is obtained by maxi-
mizing the marginal likelihood.

log Pr (Xli

OmLE, BMLE = argmax Z
0.8 l€[n],i€[m]

log Eg,~p,. Pr (Xli

BummMLE = arg;nax Z

l€[n],i€[m]

While widely used, these popular approaches have their own
limitations. It is well known that JMLE may produce in-
consistent estimate for 3* when the number of users grows
much more quickly than the number of items (Neyman
& Scott, 1948; Andersen, 1973; Haberman, 1977; Ghosh,
1995). This behaviour is caused by the presence of many
more ‘nuisance’ user parameters when the objective is to es-
timate (3 and is observed in experiments as well (cf. Figure
1). MMLE, on the other hand, tends to be more accurate
and faster than JMLE but depends on the accuracy of the
prior distribution Dy~, which may not be readily available
in practice. This means that the algorithm requires careful
hyperparameter selection which may add a layer of com-
plexity to inference. For datasets with a large number of
items and users, we also observe that JMLE and MMLE
incur significant numerical issues related to optimization
instability and slow convergence. In recent years, spectral
estimators for IRT models (Choppin, 1982; Saaty, 1987;
Garner Jr, 2002; Nguyen & Zhang, 2022; 2023b) have re-
ceived increasing attention as they are competitive to the
classical inference methods in terms of accuracy while of-
ten being significantly faster, more numerically stable and
requiring little hyper-parameter optimization.

Our Contribution. We propose a novel spectral algorithm
for inference under the PCM. We show, for the first time in
the literature of the PCM, an inference algorithm that comes
with a finite-sample error guarantee. We show that under
reasonable sampling conditions, the spectral algorithm in
fact achieves the optimal average estimation error, almost
optimal entrywise estimation error and optimal sample com-
plexity for top-L ranking. As an algorithmic extension, we
exploit the efficiency of the spectral algorithm and propose
a weighted generalization of the spectral algorithm. The
weighted spectral algorithm is a key ingredient in a novel
EM algorithm for learning a mixture of PCMs. We perform
detailed experiments to show that the spectral algorithm is
competitive in terms accuracy with the previously proposed
estimators while being significanly faster. Our experiments

9l>5i> :

span multiple different datasets from small scale education
testing datasets to large recommendation systems datasets
with hundreds of thousands of users and items. We also
experiment with a novel application of the PCM to finan-
cial investment where we show that the spectral algorithm
can be used as an accurate estimator within a meta trading
strategy that achieves meaningful returns that outperform
the aggregate market baseline.

Related Works. IRT was popularized by the celebrated
works of George Rasch (Rasch, 1960) in the 1960s under
the context of psychological testings. The namesake model,
the Rasch model, is a probabilistic model over binary re-
sponse data. Over the years, many variants of the Rasch
model as well as more complicated models have been pro-
posed including the Partial Credit Model (Andrich, 1978;
Masters, 1982) and the Graded Response Model (Samejima,
1969). In recent years, IRT has been studied for applications
beyond psychometrics including recommendation systems
(Chen et al., 2004; 2005), evaluation of machine learning
algorithms (Chen et al., 2019¢; Chen & Ahn, 2020), active
learning for computerized adaptive testing (Fries et al., 2014;
Zhuang et al., 2023). Despite these wide ranging applica-
tions of IRT, statistical understandings of fundamental IRT
models such as the Rasch model and the PCM model un-
der realistic finite sample settings are only recently studied
(Chen et al., 2019b; 2021; Nguyen & Zhang, 2022; 2023b).
Recently, mixture models of PCMs have been applied to
model response population heterogeneity in psychometric
tests (Eid & Rauber, 2000; Kim et al., 2017). However,
previous models assume availability of user features (i.e.,
demographic information) that help distinguish between
the subgroups. Our approach, however, requires no user
covariates.

2. Model Description

Let n be the number of users and m the number of items. To
allow for missing data, let A;; € {0, 1} denote whether user

l is shown item 4. Let 3* = (ﬁ*(l), RN B*(K)) € RmxK

where 5**) = (ﬁf(k), o B:n(’”)T e R™. Letp € (0,1]
and A;; ~ Bernoulli(p) independently for every user-item
pair. The user-item response is X;; € {x,0,1,...,K}
where X;; = * if A;; = 0. Each response, conditioned
on A;; = 1, is independently distributed according to (1).
Let X; = (Xp,... ,le)—r denote the response vector
of user [. Note that there is an inherent identifiability is-
sue associated with translation of the parameters 3* and
6*. That is, two PCMs parametrized by {3*,0*} and
{B* + al,1),0* + al,} for any a € R are distribu-
tionally indistinguishable. Without loss of generality, one
may then assume that (3*1) 1,,) = 0 where (., .) is the
vector inner product. We further assume that the parameters
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of the model are bounded, 6}, < 6 < 0% VI € [n]
and 6111111 < ﬂ*(k) < ﬁ* Vi € [m],k S [ ]fOf some

constants 0% ins O o Bitins ,Brmx We use ||.|| » to mean the
~ to mean the /. norm and I {.} to

mean the indicator function.

3. Algorithm

In this section, we describe our spectral algorithm for the
PCM, detailed in Algorithm 1. The algorithm takes in as
input a response matrix X € {x,0,..., K}"*™ and re-
turns parameter estimate 3 = (81, ... ﬂ K)) € RmxK
where (81 1,,) = 0. We refer to the final output of
the algorithm 3 as an anchored estimate. At a high level,
the algorithm can be divided into two phases. In the first
phase, we obtain normalized estimate B*) that satisfies
(8% 1,,) = 0 and is level-wise close to **) by a shift.
That is B(k) +6®1,, ~ g*® for some §*) € R. The
second phase of the algorithm estimates this shift §(¥).

In the first phase, we iterate through K levels. In each level,
we construct a m-state Markov chain M (%) . A key quantity
used in the algorithm is the following measurement. For
i # jand k, k' € [K], define

AR ZA“AU]I{X“_le]_k} @)
=1

The pairwise transition probability is defined in (3) where
the factor d is any sufficiently large normalization factor to
ensure that no entries of Mij(k') are negative. For consis-

tency, we set d = max;e[p) {Z i By } The stationary

distribution of M *), denoted as 7(*), can be obtained using
any eigenvector method (e. g power iteration). We recover
the normalized estimate [3 (k) using an entrywise log trans-
formation and normalization. The intuition for the Markov
chain construction is explained in the next section.

It is worth pointing out that when K = 1, the first phase
of our proposed spectral algorithm reduces to the inference
algorithm for the Rasch model for binary response data in
Nguyen & Zhang (2022). That algorithm, however, only
produces a normalized estimate. In the PCM model, for
k>1, (6*(]“) 1,,) # 0 in general. We therefore develop
a novel procedure in the second phase of the algorithm.
Specifically, for each level k& € {2,..., K}, we estimate
an appropriate scalar shift §*) from the response data such
that ) = B(R) 4 §(*) ~ B*(¥) Recall that by our identi-
fiability ensuring assumption, §(1) = §*(1) = 0.

Note that in both phases of the algorithm, each iteration
(each level k) of the for loop can be performed in parallel.
A thoughtful implementation of the spectral algorithm can
therefore be significantly accelerated.

Algorithm 1 Spectral Algorithm

1: Input: Response matrix X € {*,0,..., K}"*™.

2: Output: Parameter estimates 3 = (6(1), ., BE).
3:fork=1,...,K do

4 Construct a Markov chain M (%) whose entries satisfy

l Y(k,k—l) if i .
M(k)_{ 17’7&,7, 3)

g le]#M() ifi=j

where d = maxie[m] {Ej/?é,b B”/ }
5. Compute the stationary distribution 7(*) of M (¥),

Obtain the normalized estimate Bi(

6: = log(mM) —
= 3T log(m; (M) for i € [m).

7: end for R

8: Set BN = () and 6 = 0.

9: fork=2,..., K do

10:  Estimate the shift (%) as

305 (k—1,1)
. Zz je[m]:¢ 'eﬂ’ ’L
5k — log JE[m]i#] e j(k,o) (4)
igebmliizs € Yij

11 Set g% = k) 4 s

12: end for
4. Analysis

In this section, we provide an intuition for the principles
underlying Algorithm 1 and the key theoretical guarantee
enjoyed by the algorithm.

The Normalized Estimate B(’“). By carefully inspecting

(1), one could verify that for any k& € {1,..., K} and any
1,1, the following equation holds.
E[H{Xh =k - 1}] - PI'(X“ =k — 1) . eBsz)
E[l{X;=Fk}] =~ Pr(Xu=k) &

We can remove the user-specific parameter §; by noting that

eﬁ;(k)

EM{Xy=k-1)] E[{X;=k)] _
eﬂ;(’v)'

E{Xu =k}] E[{X;; =k —1}]

We emphasize that by design, the spectral algorithm is ag-
nostic of any assumptions about the distribution of user
parameters. Rearranging the terms of the display above and
summing over all item pairs ¢ # j and user [ € [n], we get

ISR Xy =k -1, Xy = k)]
=1

=SSN B Xy =k, Xy =k - 1]
=1
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e/;:‘(k)
B* (k) »
e il

2

By defining w;k(k) = we rewrite the above as

«(k kk— _x(k kk—
MR [Yﬁ( 1)} ) [Yi]( 1)} .

This condition is also known as detailed balance in Markov
chain analysis. Consider an idealized Markov chain M ™ (k)
whose transition probabilities are defined as

R CE SP L B T

The stationary distribution of the above Markov chain is
precisely (k) (cf. Lemma A.18). The Markov chain
constructed in (3) is an empirical estimate of this Markov
chain. Given a sufficiently large sample size n, the station-
ary distribution 7(¥) will be close to the idealized stationary

5 (K
distribution 7**). Let B*( - 5*(k) — 1,,6*®) | where
5 (k) — %(ﬁ*(k), 1,,), to be the normalized version of

gx (k)
B**). One could verify that 77 ¥) = — < Nat-

B*(k)
Zie[nt] eJ
urally, if 7®) ~ 7*® then B ~ B*( ) (cf. Theorem
A.10).

Recovering the shift 5(*). To build an intuition for the
second phase of the algorithm, again inspect (1). For any
two levels k, k' € {1,..., K}, the following holds.

EI{X; =k}  Pr(Xy=k) &%
El{X;=k-1}] Pr(Xu=k—1)

B
EI{X;=k—-1}] Pr(Xy;=k-1) 5"
E[{Xy; =k} — Pr(Xy=k) e °

We remove the user-dependent factor ; by multiplying the
above two equations and rearranging the terms. We have

E[I{X; =k X;; =k —1}] %"

= E[I[{Xlz =k—- 1’le — k/}} 66;(k/) .

Sum both sides of the above equality over all pairs 7, j and
(k

over all users. Recall the definition of B* - 6*(k) —

1,, 5*F) We have

ZGBZMW(M S OEI{Xy =k X); =k —1}]

4] l€[n]
Bf(k/)_,’_é*(k’) ,
=> ¢ S EM{Xu=k-1,X; =Fk}].
i#£j le[n]

Pick k¥’ = 1 and recall that 6*) = 0. Rearranging the
above display, we have, for any k € {2,..., K}

gx (D) k—1,1
Zi,jehﬂ:i#j 66] E[)/’L(j )]

5 k) (
Ay (K
# VE[YEY)

log

i,j€[m]:i7#]

The reader can see that Line 10 of Algorithm 1 replaces
the above idealized quantity with its empirical estimate.
We will show that, given a sufficiently large sample size n,
§*) ~ §**) (cf. Lemma A.11).

The Final Estimate. The accuracy of the anchored estimate
can be expressed in terms of the accuracy of the normalized
estimate and the shift via triangle’s inequality.

-] = - s (59 5)
2 2

a ~ (k

By upper-bounding the two error terms on the RHS of
the above display across all levels, we obtain an aggregate
Frobenius norm error bound for Algorithm 1.

Theorem 4.1. Consider the uniform sampling model in
Section 2. There exist constants Cy, C(), C1, Cy that only
depend on K such that if np®> > Cplogm and mp >
Cllogn and np > Cy then with probability at least
1= 0(n1%) — O(K exp (—O(np?))) — O(K (m)~19),

. cim
18- B < =~

np

To complete our analysis, we have the following matching
lower bound which asserts the optimality, up to a constant
factor, of the spectral method. As mentioned earlier, finite
sample analysis of the PCM has not been established in the
literature and we are the first to present a matching upper
and lower bound.

Theorem 4.2. Consider the uniform sampling model in
Section 2. There exist constants c,c’ that only depend on
K such that if np > ' then there exists a class of Partial
Credit Models B such that for any statistical estimator (3',
the minimax risk is lower bounded as

. 2 c
inf sup ]E{B'—,B* }2—.
uf sup B (18- 613 > 2

Entrywise Error and Top-L Ranking Guarantee. In
certain applications (e.g., stock ranking in our experiments),
we wish to identify the ‘best’ items from user response
data. To the best of our knowledge, learning to rank from
graded response data has never been studied in the IRT
literature. Towards this end, we first propose the following
novel definition of ranking score under the PCM model.

. 1K Pr(Xy = K|6;,8))
= = L2 6
T & Pr(X = 016, B7) ©

The ranking score can be interpreted as the likelihood ratio
that a user gives an item the highest possible rating over the
lowest rating. In the top-L ranking problem, we want to find



Novel Spectral Algorithms for the Partial Credit Model

the L items with the highest scores, denoted as Sy . It can
be shown that S7 is also the set of items with the highest
negative parameter sums. That is, S§ = S (8*) where

K
argmax — Z Z @Uﬂ) . 7

SCImISI=L Ges =1

Si(B) =

This equivalency means that a PCM ranking algorithm
would run any PCM inference algorithm on user data to
obtain estimate 3 and return Sz, (3). We will show that the
fundamental difficulty of correctly finding the top-L set is
controlled by the gap between the L-th and L + 1-th item.

K
* * k x (k
AL =3 Bian™ = 8y ™ ®)
k=1

where ﬁf;] denotes the parameter of the item with the ¢-th
largest item score per (6). Via a refined analysis of the
spectral estimate, we obtain the following entrywise error
bound. Subsequently, we obtain a sample complexity bound
for top-L ranking using the spectral algorithm.

Theorem 4.3. Consider the setting of Theorem 4.1. There
exists a constant CY that only depends on K such that, with
probability at least 1—O(n=1°) —O(K exp (—O(np?))) —
O(K(m)~1?),

max
kE[K]

Hﬁ(k) _5*(1@“ . GiVlogm
oo \/np

Additionally, there exists a constant Cp, such that if np >

CLA?%m then S.(B) = St.

Due to space constraint, we defer matching lower bound
results to the supplementary materials. The key take-away
is that the spectral algorithm achieves the optimal entrywise
estimation error (up to a log factor) and the optimal sample
complexity for top-L ranking.

5. Algorithmic Extension

In this section, we discuss an algorithmic extension of our
spectral algorithm to enhance its usefulness to real life ap-
plications where the data exhibits user heterogeneity. We
propose a novel EM-based algorithm to learn mixtures of
PCM models, summarized in Algorithm 3.

A Mixture Model of PCMs. Fix an integer C, our proposed
mixture model is parametrized by C set of item parameters
Bi,..., B85 € R™*E A subtle yet important distinction
between the single model setting and the mixture setting is
that in the former we can assume without loss of generality
that (8™ 1,,,) = 0 due to the shift invariance property of
the PCM. However, in the mixture setting, assuming that
62V 1,,) = 0Ve € [C] would substantially restrict the

parameter space. Instead, we posit that the user parameters
0* are independently drawn from the same distribution with
zero mean such as the standard Gaussian distribution. For a
user [ with a latent class membership z; and parameter 6;,
her item response probabilities follow a PCM parametrized
by B, = ( ;“(1), ... ,ﬂ;‘“,(K)) and 0;. As a simplifying
assumption, we assume a uniform prior class membership
probability, Pr(z; = ¢) = & Ve € [C]. While we do not
know C' in general, in our experiments, we determine the
most appropriate number of mixture components using vali-
dation data. A mixture of PCMs is a more expressive model
than a single PCM and might be preferred in applications
where the statistician has strong reasons to believe that the
user population exhibits heterogeneity. As an example, one
may suspect that there are different groups of movie watch-
ers who tend to like different genres of movies and different
groups of students with varying academic interests who tend
to have different performance across different subjects.

A Clustering Initialization. An EM algorithm requires an
accurate initial estimate in order to efficiently converge to
a good local optimum. To this end, we propose using the
C-means clustering algorithm to cluster users into different
groups based on their response patterns. One natural idea is
to cluster the response vectors {X; }",. However, if a user
has a highly positive 6] parameter or a highly negative 0}
parameter, her responses tend to be high or low respectively,
regardless of the underlying class membership z;. As an
analogy, a very strong student with high ability parameter
0; will do well across all tests. Hence, by focusing on the
differences in responses of the same user towards differ-
ent items, we can more accurately cluster the users. This
motivates us to embed the user response X; as a pairwise
2

difference vector Z; = (Z,;;) € R(3) where

Z,jG[m]’L;é]
Zii; = AuAy (X — Xi5) - )

Let Z = (Zy,...,Z,) € R™*(%) denote the pairwise
difference matrix. Lines 1-2 of Algorithm 3 construct Z
and obtain C clusters of the rows of Z. For each cluster, we
apply Algorithm 1 on the corresponding rows of the matrix
X (Line 5).

The Spectral-EM Algorithm. Building on the Expectation-
Maximization framework, the second half of Algorithm 3
alternates between the E-step (Line 9) and the M-step (Lines
10-18) starting from the initial estimate until convergence.
The E-step computes the posterior distribution over the class

IG)XZ) =

membership of each user. Let ¢;. = Pr (zl =c

Eg,~n0,1) P | 20 = ¢| B, X, 01> which can be efficiently

evaluated using single-variable numerical integration.

Fixing the posterior probabilities Q = (qic)ic[n],ce[c]- the
M-step consists of solving C' Markov chain problems and is
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parallelizable. For component ¢ € [C], define the weighted
generalization of Y;j(k’k ) as follows.

Vi Q) 1= > @A AT{ Xy =k, Xi; = K}
1=1 | (10)
Comparing to the definition of Yij(k’k ) in (2), the weighted
generalization weighs each user response with the corre-
sponding posterior probability. The weighted Markov chain
is defined analogously to (3). For ¢ € [C] and k € [K],

B0 - J iY@ ifi 7 j
ij (Q,C)* 1 M (k) e
- Zj’;éi ij’ (Q7 C) ifi = J

(1n)

Lines 9-10 compute the normalized estimates from the sta-
tionary distribution of the weighted Markov chains. Similar
to Lines 10-11 of Algorithm 1, Line 15 of Algorithm 3 pro-
duces an anchored estimate 3. where <3£1), 1,,) = 0. The
intuition for the weighted generalization of the spectral al-
gorithm can be developed from a similar angle as the vanilla
spectral algorithm. Due to space constraint, we defer the
detailed description to the supplementary materials.

Estimating the Component-wise Parameter Shift. Step
5 and 15 of Algorithm 3 produce anchored estimate [3’0
where <B£1), 1,,) = 0. Note that in the single model setting,
because of the assumption that (3(1) 1,,) = 0, the first
level shift §(Y) = 0. On the other hand, in the mixture
setting, there is a component-wise shift 5.V that needs
to be estimated from the data such that Bﬁk) + 60(1) ~
ﬁ;‘),(k) for all ¢ € [C]. Recall the assumption that the user
parameter distribution is zero-meaned. We can then estimate
the component-wise shift from the data by maximizing the
log marginal likelihood as follows.

5. = argmax
5

Zlog Eg,~n0,1) {Pf (XuCz =c
=1

eluéc + 6]lm]l—[|;>:| .

(12)

The above optimization problem has a single variable § and
can thus be implemented using many off-the-shelf integral
optimization or approximate solvers. Lastly, we obtain the
final estimate from the shift as BC,.(k) = ng) + 56(1) 1,, for
k=1,..., K. This subroutine is summarized in Algorithm
2 and is used in Line 7 and Line 18 of Algorithm 3.

6. Experiments

In this section, we present the empirical findings to comple-
ment our theoretical contribution and showcase the useful-
ness of the spectral algorithm. The detailed description

Algorithm 2 Parameter Shift Estimation Algorithm

1: Input: Response matrix X € {x,0,..., K}"*™, pos-
terior weights Q € R"*C, estimates ,él, e ,,@C.
2: Qutput: Refined estimate 34, ..., G¢.
3: forc=1,...,Cdo
4:  Compute 50(1) per (12) and set BC,(k) = ng) +
65,11, for k € [K].
5: end for

Algorithm 3 The Spectral-EM Algorithm

1: Input: Response matrix X € {x,0,..., K}"*™, num-
ber of mixture components C'

2: Output: Component-wise parameter estimates 3. €
R™*K for ¢ € [C].

3: Embed the user responses per (9). Run the C'-means
clustering algorithm on the rows of the matrix Z. Let
Qinit € {0,1}"*¢ denote the estimated membership
matrix.

4: for cluster ¢ € [C] do

5:  Run Algorithm 1 on the corresponding submatrix X

to obtain anchored estimate ,éc.

6: end for

7: Run Algorithm 2 on X, Qj,; and {Bl, .
tain initial estimate Bjpjc.

8: fort =0,1... until convergence do

9:  Estimate the posterior distribution for | € [n],c¢ €

[0]7 qie = Pr (Zl = ¢| Beurrents Xl) .
10:  forc € [C] do
11: fork=1,...,K do
12: Construct weighted Markov chains M *)(Q, ¢)
per (11) and compute its stationary distribution,

,ﬁc} to ob-

7....(®). Recover the normalized estimate Bék) =
log (7rc7.(k)) — %ﬂog 7Tc_’.(k), 1) 1.

13: end for

14: fork=2,..., K do

15: Estimate the shift

31 ¢ (k—1,1)
Zi,je[m]:z’;éj el YLJ (Q,c)

G
Dijelmliti efe Yig»k’o)(Q, c)
13)
and anchored estimate Bﬁk) = Bék) + éc(k) 1,,.
16: end for
17:  end for
18:  For c € [C], set B, = (A,E}.), Nﬁ?.),... . Up-
date the current estimate 3 by running Algorithm 2

on X,Qand {3i,...,8c}.
19: end for

6C(k) = log

3(K)

y Me,-

of the experiment is deferred to the supplementary ma-
terials. We compare the spectral algorithm against two



Novel Spectral Algorithms for the Partial Credit Model

well known and popular PCM inference algorithms — the
marginal likelihood estimate (MMLE) (Basu, 2011) and
the joint maximum likelihood estimate (JMLE) (Ander-
sen, 1973; Fischer, 1981; Haberman, 1977). The open
source implementation of MMLE and JMLE can be found in
Sanchez (2021). The implementation of our algorithms can
be found at https://github.com/dnguyenl196/
spectral-algos—discrete-data.

Synthetic Data. We first focus on synthetic single-model
data where have knowledge of the true model parameters
0%, 3*. Figure 1 shows that when the prior distribution over
the user parameter 6 is correctly specified, both MMLE
and the spectral algorithm perform similarly. On the other
hand, JMLE produces inaccurate estimate of 3 as n grows
much bigger than m. This is expected from prior theoretical
analysis that when the number of items is much smaller
than the number of users, JMLE produces inconsistent 3
estimate (Ghosh, 1995; Haberman, 1977). As for speed,
Figure 2 shows that the spectral algorithm is magnitude of
orders faster than JMLE and MMLE in terms of inference
time. Figure 3 shows that the spectral algorithm is the
only algorithm that is robust to misspecification of the user
distribution. While MMLE’s performance crucially depends
on an accurate specification of Dy-, the spectral algorithm
is agnostic of this assumption and produces an accurate
estimate. All lines show the average error over 100 trials.

Learning Mixtures of PCMs. Figure 4 shows the average
error over 50 trials of the Spectral-EM algorithm and the
initialization error of the cluster-then-learn estimate (Line
7) in Algorithm 3 on synthetic data drawn from mixtures of
4 PCMs with 50 items and 5 response levels (K = 4). In
our set up, the number of mixture components is assumed
to be known. We measure the average Frobenius norm

. > 1Bae —B2IZ h I~ is th
error, MiNgeris \/ == ¢, where llc 1s the set

of all permutations of {1,...,C}. The figure shows that
as the sample size increases, estimation error decreases.
The reader can also see that the iterative EM algorithm
significantly refines the initial estimate, leading to a more
accurate final estimate.

Real Data. In addition to synthetic datasets, we compare
the spectral algorithm against MMLE and JMLE on real life
datasets reflecting the PCM’s application in education test-
ing and recommendations systems. Table 1 summarizes the
performance of the three algorithms on 9 datasets in terms
of predictive performance on respective heldout test set as
well as inference time. Our experiments cover small scale
dataset with fewer than 100 users and items to large recom-
mendation systems datasets with tens of thousands of users
and items. The reader can see that the spectral algorithm per-
forms consistently well and is competitive with both MMLE
and JMLE. Most notably, the spectral algorithm is much
faster than the two competitors. This significant advantage

m=10K=3
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g 20 MMLE
[}
£ o JMLE
=
[ =
w
=1
z 1.0
§ — @
o
* 05 F——
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Figure 1: When the prior is correctly specified, MMLE performs
as well as the spectral algorithm. JMLE is inconsistent when the
number of tests is small.
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Figure 2: The spectral algorithm is much more efficient than both
JMLE and MMLE.
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Figure 3: When the prior is mis-specified, MMLE produces inac-
curate estimate.
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Figure 4: The Spectral-EM iterative algorithm refines the cluster-
then-learn initial estimate.

of the spectral algorithm together with its competitive accu-
racy highlights the usefulness of the spectral algorithm. The
Spectral-EM algorithm generally produces more accurate
estimate at the expense of worse time complexity than the
spectral algorithm. Therefore, it is reasonable to deploy
the EM algorithm when there is a strong reason to suspect


https://github.com/dnguyen1196/spectral-algos-discrete-data
https://github.com/dnguyen1196/spectral-algos-discrete-data
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that there is substantial heterogeneity in the data and that
accuracy is the priority of the statistician.

Stock Ranking Applications. Besides applications in rec-
ommendation systems and education testing, we find that
finance is a real-life application where IRT approaches can
be valuable. To the best of our knowledge, we are the first
to apply an IRT framework to finance by mining datasets
of stock ratings given by financial analysts. The dataset
(u/nobjos) consists of ratings given by 500 financial ana-
lysts to over 200 stocks over a 10 year period from 2011-01
to 2021-02. The recommendations are divided into three
groups (sell, hold, buy) and are augmented with daily stock
price data extracted from Yahoo Finance.

We build a meta trading strategy that makes use of IRT in-
ference algorithms in formulating trading decisions. Specif-
ically, we aggregate rating data in a moving window of
size W (measured in months). We use single model PCM
inference algorithms to infer the item (stock) parameters
and induce a ranking over the stocks. The meta trading
strategy starts with $10000 and, at the end of each month,
liquidates the current position and buys the current top 10
stocks defined per Equation (7) in equal dollar amounts.
The performance of the trading strategy depends on the top-
10 ranking accuracy of the underlying inference algorithm.
The performance of the overall trading strategy is measured
using the fotal profit and loss (PNL) over time, which is
the total amount of money the algorithm manages minus
the initial investment. We set 2011-01 to 2018-01 as the
training period where we find the model with the appropri-
ate hyper-parameters that maximizes the PNL within the
training period. The testing period is left untouched until
the final evaluation.

Table 2 shows the performance of the three inference algo-
rithms and hyperparameters during the training historical
period and the subsequent heldout test period from 2019-
2021. Among all the models, the meta trading strategy that
uses the spectral algorithm trained on ratings data aggre-
gated from a 18-month moving window performs the best
in both the training data as well as the heldout data. One
can also see that the performance of the spectral algorithm
has less variance and is more predictable compared to that
of MMLE and JMLE.

Figure 5 shows the PNL of the best meta trading strategy that
uses the spectral algorithm versus those using MMLE and
JMLE during both the training period and the testing period.
From the training data, we select the hyperparameters for
each method that yields the highest PNL. For the testing
period, we initialize from $10000 seed capital again and
compute the cummulative PNL. One can see that the strategy
leveraging the spectral algorithm significanly outperforms
those using MMLE and JMLE as well as a passive S&P500
benchmark. The spectral algorithm is also much faster than

MMLE and JMLE, making it the best overall performer
and corroborating the theoretical optimality of the spectral
algorithm as shown in our analysis.
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Figure 5: Cummulative PNL of trading strategies using PCM
inference algorithms.

7. Conclusion

In conclusion, we introduce a novel statistical spectral al-
gorithm for inference under the Partial Credit Model. The
algorithm is intuitive and simple to implement. To augment
our algorithmic contribution, we prove that the spectral al-
gorithm achieves the optimal finite sample error guarantee
up to a constant factor. To support our theoretical findings,
we perform comprehensive experiments. The algorithm
achieves accuracy on par with previously proposed methods
while enjoying much faster inference time. The practical sig-
nificance of the spectral algorithm shows that it is valuable
in diverse applications from small scale education testing,
large scale recommendation systems and financial invest-
ments.
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Dataset Heldout MAE Heldout LLH Infe.:rence Time (s)
Spectral | Mixture | MMLE | JMLE | Spectral | Mixture | MMLE | JMLE | Spectral | Mixture | MMLE | JMLE
LSAT 0.29 0.25 0.27 0.29 -1.356 -0.918 -1.397 | -1.359 | 0.002 2.0495 0.334 | 0.698
UCI 0.21 0.23 0.18 0.21 -0.923 -0.617 -0.923 | -0.893 | 0.002 0.3727 0.160 | 0.339
Grades3 0.10 0.12 0.10 0.10 -0.693 -0.607 -0.710 | -0.716 | 0.002 1.096 0.141 0.084
Book Genome 0.64 0.66 0.72 0.63 -1.207 -1.19 -1.269 | -1.238 46 2.7K 3.2K 27K
EachMovie 1.08 0.99 1.16 0.93 -1.618 -1.354 | -1.869 | -1.652 32 287 660 6.8K
Hetrec-2k 0.66 0.64 0.74 0.61 -1.274 -1.230 | -1.468 | -1.398 19 240 650 6.1K
ml-1M 0.71 0.68 0.80 0.70 -1.288 -1.239 -1.396 | -1.481 4.5 412 484 5350
ml-10M 0.68 0.65 0.79 0.65 -1.290 -1.243 -1.406 | -1.382 105 7.2K 14K 135K
ml-20M 0.67 0.66 0.78 0.65 -1.284 -1.248 -1.412 | -1.383 170 7.8K 18K 200K

Table 1: The spectral algorithm is competitive in terms of accuracy while being orders of magnitude faster than the other algorithms.

Train PNL | Test PNL
Spectral (W = 3) 10288 12323
Spectral (W = 6) 11673 13081
Spectral (W =12) 12200 13139
Spectral (W = 18) 12309 14003
MMLE (W = 3) 10465 12559
MMLE (W = 6) 9511 12404
MMLE (W =12) 4987 13545
MMLE (W = 18) 9097 11928
JMLE (W =3) 9813 12006
JMLE (W =6) 9526 12538
JMLE (W =12) 5195 13177
JMLE (W = 18) 7700 12262

Table 2: PNL of trading algorithms with different PCM inference
algorithms in the training period and the test period.
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to model real-life human responses. In certain applica-
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A. Proof

In this section, we present the proofs for all the theoretical results in our paper. For the sake of clarity and conciseness,
we will defer proofs of some intermediate helper lemmas to a later section and only go into detailed proofs of important
theorems and lemmas here.

A.1. Preliminaries

We use @ V b to mean max{a, b} and a A b to mean min{a, b}. Define, for any k € [K], i,j € [m],

B = _max {8} 8= _min {510}

1€[m],k€[K] 1€[m],ke[K

0" min = min {6} ,0" max := max {6} .
le[n] le[n]

K= max {ﬁ max_ﬁ min} :

kE

= i E[{Xn =k, Xn; = k'}] .
i le[n],i,jerfvlrln?,k,k’e[K} [ J }]

We have the following useful properties of the theoretical quantities of the PCM. The key takeaway is that 7 k) =0 (%)

and y is lower bounded by a constant that only depends on K, 85 ., Bi i, O s Orein-
Proposition A.1.
1 K
<™ < viem) ke K]
me*r m

Proof. See proof. O

Where A* = |BII!&X m1n| \/ |/8m1n Inax

The following lemma establishes that under the random sampling model, B;; := >, ; A;; A;; is concentrated. Conditioned
on the event A defined below, the analysis greatly simplifies.

Lemma A.2. Consider the uniformly random sampling model described in Section 2. There exist constants Cy, C|, such
that if np* > Cologm and mp > C}logn, then the condition

./4.—{ 5 < VZ#]G[ ]}U{szS;Al,§2mlee[n]}

holds with probability at least 1 — 2 exp ( Lo ) — n% Additionally, when A holds setting d = %mnp2 is a valid choice
of the normalizing factor for the Markov chain M%) in Algorithm 1 (i.e., all entries of M¥) are positive).

Proof. See proof. O

The following lemma establishes that so long as the normalizing factor d is sufficiently large to ensure that all of the entries
of the Markov chain is positive, the output of Algorithm 1 is the unchanged.

Lemma A.3. For afixed scoring matrix X, so long as the normalization factor in Algorithm 1 d satisfies d > max; y i Yigs
then the output %) of step 1.b of Algorithm 1 does not change for all levels k € [K].

Proof. See proof. O

Choice of normalization factor d under A. The above lemma allows us to simplify the analysis by setting d = %man
which is a valid normalization factor when A holds per Lemma A.2.

12
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A.2. Overview of Upper Bound Proofs

The parameters 3* consists of K sets of vectors 3 W B *(5) The first half of Algorithm 1 produces the normalized
estimates 3. .. 35)_ The second half of Algorithm 1 produces the shift estimates 5V, ..., §5) such that

B 4 6®1,, ~ g0 vk € [K].

This decomposition allows us to break our proof into two main components. The first is to obtain an upper bound on

B(k) B B*(’C)‘

’
2

- (k < (k T gx(k)
where B*( ) is the normalized true parameter defined as ﬁ*( ) = ﬂ*(k) — % 1,,. Section A.3 focuses on this
component of the proof and culminates in Theorem A.10. The second component of the proof centers around proving that

‘5(@ _ 5*(1@)’

is small for all £ € [K]. This second set of result is deferred to Section A.4 and summarized in Lemma A.11. The reader
can immediately see that by the triangle’s inequality,

Hﬁw _ B*Uc)H < Hﬁw _ B*(k)H +Vm ‘5(@ G
2 2

)

as summarized in Theorem 4.1 which is built up in Section A.5.

A.3. Guarantee for Normalized Estimate B (k)

N . (k

In this section, we work towards proving an upper bound on H Bk — ﬁ*( ) H In order to get there, we will obtain an upper
bound on Hﬂ'(k) — H and Hﬂ'(k) — (k) H . The starting point is the following result.

Lemma A.4 (Lemma A.3 of Nguyen & Zhang (2022) and Theorem 8 of Chen et al. (2019a)). Consider two Markov chains
M, M* defined on the same set of states with stationary distribution w and 7*, respectively. Suppose that M* is reversible.
Then,

‘ W*T(M _ M*)
2

pr(M*) — ||M = M|,

lm =[] <

(14)

where p*(M™) is the spectral gap of M*.

We first introduce an intermediate result which will be useful for the remaining of the proof.

Proposition A.5. Suppose that Condition A holds. Fix a level k € [K|. There exists a constant Cy such that if np? >

C1¢™ Vo0 1 then, with probability at least 1 — 2 exp  —-Lm2”_
L5 log m then, with probability at least exp | — 1oa50a7 )»
(k) _ qpx(R) Y x (k) .y
a2y ® — 250 < Lo ® i . (15)
where Mi*j(k) =E [Mij(k)]
Proof. See proof. O

We have the following lower bound on the denominator of (14).
Lemma A.6. Fixak € [K]. Suppose that Condition A and Inequality (15) hold. Then the following holds deterministically.

u (M*(k)) _ HM(k) _ap® T

op - 6€2K ’

Proof. The proof directly uses Lemma A.21 and Lemma A.22. O

13
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By obtaining an upper bound on the numerator of (14), we obtain the following result.

Lemma A.7. Fix alevel k € [K]. Suppose that Condition A and Inequality (15) hold. There exists a constant Co such that

3K
Hﬂ_(k) ‘”*(k)H < G 1 (16)

v /mnp

with probability at least 1 — 2 exp (—10m).

Proof. We first obtain a linear bound on ‘
of Chen et al. (2022).

T
(k) (M (k) — pp*( ) H We follow the argument in the proof of Lemma 8.4

e T (3 - =) H

= Z Zﬂ;@) (Mj(p_M;i(k))

i€[m] \J€[m]

= * (k) * (k) * (k) (k) « (k)
Ez[;n ZW ( - M;; )+7r (M - M )

% ] \Jj#i

= 1> (X m« <M<k Mji(’“’)ﬂr;*(’“) S Mg, ®) = b ®

i€lm] \ j#i J'#i

= Z Z?T (M(k M;i(k)) +7T;<(k) (M;}(k) _ Mij(k))
€lm

% ] \Jj#i

Let B denote the unit norm ball in R™ and V be a %-net of B. That is, for every u € 13, there exists a v € V such that
lu— | < 3. Consider any u € B and any corresponding v, we have

S [ S m® (M}f) _ M;(k)) o ® (M;;““) _Mij(k)>

i€[m] VB

= > Zﬁ*(k)< M® >> 2 <M;}(k)_Mij(k))
1€[m] J#i

+ Z — ;) Zﬂ]ﬂk) (Mj(p _ Mfi(k:)) tr®) (M;;m) _ Mij(k))
1€[m] j#i

<> [ m® (P - @)+ mr® (M - ;)
i€[m] j#i

2

1 -

o, 2 1 22m™ ( — M, (k)) ) (M;;W _ Mij(k))

i€[m] \ j#i

The above inequality must hold uniformly for all & € B. Then, maximizing the LHS with respect to « and re-arranging the
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terms gives

e T (3 - 2r-®) H

= [ (M = b @) 4w ® (a8 — @)

i€[m] \ j#i

o (k) (R « (k) w(k) (1% (B) !
< 2 max : ]”i ;”ﬁ (Mji - Mj; ) + (Mij - M ))
e|m JF

We expand on the RHS as follows.

Z v; ZT{';(k) (M;f) _ M]%fi(k)> #(8) (M*( ) Mij(k)>

i€[m] J#i

- % Z v; ij(k) (Yj(ik) _ Yj»;(k)) +7r:»‘(k) (Yi;(k) B Yij(k))

i€[m] J#i

1 n
=2 S (Y m®W (ZA”AU ({Xy; =k—1,X;; =k} —E[[{X;; =k —1,X,; = k}})) +

i€[m] j#i =1

_e <ZA17A13 {Xy=k X;; =k—1} —1{X;; =k, X}; = kl})))

1 n
=2 Su [ Y m®W (ZA”AU ({Xu=k—1,X;,; =k} —E[I{X;; =k—1,X; = k}})) -

i€[m] J#i =1

rrk) (Z ApAy ({ Xy =k, Xy =k — 1} —E[I{X;; = k, X;; = k — 1}])))

=1

1< .
= EZ ST ™A Ay ({ X =k —1,Xy; =k} —E[I{X;; = k — 1, Xy; = k}]) -
1=1i,j€[m]:i#j

1< .
y NS wmWAuAy Xy =k Xy =k — 1} - E[I{Xy; =k, X;; =k —1}))
I=14,j5€[m]:i#j

1 n
~d S > wi—v)m W ARA, ({Xy =k —1,X;; =k} —E[[{X; =k — 1,X;; = k}])
I=1 i,j€[mliti

The rest of the proof will focus on obtaining an upper bound on

1 n
== S0 wi—v)m W ARAG ({Xy =k —1,Xy; =k} —E[I{X; =k - 1,X; =k})) . (17)
I=14,j€[m]:i#]

The function f(*) defined above is one over n x m independent Bernoulli random variables and Ex[f*)(X)] = 0. Let us
use the method of bounded difference to obtain a concentration bound on (17). The argument using the method of bounded
difference proceeds as follows. Consider X and X' that are identical except for one entry [ € [n], i € [m] where X;; # X/,.
The maximum deviation between f(*)(X) and f*)(X") is given as follows.

15
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fBX) - fB (X < é ST (Audylo—vy) Ay ® (1 20{Xy = k - 1})

JE[m]:j#i
1
=g Z A Aij(vi — vj)? - Z A max 7r;-‘(k)
jelmljzi jetmlgzi 7
< 1 Z A Ay (v; — ;)2 - §mp max 7% ®
Tdy = ’ PN 2 em) Y
JE[m]:j#i

e*\/3
E A A (v; — vj)? - L,
) oy V2m
JE[m]:j#i

where the second inequality comes from Cauchy-Schwarz inequality and the third inequality comes from Condition A
which states that Zm Ay < ?””Tp and that max; 7% < < FixaveV,

22
2
~/3p
2 ie[n] 2oicim] (é\/zje[m];#i A Ay (v — vj)? - e@p)

Pr (‘f(’“)(X)‘ >t

’U,A) <2exp | —

242 )
621»:,
Zle[n] Zle [m] %dz Zje[m]:jyﬁi Aii A (vi — v;)?

212 )
25
?Q)Wid2 Zle[n Z i,JE[m]:i#£] A“Al]( j)2 (18)

< - )
3 eQn
2md? Lai,j€[m]ii#] Bij(vi —v;)?

| |
2

| /\
’U

3pe2"i 3mnp >
2md? 2

2m npt2 )

Note that the last inequality uses the fact that

2 2 2

np 3np T T 3mnp
D D I b e
i,j€[m]:i#] i,j€[m]:i#]

Applying union bound over all v € V and noting that ) has cardinality 5™ (Vershynin, 2018), we have

: 2m2npt?
P (|F900] > 1) <572 e (20
€

2 2
gexp( W+2m) (19)
6

2,42
mnpt

SQexp<— 25 )
e

Set

2m npt

The last inequality holds so long as >4dmort > f

1
2 /mnp”

e"/10

mnp

16
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We conclude that

T )
x () (Muc) M*(k))H<2maX o Z”*(k)( M M*(k)) 7 (®) (M;;-““)—Mij(’“’)
i€[m)] J#i
ev/10

mnp

with probability at least 1 — exp (—10m). Substitute the above inequality and the lower bound in Lemma A.6 into (14)
completes the proof. O

Entrywise error bound for 7(¥), Pick an index i € [m]. We have the following deterministic decomposition for any level
k € [K].

i ® — i ® = (7T M®); — (o TP,
s IO STV
J J

=S b0 - Zw}f(m( ME® - 0, ® 4y ®)

7 7
k * k
=Z(7T§)— M ™) Zw ® (a5, ® — p®)
7
_ () 07 a0 +Z7T CRYRCESYACH
J

=S () e >)Mﬁ+(m< A A B VAL TR VB VALY

i j#i
Rearranging the terms gives
1
k) 7T;F(k) _ — . (Z(Wg('k) * (k) M(k + Z” Mﬂ(k M;i(k)) +7T;«(k) (Mi(ik) _ Mé(k))> . (20)
Y JFi JFi

Lemma A.8. Fixa level k € [K]. Suppose that Condition A holds and Inequality (15) holds. Then

1—M“-<’f>>1(1— 7 )
=2 U7 12e2% )

() _ (k) (k) 1 R) _ ox (k)
> (m = R (1 * 12 2*’») H ( H :
A

Additionally, with probability at least 1 — 4m ™10,

1O (M ® - ™| < 4V10e™ Jlogm

3 ® ( — M, ““)) e Q1)
3m np
J#i
Proof. See proof. O
Lemma A.9. Fix alevel k € [K]. Suppose that Inequality (15), Inequality (16) and Inequality (21) hold. Then
1 8v/10 /1 2053 1 1
=02 iy (S (s )
o T 3 (1— 55%) 3 np 12e o] m
If we further assume that np > Cdvicfh \Y Cieg% log m then
1
(R = (22)

2mer’

where C3, C}, are absolute constants.

17
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Proof. We substitute the upper bounds in Lemma A.8 into (20) and note that the inequality holds for all ¢ € [m]. Therefore,

(k) _ *(k)H L () _ =) 0y «(B) (ar (k) « (k) =9 (8 « (k) ’
Hw T . < T g(wj M Z?;w (Mt — M5)| 4 | w5 (M — M)
1% J7F JIF

1 8v10 /1 1
<~ ; V10 flogm 1 (1+ 2K> H k) _ *uc)H

1 8/10 logm+2Cge3"”” (1+ y ) 1 1
(1 - %) 3 np y 12e2%/ /np | m

If both of the following inequalites hold

\
|2

2

2
64+/10e"
2\ logm
37 (1 - %)

12e2x

2
np > (16026% (1 + 1262~)>

7 (L = 50%)

then )
- =
o 2me”r
This completes the proof. O
With the upper bounds on H (k) _ grx(k) H and Hﬂ'(k) — (k) H , we can now provide an upper bound on the error of the

o0
normalized estimate ,8

Theorem A.10. Fix alevel k € [K]. Suppose that Condition A, Inequality (15), Inequality (16) and Inequality (21) hold.
C3e v C3€
'Y

Suppose further that np >
normalized estimate B (k) obtamed by the first half of Algorithm (1) satisfies

logm where Cs, C4 are the same absolute constants in Lemma A.9. Then the

4Kk
jor - || < 2T VR 23)
2 v /TP
and
R . K 1 Enyalll 1
B _ﬂ*(k)H <¢ Cy [logm L Cy (24)
¥ np 2 \/np

where Cs is the same absolute constant as in Lemma A.7 and C}, Cl are absolute constants.

Proof. Suppose that Condition .4, Inequality (15) and Inequality (16) hold. By Lemma A.9, assume that

6%685 Cy 2K

np > \2
4 2

logm

then Inequality (22) holds, or

1
-]

o T~ 2mer’
Recall that - "> T x (k) > — foranyi € [m]. Hence, conditioned on (22), % + ﬁ > wfk >
‘log (k)) log(m *(k))‘ < 2me” |m;®) — ﬂf(k)

18
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where we use the fact that within the range [2 W% = = _— Qmeﬁ] the absolute value of the gradient of the log function is
upper bounded by 2me”.
400 _ e m) A\
50 | = (B( =)
- 2
1 m
Z log(m;*)) — log(m — (log — log(m (k)))
m
i=1 Jj=1
2
<2 (loa(m®) ~log(xi ™))" + Zlog =) _ log(m; ®)
i=1
2
<2 (1og( (1) _ log(r**)) ) n 22 3 log(r:®)) — log(m;®)
i=1 j=1

2

[l
i

* 2 - *
(108(m:®) ~1og(x: )"+ 2 |3 log(; ™) ~ log(m;*)
j=1

3
S

n

<43 (log(m®) ~ tog(m; )’

< 16m2e" ||7T(k) - W*(k)H%.

.
Il

Taking the square root of both sides and invoking Lemma A.7 gives

B(k) _B*(k)H < 40264/{@ '
N RERVAL) Y

To obtain an ¢, error bound, we invoke Lemma A.9.

1] o ) -t ) & (s () v 5)

j=1
< 4me” ||xF) — w*(k)H
4e” 8V10 [logm = 2C,e3" 1
Y — w o () U )
2 (1 o 12@%) 3 p v ¢ VP
This completes the proof. ]
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A.4. Guarantee for Shift Estimate 5(*)

In this section, we work towards providing an upper bound on ’5 (k) _ g+ (k) ‘, where

o B?“)E{y(,""l’l)}
sk — log Zwelm]:z;ﬁj € ij

g (F) (k,0)
Sisetmin B V5]
and

3 5 (k—1,1)
5k — log Zivje[m]:i#j e Y%j
él(k) Y(kao)
j

i,j€[m]rizj €

Note that 5 = §*) = 0.

Lemma A.11. Fixak € [2,..., K]|. Suppose that Condition A, Inequality (15), Inequality (16) and Inequality (22) hold.
Suppose further that np > 047@;‘“ then there exists a constant Cs such that

4K
k «k)| - Cse™™ 1
’5()-5 ‘ST\/@ (25)

with probability at least 1 — 4 exp (—10m).

f

Proof. We have

By (k,0)
60— 5] < |1og 2ijeimlizi ¢ Vig

3D ¢ (k—1,1)
i jeimpizi € Yig

~ + |log - . (26)
gz (k,0) g (k—1,1)
Zi7j€[m]:i¢j € E [Yw } Zi,je[m]:iyéj e E Yij
The two absolute log terms in (26) can be bounded in the same manner. We therefore focus our attention on the first term
R , - (k
By noting that 3" = log (m;®)) — L5 log (m(®)) and that ﬁj( - log (ﬂ;‘(k)) — LS log (W;‘,(k)>, we can
write the ratio inside the log as follows.
By (k,0)
Zi,je[m}:i;ﬁj e }/;]

S ey TS0 exp (£ 300 logm )

Zz‘ J€[m]sizj 7rEﬂ(k)]E {Yi(jk’o)} exXp (i 27:1 log Wi(k))

§ )y (k,0)

i,5€[m]rizt] i )Yij o (

g *(k (k,0)
i,j€[m]rizti T KE [ng }

g (F) (k,0)
Zi,je[m]:i;éjeﬁ’ E{ng }

27)

1 m
— Z log ﬂf/(k) — log my )
m

i'=1

Taking the log of both sides gives

3F) 1 -(k,0) k (k,0) m
i jeimpizi € Yy _ 2 jefmlisi m MY 1 Z * (k) (k)
log A (k) (k 0) - 1Og (k‘) (k O) + E 1Og Tri' - log Uy .
Zi,je[m]:i;éj i E [ng ’ } Zi,je[m]:iqéj R |:}/z] ' } i'=1
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The ratio inside the log term can be broken down into a sum of 1 and an error term as

k,0
Zi,je[m]:i;éj “i(k)Y;g )

) k,
D i jelmliti DR [y;g 0)}
 Siempin (10 =mr ®) (v B0 K[y EO]) 4 (8 = D)E[vy; B0 B (v, B0 B[y, BOT) 4rr W B[y FO])
! i jeimlizg T ® E[Yi(jkvo)]
i jetming (5 =mr ) (v 50 —E[vi; F O] )4 (m B = B B[54y B (i 500 —E[vi; #9]))

—1+ .
20 iemliits my (k) }E[Yijk,())}
(28)
Bounding the denominator of (28). We can lower bound the denominator as follows.
2 2
*(k k,0 x(k np *(k ymnp
Y wVE (v 0] > Y w3 > T (29)
i,j€[m]:i£] i,j€[m]:i#j i,j€[m]:i#j
where the second inequality comes from A.
Bounding the numerator of (28). The first term in the numerator can be bounded as follows. Conditioned on (15),
3 (m«fc) _ w;‘““)) (Yijwm _E [Yijw,m}) < 3 |m®- W;(k)‘ ’Yij(k,o) _E [yijwm”
i,JE[m]:i#£] i,jE[m]:i#£]
< Z 7, (k) _W;k(m" 8 By
o o 12¢2%
1,5 €[m]:i#] 30)
v *
S gern mnp? ) ‘m(k) - (k)’
1€[m]
< <5 mnp® v/m H?T(k) —W*(k)H .
8e2r 2
The second term can be bounded similarly to the first.
) (m(k) - Wf(k)) E {Yij(km] < > ’Wi(k) - Wf(k)’ Bi
i,5€[m]:i#] ©,j€[m]:i#£]
2
< 3m2np Z ) ﬂ_:(k)‘. 3D
1€[m]
2
< 3mnp Jm H,/T(k) _ 7T>s<(k)H
- 2 2

We now proceed to upper bound the third term in the numerator in (28). We first decompose it as follows.
Z 71_;(k) (Yij(k’o) _E {Yz‘j(k’o)b
1,jE€[m]:i#]

= > N Ay (I{ Xy =k, Xy = 0} — E[I{Xy; = k, Xy = 0}]) = g™ (X).
i,jE[m]:i#j =1

21



Novel Spectral Algorithms for the Partial Credit Model

We use the method of bounded difference, similarly to the proof of Theorem A.10. Consider two sets of responses X and
X' that differs in exactly a single entry X;; # X, for some [ € [n],i € [m]. By Cauchy-Schwarz inequality,

99 (X) = g P (x| < m ™ Y Ay Ay

j#i
F:(k) Z Alj Z AliAlj
J#i j#i
(32)
- /3mp S A
J#i
> AGA;
J#i

Therefore, by the method of bounded difference,

Pef| 2 w® (v B [v*0]) >t‘A

L,j€lml:iF]

I
g
_

Yoo o m S W {X = kX = 0}~ E[1{Xy =k, X;; = 0}])| > | A

i,jE[m]:i#] =1

IN

2t2
2exp | —— TR
D=1 Die1 T ij;éiAliAlj

eXp _3p62"

2m Zi,je[m]:i;éj Bij
< 8t2
< 203X\ =g )

Then, with probability at least 1 — 2 exp (—10m),

IN

> m® (v, —E[v,®0))| < \/We”\/gv nym (33)

i,j€[m]:i#)

We now divide the upper bounds on the numerator terms (30), (31), (33) by the lower bound on the denominator term in
(29). We have have the following upper bound hold with probability at least 1 — 2 exp (—10m).

e Ll L
S eimiins T SV B[V

i setmping (1P —mi M) (i 0 —E[vi; 0] (me®) et ) [y #0)]
R ‘ ’ZzyE[M] iy mE VRV

\M _ *<k>H+3f H k) _ *(k)H V9 10e"y/my/npPym 2
V38 ymnp?

71 ) (v, (0.0 [y, (201

< S etmping T H) IE[Y““ 0)]

o Vm

— 46211
< Cher 1 n 3C5e3 1 L V45 er
4y /np v* /mp o D
Cae®  3Ce3%  /45e~ 1

< 2 n 22 + € .
4y v v \/p
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Putting things together. Conditioned on (22)

1 & 1
— N g™ —logmy M| < —/m Hlog m® —logr® H
m = m
1 k) k
< — Hlogﬂ*( — log 7' )H
vm (34)
< vimze® ||n*® - 2|
26’264"’i 1
< ——
Yo/np
Recall that we ultimately wish to provide an upper bound on the following.
By (k,0)
log Zi,je[m]:i;éj e’ Y,
Zi,je[m]:iij eﬁ:(k) E [Y;gkp)}
o () y(R0) m
A m]:e i 7 1
=log Eeudolits (k) ](k o7 | T <m > logm; ) - 10,?;7Ti/(k)> :
i,j€[m]:i#] VR [Yzj ’ } i'=1
One could verify that
log(l+z)<x Vx>0,
and
log(1+x) > 2z Vae (-0.78,0).
Hence, so long as
Coe®  3Cqe3F /30" 1
20 T Y <0.78 (35)
4y ¥ ¥ V1P
then we obtain the following upper bound when we take the log of (28)
, k,
S ety TV Coe®  3Che®  VA5er\ 1
log <2 s— + .
Zi jE[m]:i#] ﬂ-z*(k)]E |:}ng’0)1| 47 v v p
Combine with (34), we have
By (k,0)
log Zi,je[m]:i;éj e’ Yy
gx () (k,0)
Zi,je[m]:i;ﬁj i E {Yz] ]
<9 Coe” n 3C5e3r n V45 e" 1 n 12C5e** 1
< 1 3
Y Y Y V1P Y V1P
< 65624“ 1 ’
v? /np
where cj5 is an absolute constant. The extra condition on np comes from (35). Lastly, the upper bound on the second absolute
log term can be shown in the same way. O
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A.5. Final Error Bound

In this section, we combine the upper bounds on HB(’C) - B*

Hﬁ(k) _ k)
4.3.

k .
( )H and ’5 (k) 5*(1‘)‘ to obtain the following bound on
2

‘ . Note that in the following proof of Theorem 4.1, we also present the entrywise error guarantee of Theorem
2

Cyets

Theorem 4.1. Consider the uniform sampling model described in Section 2. Suppose that np* > (CO V=13 ) log m,

E6m

8k ! 2K
mp > C{ logn and that np > (C‘iﬂ v C‘“’Wi v C?’;

There exist absolute constants Cg, Cy such that

log m) where Cy, C}, C1, C3, C%, Cy are some absolute constants.

2y \/Np
. e Cf [logm
o -] < ko
oo Yy np

simultaneously for k = 1,..., K with probability at least 1 — 6K exp (—10m) — 4Km ™19 — 2K exp (7%) —

2 exp (—%) —2n710,

Proof. We have by Proposition A.2,

2
Pr(—A) < 2exp (7;]21) +2n710,

Invoking Proposition A.5 and applying union bound over all levels k € [K], we have

~3np?
12324k

Pr ((15), (16) do not hold for all k € [K] ‘A) < 2K exp (— ) + 2K exp (—10m) .

By Lemma A.9,

Pr <(21) does not hold ‘ A, (15) hold for all k € [K]) < 4Km~10.

By Theorem A.10

Pr ((23), (24) do not hold ‘ A, (15), (16), (21) hold for all k € [K]) =0.

By Lemma A.11,

Pr ((25) does not hold ’ A, (15) hold for all k& € [K]> < 4K exp(—10m).
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We have, by union bound,

((25) or (24) or (23) do not hold for all k € [K])

< Pr ( (25) or (24) or (23) do not hold for all k € [K] ‘ .A> Pr(A) + Pr(-A)

2
) or (24) or (23) do not hold for all k € [K] ‘ .A> Pr(A) 4+ 2 exp (7;21)

/\/\/—\

) or (24) or (23) do not hold ’(15)7 (16) hold Vk € [K},A) Pr ((15), (16) hold Vk € [K] ’ A) Pr(A)

2
Pr ((15), (16) do not hold for all k € [K] ‘A) Pr(A) + 2 exp (”;1) +2n710

<Pr ((25) or (24) or (23) do not hold for all k € [K] ‘(15), (16) hold Yk € [K], A)

3,2 2
yonp np ~10
+ 2K exp (—123%%) —|—2Kexp(—10m)—|—2exp< 24) +2n

-10 7np? np? -10
<4Km™" + 4K exp(—10m) + 2K exp | — 15596 + 2K exp (—10m) + 2 exp ~o1 +2n7 0.
e K

‘We then have

1 ¥ np? np® 10
Pr((25),(23), (24) hold for all k € [K]) > 1 — 4Km ™" — 6K exp (—10m) — 2K exp (— 123264“> — 2 exp (—24) —2n" ",

Now suppose that (23), (24), (25) hold. Then the following bounds all hold deterministically. Substitute (25) and (23) into
(5). We have

=)

IN

3 — 50+ ym
< 240264'/" \/ﬁ n O564K \/ﬁ
Ty mp o np
0664K \/E

72

sk _ 5*(1@‘

<

)

3

where Cj is an absolute constant.

On the other hand, we have
&) _ gr®| a0 _ g (k) _ sx(k)
B p <8 64 + |8 )

e"C} logm+e4”C’é’ 1 +C5e4" 1
gl np ¥ Vmp o v /b

et* L [logm
72 np

for some constant C. O

A.6. Proofs of Top-L Ranking Guarantee

In the previous section, we show the entrywise error of the spectral estimate together with the Frobenius norm error in the
proof of Theorem 4.1. We therefore focus on proving the sample complexity bound for top L ranking. We first show the
equivalency between the top-L set item score (6) and top-L set by parameter sum (7).
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Theorem A.12. Consider a PCM model as described in Section 2. For any two items i # j, and for any user with parameter

or
Pr(X;;=K|B;,6;) K
Pr(Xli:0|va‘9ik) _ *(k) * (k)
Pr(X,=K|B:.0;) P ( Bi =B :
Pr(X;;=0187,6;7) k=1

Proof. We first state an alternative formulation of the PCM likelihood function. It can be shown (Andrich, 1978) that (1) is
equivalent to the following. For k > 0, and any user [ with parameter 6},

exp (k0 — Y1, 5;)
L e (ke - S0 )

Pr(Xy; = k|87, 0) = (36)

and
1

1+ i exp (W07 = X4, 81)

Pr(X;; =0|8;,0]) =

One can then verify that

Pr(Xy; = K|B7,6)) & e
L =exp | K07 — * .
Pr(X; =016;.6;) A\ ;6 '

Substitute the above display into the numerator and denominator of the LHS of the display inside the theorem statement
completes the proof. O

It’s not hard to see that from the above theorem statement, s; > s7 if and only if — Zszl ﬂ;‘(k) > — Zszl B; (). The
following theorem formally states the top-L ranking guarantee of the spectral algorithm.

Theorem 4.3. Consider the setting of Theorem 4.1. There exists a constant C, that only depends on K such that if
np > @Al% then S.,(8) = Si.

Proof. Invoking the entrywise error bound obtained in Theorem 4.1, we have

4k 1
max max |3;*) — ﬁ;(k)‘ < % logm
ke[K]ie[m] ~ o

Define f; = Zszl 3;%) and fr= Zszl B;‘(k). Recall that A% = Zszl 5[*L+1](k) —BFL](’“) = fﬁ] —f[>2+1]. Furthermore,
we can also mathematically define the top L items as

S; = ar min *
L g3e[m}:\5|:L§f’

One can see that if the entrywise error satisfies maxy,c (x| max;e[m Bi(k) - B;f(k)’ < QA—[@ then

A%
< ZL
|f7« f’L|7 2

and Sy () = S;. The sufficient sample size is therefore determined as

e Cf [logm < A%
~2 np ~ 2K

Solving for np and log m gives the condition stated in the theorem statement. This completes the proof. O
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A.7. Proofs of Lower Bounds

We first establish the pairwise Fano’s inequality (Thomas & Joy, 2006).

Lemma A.13. (Pairwise Fano minimax lower bound) Suppose that we can construct a set VW = {5*1, e ,B*M} with
cardinality M such that

— B*b)2 > 42 d KL(Pre(X)||PrP (X)) <
;gaml\ﬂ Bz > and - max (Pro(X)||PrP(X)) <&,

where Pr® (X)) denotes the distribution over X under a model parametrized by 5*°. Then the minimax risk is lower bounded

as
€+log2)

62
lgfﬂsup [||B B* || ] > ( log M

where B is the output of any statistical estimator.

Intuitively, the above theorem states that if we can somehow construct a set of models, where every pair of models are
sufficiently different (in £3 distance sense) yet they parametrize ‘similar’ distributions (in KL divergence sense), then any
statistical estimator will fail to identify the correct model with a constant probability and thus suffer from a minimum
expected estimation error.

Next, to construct the set of models, we follow the construction similar to that in the proof of Theorem 1 of (Shah et al.,
2015). We first restate a coding theoretic due to Shah et al. (2015).
Lemma A.14. (Lemma 7 of Shah et al. (2015)) For any « € (0, %) there exists a set of M(«) binary vectors
{24, ..., 2M(@Y < {0, 1} such that |M (a)| =< exp(d) and

ad < |2 =23 <d Va#bel(l,...,M(a)].

Lemma A.15 (Reverse Pinsker’s inequality). Consider two probability measures P and Q) defined on the same probability
space, the KL divergence between P and () can be bounded as
log, e

KL(P|Q) < < ok ) 1P = QI3 .

min

where |P — Q||7v is the total variation distance between the two distributions and Q iy := mingea Q(z).

Theorem 4.2. Consider the sampling model described in Section 2 and further assume that np > ¢/ K* for some constant c’.
There exists a class of Partial Credit Models B such that for any statistical estimator, the minimax risk is lower bounded as

. - N cKm
inf sup E[|3 — 87(%] > )
B B*eB
where c is an absolute constant.
Proof. Consider aset {z',...,2M(®} < {0,1}™*X of m x K-dimensional binary vectors (matrices) given by Lemma
A.14. Let 5
B = —— 2% Vae[M(a),

where § is to be detemined later. It is easy to see that for a # b € [M («)]

52
mK
Set 9, = 0 for all [ € [n]. Let P denote the PCM parametrized by 3*“ and @ denote the PCM parametrized by B*°. The
key to obtaining the lower bound is to provide an upper bound on the following.

Al = 23 > ad®.

18% — B*|13 =

KL(P(X o A)|Q(X ZZKL (A X)) QA X))

=1 1=1

= anKL (Xi)lQ(X))-
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By the reverse Pinsker’s inequality,

log, e

Mﬂ%mWM&MS(Q )IHXM—QMmﬁw 37

To obtain an upper bound on the RHS of (37), we will use a Lipschitz-type argument. In order to do so, we first obtain
an upper bound on the absolute value of the derivative of P(X;) with respect to the individual entries of 3*. Define
Tk 1= Zf: 185 ®) One can verify the following alternative formula for the likelihood of the PCM (Andrich, 1978; Masters,
1982) for the case when 0; = 0VI € [n].

eXP(—Tik
P(X;=k)= K( ) .
14> exp(—Tis)
We can compute exactly the derivative of P(X); = k) with respect to 3} @ for every pair of ¢ € [m],t € [K].

OP(Xy = k) i OP(Xy; = k) O i OP(Xy = k)

aﬁ:(t) OTit 35;(0 o

I{t <k
0Tk { - }
k'=1 k=1

(38)

_ Z exp(—Tik — Tik’) exp(—Tik) I{K =k} | T{t <K}

2 K
k=1 (1 + Zgil exp(—ns)) 14> exp(—Tis)

Note that we can decompose first term inside (38) as

exp(—Tix) exp(—Tix)
1L+ Zf:l exp(—Tis) 1+ Zf:l exp(—Tis)

We have by construction, 745, > 0 hence, exp(—7;) < 1.

K k
1+Z€Xp(*7'z's) > 1+K727-is =14+ K— <Kﬂ*z(1) + (K — 1)5*?) +.'.+B*§K)>
s=1 s=1
>1+K 9 (1+...+K)
- VmK
K
>
- 2
so long as % < 1. That is,
exp(—Tik)

<

S

L+ 3002 exp(—is)
We can then bound the absolute value of (38) as

i (;_2_ ;H{k’:k})ﬂ{tg K

k'=1

OP(Xy; = k)

o5 |

< —.
- K

We have

k=1
K
16 w(k) _ pur(R)
< ? : Z ( 4 51 )
k=1
Following the proof of Proposition A.1, we can show that
s
exp(2z) — 1
min Pr(Xy; = k) > ;("(SK .
ik exp( =) — 1
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Therefore,

KL(P(X 0 A)[|Q(X 0 A)) < ’ﬂPZKL(P(Xn)”Q(XM))

i=1
log, e i 2
< O np > IP(X1i) — Q(X1i)ll7y
min i=1
log, e\ 16np 18" - ﬂ*IHQ (39)
a Qmin K F
K
161og, e (eXp (\/7‘27) — 1) np
< -2,
- exp(%) -1 K
Invoking Lemma A.13,
exp( == K*l
9 16 log ew@(p—i—logﬂ
inf sup {16 - 571 > 5 (1 - ——— TR @0)
B B*€B 2= 2 mK
Using the two inequalities e < 1+ z + 22 if x < 1.79 and e* > 1 + z. Note that
K 2
5 . WK WK
eXp(va) 1 \/n7+(\/ﬁ) < 9K
s y_1 = 5 =
eXp( \/mK) vmK
so long as 51\%? < 1. Set
2 mK
~ 64logy(e)np’
The RHS of Inequality (40) reduces to
- K 1 log2
inf sup E[||f — 53] > ——r (1- = —
1% BS*uEpB 13 = 871121 2 641og(2) np < 2 mK)
so long as np > 642 log,(e)? K*.
O

Near Optimality of Entrywise Error Guarantee. The above theorem asserts the optimality of the spectral algorithm in
terms of Frobenius norm estimation error. It is not hard to see that the above lower bound also implies a near optimality
(modulo a log factor) for the entrywise estimation guarantee of the spectral algorithm. Specifically, we make use of the
property that [|v| ., > L |jv[|, for any v € R™.

Lower Bounds for Top-L Ranking We next show a lower bound for the sample complexity of top-L ranking. We first
restate a different version of Fano’s inequality (Thomas & Joy, 2006) which will be useful to our proof.

Lemma A.16 (Fano’s inequality). Consider a set of N distributions {Prl, S }. Suppose that we observe a random
variable (or a set of random variables) Y that was generated by first picking an index A € {1, ..., N} uniformly at random
and then' Y ~ Pry. Fano'’s inequality states that any hypothesis test ¢ for this problem has an error probability lower
bounded as

maxg e [N],azb KL(Pra (Y) | Pry(Y)) + log 2

Prip(Y) # Al > 1 - log

Model Construction. Let us consider the following constructions for m — L + 1 models 8*%, ..., 3*™. For simplicity,
let us consider the unnormalized parameter space for now. This is valid because we are only concerned about the KL
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divergence between any pair of models, which is not affected by parameter shifting. For model a € [L, L 4 1,...,m] and
forall k € [K], set
) . .
. \/7 if ¢ S L—-1
gre® ={ o ifi-L=a.
0 otherwise

In other words, the m — L 4 1 models differ exactly by the identity of the L-th best item. For the user parameters, we
consider the case where §; = ... =0, = %

Theorem A.17. Consider the uniform sampling model described in Section 2. Suppose that np > cK?3 for some constant c.

There exists a constant cy, that only depends on K such that if np < CLAkigzm then any statistical ranking algorithm will fail

to identify the top L items from user response data with probability at least 1/2.

Proof. We follow a similar derivations as Inequality (39). For any two models a # b, we have

n

KL(Pr(X)|[Pr(X)) = > > KL(Pr(Xu)||Pr(Xus)

=1 i=1

K
<

np | .. b112
< - 18" =B
exp( ,iK) -1 K || HF
K
32log, e (exp (ﬁ) — 1) npo?
B exp(\/riiK) -1 K

< 641og,(e)nps?

where the last inequality holds so long as % < 1. Invoke Lemma A.16, we have the probability that any statistical
estimator failing to identify the top L items correctly being lower bounded as

MaX, pe[m—L+1],a2b KL(PTa (X)[| Pry (X)) + log 2
a log(m — L+1)
64 log, (&) npd? log 2
=7 log(m—L+1) log(m—L+1)
64 1log, () npd?
~ log(m)

Y

1
2
for a sufficiently large m and for

5 < 8y/log,(e) logm .

- V2np

The extra condition on np in the theorem statement comes from % < 1. Now one can verify that, by construction,
AT =2V K6,

We conclude that so long as np > cK? for some sufficiently large constant c and that if

< 32logy(e) logm 144K logy(e) logm

?

then any estimator fails to correctly identify all of the top L items with probability at least % This completes the proof. [
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A.8. Additional Proofs

Lemma A.18. Consider a discrete state Markov chain with transition probabilities M* and a vector ™ such that
(*, 1) = 1 that satisfy
M =mi My Vi g

and Mj; =1 — %", ,; M. Then 7* is the stationary distribution of the Markov chain. That is
(,ﬂ_*)TM* _ (ﬂ*)T )
Proof. One can verify that
( Z 7'('* M* Z 7'['* M* — ¥
This equality holds for all ¢ € [m], which is the definition of stationary distribution. O

Proof of Proposition A.1.

(k) x
« (k) eﬁi eﬁmax er
i = ——
' SE e T P m
(k) x
*(k) e > el — L
S SR e mer

To prove the lower bound on 7, we make use of the following property of the PCM.

PI"(X” = k)

_ T(k)—e*)< 0* . o px
PT(X” —k+ 1) exp (Bz l €Xp (|6max mm‘ \ |Bm1n max|) .

The above bound implies that for k # &/,

PI‘(X[Z‘ = k,)

[l Sl L S /
Pr(Xli = k) = %P (|k k| |’8max Imn )

By definition, ZkK:o Pr(X;; = k) = 1. Hence, for any k € [K],

1
1+Ek’;ﬁkexp(|k _k| |Bmdx_9:nm|v ‘ﬁmln ax|)
1
K
1+Zk/:1 exp( (|Bmax mlnl \ |Bm1n ax|))
CXp (lﬂ:nax m1n| \ |ﬁmln ax‘) -1
Toexp (K (lﬁ;;lax m1n| v |ﬁm1n max‘)) -1

And y > ming ;  Pr(X;; = k). O

> tnp2>

Pr(X); = k) >

Y]

Proof of Lemma A.2. By Chernoff bound, we have

Alj Alel]]

Pr(|Bi; — E[Bj;]| > tE[B (

t2 2
< 2exp (— gp ) .

Sett = % Take union bound over all pairs i # j we get

2
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We obtain the bound in the lemma when np? > 48 log m. To prove the probability of Condition A, we also use Chernoff’s

bound. Fix an i € [m].
t2mp
> tE[A;] | <2exp | — 3

Pick t = 1. Apply union bound over all [ € [n]. We have

( Z Ah All

The last inequality holds so long as mp > 132log n. The probability that A+ holds can be obtained by union bounding the
probability that A doesn’t hold and the obtained probability bound above. O

Alz

1 mp 2
- ) < R < —.
> 2I[-E[Alz] vl e [n]) < 2exp( 19 +10gn) S —11

Proof of Lemma A.3. Consider two Markov chains M and M’ that are constructed per Algorithm 1 on the same data X but
using normalization factors d and d’, respectively, where d # d’ and d, d’ > max; ;i Yij- By definition, the stationary
distributions 7 and 7’ of M and M’ must satisfy the self-consistent equations for all state i € [m],

Zﬂ—iji = ZTFZ‘MM,

Jj#i J#i
S e = Y
J#i J#i

Recall the definition of the transition probabilities, we have

Somg =Ty

i j#i
Y. Y
/ Je _ ’Lj
Do =) m
i i

One can verify that any stationary distribution 7 of M must also be the stationary distribution of M’ and vice versa. Under
assumptions of connectedness and ergodicity (the Markov chain has no sink and source nodes), M and M’ must have the
same and unique stationary distribution. [

Proof of Proposition A.5. We first prove (15). Note that by construction,

Mij — M = = (Vi = Yjj) -

.A> =Pr < A)
2y (k)
<2exp | — ;J
27 B 2 2
< 2exp (—673”) < 2exp (—E ’ngp ) .

Ul

By Chernoff bound, we have

k * (k * (k
Pr <’M}j) - M| = enry®

(k) x (k) « (k)
i Y ‘ > €Yy

Set € = 525= and apply union bound over all pairs i # j. We have,
(k) * (k) v A GRS
I?;ZXM - M;; ’—122/~;M Vi #£ j
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with probability at least

1—2m?exp <—12’Y237g}:;n>
=1-—2exp <—1;§Z‘Zl —|—210gm>
>1—2exp <_1;§72”§1“> )
where the last inequality holds so long as % > 4logm. O

The following Lemma A.21 and Lemma A.22 are used to prove Lemma A.6. Note that the proof of Lemma A.21 uses
Lemma A.19 and Lemma A.20.

Lemma A.19. Consider two reversible Markov chains M*, Q) with stationary distributions 7 and )\, respectively, that are

defined on the same graph G = (V, E) of m states. Define o := min; jecg Z’g:] and T 1= Max;e[m] 7;—: We have
ildij i
M) o
p @ — 7
where p*(.) is the spectral gap function.
Consider the following Markov chain )
B. . . . .
2l ifi#j
Qij =14 ,* e s (41)
I 1*%Zk¢j3m ifi =7y

where d = %man. It is not difficult to check that, by construction, the stationary distribution of ) is A\ = %. Ais a left
eigenvector that corresponds to an eigvenvalue of 1. In order to bound the spectral gap of (), we need to find the second
largest eigenvalue of ().

Lemma A.20. Suppose that condition A holds. The Markov chain Q defined in (41) satisfies

w(Q) >

Wl =

Proof. We can write @) as Q = éB + 1, — édiag (B1,,). Let smax, 11 denote the largest eigenvalue of the subspace
orthogonal to 1,,.

1 1
Smax’j_(Q) = Smax, 1L (B + Im - =

g ddlag (B]lm)>

1
=1- p Smin, 1. (diag (B1,,) — B)

v’ (diag (B1,,) — B)v

min
d vi||v]ly=101L1,,
1
. 2
- — min g B;i(v; —v;)°.
2d v:|jv]ly=1,v1L1,, < i i)
i#]

Rearranging the terms, we recognize that

/J* (Q) =1- smax,ﬂ_(Q) ! ml Z Bij (Ui - vj)Q .

= — -n
2d v: =l0ll1
vifjvflg=1,0 11, oy
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Conditioned on A, B;; > %an. We therefore have

min E Bij (1}1' — Uj)2
vivll;=1,011m oy
17]

Tlp2

. L . 2
2 m“vufilifimm ;(UZ vj)
= np2 min vl (mIm — ]lmll;) v

vil|v||,=1,v 1L 1,,
Z np2 Smin, L (mIm - ]]-m]]-;;)
> mnp?.
Therefore, pu*(Q) > 53 mnp* = %, where we have substituted d = 3mnp?. O

Lemma A.21. Suppose that condition A holds. For all levels k € [K],

sy >
p( )2 305

Proof. For each level k € [K], we obtain a lower bound for the spectral gap of M * (k) by applying Lemma A.19 with the
two Markov chains M*®) and the reference Markov chain Q. Let

(k) ppx ()
(k:) o . 7Ti 17
a\” = min —————
ig€ml  AiQij
7.‘.7'<(’€)]\4a<j(k)
> min — %Y
Tagelm]  AiQyj
We have
B
NiQij = =%
Qi md
#(F) g = (k) 5 1 l - El{X,: =k X =k—1.4A:» =1 >&
7Tz 17 = me* d lzzl [ { li ? lj Pl ¥ }] - mde” .
Then,
a® > L
eKZ
On the other hand,
#*(F)  max. * (k)
78 = max Tt = Xle[;n] T e,
Invoking Lemma A.19, we have
(k)
* M*(k) > . F o > i )
w0 W) 2 Q) S 2 S

Lemma A.22. Fixa level k € [K]. Suppose that Condition A and Inequality (15) hold. Then

<
op 662H

HMu-) _
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Proof.

HM(k) _

< Hdiag(M(k)) — diag(
P

N H (30 31+ ®]

op 77 |lop
= max ’Mi(ik) — M*Ef) + H {M(k) M*(k)]
i€[m] ‘ #3 || op
One can bound the first term as follows.
max M( ) = max ZM(k) Mk
i€[m] i€[m] | 5=
J'#i
<( 1) max - ‘M() M*} k)‘
i#]
For the second term we have
H —M* k):| — max U,T |:M(k) _ M*(k)] v
i#i|lop  woillull=llvl=1 ]
(k) * (k)
= max uzv(M - M )
u,v:|u|—|v|—1§ A Y
i#j
< max uiv-’M@ —M*@’
u,v:|u|—|v|—1§ T Y
i#j
(k) *
< max U;V5 max ‘M - M";
u,v:|u|—|v|—1§ ! J
J
<m- max‘M(k)
i#]
Combining the two displays above gives
|M® = 2@ < om0 max | — 25|
op i#]j *
Substitute bound the maximum entrywise deviation of M (¥) — N/* ) in Inequality (15). We have
HM(k)_M*(k) < 2m - max M'(k)_Mi*'(k) < maXM*( V< T )
op iZ£j Y J 3e28 i#j 3me?2r
where in the last inequality we have used the fact that
maxM x (k) < max ) < i
i#j i# d T m
Proof of Lemma A.8. Recall the entrywise decomposition
1
(k) _ x (k) _ . (k) _ _x(B)y (k) (k) ar. (k) _ arx (k) *(k) (k) * (k)
i S T ® (;UU w5 )M + ;Wj (M M) + (M — M ))
(1 JF JF

The first term can be bounded as follows.
(k) _ N Y *
1— M,;® — ZMﬂ > Z (1 _ 12625) M},
J#i J#i
v ) VBij
>(1-—
- ( 12e2% Z d
J#i

2 (1 )
2 12e2 )
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The second term satisfies

k «(k k
AR

J#i

<[ -] [ (1 530 |-
eK

«()
< Um (1+ 12@2“) H” o7

)

where the last inequality comes from the observation that M fi(k) < % < %

The third term, we use the method of bounded difference. Firstly, we write
o (M - 25,)
J#i
1 O n
= 5 SN A Ay I{Xy = R{Xy =k — 1} —E[I{Xy; = B}I{X;; =k — 1}]) .

J#i =1

One could verify that the above display is a function of the random variable X. If the value of X;; changes for any [, the
maximum possible absolute difference is bounded by

2e”

3mnp

1 N er
p > W A Ay; < po Aimp =
J#i
On the other hand, if the value of X;; changes for any j # 4, the maximum possible absolute difference is bounded by

d *(k)AlZAlj < AllAl] Condition on A, note that Y ;" | A;; < "p and Z 1A < 32"’ The method of
bounded dlfference glves

Pr Zw*““)( M*(k)) > ¢

J#i
1
< 2exp 5 3
Zl 1 ((SmnpAli) + Zg;éz (Sm 2np2 AllAl]) )
142
=2exp | — 2 2!
K n n
469 (Zl:l m2$2p2 Aii + Zl:l Z G#i m4n2 7 Alelg>
142 142
2 2
<2exp | — <2Zexp | -
4e2r ( + mnp? ) 4e2r ( 1 =+ 1 )
9 mzn p2 min2p? 9 m2np m3np?
1
< 2exp NI .
9 m2np

Then, with probability at least 1 — 2m =10

b}

3

S (30 - 25, | < 4 YOI
j#i ! ! 3 my/np
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Similarly, we also use the method of bounded difference to bound the fourth term
) (Mn-(’“) _ M;;“")) il VAL VL
J#i

w:“)iZ(H{Xu = K}I{X;; =k —1} —E[[{Xy; = k}[{X;; =k —1}]) .

1=1 j#i

<

SR

One can thus see that the above display is very similar to the expansion of the third term. We follow the same argument as
shown for the third term. The final probability bound is obtained using union bound argument. This completes the proof [
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B. Intuition for the Spectral-EM Algorithm

The cluster than learn initialization procedure is inspired by the EM algorithm proposed in Nguyen & Zhang (2023a) for
learning a mixture of Plackett-Luce models. The Plackett-Luce model is a model over permutations and in that paper the
authors cluster mixtures of permutations by embedding each permutation as pairwise comparison vectors where each entry
corresponds to a paired comparison between items. In our setting, when the number of items is large embedding each
response vector as a (”21) pairwise difference vector is space inefficient. To perform efficient clustering, we restrict to the set
of items to the 50 items with the highest variance in ratings.

The E-step of Algorithm 3 computes the posterior distribution, similar to the general E-step in the EM framework. Generally
speaking, the M-step maximizes the joint log likelihood, fixing the current posterior distribution. The M-step can be divided
into C' subproblems which can be solved independently of one another. For each subproblem c, we solve for

n
Bepext = argmaxz qiclog Pr (X;|Be, 21 = ¢) .
e =1

Algorithm 3 does not solve this optimization problem exactly and instead produces an approximate solution. Let ¢;,, =

Pr (zl =c

X, ﬂj) denote the true posterior probability. One can verify that for any pair of items ¢, j,

Pr(Xy=kX,;—=k—1lz=c %"
PI‘(Xli:kf].,le :k,zl :C) B eﬂf(m '

Following similar intuition as the spectral algorithm, rearranging the above display and summing over all users / gives

NORE NORE
AN GEI{ X =k Xy =k -1} = S G EI{Xy = k-1, X, =k}] .
=1 =1

The above equation is the weighted analogy of the reversible condition as shown for Algorithm 1 in the single model setting.
More importantly, the stationary distribution of the weighted Markov chain remains the true parameter while the pairwise
transition probabilities are weighted modification of the pairwise transition probabilities in (3). The reader can see that
the weighted Markov chain constructed per (10) is an empirical approximation of the true weighted Markov chain. Given
sufficiently large sample size and when @ ~ Q*, the estimate produced by the M step of the Algorithm 3 will be accurate.

Similarly to Algorithm 1, in Line 15 of Algorithm 3, we also have to estimate the level-wise shift. This estimate is the
weighted generalization of the shift estimate in Algorithm 1. It is not hard to follow the same derivation as shown above to
arrive at (13).

C. Additional Experiment Descriptions

In this section we provide additional descriptions of the experimental setup.

Synthetic Data. The item parameter Bf(k) is independently drawn from A/(0, 1). This parameter is then fixed across all
trials. For each value of n, we repeat for 100 trials. In each trial, we generate 6; ~ N (0, o) for either oy = 1 (Figure 1) or
oo = 2 (Figure 3). In all experiments, the prior distribution used in MMLE is set to be the standard normal distribution.

Real Data. Table 3 summarizes the metadata for all the real-life datasets used in our experiments. For the recommendation
systems datasets, after processing the data, we remove users with fewer than 100 ratings and items with fewer than 100
ratings. For each of the remaining users, we leave out one rating from each user as part of the heldout test dataset and one
rating as part of a validation dataset (for MMLE and Spectral-EM). Inference algorithms (spectral, MMLE and JMLE) are
run on the training data and we obtain 3. We then use the learned 3 to estimate 6 (in the case of JMLE, we directly use the
estimated 6.) We use the estimated parameters to predict the left out rating (maximum likelihood estimate) and compute log
likelihood on the heldout data. The validation dataset is used by MMLE to select the best user parameter distribution Dy«
and by Spectral-EM to select the number of mixture components. For MMLE and Spectral-EM, the error reported in Table 1
shows the performance on the heldout test set of the best model selected using validation data. The time reported shows the
average inference time across all model runs with different hyper-parameter choice.
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Dataset m n K Reference
LSAT 5 1000 2 (McDonald, 2013)

UCI 4 131 2 (Hussain et al., 2018)

3 GRADES 3 649 2 (Cortez & Silva, 2008)

HETREC 6590 | 1617 5 (Cantador et al., 2011)
EACH MOVIE 7217 | 1156 5 | (Harper & Konstan, 2015)
ML-1M 2499 | 4247 5 | (Harper & Konstan, 2015)
ML-10M 7214 | 42971 | 5 | (Harper & Konstan, 2015)
ML-20M 8532 | 51869 | 5 | (Harper & Konstan, 2015)

BOOK-GENOME | 9374 | 9102 5 (Kotkov et al., 2022)

Table 3: Datasets metadata and references.

Financial Investment Application. The dataset was made publicly available on a Reddit post (u/nobjos). We encode sell
recommendations as 0, hold recommendations as 1 and buy recommendations as 2. We will also publish the cleaned version
of the dataset upon publication of our paper to ensure anonymity. The cleaning procedure includes mapping different rating
description (buy, overweight, etc) to the same numerical scores, linking different versions of the same analyst (Nomura Inv
Bank, Nomura Investment). The daily stock price can be extracted from Yahoo finance.

The dataset consists of ratings given between 2012-01 and 2021-01. There are 502 stocks in total, and about 300 stocks
receive more than 100 ratings. There are 263 rating firms , 72 with at least 100 ratings, 52 firms with more than 200 ratings,
only a handful of stocks receive less than 10 ratings. The weekly price is taken as the average of the lowest and highest daily
prices within the corresponding week. Trading is performed on the last week of each month. Capital is divided equally
among the top 10 stocks. To obtain a ranking using the estimate 3, define for each stock (item) a score

K

fi=Y0 —8:*).

k=1
We have shown that sorting the items by f; is equivalent to sorting the items by % for any [. For simplicity, we
ignore trading costs.
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