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Abstract

We study clustering under anisotropic Gaussian Mixture Models (GMMs), where
covariance matrices from different clusters are unknown and are not necessarily
the identity matrix. We analyze two anisotropic scenarios: homogeneous, with
identical covariance matrices, and heterogeneous, with distinct matrices per cluster.
For these models, we derive minimax lower bounds that illustrate the critical
influence of covariance structures on clustering accuracy. To solve the clustering
problem, we consider a variant of Lloyd’s algorithm, adapted to estimate and utilize
covariance information iteratively. We prove that the adjusted algorithm not only
achieves the minimax optimality but also converges within a logarithmic number
of iterations, thus bridging the gap between theoretical guarantees and practical
efficiency.

1 Introduction

Clustering is a fundamentally important task in statistics and machine learning [7, 2]. The most
widely recognized and extensively studied model for clustering is the Gaussian Mixture Model
(GMM) [17, 19], which is formulated as

Yj = ✓⇤
z
⇤
j
+ ✏j , where ✏j

ind⇠ N (0,⌃⇤
z
⇤
j
), 8j 2 [n].

Here Y = (Y1, . . . , Yn) are the observations with n being the sample size. We define the set
[n] = {1, 2, . . . , n}. Assume k is the known number of clusters. Let {✓⇤

a
}a2[k] represent the

unknown centers, and ⌃⇤
a
denote the corresponding unknown covariance matrices. Define z⇤ 2 [k]n

as the cluster assignment vector, where for each index j 2 [n], the value of z⇤
j
specifies which cluster

the j-th data point is assigned to. The goal is to recover z⇤ from Y . For any estimator ẑ, its clustering
performance is measured by the misclustering error rate h(ẑ, z⇤), which will be introduced later in
(4).

There has been increasing interest in theoretical and algorithmic analysis of clustering under GMMs.
In a scenario where a GMM is isotropic, meaning that all covariance matrices {⌃⇤

a
}a2[k] are equal

to the identity matrix, [15] obtained the minimax rate for clustering, which takes the form of
exp(�(1 + o(1))(mina 6=b k✓⇤a � ✓⇤

b
k)2/8), with respect to the misclustering error rate. A diverse

range of methods has been explored in the context of the isotropic setting. Among these, Lloyd’s
algorithm [13] stands out as a particularly effective clustering algorithm, renowned for its extensive
success in a myriad of disciplines. [15, 8] establish computational and statistical guarantees for
the Lloyd’s algorithm. Specifically, they showed it achieves the minimax optimal rates after a few
iterations provided with some decent initialization. Another popular approach to clustering especially
for high dimensional data is the spectral clustering [21, 18, 20], which is an umbrella term for
clustering after a dimension reduction through a spectral decomposition. [14] proves the spectral
clustering also achieves the optimality under the isotropic GMM. Semidefinite programming (SDP)
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is also used for clustering by exploiting its low-rank structure, and its statistical properties have been
studied in literature, for example, [5].

Despite the numerous compelling findings, most existing research primarily focuses on isotropic
GMMs. The understanding of clustering in an anisotropic context, where the covariance matrices
are not constrained to be identity matrices, remains relatively limited. Some studies, including
[15, 5, 16, 1, 9, 24], present results for sub-Gaussian mixture models, wherein the errors ✏j are
assumed to follow some sub-Gaussian distributions with the variance proxy �2. At first glance,
it might appear that these results encompass the anisotropic case, as distributions of the form
{N (0,⌃⇤

a
)}a2[k] are indeed sub-Gaussian distributions. However, from a minimax perspective, the

least favorable scenario among all sub-Gaussian distributions with variance proxy �2—and thus the
most challenging for clustering—is when the errors are distributed as N (0,�2I). Therefore, the
minimax rate for clustering under the sub-Gaussian mixture model essentially equals the one under the
isotropic GMM, and methods like Lloyd’s algorithm, which require no covariance matrix information,
can be rate-optimal. As a result, the aforementioned findings primarily pertain to isotropic GMMs.

A few studies have explored the direction of clustering under anisotropic GMMs. [3] presents a
polynomial-time clustering algorithm that provably performs well when Gaussian distributions are
well-separated by hyperplanes. This idea is further developed in [11], which extends the approach
to allow overlapping Gaussians, albeit only in two-cluster scenarios. [22] proposes a novel method
for clustering under a balanced mixture of two elliptical distributions. They establish a provable
upper bound on their clustering performance. Nevertheless, the fundamental limit of clustering under
anisotropic GMMs, and whether a polynomial-time procedure can achieve it, remains unknown.

In this paper, we investigate the clustering task under two anisotropic GMMs. In Model 1, all
covariance matrices are equal (i.e., homogeneous) to some unknown matrix ⌃⇤. Model 2 offers
more flexibility, with covariance matrices that are unknown and not necessarily identical (i.e.,
heterogeneous). The contribution of this paper is two-fold, summarized as follows:

• Our first contribution is on the minimax rates. We obtain minimax lower bounds for
clustering under anisotropic GMMs with respect to the misclustering error rate. We show
they take the form of

inf
ẑ

sup
z⇤

Eh(ẑ, z⇤) � exp

✓
�(1 + o(1))

(signal-to-noise ratio)2

8

◆
,

where the signal-to-noise ratio under Model 1 is equal tomina,b2[k]:a 6=b k(✓⇤a� ✓⇤
b
)T⌃⇤� 1

2 k.
The signal-to-noise ratio for Model 2 is more intricate and will be introduced in Section 3.
For both models, we can see the minimax rates depend not only on the centers but also on
the covariance matrices. This is different from the isotropic case, whose signal-to-noise ratio
is mina 6=b k✓⇤a � ✓⇤

b
k. Our results precisely capture the role that covariance matrices play in

the clustering problem. This shows that covariance matrices impact the fundamental limits
of the clustering problem through complex interactions with the centers, especially in Model
2. We obtain the minimax lower bounds by drawing connections with Linear Discriminant
Analysis (LDA) [6] and Quadratic Discriminant Analysis (QDA).

• Our second and more important contribution is on the computational side. We give a
computationally feasible procedure and rate-optimal algorithm for the anisotropic GMM.
Lloyd’s algorithm, developed for the isotropic case, is no longer optimal as it only considers
distances among centers [3]. We study an adjusted Lloyd’s algorithm which estimates the
covariance matrices in each iteration and adjusts the clusters accordingly. It can also be seen
as a hard EM algorithm [4]. Here, we modify the E-step of the soft EM by implementing
a maximization step that directly assigns data points to clusters, rather than calculating
probabilities. As an iterative algorithm, we demonstrate that it achieves the minimax lower
bound within log n iterations. This offers both statistical and computational guarantees,
serving as valuable guidance for practitioners. Specifically, if we let z(t) denote the output
of the algorithm after t iterations, it holds with high probability that

h(z(t), z⇤)  exp

✓
�(1 + o(1))

(signal-to-noise ratio)2

8

◆
,

for all t � log n. The algorithm can be initialized using popular methods like spectral
clustering or Lloyd’s algorithm. In our numerical studies, we demonstrate that our algorithm
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significantly improves over the two aforementioned methods under anisotropic GMMs, and
matches the optimal exponent specified in the minimax lower bound.

Paper Organization. The remaining paper is organized as follows. In Section 2, we study Model 1
where the covariance matrices are unknown but homogeneous. In Section 3, we consider Model 2
where covariance matrices are unknown and heterogeneous. For both cases, we establish the minimax
lower bound for the clustering and give a computationally feasible and rate-optimal procedure. In
Section 4, we provide a numerical comparison with other popular methods. Proofs are included in
the supplement.

Notation. For any matrix X 2 R
d⇥d, we denote �1(X) as its smallest eigenvalue and �d(X) as

its largest eigenvalue. In addition, we denote kXk as its operator norm. For any two vectors u, v of
the same dimension, we denote hu, vi = uT v as their inner product. For any positive integer d, we
denote Id as the d⇥ d identity matrix. We denote N (µ,⌃) as the normal distribution with mean µ
and covariance matrix ⌃. We denote I {·} as the indicator function. For two positive sequences {an}
and {bn}, an � bn and an = O(bn) both mean an  Cbn for some constant C > 0 independent of
n. We also write an = o(bn) or bn

an
! 1 when lim sup

n

an
bn

= 0.

2 GMM with Unknown but Homogeneous Covariance Matrices

2.1 Model

We first consider the GMM where the covariance matrices of different clusters are unknown but are
assumed to be equal to each other. Then the data-generating process can be displayed as follows:

Model 1: Yj = ✓⇤
z
⇤
j
+ ✏j , where ✏j

ind⇠ N (0,⌃⇤), 8j 2 [n]. (1)

Throughout the paper, we call itModel 1 for simplicity and to distinguish it from a different and more
complicated one that will be introduced in Section 3. The goal is to recover the underlying cluster
assignment vector z⇤. If ⌃⇤ were known, then (1) can be converted into an isotropic GMM by a
linear transformation (⌃⇤)�

1
2Yj . However, the unknown nature of ⌃⇤ makes clustering under this

model more challenging than under isotropic GMMs.

Signal-to-noise Ratio. Define the signal-to-noise ratio

SNR = min
a,b2[k]:a 6=b

k(✓⇤
a
� ✓⇤

b
)T⌃⇤� 1

2 k, (2)

which is a function of all the centers {✓⇤
a
}a2[k] and the covariance matrix ⌃⇤. As we will show later

in Theorem 2.1, SNR captures the difficulty of the clustering problem and determines the minimax
rate. We defer the geometric interpretation of SNR until after presenting Theorem 2.2.

A quantity closely related to SNR is the minimum distance among the centers. Define � as

� = min
a,b2[k]:a 6=b

k✓⇤
a
� ✓⇤

b
k . (3)

Then we can see SNR and � are of the same order if all eigenvalues of the covariance matrix ⌃⇤ are
assumed to be constants. If ⌃⇤ is further assumed to be �2Id, then SNR equals �/�. As a result, in
[15, 8, 14] where the isotropic GMMs are studied, �/� plays the role of signal-to-noise ratio and
appears in their rates. Since (2) represents a direct generalization, we refer to it as the signal-to-noise
ratio for Model 1.

Loss Function. To measure the clustering performance, we consider the following loss function.
For any z, z⇤ 2 [k]n, we define

h(z, z⇤) = min
 2 

1

n

nX

j=1

I
�
 (zj) 6= z⇤

j

 
, (4)

where  = { :  is a bijection from [k] to [k]}. Here, the minimum is taken over all permutations
of [k] to address the identifiability issues of the labels 1, 2, . . . , k. The loss function measures the
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proportion of coordinates where z and z⇤ differ, modulo any permutation of label symbols. Thus, it
is referred to as the misclustering error rate in this paper. Another loss that will be used is `(z, z⇤)
defined as

`(z, z⇤) =
nX

j=1

���✓⇤zj � ✓⇤
z
⇤
j

���
2
. (5)

It measures the clustering performance of z considering the distances among the true centers. It is
related to h(z, z⇤) as h(z, z⇤)  `(z, z⇤)/(n�2) and provides more information than h(z, z⇤). We
will mainly use `(z, z⇤) in the technical analysis but will present results using h(z, z⇤) which is more
interpretable.

2.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 1.
Theorem 2.1. Under the assumption

SNRp
log k

! 1, we have

inf
ẑ

sup
z⇤2[k]n

Eh(ẑ, z⇤) � exp

✓
�(1 + o(1))

SNR
2

8

◆
. (6)

If SNR = O(1) instead, we have inf ẑ supz⇤2[k]n Eh(ẑ, z⇤) � c for some constant c > 0.

Theorem 2.1 allows the cluster numbers k to grow with n and shows that SNR ! 1 is a necessary
condition to have a consistent clustering. If k is a constant, then SNR ! 1 is also a sufficient
condition. Theorem 2.1 holds for any arbitrary configurations of {✓⇤

a
}a2[k] and ⌃⇤, with the minimax

lower bound depending on these through SNR. The parameter space is only for z⇤ while {✓⇤
a
}a2[k]

and ⌃⇤ are held fixed. Hence, (6) can be interpreted as a case-specific result, precisely capturing the
explicit dependence of the minimax rates on {✓⇤

a
}a2[k] and ⌃⇤.

Theorem 2.1 is closely related to the LDA. If there are only two clusters with known centers and a
covariance matrix, then estimating each z⇤

j
becomes exactly the task of the LDA: we aim to determine

from which of two normal distributions, each with a different mean but the same covariance matrix,
the observation Yj is generated. In fact, this approach is also how Theorem 2.1 is proved: We first
reduce the estimation problem of z⇤ to two-point hypothesis testing for each individual z⇤

j
. The error

of these tests is analyzed in Lemma A.1 using the LDA, and we then aggregate all these testing errors
together.
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Figure 1: A geometric interpretation of SNR.

With the help of Lemma A.1, we have a geometric interpretation of SNR. In the left panel of Figure 1,
we have two normal distributionsN (✓⇤1 ,⌃

⇤) andN (✓⇤2 ,⌃
⇤) thatX follows. The black line represents

the optimal testing procedure � displayed in Lemma A.1, dividing the space into two half-spaces.
To calculate the testing error, we can make the transformation X 0 = (⌃⇤)�

1
2 (X � ✓⇤1) so that the

two normal distributions become isotropic: N (0, Id) and N ((⌃⇤)�
1
2 (✓⇤2 � ✓⇤1), Id) as displayed in

the right panel. Then the distance between the two centers is k(⌃⇤)�
1
2 (✓⇤2 � ✓⇤1)k , and the distance

from a center to the black curve is half of that. Then, the probability that N (0, Id) falls within the
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grayed area equals exp(�(1 + o(1))k(⌃⇤)�
1
2 (✓⇤2 � ✓⇤1)k2/8), according to Gaussian tail probability.

As a result, k(⌃⇤)�
1
2 (✓⇤2 � ✓⇤1)k is the effective distance between the two centers of N (✓⇤1 ,⌃

⇤) and
N (✓⇤2 ,⌃

⇤) for the clustering problem, taking into account the geometry of the covariance matrix.
Since we have multiple clusters, SNR defined in (2) can be interpreted as the minimum effective
distance among the centers {✓⇤

a
}a2[k], considering the anisotropic structure of ⌃⇤. This measure

captures the intrinsic difficulty of the clustering problem.

2.3 Rate-Optimal Adaptive Procedure

In this section, we give a computationally feasible and rate-optimal procedure for clustering under
Model 1. Summarized in Algorithm 1, it is a variant of Lloyd’s algorithm. Starting with an initial
setup, it iteratively updates the estimates of the centers {✓⇤

a
}a2[k] (in (7)), the covariance matrix ⌃⇤

(in (8)), and the cluster assignment vector z⇤ (in (9)). This algorithm differs from Lloyd’s algorithm in
that the latter is designed for isotropic GMMs and does not incorporate the covariance matrix update
outlined in (8). Furthermore, (9) updates the estimation of z⇤

j
using argmin

a2[k](Yj�✓(t)a )T (Yj�✓(t)a )
instead. To differentiate clearly, we refer to the classic form as the vanilla Lloyd’s algorithm and
our modified version, which accommodates the unknown and anisotropic covariance matrix, as the
adjusted Lloyd’s algorithm.

Algorithm 1 can also be interpreted as a hard EM algorithm. When applying Expectation Maxi-
mization (EM) to Model 1, the M step estimates the parameters {✓⇤

a
}a2[k] and ⌃⇤, while the E step

estimates z⇤. It turns out the updates on the parameters (7) - (8) are identical to those in the EM’s M
step. However, the update of z⇤ in Algorithm 1 differs from that in the EM. Instead of computing a
conditional expectation typical of the E step, the algorithm performs maximization in (9). As a result,
Algorithm 1 effectively consists solely of M steps for both parameters and z⇤, characterizing it as a
hard EM algorithm.

Algorithm 1: Adjusted Lloyd’s Algorithm for Model 1.

Input: Data Y , number of clusters k, an initialization z(0), number of iterations T .
Output: z(T )

1 for t = 1, . . . , T do
2 Update the centers:

✓(t)
a

=

P
j2[n] YjI

n
z(t�1)
j

= a
o

P
j2[n] I

n
z(t�1)
j

= a
o , 8a 2 [k]. (7)

3 Update the covariance matrix:

⌃(t) =

P
a2[k]

P
j2[n](Yj � ✓(t)a )(Yj � ✓(t)a )T I

n
z(t�1)
j

= a
o

n
. (8)

4 Update the cluster assignment vector:

z(t)
j

= argmin
a2[k]

(Yj � ✓(t)
a

)T (⌃(t))�1(Yj � ✓(t)
a

), 8j 2 [n]. (9)

In Theorem 2.2, we give a computational and statistical guarantee of Algorithm 1. We show that
starting from a decent initialization, within log n iterations, Algorithm 1 achieves the error rate
exp
�
�(1 + o(1))SNR2/8

�
which matches the minimax lower bound given in Theorem 2.1. As a

result, Algorithm 1 is a rate-optimal procedure. In addition, the algorithm is fully adaptive to the
unknown {✓⇤

a
}a2[k] and ⌃⇤. The sole piece of information presumed to be known is k, the number of

clusters, as commonly assumed in clustering literature [15, 8, 14]. The theorem also shows that the
number of iterations needed to achieve the optimal rate is at most log n, providing implementation
guidance to practitioners.
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Theorem 2.2. Assume k = O(1), d = O(
p
n), and mina2[k]

P
n

j=1 I{z⇤j = a} � ↵n

k
for some

constant ↵ > 0. Assume SNR ! 1 and �d(⌃⇤)/�1(⌃⇤) = O(1). For Algorithm 1, suppose

z(0) satisfies `(z(0), z⇤) = o(n) with probability at least 1 � ⌘. Then with probability at least

1� ⌘ � n�1 � exp(�SNR), we have

h(z(t), z⇤)  exp

✓
�(1 + o(1))

SNR
2

8

◆
, for all t � log n.

We make the following remarks on the assumptions of Theorem 2.2: When k is constant, the
assumption that SNR ! 1 is a necessary condition for consistent recovery of z⇤, as outlined in the
minimax lower bound presented in Theorem 2.1. The assumption on ⌃⇤ ensures that the covariance
matrix is well-conditioned. The dimensionality d is assumed to be O(

p
n), a stronger assumption

than in [15, 8, 14], where d = O(n) is sufficient. This is because, unlike these studies, our work
requires estimating the covariance matrix ⌃⇤ and controlling the estimation error k⌃(t) � ⌃⇤k.

Theorem 2.2 needs a decent initialization z(0) in the sense that it is sufficiently close to the ground
truth such that `(z(0), z⇤) = o(n). This is because our theoretical analysis requires the initialization
being within a specific proximity to the true parameters. The requirement can be fulfilled by
simple procedures. An example is the vanilla Lloyd’s algorithm whose performance is studied in
[15, 8]. Though [15, 8] are for isotropic GMMs, their results can be extended to sub-Gaussian
mixture models with nearly identical proof. Since ✏j are sub-Gaussian random variables with
proxy variance �d(⌃⇤), [8] implies the vanilla Lloyd’s algorithm output ẑ satisfies `(ẑ, z⇤) 
n exp(�(1 + o(1))�2/(8�d(⌃⇤))) with probability at least 1� exp(��/

p
�d(⌃⇤))� n�1, under

the assumption that �2/(k2(kd/n + 1)�d(⌃⇤)) ! 1. Then we have `(ẑ, z⇤) = o(n) with high
probability under the assumptions of Theorem 2.2, and hence it can be used as an initialization for
the algorithm.

3 GMM with Unknown and Heterogeneous Covariance Matrices

3.1 Model

In this section, we study the GMM where the covariance matrices of each cluster are unknown and
not necessarily equal to each other. The data-generation process can be displayed as follows,

Model 2: Yj = ✓⇤
z
⇤
j
+ ✏j , where ✏j

ind⇠ N (0,⌃⇤
z
⇤
j
), 8j 2 [n]. (10)

We refer to this as Model 2 throughout the paper to distinguish it from Model 1, as discussed in
Section 2. The key difference between (10) and (1) is that here we have distinct covariance matrices
{⌃⇤

a
}a2[k] for each cluster, instead of a single shared ⌃⇤. We use the same loss function as defined in

(4).

Signal-to-noise Ratio. The signal-to-noise ratio for Model 2 is defined as follows. We use the
notation SNR0 to distinguish it from the SNR used for Model 1. Compared to SNR, SNR0 is much
more complicated and does not have an explicit formula. We first define a set Ba,b ⇢ R

d for any
a, b 2 [k] such that a 6= b:

Ba,b =

(
x 2 R

d :xT⌃
⇤ 1

2
a ⌃⇤�1

b
(✓⇤

a
� ✓⇤

b
) +

1

2
xT

⇣
⌃

⇤ 1
2

a ⌃⇤�1
b

⌃
⇤ 1

2
a � Id

⌘
x

 �1

2
(✓⇤

a
� ✓⇤

b
)T⌃⇤�1

b
(✓⇤

a
� ✓⇤

b
) +

1

2
log |⌃⇤

a
|� 1

2
log |⌃⇤

b
|
)
.

We then define SNR0
a,b

= 2minx2Ba,b kxk and

SNR0 = min
a,b2[k]:a 6=b

SNR0
a,b

. (11)

The form of SNR0 is closely connected to the testing error of the QDA, which we will give in
Lemma 3.1. The interpretation of the SNR0, particularly from a geometric perspective, will be
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deferred until after the presentation of Lemma 3.1. Here let us consider a few special cases where
we are able to simplify SNR0: (1) When ⌃⇤

a
= ⌃⇤ for all a 2 [k], by simple algebra, we have

SNR0
a,b

= k(✓⇤
a
� ✓⇤

b
)T⌃⇤� 1

2 k for any a, b 2 [k] such that a 6= b. Hence, SNR0 = SNR and Model 2
effectively reduces to Model 1. (2) When ⌃⇤

a
= �2

a
Id for any a 2 [k] where �1, . . . ,�k > 0 are large

constants, we have SNR0
a,b

, SNR0
b,a

both close to 2k✓⇤
a
� ✓⇤

b
k/(�a + �b). From these examples, we

can see SNR0 is determined by both the centers {✓⇤
a
}a2[k] and the covariance matrices {⌃⇤

a
}a2[k].

3.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 2.
Theorem 3.1. Assume d = O(1) and maxa,b2[k] �d(⌃⇤

a
)/�1(⌃⇤

b
) = O(1). Under the assumption

SNR
0

p
log k

! 1, we have

inf
ẑ

sup
z⇤2[k]n

Eh(ẑ, z⇤) � exp

 
�(1 + o(1))

SNR
02

8

!
.

If SNR
0 = O(1) instead, we have inf ẑ supz⇤2[k]n Eh(ẑ, z⇤) � c for some constant c > 0.

Although the statement of Theorem 3.1 appears similar to that of Theorem 2.1, the two minimax
lower bounds differ due to the varying dependencies of the centers and covariance matrices on SNR0

versus SNR. Using the same argument as in Section 2.2, the minimax lower bound established in
Theorem 3.1 closely relates to the QDA between two normal distributions with different means and
different covariance matrices.
Lemma 3.1 (Testing Error for the QDA). Consider two hypotheses H0 : X ⇠ N (✓⇤1 ,⌃

⇤
1) and

H1 : X ⇠ N (✓⇤2 ,⌃
⇤
2). Define a testing procedure

� = I
�
log |⌃⇤

1|+ (x� ✓⇤1)
T (⌃⇤

1)
�1(x� ✓⇤1) � log |⌃⇤

2|+ (x� ✓⇤2)
T (⌃⇤

2)
�1(x� ✓⇤2)

 
.

Then we have inf
�̂
(PH0(�̂ = 1) + PH1(�̂ = 0)) = PH0(� = 1) + PH1(� = 0) . Assume d = O(1)

and maxa,b2{1,2} �d(⌃⇤
a
)/�1(⌃⇤

b
) = O(1). If min

�
SNR

0
1,2, SNR

0
2,1

 
! 1, we have

inf
�̂

(PH0(�̂ = 1) + PH1(�̂ = 0)) � exp

 
�(1 + o(1))

min
�
SNR

0
1,2, SNR

0
2,1

 2

8

!
.

Otherwise, inf
�̂
(PH0(�̂ = 1) + PH1(�̂ = 0)) � c for some constant c > 0.
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Figure 2: A geometric interpretation of SNR0.

Lemma 3.1 provides a geometric interpretation of SNR0. In the left panel of Figure 2, we have two
normal distributions N (✓⇤1 ,⌃

⇤
1) and N (✓⇤2 ,⌃

⇤
2) from which X can be generated, and the black curve

represents the optimal testing procedure �, as detailed in Lemma 3.1. Since ⌃⇤
1 is not necessarily

equal to ⌃⇤
2, the black curve is not necessarily a straight line. If H0 is true, the probability that X

is incorrectly classified occurs when X falls into the gray area, represented by PH0(� = 1). To
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calculate this, we transformX toX 0 = (⌃⇤
1)

� 1
2 (X�✓⇤1), standardizing the first distribution. Then, as

displayed in the right panel of Figure 2, the two distributions become N (0, Id) and N ((⌃⇤
1)

� 1
2 (✓⇤2 �

✓⇤1), (⌃
⇤
1)

� 1
2⌃⇤

2(⌃
⇤
1)

� 1
2 ), and the optimal testing procedure � becomes I {X 0 2 B1,2}. As a result,

in the right panel of Figure 2, B1,2 represents the space colored by gray, and the black curve is
its boundary. Then PH0(� = 1) is equal to P(N (0, Id) 2 B1,2). Under the assumption d = O(1)
and maxa,b2{1,2} �d(⌃⇤

a
)/�1(⌃⇤

b
) = O(1), in Lemma C.10, we can show P(N (0, Id) 2 B1,2) =

exp(�(1 + o(1))SNR
02
1,2/8). As a result, SNR

0 can be interpreted as the minimum effective distance
among the centers {✓⇤

a
}a2[k], considering the anisotropic and heterogeneous structure of {⌃⇤

a
}a2[k],

and it captures the intrinsic difficulty of the clustering problem under Model 2.

3.3 Optimal Adaptive Procedure

In this section, we give a computationally feasible and rate-optimal procedure for clustering under
Model 2. Similar to Algorithm 1, Algorithm 2 is a variant of Lloyd’s algorithm, adjusted to
accommodate unknown and heterogeneous covariance matrices. It can also be interpreted as a
hard EM algorithm under Model 2. Algorithm 2 differs from Algorithm 1 in (13) and (14), as now
there are k covariance matrices instead of a common one.

Algorithm 2: Adjusted Lloyd’s Algorithm for Model 2.

Input: Data Y , number of clusters k, an initialization z(0), number of iterations T .
Output: z(T )

1 for t = 1, . . . , T do
2 Update the centers:

✓(t)
a

=

P
j2[n] YjI

n
z(t�1)
j

= a
o

P
j2[n] I

n
z(t�1)
j

= a
o , 8a 2 [k]. (12)

3 Update the covariance matrices:

⌃(t)
a

=

P
j2[n](Yj � ✓(t)a )(Yj � ✓(t)a )T I

n
z(t�1)
j

= a
o

P
j2[n] I

n
z(t�1)
j

= a
o , 8a 2 [k]. (13)

4 Update the cluster assignment vector:

z(t)
j

= argmin
a2[k]

(Yj � ✓(t)
a

)T (⌃(t)
a
)�1(Yj � ✓(t)

a
) + log |⌃(t)

a
|, 8j 2 [n]. (14)

In Theorem 3.2, we give a computational and statistical guarantee for Algorithm 2. We demonstrate
that, with proper initialization, Algorithm 2 achieves the minimax lower bound within log n iterations.
The assumptions needed in Theorem 3.2 are similar to those in Theorem 2.2, except that we require
stronger assumptions on the dimensionality d since now we have k (instead of one) covariance
matrices to be estimated. In addition, by assumingmaxa,b2[k] �d(⌃⇤

a
)/�1(⌃⇤

b
) = O(1), we ensure

not only that each of the k covariance matrices is well-conditioned but also that they are comparable
to one another.
Theorem 3.2. Assume k = O(1), d = O(1), and mina2[k]

P
n

j=1 I{z⇤j = a} � ↵n

k
for some

constant ↵ > 0. Assume SNR
0 ! 1 and maxa,b2[k] �d(⌃⇤

a
)/�1(⌃⇤

b
) = O(1). For Algorithm 2,

suppose z(0) satisfies `(z(0), z⇤) = o(n) with probability at least 1 � ⌘. Then with probability at

least 1� ⌘ � 5n�1 � exp(�SNR
0), we have

h(z(t), z⇤)  exp

 
�(1 + o(1))

SNR
02

8

!
, for all t � log n.

The vanilla Lloyd’s algorithm can be used as the initialization for Algorithm 2. This is because Model
2 is also a sub-Gaussian mixture model. By the same argument as in Section 2.3, the output of the
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vanilla Lloyd’s algorithm ẑ satisfies `(ẑ, z⇤) = o(n) with high probability under the assumptions of
Theorem 3.2.

We conclude this section with a time complexity analysis of Algorithm 2. Compared to the vanilla
Lloyd’s algorithm, our method introduces additional computational overhead due to the need for
computing the inverse and determinant of covariance matrices. Specifically, the time complexity of
Algorithm 2 is O(nkd3T ). In contrast, the vanilla Lloyd’s algorithm has a lower time complexity of
O(nkdT ). The increase in complexity stems from matrix operations in d dimensions, as both matrix
inversion and determinant computation scale as O(d3).

4 Numerical Studies

In this section, we compare the performance of our methods with other popular clustering methods
on synthetic and real datasets under different settings.

Model 1. The first simulation is designed for the GMM with unknown but homogeneous covariance
matrices (i.e., Model 1). We independently generate n = 1200 samples with dimension d = 50 from
k = 30 clusters. Each cluster has 40 samples. We set ⌃⇤ = UT⇤U , where ⇤ is a 50⇥ 50 diagonal
matrix with diagonal elements selected from 0.5 to 8 with equal space and U is a randomly generated
orthogonal matrix. The centers {✓⇤

a
}a2[n] are orthogonal to each other with k✓⇤1k = . . . = k✓⇤30k = 9.

We consider four popular clustering methods: (1) the spectral clustering method in [14] (denoted as
“spectral”), (2) the vanilla Lloyd’s algorithm in [15] (denoted as “vanilla Lloyd”), (3) Algorithm 1
initialized by the spectral clustering (denoted as “spectral + Alg 1”), and (4) Algorithm 1 initialized
by the vanilla Lloyd (denoted as “vanilla Lloyd + Alg 1”). The comparison is presented in the left
panel of Figure 3.

Model 2. We also compare the performances of four methods (spectral, vanilla Lloyd, spectral +
Alg 2, and vanilla Lloyd + Alg 2) for the GMMwith unknown and heterogeneous covariance matrices
(i.e., Model 2). In this case, we take n = 1200, k = 2, and d = 9. We set ⌃⇤

1 = Id and ⌃⇤
2 = ⇤2,

a diagonal matrix where the first diagonal entry is 0.5 and the remaining entries are 5. We set the
cluster sizes to be 900 and 300, respectively. To simplify the calculation of SNR0, we set ✓⇤1 = 0 and
✓⇤2 = 5e1, with e1 being the vector that has a 1 in its first entry and 0s elsewhere. The comparison is
presented in the right panel of Figure 3.
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Figure 3: Left: Performance of Algorithm 1 compared with other methods under Model 1. Right:
Performance of Algorithm 2 compared with other methods under Model 2.

In Figure 3, the x-axis is the number of iterations and the y-axis is the logarithm of the misclustering
error rate, i.e., log(h). Each of the curves plotted is an average of 100 independent trials. We can
see both Algorithm 1 and Algorithm 2 outperform the spectral clustering and the vanilla Lloyd’s
algorithm significantly. Additionally, the dashed lines in the left and right panels represent the
optimal exponents �SNR2/8 and �SNR02/8 of the minimax bounds, respectively. It is observed
that both Algorithm 1 and Algorithm 2 meet these benchmarks after three iterations. This justifies the
conclusion that both algorithms are rate-optimal.
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Real Data. To further demonstrate the effectiveness of our methods, we conduct experiments using
the Fashion-MNIST dataset [23]. In the first analysis, we use a total of 12,000 28⇥28 grayscale
images, consisting of 6,000 images each from the T-shirt/top class and the Trouser class. The left
panel of Figure 4 gives a visualization of the data points using their first two principal components,
showing the anisotropic and heterogeneous covariance structures. Since a large number of pixels have
zero across most images, we apply PCA to reduce dimensionality from 784 to 50 by retaining the top
50 principal components. Our Algorithm 2 achieves a misclustering error of 5.71%, outperforming
the vanilla Lloyd’s algorithm, which has an error of 8.24%. In the second analysis, we incorporate
an additional class, the Ankle boot class, increasing the total to 18,000 images across three classes.
Following the same preprocessing steps, the visualization of the dataset’s structure in the right panel of
Figure 4 again confirms the presence of anisotropic and heterogeneous covariances. Here, Algorithm
2 achieves an error of 3.97%, an improvement over the 5.64% error rate observed with the vanilla
Lloyd’s algorithm.

Figure 4: Visualization of the Fashion-MNIST dataset using the first two principal components.
The data points are color-coded to indicate class membership: Red represents the T-shirt/top class,
green denotes the Trouser class, and blue signifies the Ankle boot class. This illustration shows the
existence of anisotropic and heterogeneous covariance structures.

5 Conclusion

This paper focuses on clustering methods and theory for GMMs, with anisotropic covariance struc-
tures, presenting new minimax bounds and an adjusted Lloyd’s algorithm tailored for varying
covariance structures. Our theoretical and empirical analyses demonstrate the algorithm’s ability to
achieve optimality within a logarithmic number of iterations. Despite these advances, our results
have some limitations that are worth addressing in future work:

1. High-Dimensional Settings: Current results are restricted to dimensions d growing at a rate
slower than n, specifically d = O(

p
n) as stated in Theorem 2.2. Section 3 further requires

a stronger assumption d = O(1). These constraints stem from technical challenges in
estimating covariance matrices accurately and in controlling matrix determinant. Adopting
more sophisticated analytical tools could potentially relax these bounds to d = O(n). In
scenarios where d exceeds n, the misclustering error deviates from the simpler exponential
decay observed under isotropic GMMs, as shown in [16]. This suggests that our model
might also exhibit similar complexities, warranting further exploration into the technique
used in [16] for potential extensions.

2. Ill-Conditioned Covariance Structures: Our analysis relies on the assumption of well-
conditioned covariance matrices, where maxa,b2[k] �d(⌃⇤

a
)/�1(⌃⇤

b
) = O(1). This con-

dition is crucial for the current analytical framework, as it helps manage the estimation
errors of covariance matrices and their inverses. While more advanced techniques may
allow for a relaxation of this assumption, handling ill-conditioned or degenerate covariance
matrices remains challenging, particularly due to the difficulty of working with matrix
inverses in such cases. While minimax lower bounds suggest that clustering is still possible
even when the covariance matrix is degenerate, it raises computational challenges for our
current algorithms. This highlights the need for developing new algorithms that can function
effectively under less restrictive conditions.

10



References
[1] Emmanuel Abbe, Jianqing Fan, and Kaizheng Wang. An `p theory of PCA and spectral

clustering. The Annals of Statistics, 50(4):2359–2385, 2022.

[2] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[3] S Charles Brubaker and Santosh S Vempala. Isotropic PCA and affine-invariant clustering. In
Building Bridges, pages 241–281. Springer, 2008.

[4] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

[5] Yingjie Fei and Yudong Chen. Hidden integrality of SDP relaxations for sub-Gaussian mixture
models. In Conference On Learning Theory, pages 1931–1965. PMLR, 2018.

[6] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, 2001.

[8] Chao Gao and Anderson Y Zhang. Iterative algorithm for discrete structure recovery. The

Annals of Statistics, 50(2):1066–1094, 2022.

[9] Christophe Giraud and Nicolas Verzelen. Partial recovery bounds for clustering with the relaxed
k-means. Mathematical Statistics and Learning, 1(3):317–374, 2019.

[10] Daniel Hsu, Sham Kakade, Tong Zhang, et al. A tail inequality for quadratic forms of subgaus-
sian random vectors. Electronic Communications in Probability, 17, 2012.

[11] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. Efficiently learning mixtures of two
Gaussians. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
553–562, 2010.

[12] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. The Annals of Statistics, pages 1302–1338, 2000.

[13] Stuart Lloyd. Least squares quantization in PCM. IEEE transactions on information theory,
28(2):129–137, 1982.

[14] Matthias Löffler, Anderson Y Zhang, and Harrison H Zhou. Optimality of spectral clustering in
the Gaussian mixture model. The Annals of Statistics, 49(5):2506–2530, 2021.

[15] Yu Lu and Harrison H Zhou. Statistical and computational guarantees of Lloyd’s algorithm and
its variants. arXiv preprint arXiv:1612.02099, 2016.

[16] Mohamed Ndaoud. Sharp optimal recovery in the two component Gaussian mixture model.
The Annals of Statistics, 50(4):2096–2126, 2022.

[17] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Transactions
of the Royal Society of London. A, 185:71–110, 1894.

[18] Daniel A Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and finite
element meshes. In Proceedings of 37th Conference on Foundations of Computer Science,
pages 96–105. IEEE, 1996.

[19] D Michael Titterington, Adrian FM Smith, and Udi E Makov. Statistical analysis of finite

mixture distributions. Wiley„ 1985.

[20] S. Vempala and G. Wang. A spectral algorithm for learning mixture models. J. Comput. Syst.
Sci., 68(4):841–860, 2004.

[21] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

11



[22] Kaizheng Wang, Yuling Yan, and Mateo Díaz. Efficient clustering for stretched mixtures:
Landscape and optimality. Advances in Neural Information Processing Systems, 33:21309–
21320, 2020.

[23] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[24] Anderson Y Zhang and Harrison H Zhou. Leave-one-out singular subspace perturbation analysis
for spectral clustering. arXiv preprint arXiv:2205.14855, 2022.

12



The appendices are organized as follows. Appendix A is dedicated to proving the results in Section
2. To be more specific, we prove the lower bound, Theorem 2.1, in Appendix A.1 and the upper
bound, Theorem 2.2, in Appendix A.2. For the upper bound proof, we first give a high-level idea in
Appendix A.2.1, followed by a detailed proof in Appendix A.2.2. Appendix B includes proofs of the
results in Section 3: the proof of the lower bound, Theorem 3.1, is in Appendix B.1, and the proof of
the upper bound, Theorem 3.2, is in Appendix B.2. We include all technical lemmas and their proofs
in Appendix C.

A Proofs in Section 2

A.1 Proofs for the Lower Bound

In the following lemma, we give a sharp and explicit formula for the testing error of the LDA.
Here we have two normal distributions N (✓⇤1 ,⌃

⇤) and N (✓⇤2 ,⌃
⇤) and an observation X that is

generated from one of them. We are interested in estimating from which distribution the ob-
servation is drawn. By the Neyman-Pearson lemma, it is known that the likelihood ratio test
I
�
2(✓⇤2 � ✓⇤1)

T (⌃⇤)�1X � ✓⇤T2 (⌃⇤)�1✓⇤2 � ✓⇤T1 (⌃⇤)�1✓⇤1
 
is the optimal testing procedure. Then

by using the Gaussian tail probability, we are able to obtain the optimal testing error, with its lower
bound given in Lemma A.1.
Lemma A.1 (Testing Error for the LDA). Consider two hypotheses H0 : X ⇠ N (✓⇤1 ,⌃

⇤) and
H1 : X ⇠ N (✓⇤2 ,⌃

⇤). Define a testing procedure

� = I
�
2(✓⇤2 � ✓⇤1)

T (⌃⇤)�1X � ✓⇤T2 (⌃⇤)�1✓⇤2 � ✓⇤T1 (⌃⇤)�1✓⇤1
 
.

Then inf
�̂
(PH0(�̂ = 1)+PH1(�̂ = 0)) = PH0(� = 1)+PH1(� = 0) . If k(✓⇤2 � ✓⇤1)

T (⌃⇤)�
1
2 k ! 1,

we have

inf
�̂

(PH0(�̂ = 1) + PH1(�̂ = 0)) � exp

 
�(1 + o(1))

k(✓⇤2 � ✓⇤1)
T (⌃⇤)�

1
2 k2

8

!
.

Otherwise, inf
�̂
(PH0(�̂ = 1) + PH1(�̂ = 0)) � c for some constant c > 0.

Proof. Note that � is the likelihood ratio test. By the Neyman-Pearson lemma, it is the optimal
procedure. That is, inf

�̂
(PH0(�̂ = 1)+PH1(�̂ = 0)) = PH0(� = 1)+PH1(� = 0) . Let ✏ ⇠ N (0, Id).

By Gaussian tail probability, we have
PH0(� = 1) + PH1(� = 0) = P

�
2(✓⇤2 � ✓⇤1)

T (⌃⇤)�1(✓⇤1 + ✏) � ✓⇤T2 (⌃⇤)�1✓⇤2 � ✓⇤T1 (⌃⇤)�1✓⇤1
�

+ P
�
2(✓⇤2 � ✓⇤1)

T (⌃⇤)�1(✓⇤2 + ✏) < ✓⇤T2 (⌃⇤)�1✓⇤2 � ✓⇤T1 (⌃⇤)�1✓⇤1
�

= 2P
�
2(✓⇤2 � ✓⇤1)

T (⌃⇤)�1(✓⇤1 + ✏) � ✓⇤T2 (⌃⇤)�1✓⇤2 � ✓⇤T1 (⌃⇤)�1✓⇤1
�

= 2P

✓
✏ >

1

2
k(✓⇤2 � ✓⇤1)

T (⌃⇤)�
1
2 k
◆

� Cmin

(
1,

1

k(✓⇤2 � ✓⇤1)
T (⌃⇤)�

1
2 k

exp

 
�k(✓⇤2 � ✓⇤1)

T (⌃⇤)�
1
2 k2

8

!)
,

for some constant C > 0. The proof is complete.

Proof of Theorem 2.1. We adopt the idea from [15]. Without loss of generality, assume the minimum
in (2) is achieved at a = 1, b = 2 so that SNR = (✓⇤1 � ✓⇤2)

T (⌃⇤)�1(✓⇤1 � ✓⇤2). Consider an arbitrary
z̄ 2 [k]n such that |{i 2 [n] : z̄i = a}| � dn

k
� n

8k2 e for any a 2 [k]. Then for each a 2 [k], we can
choose a subset of {i 2 [n] : z̄i = a} with cardinality dn

k
� n

8k2 e, denoted by Ta. Let T = [a2[k]Ta.
Then we can define a parameter space

Z = {z 2 [k]n : zi = z̄i for all i 2 T and zi 2 {1, 2} if i 2 T c} .
Notice that for any z 6= z̃ 2 Z , we have 1

n

P
n

i=1 I{zi 6= z̃i}  k

n

n

8k2 = 1
8k and 1

n

P
n

i=1 I{ (zi) 6=
z̃i} � 1

n
( n

2k � n

8k2 ) � 1
4k for any permutation  on [k]. Thus we can conclude

h(z, z̃) =
1

n

nX

i=1

I{zi 6= z̃i}, for all z, z̃ 2 Z.
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We notice that

inf
ẑ

sup
z⇤2[k]n

Eh(ẑ, z⇤) � inf
ẑ

sup
z⇤2Z

Eh(ẑ, z⇤)

� inf
ẑ

1

|Z|
X

z⇤2Z
Eh(ẑ, z⇤)

� 1

n

X

i2T c

inf
ẑi

1

|Z|
X

z⇤2Z
Pz⇤(ẑi 6= zi).

Now consider a fixed i 2 T c. Define Za = {z 2 Z : zi = a} for a = 1, 2. Then we can see
Z = Z1 [ Z2 and Z1 \ Z2 = ;. What is more, there exists a one-to-one mapping f(·) between
Z1 and Z2, such that for any z 2 Z1, we have f(z) 2 Z2 with [f(z)]j = zj for any j 6= i and
[f(z)]i = 2. Hence, we can reduce the problem to a two-point testing probe and then apply Lemma
A.1. We first consider the case that SNR ! 1. We have

inf
ẑi

1

|Z|
X

z⇤2Z
Pz⇤(ẑi 6= zi) = inf

ẑi

1

|Z|
X

z⇤2Z1

�
Pz⇤(ẑi 6= 1) + Pf(z⇤)(ẑi 6= 2)

�

� 1

|Z|
X

z⇤2Z1

inf
ẑi

�
Pz⇤(ẑi 6= 1) + Pf(z⇤)(ẑi 6= 2)

�

� |Z1|
Z exp

✓
�(1 + ⌘)

SNR2

8

◆

� 1

2
exp

✓
�(1 + ⌘)

SNR2

8

◆
,

for some ⌘ = o(1). Here the second inequality is due to Lemma A.1. Then,

inf
ẑ

sup
z⇤2[k]n

Eh(ẑ, z⇤) � |T c|
2n

exp

✓
�(1 + ⌘)

SNR2

8

◆
=

1

16k
exp

✓
�(1 + ⌘)

SNR2

8

◆

= exp

✓
�(1 + ⌘0)

SNR2

8

◆
,

for some other ⌘0 = o(1), where we use SNR2/ log k ! 1.

The proof for the case SNR = O(1) is similar and hence is omitted here.

A.2 Proofs for the Upper Bound

A.2.1 High-level Idea

In this section, we provide a high-level idea for the proof of Theorem 2.2. The detailed proof is
technical and is given later in Appendix A.2.2.

The key idea for establishing the statistical guarantees of Algorithm 1, an iterative algorithm, is to
perform a “one-step” analysis [8]. That is, assume we have an estimation z for z⇤. Then we can
apply (7), (8), and (9) on z to obtain {✓̂a(z)}a2[k], ⌃̂(z), and ẑ(z) sequentially, which all depend on
z. Thus, ẑ(z) can be seen as a refined estimate of z⇤. We will first build the connection between
`(z, z⇤) with `(ẑ(z), z⇤) as in Lemma A.2, which informally states that under certain conditions,
with high probability, we have

`(ẑ(z), z⇤)  ⇠ideal(�) +
1

2
`(z, z⇤)

holds for any z 2 [k]n such that `(z, z⇤) is small. Here ⇠ideal(�) refers to the ideal error, which
eventually leads to the upper bound in Theorem 2.2. Lemma A.2 tells us ẑ(·) has a “contraction”
property. That is, after one iteration of (7), (8), and (9), `(ẑ(z), z⇤) is at most a half of `(z, z⇤), up to
an additive term ⇠ideal(�).

To establish Lemma A.2, we decompose the loss `(ẑ(z), z⇤) into several errors according to the
difference in their behaviors. Next, we will introduce several conditions (Conditions 1 - 3), under
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which we demonstrate that these errors are either negligible, well-controlled by `(z, z⇤), or connected
to ⇠ideal(�). Once Lemma A.2 is established, we will show in Lemma A.3 that the connection can
be extended to multiple iterations, under two more conditions (Conditions 4 - 5). Lemma A.3 states
informally that, under certain conditions and with high probability, we have

`(z(t), z⇤)  ⇠ideal(�) +
1

2
`(z(t�1), z⇤)

for all t � 1. This implies `(z(t), z⇤) is eventually at most ⇠ideal(�), up to some constant factor. Last,
we will show all these conditions hold with high probability. Although the algorithmic guarantees in
Lemma A.2 and Lemma A.3 are established with respect to the `(·, ·) loss, we will use the relationship
between h(·, ·) and `(·, ·) to convert this result to one involving h(·, ·). Hence, we prove Theorem
2.2.

A.2.2 Detailed Proofs

In the statement of Theorem 2.2, the covariance matrix ⌃⇤ is assumed to satisfy �d(⌃⇤)/�1(⌃⇤) =
O(1). Without loss of generality, we can replace it by assuming ⌃⇤ satisfies

�min  �1(⌃
⇤)  �d(⌃

⇤)  �max (15)
where �min,�max > 0 are two constants. This is due to the following simple argument using the
scaling properties of normal distributions. Let {Yj} be some dataset generated according to Model
1 with parameters {✓⇤

a
}a2[k], ⌃⇤, and z⇤. The assumption �d(⌃⇤)/�1(⌃⇤) = O(1) is equivalent to

assuming there exist some constants �min,�max > 0 and some quantity � > 0 that may depend on
n such that �min�2  �1(⌃⇤)  �d(⌃⇤)  �max�2. By performing a scaling transformation, we
obtain another dataset Y 0

j
= Yj/�. Note that: 1) {Y 0

j
} can be seen as generated from Model 1 with

parameters {✓⇤
a
/�}a2[k], ⌃⇤/�2, and z⇤. 2) Clustering on {Yj} is equivalent to clustering on {Y 0

j
}.

3) By the definition in (2), the SNRs that are associated with the data-generating processes of {Y 0
j
}

and {Yj} are exactly equal to each other. 4) We have �min  �1(⌃⇤/�2)  �d(⌃⇤/�2)  �max.
Thus, for the remainder of this section, we assume that (15) holds without any loss of generality.

In the proof, we will mainly use the loss `(·, ·) for convenience. Recall � is defined as the minimum
distance among centers in (3). We have

h(z, z⇤)  `(z, z⇤)

n�2
. (16)

The algorithmic guarantees Lemma A.2 and Lemma A.3 are established with respect to the `(·, ·)
loss. Eventually, we will use (16) to convert it into a result with respect to h(·, ·) in the proof of
Theorem 2.2.

Error Decomposition for the One-step Analysis: Consider an arbitrary z 2 [k]n. Apply (7), (8),
and (9) on z to obtain {✓̂a(z)}a2[k], ⌃̂(z), and ẑ(z):

✓̂a(z) =

P
j2[n] YjI {zj = a}
P

j2[n] I {zj = a} , 8a 2 [k]

⌃̂(z) =

P
a2[k]

P
j2[n](Yj � ✓̂a(z))(Yj � ✓̂a(z))T I {zj = a}

n
,

ẑj(z) = argmin
a2[k]

(Yj � ✓̂a(z))
T (⌃̂(z))�1(Yj � ✓̂a), 8j 2 [n].

For simplicity, we denote ẑ as shorthand for ẑ(z). Let j 2 [n] be an arbitrary index with z⇤
j
= a.

According to (9), z⇤
j
will be incorrectly estimated after one iteration in ẑ if a 6= argmin

b2[k](Yj �
✓̂b(z))T (⌃̂(z))�1(Yj � ✓̂b(z)). Therefore, it is important to analyze the event

hYj � ✓̂b(z), (⌃̂(z))
�1(Yj � ✓̂b(z))i  hYj � ✓̂a(z), (⌃̂(z))

�1(Yj � ✓̂a(z))i, (17)
for any b 2 [k] \ {a}. Note that Yj = ✓⇤

a
+ ✏j . After some rearrangements, we can see (17) is

equivalent to

h✏j , (⌃̂(z⇤))�1(✓̂a(z
⇤)� ✓̂b(z

⇤))i

 � 1

2
h✓⇤

a
� ✓⇤

b
, (⌃⇤)�1(✓⇤

a
� ✓⇤

b
)i+ Fj(a, b, z) +Gj(a, b, z) +Hj(a, b, z),
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where

Fj(a, b, z) = h✏j , (⌃̂(z))�1(✓̂b(z)� ✓̂b(z
⇤))i � h✏j , (⌃̂(z))�1(✓̂a(z)� ✓̂a(z

⇤))i
+ h✏j , ((⌃̂(z))�1 � (⌃̂(z⇤))�1)(✓̂b(z

⇤)� ✓̂a(z
⇤))i,

Gj(a, b, z) =
1

2
h✓⇤

a
� ✓̂a(z), (⌃̂(z))

�1(✓⇤
a
� ✓̂a(z))i �

1

2
h✓⇤

a
� ✓̂a(z

⇤), (⌃̂(z))�1(✓⇤
a
� ✓̂a(z

⇤))i

+
1

2
h✓⇤

a
� ✓̂a(z

⇤), (⌃̂(z))�1(✓⇤
a
� ✓̂a(z

⇤))i � 1

2
h✓⇤

a
� ✓̂a(z

⇤), (⌃̂(z⇤))�1(✓⇤
a
� ✓̂a(z

⇤))i

� 1

2
h✓⇤

a
� ✓̂b(z), (⌃̂(z))

�1(✓⇤
a
� ✓̂b(z))i+

1

2
h✓⇤

a
� ✓̂b(z

⇤), (⌃̂(z))�1(✓⇤
a
� ✓̂b(z

⇤))i

� 1

2
h✓⇤

a
� ✓̂b(z

⇤), (⌃̂(z))�1(✓⇤
a
� ✓̂b(z

⇤))i+ 1

2
h✓⇤

a
� ✓̂b(z

⇤), (⌃̂(z⇤))�1(✓⇤
a
� ✓̂b(z

⇤))i,

Hj(a, b, z) =� 1

2
h✓⇤

a
� ✓̂b(z

⇤), (⌃̂(z⇤))�1(✓⇤
a
� ✓̂b(z

⇤))i+ 1

2
h✓⇤

a
� ✓⇤

b
, (⌃̂(z⇤))�1(✓⇤

a
� ✓⇤

b
)i

� 1

2
h✓⇤

a
� ✓⇤

b
, (⌃̂(z⇤))�1(✓⇤

a
� ✓⇤

b
)i+ 1

2
h✓⇤

a
� ✓⇤

b
, (⌃⇤)�1(✓⇤

a
� ✓⇤

b
)i

+
1

2
h✓⇤

a
� ✓̂a(z

⇤), (⌃̂(z⇤))�1(✓⇤
a
� ✓̂a(z

⇤))i.

In the above decomposition, the expression h✏j , (⌃̂(z⇤))�1(✓̂a(z⇤) � ✓̂b(z⇤))i  � 1
2 h✓

⇤
a
�

✓⇤
b
, (⌃⇤)�1(✓⇤

a
� ✓⇤

b
)i does not involve z. Roughly speaking, it corresponds to the event that z⇤

j
will

be incorrectly estimated in ẑ(z⇤). This is considered the main part of (17) and will contribute to
⇠ideal. The difference between (17) and the main term is expressed through the terms Fj , Gj , Hj : Fj

includes terms related to noise ✏j , illustrating the impact of measurement noise; Gj covers estimation
errors for cluster centers (✓̂a(z) � ✓̂a(z⇤)) and covariance matrices (⌃̂(z) � ⌃̂(z⇤)), showing the
effect of the parameter estimation inaccuracies; Hj contains all other terms from additional error
sources. Readers can refer to [8] for more information about the decomposition.

Conditions and Guarantees for One-step Analysis. We continue to analyze the event (17). We
first define a quantity independent of z, which we refer to as the ideal error:

⇠ideal(�) =
nX

j=1

X

b2[k]\{z⇤
j }

k✓⇤
z
⇤
j
� ✓⇤

b
k2I
(
h✏j , (⌃̂(z⇤))�1(✓̂a(z

⇤)� ✓̂b(z
⇤))i

 �1� �

2
h✓⇤

a
� ✓⇤

b
, (⌃⇤)�1(✓⇤

a
� ✓⇤

b
)i
)
.

When � = 0, it is determined by the main term in (17), namely h✏j , (⌃̂(z⇤))�1(✓̂a(z⇤)� ✓̂b(z⇤))i 
� 1

2 h✓
⇤
a
� ✓⇤

b
, (⌃⇤)�1(✓⇤

a
� ✓⇤

b
)i. Roughly speaking, ⇠ideal(0) relates to the performance of ẑ(z⇤). Due

to the presence of the terms Fj , Gj , Hj in the decomposition of (17), what appears in the analysis of
(17) is ⇠ideal(�) instead of ⇠ideal(0) where hopefully � > 0 is some small number.

To establish the guarantee for one-step analysis, we next give several conditions on the error terms
Fj(a, b; z), Gj(a, b; z) and Hj(a, b; z).
Condition 1. Assume that

max
{z:l(z,z⇤)⌧}

max
j2[n]

max
b2[k]\{z⇤

j }

|Hj(z⇤j , b, z)|
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i  �

4

holds with probability at least 1� ⌘1 for some ⌧, �, ⌘1 > 0.

Condition 2. Assume that

max
{z:l(z,z⇤)⌧}

nX

j=1

max
b2[k]\{z⇤

j }

Fj(z⇤j , b, z)
2k✓⇤

z
⇤
j
� ✓⇤

b
k2

h✓⇤
z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i2`(z, z⇤)  �2

128

holds with probability at least 1� ⌘2 for some ⌧, �, ⌘2 > 0.
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Condition 3. Assume that

max
{z:l(z,z⇤)⌧}

max
j2[n]

max
b2[k]\{z⇤

j }

|Gj(z⇤j , b, z)|
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i  �

8

holds with probability at least 1� ⌘3 for some ⌧, �, ⌘3 > 0.

Lemma A.2. Assumes Conditions 1 - 3 hold for some ⌧, �, ⌘1, ⌘2, ⌘3, > 0. We then have

P

✓
`(ẑ, z⇤)  ⇠ideal(�) +

1

2
`(z, z⇤) for any z 2 [k]n such that `(z, z⇤)  ⌧

◆
� 1� ⌘,

where ⌘ =
P3

i=1 ⌘i.

Proof. Consider any j 2 [n] such that z⇤
j
= a. We notice that for any b 2 [k] such that b 6= a,

I {ẑj = b}  I

n
hYj � ✓̂b(z), (⌃̂(z))

�1(Yj � ✓̂b(z))i  hYj � ✓̂a(z), (⌃̂(z))
�1(Yj � ✓̂a(z))i

o

= I

⇢
h✏j , (⌃̂(z⇤))�1(✓̂z⇤

j
(z⇤)� ✓̂b(z

⇤))i

 �1

2
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i+ Fj(z

⇤
j
, b, z) +Gj(z

⇤
j
, b, z) +Hj(z

⇤
j
, b, z)

�

 I

⇢
h✏j , (⌃̂(z⇤))�1(✓̂z⇤

j
(z⇤)� ✓̂b(z

⇤))i  �1� �

2
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i
�

+ I

⇢
�

2
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i  Fj(z

⇤
j
, b, z) +Gj(z

⇤
j
, b, z) +Hj(z

⇤
j
, b, z)

�

 I

⇢
h✏j , (⌃̂(z⇤))�1(✓̂z⇤

j
(z⇤)� ✓̂b(z

⇤))i  �1� �

2
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i
�

+ I

⇢
�

8
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i  Fj(z

⇤
j
, b, z)

�

 I

⇢
h✏j , (⌃̂(z⇤))�1(✓̂z⇤

j
(z⇤)� ✓̂b(z

⇤))i  �1� �

2
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i
�

+
64Fj(z⇤j , b, z)

2

�2h✓⇤
z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i2 ,

where the second inequality comes from Conditions 1 and 3. Note that we can multiply I {ẑj = b}
on both sides of the above display and the inequality still holds. Hence,

I {ẑj = b}  I

⇢
h✏j , (⌃̂(z⇤))�1(✓̂z⇤

j
(z⇤)� ✓̂b(z

⇤))i  �1� �

2
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i
�

+
64Fj(z⇤j , b, z)

2

�2h✓⇤
z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i2 I {ẑj = b} .

Thus, we have
`(ẑ, z⇤)

=
nX

j=1

X

b2[k]\{a}

���✓⇤b � ✓⇤
z
⇤
j

���
2
I {ẑj = b}

 ⇠ideal(�) +
nX

j=1

X

b2[k]\{z⇤
j }

���✓⇤b � ✓⇤
z
⇤
j

���
2
I {ẑj = b}

64Fj(z⇤j , b, z)
2

�2h✓⇤
z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i2

 ⇠ideal(�) +
nX

j=1

max
b2[k]\{z⇤

j }

���✓⇤b � ✓⇤
z
⇤
j

���
2 64Fj(z⇤j , b, z)

2

�2h✓⇤
z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i2

 ⇠ideal(�) +
`(z, z⇤)

2
,

which implies Lemma A.2. Here the last inequality uses Condition 2.
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Conditions and Guarantees for Multiple Iterations. In the above, we establish a statistical
guarantee for the one-step analysis. Now we will extend the result to multiple iterations. That is,
starting from some initialization z(0), we will characterize how the losses `(z(0), z⇤), `(z(1), z⇤),
`(z(2), z⇤), . . . , decay. We impose conditions on ⇠ideal(�) and the initialization z(0).
Condition 4. Assume that

⇠ideal(�) 
3⌧

8

holds with probability at least 1� ⌘4 for some ⌧, �, ⌘4 > 0.

Finally, we need a condition on the initialization.
Condition 5. Assume that

`(z(0), z⇤)  ⌧

holds with probability at least 1� ⌘5 for some ⌧, ⌘5 > 0.

With these conditions satisfied, we can give a lemma that shows the convergence of our algorithm.
Lemma A.3. Assume Conditions 1 - 5 hold for some ⌧, �, ⌘1, ⌘2, ⌘3, ⌘4, ⌘5 > 0. We then have

`(z(t), z⇤)  ⇠ideal(�) +
1

2
`(z(t�1), z⇤)

for all t � 1, with probability at least 1� ⌘, where ⌘ =
P5

i=1 ⌘i.

Proof. By Conditions 4, 5 and a mathematical induction argument, we can easily conclude
`(z(t), z⇤)  ⌧ for any t � 0. Thus, Lemma A.3 is a direct extension of Lemma A.2.

With-high-probability Results for the Conditions and Proof of Theorem 2.2. Recall the defini-
tion of � in (3). Recall that in (15) we assume �min  �1(⌃⇤)  �d(⌃⇤)  �max for two constants
�min,�max > 0. Hence we have � is of the same order as SNR. Specifically, we have

1p
�max

�  SNR  1p
�min

�. (18)

Hence the assumption SNR ! 1 in the statement of Theorem 2.2 is equivalently � ! 1. Next,
we give two with-high-probability lemmas. The first lemma is for Conditions 1-3, providing upper
bounds for the quantities involved in these conditions, showing that � can be taken as some o(1) term.
The second lemma shows that for any � = o(1), ⇠ideal(�) is upper bounded by the desired minimax
rate multiplied by the sample size n.
Lemma A.4. Under the same conditions as in Theorem 2.2, for any constant C 0 > 0, there exists
some constant C > 0 only depending on ↵ and C 0

such that

max
{z:`(z,z⇤)⌧}

max
j2[n]

max
b2[k]\{z⇤

j }

|Hj(z⇤j , b, z)|
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i  C

r
k(d+ log n)

n
(19)

max
{z:`(z,z⇤)⌧}

nX

j=1

max
b2[k]\{z⇤

j }

Fj(z⇤j , b, z)
2k✓⇤

z
⇤
j
� ✓⇤

b
k2

h✓⇤
z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i2`(z, z⇤)  Ck3

✓
⌧

n
+

1

�2
+

d2

n�2

◆

(20)

max
{z:`(z,z⇤)⌧}

max
j2[n]

max
b2[k]\{z⇤

j }

|Gj(z⇤j , b, z)|
h✓⇤

z
⇤
j
� ✓⇤

b
, (⌃⇤)�1(✓⇤

z
⇤
j
� ✓⇤

b
)i  Ck

✓
⌧

n
+

1

�

r
⌧

n
+

d
p
⌧

n�

◆

(21)

with probability at least 1� n�C
0
. As a result, Conditions 1-3 hold for some � = o(1).

Proof. Under the conditions of Theorem 2.2, the inequalities (33)-(38) hold with probability at
least 1� n�C

0
. In the remaining proof, we will work on the event these inequalities hold. Denote
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⌃̂a(z) =
P

j2[n](Yj�✓̂a(z))(Yj�✓̂a(z))
T
I{zj=a}

P
j2[n] I{zj=a} and ⌃⇤

a
= ⌃⇤ for any a 2 [k]. Then we have the

equivalence

⌃̂(z⇤)� ⌃⇤ =
kX

a=1

P
n

j=1 I{z⇤j = a}
n

(⌃̂a(z
⇤)� ⌃⇤

a
).

Hence, we can use the results from Lemma C.7 and Lemma C.8.

By (43) and (44), we have

k⌃̂(z⇤)� ⌃⇤k �
r

k(d+ log n)

n
,

and

k⌃̂(z)� ⌃̂(z⇤)k =

�����

kX

a=1

P
n

j=1 I{zj = a}
n

⌃̂a(z)�
kX

a=1

P
n

j=1 I{z⇤j = a}
n

⌃̂a(z
⇤)

�����

�

�����

kX

a=1

P
n

j=1 I{zj = a}
n

(⌃̂a(z)� ⌃̂(z⇤))

�����+

�����

kX

a=1

P
n

j=1(I{zj = a}� I{z⇤
j
= a})

n
⌃̂a(z

⇤)

�����

�
k
p
n`(z, z⇤)

n�
+

k

n
`(z, z⇤) +

kd

n�

p
`(z, z⇤) +

k

n�2
`(z, z⇤)

�
k
p
n`(z, z⇤)

n�
+

k

n
`(z, z⇤) +

kd

n�

p
`(z, z⇤).

By the assumption that kd = O(
p
n), �

k
! 1 and ⌧ = o(n/k), we have k⌃̂(z⇤)� ⌃⇤k, k⌃̂(z)�

⌃̂(z⇤)k = o(1), which implies k(⌃̂(z⇤))�1k, k(⌃̂(z))�1k � 1. Thus, we have

k(⌃̂(z⇤))�1 � (⌃⇤)�1k  k(⌃̂(z⇤))�1kk⌃̂(z⇤)� ⌃⇤kk(⌃⇤)�1k �
r

k(d+ log n)

n
, (22)

and similarly

k(⌃̂(z))�1 � (⌃̂(z⇤))�1k � k

n
`(z, z⇤) +

k
p

n`(z, z⇤)

n�
+

kd

n�

p
`(z, z⇤). (23)

Now we start to prove (19)-(21). Let Fj(a, b, z) = F (1)
j

(a, b, z)+F (2)
j

(a, b, z)+F (3)
j

(a, b, z) where

F (1)
j

(a, b, z) := h✏j , (⌃̂(z))�1(✓̂b(z)� ✓̂b(z
⇤))i � h✏j , (⌃̂(z))�1(✓̂a(z)� ✓̂a(z

⇤))i,

F (2)
j

(a, b, z) := �h✏j , ((⌃̂(z))�1 � (⌃̂(z⇤))�1)(✓⇤
a
� ✓⇤

b
)i,

F (3)
j

(a, b, z) := �h✏j , ((⌃̂(z))�1 � (⌃̂(z⇤))�1)(✓⇤
b
� ✓̂b(z

⇤))i+ h✏j , ((⌃̂(z))�1 � (⌃̂(z⇤))�1)(✓⇤
a
� ✓̂a(z

⇤))i.
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where we use (34), (23), and the fact that `(z, z⇤)  ⌧ and kd = O(
p
n) for the last inequal-

ity. Here the second to last inequality is due to the following argument: for any w 2 R
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where we use (42) and the fact that (⌃̂(z))�1 has bounded operator norm. Combining these terms
together, we obtain (20).

Next, for (19), by (41) we have
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Using the results above we can get (19).

Finally we are going to establish (21). Recall the definition of Gj(a, b, z) which has four terms. For
the third and fourth terms, we have
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Lemma A.5. With the same conditions as in Theorem 2.2, for any � = o(1), we have
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where �̄ = �̄n is some sequence to be chosen later. We bound the four terms sequentially. Suppose
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where C is a constant which may vary from line by line. Recall that kd = O(
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We can obtain similar bounds onM3 andM4 by using (41). ForM1, the Gaussian tail bound leads to
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Thus,
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Proof of Theorem 2.2. By Lemmas A.3 - A.5, we have that Conditions 1 - 5 are satisfied with
probability at least 1� ⌘ � n�1 � exp(�SNR). Then applying Lemma A.3, we have
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Notice that h(·, ·) takes value in the set {j/n : j 2 [n] [ {0}}, the term 2�t in the above inequality
should be negligible as long as 2�t = o(n�1). Thus, we can claim
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B Proofs in Section 3

B.1 Proofs for the Lower Bound

Proof of Lemma 3.1. The Neyman-Pearson lemma tells us the likelihood ratio test � is the optimal
procedure. Following the proof of Lemma A.1, we have

PH0(� = 1) + PH1(� = 0) = P(✏ 2 B1,2) + P(✏ 2 B2,1)
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where the last inequality is by Lemma C.10.

Proof of Theorem 3.1. The proof is identical to the proof of Theorem 2.1 and is omitted here.

B.2 Proofs for the Upper Bound

We adopt a similar proof idea as in Section 2 for Model 1. We first present an error decomposition
for the one-step analysis for Algorithm 2. In Lemma B.1, we show the loss decays after a one-step
iteration under Conditions 6 - 11. Then in Lemma B.2 we extend the result to multiple iterations,
under two extra Conditions 12 - 13. Finally, we show that all the conditions are satisfied with high
probability and thus prove Theorem 3.2.
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In the statement of Theorem 3.2, we assume maxa,b2[k] �d(⌃⇤
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where �min,�max > 0 are two constants. This is due to the scaling properties of the normal
distributions. The reasoning is the same as that in (15) for Model 1 and is omitted here. For the
remainder of this section, we will assume that (24) holds for the covariance matrices.

Error Decomposition for the One-step Analysis: Consider an arbitrary z 2 [k]n. Apply (12),
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Among these terms, Fj , Gj , Hj are nearly identical to their counterparts in Section A.2.2 with ⌃̂(z)
replaced by ⌃̂a(z) or ⌃̂b(z). There are three extra terms not appearing in Section A.2.2: Qj is a
quadratic term of ✏j and Kj , Lj are terms involving matrix determinants.

Conditions and Guarantees for One-step Analysis. To establish the guarantee for the one-step
analysis, we first give several conditions on the error terms.
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holds with probability at least 1� ⌘2 for some ⌧, �, ⌘2 > 0.
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holds with probability at least 1� ⌘3 for some ⌧, �, ⌘3 > 0.
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holds with probability at least 1� ⌘4 for some ⌧, �, ⌘4 > 0.

Condition 10. Assume that
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holds with probability at least 1� ⌘5 for some ⌧, �, ⌘5 > 0.

Condition 11. Assume that
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holds with probability at least 1� ⌘6 for some ⌧, �, ⌘6 > 0.

We next define a quantity referred to as the ideal error,
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Lemma B.1. Assumes Conditions 6 - 11 hold for some ⌧, �, ⌘1, . . . , ⌘6 > 0. We then have

P

✓
`(ẑ, z⇤)  ⇠ideal(�) +

1

2
`(z, z⇤) for any z 2 [k]n such that `(z, z⇤)  ⌧

◆
� 1� ⌘,

where ⌘ =
P6

i=1 ⌘i.

Proof. The proof of this lemma is quite similar to the proof of Lemma A.2. The additional terms Qj

and Kj can be handled in the same way as Fj while Lj can be handled similarly to Hj . We omit the
details here.
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Conditions and Guarantees for Multiple Iterations. In the above, we establish a statistical
guarantee for the one-step analysis. Now we will extend the result to multiple iterations. That is,
starting from some initialization z(0), we will characterize how the losses `(z(0), z⇤), `(z(1), z⇤),
`(z(2), z⇤), . . . , decay. We impose conditions on ⇠ideal(�) and the initialization z(0).
Condition 12. Assume that

⇠ideal(�) 
⌧

2
holds with probability at least 1� ⌘7 for some ⌧, �, ⌘7 > 0.

Finally, we need a condition on the initialization.
Condition 13. Assume that
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holds with probability at least 1� ⌘8 for some ⌧, ⌘8 > 0.

With these conditions satisfied, we can give a lemma that shows the convergence of our algorithm.
Lemma B.2. Assumes Conditions 6 - 13 hold for some ⌧, �, ⌘1, . . . , ⌘8 > 0. We then have
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Proof. The proof of this lemma is the same as the proof of Lemma A.3.

With-high-probability Results for the Conditions and Proof of Theorem 3.2. Lemma B.3 and
Lemma B.4 are the counterparts of Lemmas A.4 and A.5 in Appendix A.2.2. Recall that (24) is
assumed. By Lemma C.10, we have� is of the same order as SNR0, which will play a similar role as
(18) in Section A.2.2.

Lemma B.3 and Lemma B.4 are counterparts of Lemmas A.4 and A.5 in Section A.2.2. The first
lemma is for Conditions 6-11, providing upper bounds for the quantities involved in these conditions,
showing that � can be taken as some o(1) term. The second lemma shows that for any � = o(1),
⇠ideal(�) is upper bounded by the desired minimax rate multiplied by the sample size n.
Lemma B.3. Under the same conditions as in Theorem 3.2, for any constant C 0 > 0, there exists
some constant C > 0 only depending on ↵, C 0,�min,�max such that
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with probability at least 1� n�C
0 � 4

nd
. As a result, Conditions 6-11 hold for some � = o(1).
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Proof. Under the conditions of Theorem 3.2, the inequalities (33)-(38) hold with probability at least
1� n�C

0
. In the remaining proof, we will work on the event these inequalities hold. Hence, we can

use the results from Lemma C.7 and C.8. Using the same arguments as in the proof of Lemma A.4,
we can get (26), (27) and (28).

As for (29), we first use Lemma C.2 to have
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where the last inequality is due to (53) and the fact that `(z, z⇤)  ⌧ .

Next for (30), notice that by (43), (44), and SNR0 ! 1, we have for any 1  i  d, �min
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Finally for (31), by (43) and the similar argument as (32), we can get
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which implies (31). We complete the proof.

Lemma B.4. With the same conditions as Theorem 3.2, for any sequence �n = o(1), we have
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Proof. Under the conditions of Theorem 3.2, the inequalities (33)-(38) hold with probability at least
1� n�C

0
. In the remaining proof, we will work on the event these inequalities hold. Similar to the

proof of Lemma A.5, we have a decomposition ⇠ideal 
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Using the same arguments as the proof of Lemma A.5, we can choose some �̄ = �̄n = o(1) which is
slowly diverging to zero satisfying

EMi  n exp

 
�(1 + o(1))

SNR
02

2

!
for i = 2, 3, 4.

As for M5, by (43) we have

M5 
nX

j=1

X

b2[k]\{z⇤
j }

���✓⇤z⇤
j
� ✓⇤

b

���
2
I

(
C �̄
���✓⇤z⇤

j
� ✓⇤

b

���
2
 kwjk2

r
log n

n

)
,

where C is a constant and wj
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M6 is essentially the same with M5 and can be proved similarly. Finally for M1, using Lemma C.10,
we have
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z
⇤
j ,b
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!
.

Then we have

EM1  n exp

 
�(1 + o(1))

SNR
02

8

!
.

Using the Markov’s inequality we complete the proof of Lemma B.4.

Proof of Theorem 3.2. By Lemmas B.2-B.4, we can obtain the result by arguments used in the proof
of Theorem 2.2 and hence the proof is omitted here.

C Technical Lemmas

In this section, we present and prove technical lemmas used in this paper. Lemmas C.1 and C.2 are
about �2 distributions. Appendix C.1 gives various upper bounds needed in the proofs of Appendix
B. Appendix C.2 is devoted to the calculation related to SNR0.

Lemma C.1. For any x > 0, we have

P(�2
d
� d+ 2

p
dx+ 2x)  e�x,

P(�2
d
 d� 2

p
dx)  e�x.

Proof. These results are Lemma 1 of [12].

Lemma C.2. LetWi

iid⇠ �2
d
for any i 2 [n] where n, d are positive integers. Then we have

P

 
nX

i=1

W 2
i
� 3nd2

!
 4

nd
.

Proof. We have E
P

n

i=1 W
2
i

= nd(d + 2) and E
P

n

i=1 W
4
i

= nd(d + 2)(d + 4)(d + 6). Then
we have Var

�P
n

i=1 W
2
i

�
= 8nd(d+ 2)(d+ 3). Then we obtain the desired result by Chebyshev’s

inequality.

C.1 With-High-Probability Bounds

Lemma C.3. For any z⇤ 2 [k]n and k 2 [n], consider independent vectors ✏j ⇠ N (0,⌃⇤
z
⇤
j
) for any

j 2 [n]. Assume there exists a constant �max > 0 such that k⌃⇤
a
k  �max for any a 2 [k]. Then, for
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any constant C 0 > 0, there exists some constant C > 0 only depending on C 0,�max such that
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a2[k]

������

P
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j=1 I{z⇤j = a}

������
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p
d+ log n, (33)
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n

j=1 I{z⇤j = a}
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nX
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I{z⇤
j
= a}✏j✏Tj
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 C, (34)

max
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|T |

X

j2T
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|T |(d+
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j=1 I{z⇤j = a})

X

j2T

✏j

������
 C, (36)

with probability at least 1� n�C
0
. We have used the convention that 0/0 = 0.

Proof. Note that ✏j is sub-Gaussian with parameter �max which is a constant. The inequalities (33)
and (35) are respectively Lemmas A.4, A.1 in [15]. The inequality (34) is a slight extension of
Lemma A.2 in [15]. This extension follows from a standard union bound argument. The proof of
(36) is identical to that of (35).

Lemma C.4. Consider the same assumptions as in Lemma C.3. Assume additionally

mina2[k]

P
n

j=1 I{z⇤j = a} � ↵n

k
for some constant ↵ > 0 and

k(d+log n)
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= o(1). Then, for
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with probability at least 1� n�C
0
.

Proof. Note that we have ✏j = ⌃
⇤ 1

2
z
⇤
j
⌘j where ⌘j

iid⇠ N (0, Id) for any j 2 [n]. Since maxa k⌃⇤
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�max, we have
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Define

Qa =
1P

n

j=1 I{z⇤j = a}

nX

j=1

I{z⇤
j
= a}⌘j⌘Tj � Id.

Take Sd�1 = {y 2 R
d : kyk = 1} andN✏ = {v1, · · · , v|N✏|} is an ✏-covering of Sd�1. In particular,

we pick ✏ < 1
4 , then |N✏|  9d. By the definition of the ✏-covering, we have

kQak  1

1� 2✏
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i=1,··· ,|N✏|
|vT

i
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Denote na =
P

n

j=1 I{z⇤j = a}. Then
P

n

j=1 I{z⇤j = a}vT ⌘j⌘Tj v ⇠ �2
na
. Using Lemma C.1, we

have
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Since k(d+log n)
n

= o(1) and na � ↵n/k where ↵ is a constant, we can take t = C 00
q

k(d+log n)
n

for
some large constant C 00 and the proof is complete.

Lemma C.5. Consider the same assumptions as in Lemma C.3. Then, for any s = o(n) and for any

constant C 0 > 0, there exists some constant C > 0 only depending on C 0,�max such that
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T⇢[n]:|T |s
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|T |}d

������

X

j2T

✏j✏
T

j
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with probability at least 1� n�C
0
. We have used the convention that 0/0 = 0.

Proof. Consider any a 2 [s] and a fixed T ⇢ [n] such that |T | = a. Similar to the proof of Lemma
C.4, we can take Sd�1 = {y 2 R

d : kyk = 1} and its ✏-covering N✏ with ✏ < 1
4 and |N✏|  9d.

Then we have
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Note that wT ✏j/
p
�max is a sub-Gaussian random variable with parameter 1. By the tail probability

result for quadratic forms of sub-Gaussian random vectors [10], for any fixed w 2 N✏, we have
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As a result,
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Since a log n

a
is an increasing function when a 2 [1, s] and a log n

a
� log n � log s, a choice of

C̃ = 3 + C 0, that is C = 16C 0 + 4C0 + 48, can yield the desired result.

Finally, to allow |T | = 0, we note that d  min{1,
p
|T |}d. The proof is complete.

Lemma C.6. For any z⇤ 2 [k]n and k 2 [n], assume mina2[k]

P
n

j=1 I{z⇤j = a} � ↵n

k
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Proof. For any z 2 [k]n such that `(z, z⇤) = o(n) and any a 2 [k], we have
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which implies
P

n

j=1 I{z⇤j = a}
P

n

j=1 I{zj = a}

P

n

j=1 I{zj = a}+
P

n

j=1 I{zj 6= z⇤
j
}

P
n

j=1 I{zj = a}

 1 +
↵n/2kP

n

j=1 I{zj = a}
 2.

Thus, we obtain (39).

In the following lemma, we are going to analyze estimation errors of the centers and covariance
matrices under the anisotropic GMMs. For any z 2 [k]n and for any z 2 [k], recall the definitions

✓̂a(z) =

P
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Lemma C.7. For any z⇤ 2 [k]n and k 2 [n], consider independent vectors Yj = ✓⇤
z
⇤
j
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✏j ⇠ N (0,⌃⇤
z
⇤
j
) for any j 2 [n]. Assume there exist constants �min,�max > 0 such that �min 

�1(⌃⇤
a
)  �d(⌃⇤

a
)  �max for any a 2 [k], and a constant ↵ > 0 such that mina2[k]

P
n

j=1 I{z⇤j =

a} � ↵n

k
. Assume

k(d+log n)
n

= o(1) and �
k
! 1. Assume (33)-(38) hold. Then for any ⌧ = o(n)

and for any constant C 0 > 0, there exists some constant C > 0 only depending on ↵,�max, C 0
such

that

max
a2[k]

���✓̂a(z⇤)� ✓⇤
a

���  C

r
k(d+ log n)

n
, (41)

max
a2[k]

���✓̂a(z)� ✓̂a(z
⇤)
���  C

✓
k

n�
`(z, z⇤) +

k
p
d+ n

n�

p
`(z, z⇤)

◆
, (42)

max
a2[k]

���⌃̂a(z
⇤)� ⌃⇤

a

���  C

r
k(d+ log n)

n
, (43)

max
a2[k]

���⌃̂a(z)� ⌃̂a(z
⇤)
���  C

 
k

n
`(z, z⇤) +

k
p

n`(z, z⇤)

n�
+

kd

n�

p
`(z, z⇤)

!
, (44)
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Proof. Using (33) we obtain (41). By the same argument of (118) in [8], we can obtain (42). By (33)
and (37) and (41), we can obtain (43). In the remaining proof, we will establish (53).

Since k(d+log n)
n

= o(1), we have k⌃̂a(z⇤)k � 1 for any a 2 [k]. The difference ⌃̂a(z) � ⌃̂a(z⇤)
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By (36), (39), (40), we have uniformly for any a 2 [k],
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To bound L2, we first give the following simple fact. For any positive integer m and any
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We are going to simplify the above bounds for R1, R2. Under the assumption that k(d+log n)
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where in the last inequality, we use the fact that x(log(n/x))2 is an increasing function of x when
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kd

n�

p
`(z, z⇤). (52)

To bound S2, by (70) in [8], we have uniformly for any a 2 [k],

S2 =

���
P

n

j=1 I{z⇤j = a}�
P

n

j=1 I{zj = a}
���

P
n

j=1 I{zj = a}

���⌃̂a(z
⇤)
���
2
� k

n

`(z, z⇤)

�2
,
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where we use (43). Since k

n

`(z,z⇤)
�2 � k

p
n`(z,z⇤)

n� , by (45) and the facts that `(z, z⇤)  ⌧ = o(n) we
have

max
a2[k]

���⌃̂a(z)� ⌃̂a(z
⇤)
��� �

k
p
n`(z, z⇤)

n�
+

k

n
`(z, z⇤) +

kd

n�

p
`(z, z⇤).

Lemma C.8. Under the same assumption as in Lemma C.7, if additionally we assume kd = O(
p
n)

and ⌧ = o(n/k), there exists some constant C > 0 only depending on ↵,�min,�max, C 0
such that

max
a2[k]

���(⌃̂a(z))
�1 � (⌃̂a(z

⇤))�1
���  C

 
k

n
`(z, z⇤) +

k
p

n`(z, z⇤)

n�
+

kd

n�

p
`(z, z⇤)

!
. (53)

Proof. By (43) we have maxa2[k] k⌃̂a(z⇤)k,maxa2[k] k(⌃̂a(z⇤))�1k � 1. By (44) we also have
maxa2[k] k⌃̂a(z)k,maxa2[k] k(⌃̂a(z))�1k � 1. Hence,

max
a2[k]

���(⌃̂a(z))
�1 � (⌃̂a(z

⇤))�1
��� max

a2[k]

���(⌃̂a(z
⇤))�1

���
���⌃̂a(z)� ⌃̂a(z

⇤)
���
���(⌃̂a(z))

�1
���

�
k
p
n`(z, z⇤)

n�
+

k

n
`(z, z⇤) +

kd

n�

p
`(z, z⇤). (54)

C.2 Calculation Related to SNR0

In the following lemmas, we study properties of {SNR0
a,b

}a 6=b. Consider any pair a 6= b 2 [k]. Let
⌘ ⇠ N (0, Id) and ⌅a,b = ✓⇤

a
� ✓⇤

b
. Define

Ba,b(�) =

(
x 2 R

d : xT⌃
⇤ 1

2
a (⌃⇤

b
)�1⌅a,b +

1

2
xT

⇣
⌃

⇤ 1
2

a (⌃⇤
b
)�1⌃

⇤ 1
2

a � Id
⌘
x

 �1� �

2
⌅T

a,b
(⌃⇤

b
)�1⌅a,b +

1

2
log |⌃⇤

a
|� 1

2
log |⌃⇤

b
|
)

=

(
x 2 R

d : kxk2 �
⇣
x� (⌃⇤

a
)�

1
2⌅b,a

⌘T⇣
(⌃⇤

a
)�

1
2⌃⇤

b
(⌃⇤

a
)�

1
2

⌘�1⇣
x� (⌃⇤

a
)�

1
2⌅b,a

⌘

+ log |(⌃⇤
a
)�

1
2⌃⇤

b
(⌃⇤

a
)�

1
2 |� �⌅T

b,a
(⌃⇤

b
)�1⌅b,a

)
,

for any � 2 R. Then Ba,b(�) ⇢ Ba,b(�0) for any �0  �. In addition, we define

SNR0
a,b

(�) = min
x2Ba,b(�)

2 kxk ,

and Pa,b(�) = P(⌘ 2 Ba,b(�)) .

Recall the definitions of Ba,b and SNR0
a,b

in Section 3. Then it is a special case of Ba,b(�) and
SNR0

a,b
(�) with � = 0. That is, we have Ba,b = Ba,b(0) and SNR0

a,b
= SNR0

a,b
(0).

To understand these quantities, we first study a canonical setting that can be later applied to establish
Lemma C.10.
Lemma C.9. Consider any ✓ 2 R

d \ {0} and any ⌃ 2 R
d⇥d

that is positive semi-definite. Let

�max,�min > 0 be the largest and smallest eigenvalue of ⌃, respectively. For any t 2 R, define

D(t) = {x 2 R
d : kxk2 � (x� ✓)T⌃�1(x� ✓) + t},

and s(t) = minx2D(t) kxk. Then the following hold:

• Under the assumption that �k✓k2 /(8�max) < t < k✓k2 /8, we have

k✓k /(max{2, 2
p

2�max}) < s(t) < (1�min{
p
�min/8, 1/2}) k✓k .
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• If t0 also satisfies �k✓k2 /�max < t0 < k✓k2 /8, we have

|s(t0)� s(t)|  �max
t0 � t

2min{
p

�min/8, 1/2} k✓k
.

• If ✓ is further assumed to satisfy min{
p
�min/8, 1/2} k✓k � 2�max and k✓k �

�min
32 min{

p
�min/8, 1/2}, there exists a d-dimensional ball H(t) 2 R

d
with

radius (�min/8)min{
p

�min/8, 1/2} such that H(t) ⇢ D(t) and kxk 
(�min/8)min{

p
�min/8, 1/2}+ �max + s(t) for all x 2 H(t).

Proof. First, we check whether each of the following two points is contained in D(t) or not, under
the assumption �k✓k2 /�max < t < k✓k2.

• When x = 0, we have (x� ✓)T⌃�1(x� ✓) + t � k✓k2 /�max + t > 0. Hence, 0 /2 D(t).

• When x = ✓, we have k✓k2 > t. Hence, ✓ 2 D(t).

As a result, D(t) is non-empty, s(t) is well defined, and 0 < s(t) < k✓k2. Next, we consider a few
more points to sharpen upper and lower bounds on s(t) under the assumption �k✓k2 /(8�max) <
t < k✓k2 /8.

• For any x that satisfies kxk  k✓k /(max{2, 2
p
2�max}), we have kx� ✓k � k✓k /2 and

consequently, (x � ✓)T⌃�1(x � ✓) + t � (k✓k /2)2/�max + t = k✓k2 /(4�max) + t.
Under the assumption that t > �k✓k2 /(8�max), we can verify that k✓k2 /(4�max) + t >
k✓k2 /(8�max) � (k✓k /max{2, 2

p
2�max})2 � kxk2. Hence, such x /2 D(t).

• When x = (1 � min{
p
�min/8, 1/2})✓, we have kxk � k✓k /2 and (x � ✓)T⌃�1(x �

✓) + t  k✓k2 (min{
p
�min/8, 1/2})2/�min + t = k✓k2 /max{8, 4�min} + t. Under

the assumption that t < k✓k2 /8, we have k✓k2 /max{8, 4�min} + t < k✓k2 /8 + t 
k✓k2 /4  kxk2. Hence, such x 2 D(t).

As a result, we have k✓k /(max{2, 2
p
2�max}) < s(t) < (1�min{

p
�min/8, 1/2}) k✓k.

Define a ball S(r) = {x 2 R
d : kxk2  r2} and define S2(r; t) = {x 2 R

d : (x�✓)T⌃�1(x�✓) 
r2 � t} to be the part of Rd that is inside the corresponding ellipsoid. Then we have s(t) = min{r �
0 : S1(r) \ S2(r; t) 6= ;}. By the definition and bounds of s(t) and the convexity of S1(s(t)) and
S2(s(t); t), we must have |S1(s(t)) \ S2(s(t); t)| = 1, meaning that S1(s(t)) and S2(s(t); t) touch
each other externally at one point. This implies s(t) can be obtained by the following process: We let
S1(r) and S2(r) grow by increasing r, starting from 0. The first time they touch each other, we stop
and the value of r is exactly s(t).

Denote y(t) 2 R such that {y(t)} = S1(s(t)) \ S2(s(t); t). Then we must have y(t) 2 S̄2(s(t); t).
By the first conclusion, we have

ky(t)� ✓k � k✓k � ky(t)k = k✓k � s(t) � min{
p
�min/8, 1/2} k✓k

ky(t)� ✓k  k✓k+ ky(t)k = k✓k+ s(t)  2 k✓k .

In addition, we have

s2(t)� t = (y(t)�✓)T⌃�1(y(t)�✓) � ky(t)� ✓k2 /�max � (min{
p
�min/8, 1/2} k✓k)2/�max.

Now we are going to prove the second conclusion of the lemma. Without loss of generality, assume
t  t0. Then we have D(t) � D(t0) and s(t)  s(t0). We are going to establish a lower bound
for s(t). First by definition of s(t0), we have |S1(s(t0)) \ S2(s(t0); t0)| = 1. Since t  t0, we
have S2(s(t0); t) � S2(s(t0); t0). We have S1(s(t0)) \ S2(s(t0); t) 6= ;. From here we can also see
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s(t)  s(t0). Now consider any x 2 S̄2(s(t0); t). It satisfies (x� ✓)T⌃�1(x� ✓) = s2(t0)� t. Then
we have

 s
s2(t0)� t0

s2(t0)� t
(x� ✓)

!
⌃�1

 s
s2(t0)� t0

s2(t0)� t
(x� ✓)

!
= s2(t0)� t0,

meaning that ✓ +
q

s2(t0)�t0

s2(t0)�t
(x� ✓) 2 S̄2(s(t0); t0). Hence,

kxk �

�����✓ +

s
s2(t0)� t0

s2(t0)� t
(x� ✓)

������

�����x�
 
✓ +

s
s2(t0)� t0

s2(t0)� t
(x� ✓)

!�����

=

�����✓ +

s
s2(t0)� t0

s2(t0)� t
(x� ✓)

������
 
1�

s
s2(t0)� t0

s2(t0)� t

!
kx� ✓k

� min
y2S̄2(s(t0);t0)

kyk �
 
1�

s
s2(t0)� t0

s2(t0)� t

!
max

y2S̄2(s(t0);t)
kx� ✓k .

Since |S1(s(t0))\ S̄2(s(t0); t0)| = 1, we haveminy2S̄2(s(t0);t0) kyk = s(t0). Since (x�✓)T⌃�1(x�
✓) � ��1

max kx� ✓k2, we have kx� ✓k2  �max(s2(t0)� t). Hence,

kxk � s(t0)�
 
1�

s
s2(t0)� t0

s2(t0)� t

!
p

�max(s2(t0)� t)

� s(t0)�
p

�max

⇣p
s2(t0)� t�

p
s2(t0)� t0

⌘

= s(t0)�
p

�max
t0 � tp

s2(t0)� t+
p

s2(t0)� t0

� s(t0)�
p

�max
t0 � t

2
p
s2(t0)� t0

.

As a result, for any r < s(t0)�
p
�max

t
0�t

2
p

s2(t0)�t0
, we have S1(r)\S2(s(t0); t) = ; and consequently

S1(r) \ S2(r; t) = ;. As a result, s(t) � s(t0)�
p
�max

t
0�t

2
p

s2(t0)�t0
. Since we have shown s2(t0)�

t0 � (min{
p
�min/8, 1/2} k✓k)2/�max, we have s(t) � s(t0)� �max

t
0�t

2min{
p

�min/8,1/2}k✓k
.

For the third conclusion of the lemma, recall the definition of y(t). Under the assumption that
min{

p
�min/8, 1/2} k✓k � 2�max, we have ky(t)� ✓k � �max > 0 and �max/ ky(t)� ✓k  1/2.

Denote y0(t) = ✓ + y(t)�✓

ky(t)�✓k (ky(t)� ✓k � �max). Then

ky0(t)� ✓k  ky(t)� ✓k  2 k✓k ,
ky0(t)� ✓k = (1� �max/ ky(t)� ✓k) ky(t)� ✓k ,

ky(t)� y0(t)k =

����
y(t)� ✓

ky(t)� ✓k�max

���� = �.
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Consequently,

(y0(t)� ✓)T⌃�1(y0(t)� ✓)� (y(t)� ✓)T⌃�1(y(t)� ✓)

=

✓
1� �max

ky(t)� ✓k

◆2

(y(t)� ✓)T⌃�1(y(t)� ✓)� (y(t)� ✓)T⌃�1(y(t)� ✓)

= � �max

ky(t)� ✓k

✓
2� �max

ky(t)� ✓k

◆
(y(t)� ✓)T⌃�1(y(t)� ✓)

 � �max

ky(t)� ✓k (y(t)� ✓)T⌃�1(y(t)� ✓)

 � �max

ky(t)� ✓k ky(t)� ✓k2 ��1
max

 �ky(t)� ✓k
 �min{

p
�min/8, 1/2} k✓k .

Denote H(t) to be the ball centered at y0(t) with radius (�min/8)min{
p

�min/8, 1/2}. Then for
any x 2 H(t), we have

(x� ✓)T⌃�1(x� ✓)� (y(t)� ✓)T⌃�1(y(t)� ✓)

= (y0(t)� ✓)T⌃�1(y0(t)� ✓) + 2(x� y0(t))T⌃�1(y0(t)� ✓) + (x� y0(t))T⌃�1(x� y0(t))

� (y(t)� ✓)T⌃�1(y(t)� ✓)

 (y0(t)� ✓)T⌃�1(y0(t)� ✓) + 2��1
min kx� y0(t)k ky0(t)� ✓k+ ��1

min kx� y0(t)k2

� (y(t)� ✓)T⌃�1(y(t)� ✓)

 �min{
p

�min/8, 1/2} k✓k+ 2��1
min kx� y0(t)k ky0(t)� ✓k+ ��1

min kx� y0(t)k2

 �min{
p
�min/8, 1/2} k✓k+ 4��1

min kx� y0(t)k k✓k+ ��1
min kx� y0(t)k2

 �1

2
min{

p
�min/8, 1/2} k✓k+

�min

64
(min{

p
�min/8, 1/2})2

 0,

where the last inequality holds under the assumption k✓k � �min
32 min{

p
�min/8, 1/2}. Hence,

H(t) ⇢ S2(s(t); t) and consequently H(t) ⇢ D(t). On the other hand, for any x 2 H(t), we have

kxk  kx� y0(t)k+ ky0(t)� y(t)k+ ky(t)k
 (�min/8)min{

p
�min/8, 1/2}+ �max + s(t).

The proof is complete.

Lemma C.10. Assume d = O(1). Consider any a 6= b 2 [k]. Assume there exist constants

�min,�max such that 0 < �min  �1(⌃⇤
j
)  �d(⌃⇤

j
)  �max for any j 2 {a, b}. Then SNR

0
a,b

and

k⌅b,ak are of the same order. When SNR
0
a,b

= O(1), we have Pa,b(0) � c for some constant c > 0.
When SNR

0
a,b

! 1, we have

Pa,b(0) � exp

✓
�1 + o(1)

8
SNR

02
a,b

◆
,

and for any � = o(1), we have

Pa,b(�)  exp

✓
�1� o(1)

8
SNR

02
a,b

◆
.

Proof. Recall the setting stated in Lemma C.9. By the definition of Ba,b, we can take ✓ =

(⌃⇤
a
)�

1
2⌅b,a, ⌃ = (⌃⇤

a
)�

1
2⌃⇤

b
(⌃⇤

a
)�

1
2 , and t = log |(⌃⇤

a
)�

1
2⌃⇤

b
(⌃⇤

a
)�

1
2 | such that Ba,b =

D(t). Due to d = O(1) and (24), we have that all eigenvalues of ⌃ are constants and that
log |(⌃⇤

a
)�

1
2⌃⇤

b
(⌃⇤

a
)�

1
2 | is also a constant. Consequently, t is constant. In addition, k✓k is of

the same order as k⌅b,ak.
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When k⌅b,ak is a constant, k✓k is a constant, then SNR0
a,b

must be a constant as well. This is because
D(t) is the set of points where one density is greater or equal to another. Then D(t) is non-empty as
both densities have integral 1. Hence, s(t) must be finite, meaning SNR0

a,b
is a constant. In this case,

we have Pa,b(0) = P(⌘ 2 D(t)) being a constant as well.

When k⌅b,ak ! 1, we have k✓k ! 1. Since all the assumptions needed in Lemma C.9 are
satisfied, by its first conclusion, we have s(t) being of the same order as k✓k, and consequently
being of the same order as k⌅b,ak. As a result, SNR0

a,b
and k⌅b,ak are of the same order. In

addition, H(t) exists and its radius is some constant c1 > 0. Hence, its volume is cd1Vd where Vd

is denoted as the volume of a d-dimensional unit ball. In addition, for any x 2 H(t), we have
kxk  s(t) + c2 = SNR0

a,b
/2 + c2 for some constant c2 > 0. Recall ⌘ ⇠ N(0, Id). Then we have

Pa,b(0) � P(⌘ 2 H(t)) � cd1Vd min
x2H(t)

1p
(2⇡)d

exp

✓
�1

2
kxk2

◆

� cd1Vd

1p
(2⇡)d

exp

✓
�1

2

��SNR0
a,b

/2 + c2
��2
◆

� exp

✓
�1 + o(1)

8
SNR

02
a,b

◆
.

Now let us consider Ba,b(�) where � = o(1). We can take ✓,⌃ same as before, but let t0 =

log |(⌃⇤
a
)�

1
2⌃⇤

b
(⌃⇤

a
)�

1
2 |� �⌅T

b,a
(⌃⇤

b
)�1⌅b,a. Then we have t0 = o(1) k✓k2. Hence, by Lemma C.9,

we have
��SNR0

a,b
� SNR0

a,b
(�)
�� = 2 |s(t)� s(t0)| � |t� t0|

k✓k = o(1) k✓k = o(1)SNR0
a,b

.

Hence,

Pa,b(�) = P(⌘ 2 Ba,b(�))  max
x2Ba,b(�)

1p
(2⇡)d

exp

✓
�1

2
kxk2

◆

=
1p
(2⇡)d

exp

✓
�1

2
min

x2Ba,b(�)
kxk2

◆

=
1p
(2⇡)d

exp

✓
�1

8
SNR

02
a,b

(�)

◆

= exp

✓
�1� o(1)

8
SNR

02
a,b

◆
.
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