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Abstract

We study clustering under anisotropic Gaussian Mixture Models (GMMs), where
covariance matrices from different clusters are unknown and are not necessarily
the identity matrix. We analyze two anisotropic scenarios: homogeneous, with
identical covariance matrices, and heterogeneous, with distinct matrices per cluster.
For these models, we derive minimax lower bounds that illustrate the critical
influence of covariance structures on clustering accuracy. To solve the clustering
problem, we consider a variant of Lloyd’s algorithm, adapted to estimate and utilize
covariance information iteratively. We prove that the adjusted algorithm not only
achieves the minimax optimality but also converges within a logarithmic number
of iterations, thus bridging the gap between theoretical guarantees and practical
efficiency.

1 Introduction

Clustering is a fundamentally important task in statistics and machine learning [7, 2]. The most
widely recognized and extensively studied model for clustering is the Gaussian Mixture Model
(GMM) [177,119], which is formulated as

Y; = 0} + €;, where ¢; ing N(0,%%.), Vj € [n].

Here Y = (Y3,...,Y},,) are the observations with n being the sample size. We define the set
[n] = {1,2,...,n}. Assume k is the known number of clusters. Let {0} },c[x] represent the
unknown centers, and ¥* denote the corresponding unknown covariance matrices. Define z* € [k]”
as the cluster assignment vector, where for each index j € [n], the value of z]* specifies which cluster
the j-th data point is assigned to. The goal is to recover z* from Y. For any estimator Z, its clustering
performance is measured by the misclustering error rate h(Z, z*), which will be introduced later in

).

There has been increasing interest in theoretical and algorithmic analysis of clustering under GMMs.
In a scenario where a GMM is isotropic, meaning that all covariance matrices {¥} },¢[x] are equal
to the identity matrix, [15] obtained the minimax rate for clustering, which takes the form of
exp(—(1 + o(1))(ming, |0 — 65)?/8), with respect to the misclustering error rate. A diverse
range of methods has been explored in the context of the isotropic setting. Among these, Lloyd’s
algorithm [13]] stands out as a particularly effective clustering algorithm, renowned for its extensive
success in a myriad of disciplines. [[15} 8] establish computational and statistical guarantees for
the Lloyd’s algorithm. Specifically, they showed it achieves the minimax optimal rates after a few
iterations provided with some decent initialization. Another popular approach to clustering especially
for high dimensional data is the spectral clustering [21} [18} 20], which is an umbrella term for
clustering after a dimension reduction through a spectral decomposition. [14] proves the spectral
clustering also achieves the optimality under the isotropic GMM. Semidefinite programming (SDP)
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is also used for clustering by exploiting its low-rank structure, and its statistical properties have been
studied in literature, for example, [3]].

Despite the numerous compelling findings, most existing research primarily focuses on isotropic
GMMs. The understanding of clustering in an anisotropic context, where the covariance matrices
are not constrained to be identity matrices, remains relatively limited. Some studies, including
(15 15, 1164 [T} 9L [24]], present results for sub-Gaussian mixture models, wherein the errors €; are
assumed to follow some sub-Gaussian distributions with the variance proxy o2. At first glance,
it might appear that these results encompass the anisotropic case, as distributions of the form
{N(0, %) }ack) are indeed sub-Gaussian distributions. However, from a minimax perspective, the
least favorable scenario among all sub-Gaussian distributions with variance proxy o2—and thus the
most challenging for clustering—is when the errors are distributed as N'(0, 02I). Therefore, the
minimax rate for clustering under the sub-Gaussian mixture model essentially equals the one under the
isotropic GMM, and methods like Lloyd’s algorithm, which require no covariance matrix information,
can be rate-optimal. As a result, the aforementioned findings primarily pertain to isotropic GMMs.

A few studies have explored the direction of clustering under anisotropic GMMs. [3] presents a
polynomial-time clustering algorithm that provably performs well when Gaussian distributions are
well-separated by hyperplanes. This idea is further developed in [11[], which extends the approach
to allow overlapping Gaussians, albeit only in two-cluster scenarios. [22] proposes a novel method
for clustering under a balanced mixture of two elliptical distributions. They establish a provable
upper bound on their clustering performance. Nevertheless, the fundamental limit of clustering under
anisotropic GMMs, and whether a polynomial-time procedure can achieve it, remains unknown.

In this paper, we investigate the clustering task under two anisotropic GMMs. In Model 1, all
covariance matrices are equal (i.e., homogeneous) to some unknown matrix >*. Model 2 offers
more flexibility, with covariance matrices that are unknown and not necessarily identical (i.e.,
heterogeneous). The contribution of this paper is two-fold, summarized as follows:

* Qur first contribution is on the minimax rates. We obtain minimax lower bounds for
clustering under anisotropic GMMs with respect to the misclustering error rate. We show
they take the form of

inf supEh(Z, 2*) > exp (—(1 +0o(1)) S

z z*

(signal-to-noise ratio)? >
)

where the signal-to-noise ratio under Model 1 is equal to min, pe[x):qb ||(0 — GZ)TE*_é Il

The signal-to-noise ratio for Model 2 is more intricate and will be introduced in Section[3.
For both models, we can see the minimax rates depend not only on the centers but also on
the covariance matrices. This is different from the isotropic case, whose signal-to-noise ratio
is ming, 4 || — 6. Our results precisely capture the role that covariance matrices play in
the clustering problem. This shows that covariance matrices impact the fundamental limits
of the clustering problem through complex interactions with the centers, especially in Model
2. We obtain the minimax lower bounds by drawing connections with Linear Discriminant
Analysis (LDA) [6] and Quadratic Discriminant Analysis (QDA).

* Our second and more important contribution is on the computational side. We give a
computationally feasible procedure and rate-optimal algorithm for the anisotropic GMM.
Lloyd’s algorithm, developed for the isotropic case, is no longer optimal as it only considers
distances among centers [3]]. We study an adjusted Lloyd’s algorithm which estimates the
covariance matrices in each iteration and adjusts the clusters accordingly. It can also be seen
as a hard EM algorithm [4]. Here, we modify the E-step of the soft EM by implementing
a maximization step that directly assigns data points to clusters, rather than calculating
probabilities. As an iterative algorithm, we demonstrate that it achieves the minimax lower
bound within log n iterations. This offers both statistical and computational guarantees,
serving as valuable guidance for practitioners. Specifically, if we let z(*) denote the output
of the algorithm after ¢ iterations, it holds with high probability that

8

for all t > logn. The algorithm can be initialized using popular methods like spectral
clustering or Lloyd’s algorithm. In our numerical studies, we demonstrate that our algorithm
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significantly improves over the two aforementioned methods under anisotropic GMMs, and
matches the optimal exponent specified in the minimax lower bound.

Paper Organization. The remaining paper is organized as follows. In Section[2] we study Model 1
where the covariance matrices are unknown but homogeneous. In Section[3, we consider Model 2
where covariance matrices are unknown and heterogeneous. For both cases, we establish the minimax
lower bound for the clustering and give a computationally feasible and rate-optimal procedure. In
Sectiond, we provide a numerical comparison with other popular methods. Proofs are included in
the supplement.

Notation. For any matrix X € R?¥9, we denote \;(X) as its smallest eigenvalue and \g(X) as
its largest eigenvalue. In addition, we denote || X || as its operator norm. For any two vectors u, v of
the same dimension, we denote (u,v) = u”v as their inner product. For any positive integer d, we
denote I, as the d x d identity matrix. We denote A (1, 3) as the normal distribution with mean p
and covariance matrix 3. We denote I {-} as the indicator function. For two positive sequences {a,, }
and {b, }, a, X b, and a,, = O(b,,) both mean a,, < Cb,, for some constant C' > 0 independent of

n. We also write a,, = o(b,,) or Z—“ — oo when limsup,, §* =
n n

2 GMM with Unknown but Homogeneous Covariance Matrices

2.1 Model

We first consider the GMM where the covariance matrices of different clusters are unknown but are
assumed to be equal to each other. Then the data-generating process can be displayed as follows:

Model 1: Y; =07 +¢;, where ¢; "' N(0,5%),j € [n]. )
J

Throughout the paper, we call it Model 1 for simplicity and to distinguish it from a different and more
complicated one that will be introduced in Section[3} The goal is to recover the underlying cluster
assignment vector z*. If ©* were known, then (1) can be converted into an isotropic GMM by a
linear transformation (X*)~ 2 Y;. However, the unknown nature of ¥* makes clustering under this
model more challenging than under isotropic GMMs.

Signal-to-noise Ratio. Define the signal-to-noise ratio

SNR= min ||(6F —0)T 2|, 2

Lm0 - 6) 2 @

which is a function of all the centers {6 } .|, and the covariance matrix ¥*. As we will show later

in Theorem [2.T] SNR captures the difficulty of the clustering problem and determines the minimax
rate. We defer the geometric interpretation of SNR until after presenting Theorem

A quantity closely related to SNR is the minimum distance among the centers. Define A as

A= min [0;-6;]. 3)
a,be[k]:a#b
Then we can see SNR and A are of the same order if all eigenvalues of the covariance matrix ¥* are
assumed to be constants. If ©* is further assumed to be o2 1, then SNR equals A/o. As aresult, in
[15. (8] [14] where the isotropic GMMs are studied, A /o plays the role of signal-to-noise ratio and
appears in their rates. Since (2) represents a direct generalization, we refer to it as the signal-to-noise
ratio for Model 1.

Loss Function. To measure the clustering performance, we consider the following loss function.
For any z, z* € [k]", we define

n

h(z,2*) = min — Z]I {w(zj) + zj*}, )

j=1

where ¥ = {4 : 1 is a bijection from [k] to [k]}. Here, the minimum is taken over all permutations
of [k] to address the identifiability issues of the labels 1,2, ..., k. The loss function measures the



proportion of coordinates where z and z* differ, modulo any permutation of label symbols. Thus, it
is referred to as the misclustering error rate in this paper. Another loss that will be used is ¢(z, z*)
defined as

2
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0>, — 92;
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Lz, 2%) = z”: ‘

It measures the clustering performance of z considering the distances among the true centers. It is
related to h(z, 2*) as h(z, 2*) < £(z, 2*)/(nA?) and provides more information than h(z, z*). We
will mainly use £(z, z*) in the technical analysis but will present results using i(z, z*) which is more
interpretable.

2.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 1.

SNR

— 00, we have
log k

Theorem 2.1. Under the assumption

R
inf sup Eh(Z,z") > exp (—(1 + 0(1))SN ) . (6)
z Z*G[k]"

If SNR = O(1) instead, we have inf; SUP ;- g [k]n Eh(%, z*) > c for some constant ¢ > 0.

Theorem 2.1]allows the cluster numbers & to grow with n and shows that SNR — oo is a necessary
condition to have a consistent clustering. If £ is a constant, then SNR — oo is also a sufficient
condition. TheoremEholds for any arbitrary configurations of {0} } <[ and X*, with the minimax
lower bound depending on these through SNR. The parameter space is only for z* while {0} } o[z
and ¥* are held fixed. Hence, (6) can be interpreted as a case-specific result, precisely capturing the
explicit dependence of the minimax rates on {0 },[x and X*.

Theorem 2.1]is closely related to the LDA. If there are only two clusters with known centers and a
covariance matrix, then estimating each 27 becomes exactly the task of the LDA: we aim to determine
from which of two normal distributions, each with a different mean but the same covariance matrix,
the observation Y is generated. In fact, this approach is also how Theoremis proved: We first
reduce the estimation problem of z* to two-point hypothesis testing for each individual z7. The error
of these tests is analyzed in Lemma[A.T|using the LDA, and we then aggregate all these testing errors
together.
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Figure 1: A geometric interpretation of SNR.

With the help of Lemma[A.T, we have a geometric interpretation of SNR. In the left panel of Figure|[T]
we have two normal distributions N/ (07, 2*) and A/ (63, *) that X follows. The black line represents
the optimal testing procedure ¢ displayed in Lemma |A.1| dividing the space into two half-spaces.
To calculate the testing error, we can make the transformation X’ = (X*)~2 (X — 6}) so that the
two normal distributions become isotropic: N (0, I;) and N'(($*) "2 (65 — 67), 1)) as displayed in
the right panel. Then the distance between the two centers is ||(X*) ™2 (65 — 0F)|| , and the distance
from a center to the black curve is half of that. Then, the probability that (0, I;) falls within the
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grayed area equals exp(—(1 4 o(1))|(£*)~2 (65 — 67)||2/8), according to Gaussian tail probability.
As aresult, [|(S*)"2 (03 — 67)]| is the effective distance between the two centers of A'(6F, £*) and
N (0%,%*) for the clustering problem, taking into account the geometry of the covariance matrix.
Since we have multiple clusters, SNR defined in (2) can be interpreted as the minimum effective
distance among the centers {0, },¢[x], considering the anisotropic structure of X*. This measure
captures the intrinsic difficulty of the clustering problem.

2.3 Rate-Optimal Adaptive Procedure

In this section, we give a computationally feasible and rate-optimal procedure for clustering under
Model 1. Summarized in Algorithm ([T, it is a variant of Lloyd’s algorithm. Starting with an initial
setup, it iteratively updates the estimates of the centers {6 },c[x) (in (7)), the covariance matrix 3*
(in (8)), and the cluster assignment vector z* (in (9)). This algorithm differs from Lloyd’s algorithm in
that the latter is designed for isotropic GMMs and does not incorporate the covariance matrix update
outlined in . Furthermore, (El) updates the estimation of 27 using argmin, ¢y (Y; —9¢(zt) )T(Y; _9((175))
instead. To differentiate clearly, we refer to the classic form as the vanilla Lloyd’s algorithm and
our modified version, which accommodates the unknown and anisotropic covariance matrix, as the
adjusted Lloyd’s algorithm.

Algorithm [T can also be interpreted as a hard EM algorithm. When applying Expectation Maxi-
mization (EM) to Model 1, the M step estimates the parameters {0 } ,c[;] and ¥*, while the E step
estimates z*. It turns out the updates on the parameters (7)) - (8) are identical to those in the EM’s M
step. However, the update of z* in Algorithm|1]differs from that in the EM. Instead of computing a
conditional expectation typical of the E step, the algorithm performs maximization in (9). As a result,
Algorithm 1] effectively consists solely of M steps for both parameters and z*, characterizing it as a
hard EM algorithm.

Algorithm 1: Adjusted Lloyd’s Algorithm for Model 1.

Input: Data Y, number of clusters k, an initialization z(o), number of iterations 7.
Output: z(7)

for t=1,...,Tdo

Update the centers:

t—1
e HI{# ) = o}

o) — “
(t-=1) _ ’
> jein I {Zj = a}

a

Va € [k]. (7

Update the covariance matrix:

2acih] 2jem) (Y5 — 05 (Y; — 08T {ZJ(‘t_l) = a}

(0 _ . @®)
n
Update the cluster assignment vector:
") = argmin(Y; — 00T (S0) (Y, — o), ¥ € [n). ©

a€k]

In Theorem [2.2] we give a computational and statistical guarantee of Algorithm [I. We show that
starting from a decent initialization, within logn iterations, Algorithm |1 achieves the error rate
exp(—(1 + o(1))SNR?/8) which matches the minimax lower bound given in Theorem Asa
result, Algorithm [T is a rate-optimal procedure. In addition, the algorithm is fully adaptive to the
unknown {0 } ,c[x) and X*. The sole piece of information presumed to be known is k, the number of
clusters, as commonly assumed in clustering literature [15} 8} [14]. The theorem also shows that the
number of iterations needed to achieve the optimal rate is at most log n, providing implementation
guidance to practitioners.



Theorem 2.2. Assume k = O(1), d = O(y/n), and mingep 35—, {z} = a} > G for some
constant o > 0. Assume SNR — 0o and \¢(X*)/ (%) = O(1). For Algorithm|I, suppose
2O satisfies £(2(%), 2*) = o(n) with probability at least 1 — 1. Then with probability at least
1 —n—n~! —exp(—SNR), we have

SNR?

h(z®), 2*) < exp ((1 +0(1)) ) , forallt >logn.

We make the following remarks on the assumptions of Theorem @ When k is constant, the
assumption that SNR — oo is a necessary condition for consistent recovery of z*, as outlined in the
minimax lower bound presented in Theorem 21| The assumption on £* ensures that the covariance
matrix is well-conditioned. The dimensionality d is assumed to be O(y/n), a stronger assumption
than in [15] (8] [14], where d = O(n) is sufficient. This is because, unlike these studies, our work

requires estimating the covariance matrix ¥* and controlling the estimation error || X(*) — 3*||.

Theorem [2.2/needs a decent initialization z(°) in the sense that it is sufficiently close to the ground
truth such that £(2(?), 2*) = o(n). This is because our theoretical analysis requires the initialization
being within a specific proximity to the true parameters. The requirement can be fulfilled by
simple procedures. An example is the vanilla Lloyd’s algorithm whose performance is studied in
[L5L [8]. Though [[15, 18] are for isotropic GMMs, their results can be extended to sub-Gaussian
mixture models with nearly identical proof. Since ¢; are sub-Gaussian random variables with
proxy variance \;(X*), [8] implies the vanilla Lloyd’s algorithm output Z satisfies ¢(Z, z*) <
nexp(—(1+0(1))A2/(8)\;(X*))) with probability at least 1 — exp(—A/1/Ag(3*)) — n~!, under
the assumption that A?/(k?(kd/n + 1)Aq(X*)) — oo. Then we have (2, z*) = o(n) with high
probability under the assumptions of Theorem [2.2] and hence it can be used as an initialization for
the algorithm.

3 GMM with Unknown and Heterogeneous Covariance Matrices

3.1 Model

In this section, we study the GMM where the covariance matrices of each cluster are unknown and
not necessarily equal to each other. The data-generation process can be displayed as follows,

Model 2: Y; =07 +¢;, where ¢; %' N(0,5%.),j € [n]. (10)
J J

We refer to this as Model 2 throughout the paper to distinguish it from Model 1, as discussed in
Section 2] The key difference between and () is that here we have distinct covariance matrices
{2} }acpr) for each cluster, instead of a single shared X*. We use the same loss function as defined in
)

Signal-to-noise Ratio. The signal-to-noise ratio for Model 2 is defined as follows. We use the
notation SNR’ to distinguish it from the SNR used for Model 1. Compared to SNR, SNR’ is much
more complicated and does not have an explicit formula. We first define a set B, ;, C R for any
a,b € [k] such that a # b:

1 1 xL w L
Buy = {x e R STy (0; - 05) + 5o (zaz I O Id) @

1 * * *— * * 1 * 1 *
< _5(9a — )TN0 - 6) + §log‘2a| - 510g‘2b| }
We then define SNR|, , = 2min,ep, , ||z and

SNR'= min SNR/,. (11)
a,be[k]:a#b ’

The form of SNR’ is closely connected to the testing error of the QDA, which we will give in
Lemma The interpretation of the SNR’, particularly from a geometric perspective, will be



deferred until after the presentation of Lemma|3.1] Here let us consider a few special cases where
we are able to simplify SNR": (1) When ¥* = X* for all a € [k], by simple algebra, we have

SNR!, , = ||(6 — 0;)T=*~ || for any a, b € [k] such that a # b. Hence, SNR’ = SNR and Model 2
effectively reduces to Model 1. (2) When % = 021, for any a € [k] where o1, ..., 0} > 0 are large
constants, we have SNR, ;, SNR;, , both close to 2[|0; — 05| /(0 + o). From these examples, we

can see SNR’ is determined by both the centers {6}, () and the covariance matrices {37}, k-

3.2 Minimax Lower Bound

We first establish the minimax lower bound for the clustering problem under Model 2.

Theorem 3.1. Assume d = O(1) and max, pepp) Aa(X})/A1(E5) = O(1). Under the assumption

/
j% — 00, we have

SNR'®
inf sup Eh(%,2%) > exp| —(1+ o(1)) .
Z zrelk)n 8

If SNR' = O(1) instead, we have infz sup...c (. ER(2, 2*) > c for some constant ¢ > 0.

Although the statement of Theorem [3.1] appears similar to that of Theorem [2.1] the two minimax
lower bounds differ due to the varying dependencies of the centers and covariance matrices on SNR’
versus SNR. Using the same argument as in Section the minimax lower bound established in
Theorem [3.T]closely relates to the QDA between two normal distributions with different means and
different covariance matrices.

Lemma 3.1 (Testing Error for the QDA). Consider two hypotheses Hy : X ~ N(07,%7) and
H, : X ~ N(05,%3). Define a testing procedure
¢ = {log [S1] + (z — 67)"(2]) " (z — 07) = log [E5] + (z — 05) " (33) " (= — 63) }.

Then we have inf 3 (Py, (¢ = 1) + P, (¢ = 0)) = Pp, (¢ = 1) + P, (¢ = 0) . Assume d = O(1)
and max, pe 1,2y Aa(X5)/A1(E5) = O(1). If min {SNR! 5, SNRj  } — oo, we have

inf (P, (6 = 1) + P, (6= 0)) 2 oxp (—(1 +o(1))

min {SNR, ,, SNR’M}Q)
: .

Otherwise, inf 5 (Py, (¢ = 1) 4+ Py, (¢ = 0)) > ¢ for some constant ¢ > 0.

Figure 2: A geometric interpretation of SNR'.

Lemmaprovides a geometric interpretation of SNR'. In the left panel of Figure |Z, we have two
normal distributions A/ (07, X7) and N (05, £3) from which X can be generated, and the black curve
represents the optimal testing procedure ¢, as detailed in Lemma Since X7 is not necessarily
equal to X3, the black curve is not necessarily a straight line. If Hy is true, the probability that X
is incorrectly classified occurs when X falls into the gray area, represented by Py, (¢ = 1). To
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calculate this, we transform X to X’ = (X3)~2 (X —6}), standardizing the first distribution. Then, as
displayed in the right panel of Figure the two distributions become (0, I;) and N'((£5) ™2 (05 —
07), (3%)~2%%(2%) " 2), and the optimal testing procedure ¢ becomes I {X’ € B; »}. As a result,
in the right panel of Figure |Z, B » represents the space colored by gray, and the black curve is
its boundary. Then Py, (¢ = 1) is equal to P(N(0, I;) € By ,2). Under the assumption d = O(1)
and max, pe 1,2 Aa(E5)/A1(25) = O(1), in Lemma|C.10, we can show P(N'(0, Iy) € By o) =
exp(—(1 4 o(1))SNR}2,/8). As a result, SNR’ can be interpreted as the minimum effective distance
among the centers {07 }ae[k], considering the anisotropic and heterogeneous structure of {7 } 4[4
and it captures the intrinsic difficulty of the clustering problem under Model 2.

3.3 Optimal Adaptive Procedure

In this section, we give a computationally feasible and rate-optimal procedure for clustering under
Model 2. Similar to Algorithm [T, Algorithm 2 is a variant of Lloyd’s algorithm, adjusted to
accommodate unknown and heterogeneous covariance matrices. It can also be interpreted as a
hard EM algorithm under Model 2. Algorithm 2 differs from Algorithm[I in (I3) and (I4), as now
there are k covariance matrices instead of a common one.

Algorithm 2: Adjusted Lloyd’s Algorithm for Model 2.

Input: Data Y, number of clusters k, an initialization 2(0) number of iterations 7.
Output: (7

for t=1,...,Tdo

Update the centers:

Siem BI{e' " = af
Zje["] H{Z](t—l) _ a} )

Update the covariance matrices:

e (Y5 — 0)(Y, {7 = }
Z]e[n]]l{ ¢ = “}

Update the cluster assignment vector:

2D = argmin(y; — 60)7(S9) 1Y, - 00) +1og [P], Vie[n]. (14

a€lk]

o) = Va € [k]. (12)

»® =

Va € [k]. (13)

In Theorem we give a computational and statistical guarantee for Algorithm[2] We demonstrate
that, with proper initialization, Algorithm [2|achieves the minimax lower bound within log n iterations.
The assumptions needed in Theorem are similar to those in Theorem [2.2] except that we require
stronger assumptions on the dimensionality d since now we have k (instead of one) covariance
matrices to be estimated. In addition, by assuming max, pefr) Aa(2X;)/A1(X;) = O(1), we ensure
not only that each of the k covariance matrices is well-conditioned but also that they are comparable
to one another.

Theorem 3.2. Assume k = O(1), d = O(1), and mingep) Y5, {2z = a} > G2 for some
constant o > 0. Assume SNR' — oo and max, pe(r) Aa(E )/)\1(2*) = O(1). For Algorithmlz
suppose 20 satisfies ((2(0), 2*) = o(n) with probability at least 1 — 1. Then with probability at
least 1 —n — 5n~! — exp(—SNR'), we have

R
Bz, 2) < exp<—<1 +o(1)

) , forallt >logn.

The vanilla Lloyd’s algorithm can be used as the initialization for Algorithm[2] This is because Model
2 is also a sub-Gaussian mixture model. By the same argument as in Section the output of the



vanilla Lloyd’s algorithm Z satisfies £(2, z*) = o(n) with high probability under the assumptions of
Theorem 3.2

We conclude this section with a time complexity analysis of Algorithm[2, Compared to the vanilla
Lloyd’s algorithm, our method introduces additional computational overhead due to the need for
computing the inverse and determinant of covariance matrices. Specifically, the time complexity of
Algorithmis O(nkd®T). In contrast, the vanilla Lloyd’s algorithm has a lower time complexity of
O(nkdT). The increase in complexity stems from matrix operations in d dimensions, as both matrix
inversion and determinant computation scale as O(d?).

4 Numerical Studies

In this section, we compare the performance of our methods with other popular clustering methods
on synthetic and real datasets under different settings.

Model 1. The first simulation is designed for the GMM with unknown but homogeneous covariance
matrices (i.e., Model 1). We independently generate n = 1200 samples with dimension d = 50 from
k = 30 clusters. Each cluster has 40 samples. We set ©* = UT AU, where A is a 50 x 50 diagonal
matrix with diagonal elements selected from 0.5 to 8 with equal space and U is a randomly generated
orthogonal matrix. The centers {0} } <[, are orthogonal to each other with |07 = ... = [|05,]| = 9.
We consider four popular clustering methods: (1) the spectral clustering method in [14] (denoted as
“spectral”), (2) the vanilla Lloyd’s algorithm in [15] (denoted as “vanilla Lloyd™), (3) Algorithm[T
initialized by the spectral clustering (denoted as “spectral + Alg 1”), and (4) Algorithm [I]initialized
by the vanilla Lloyd (denoted as “vanilla Lloyd + Alg 17). The comparison is presented in the left
panel of Figure[3]

Model 2. We also compare the performances of four methods (spectral, vanilla Lloyd, spectral +
Alg 2, and vanilla Lloyd + Alg 2) for the GMM with unknown and heterogeneous covariance matrices
(i.e., Model 2). In this case, we take n = 1200, k = 2, and d = 9. We set ¥} = I and X5 = Ao,
a diagonal matrix where the first diagonal entry is 0.5 and the remaining entries are 5. We set the
cluster sizes to be 900 and 300, respectively. To simplify the calculation of SNR’, we set 67 = 0 and
05 = 5ey, with e; being the vector that has a 1 in its first entry and Os elsewhere. The comparison is
presented in the right panel of Figure 3]

method method

spectral spectral

~#= vanilla Lloyd ~A vanilla Lloyd

log(error)
\
log(error)

= spectral + Alg 1 =~ spectral + Alg 2

vanilla Lloyd + Alg 1 vanilla Lioyd + Alg 2

iteration iteration

Figure 3: Left: Performance of Algorithm [I compared with other methods under Model 1. Right:
Performance of Algorithm [2compared with other methods under Model 2.

In Figure[3] the x-axis is the number of iterations and the y-axis is the logarithm of the misclustering
error rate, i.e., log(h). Each of the curves plotted is an average of 100 independent trials. We can
see both Algorithm [T and Algorithm [2 outperform the spectral clustering and the vanilla Lloyd’s
algorithm significantly. Additionally, the dashed lines in the left and right panels represent the
optimal exponents —SNR?/8 and —SNR'?/8 of the minimax bounds, respectively. It is observed
that both Algorithm|I{and Algorithm [2|meet these benchmarks after three iterations. This justifies the
conclusion that both algorithms are rate-optimal.



Real Data. To further demonstrate the effectiveness of our methods, we conduct experiments using
the Fashion-MNIST dataset [23]]. In the first analysis, we use a total of 12,000 28 x28 grayscale
images, consisting of 6,000 images each from the T-shirt/top class and the Trouser class. The left
panel of Figure [ gives a visualization of the data points using their first two principal components,
showing the anisotropic and heterogeneous covariance structures. Since a large number of pixels have
zero across most images, we apply PCA to reduce dimensionality from 784 to 50 by retaining the top
50 principal components. Our Algorithm [2 achieves a misclustering error of 5.71%, outperforming
the vanilla Lloyd’s algorithm, which has an error of 8.24%. In the second analysis, we incorporate
an additional class, the Ankle boot class, increasing the total to 18,000 images across three classes.
Following the same preprocessing steps, the visualization of the dataset’s structure in the right panel of
Figure 4] again confirms the presence of anisotropic and heterogeneous covariances. Here, Algorithm
|Z achieves an error of 3.97%, an improvement over the 5.64% error rate observed with the vanilla
Lloyd’s algorithm.

Figure 4: Visualization of the Fashion-MNIST dataset using the first two principal components.
The data points are color-coded to indicate class membership: Red represents the T-shirt/top class,
green denotes the Trouser class, and blue signifies the Ankle boot class. This illustration shows the
existence of anisotropic and heterogeneous covariance structures.

5 Conclusion

This paper focuses on clustering methods and theory for GMMs, with anisotropic covariance struc-
tures, presenting new minimax bounds and an adjusted Lloyd’s algorithm tailored for varying
covariance structures. Our theoretical and empirical analyses demonstrate the algorithm’s ability to
achieve optimality within a logarithmic number of iterations. Despite these advances, our results
have some limitations that are worth addressing in future work:

1. High-Dimensional Settings: Current results are restricted to dimensions d growing at a rate
slower than n, specifically d = O(y/n) as stated in Theorem Section |3|further requires
a stronger assumption d = O(1). These constraints stem from technical challenges in
estimating covariance matrices accurately and in controlling matrix determinant. Adopting
more sophisticated analytical tools could potentially relax these bounds to d = O(n). In
scenarios where d exceeds n, the misclustering error deviates from the simpler exponential
decay observed under isotropic GMMs, as shown in [[16]. This suggests that our model
might also exhibit similar complexities, warranting further exploration into the technique
used in [16]] for potential extensions.

2. IlI-Conditioned Covariance Structures: Our analysis relies on the assumption of well-
conditioned covariance matrices, where max, pefr) Aa(2;;)/A1(X;) = O(1). This con-
dition is crucial for the current analytical framework, as it helps manage the estimation
errors of covariance matrices and their inverses. While more advanced techniques may
allow for a relaxation of this assumption, handling ill-conditioned or degenerate covariance
matrices remains challenging, particularly due to the difficulty of working with matrix
inverses in such cases. While minimax lower bounds suggest that clustering is still possible
even when the covariance matrix is degenerate, it raises computational challenges for our
current algorithms. This highlights the need for developing new algorithms that can function
effectively under less restrictive conditions.
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The appendices are organized as follows. Appendix[A]is dedicated to proving the results in Section
[2. To be more specific, we prove the lower bound, Theorem 2.1] in Appendix [A:T]and the upper
bound, Theorem[2.2] in Appendix [A.2] For the upper bound proof, we first give a high-level idea in
Appendix [A2.T] followed by a detailed proof in Appendix Appendix [Blincludes proofs of the
results in Section [3} the proof of the lower bound, Theorem[3.1, is in Appendix and the proof of
the upper bound, Theorem[3.2, is in Appendix [B:2} We include all technical lemmas and their proofs
in Appendix [C|

A Proofs in Section 2]

A.1 Proofs for the Lower Bound

In the following lemma, we give a sharp and explicit formula for the testing error of the LDA.
Here we have two normal distributions A (67, %*) and M (65, X*) and an observation X that is
generated from one of them. We are interested in estimating from which distribution the ob-
servation is drawn. By the Neyman-Pearson lemma, it is known that the likelihood ratio test
I{2(05 — 67)T (") "' X > 657 (2*) 7105 — 6;7(£*) 7167 } is the optimal testing procedure. Then
by using the Gaussian tail probability, we are able to obtain the optimal testing error, with its lower
bound given in Lemma [A-T]

Lemma A.1 (Testing Error for the LDA). Consider two hypotheses Hy : X ~ N(0F,%*) and
H; : X ~ N(05,%*%). Define a testing procedure

6 =1{2(65 — 07)T ()1 X > 637 (57) 65 — 037 (57) 167 ).
Then inf § (Pss, (¢ = 1)+Pu, (6 = 0)) = Py (¢ = 1) 4P, (¢ = 0) . If[|(05 — 07)(5*) 2| = o,
we have

1gf(]P’HO(QA§ — ]_) +PH1 (d; _ 0)) > exp (_(1 + 0(1)) ”(9; - QT)T(E*)2”2> ‘

8

Otherwise, inf 5 (P, (¢ = 1) + Py, (¢ = 0)) > ¢ for some constant ¢ > 0.

Proof. Note that ¢ is the likelihood ratio test. By the Neyman-Pearson lemma, it is the optimal
procedure. Thatis, inf ; (P, (¢ = 1)+Pu, (¢ = 0)) = Py, (¢ = 1)+Pu, (¢ = 0) . Lete ~ N(0, Ia).
By Gaussian tail probability, we have

iy (6 = 1) + Pa, (9 = 0) = P(2(85 — 0)7(5) 7167 + ) > 657 (27) 7105 — 67 (") 7'65)
+P(2005 - 07)7(S7)71 (05 + ) < 057 (27) 7105 — 67 (5)716)
= 2P(2065 - 07)7 (S7) 7107 + ) 2 057(S7) 7105 — 67 () 7165)

- QP(e > %n(a; — 01‘)T(2*>5|>

* _ x\T (y* —% 2
> C'min {1, 1T __exp ( 163 —07)" (X*) =]l > }
163 — 07)7 (X*) = | 8

for some constant C' > 0. The proof is complete. O

in (2) is achieved at a = 1,b = 2 so that SNR = (07 — 63)T(X*)~1(0; — 63). Consider an arbitrary
z € [k]" suchthat [{i € [n] : Z; = a}| > [} — gp= | for any a € [k]. Then for each a € [k], we can
choose a subset of {i € [n] : Z; = a} with cardinality [ — g7 |, denoted by T,,. Let T' = U, e T
Then we can define a parameter space

Z={z€lk]":z=7%foralli € Tand z; € {1,2} ifi € T°}.
Notice that forany z # Z € Z, wehave £ S0 | I{z; # Z} < By = Loand 2377 T{4(z;) #
Zi} > 1(3 — =) > 45 for any permutation ¢ on [k]. Thus we can conclude

Pr(q/ of Theorem We adopt the idea from [[15]. Without loss of generality, assume the minimum
2]

1 n
h(z, %) = - Z]I{zl #Z}, forallz, z e Z.
i=1
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We notice that
inf sup Eh(Z,2*) > inf sup Eh(Z,2")

Z zrelkn Z z*eZ
> mf@ Z Eh(2
z* EZ
> — Z mf Z P,
€Te | z*eZ

Now consider a fixed i € T°. Define Z, = {# € Z : z; = a} for a = 1,2. Then we can see
Z = Z1U 25 and Z, N Z5 = (). What is more, there exists a one-to-one mapping f(-) between
Z1 and Z,, such that for any z € Z;, we have f(z) € Z, with [f(2)]; = z; for any j # ¢ and
[f(2)]; = 2. Hence, we can reduce the problem to a two-point testing probe and then apply Lemma
We first consider the case that SNR — oo. We have

mf |Z| Z P (2 # 2i) = y |;| Z (PZ*(‘%i?él)‘FPf(z*)(?:’i#Q))

z*€Z z*€Z1
1 . 5
Z 1zl > inf(Poe (3 # 1) + Prioey (21 # 2))
z*€Z, s
Z SNR?
> |Zlexp(—(1 +n) 3 )
1 SNR”
> gow( (4T ).
for some 1 = o(1). Here the second inequality is due to Lemma Then,
, X |T°| SNR? 1 SNR?
f s E > — —(1 = — 1
f sup ER(327) 2 5 ew| ~(n) =g T W
SNR?
= eXp<—(1 1) =5 ) 7
for some other 77/ = o(1), where we use SNR?/ log k — oc.
The proof for the case SNR = O(1) is similar and hence is omitted here. O

A.2  Proofs for the Upper Bound
A.2.1 High-level Idea

In this section, we provide a high-level idea for the proof of Theorem The detailed proof is
technical and is given later in Appendix[A.2.2

The key idea for establishing the statistical guarantees of Algorithm|[T} an iterative algorithm, is to
perform a “one-step” analysis [8]. That is, assume we have an estimation z for z*. Then we can
apply (IZI), 8), and (EI) on z to obtain {éa(z)}ae[k], $(z), and 2(z) sequentially, which all depend on
z. Thus, 2(z) can be seen as a refined estimate of z*. We will first build the connection between
0(z, z*) with £(2(z), z*) as in Lemma which informally states that under certain conditions,
with high probability, we have

6(2(2’) ) < gldeal( )

holds for any z € [k]™ such that E(z z*) is small. Here &geq(0) refers to the ideal error, which
eventually leads to the upper bound in Theorem 2.2 Lemma&tells us £(+) has a “contraction”
property. That is, after one iteration of (7] . ,and (9), ¢

an additive term &geqr (0).

is at most a half of £(z,z*), up to

To establish Lemma[A.2] we decompose the loss £(2(z), z*) into several errors according to the
difference in their behaviors. Next, we will introduce several conditions (Conditions L - [3), under
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which we demonstrate that these errors are either negligible, well-controlled by ¢(z, z*), or connected
t0 &igeal (9). Once Lemmais established, we will show in Lemma that the connection can
be extended to multiple iterations, under two more conditions (Conditions4]-[5). Lemma[A.3]states
informally that, under certain conditions and with high probability, we have

g(z(t)’z*) < gideal((;) + %K(Z(t_l),z*)

for all ¢ > 1. This implies E(z(t), z*) is eventually at most &gea (9), up to some constant factor. Last,
we will show all these conditions hold with high probability. Although the algorithmic guarantees in
Lemma and Lemma|A.3|are established with respect to the £(-, -) loss, we will use the relationship

between A(-,-) and £(-, -) to convert this result to one involving h(, -). Hence, we prove Theorem

A.2.2 Detailed Proofs

In the statement of Theorem [2.2] the covariance matrix X* is assumed to satisfy Aq(2*)/A1(5*) =
O(1). Without loss of generality, we can replace it by assuming >* satisfies

)\min S )\1(2*) S )\d(z*) § )\max (15)
where Apin, Amax > 0 are two constants. This is due to the following simple argument using the
scaling properties of normal distributions. Let {Y}} be some dataset generated according to Model
1 with parameters {0} },c[x), £, and 2*. The assumption \g(X*)/A1(X*) = O(1) is equivalent to
assuming there exist some constants Apin, Amax > 0 and some quantity o > 0 that may depend on
n such that Apino? < A (2*) < Ag(Z%) < Anaxo?. By performing a scaling transformation, we
obtain another dataset Y, = Y; /0. Note that: 1) {Y} can be seen as generated from Model 1 with
parameters {0} /0 },c[x), ©*/0?, and z*. 2) Clustering on {Y}} is equivalent to clustering on {Y }.
3) By the definition in , the SNRs that are associated with the data-generating processes of {YJ’ }
and {Y;} are exactly equal to each other. 4) We have A\yin < A1 (Z*/0?) < A\g(X%/0?) < Aax-
Thus, for the remainder of this section, we assume that (T3] holds without any loss of generality.

In the proof, we will mainly use the loss £(-, -) for convenience. Recall A is defined as the minimum
distance among centers in (3). We have

0(z,2%)

h < s 16

(5,2") < (16)
The algorithmic guarantees Lemma and Lemma are established with respect to the ¢(-, -)

loss. Eventually, we will use (@) to convert it into a result with respect to h(-,-) in the proof of
Theorem 2.2]

Error Decomposition for the One-step Analysis: Consider an arbitrary z € [k]™. Apply , ,
and (Igl) on z to obtain {0, (2) }ae[r)» X(2), and 2(2):

Zje[n] Y;I{z; = a}

Oa(2) = S ez =a) Va € [K]
() = actl el (Y = 0a(zn)(Yj 0a(2))TT{z; = o
2(2) = argmin(¥; — 0a(2))" (£(2) (¥ ). Vg € [n]

a€lk]
For simplicity, we denote 2 as shorthand for 2(z). Let j € [n] be an arbitrary index with z; = a.
According to (E), z¥ will be incorrectly estimated after one iteration in 2 if a # argminge ) Y; —
05(2))7 (2(2)) " (Y; — y(2)). Therefore, it is important to analyze the event

(Y = 05(2), (2(2) 7 (Y) = 05(2))) < (¥) = a(2), (£(2)) (Y] — ba(2))), (17
for any b € [k] \ {a}. Note that Y; = 0} + ¢;. After some rearrangements, we can see (17) is
equivalent to

e, (B(z1)) 7 (Ba(=") = B(=")))

<= {0 — 05, (57)7H08 — 05) + Fi(a,b,2) + Gj(a,b,2) + Hj(a, b, 2),

DN =
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where

Gila,b,2) = 510~ Bul2). (5(:) 705 — () — 5605 — 0u(="), (52703 — Bu)
5007 = 00, (50— Bal=) — 682 — 0u(="), (B) 7 (65 — (")
500 = B, (B 0 = Bu() + 5 82— =), (5(2) 7 (0 — (7))
= 5002 = B (BT~ ) + 58— =), (B TE - ),
Hyla,b,2) == {02 — (=), (5(20) (05— By (=) + 51005 — 67, (5G) 7 (65— )

(O =05, (S(=") 702 — 67)) + %<9Z — 05, (Z7) 7105 - 05))
50 = 0a(27), (S(=7) 71 (0; — 0a(2")))-

In the above decomposition, the expression (ej, (3(2*)) " (0a(2*) — Gy(2*))) < —%(9; -
05, (X*)~1(0; — 6;)) does not involve z. Roughly speaking, it corresponds to the event that 2% will
be incorrectly estimated in z( ) This is considered the main part of (]:) and will contribute to
&ideal- The difference between (17) and the main term is expressed through the terms F};, G, H;: Fj
includes terms related to noise e], 111ustrat1ng the impact of measurement noise; G; covers estlmatlon

errors for cluster centers (0,(z) — 84(2*)) and covariance matrices (3(z) — f](z*)) showing the
effect of the parameter estimation inaccuracies; H; contains all other terms from additional error
sources. Readers can refer to [8] for more information about the decomposition.

Conditions and Guarantees for One-step Analysis. We continue to analyze the event (17). We
first define a quantity independent of z, which we refer to as the ideal error:

fldeal Z Z HGZ;‘ _9?;|2H{<€j’(i(2*))_l(éa(2*) —(9[,(2’*)»
J=1be[k]\{z;}

U A RIS ez»}.

When d = 0, it is determined by the main term in li namely (e, (3(2*)) " (0a(2*) — 05(2*))) <

— 305 — 05, () 7105 — 6;)). Roughly speaking, igear (0 ) relates to the performance of £(z *). Due
to the presence of the terms F};, G;, H; in the decomposition of (17), what appears in the analysis of
is Eigeal () instead of Eigear (0) where hopefully § > 0 is some small number.

To establish the guarantee for one-step analysis, we next give several conditions on the error terms
Fj(a,b;2),G;(a,b;z) and Hj(a,b; z).
Condition 1. Assume that

|Hj(z;'<7 bv Z)|

5
max max : < -
(=122 <r) ein) bl (=) (07, — 05, () 710z —65)) — 4

holds with probability at least 1 — 1y for some T,9,171 > 0.
Condition 2. Assume that
n Bz b 2P0 -6 g
{z:u??i"*’%gf};befﬁ\aé;} (62, — 05, (T) (07 — 6;))°0(z,2%) ~ 128

holds with probability at least 1 — 1y for some T,0,12 > 0.
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Condition 3. Assume that
max max max |GJ (2;7 b’ Z)|
{z:1(z,2%) <7} €] b\ {2} } <9:§f — 05, (2*)*1(9;; —0;))

AN

J
8
holds with probability at least 1 — n3 for some T,9,13 > 0.
Lemma A.2. Assumes Conditions||-[3|hold for some ,8,11,1m2,1n3,> 0. We then have
1

P(((é, 2*) < &igear () + §£(z, z*) for any z € [k]" such that {(z,z") < T> >1-—mn,
where 1 = Z?:l ;.
Proof. Consider any j € [n] such that 2} = a. We notice that for any b € [k] such that b # a,

I{z =0} < H{<Yj —0y(2), (£(2) 71 (Y] = 05(2))) < (¥ = (), (£(2) 71 (Y] — éa(Z)))}

< 16, (EE 10 () - ) < 1500 - 05,506 - )}

0
{00 = 65, ()70 — ) < Fi50.2) 4 Gole5.0.2) + Hili.0,) |

) <~ 65, ()0 - 6

AN
=]
—
—
(@)
<.
—~
M
—
N
*
N~—
S~—
|
—
—~
>
N
—
N
*
S—
|
>

6
{0 - 6.7 - ) < 50

) = Oy <~ 1500 05, ()6 - )}

64F;(z5,b,2)?
T =0y, () L0z — 6

IN
=
—
—~
M
[
—
\gB
—~
N
*
N—
N~—
|
—
—
>
)

where the second inequality comes from Conditions |1 and [3. Note that we can multiply I {Z; = b}
on both sides of the above display and the inequality still holds. Hence,

I{z = b} < H{<ej, (S0 () - ) <~ 207 - 6.5 05 - 0;:»}

64F; (2%, b, 2)?
+ ](Q ) {2, =b}.
5207, — ;. (57) (0% — 05))
J J

Thus, we have

E(é 2*)
* 2 2
-y Y |0 - 02| 14z =}
Jj=1belk \{a}
2 64F; (2%, b, 2)?
< Eigen 0 — 0% || I{2 =0 A A
< Siaea( *Z > H b0 T =N e = e e — e
J=1belk \{Z Zj %5
n 2 64F; (2%, b, 2)?
< Egenl(8 ‘0*— - L
< igeal(0) + . be[rﬁ%é;} b 2 52<9% — 9;7(2*)71(9% _ 9;»2
Lz, z*
S gideal((;) + %7
which implies Lemma[A-2] Here the last inequality uses Condition 2] O
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Conditions and Guarantees for Multiple Iterations. In the above, we establish a statistical
guarantee for the one-step analysis. Now we will extend the result to multiple iterations. That is,

starting from some initialization z(°), we will characterize how the losses £(z(?), z*), (21, 2*),

0(23), 2*), ..., decay. We impose conditions on &geqi(6) and the initialization (%),

Condition 4. Assume that

3T
gideal (5) S g

holds with probability at least 1 — 14 for some T,9,14 > 0.

Finally, we need a condition on the initialization.

Condition 5. Assume that
E(z(o),z*) <rT
holds with probability at least 1 — ns for some 1,15 > 0.

With these conditions satisfied, we can give a lemma that shows the convergence of our algorithm.
Lemma A.3. Assume Conditions|[I|-[| hold for some T, 0,11, 12,13, 14,15 > 0. We then have

1
00, 2%) < G (9) + 5071, )
for all t > 1, with probability at least 1 — n, where n = Zle ;.

Proof. By Conditions {f, 5 and a mathematical induction argument, we can easily conclude
0(2® 2*) < 7 forany t > 0. Thus, Lemmais a direct extension of Lemma O

With-high-probability Results for the Conditions and Proof of Theorem Recall the defini-
tion of A in (3). Recall that in we assume Apmin < A1(X*) < Ag(X*) < Apmax for two constants
Amin, Amax > 0. Hence we have A is of the same order as SNR. Specifically, we have

1 1
V )\maxA = SRR = Vv )\min
Hence the assumption SNR — oo in the statement of Theorem [2.2]is equivalently A — oo. Next,
we give two with-high-probability lemmas. The first lemma is for Conditions[T{3, providing upper
bounds for the quantities involved in these conditions, showing that § can be taken as some o(1) term.
The second lemma shows that for any § = 0(1), &gear(0) is upper bounded by the desired minimax
rate multiplied by the sample size n.

A. (18)

Lemma A.4. Under the same conditions as in Theorem for any constant C' > 0, there exists
some constant C > 0 only depending on o and C' such that

H;(z,b, 2 k(d+1
max max max - |* 1% — )*| — <C k(d+logn) (19)
{z:(z,2*) <7} j€[n] bE[K]\ {2} } <02; — 05, (X%) (02; —07)) n
" Fy(25,0,2)?]103. — 6| o1 a2
max max J < Ck? < + =+ )
{z:é(z,z*)gT};bE[k]\{z;} (9:; - 05, (2*)—1(9;; —07))%(z,z%) n A2 nAZ2
(20)
|G(25,b, 2) (7‘ 1 [7 dﬁ)
max max max <Ckl—4+ —/— 4+ ——
{z:(z,2%) <7} jEln] be[kI\ {27} (9% — 0y, (2*)—1(9% —65)) n A\Vn nA
(21)

with probability at least 1 — n=C". As a result, Conditionsholdfor some 6 = o(1).

Proof. Under the conditions of Theorem [2.2] the inequalities (33)-(38) hold with probability at
least 1 — n~C". In the remaining proof, we will work on the event these inequalities hold. Denote
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2 e (Y5 —0a (DY —0a(2)) TH{z;=a}

Sa(z) = 2jem Hzi=a} and ¥* = ¥* for any a € [k]. Then we have the
equivalence
£ Iz = a)
3 * * j=1 J S * *
—xr =N 2 S, () - 5.
DICHED Ezj - (Za(z") —22)
Hence, we can use the results from LemmalC.7/and Lemma|C.8|
By (@3) and (44), we have
£ 57 < DL
and
koS 1z = a} FoS Iz =a}
N ~ % =1 2 =1 - *
HZ(Z) - Z(Z )” = Z %Za(z) - Z %Ea(z )
a=1 a=1
5 Iz = o) bz = a) e = a))
Jj=1 J S ST Jj=1 J J S *
= ;fmz) —2(E)| + g p Sz
k\/né (z, z* k kd k
< ke
k\/ € kd
= né(z, 2" : ,25) + A 0z, z*).

By the assumption that k:d =0(y/n), & = oo and T = o(n/k), we have [5(z%) = 2*||, 15(2) —
3(2*)|| = o(1), which implies ||(2(z*)) Y|, [|(£(z))~!|| < 1. Thus, we have

IS = 07 < IEE) T ISE) - i) ) < /LB o)

and similarly
1) = (BE) T = ﬂ(z Z)+ k\/m A\/ﬁ(znz’*)- (23)

Now we start to prove (19)-21I). Let Fj(a, b, z) = Fj(l)(a b, z)+F(2 (a,b, z)+F( (a, b, z) where

FO(a,b,2) = (e, (5(2)) 7 00(2) = 00(2))) = (65, (5(2)) 7 (0a(2) — 0 (7)),
FP(a,b,2) == (e, (2(2)) 71 = ((2%) 7102 — ;).
FP(a,b,2) = —(ej, (£(2)) ™" = (£(7) 700 — 0(="))) + (e (E(2) 7" = (£(z) )% — 0 (z7))).
Notice that

n FP (25,6, 2)2)10%. — 052

;beﬁf‘?zn (07, — 05, (57) 716z — 07))%0(= 2")
(e, ((2(2)) 71 = (£(27)) 710 — 7))

107, = 7 1Pe(z, =)

N

2
(6. (B2)~1 — (B(=) 1) (6 — 7))
ZH{Z =al 105~ 0i 20z =)

[(EED™ ~ EED 6 =1 | S g, gree?
16 — 65 |24(2, 2%) ZH{ 7 = akeje;

(]
(]

M-
g

b=1 a€[k]\{b} j=1
1 d?
< k3 T2
Sk (n+ A2 +nA2)’
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where we use , and the fact that £(z,2*) < 7 and kd = O(/n) for the last inequal—
ity. Here the second to last 1nequahty is due to the following argument for any w_€ R? we
have Y [(ej, w)[? = 3, wTejelw = wT (Y, el )w < |Jw[?| Y, €;€T|. From (D we have
maxge(x) |05 — 0,(z%)|| = o(1) under the assumption kd = O(,/n). By the similar analysis as in

(2)
F;7(a,b, z), we have
n (3) * 211p*x _ p*]|12
PO (50,2262 — 6] Y

<E(=+ =+ —).
jzjbe[k K @5 = 0.0 10z — )P " T a7 s

Similarly, we have
n (1) * 2 *  _ nx|]|2
Z ax F; (25,0, 2) ||‘9z; o;
j_ 7 velk\{=5y (02 — 67, (5%) 710z, — 67))2(2, 2*)

Z I{z; = a}ejejr

1(5(2)) " (Ba(2) — 0 (2%))|I?
: ;aez\{b} 10: - 6Pl &
k3
j Ea

where we use and the fact that (3(z)) ™" has bounded operator norm. Combining these terms
together, we obtain (20).

Next, for (19), by @1) we have
| = (05— 0u(="), (£(7)) 1 (02 — 0u(="))) + (65 — 65, (2(=")) (0 — 6)]
")

<1065 — (=), () 765 — D)+ 2065 B, ()76 )]
< k(dJrnlogn) n k(d+nlogn) 1% — 0z,
and
(65— 8a(), (B1) 70 — a1 = L8R,
By (22) we have
[ 07— 05 (27 05— 6)) + (0 — 03, (59707 — 6] =/ B g g2

Using the results above we can get (19).

Finally we are going to establish (21)). Recall the definition of G;(a, b, z) which has four terms. For
the third and fourth terms, we have

| = (65— 0u(2), (5(2) 71 (67 — 05(2))) + (6 — ("), (£(2)) " (0 — ("))

= 106(2) = By (=")|1% + 105(2) — () 1116 — O3,
and

| = {8 = 0u(=), (2(2)) 71 (6 — Bu(="))) + (67 — Bu(="), (2(=")) 71 (6 — Bu(=")))]
< 16 =GP E) = (EE)) L

We can easily verify that the other two terms are smaller than the above two terms. Then, by using

and (23)), we have
|G;i(z],b,2)]

0 —05.(5) (05 —03)
100(2) = B (=) + 180(2) — By (=mI10Z. — B3 11 + 1107 — B 120(S(2) ™ — (S~
: PR
z;_ b

kr k[t kdyT
<2 x /L .
) +A\/;+ nA
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Lemma A.5. With the same conditions as in Theorem Sforany § = o(1), we have
mmj

6uai®) < nexp( ~(1+ o)
with probability at least 1 — n=C" — exp(—SNR).
Proof. Under the conditions of Theorem [2.2] the inequalities (33)-(38) hold with probability at least

1 —n"%". In the remaining proof, we will work on the event these inequalities hold. Recall the
definition of &geq. We can write

. . . 1-6
&ideal (6 }: X:HW—%WHkMﬂfﬁﬂ%@ﬂ—Mfm<—jzW%—%ﬁﬂ*wg—%ﬁ
Jj=1belk] \{z
" 1-6—46
2: 2: W%—%Hﬂﬁm@ﬂ1@%—%»§—izWQ—%A?)W%—%»}

be[k\{z]}

+Z > llez — e’

J=1obelk\{z}}

{
{o

DY 9*—9b|ﬂ{<em<2<z*>>1<éz;<z*>—a:f>><—
-

J=LbelkI\{}}

T DD DR e

j=1belk\{=1}
— M, + My + M3 + M,.

|
o

where § = 6,, is some sequence to be chosen later. We bound the four terms sequentially. Suppose
¢; = (X%)1/2w;, where w; "' N'(0,1,). By (22), we know

M2 S Z Z ”02; - 0;”2}1{6)\ ”0* 9;:”2 S )\mawajH”(i(z*))_l _ (E*)—lnuo% . 9;;”}
J=1be[k\{z}}
<2, 2 05— si1Pr{oaloz; 651 [ < s}
J=1belk\{z}}
<> % o - { om0 s el -2l
J=1oelk]\{z}} d+logn

where C' is a constant which may vary from line by line. Recall that kd = O(y/n), ming, [|0) —
0|| — oo, and A/k — oo by assumption. Let =3 = 0(3). Using the 2 tail probability in Lemma
C.1} we have for any a # b € [k],

B, <y Y |e:;—e;n?exp(—caznez;—eznwﬁ)Snexp(—<1+o<1>>

J=1b€]| k]\{z }

SNR2>

We can obtain similar bounds on M3 and M, by using @I} For M, the Gaussian tail bound leads to
the inequality

L2020 g (mr) 1 (6: — ez»}

1-6—-96

P{<ej, (=) (07— 65)) <

- P{<wj, (591207 — 67)) < — (03— 0. (%) (67 — 0;»}

< o0 0 ).
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Thus,

- * * 1_5_52 * * %\ — * *
<Y S 16 - lPenn( -5 - 6 () - )

J=1belkI\{})

< nexp (—(1 + 0(1))SNR2> ~

Overall, we have E&jgea < nexp (—(1 + o(l))%). By the Markov’s inequality, we have

P(&igeal () > E&igea exp(SNR)) < exp(—SNR).

In other words, with probability at least 1 — exp(—SNR), we have

2
Sideal () < Eigeal (9n) exp(SNR) < nexp(_(l +o(1)) Sl\;R ) .

O

Proof of Theorem[2.2] By Lemmas - we have that Conditions [T - [5 are satisfied with
probability at least 1 — 7 — n~! — exp(—SNR). Then applying Lemma|A.3] we have

iﬁ(z(tfl), z*), forallt > 1.

2
020, 2*) < nexp(—(l —|—0(1))SNR > + !

By @), and since there exists a constant C such that A < CSNR, we can conclude

SNR?

h,(Z(t)7 Z*) é exp <—(1 + 0(]_)) > =+ 2_t, for all ¢ Z 1.

Notice that h(-, -) takes value in the set {j/n : j € [n] U {0}}, the term 27" in the above inequality
should be negligible as long as 2~¢ = o(n~!). Thus, we can claim

SNR?

h(z(t),z*) < exp <_(1 +0o(1)) ) , forallt > logn.

B Proofs in Section 3

B.1 Proofs for the Lower Bound

Proof of Lemma[3.1] The Neyman-Pearson lemma tells us the likelihood ratio test ¢ is the optimal
procedure. Following the proof of Lemmal[A.T] we have

Py, (¢ =1) + Py, (¢ =0) =P(e € B12) + P(e € B21)

1 1 ’ 1 1 ’
> exp (—Jr;()SNRf2> +exp (—Jr;()SNR;J) ,

where the last inequality is by Lemma|C.I0. O
Proof of Theorem 3.1} The proof is identical to the proof of Theorem[2.T]and is omitted here. ~ [J

B.2 Proofs for the Upper Bound

We adopt a similar proof idea as in Section 2 for Model 1. We first present an error decomposition
for the one-step analysis for Algorithm[2. In Lemma [B.T| we show the loss decays after a one-step
iteration under Conditions |6 -[11. Then in Lemma [B.2 we extend the result to multiple iterations,
under two extra Conditions |12 -[13. Finally, we show that all the conditions are satisfied with high
probability and thus prove Theorem 3.2]
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In the statement of Theorem , we assume max, pepi] Ad(X;)/A1(E;) = O(1) for the covariance
matrices {7 } o). Without Toss of generality, we can replace it by assuming {37 } ¢ satisfy

Amin < min A (X)) < max Ag(X)) < Amax (24)
a€lk] a€k]
where Apin, Amax > 0 are two constants. This is due to the scaling properties of the normal

distributions. The reasoning is the same as that in (I5) for Model 1 and is omitted here. For the
remainder of this section, we will assume that (24) holds for the covariance matrices.

Error Decomposition for the One-step Analysis: Consider an arbitrary z € [k]". Apply (12),
|i and on z to obtain {éa(z)}ae[k], {ia(z)}ae[k}, and £(z):
Zje[n] Yil{z = a}

Z_je[n] I{z; =a}’
_ Eje[n] (Yj — éa(z))(yj - éa(z))TH{Zj =a}
Zje[n] [{z; = a} 7
2(t) = argmin(¥) — 0a(2))" (2a(@) 7 (¥) — 0a(2)) +log [£a(2)], V) € [n].

a€k]

0,(2) =

Va € [k],

For simplicity, we denote 2 as shorthand for 2(z). Let j € [n] be an arbitrary index with 2} = a.
According to , z7 will be incorrectly estimated after one iteration in £ if @ # argming ¢ (Y; —

05(2))7 (Z6(2)) 1 (Y — By(2)) + log |S5(2)|. That is, it is important to analyze the event

() — 0u(2), (£0(2)) 71 (¥ = 0(2))) + log [£a(2)] < (Y] = ba(2), (£a(2) 7} (Y} — 0a(2))) + log [£a(2)],

(25)
forany b € [k] \ {a}. After some rearrangements, we can see (25)) is equivalent to
{ejy (Eu(=") 7102 = (")) — (&, (Za(=")” (92*1%(2 )
e (B0 = (Balz) ™ )eg) — 5 log|S5] + 3 log |
< - 500 65, (%) 0 — 7))
+ Fj(a,b,2) + Q;(a,b,2) + Gj(a,b,z) + Hj(a, b, z) + K;(a, b, z) + Lj(a,b, z),

+

where

Gi(ab,2) = %
0= 0u(=), (Ba(2) 10— Bua(=")) — 560 — al="), (B2 7465 — ul=")))
500 B0, (Ba(2) O — B2+ 5 (05— =), (50(2)) (05 — (=)
00— B, (B 8~ )+ g 82— Oul=), (Sa(=") A6 — o)
Hya,b,2) == {0 — 0u(="), (S0(=")) 7405 — Bol=")) + 5105 — 65, (S(=") (05— 69)
00 85, (S (=) O 60)) + {6 — 05, (%) 6 — 63)
08— 0u(=), (Balz) 7602~ Bul=)),



K;(a,b,2) = 5 (log [Sa(2)| — log [Sa(=")]) — 5 (log[$5(2)| ~ log [4(="))).

1 S * * 1 S * *
Lj(a,b,z) = 5 (log [Xa(27)] — log [Zq]) —  (log X5 (2")] — log %3 ]).

Among these terms, F};, Gj, H; are nearly identical to their counterparts in Section |A.2.2 with f](z)
Qjisa

replaced by 3, (z) or £(z). There are three extra terms not appearing in Section
quadratic term of €; and K, L; are terms involving matrix determinants.

Conditions and Guarantees for One-step Analysis. To establish the guarantee for the one-step
analysis, we first give several conditions on the error terms.

Condition 6. Assume that

/\

‘Hj(z;vbaz)‘ o
{sit(eien) <7} sl bell\ =3} (07, — 05, (Z5) 710z, — 67) ~ 12
holds with probability at least 1 — 1 for some T,9,1m1 > 0.
Condition 7. Assume that
n Fy (2.0, 2205 — 5 5

max max < —
{z:6(z,2)<7} Zbe[k]\{z;} ((‘)j;;f -0y, (2;)71(0;; —6;))20(z,2%) — 288

holds with probability at least 1 — 1y for some 7,0, 12 > 0.
Condition 8. Assume that

max max ‘Gj(z;’ b,2)l < i
(zt(zeoy<r) jein] belkinie: ) F 0z — 05, (X5) 107, — 05)) — 12
holds with probability at least 1 — n3 for some T,9,13 > 0.
Condition 9. Assume that
" Qb 2PN -G
[tz <) Zbefﬁi‘{’(z;} (02— 05, (55) (0%, — 03))%0(z,2") ~ 288

holds with probability at least 1 — n4 for some T,9,14 > 0.
Condition 10. Assume that
n K(z.b,2)2]16% — 61 2
max

<
{z:az,z*)sr}zbe[k Neh (07, — 65, (55) 7102 — 05))%4(z,2%) — 288

holds with probability at least 1 — 15 for some 1,9, 15 > 0.

Condition 11. Assume that
|L;(z],b,2)|

6
max max Imax : < —2

{z:(z,2*)<7} jE€n] be[K\ {27} (9?;; - 05, (2;;)*1(0* —0;))

holds with probability at least 1 — ng for some 7,9, ng > 0.

We next define a quantity referred to as the ideal error,

Eideal (0 E > 162 = GIPL(e, (S0(=") 7105 — (=) — (€5, (Balz") 71 (0 — 0a(=7)))
J=Lbe[k\{z]}
1-946

- §<ej, (B4 = (Bal=)M)es) — 3 log D3]+ 3 loa D51 <~ — 03, (20) (6 — )}

Lemma B.1. Assumes Conditions|6|-[[1|hold for some T,0,m1,...,n6 > 0. We then have

IP’(K(,%, 2*) < &igear () + %E(z, 2") for any z € [k]" such that {(z,z") < T) >1-—n,
where ) = 2?21 ;.
Proof. The proof of this lemma is quite similar to the proof of Lemma The additional terms Q) ;

and K; can be handled in the same way as I; while L; can be handled similarly to ;. We omit the
details here. O
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Conditions and Guarantees for Multiple Iterations. In the above, we establish a statistical
guarantee for the one-step analysis. Now we will extend the result to multiple iterations. That is,

starting from some initialization z(°), we will characterize how the losses £(z(?), z*), (21, 2*),
0(23), 2*), ..., decay. We impose conditions on &geqi(6) and the initialization (%),

Condition 12. Assume that
-
Eideal((;) S 5
holds with probability at least 1 — n7 for some T,0,17 > 0.

Finally, we need a condition on the initialization.
Condition 13. Assume that

0z, 2 <1
holds with probability at least 1 — ng for some 7,18 > 0.

With these conditions satisfied, we can give a lemma that shows the convergence of our algorithm.
Lemma B.2. Assumes Conditions@—@holdfor some T,0,M1,...,1n8 > 0. We then have

1
0z, 2%) < Eigear(0) + iﬁ(z(tfl), z")
for all t > 1, with probability at least 1 — n, where n = 2?21 ;.
Proof. The proof of this lemma is the same as the proof of Lemmal[A.3] O

With-high-probability Results for the Conditions and Proof of Theorem[3.2] Lemma|B.3 and
Lemma [B.4]are the counterparts of Lemmas [A.4] and [A.3]in Appendix [A.2.2] Recall that (24) is
assumed. By Lemma|C.10} we have A is of the same order as SNR', which will play a similar role as
in Section[A.2.2,

Lemma [B.3]and Lemma% are counterparts of Lemmas [A.4] and [A.5]in Section[A.2.2] The first
lemma is for Conditions providing upper bounds for the quantities involved in these conditions,
showing that ¢ can be taken as some o(1) term. The second lemma shows that for any 6 = o(1),
&idea1 (0) is upper bounded by the desired minimax rate multiplied by the sample size n.

Lemma B.3. Under the same conditions as in Theorem for any constant C' > 0, there exists
some constant C > 0 only depending on o, C', Ayin, Amax Such that

H(2%,b,
max ~max max - |* j(ij 12)*| ~ <C k(d +logn) (26)
{z:6(z2") <7} jeln] belkI\ (=} (07 — 67, (33) 71 (62 — 67)) n
" Fj(z;’b’Z)QHH.:* _0;”2 T 1 d?
max max ” — ” I » §0k3<++)
{z:e(z,z*)gr};be[k]\{z;} <92; — 05, (Zb)*l(ezf —07))%U(z, z%) n A2 nA?
(27)
|G (2], b, 2)] <r 1\/7 dﬁ)
max max max <Ckl—4+—4/—+——
{z:4(2,2%) <7} G€n] be[k\ {27} <9§; -0, (EZ)*l(G’% —0;)) n AVn nA
(28)
z”: Q;(2},b,2)% 107, — 0 _ B <T L1, )
max max < -+ =4+ —=
{z:t(z,2") <7} £ belR\ {2} <9§; - 05, (2;)*1(9;} —07))%l(z, z%) A2 \n A2  nA?2
(29)
Z”: Kj(25,b,2)?)10z — 03I _ R <T P &2 )
max max — v —
{zib(2,2) <7} ] belRI\ {27} (9;‘; — 0, (2;)—1(9;} —07))2(z,z*) = A2 A2 pAZ
(30)
Lj(23,b, 1
max  max L5z, b.2)] <ol [Hdrlosn) ),

max —
{sit(z2") <7} jeln] belk\(=;} (07, — 67, (37) 1 (02 = 67)) =~ A?
with probability at least 1 — n=¢ — %. As a result, COnditions hold for some § = o(1).
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Proof. Under the conditions of Theorem 3.2] the inequalities (33)-(38) hold with probability at least

1—n"%. Inthe remaining proof, we will work on the event these inequalities hold. Hence, we can
use the results from Lemma[C.7 and[C.8. Using the same arguments as in the proof of Lemmal[A.4]

we can get (26), and (28).

As for (29), we first use Lemmato have 2?11 le;]1* < 3nd with probability at least 1 — 4/(nd).
Then, we have

Z”: Q. bRl 0 5 Zk: Q;(z5,b, 2)?
=1 \{Z - 023 (22)71(0:; - GZ)>2€(Z7 Z*) - j=1b=1 AQé(Zv Z*)
= maxgepu [[(Za(2) 7! — (Sa(z*)) 7112
< e S
= k']z:; ||€J|| A2€(Z,Z*)

~ K3d% (T . 1 . d?
- A% \n A2 nA2)’
where the last inequality is due to and the fact that £(z, 2*) < 7.

: y )\min
NexAt for (30), notice that by (43), (44), and SNR’ — oo, we have for any 1 < i < d, Sumin <
Ai(Xa(2%)) < 2Amax and
Hfla(Z) = Za(2)ll2
ae[k] Ai(Za(2%))
Thus by Weyl’s inequality, we know

max [log [$4(2)] — log [Sa(=")]
a€k]

@4@%
[£a(z)|

log(1 + )

= max |log

a€lk]

IN

[£a (2)=Ea z")Il3

i: —E maXqelk] 2 (o (2*
<Zlog Hma;( I a(Z)A a*( )||2 H*;((Z;(_i))( o
a€[k] Ai(Za(z)) 1 — MaXqe[k ")\(T;))z
<d$a(z) = Sul=")l, 42

where the last inequality is due to the fact that \;(3,(z*)) is at the constant rate, ||3,(z) —
Yo (2%)]|2 = o(1) and the inequality log(1 + z) < z for any = > 0. yields to the inequality
z”: K;(z],b,2)?[10z = 051 . z”: B2 max ey [|Sa(2) — Sa (2|2
el O — 8 ()10 — O 2 - A2z, 27)
J J

Jj=1

=< k2d? Z+L+d72
— A2 \n A2 pA2)’

Finally for (31)), by and the similar argument as (32)), we can get

. k(d+1
malog [ (=")]| - < qyFld+1ogn)
a€k] n
which implies (31)). We complete the proof. O

Lemma B.4. With the same conditions as Theorem Sor any sequence 6,, = o(1), we have
SNR’2)

&deal(én) S nexp (_(1 + 0(1))

with probability at least 1 — n~C" — exp(—SNR').
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Proof. Under the conditions of Theorem 3.2] the inequalities (33)-(38) hold with probability at least
1 —n"%" Inthe remaining proof, we will work on the event these inequalities hold. Similar to the
proof of Lemma we have a decomposition jgey < Zle M; where

-y ¥

J=10be[k]\{z}}

2
oz - o

%\ — * * 1 *\ — * 0\ —
{te s - 00 + 5t (=) - (226
- glowlss + g loslsgl < -1 =300 05, () 05, - 05 |

is the main term and

= 5 o - et - e - < -0 -0 0 - )
J=1be[k]\{z}}
=2 5 o - e S0 0 0 e < gt 05 -0 )
J=1belk\{z;}
w3y S -0 e Gue) ) - ) < e 05, )6 - )}
J=1belk\{z;}
- * * 2 1 S *\\—1 *\—1 5_ * * *\—1 /% *
M5=Z Z '92;_917 {2<€j»((2b(2 )T — () )€j>§_ﬁ<az;_9bv(zb) (Qz;_gb»}
J=1belk\{z;}
Z P Joz; = 65 1{~ter (0 = 1)) < g - 1.0z - 6

(KIN\{z]}

Using the same arguments as the proof of Lemma we can choose some § = §,, = o(1) which is
slowly diverging to zero satisfying

SNR 2

EM; < nexp (—(1 +0o(1)) > fori=2,3,4.

As for M5, by (@3)) we have

M5<Z > |l e 2]1{
J=1belk\{=;} ’

2 logn
< /2 }

where C' is a constant and w; N (0, 4). Since there exists some constant C such that SNR’ <

C'A, we can choose appropriate § = o(1) such that
2 n
i <lhuslP}
ogn

EM5<Z T {

1be[k\{ =}
NR 2
Snexp(—(1+0(1))s . )

N * *

2
or. —or|| P
J

0:. —0;
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Mg is essentially the same with M5 and can be proved similarly. Finally for M7, using Lemma|C.10}
we have

IP’((G;‘» (EZ)”(@;} —0p)) + %<6j7 (=)' - (22;)‘1)6j>
1—-6—=46
2

1 * 1 * * * *\ — * *
~ Lrog s+ L og | < - 02, - 05, (5) 0 - 3)))

=P(<wj7 (Z2:)7(Z5) (05 = 0;) + §<wj, (Z2)2(Z5) 71 (5%)?F — Lowy)

- glowles + g loslsg) < -1 =300 — 05, () 02, - 60 )
SNRL
S exp| —(1—o(1))—5"|.

Then we have

SNR'?
EM; < nexp (—(1 +o0(1)) 3 > :
Using the Markov’s inequality we complete the proof of Lemma B4 O

Proof of Theorem[3.2] By Lemmas we can obtain the result by arguments used in the proof
of Theorem 2.2]and hence the proof is omitted here. O

C Technical Lemmas

In this section, we present and prove technical lemmas used in this paper. Lemmas|C.T and[C.2 are
about 2 distributions. Appendix @ gives various upper bounds needed in the proofs of Appendix
Appendix @ is devoted to the calculation related to SNR'.

Lemma C.1. For any x > 0, we have

P(x% > d+2Vdx +2z) < e,
P(x% <d—2Vdx) <e "

Proof. These results are Lemma 1 of [12]. O

Lemma C.2. Let W; wg X% for any i € [n| where n, d are positive integers. Then we have

" 4
2 2
]P’(g W; Z?)nd)gnd.

i=1

Proof. We have EY"' |\ W2 = nd(d +2) and EY")" | W = nd(d + 2)(d + 4)(d + 6). Then
we have Var(3 | W?) = 8nd(d + 2)(d + 3). Then we obtain the desired result by Chebyshev’s
inequality. O

C.1 With-High-Probability Bounds

Lemma C.3. For any z* € [k]" and k € [n], consider independent vectors €; ~ N (0, X%.) for any
J
J € [n]. Assume there exists a constant Ayax > 0 such that ||E%|| < Amax for any a € [k]. Then, for
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any constant C' > 0, there exists some constant C > 0 only depending on C’, Ayax such that

"zt =ale;
max 2 1z = afe < C+\/d + logn, (33)
aflbl /5 {2 = a}
1 n

A Iz =a}eel|| < C. (34
a€lk] d"‘ijl]I{Z; =a} ; { J Yei J

1
max || —— €l < CvVd+n, 35)
TCn] || /|| JEZ;

1
max — max Zej <, (36)
cellTelizi=at |\ IT|(d + X7, I{z} = a}) je7

with probability at least 1 — n~C". We have used the convention that 0/0=0.

Proof. Note that ¢; is sub-Gaussian with parameter Ay, Which is a constant. The inequalities
and are respectively Lemmas A.4, A.1 in [15]]. The inequality is a slight extension of
Lemma A.2 in [15]]. This extension follows from a standard union bound argument. The proof of
is identical to that of (33). O

Lemma C.4. Consider the same assumptions as in Lemma |C.3.  Assume additionally
ming e Z;;l [{z; = a} > 9* for some constant a > 0 and %Ogn) = o(1). Then, for
any constant C' > 0, there exists some constant C > 0 only depending on o, C', Ayax such that

m 1 - k(d+logn)
ax STz =a) I{zf =alejel — %5 gc\/i, 37)
a€lk] j=1 H{Zj* =a} ; % Jeici n
C’.

with probability at least 1 —n™

*d ii . .
Proof. Note that we have ¢; = X_2?7); where 7); g N(0,1,) for any j € [n]. Since max, ||X*] <
Amax, We have '

1 n
max || —=g——r—— I{z; = a}ejel — BF|| < Amax Max
aclk] Ej:l ]I{Z;‘ = a} ; { J } 5

Define

1 n
R TR Mz =alnnt —1
a€[k] Zj:l H{Z; =a} ; { J }77377] d

1 n
Qo = T - - H{Z* = a}n»nr — 1.
Z;:l H{Zj — Cl} ; J I

Take S~ = {y € R?: ||y = 1} and N, = {v1,--- ,v|,|} is an e-covering of S%~1. In particular,
we pick € < 1, then | N| < 9. By the definition of the e-covering, we have

1Qall <

T ek, o Quuil <2 _max o] Qevil.

For any v € N,

1 n
T * T T
V' Quv = =i > Iz =a}(v nniv-1).
ijl ]I{zj za}; J gl
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Denote n, = >.)_; I{2} = a}. Then 37| I{z¥ = a}v"n;n]v ~ x5, . Using Lemma we
have

Pmax||Qa\>t <ZIP’ 1Qall > t)

a=1
k |Ne|
<D Pl Qavil > t/2)
a=11i=1
r n
<) 2 —— min{t,#*} + dlog9 3.
_; exp{ 8rmn{7 4+ og}

Since M = o(1) and n, > an/k where « is a constant, we can take t = C"'4/ M for
some large constant C"” and the proof is complete. [

Lemma C.5. Consider the same assumptions as in Lemma Then, for any s = o(n) and for any
constant C" > 0, there exists some constant C > 0 only depending on C', A\ ax such that

1 T
max ejej || < C, (38)
TCn:TI<s |T| log 7 T min{1, \/|T|}d Z 7

jeT

with probability at least 1 — n~=C". We have used the convention that 0 /0=0.

Proof. Consider any a € [s] and a fixed T C [n] such that |T| = a. Similar to the proof of Lemma
C.4, we can take S9~! = {y € R : ||y|| = 1} and its e-covering N, with e < + and |N.| < 9%

en we have
| Zej fH = sup Z whe;)? < 2max » (wle;)?

wEN,
jeT lwll=15e7 ‘jer

Note that wTej /v Amax 18 a sub-Gaussian random variable with parameter 1. By the tail probability
result for quadratic forms of sub-Gaussian random vectors [10]], for any fixed w € N, we have

P Z(wTej)2 > Amax (a + 2Vt + 2t> < exp(—t).
JET
Since a = 0( ) there exists a constant C such that 2a < Coa log 7. We can take t = C(alog 2 4d)
with C = & — S0 thena + 2vat + 2t < € € (alogZ + d). Thus,

C n ~ n
T 2~ n < _ e
P E (w'ej)” > 4(aloga+d) _exp( C(aloga+d)).

JET

Hence, we have

P HZGJGJ| galogg—&—d) §9dexp<—C~'(alogZ+d)>.
JeT

As a result,

P e >C < > C(al d
{Tc[n]1<|T|<s|T|log|T|+d|Ze]f” C}—Z {maXZEJJ” CCLOg + )}
n n
< max P ejel|| > Clalo +d}
(o) e {1 o= ctaee

< (n> 9% exp <— C~'(alogE + d)>
< \a a
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Since alog % is an increasing function when a € [1,s] and alog % > logn > log s, a choice of
C =3+ (', thatis C = 16C" + 4Cy + 48, can yield the desired result.
Finally, to allow |7'| = 0, we note that d < min{1, \/|T|}d. The proof is complete. O
Lemma C.6. For any z* € [k|" and k € [n], assume mingey Z;L:1 {z; = a} > 9" and
0(z,2%) = o( o= ) then

Z? 1 H{Z* = a}

max —=2——71 — — <2 (39
aclk] Ej 1 {z; =a}

Proof. For any z € [k]™ such that {(z, 2*) = o(n) and any a € [k], we have

{5 =a} =Y Uz # 5}

n

Zﬂ{z] =a} >

j=1 j=1
=z Z zj =a} - A2
j=1
an
> 40
Z o5 (40)
which implies
Yialeg=ab MM =ab+ 35,z # 25}
Z;L:1 Kz =a} ~ Z?:l {z; = a}
an/2k
<1+ =————
Z?:l [{z; = a}
<2.
Thus, we obtain (39). O

In the following lemma, we are going to analyze estimation errors of the centers and covariance
matrices under the anisotropic GMMs. For any z € [k]™ and for any z € [k], recall the definitions

. > n]Y]I{zjfa}v

fa(2) = € [K]
Z]E[n] H{ZJ - a}
. ) Y<—éaz »—éazT]I Zi=a
(o) = e = BN ) T =)
Zj H{Zj =a}
Lemma C.7. For any z* € [k|" and k € [n], consider independent vectors Y; = 0}. + €; where

 ~ N(0,%% )for any j € [n]. Assume there exist constants Amin, Amax > 0 such that Apin <
)\1(2*) < )\d(E*) < Amax for any a € [k], and a constant o > 0 such that ming e[y ijl I{z; =
a} > &% Assume W = o(1) and £ — oo. Assume (33)-(38) hold. Then for any T = o(n)

and for any constant C' > 0, there exists some constant C > 0 only depending on o, Apax, C' such
that

max Aa(z*) —-0r||<C k(d + logn) n)’ 41
a€k] n
. . k kvd+n
— * < * *
iré%; 0,(2) — 0, (29| < C(nAE(z,z )+ A £(z, )) , (42)
maXHz _ s < ¢y FdF1ogm) 3)
ac(k] n
- & k o kynl(z,z*)  kd
_ < i VI ) M *
max Ya(2) = 2o (27)|| < C<nf(zvz )+t T AVizz )>7 (44)

Sorall z such that {(z, z*) < T.
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Proof. Usmg ﬂb we obtain (I). By the same argument of (118) in [8], we can obtain (#2). By (33)
and (37) and (41)), we can obtain (]E) In the remaining proof, we will establish (53).

Since M = 0(1), we have |2, (2*)|| < 1 for any a € [k]. The difference 3,(z) — 34 (2*)
will be decomposed into several terms. We notice that

Sa(z) — Sa(2%)

where
B ;n v —a ,_AZ ,_AZT_ ‘_AZ* '—AZ*T
sl_HZH{zj:a};ﬂ{g (05 = a5 = a2 = 3 — ul Y, — 0ul))

and

H(zm_a} S _a}>zﬂ{z — a} (¥ — 0u(=")(¥; — u (=) .

Also, we notice that

Sy < Ly + Ly + L, (46)
where
L= —Z e ZH{ZJ — 2= a}(( 0a(2))(Y; = 0a(2))" = (V; = 0a(z*)(Y) — 0a ()"
Ly = mZH{% a, 2] # a}(Vj = 0a(2)(Y; — 0a(2))" |,
Ly = Z”H{—%_ZH{% #a,2) = a}(¥; — 0a(2)(Y; — 0a(2"))"|].

For L1, we have

- Y 2i =28 =al(0,(2) — 0,20, (2) — 0,(zNT
b < oy 20 Mo = 5 = 00 )0e) )

+2

Zlﬂ{lzg=a} Z“%‘ =25 = a}(¥j — 0a(2))(0a(2) — 0a(="))"

. . Hz5=a . . Lz =a
= ||0a(z) — ba(z *)H W 0a — 0a(2")|| ||0a(2) — Oa(z") M
+ [|0a(z ]I{ o a} ZH{ZJ = 2] = a}e; 47)

By (36). (39), @0), we have uniformly for any a € [k],

VI Kz =2 = G}J "

SR >/ ey e\ D DEC Al

<1 (48)

1 n
= {z; =2 =a}e;
sz_lﬂ{z‘j:a}; ==l

Since maxgep ||0a(2*) — 02| = o(1), by @9, @2), @1, @7), and [@8), we have uniformly for
any a € [k],
A N k k:\/d
L1 =2 |[0a(2) — 0,(27)|| = —Aﬁ(z7 z") o — /Y (49)
n




To bound Lo, we first give the following simple fact. For any positive integer m and any
{ujtjeim {vi}jem € RY we have || 305c;,(uj + vi)(uy + v))T|| < 20 30, cp wyuf | +
2(1 2 epmg vjva |l. Hence, for Lo, we have the following decomposition

Ly < 2Ry 4 2Rs, (50)

where

Rlemiﬂ{@:a Sl (Y - 0)(Y; - 0T

_;n leaz"f a *_AZ *—AZT
RQ_HZLJ{Z]-Q};H{; 25 # a} (0 — 0a(2))(0; — 04(2))

Since max,epp Yo j—; [{zj = a,2} # a} <

B Zj:l I{z; = a}

5( I RE—

By and the fact that max,cp Y5 {zi = a, 2] #

0; —bu(2)|

0q(2) — 0a(2) (5D

2\ kl(z,z*)
nA2 -

Ry <2l ) Hzj=a,2] #a}(0 — 05 )05 —0;)7
225 lﬂ{zj_a}Z{J bo, — 0,05 —03,)

HHZH{ZJ a,z; 7é a}fjﬁf
J

Zj:l Wz =a,2] # a}HB* -0z ||2
<2 i I{z; = a,z; # a}eje
Zj:l {z; = a} H Z; 1z = a} Z ! ! 7

(=, z U(z,z*
< kl(z,z*) N ( 2o gz(ZAz*) +dy (A2 ).

n n/k

We are going to simplify the above bounds for R;, R>. Under the assumption that k(deg”)

o(1), A/k — oo, and £(z,2*) < 7 = o(n), we have max,cy [|0a(2) — 0a(2*)]| = o(1),
max,ep [|0a(2*) — 0| = o(1), and M o(1). Hence Ry < % Also we have

k:ﬁ(zgz*)l nA? k\/ (2, z* \/ nA? \? < kv/nl(z, z*)
i) = .

1
nAz 08 Uz, 2*) Og 0z, z* nA

where in the last inequality, we use the fact that z(log(n/z))? is an increasing function of = when
0 < z = o(n). Then,

ky/nl(z, 2*
P Al e ) (z,2") + Ee(z,z*) + kd
nA n nA

Since L3 is similar to Ly, by we have uniformly for any a € [k]

- kv/nl(z, z*) . k
- nA

0z, z%).

(z,2") + S—Z 0(z,2*). (52)

To bound Ss, by (70) in [8]], we have uniformly for any a € [k],

\ZJ Iz =a} = S e =
ZJ 1 Hz = a}
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where we use 1| Since k ZAﬁ D<My nf(z = by [45) and the facts that £(z, 2*) < 7 = o(n) we

have
k;\/nﬁ (z,2*

max

kd
Uz, 2%)+ —
a€lk]

Sa(z) = S (2%) =

Lz, z*).

O

Lemma C.8. Under the same assumption as in Lemma if additionally we assume kd = O(y/n)
and T = o(n/k), there exists some constant C' > 0 only depending on o, Amin, Amax, C’ such that

(a(2)" = (Sulz H<c< 0z, *)+k”f(§”ﬁ)+7fi\/6(z7,z*)>. (53)

max ‘
a€ (k]

Proof. By (14P_3) we have MaXaek HZ (2%)|I, max,ex 1(SZa(2*))7| < 1. By we also have
maxgepy [[Sa(2)|, maxoep (S ( ))~H|| = 1. Hence,

ma [ (£0(2)) ™ = (Ba(=) 7| <max (£a ()7 [ Bal2) = £ [ Sale)) |
j%(z’z) + gﬂ(z, 2°) + :—Z Uz, z%). (54)

O

C.2 Calculation Related to SNR’

In the following lemmas, we study properties of {SNR{, ; } 4. Consider any pair a # b € [k]. Let
n~N(0,1;) and Z,, = 0} — 6;. Define

* *1

1 1
Bay(6) = {x eRY: 2Ty (X)) 1200 + QxT(Ea (55) 1w —Id>

]- _6.— *\—1— 1 * 1 *
< *T::{,b(zb) 1:a,b + §log 125 — §1Og 15| }

(1]

- { R ol 2 (v - () H2,) (50740 7H) (o - () 7H55)

+log |(£5) 25 (55) 72| = 02, (8 )1Eb,a};

for any § € R. Then B, () C Bg (0") for any ¢’ < 4. In addition, we define
SNR! ,(8) = in 2|z,
L0 =_in 2]

a,b

and Pa,b((S) = P(?] S me((s)) .

Recall the definitions of B, ; and SNR;J, in Section E Then it is a special case of B, ;(d) and
SNR;, ,(6) with § = 0. That is, we have B, = B, (0) and SNR;, , = SNR, ,(0).

To understand these quantities, we first study a canonical setting that can be later applied to establish
LemmalC.10

Lemma C.9. Consider any 6 € R%\ {0} and any ¥ € R4 that is positive semi-definite. Let
Amax, Amin > 0 be the largest and smallest eigenvalue of 3, respectively. For any t € R, define

D(t)={z eR*: |z]|* > (z - 0)"S " (z — 0) + t},
and s(t) = minge p(y) ||z||. Then the following hold:

* Under the assumption that — ||0]|* /(8 maX) <t < 0| /8 we have

10]] /(max{2, 2¢/ 2 max }) < 5(t) < (1 — min{\/Amm/8,1/2}) /6] -
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o Ift’ also satisfies — ||0]|° /Amax < t' < ||0]|° /8, we have

t'—

t
M2 min{\/Amin/8,1/2} 16])

o If 0 is further assumed to satisfy min{/Amin/8,1/2}[|0|] > 2Amax and ||0] >
Amin min{\/Amin/8, 1/2}, there exists a d-dimensional ball H(t) € R with
radius  (Amin/8) min{/Amin/8,1/2} such thatr H(t) <C D) and |z| <
(Amin/8) min{ /Amin/8, 1/2} + Amax + s(t) for all z € H(t).

|s(t') = s(t)] < A

Proof. First, we check whether each of the following two points is contained in D(¢) or not, under
the assumption — [|0]]* /Amax < ¢ < [|0]|°.

« When z = 0, we have (z — 0)TS "1 (z — 0) + ¢ > ||0]|° /Amax + ¢ > 0. Hence, 0 ¢ D(%).

* When = = 6, we have ||0]|> > ¢. Hence, 0 € D(t).

As a result, D(t) is non-empty, s(t) is well defined, and 0 < s(¢) < ||0]|>. Next, we consider a few
more points to sharpen upper and lower bounds on s(¢) under the assumption — [|6]|* /(8 \max) <
t< [0] /8.

» For any z that satisfies ||z|| < ||0]| /(max{2,2v/2Amax }), We have ||z — 0| > ||6]| /2 and
consequently, (z — 0)TS "z — 0) +t > (0] /2)%/Amax +t = [0]° /(4Amax) + L.
Under the assumption that £ > — [|0]|® /(8 Amax)» We can verify that [|0]|® /(4Amax) + ¢ >
1017 /(8Amax) > (10]] / max{2, 2v/2Xmax })? > ||z||*. Hence, such = ¢ D(t).

e When z = (1 — min{\/Amin/8,1/2})0, we have ||z|| > ||f]| /2 and (z — 6)TE "1 (2 —
0) + ¢ < [|0]* (min{/Amin/8, 1/21)2/ Amin + ¢ = [|0]]* / max{8, 4\min} + . Under
the assumption that ¢ < ||0]|> /8, we have [|0]|> / max{8, 4\min} + ¢ < [|0]* /8 + ¢ <
16]1> /4 < ||z||*. Hence, such z € D(t).

As aresult, we have ||0]| /(max{2, 2v/2A\nax}) < s(t) < (1 — min{\/Amin/8,1/2}) ||9]-

Define aball S(r) = {z € R? : ||z||> < 72} and define Sy(r; 1) = {z € R? : (z—0)TS (2 —0) <
72 —t} to be the part of R? that is inside the corresponding ellipsoid. Then we have s(t) = min{r >
0: S1(r) NSa(r;t) # 0}. By the definition and bounds of s(¢) and the convexity of S;(s(t)) and
Sa(s(t);t), we must have |Sy(s(t)) N Sa(s(t);t)] = 1, meaning that Sy (s(t)) and Sa(s(t);t) touch
each other externally at one point. This implies s(¢) can be obtained by the following process: We let
&1 (r) and Sa(r) grow by increasing r, starting from 0. The first time they touch each other, we stop
and the value of r is exactly s(¢).

Denote y(t) € R such that {y(t)} = S1(s(t)) N S2(s(¢);t). Then we must have y(t) € Sa(s(t);1).
By the first conclusion, we have

ly(&) =0l = 1101l = lly(@®)]| = 101 — s(t) = min{/Amin/8,1/2} [|0]]
ly(8) =0l < 1101l + lly(@®)]| = [10]] + s(t) <201 -

In addition, we have
Sg(t) —t=(y(t)— H)Tz_l(y(t) —0) > |ly(t) - 9”2 [Amax > (min{y/Amin/8,1/2} H6‘||)2/)‘max'

Now we are going to prove the second conclusion of the lemma. Without loss of generality, assume
t < t’. Then we have D(t) D D(t') and s(t) < s(t'). We are going to establish a lower bound
for s(¢). First by definition of s(t'), we have |S1(s(t')) N Sa(s(t');¢')| = 1. Since t < t/, we
have Sa(s(t);t) D Sa(s(t');t'). We have Sy (s(t')) N Sa(s(t');¢) # 0. From here we can also see
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s(t) < s(t'). Now consider any z € Sy(s(t'); t). It satisfies (x — 0) TS~ (z — §) = s2(¢') — t. Then
we have

( 222((2&1;))__7;/(33 _9)> %! ( 222((7;/,))__2/(% - 9)) = 52(t/) _t/7

meaning that 6 + %(x —0) € Sa(s(t');t'). Hence,

SQ(t/) / t/)—t/
Il |0+ \ ey s @ =9 - (“ ) - )H
B s2(t) —t/ 52
=0t 32(t/)_t(m_ ( 52 t>|$_9”

v

. SQ(t/) —
min |yl = 1=/ 57— | max [z—0|.
Y8 (s(t)5t) s2(t') —t ) yeSa(s(t)it)

Since \Sl( (t ))OS’Q( (t');t')] = 1, we have min ¢ 5, (s (1)) lyll = s(¢'). Since (x—0)TY Nz —
0) > 0]1%, we have ||z — 0]|° < Amax(s%(t') — ). Hence,

max ||(E -

||:n|25(t')<1 ﬁ))‘_tt> A () — D)

> () = v hax (V) — £ = V/2(E) — ¥

AN tlit
= s(t') \/E\/sz(t,)_H\/sz(t,)_t/

t—t
2 S(t/) -V >\max

2/s2(t") — t'

! t'—t . —
Asaresult, forany r < s(t') —v/Amax EWp T we have S1(r)NSa(s(t'); t) = 0 and consequently
A ' —t : 2
S1(r) N Sa(r;t) = 0. As aresult, s(t) > s(t') — vV Amax T Since we have shown s*(¢') —
' > (min{ v/ Amin/8, 1/2}1 |0]])2/ Amax, We have ') = Amax £t .
> (iAo /5,1/2} )2 A, we have s(t) 2 5(¢) A o
For the third conclusion of the lemma, recall the definition of y(¢). Under the assumption that

min{\/Amin/8, 1/2} |0]] > 2Amax. we have ||y(t) — 0]] — Amax > 0 and Amax/ ||y(t) — 0| < 1/2.
Denote y/'(t) = 0 + Hy(:g ZH (ly(t) — || — Amax)- Then

ly'(8) = 01l < lly(t) — 01 < 21161,
1 () = 0l = (1 = Amax/ ly(t) = 611) lly(£) = 0],

I9(6) =5/ @) = |65 = s | =
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Consequently,

(y’(t) B Q)Tzfl(y/(ﬂ _ 9) _ (y(t) . Q)Tzﬂ(y(t) o 9)
7ﬂ ’ Ty —1 _ B  \Ty—1 B
<1 ||y(t)—9||) (y(t) =) 27 (y(t) —0) — (y(t) — )" X (y(t) — 0)

— Amax Amax  \Tx—1 B
ly(t) — 4]l (2 ||y(t> 9||) (y(t) = 0)" X (y(t) — 0)
>‘max
)‘max
S - ||y(t) _ 0” || ( ) 9” )‘max
< —lly() -4
< — min{y/Amin/8,1/2} 0] .

Denote H (t) to be the ball centered at y'(¢) with radius (Ayin/8) min{\/Amin/8,1/2}. Then for
any x € H(t), we have

(z—0)"S "z —0) — (y(t) —0)"S " (y(t) — 0)
= (y'(t) - ) W -0 +2e -y ()T Y ) -0 + (@ —y' ()= (@ -y (1)
— (y(t) =)= (y(t) - 0)
< () - 9)T2 Yy (1) = 0) + 2000 lz — v (O] 1Y/ (1) = 0]l + Ak 1z — /' ()]
— (y(t) = )"Z " (y(t) — 0)
< —min{y/Amin/8,1/2} 0] + 2031, 1z — ' ()] 1/ (8) — 0]l + Aol e — ' ()1
mm{v min/8,1/2} [|6]| +4Amm lz =y O 101l + Ak 12 — ' ()|
< —7m1n{\/ min/8, 1/2} (0] + Awin min{\/)\min/S,l/Q})Q

<0,

where the last inequality holds under the assumption ||| > 2z min{\/Amin/8,1/2}. Hence,
H(t) C Sa(s(t);t) and consequently H (t) C D(t). On the other hand, for any « € H(t), we have

lzll < lle =y @Ol + [l (£) — y @Ol + [ly @)
< (Amin/8) min{ v/ Amin/8,1/2} + Amax + s(t).
The proof is complete. O

Lemma C.10. Assume d = O(1). Consider any a # b € [k]. Assume there exist constants
Amins Amax Such that 0 < Apin < )\1(2;) < /\d(E;f) < Amax forany j € {a,b}. Then SNRfl,b and
2,4l are of the same order. When SNR,, , = O(1), we have P, ;(0) > c for some constant ¢ > 0.
When SNR:Lb — 00, we have

1+o0(1)
Pas(0) > exp (—JF;()SNRE?J,) ,

and for any § = o(1), we have

1—o(1) .
Poy(8) < eXp(— 80( )SNRa%b) .

Proof. Recall the setting stated in Lemma @ By the definition of B,;, we can take § =
(Z5) 35, X = (25)72X5(2E)72, and t = log|(2%)"255(X:) 2| such that B,, =
D(t). Due to d = O(1) and (]2__0‘) we have that all eigenvalues of ¥ are constants and that
2

log | (X))~ 2% (2%)~ 3] is also a constant. Consequently, ¢ is constant. In addition, ||f|| is of
the same order as ||= 4 ||.
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When [|Z; 4 || is a constant, ||0]| is a constant, then SNR?, , must be a constant as well. This is because

D(t) is the set of points where one density is greater or equal to another. Then D(t) is non-empty as
both densities have integral 1. Hence, s(¢) must be finite, meaning SNRbe is a constant. In this case,
we have P, ;,(0) = P(n € D(t)) being a constant as well.

When ||= ,]] — oo, we have ||§]] — oo. Since all the assumptions needed in Lemma are

satisfied, by its first conclusion, we have s(t) being of the same order as ||0], and consequently
being of the same order as ||Z 4||. As a result, SNR}, , and ||} 4| are of the same order. In

addition, H (t) exists and its radius is some constant ¢; > 0. Hence, its volume is chd where V,
is denoted as the volume of a d-dimensional unit ball. In addition, for any x € H(t), we have
z]] < s(t) + c2 = SNR}, ;,/2 + ¢ for some constant ¢, > 0. Recall ) ~ N (0, ;). Then we have

Pay(0) > P(n € H(t)) > ¢{Vy min

1 1

min e~ el
1 1

2 C?Vd\/ﬁ exp<2 ||SNRIH‘7b/2 + CQ||2>

1 1 /
> exp (——’—;()SNRQQJ)) .

Now let us consider B, ;(d) where 6 = o(1). We can take 6, ¥ same as before, but let t’ =
log |(E:)’%EZ(ZZ)*%| — 5517):&(22‘)*15;),@. Then we have ¢’ = o(1) ||0]|>. Hence, by Lemma@,
we have

t—t
|SNRY, , — SNR., ,(8)] = 2]s(t) — s(t')| < M =o(1) [|0]] = o(1)SNR, ;.

Hence,

1 1
Pay(0) =P(n € Bap(8)) < max exp (2 |x||2>

@€Ba,5(6) 4/ (2)4

1
= exp(— min _||z|?
(2m)d 2 2€Ba,b(9)
1 1.
= \/WGXP(_gsNRmb(é))
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