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Abstract. Weather-related power disruptions present significant chal-
lenges to public infrastructure, societal well-being, and the distribution
grid. Predicting outage durations in distribution grids is another challenge
compared to transmission line outage durations due to distribution net-
works’ complexity and finer granularity. While forecasting forced power
outages is crucial, accurately estimating their duration is essential for
timely response and mitigation measures. This study introduces the Spa-
tiotemporal Multiplex Network (SMN-WVF), a methodology designed to
predict power outage durations across varying lead times, tackling the dif-
ficulties posed by small, high-complexity spaces within distribution grids.
SMN-WVF employs multiplex networks that incorporate multi-modal
data across both time and space, including layers such as power outages,
weather conditions, weather forecasts, vegetation, and distances between
substations. We demonstrate the importance of incorporating additional
layers of data sources as they are shown to help the model’s predictions
through gradual improvement in the macro F1 score performance. AQ1

Keywords: Forced power outage · multiplex network · spatiotemporal
prediction

1 Introduction

Forced power outages (further referred to as “outages”) have a considerable
impact on both the economy and the lives of residents in affected areas. The
causes of such power outages can be broadly divided into four primary categories:
emerging threats, accidental incidents, malicious activities, and natural events
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[10]. Severe outages, particularly those in rural regions, can last for extended
periods and require significant restoration time [30]. Furthermore, power system
operations are typically classified into four distinct states: normal operation,
alert, emergency, and extreme [13]. Previous research studied the power outage
problem statistically, employing techniques such as quantile regression forests
and Bayesian additive regression tree models [31]. In contrast, recent advance-
ments in machine learning have shifted towards predictive models that utilize
machine learning techniques to enhance the accuracy of power outage predic-
tions and identify their causes [19]. Previous research also employed graph-based
models to predict power outages [11,25]. However, these studies did not leverage
multiplex networks to improve predictions; instead, they were limited to using
single-layer input.

Predicting power outages is essential, but predicting their duration is cru-
cial to efficient response and mitigation actions. Statistical methods [21] and
machine learning models [12] have been applied to predict the duration of power
outages. However, researchers have yet to fully explore the potential of multiplex
networks that integrate data from multiple sources. In our previous study [1],
multiplex graphs demonstrated their effectiveness in predicting the occurrence
of power outages. Based on this, our follow-up study [2] successfully used multi-
plex graphs to predict the duration of power outages, outperforming alternative
approaches. However, neither analysis addressed the prediction of the duration
of outages for the distribution grid. To address this limitation, our current study
introduces SMN-WVF, a Spatiotemporal Multiplex Network model designed to
predict the duration of power outages while extending prediction time intervals
demonstrating a use case of a utility in Texas, U.S.A. SMN-WVF integrates
data from multiple sources, including weather, forecasts, and vegetation, col-
lected across space and time. By providing earlier warnings of outage risks, this
model aims at enhancing the efficiency of outage management and improving
response efforts. The key contributions of this paper are:

1. Establishing a foundational framework for improving spatiotemporal classifi-
cation by incorporating multi-modal data to tackle the challenges of missing
weather recordings effectively.

2. Introducing Spatiotemporal Multiplex Network methodology to predict power
outage durations by employing the multi-modal approach.

3. Applying the new approach to estimate outage severity (duration) in the
distribution grid by providing insights distinct from those focused on trans-
mission line outages.

2 Related Work

Extreme weather events like severe storms (rain, snow, wind) and other catas-
trophic natural disasters (earthquakes, wildfires, hurricanes) can cause power
outages. To improve the planning of power restoration efforts, accurately pre-
dicting the duration of power outages early is crucial for utility companies.
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SMN Model for Predicting Forced Outage Severity in Distribution Grids 3

Various statistical approaches have been employed to estimate outage dura-
tion, including accelerated failure time regression, Cox proportional hazards
regression, Bayesian additive regression trees, regression trees, and multivari-
ate adaptive regression splines [21]. Some studies integrate statistical methods
with geographic information systems (GIS) to analyze urban distribution sys-
tems affected by winter storms. For example, GIS tools were used to map repair
crew data and examine the duration of outages during such events [26]. Similarly,
researchers have applied Accelerated Failure Time (AFT) and Cox Proportional
Hazard (CPH) models to estimate storm-induced power outage durations [18]. In
another example, daily Night Time Lights (NTL) imagery data has been utilized
to assess the duration of outages in Puerto Rico [7]. In addition, studies indicate
that socioeconomic factors play a significant role in determining the outage dura-
tion [20]. Recently, the focus has shifted toward leveraging machine learning mod-
els to predict the duration of power outages more accurately. For instance, Ran-
dom Forest-based models have been used to forecast the duration of hurricane-
related outages, incorporating variables such as wind speed and duration [22].
Furthermore, machine learning techniques such as Extra Trees (ET), Extreme
Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM),
Random Forest (RF), Gradient Boosting Regression (GBR), and Decision Tree
(DT) have been applied to predict outages durations during typhoon disasters
[15].

Weather data plays a crucial role in predicting power outages [9]. However,
severe weather conditions often result in many missing values in weather record-
ings, which present challenges for predictive modeling. Our research integrates
weather data with multi-modal learning techniques to address this challenge.
Given the challenges of missing data, multi-modal learning techniques offer a
promising solution by improving predictive accuracy [1,5,8,24]. In particular,
we explore multiplex networks’ impact in predicting the power outage duration
at the distribution grid level. The network structure is crucial for capturing
complex interdependencies between different data sources, thus improving the
accuracy and robustness of the predictions [3,4]. This study introduces a novel
approach that leverages multiplex network representations to predict the power
outage duration for severe weather cases. Specifically, we evaluate the benefits
of using a Spatiotemporal Multiplex Network that integrates data from multiple
key sources: power outages, weather observations, weather forecasts, vegetation,
and distance between the substations.

3 Methodology

This study investigates the effectiveness of the proposed Spatiotemporal Mul-
tiplex Network (SMN-WVF) model, which combines multiplex networks and
multi-modal data, in improving the prediction of power outage duration. The
SMN-WVF model estimates the duration of the predicted outages by predict-
ing their duration. Figure 1 illustrates the pipeline of the proposed approach to
building the Spatiotemporal Multiplex Network model that includes informa-
tion captured at five layers from different sources. The research is divided into
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4 R. Aljurbua et al.

three phases: (1) data collection, (2) construction of a spatiotemporal graph, and
(3) development of the model that predicts the duration of expected outages.
Detailed descriptions of each component of this framework are provided in the
following subsections.

Fig. 1. The architecture of the Spatiotemporal Multiplex Network (SMN-WVF) for
multi-modal prediction of power outage duration.

3.1 Data Collection

In our previous research [1], we demonstrated the advantages of integrating data
from diverse sources to improve the prediction of the duration of power outages.
To achieve this, we identify and gather key factors that influence the power out-
age duration. These factors include power outage records, weather conditions,
forecasts, and vegetation data. This subsection outlines the data collection pro-
cess.

1. Power outages data: We utilize a historical outage dataset obtained from a
Texas utility company, which details when and where outages occurred from
January 2018 to December 2023. To effectively use this dataset, it is crucial
to correlate each outage occurrence with the corresponding substation. The
dataset contains outage start and end times, outage cause codes, the near-
est substation, failed equipment IDs, and repair crew comments. We employ
the equipment ID and nearest substation fields to map each outage to its
respective substation. Historical outage data are recorded in the local time
zone. However, since most public datasets use UTC for timestamps, we con-
verted the outage timestamps from the local time zone to UTC and linked
the events with the appropriate substation ID. Our study utilizes six years of
historical outage data during which the reported power outages reveal a total
of 109, 366, with an average duration of 101.08 min.
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SMN Model for Predicting Forced Outage Severity in Distribution Grids 5

2. Weather data: Between January 2018 and December 2023, we collected
weather data from Automated Surface Observing Systems (ASOS) [6] The
ASOS database includes hourly information retrieved from the ground
weather station sensors, as well as data about the station’s location, sky
conditions, obstructions to vision, pressure, ambient temperature, wind, and
precipitation accumulation for point locations. We collected 8, 425, 383 obser-
vations from ASOS weather stations. However, the substations are not con-
nected to an ASOS weather station; therefore, we map each substation to the
closed ASOS station using latitude and longitude. We use the Haversine for-
mula to calculate the distance between the substation and the ASOS stations
[27].

3. Weather forecast data: The ASOS database does not include weather fore-
cast data. To obtain this information, we use the OpenMeteo API, provid-
ing open-source weather forecasts from national weather services [23]. Open-
Meteo offers weather models with a resolution of 11 km and regional models
with up to 1.5 km resolution. The database provides hourly data on vari-
ous weather parameters, including temperature, relative humidity, dew point,
precipitation, wind speed, and wind direction. By providing the latitudes and
longitudes of the substations, we collect forecast data for each substation
based on its proximity to the nearest weather model. Our focus has been on
analyzing forecast information during the mentioned power outages resulting
in the collection of 3, 575, 712 observations.

4. Vegetation: The landscape of a geographic location is a critical factor in
predicting power outages. To account for this, we collected vegetation data
from the Ecological Mapping Systems (EMS), which offers a comprehensive
land cover summary for Texas. The EMS data has a spatial resolution of 10
meters per map [29].

3.2 Data Preprocessing

To assess the impact of the spatial-temporal multiplex network on predicting the
duration of power outages, we use individual and a combination of modalities.
These features are gathered from various sources, including weather, forecasts,
vegetation, and distance between the substations. Due to the wide range of fea-
tures, our feature selection eliminates irrelevant information and identifies the
most relevant features that enhance the model’s performance. In this process,
the weather dataset includes the following features: weather station location, sky
conditions, visual obstructions, pressure, ambient temperature, wind, and precip-
itation. We calculate the maximum, minimum, mean, and standard deviation for
each selected weather feature per day and time window for each substation. The
forecast dataset includes the following features: temperature, relative humidity,
dew point, precipitation, wind speed, and wind direction. We also calculate the
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6 R. Aljurbua et al.

maximum, minimum, mean, and standard deviation for each selected weather
feature per day and time window for each substation.

3.3 Spatiotemporal Multiplex Network Creation

Consider G as a Spatiotemporal Multiplex Network represented by G =
(V,E,L, T ), where V = {v1, v2, ., vn} denotes the set of vertices corresponding to
substations, E = {e1, e2, ., em} represents the set of edges, L = {l1, l2, l3, l4, l5}
is the set of layers, and T = {t1, t2, ., tk} is the set of time steps. The network
comprises five distinct layers: l1 corresponds to the power outage layer, l2 is the
weather layer, l3 represents the forecast layer, l4 is the vegetation layer, and l5
refers to the distance layer. In the multiplex network, all vertices across different
layers represent the same entities but reflect various types of interactions among
the vertices. Specifically, the vertices V represent substations. The connections
between the vertices illustrate different types of interactions, with each edge e
assigned a weight that is a real number greater than or equal to 1. This weight
indicates the strength of the connection between vertices (v, u) in the ith layer.
The set of edges E in each layer li signifies a different type of relationship among
the vertices V , as explained below:

1. Power outage layer (El1): If a power outage is reported in both substations
on the same date and time window, the vertices (ul1 , vl1) are connected. The
edge weight ω represents the shared power outages between these substations.

2. Weather layer (El2): We assume that power outages are closely linked to
weather conditions. As a result, vertices (ul2 , vl2) are connected if they reveal
similar weather properties. To quantify this similarity, we use Euclidean dis-
tance. By measuring the Euclidean distance between the weather features,
we can determine the closeness of the weather conditions between the sub-
stations.

3. Forecast layer (El3): Vertices (ul3 , vl3) are connected if they share similar
weather properties, since weather conditions have a significant impact on
power outages. In this context, we use Euclidean distance to measure the
similarity between the weather attributes of the two vertices.

4. Vegetation layer (El4): We connect two vertices (ul4 , vl4) (substations) if
they exhibit similar vegetation properties. To assess this similarity, we com-
pute the Euclidean distance between their corresponding vegetation features.
This method helps illustrate the potential influence of vegetation on power
outages, as comparable vegetation patterns may lead to similar outage behav-
iors.

5. Distance layer (El5): Two vertices (ul5 , vl5) (substations) are connected
based on their spatial distance. To quantify this distance, we use the Euclidean
distance. This measure helps capture the physical proximity between substa-
tions, which is essential as the spatial closeness of substations may influence
the likelihood of shared power outage events or other related factors.

This graph serves as input for the Spatiotemporal Multiplex Network (SMN-
WVF) model. At the end of each day, a new snapshot of the multiplex graph is
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SMN Model for Predicting Forced Outage Severity in Distribution Grids 7

generated for each time window, timestamped with that day’s data, to capture
the interdependencies among substations. We train the model using these daily
snapshots as input, generating embeddings for the substation nodes through the
proposed method, which is detailed in the following subsection. The aim is to
predict the duration of a power outage at a substation and connected feeders.

3.4 Proposed Model: Spatiotemporal Multiplex Network
(SMN-WVF)

This study investigates the potential of the Spatiotemporal Multiplex Network
(SMN-WVF) combined with multi-modal data to improve the prediction of dis-
ruption severity expressed as the outage duration. Initially, a historical outage
dataset from a Texas utility company is utilized, where outage frequency varies
across different substations. Each data point is marked as 1 if a power outage
occurs in a specific substation during a specific time. Next, the outages are cate-
gorized into three groups to predict outage duration, as detailed in Table 1. The
model aims to predict the duration of a power outage once it has been identified.
It classifies outages into predefined duration categories, as shown in Table 1. This
classification aids in estimating the duration of each outage, thereby helping to
understand disruption severity and improve planning and response. To enhance
predictions, the model employs a modified version of Node2Vec [14] to generate
substation node embeddings that incorporate multiple graph layers. We combine
the structured data with unstructured data (multiplex model embeddings), cre-
ating a unified input dataset for predicting outage duration. This combined input
is then processed through a Bidirectional Long Short-Term Memory (BiLSTM)
network with eight layers.

Table 1. Distribution of power outage durations across three classes of duration from
January 2018 to December 2023.

Class Duration Percentage

Class 1 Less than 1 hour 35.1%
Class 2 1 to 3 h 34.9%
Class 3 Greater than 3 h 29.9%

4 Experimental Setup

This study examines whether the multiplex network combined with a multi-
modal data approach can enhance the early classification of disruption severity
(duration) into one of three categories, ranging from short to very long durations.
The study covers six years of historical outage data from January 1, 2018, to
December 31, 2023. The training data spans from January 1, 2018, to December
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8 R. Aljurbua et al.

31, 2021, while the testing data covers January 1, 2022, to December 31, 2023.
We compare the performance of the Spatiotemporal Multiplex Network model
using weather, vegetation, and forecast features. The model is optimized using
the Adam optimizer [16], employing a batch size 32 and a learning rate 0.0005.
The model is trained with sparse categorical cross-entropy loss, which is used for
multiclass classification to improve its ability to predict outage durations across
the specified classes.

The study uses a supervised machine-learning approach to predict the dura-
tion of disruptions caused by power outages. Since our classification task involves
three distinct classes, we employ macro-averaging, which gives equal importance
to all classes, regardless of their frequency in the dataset. Specifically, we cal-
culate macro precision and macro recall to measure the model’s false positives
and false negatives rates. We evaluate the model’s overall performance using the
macro F1 scores for each class. Here, C denotes the total number of classes, and
the macro F1 score is defined as:

Macro F1 =
1
C

C∑

i=1

2 · precisioni · recalli
precisioni + recalli

(1)

5 Spatiotemporal Multiplex Network Analysis

This section presents the results of the topological structure analysis conducted
on the constructed weighted multiplex networks. To gain a comprehensive under-
standing of these networks, we examine various centrality measures, includ-
ing Degree Centrality (DC), Closeness Centrality (CC), Eigenvector Centrality
(EC), Square Clustering (SCF ), and the Clustering Coefficient (CF ), to further
explore the network’s structural properties. Here, we report the average values
of all these measures.

Table 2. Multiplex network topological structure. Here L = number of layer, V =
number of nodes, E = number of total edges, coupling E = number of coupling edges,
avg(DC) = average degree centrality, avg(CC) = average closeness centrality, avg(EC)
= average eigenvector centrality, avg(SCF ) = average square clustering, avg(CF ) =
average clustering coefficient.

LV E coupling E avg(DC) avg(CC) avg(EC) avg(SCF ) avg(CF )

5 430 14.9M 1, 720 161.57 0.484 0.0169 0.482 0.898

Degree Centrality (DC) measures the connectivity of a node based on the
number of edges connected to it, which provides insight into the node’s signifi-
cance and potential role as a hub in the network. Nodes with a higher degree of
centrality are considered more central, as they are more connected than others.
It is calculated as follows:
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SMN Model for Predicting Forced Outage Severity in Distribution Grids 9

CD(G) =
∑|V |

i=1[CD(v∗) − CD(vi)]
|V |2 − 3V | + 2

, (2)

where v represents a vertex in the graph G. On the other hand, Closeness
Centrality (CC) reflects how close a node is to all other nodes within the network.
A node with the shortest overall distance to other nodes has a high Closeness
Centrality, making it a key candidate for spreading information. We calculate
CC as:

C(v) =
N − 1∑
u d(u, v)

, (3)

where N refers to the total number of nodes in the graph, and d(u, v) rep-
resents the distance between the vertices u and v. Eigenvector Centrality (EC)
considers the significance of a node’s neighbors. In addition, it determines a
node’s centrality based on the centralities of its neighboring nodes. EC is shown
in the following equation as follows:

xv =
1
λ

∑

u∈M(v)

xu =
1
λ

∑

u∈G

av,uxu, (4)

where A = (av,u) is the adjacency matrix of the graph G, M(v) denotes
the set of neighbors of node v, and λ is a constant. The Clustering Coefficient
(CF ) reflects the average number of edges between nodes within each node’s
neighborhood. Following is the calculation of the Clustering Coefficient:

C̄ =
1
n

n∑

i=1

Ci, (5)

Finally, Square Clustering (SCF ) extends the traditional Clustering Coeffi-
cient by focusing on the likelihood that two neighboring nodes share a common
neighbor that is not part of the original node’s neighbors, thus forming a square-
shaped connection [17]. It can be calculated as:

C(v) =

∑kv

u=1

∑kv

w=u+1 qv(u,w)
∑kv

u=1

∑kv

w=u+1[av(u,w) + qv(u,w)]
, (6)

where qv(u,w) denotes the number of common neighbors shared by u and
w, excluding v. Table 2 presents a detailed network analysis. The graph consists
of 430 nodes and 14, 902, 735 edges. A key characteristic of a multiplex network
is the presence of coupled edges (coupling E), which represent the transitions
of nodes between neighboring layers [28]. Networks with more coupled edges
are generally denser and exhibit richer connectivity than those with few or no
coupled edges. In this network, there are 1, 720 coupling edges. The graph con-
tains 86 unique nodes, with an average degree centrality of 161.57, indicating a
well-connected network. The average closeness centrality is 0.484, reflecting the
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10 R. Aljurbua et al.

average proximity between nodes in the graph. Additionally, the average eigen-
vector centrality is 0.0169, which suggests that nodes with higher centrality are
spread out in the network. The average square clustering is 0.482, indicating
moderate clustering. The clustering coefficient is 0.898, signifying a highly inter-
connected overall structure.

6 Results and Discussion

The results for different evaluation metrics of the proposed Spatiotemporal Mul-
tiplex Network (SMN-WVF) model using weather, vegetation, and forecast fea-
tures are shown in Table 3. We emphasize the effectiveness of incorporating
multi-modal learning to improve predictive performance. Each variant of the
SMN model explores the contribution of specific feature combinations to the
overall results. SMN-WV is the proposed model that incorporates both weather
and vegetation data. In addition, SMN-WF employs both weather and forecast
data. Lastly, the SMN-WVF model combines weather, vegetation, and forecast
data for its predictions.

Table 3. Comparison of macro precision, macro recall, and macro F1 score of the
proposed Spatiotemporal Multiplex Network (SMN-WVF) model using weather (W),
vegetation (V), forecast (F) features, and the Spatiotemporal Multiplex Network. The
outage duration is classified into three classes, as detailed in Table 1.

Modality Macro precision Macro recall Macro F1 Score

SMN-WF 0.42 0.40 0.41
SMN-WV 0.43 0.42 0.42
SMN-WVF0.45 0.41 0.43

We can observe that incorporating weather and vegetation (SMN-WV) yields
slightly better results, with a macro F1 score of 0.42 compared to weather and
forecast (SMN-WF). This suggests that vegetation can play a critical role in
power outages, particularly due to incidents such as trees falling onto or touch-
ing overhead lines due to wind impacts, which are significant causes of power
faults. Furthermore, the SMN-WVF model improves prediction performance
by up to 2% compared to alternative models. The SMN-WVF model demon-
strates strong predictive capability, consistently outperforming alternative mod-
els despite the inherent challenges of outage prediction in a small distribution
grid area. Notably, it achieves a macro F1 score of 0.43. Unlike transmission net-
works, where outages often follow large-scale, high-impact events, distribution
grids present a significantly harder prediction task due to their localized nature,
smaller coverage area, and complex outage drivers. Outage durations in distri-
bution grids are influenced by a mix of highly complex localized factors, and
relying significantly on regional weather data makes accurate outage prediction
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SMN Model for Predicting Forced Outage Severity in Distribution Grids 11

Fig. 2. The normalized confusion matrix of the SMN-WVF model, which utilizes
weather, vegetation, and forecast features along with the Spatiotemporal Multiplex
Network, demonstrates its predictions for outage durations. The classification is defined
as follows: Class 1 represents duration from 30 min to 3 h, Class 2 represents duration
from 3 and 6 h, and Class 3 represents duration greater than 6 h.

even more difficult. The multi-modal approach, integrating weather, vegetation,
and forecast features, helps mitigate these challenges by capturing additional
contextual information beyond weather and forecast features alone. Given the
small-scale nature of the study area, even achieving a moderate macro F1 score
indicates that the model is successfully generalizing across different outage con-
ditions rather than overfitting to frequent outage patterns.

Table 4. Comparison of precision, recall, and F1 score of every class using SMN-WVF
model.

Class Precision Recall F1 Score

Class 1 0.44 0.56 0.49
Class 2 0.37 0.40 0.38
Class 3 0.52 0.28 0.37

We evaluate the performance of the SMN-WVF model using a confusion
matrix. Figure 2 provides a breakdown of the correct and incorrect predictions.
The classification categories are defined as follows: Class 1 represents the dura-
tion from 30 min to 3 h, Class 2 represents the duration from 3 and 6 h, and Class
3 represents the duration greater than 6 h. We further analyze the predictions
for each class. Table 4 details the results of the SMN-WVF model per class. The
results show that Class 1 achieves the highest recall (0.56) and a moderate F1
score (0.49), indicating relatively better identification of these instances. Class 2
has the lowest precision (0.37) and recall (0.40), resulting in an F1 score of 0.38.
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12 R. Aljurbua et al.

Class 3 exhibits the highest precision (0.52) but suffers from low recall (0.28),
leading to a reduced F1 score of 0.37. These results highlight the model’s ten-
dency to favor precision over recall, particularly in Class 3, potentially leading
to underestimation of certain outage durations.

The second experiment assesses the effectiveness of the SMN model using dif-
ferent SMN-WVF models in making predictions at earlier stages. In the context
of power systems, earlier predictions yield greater benefits. Table 5 illustrates the
macro F1 score achieved for the early prediction scenarios. This score reflects the
ability of the SMN model to detect outages in advance. The X-axis represents the
lead time of the power outage when predictions are made. We can observe that
the macro F1 score remains stable and yields similar results as the prediction
time approaches the outage event.

Table 5. Performance of the proposed Spatiotemporal Multiplex Network (SMN-
WVF) model using macro precision, macro recall, and macro F1 score for early outage
detection, evaluated across a three-class problem formulation, as detailed in Table 1.

Lead time of power outage Macro precision Macro recall Macro F1 Score

0 h 0.45 0.41 0.43
6 h 0.43 0.41 0.42

7 Conclusion

Power outages pose serious threats to residential, commercial, and industrial cus-
tomers, as well as transportation, healthcare, communication, and other essen-
tial services. Making effective predictions of their occurrences and duration is
paramount for strategic outage mitigation planning. This study introduces the
Spatiotemporal Multiplex Network with Weather-Vegetation-Forecast (SMN-
WVF) method, a novel approach designed to improve power outage duration
predictions. By integrating multi-modal data and network structures, our model
evaluates outage durations across different time horizons, offering insights with
various lead times. Even with the challenges of geographically confined space
and the difficulties of predicting the outage duration, particularly in distribu-
tion grids–which are more intricate and finer-grained than transmission line
outages- our SMN-WVF method demonstrates practical results. Our multiplex
network comprises multiple layers, including power outages, weather conditions,
weather forecasts, vegetation properties, and substation connectivity, allowing
us to capture both temporal and spatial dependencies in the outage process. We
rigorously assess whether our innovative network approach enhances predictive
accuracy compared to simple weather data inputs. Our method achieves a macro
F1 score of 0.42, underscoring both the difficulty of the task and the need for
further advancements in outage duration predictions. We observe that integrat-
ing vegetation and forecast enhances performance by providing additional con-
text beyond weather conditions alone. These findings highlight the importance

A
ut

ho
r 

Pr
oo

f



SMN Model for Predicting Forced Outage Severity in Distribution Grids 13

of incorporating diverse data sources to improve outage duration predictions.
Future work will focus on refining spatial feature representation and expanding
alternative data sources. Also, it is worth exploring model performance while
looking into node representations as a substation grouping. Looking ahead, we
will evaluate our model’s performance across diverse geographic regions and
explore its efficacy with extended prediction intervals.

Acknowledgments. This work was funded by the National Science Foundation
Award # 2125985.
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4 Fig1 Flow chart illustrating the 
process of power outage 
duration prediction. The chart 
is divided into three main 
sections: Data Collection, 
Graph Construction, and Power 
Outage Duration Prediction. In 
Data Collection, inputs include 
power outages, weather, 
forecast, vegetation, and 
distance, all linked to 
substation selection. Graph 
Construction involves creating 
a multiplex network from these 
inputs. The final section, Power 
Outage Duration Prediction, 
shows inputs being processed 
to predict outage duration, 
represented by a stopwatch 
icon. Key elements include 
icons for weather, calendar, 
vegetation, and a network 
diagram.

11 Fig2 Heatmap showing a confusion 
matrix for a classification 
model with three classes. The 
x-axis represents predicted 
classes, and the y-axis 
represents true classes. Values 
in each cell indicate the 
proportion of predictions: Class 
1 (0.56, 0.35, 0.09), Class 2 
(0.48, 0.40, 0.12), Class 3 (0.38, 
0.34, 0.28). A color gradient 
from dark red to light pink 
represents the range of values, 
with a legend on the right 
indicating intensity levels from 
0 to 0.6.
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