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Abstract

In online selective conformal inference, data arrives sequentially, and prediction intervals
are constructed only when an online selection rule is met. Since online selections may break
the exchangeability between the selected test datum and the rest of the data, one must
correct for this by suitably selecting the calibration data. In this paper, we evaluate exist-
ing calibration selection strategies and pinpoint some fundamental errors in the associated
claims that guarantee selection-conditional coverage and control of the false coverage rate
(FCR). To address these shortcomings, we propose novel calibration selection strategies that
provably preserve the exchangeability of the calibration data and the selected test datum.
Consequently, we demonstrate that online selective conformal inference with these strategies
guarantees both selection-conditional coverage and FCR control. Our theoretical findings
are supported by experimental evidence examining trade-offs between valid methods.

1 Introduction

Conformal prediction (Vovk et al., 2005) has gained significant traction in recent years as a method for
uncertainty quantification equipped with statistical guarantees. Conformal prediction provides prediction
intervals (or sets) that achieve a predefined coverage level, regardless of the underlying data distribution.
In contrast to the full (or transductive) conformal procedure, the computationally more efficient split (or
inductive) conformal prediction (Papadopoulos et al., 2002; Lei et al., 2018) splits the available data into
two parts: one for model training and another for calibration. More formally, suppose a pre-trained model
µ̂ : X → Y is given, mapping features X ∈ X to predictions of the label Y ∈ Y. Further, denote by
{(Xi, Yi)}n

i=1 an independently labeled calibration data set. Given the current feature Xn+1, the goal is to
construct a prediction interval for the unseen label Yn+1. If the data sequence {(Xi, Yi)}n+1

i=1 is exchangeable,
the constructed prediction interval ˆ︁Cn(Xn+1) contains Yn+1 with high probability (viz. the prediction intervalˆ︁Cn(Xn+1) is valid). Specifically, we have

P{Yn+1 ∈ ˆ︁Cn(Xn+1)} ≥ 1− α, (1)

where the probability is taken over {(Xi, Yi)}n+1
i=1 , emphasizing the marginal nature of (1).

Conformal prediction has also been successfully adapted for online applications. Assume that the data
sequence {(Xt, Yt)}t≥0 ⊆ X ×Y is observed sequentially: at each time t, we observe the previous label
Yt−1 and the current feature vector Xt. While much of the literature has focused on addressing cases where
exchangeability does not hold—proposing generalizations or relaxations of this assumption (Tibshirani et al.,
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Figure 1: An illustrative example of the online selective (conformal prediction) setting. (a) Usual online
conformal prediction setting, where one constructs for each time t ≥ 0 a prediction interval. (b) In the
online selective conformal predictive setting, we only report prediction intervals for selected (•) times, while
no prediction intervals are constructed for those that are not selected (×).

2019; Gibbs & Candes, 2021; Barber et al., 2023)—our focus is different: for us the data is exchangeable,
but challenges (indeed, deviations from exchangeability) are caused by selective querying/reporting. To
elaborate, suppose data arrive sequentially, and we wish to selectively report prediction intervals (see Figure 1
for an illustration). The selection process (formally defined in Section 2) might, for instance, dictate that a
prediction interval for Yt is reported only if Xt > 2. More generally, the selection rule may depend on past
decisions (in a restricted way formalized later)—for example, whether a prediction interval was reported for
previous observations. Consequently, prediction intervals are not constructed for every observation, adding
a layer of selective decision-making to online conformal inference, referred to as online selective conformal
inference.

In the online selective setting, it is natural to require that prediction intervals are valid conditioned on the
selection event—a metric called selection-conditional coverage:

∀t ≥ 0 : P{Yt ∈ ˆ︁Ct(Xt) |St = 1} ≥ 1− α. (2)

Intuitively, a prediction interval should be valid whenever a selection is made, that is, whenever St = 1.
Since the data itself is exchangeable, this requirement might seem innocuous at first glance. However, it
is important to highlight a critical aspect. The (potential) dependence between online selections and the
prediction intervals can give rise to temporal multiplicity. In the statistical literature, this issue was previously
recognized in the context of constructing confidence sets. It was first noted in the offline setting by Benjamini
& Yekutieli (2005) and later addressed in the online regime by Weinstein & Ramdas (2020). Recently, Bao
et al. (2024a) addressed the same problem and proposed a procedure called calibration after adaptive pick
(CAP) to construct conformal prediction intervals that satisfy (2). However, despite the claims of Bao
et al. (2024a), we demonstrate that the proposed method does not, in fact, guarantee selection-conditional
coverage.

Other metrics to assess the errors associated with the reported prediction intervals are the false coverage
proportion (FCP) and false coverage rate (FCR) (Weinstein & Ramdas, 2020)

FCP(T ) =
∑︁T

t=0 St1{Yt ̸∈ ˆ︁Ct(Xt)}
1 ∨

∑︁T
t=0 St

, FCR(T ) = E
[︃∑︁T

t=0 St1{Yt ̸∈ ˆ︁Ct(Xt)}
1 ∨

∑︁T
t=0 St

]︃
, (3)

where a ∨ b = max(a, b) for a, b ∈ R. The FCP measures the proportion of selected instances where the
true label Yt falls outside the prediction interval ˆ︁Ct(Xt), while the FCR is the expected value of the FCP.
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Weinstein & Ramdas (2020) proposed a method called LORD-CI, which effectively controls the FCR below
a target level α. Although originally proposed for confidence sets, the authors note that the LORD-CI
procedure can be adapted to the online conformal prediction framework. We find that their claim is true
in a particular restricted setting, but that a broader extension is not straightforward and highlight the
difficulties involved.

The key challenge in the online selective conformal inference setting is the selection of calibration data to
form ˆ︁Ct when St = 1. Specifically, since the selected data point might not be exchangeable with all preceding
data (due to the selection), how should calibration data be chosen so as to restore the exchangeability of
the test datum and the calibration data? To address this, we discuss various calibration selection strategies
within the framework of online selective conformal inference, evaluating their ability to ensure selection-
conditional coverage. Our theoretical results reveal that many existing calibration selection strategies fail
to meet this quite stringent criterion. To bridge this gap, we propose novel calibration selection strategies
with theoretical guarantees for selection-conditional coverage, supported by simulation studies. Beyond
selection-conditional coverage, we further investigate whether the (seemingly) weaker metric of FCR can be
successfully controlled by online selective conformal prediction algorithms instantiated with both existing
and novel calibration selection strategies. Interestingly, we find that no existing strategy achieves this, while
our proposed methods provide provable guarantees.

The remainder of the paper is organized as follows. Section 2 formally defines the problem and introduces
necessary notation. In Section 3, we outline the online selective conformal inference procedure and discuss
several calibration selection strategies, including both existing and novel approaches. Section 4 assesses,
empirically and theoretically, whether existing calibration selection strategies ensure selection-conditional
coverage and provides theoretical guarantees for our proposed methods. Section 5 investigates FCR control,
followed by a discussion of other related conformal methods. We conclude with a summary of related work
and a brief discussion. Omitted proofs are deferred to Appendix B.

2 Problem Setup

Consider data {(Xt, Yt)}t≥0 ⊆ X ×Y arriving sequentially: at time t, we observe the previous label Yt−1 (if
t > 0) and the new feature Xt. For brevity, we also write Z = (X, Y ) and Z = X ×Y. We assume that a pre-
trained model µ̂ : X → Y is given, where ˆ︁Yt = ˆ︁µ(Xt) denotes a prediction of the label Yt. Let St : X → {0, 1}
be an online selection rule, and correspondingly denote by St = St(Xt) the selection indicator. Here, St = 1
indicates that a prediction interval for Yt will be reported. Further, we denote by Ft−1 = σ(S0, . . . , St−1)
the filtration generated by past selection decisions. We focus on a restricted but reasonably rich class of
decision driven rules:
Definition 2.1. A selection rule St : X → {0, 1} is called decision driven if St is Ft−1-measurable.

For example, when X = R, the following selection rule is clearly decision driven, as it depends only on past
selections {Si}i≤t−1 and constants τ0, τ1:

x ↦→ 1

{︄
x < τ1 + 1

τ0

t−1∑︂
i=0

Si

}︄
.

The resulting sequence of selection decisions {St}t≥0 is then defined recursively. At time t = 0, the threshold
equals τ1, so S0 = 1 if X0 < τ1, and S0 = 0 otherwise. At time t = 1, the threshold becomes τ1 + S0; we
then set S1 = 1 if X1 < τ1 + S0, and S1 = 0 otherwise. This recursive procedure continues analogously
for all t ≥ 0. For now, let ˆ︁Ct : X ×[0, 1] → 2Y denote a generic prediction interval for Yt, with details
on its construction and validity addressed in the next section (for simplicity we omit its second argument
corresponding to the target miscoverage level). Define { ˆ︁Ct(Xt) : St = 1}t≥0 as the collection of prediction
intervals produced by an online selective procedure (namely, only reporting ˆ︁Ct(Xt) whenever St = 1).

Let R : X ×Y → R denote a generic non-conformity score, such as absolute residuals Ri = |ˆ︁µ(Xi) − Yi|.
We refer to {(Xi, Yi) : i ∈ Dt} as calibration data at time t. For α ∈ (0, 1), the empirical quantile of the
non-conformity scores {Ri}i∈Dt is denoted by ˆ︁Qα({Ri}i∈Dt).
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Now, define the index set
Jt = Jt,off ∪ Jt,on,

where Jt,off = {−n, . . . ,−1}, with n ∈ N, is the set of indices of some offline data, and Jt,on = {0, . . . , t− 1}
the indices of the online data up to time t, respectively. Additionally, let N = Noff+Non, where Noff = | Jt,off |
and Non = | Jt,on |. Furthermore, we assume that the offline and online data are exchangeable, though this
assumption will be relaxed later. Additionally, following Bao et al. (2024a), we make the following assumption
through the paper:

(A) All decision driven selection rules {St}t≥0 are independent of the offline data {Zi}i∈Jt,off .

We adopt Assumption (A)—that the selection rules are independent of the offline calibration pool—to
mirror the setting of Bao et al. (2024a), who operate under the same assumption. This alignment enables a
direct and transparent comparison between existing and novel calibration selection strategies. Importantly,
if Assumption (A) is violated, post-selection exchangeability may no longer hold, and the formal validity
guarantees presented in this paper do not apply in general. Finally, we note that Assumption (A) is necessary
whenever offline data is used in the calibration selection process: without it, the selection rules may depend
on the offline pool, breaking the permutation invariance required for our exchangeability arguments.

From time t = 0 onward data arrives sequentially, and selections are performed for this newly arriving data.
Lastly, we formally introduce the online calibration (data) selection protocol. Let Kt : X → {0, 1} denote the
calibration selection strategy (strategy for short). Consequently, we define the calibration selection protocol
(mapping data to calibration indices) as

It : ZN+1 → 2Jt : (Z−n, . . . , Zt) ↦→ {j ∈ Jt : Kt(Xj) = 1}. (P)

Thus, we have Dt := It(Z−n, . . . , Zt) ⊆ Jt. Specifically, Kt(Xj) = 1 indicates that, at time t, the candidate
calibration datum Zj = (Xj , Yj) will be included in the calibration set. Note that, we only perform calibration
selection, if St(Xt) = 1. Otherwise, calibration data is unnecessary, as prediction intervals are constructed—
and thus require a calibration set—only when the test datum is selected. Importantly, different choices of
Kt influence both the size and composition of the calibration set, which in turn impacts the validity and
informativeness of the resulting prediction intervals.

3 Online Selective Conformal Inference

An online selective (split) conformal inference procedure involves the following steps. Up to time t ≥ 0,
we observe the data (X0, Y0), . . . , (Xt−1, Yt−1), which consists of feature-response pairs from previous time
points. Then, in the vein of split conformal prediction, we proceed as follows (Bao et al., 2024a):

1. Specify the selection rule St ∈ Ft−1, and calibration selection strategy Kt before observing the
current feature Xt.

2. Observe Xt, and if St = 1 decide to report a prediction interval for the yet unobserved Yt.

3. Obtain the calibration indices Dt via (P).

4. Compute the non-conformity scores {Ri}i∈Dt
for the calibration set.

5. Report the prediction interval

ˆ︁Ct(Xt) = {y ∈ Y : R(Xt, y) ≤ ˆ︁Q1−α({Ri}i∈Dt
)}.

A crucial aspect to address is the selection of calibration data. In standard (online) conformal prediction,
the calibration data is typically chosen as Dt = Jt, which corresponds to choosing the calibration selection
strategy Kt(Xi) ≡ 1 in the calibration selection protocol (P). However, using the entire available data
for calibration poses challenges in the selective setting. Roughly speaking, the selection rule introduces
an asymmetric dependence between the current data point and past data through the selection process.
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Recall that we focus on decision driven selection rules; while the selection rule itself does not depend on
Xt, it does rely on past decisions and therefore depends on {Xi}i∈Jt . Such dependencies typically violate
exchangeability, the workhorse of conformal prediction. As a result, naively applying standard conformal
methods can lead to violations of desired coverage guarantees. Mitigating this requires carefully designing
calibration selection strategies that account for the dependence introduced by the selection mechanism.
The challenge, therefore, is to “design” calibration selection strategies that preserve exchangeability while
maintaining a sufficiently large calibration set. As we will see soon, different strategies impose varying
trade-offs between statistical guarantees and practical applicability. Some approaches prioritize preserving
exchangeability at the cost of reducing the calibration set size, while others aim to retain more calibration
points but risk violating exchangeability.

A natural question that arises is: given that a test point has been selected, can we identify a suitable
calibration selection strategy that ensures exchangeability between the calibration data and the test datum?
The answer is affirmative but also pinpoints the challenges inherent in the selective setting.

3.1 Existing Calibration Selection Strategies

To address this question, we first discuss both existing and novel calibration selection strategies. A natural
point of departure is the full strategy (FULL):

Kt(Xj) = 1, for j ∈ Jt . (i)

In other words, at each selected time the calibration data consists of all previously observed data, i.e.,
Dt = Jt. While this strategy yields the largest calibration set, it typically breaks exchangeability because
the test datum is selected via a rule, whereas the calibration set is unaffected by the rule, consisting of all
previous observations.

Another strategy, the selection-full strategy (S-FULL) selects calibration data according to the selection rule
given at time t, i.e.,

Kt(Xj) = St(Xj), for j ∈ Jt . (ii)

However, because we restrict ourselves to decision driven selection rules, the test datum at time t is selected
independently of future outcomes, while this is not true of the calibration set. This asymmetric dependency
leads to a violation of exchangeability.

Similarly, we define the selection-fixed strategy (S-FIX), which selects calibration data (according to the
selection rule given at time t) solely from the offline data:

Kt(Xj) =
{︄
St(Xj) for j ∈ Jt,off ,

0 for j ∈ Jt,on .
(iii)

If Assumption (A) holds, this strategy is unproblematic, as the offline data remains independent of the
selection rules. However, caveats exist: when no offline calibration data is available or when Assumption (A)
does not hold. Additionally, even if Assumption (A) is satisfied, very few calibration points may be selected,
no matter how large t is.

Recognizing these limitations, Bao et al. (2024a) recently introduced an alternative strategy. The adaptive
calibration selection strategy (ADA) is defined as follows:

Kt(Xj) =
{︄
St(Xj) for j ∈ Jt,off ,

St(Xj)1{Sj(Xj) = Sj(Xt)} for j ∈ Jt,on .
(iv)

Bao et al. (2024a) claim that this adaptive calibration selection strategy ensures selection-conditional cover-
age. However, we soon provide both theoretical and empirical evidence demonstrating that this is, in fact,
not the case.
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3.2 Novel Calibration Selection Strategies

To address such issues, we introduce the exchangeability-preserving strategy (EXPRESS), defined as follows:

Kt(Xj) = St(Xj)
∏︂

i∈Jt,on

1{Si(Xj) = Si(Xt)}, for j ∈ Jt . (v)

Clearly, this strategy is quite stringent, as it requires identical past selection decisions for both the candidate
calibration point and the selected test datum. Consequently, the calibration data includes only points that
have undergone the same selection process as the test datum, strictly preserving exchangeability. However,
this restrictiveness can significantly reduce the calibration set size, potentially rendering it empty in some
cases.

To relax the strict constraints of the previous strategy, we introduce a variant called the k-exchangeable
preserving strategy (K-EXPRESS), which considers only the last k ≥ 1 points:

Kt(Xj) = St(Xj)
t−1∏︂

i=t−k

1{Si(Xj) = Si(Xt)}, for j ∈ J k
t , (vi)

where J k
t = Jt,off ∪{t − k, . . . , t − 1}. Instead of enforcing consistency with all past selection decisions,

K-EXPRESS restricts the comparison to the last k points. This variant mitigates the risk of an excessively
small calibration set while still preserving exchangeability.

Our final strategy, called EXPRESS-M, applies both S-FIX and EXPRESS separately and then merges the result-
ing prediction intervals. That is, prediction intervals are constructed independently using both strategies,
and their intersection is taken. While various merging schemes are possible, we use an uneven split of α
between the two methods for constructing the final prediction interval. Specifically, for t > 0 we allocate
(1/
√

t)α to S-FIX, while the remaining (1 − 1/
√

t)α is assigned to EXPRESS. To make this construction ex-
plicit, let αSF = (1/

√
t) α and αEX = (1 − 1/

√
t) α, so that αSF + αEX = α. At each time t, we construct

intervals ˆ︁CSF
t and ˆ︁CEX

t at levels 1−αSF and 1−αEX, respectively, and define the final prediction interval as

ˆ︁CM
t = ˆ︁CSF

t ∩ ˆ︁CEX
t .

This merging approach mitigates the restrictiveness of EXPRESS—which can result in too few calibration data
and, consequently, excessively large prediction intervals—by leveraging the more inclusive nature of S-FIX.
Remark 3.1. One might naturally ask why we do not adopt a strategy that applies St(Xj) for j ∈ Jt,off
while applying the exchangeability-preserving strategy (v) for j ∈ Jt,on. This strategy would indeed be less
restrictive, and therefore yield a larger calibration set. While this may seem unproblematic at first glance,
we show that it subtly violates the exchangeability between the (offline) calibration data and the test datum.

4 Selection-Conditional Coverage

In this section, we show shortcomings of existing calibration selection strategies in ensuring selection-
conditional coverage. Additionally, we demonstrate that online selective conformal inference, when instan-
tiated with our novel strategies, guarantees selection-conditional coverage. First, we evaluate both existing
and novel calibration selection strategies empirically with the following simulation:
Simulation 4.1. In each iteration of the simulation, we generate data of size N = Noff + Non. For the
following results, we set Noff = 10 and Non = 20. We generate a univariate feature X ∼ Unif[0, 2] and model
the response as

Y = µ(X) + ϵ with µ(X) = Xβ,

where we assume a heterogeneous noise distribution, i.e., ϵ |X ∼ N (0, X/2). For simplicity, we assume
β = 1. Since we are in a synthetic setting, we have direct access to the true function and use it as our model;
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Figure 2: Miscoverage ( ) is shown alongside the number of calibration points ( ), median interval length
( ) and the fraction of infinite length prediction intervals ( ). We highlight provably correct methods (✔)
and the target level ( ). All metrics are averaged over N = 1× 106 runs.

specifically, we have ˆ︁µ(·) = µ(·). Further, the selection rules are defined as

x ↦→

⎧⎪⎨⎪⎩
1

{︂
x < 1 + 1

τ0

∑︁j−1
i=0 Si

}︂
for j ≤ t− 1

1

{︂∑︁j−1
i=0 Si > τ1

}︂
for j = t,

where we choose τ0 = 20 and τ1 = 16. We then perform online selective conformal prediction with both
existing and novel strategies. All reported metrics are averaged over N = 1× 106 runs.

Results. Figure 2 summarizes the performance of different calibration selection strategies in online selective
conformal prediction. With the exception of S-FIX, all existing strategies fail to provide valid selection-
conditional prediction intervals, as they do not maintain the target miscoverage level of α = 0.4. In contrast,
both S-FIX and the family of exchangeability-preserving strategies achieve exact coverage. From a practical
standpoint, while EXPRESS yields the smallest prediction intervals, its restrictive nature results in a significant
fraction (≈ 17.71%) of infinite-length intervals. Its variants, EXPRESS-M and K-EXPRESS, mitigate this issue
and perform comparably well.

These results empirically highlight the fundamental shortcomings of existing calibration selection strategies
in ensuring selection-conditional validity. To reiterate, the exchangeability-preserving approaches not only
achieve the desired theoretical guarantees but also offer practical advantages by balancing interval tightness
and calibration set size. While EXPRESS is the most conservative, its variants effectively address its limi-
tations, making them viable alternatives in real-world applications. In Appendix D, we present additional
simulations using alternative decision driven selection rules.

We now proceed to the theoretical results of this section. First, we define the selection procedure, which
maps data to the augmented calibration indices

˜︁It : ZN+1 → 2Jt ∪ {t} : (Z−n, . . . , Zt) ↦→
{︄
It(Z−n, . . . , Zt) ∪ {t} if St(Xt) = 1,

It(Z−n, . . . , Zt) otherwise.

7



Published in Transactions on Machine Learning Research (07/2025)

where It(·) denotes the calibration selection protocol (P). So

t ∈ ˜︁It if and only if St(Xt) = 1. (4)

Now, let ˜︁Dt := ˜︁It(Z−n, . . . , Zt) and let π be a permutation of the indices in ˜︁Dt. Define the extended
permutation of the indices in {−n, . . . , t} as

∼
π(i) =

{︄
π(i) for i ∈ ˜︁Dt,

i for i ̸∈ ˜︁Dt.
(5)

Whether or not {Zi}i∈˜︁Dt
(i.e., the selected calibration data, and the selected test datum) are exchangeable

depends on the calibration selection protocol (P). Recall that {Zi}i∈˜︁Dt
are exchangeable if for any set of

indices D such that P( ˜︁Dt = D) > 0, and any permutation π of indices in D (equivalently, any extended
permutation ∼

π as in (5)), and any measurable A ⊆ (X × Y)|D|, we have

P{(Zi)i∈D ∈ A | ˜︁Dt = D} = P{(Z∼
π(i))i∈D ∈ A | ˜︁Dt = D}. (6)

To demonstrate (6), it is sufficient to show that

P{(Zi)i∈D ∈ A , ˜︁It(Z−n, . . . , Zt) = D} = P{(Z∼
π(i))i∈D ∈ A , ˜︁It(Z∼

π(−n), . . . , Z∼
π(t)) = D}

(⋆)= P{(Z∼
π(i))i∈D ∈ A , ˜︁It(Z−n, . . . , Zt) = D}.

While the first equality follows from exchangeability of (Z−n, . . . , Zt), the important argument lies in step
(⋆). Specifically, (⋆) holds true if

˜︁It(Z−n, . . . , Zt) = ˜︁It(Z∼
π(−n), . . . , Z∼

π(t)). (S)

Lemma 4.2. Let {St}t≥0 be a sequence of decision driven selection rules and denote by {S
∼
π
t }t≥0 the sequence

of selection rules generated when operating on Z∼
π(−n), ..., Z∼

π(t). The selection rule sequences {St}t≥0 and
{S

∼
π
t }t≥0 are identical, if Sj(Xj) = Sj(X∼

π(j)) for all j ∈ Jt,on.

Proof. Assume Sj(Xj) = Sj(X∼
π(j)) for all j ∈ Jt,on. Now, let j = 0. By assumption, we have S0(X0) =

S0(X∼
π(0)). This yields S

∼
π
1 ≡ S1; in other words the rules at time t = 1 are identical. Then, the claim follows

by induction. This completes the proof.

The following lemma demonstrates that the selection procedure, when instantiated with strategies (i), (ii),
or (iv), does not necessarily satisfy symmetry (S). While this may be apparent for the full and selection-full
calibration selection strategy, we explicitly demonstrate that symmetry also fails for the recently proposed
adaptive rule.
Lemma 4.3. Without additional assumptions, the selection strategies (i), (ii), and (iv) do not satisfy sym-
metry (S).

Proof. Let {S
∼
π
t }t≥0 be the sequence of selection rules generated when operating on Z∼

π(−n), ..., Z∼
π(t). Now,

let the permutation π be a transposition such that π(t) = s, π(s) = t and π(j) = j for j ̸= s, t. Fix
j ∈ ˜︁Dt ∩ Jt,on. For strategies (i), and (ii) the claim follows immediately, since we have St(Xt) ̸= S

∼
π
t (Xs)

without additional assumptions. By definition of strategy (iv), St(Xj)1{Sj(Xj) = Sj(Xt)} = 1. If symmetry
(S) holds, we expect that

S
∼
π
t (Xπ(j))1{S

∼
π
j (Xπ(j)) = S

∼
π
j (Xπ(t))} = 1. (7)
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Again, by definition of (iv), we have Ss(Xs) = Ss(Xt). Hence, Lemma 4.2 ensures that the selection
sequences {St}t≥0 and {S

∼
π
t }t≥0 are indeed identical. Consequently, Equation (7) can be reformulated as

St(Xπ(j))1{Sj(Xπ(j)) = Sj(Xπ(t))} = 1. (8)

Given that π(j) ∈ ˜︁Dt, it follows by definition of the extended permutation that St(Xπ(j)) = 1. However, the
issue in (8) lies in the fact that

Sj(Xπ(j)) = Sj(Xπ(t))

cannot be guaranteed without additional assumptions. This completes the proof.

What Lemma 4.3 shows is that the selection strategies (i), (ii), and (iv) do not satisfy symmetry (S), in
general. However, note that (S) is a sufficient but not necessary condition for (⋆) in the above display.
This leaves open the possibility that these strategies might still satisfy (⋆) in certain cases. Nevertheless, as
demonstrated by the counterexample in Simulation 4.1, they do not satisfy it in general.

Now we turn to our positive results. Specifically, we show that the exchangeability-preserving strategies
satisfy symmetry, thereby implying exchangeability and, via classical conformal arguments (as demonstrated
in Appendix B), selection-conditional coverage.
Lemma 4.4. The selection procedure instantiated with strategies (iii), (v) or (vi) satisfies symmetry (S).
Thus, the random variables {Zi}i∈˜︁Dt

are exchangeable.

Proof. Due to Assumption (A) the claim for strategy (iii) holds trivially true. For strategy (v), consider any
arbitrary permutation π and let j ∈ ˜︁Dt. By definition, it follows that

St(Xj)
t−1∏︂
i=0

1{Si(Xj) = Si(Xt)} = 1, (9)

meaning that all the above indicators are equal to one. Applying the same observation to k ∈ ˜︁Dt, we see
that

∀j, k ∈ ˜︁Dt : ∀i ≥ 0 : Si(Xj) = Si(Xk) = Si(Xt). (10)

Then, by Lemma 4.2 we know that the selection rule sequences {St}t≥0 and {S
∼
π
t }t≥0 are identical. Conse-

quently, we can rewrite (9) as follows:

S
∼
π
t (Xj)

t−1∏︂
i=0

1{S
∼
π
i (Xj) = S

∼
π
i (Xt)} = 1.

Since π(j) ∈ ˜︁Dt, we also have Si(Xj) = Si(Xπ(j)) from (10). Thus,

S
∼
π
t (Xπ(j))

t−1∏︂
i=0

1{S
∼
π
i (Xπ(j)) = S

∼
π
i (Xπ(t))} = 1.

Analogous reasoning yields the claim for strategy (vi). Since (S) is sufficient for (⋆), the random variables
{Zi}i∈˜︁Dt

are exchangeable. This completes the proof.

In fact, we can show that online conformal inference with the exchangeability-preserving strategies ensures
an even stronger notion of selection-conditional coverage:
Theorem 4.5. Online selective conformal inference with strategies (iii), (v) or (vi) produces strong selection-
conditional prediction intervals. Specifically, we have

P
{︂

Yt ∈ ˆ︁Ct(Xt) | S0 = s0, . . . , St−1 = st−1, St = 1
}︂
≥ 1− α

for any t ≥ 0 and any (s0, . . . , st−1) ∈ {0, 1}t−1, when P(S0 = s0, . . . , St−1 = st−1, St = 1) > 0. Thus,
selection-conditional coverage (2) is fulfilled.

9
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Theorem 4.5 is proved in Appendix B. Since Theorem 4.5 ensures (strong) selection-conditional validity for
strategies (iii) and (v), applying the Bonferroni inequality (Bonferroni, 1936) guarantees that the intersection
of the corresponding prediction intervals remains valid. Hence, the merging strategy also produces (strong)
selection-conditional prediction intervals.

To summarize, we have shown that while (most) existing strategies fail to ensure selection-conditional cover-
age, our novel proposals successfully achieve it. An equally important takeaway is that achieving selection-
conditional coverage is nontrivial, as exchangeability can be violated in many ways, necessitating a fully
symmetric strategy – one that, as we have shown, can be quite restrictive (in terms of selecting suitable
calibration data).

5 FCR Control

Another metric for evaluating the errors in reported prediction intervals is the false coverage rate (FCR),
as defined in (3). We evaluate whether online selective conformal prediction, with both existing and novel
strategies, effectively controls the FCR below a specified target level.
Simulation 5.1. The data generation follows the same setup as in Simulation 4.1. Here, however, we
consider a longer time horizon by choosing Noff = 50 and Non = 200. For t ≥ 0, the selection rule is given
by

x ↦→ 1

{︄
x < τ1 + 1

τ0

t−1∑︂
i=0

Si

}︄
, (11)

where we choose τ0 = 200 and τ1 = 1.

Results. Figure 3 provides a comparison of existing and novel strategies in terms of FCR control, growth
of calibration sets, and the informativeness of prediction intervals over time. We discuss the results in the
following:

Subplot (a) illustrates the FCR as time progresses. All novel strategies successfully control the FCR at the
target level α = 0.4, while ADA fails to do so. Although other existing strategies appear to control FCR in
this specific simulation, in Appendix D we present cases where they do not. This highlights a key insight:
depending on the data-generating process and selection rule, some strategies may incidentally control FCR,
even though they do not provably do so.

Subplot (b) reports the number of calibration points over time. As expected, all strategies exhibit their
characteristic behavior: S-FIX selects calibration points exclusively from the offline set, preventing any
growth beyond its initial size Noff = 50, while FULL and S-FULL accumulate calibration points unrestrictedly.
Notably, EXPRESS-M emerges as a compromise between EXPRESS and S-FIX, balancing the benefits of a more
restrictive approach that leverages online data with the need for a sufficiently large calibration set to construct
informative prediction intervals.

Subplot (c) reports the fraction of prediction intervals that are of infinite length. The EXPRESS strategy
exhibits a steadily increasing fraction of such intervals over time, highlighting its restrictive nature, which
often leaves too few calibration points to construct finite prediction intervals. In contrast, variants such as
EXPRESS-M and 10-EXPRESS, demonstrate substantial improvements. This highlights their viability as more
flexible alternatives that control FCR while ensuring the prediction intervals remain informative.

Subplot (d) shows the median length of prediction intervals as a function of time. Although FULL accumulates
the largest calibration set, it produces the widest intervals because it includes all previous examples without
considering the selection mechanism, leading clearly to selection bias. In this simulation, S-FULL, S-FIX,
10-EXPRESS, and ADA all exhibit a steady increase in median interval size. By contrast, EXPRESS-M gradually
converges to the behavior of EXPRESS, which maintains the shortest intervals overall. However, it is important
to note that EXPRESS incurs an increasing fraction of infinite intervals (as seen in subplot (c)), which is not
reflected by the median lengths. In contrast, EXPRESS-M manages to avoid these infinite intervals while still
preserving relatively short intervals, providing a more practical alternative.

10
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Figure 3: (a) FCR as a function of time T . The dashed black line represents the target level α = 0.4. We
highlight provably correct methods (✔). (b) Number of calibration data points used over time. Strategies
accumulating more calibration data tend to yield shorter prediction intervals. (c) Fraction of prediction
intervals of infinite length over time. A high fraction suggests a strategy often fails to provide informative
intervals. Only reported for novel strategies. (d) Median prediction interval length over time. Shorter
intervals indicate higher informativeness. All metrics are averaged over N = 1× 104 runs.

Overall, these results highlight the trade-offs in calibration selection strategies. Methods that strictly enforce
exchangeability, such as EXPRESS, offer theoretical guarantees but at the cost of increasingly frequent infinite-
length intervals. More flexible approaches like EXPRESS-M and 10-EXPRESS mitigate this issue by maintaining
a larger calibration set while still controlling FCR. Notably, strategies that ignore selection bias, such as
FULL, S-FULL, and ADA may appear reasonable in some cases but lack theoretical guarantees, making them
unreliable in general.

In fact, even the conditional expectation of FCP given that at least one selection is made,

pFCR(T ) = E

[︄
FCP(T )

⃓⃓⃓ ∑︂
i

Si > 0
]︄

(12)

is controlled when using our proposed strategies. The above metric is called positive FCR (Weinstein &
Ramdas, 2020), in analogy to the positive false discovery rate (FDR) (Storey, 2003).
Proposition 5.2. Strong selection-conditional coverage implies that pFCR(T ) ≤ α for any T ≥ 0. More-
over, if strong selection-conditional coverage holds exactly, then pFCR(T ) = α. Thus, calibration selection
strategies (iii), (v) or (vi) guarantee that FCR(T ) ≤ α for any T ≥ 0. If

∑︁
i Si > 0 holds almost surely, then

FCR(T ) = α under the same exact coverage condition.

With similar arguments as for (strong) selection-conditional coverage, it follows that the merging strategy
also controls the FCR at a user-defined target level.

11
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6 Other Conformal Methods

Our discussion so far was only concerned about online selective conformal prediction algorithm in the sense
of Section 3. In principle, other conformal methods can also be applied to this problem. We first outline two
of those: conformal LORD-CI (Weinstein & Ramdas, 2020) and adaptive conformal inference (ACI) (Gibbs
& Candes, 2021), and discuss (potential) use-cases of such algorithms. We give more details about these
methods in Appendix C.

We also note that a related discussion can be found in Bao et al. (2024a). However, we want to highlight
a crucial distinction: while Bao et al. (2024a) consider adaptive conformal inference algorithms to address
scenarios where the exchangeability of the underlying data itself is violated, our perspective differs. We argue
that when the selection mechanism disrupts exchangeability between the test datum and the calibration data,
this too constitutes a form of distribution shift—induced not by the data-generating process itself, but by
the selective nature of the inference procedure.

6.1 Conformal LORD-CI

The LORD-CI algorithm was originally proposed by Weinstein & Ramdas (2020). Let αt ∈ (0, 1) be a
Ft−1-measurable coverage level, then a conformal prediction interval is constructed asˆ︁Ct(Xt) = {y ∈ Y : R(Xt, y) ≤ ˆ︁Q1−αt

({Ri}i∈Jt,off )}. (13)

The marginal level αt is updated dynamically by maintaining the invariant∑︁T
t=0 αt

1 ∨
∑︁T

t=0 St

≤ α, for any T ≥ 0. (14)

Any online protocol maintaining the invariant (14) is called (conformal) LORD-CI procedure.
Proposition 6.1. Any conformal LORD-CI procedure with calibration indices Dt = Jt,off ensures that
FCR(T ) ≤ α for all T ≥ 0.

The constraint Dt = Jt,off is critical, and causes the method to be conservative in practice. We are presently
unsure if the result can be expanded to allow utilizing Jt,on.

6.2 Adaptive Conformal Inference

Adaptive conformal inference (ACI) (Gibbs & Candes, 2021) is a widely used conformal prediction algorithm,
particularly suited for scenarios where exchangeability is violated, such as online settings with distribution
shifts. The ACI algorithm adjusts the miscoverage level based on historical under- or over-coverage feedback.
Specifically, for a target miscoverage level α, it updates αt according to

αt = αt−1 + γ
(︂

α− 1{Yt−1 /∈ ˆ︁Ct(Xt−1, αt−1)}
)︂

,

where γ > 0 is a fixed step-size parameter. Here, ˆ︁Ct(Xt−1, αt−1) denotes the prediction interval constructed
at time t−1 with nominal miscoverage level αt−1. This adaptive scheme increases αt whenever the previous
prediction interval fails to cover Yt−1 (indicating under-coverage) and decreases αt otherwise (indicating
over-coverage), thereby steering the empirical miscoverage rate toward the specified target α.

Recently, Gibbs & Candès (2024) proposed an extension of ACI, termed DtACI, by employing an exponential
re-weighting scheme to estimate the parameter γ. Another recent work in this regard is Angelopoulos et al.
(2024b).
Proposition 6.2 (adapted, Gibbs & Candes (2021)). For all T ≥ 0 we have that

|FCR(T )− α| ≤ max{α1, 1− α1}+ γ∑︁
i Siγ

(15)

almost surely. Particularly, limT →∞ FCR(T ) a.s.= α.
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Figure 4: (a) FCR as a function of time T . The dashed black line represents the target level α = 0.4. We
highlight provably correct methods (✔). (b) Median prediction interval length over time. Shorter intervals
indicate higher informativeness. All metrics are averaged over N = 1× 104 runs.

The proof of Proposition 6.2 follows directly from Gibbs & Candes (2021, Proposition 4.1). We also note
that Bao et al. (2024a) established a similar result for DtACI adapted to the selective setting.

Simulation 6.3. The setup is the same as in Simulation 5.1, with the only difference that we choose here
Noff = 200 and Non = 1500. For t ≥ 0, the selection rule is again given by (11) where we choose here
τ0 = 1500 and τ1 = 1.

Results. Figure 4 compares other conformal methods with online selective conformal prediction using the
50-EXPRESS strategy in terms of FCR control and median prediction interval length over time.

Subplot (a) illustrates the FCR as time progresses. ACI and DtACI gradually approach the nominal target
as time increases—albeit only asymptotically—while LORD-CI strictly controls FCR for all T ≥ 0, but only
in a notably conservative manner.

Subplot (b) shows the median length of prediction intervals over time. Here, LORD-CI starts off with the
largest intervals, mirroring its conservative nature in FCR control. Over time, however, all methods converge
toward a similar interval size, suggesting that while they differ in short-term behavior, their long-term median
interval lengths stabilize to comparable levels.

While LORD-CI offers finite-sample FCR control, it does so at the cost of conservativeness. In contrast,
adaptive approaches such as ACI and DtACI produce shorter intervals but only guarantee FCR control
asymptotically.

As already noted by Bao et al. (2024a), ACI is particularly useful when the data is not exchangeable.
While this often holds in online settings, this comes at the cost of forgoing selection-conditional coverage
guarantees and finite FCR control (since only asymptotic FCR control would be guaranteed) when the data is
exchangeable. On the positive side, ACI can be applied directly without modification, making it a convenient
off-the-shelf solution. However, this convenience comes at the expense of leveraging the exchangeability of
the data (when this is the case), which could otherwise be exploited for stronger theoretical guarantees.
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7 Other Related Work

As previously noted, our paper is closely related to Bao et al. (2024a) and Weinstein & Ramdas (2020). To
the best of our knowledge, the literature on the online selective conformal inference is limited to these. We
provide a brief discussion of other work, which are only related to our paper in a broader sense.

Traditional selective inference provides valid statistical inference after data-driven selection (e.g. model se-
lection). These methods condition on the selection event to correct for “cherry-picking” and avoid overstated
significance. A prominent example is the exact post-selection inference framework for the Lasso by Lee et al.
(2016). Such classical approaches, including Fithian et al. (2014), guarantee nominal Type I error given the
selection, typically under parametric assumptions (e.g. Gaussian noise). However, they often require spe-
cialized derivations for each procedure and may be limited in scope (e.g. specific to linear models). Recently,
this motivated distribution-free selective inference, where conformal prediction plays a key role. However,
most of these works (discussed below) are in the offline setting.

A central idea is to create selection-aware conformal p-values or intervals that account for the fact that one
only reports results on selected instances or hypotheses. Several recent works implement this idea. Jin &
Candès (2023) introduced conformal p-values for identifying instances with large outcomes while controlling
false discoveries. The method wraps around any predictive model to output p-values for each test instance
that its outcome exceeds a specified threshold. By applying a Benjamini–Hochberg (BH) (Benjamini &
Hochberg, 1995) procedure to these p-values, one can select a subset of candidates and control the false
discovery rate (FDR) in finite samples.

Bao et al. (2024b) construct prediction intervals for selected individuals while controlling the FCR. They
develop a split-conformal procedure called SCOP (Selective COnditional conformal Predictions) that uses
a held-out calibration set to mimic the selection on the test set. By performing the same selection on
calibration data and constructing conformal intervals on those subsets, SCOP achieves exact FCR control
under exchangeability. Notably, it improves interval efficiency: whereas a naive FCR adjustment (Benjamini
& Yekutieli, 2005) would inflate all intervals uniformly, SCOP yields narrower intervals in practice while still
guaranteeing that a chosen proportion of the reported intervals covers the truth.

Wang et al. (2025) tackle selection effects in multiple hypothesis testing powered by conformal prediction.
They introduce a selective conformal p-value that adjusts for a broad class of selection procedures (for
instance, selecting top-scoring instances for testing). The key idea is to use a holdout set to simulate the
selective distribution—effectively, recalibrating conformal p-values on data that underwent a similar selection
rule. By adaptively choosing the calibration data based on the stability of the selection rule, they ensure the
calibration set is exchangeable with the selected test point. This yields valid post-selection p-values which,
when plugged into BH, control the FDR on the selected subset.

Another recent work, Bai & Jin (2024), addresses a practical challenge: how to perform model selection
or tuning within a conformal inference procedure without invalidating the guarantees. Typically, if one
uses the same data to choose a predictive model (or conformity score) and to calibrate prediction sets,
the exchangeability needed for conformal validity can be broken. Existing solutions often demand data
splitting or a fixed model choice independent of calibration data. They provide a general framework for valid
post-selection inference even when models or scores are optimized on the data.

As mentioned earlier, all these above works are in the offline setting, and thus extending the above papers
to the online setting seems a ripe direction for future work.

8 Discussion

Our findings highlight that the choice of calibration strategy is crucial in ensuring key inferential guarantees—
namely, selection-conditional coverage and FCR control. The theoretical results presented in this paper reveal
that existing calibration selection strategies, such as the recently proposed adaptive strategy (ADA), do not
necessarily preserve the exchangeability between the calibration set and the selected test datum. As a result,
they fail to provide valid selection-conditional coverage guarantees in general. In contrast, the proposed
family of exchangeability-preserving calibration selection strategies provides selection-conditional coverage.
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There are several avenues for future research. First, there appears to be a trade-off between strict theoretical
guarantees (via exchangeability preservation) and practical efficiency (in terms of calibration set size and
interval width). Investigating adaptive or hybrid selection strategies that balance these objectives (like
K-EXPRESS or EXPRESS-M) is a promising direction. Second, while our analysis assumes decision driven
selection rules, extending the framework to other (potentially more general) selection rules remains an
important challenge. Third, empirical studies across diverse applications—such as medical decision-making
and finance—could provide insights into the real-world applicability of these methods.
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A Preliminaries

For completeness, we provide basic results on quantile and related concepts, which are already well-
documented in the conformal prediction literature (Vovk et al., 2005; Lei et al., 2018; Romano et al., 2019;
Barber et al., 2023). For a comprehensive overview of the theoretical foundations of conformal prediction,
see Angelopoulos et al. (2024a).

Let Z be a random variable with cumulative distribution function (cdf) FZ . The quantile function Q(α) is
defined as the (generalized) inverse of FZ , for α ∈ (0, 1). Formally,

Q(α) = F −1
Z (α)

= inf{z ∈ R : FZ(z) ≥ α}.

Equivalently, Q(α) is the smallest real number z such that FZ(z) ≥ α. Now suppose we have a sample
Z1, . . . , Zn drawn from the distribution of Z. The empirical cdf F̂n is defined by

ˆ︁Fn(z) = 1
n

n∑︂
i=1

1{Zi ≤ z},

where 1{·} denotes the indicator function. Then the empirical quantile function ˆ︁Qn(α) is given as the inverse
of ˆ︁Fn:

ˆ︁Qn(α) = inf{z ∈ R : ˆ︁Fn(z) ≥ α}.

More explicitly, if we denote the order statistics by Z(1) ≤ Z(2) ≤ · · · ≤ Z(n), then

ˆ︁Qn(α) = Z(︁
⌈nα⌉

)︁,
where ⌈nα⌉ is the ceiling of nα.
Lemma A.1 (Quantile lemma). Let Z1, . . . , Zn be exchangeable random variables. Then, for any α ∈ (0, 1)

P(Zn ≤ ˆ︁Qn(α)) ≥ α.

Additionally, if the random variables Z1, . . . , Zn are almost surely distinct, then

P(Zn ≤ ˆ︁Qn(α)) ≤ α + 1
n

.

Lemma A.2 (Quantile inflation). Let Z1, . . . , Zn+1 be exchangeable random variables. Then, for any α ∈
(0, 1)

P(Zn ≤ ˆ︁Qn((1 + 1/n)α)) ≥ α.

Additionally, if the random variables Z1, . . . , Zn+1 are almost surely distinct, then

P(Zn ≤ ˆ︁Qn((1 + 1/n)α)) ≤ α + 1
n + 1 .
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B Omitted Proofs

The proof of Theorem 4.5 follows from Lemma 4.4 and classical conformal arguments (see in particular
Angelopoulos et al. (2024a) and references therein).
Lemma B.1. Let the selection procedure be instantiated with strategy (iii), (v) or (vi). Then, {Zi}i∈˜︁Dt

are
exchangeable conditional on the event that S0 = s0, . . . , St−1 = st−1, where (s0, . . . , st−1) ∈ {0, 1}t−1.

Proof. Let (s0, . . . , st−1) ∈ {0, 1}t−1 and D any set of indices. Further, denote by E the event that˜︁It(Z−n, . . . , Zt) = D and S0 = s0, . . . , St−1 = st−1, and assume P(E) > 0. For any measurable
A ⊆ (X × Y)|D|, let B =

{︂
(z−n, . . . , zt) ∈ (X × Y)N+1 : (zi)i∈D ∈ A, ˜︁It(z−n, . . . , zt) = D, Sj(xj) =

sj , 0 ≤ j ≤ t− 1
}︂

. Thus, {(Z−n, . . . , Zt) ∈ B} = {(Zi)i∈D ∈ A, E}. By Lemma 4.4, both ˜︁I(·) and Sj(·) are
permutation invariant, for 0 ≤ j ≤ t− 1. This yields {(Z−n, . . . , Zt) ∈ B} = {(Z∼

π(−n), . . . , Z∼
π(t)) ∈ B} and

with that

P ((Zi)i∈D ∈ A, E) = P ((Z−n, . . . , Zt) ∈ B)

= P
(︂

(Z∼
π(−n), . . . , Z∼

π(t)) ∈ B
)︂

= P
(︁
(Zπ(i))i∈D ∈ A, E

)︁
,

where the second equality follows from exchangeability of {Zi}t
i=1.

Lemma B.2. Let the selection procedure be instantiated with strategy (iii), (v) or (vi), and (s0, . . . , st−1) ∈
{0, 1}t−1. If we have P(S0 = s0, . . . , St−1 = st−1, St = 1) > 0, then

p˜︁Dt
=
∑︁

j∈˜︁Dt
1{Rj ≥ Rt}

| ˜︁Dt|
(16)

is a valid p-value, i.e., P(p˜︁Dt
≤ α |S0 = s0, . . . , St−1 = st−1, St = 1) ≤ α for any α ∈ [0, 1].

Proof. Let Et denote the event that t ∈ ˜︁Dt ≡ ˜︁It(Z−n, . . . , Zt), which by (4) is equal to the event that St = 1,
and S0 = s0, . . . , St−1 = st−1, for (s0, . . . , st−1) ∈ {0, 1}t−1. Conditional on Et, the non-conformity scores
{Ri}i∈˜︁Dt

are exchangeable. This implies that

p˜︁Dt
=
∑︁

j∈˜︁Dt
1{Rj ≥ Rt}

| ˜︁Dt|
(17)

is a valid p-value, i.e., P
(︂

p˜︁Dt
≤ α | Et

)︂
≤ α, implying that P

(︂
p˜︁Dt
≤ α |S0 = s0, . . . , St−1 = st−1, St = 1

)︂
≤

α.

Proof of Theorem 4.5. Since we have Yt ∈ ˆ︁Ct(Xt) ⇐⇒ p˜︁Dt
> α by construction and classical conformal

arguments, the strong selection-conditional coverage guarantee follows by Lemma B.2.
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The proofs of Proposition 5.2 and Proposition 6.1 are adapted from Theorem 2 and Theorem 5 in Weinstein
& Ramdas (2020), respectively, with modifications to align with the conformal framework.

Proof of Proposition 5.2. First, let (s0, . . . , sT ) ∈ {0, 1}t−1 be any sequence, such that
∑︁

i si > 0. Now,
assume that P

{︂
Yt ∈ ˆ︁Ct(Xt) | S0 = s0, . . . , St−1 = st−1, St = 1

}︂
≥ 1− α for any t ≥ 0. Then,

E

[︄∑︁T
t=0 St1{Yt ̸∈ ˆ︁Ct(Xt)}∑︁T

j=0 Sj

⃓⃓⃓
S0 = s0, . . . , ST = sT

]︄

= 1∑︁T
j=0 sj

E

[︄
T∑︂

t=0
St1{Yt ̸∈ ˆ︁Ct(Xt)}

⃓⃓⃓
S0 = s0, . . . , ST = sT

]︄

= 1∑︁T
j=0 sj

E

⎡⎣ ∑︂
t≤T :st=1

1{Yt ̸∈ ˆ︁Ct(Xt)}
⃓⃓⃓
S0 = s0, . . . , ST = sT

⎤⎦
= 1∑︁T

j=0 sj

∑︂
t≤T :st=1

P
[︂
Yt ̸∈ ˆ︁Ct(Xt)

⃓⃓⃓
S0 = s0, . . . , ST = sT

]︂
(a)= 1∑︁T

j=0 sj

∑︂
t≤T :st=1

P
[︂
Yt ̸∈ ˆ︁Ct(Xt)

⃓⃓⃓
S0 = s0, . . . , St−1 = st−1, St = 1

]︂
(b)
≤ 1∑︁T

j=0 sj

∑︂
t≤T :st=1

α

= α,

where (a) follows since given (S0, . . . , St) the selection decisions (St+1, . . . , ST ) are independent of {Yt ̸∈ˆ︁Ct(Xt)}. Inequality (b) follows from strong selection-conditional coverage. Now, taking the expectation over
the conditional distribution of S1, . . . , ST given

∑︁
i Si > 0 yields

pFCR(T ) = E

[︄∑︁T
t=0 St1{Yt ̸∈ ˆ︁Ct(Xt; αt)}∑︁T

j=0 Sj

⃓⃓⃓ ∑︂
i

Si > 0
]︄
≤ α.

With that

FCR(T ) = E

[︄∑︁T
t=0 St1{Yt ̸∈ ˆ︁Ct(Xt; αt)}∑︁T

j=0 Sj

⃓⃓⃓ ∑︂
i

Si > 0
]︄
· P

(︄∑︂
i

Si > 0
)︄

≤ E

[︄∑︁T
t=0 St1{Yt ̸∈ ˆ︁Ct(Xt; αt)}∑︁T

j=0 Sj

⃓⃓⃓ ∑︂
i

Si > 0
]︄

≤ α.

Thus, FCR(T ) ≤ α. Clearly, if (a) holds with equality, then pFCR(T ) = α. Additionally, if P(
∑︁

i Si > 0) =
1, then FCR(T ) = α. This completes the proof.
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Proof of Proposition 6.1. Let T ≥ 0 and {S(t)
j }j≥0 be a sequence of selection decisions {Sj}j≥0, where we

set St = 1 deterministically. Now, define FT \t = σ (S1, . . . , St−1, St+1, . . . , ST ). Then, we have

FCR(T ) =
T∑︂

t=0
E

[︄
St1{Yt ̸∈ ˆ︁Ct(Xt; αt)}

1 ∨
∑︁T

j=0 Sj

]︄

=
T∑︂

t=0
E

[︄
St1{Yt ̸∈ ˆ︁Ct(Xt; αt)}∑︁T

j=0 S
(t)
j

]︄

(a)
≤

T∑︂
t=0

E

[︄
1{Yt ̸∈ ˆ︁Ct(Xt; αt)}∑︁T

j=0 S
(t)
j

]︄

=
T∑︂

t=0
E

[︄
1∑︁T

j=0 S
(t)
j

E
[︂
1{Yt ̸∈ ˆ︁Ct(Xt; αt)} |FT \t

]︂]︄

=
T∑︂

t=0
E

[︄
1∑︁T

j=0 S
(t)
j

E
[︂
1{Rt > ˆ︁Q1−αt({Ri}i∈Dt)} |FT \t

]︂]︄

(b)
≤

T∑︂
t=0

E

[︄
αt∑︁T

j=0 S
(t)
j

]︄

(c)
≤

T∑︂
t=0

E

[︄
αt∑︁T

j=0 Sj

]︄
(d)
≤ α,

Here (a) follows since St ≤ 1, and (b) since αt is Ft−1-measurable, we have for a fixed αt ∈ (0, 1) that
E
[︂
1{Rt > ˆ︁Q1−αt

({Ri}i∈Dt
)} |FT \t

]︂
= E

[︂
1{Rt > ˆ︁Q1−αt

({Ri}i∈Dt
)}
]︂
. Finally, (c) is due to the monotonic-

ity of the selection rules and the last inequality (d) follows from the invariant (14).

20



Published in Transactions on Machine Learning Research (07/2025)

C Other Conformal Methods

C.1 LORD-CI

For completeness, we provide a brief overview of the LORD-CI algorithm in this section, slightly altered
from its original presentation for confidence sets to fit the conformal framework. The algorithm was initially
proposed by Weinstein & Ramdas (2020), to which we refer for a more comprehensive treatment. Let
αt ∈ (0, 1) be a Ft-measurable coverage level, then a conformal prediction interval is constructed as

ˆ︁Ct(Xt) = {y ∈ Y : R(Xt, y) ≤ ˆ︁Q1−αt
({Ri}i∈Jt,off )}.

The marginal level αt is updated dynamically by maintaining the invariant∑︁T
t=0 αt

1 ∨
∑︁T

t=0 St

≤ α, for any T ≥ 0.

Algorithm 1 is an explicit instantiation of LORD-CI, which maintains the above invariant. Initially, before
any selection, the algorithm only has the small budget W0 ∈ (0, α) to spend (spread out over time by γt).
Once the first interval is reported, the algorithm gains an additional “error wealth” of size (α−W0). After
the first selection, any future time point t gets an increment of (α−W0)γτ1 in its threshold. Similarly, every
subsequent selection contributes an additional α distributed over future times. Thus, by time t, αt is the sum
of contributions from the initial budget and all past selections’ budgets allocated to time t. This mechanism
guarantees that αt is non-decreasing over time — whenever a new selection occurs, future α-levels increase
or stay the same.

Algorithm 1 LORD-CI procedure (Weinstein & Ramdas, 2020, modified)
1: Input: offline data Jt,off ; sequence {Zi} observed sequentially; deterministic sequence {γi} summing to

one; constant W0 ∈ (0, α); selection rules {Si}; α ∈ (0, 1)
2: Output: online FCR-adjusted selective prediction intervals
3: t← 1
4: for j = 1, 2, ... do
5: while St(Xt) = 0 do
6: t← t + 1
7: end while
8: τj ← t
9: αt ← γtW0 + (α−W0)γt−τ1 + α

∑︁
{k:τk<t,τk ̸=τ1} γt−τk

▷ Monotone update rule
10: Report ˆ︁Ct(Xt) = {y ∈ Y : R(Xt, y) ≤ ˆ︁Q1−αt

({Ri}i∈Jt,off)}.
11: t← t + 1
12: end for

C.2 Adaptive Conformal Inference

The ACI algorithm (Gibbs & Candes, 2021) adjusts the miscoverage level based on historical under- or
over-coverage feedback. Specifically, for a target miscoverage level α, the algorithm updates αt according to

αt = αt−1 + γ
(︂

α− 1{Yt−1 /∈ ˆ︁Ct(Xt−1, αt−1)}
)︂

,

where γ > 0 is a fixed step-size parameter. Here, ˆ︁Ct(Xt−1, αt−1) denotes the prediction interval constructed
at time t− 1 with nominal miscoverage level αt−1. We note that, the performance of ACI heavily relies on
a well-specified step-size parameter. Gibbs & Candes (2021) recommend that the step-size should be chosen
proportionally to the underlying rate of change in the environment, which is unknown in practice.
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D Additional Simulations

We provide additional simulation results to complement those presented in the main part of the paper. First,
we recall the following (decision driven) selection rules:

Selection rule (A) Selection rule (B) Selection rule (C)

x ↦→

⎧⎪⎨⎪⎩
1

{︂
x < 1

τ0

∑︁j−1
i=0 Si

}︂
for j ≤ t− 1

1

{︂∑︁j−1
i=0 Si > τ1

}︂
for j = t,

x ↦→ 1

{︄
x < τ1 + 1

τ0

t−1∑︂
i=0

Si

}︄
x ↦→ 1

{︄
x > τ1 −min

(︄
1
τ0

t−1∑︂
i=0

Si, 2
)︄}︄

We evaluate several calibration selection strategies for online selective conformal prediction, which were
discussed earlier. The aim is to generate prediction intervals for a test point based on previously selected
calibration points, while ensuring valid selection-conditional coverage. We conduct Monte Carlo simulations
to accumulate metrics, such as miscoverage and calibration set size. In each iteration of the simulation, a
data set of size N = Noff + Non, where Noff = | Jt,off | and Non = | Jt,on | is generated. The generated data
serve as potential t-calibration data.

In the simulations that follow, we generate X ∼ Unif[0, 2], and Y = µ(X) + ε, where µ(X) = Xβ. Addi-
tionally, we assume ε |X ∼ N (0, X/2).

D.1 Selection-Conditional Coverage

Figure 5: Miscoverage ( ) is shown alongside the number of calibration points ( ), median interval length
( ) and the fraction of infinite length prediction intervals ( ). We highlight provably correct methods (✔)
and the target level ( ). All metrics are averaged over N = 1× 106 runs.

Simulation D.1. We set Noff = 10 and Non = 20. We perform two separate simulations, one using rule
(B) and the other using rule (C). We then perform online selective conformal prediction with both existing
and novel strategies. All reported metrics are averaged over N = 1× 106 runs.
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Figure 6: Miscoverage over time. The dashed black line represents the target level α = 0.4. We highlight
provably correct methods (✔). (a) Miscoverage for selection rule (B). (b) Miscoverage for selection rule (C).
Averaged over N = 1× 104 runs.

Simulation D.2. We set Noff = 50 and Non = 200. We run two separate simulations, one using rule (B)
and the other using rule (C). We then perform online selective conformal prediction with both existing and
novel strategies. At each time T ≥ 0 we report the miscoverage, averaged over N = 1× 104 runs.
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D.2 FCR Control

Figure 7: (a) FCR as a function of time T . The dashed black line represents the target level α = 0.4. We
highlight provably correct methods (✔). (b) Number of calibration data points used over time. Strategies
accumulating more calibration data tend to yield shorter prediction intervals. (c) Fraction of prediction
intervals of infinite length over time. A high fraction suggests a strategy often fails to provide informative
intervals. Only reported for novel strategies. (d) Median prediction interval length over time. Shorter
intervals indicate higher informativeness. All metrics are averaged over N = 1× 104 runs.

Simulation D.3. We set Noff = 50 and Non = 200. Here, we use selection rule (C). We then perform online
selective conformal prediction with both existing and novel strategies.
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Figure 8: (a) FCR as a function of time T . The dashed black line represents the target level α = 0.4. We
highlight provably correct methods (✔). (b) Median prediction interval length over time. Shorter intervals
indicate higher informativeness. All metrics are averaged over N = 1× 104 runs.

Simulation D.4. We set Noff = 200 and Non = 1500. Here, we use selection rule (C). We compare online
selective conformal prediction with 50-EXPRESS strategy, ACI algorithms and LORD-CI.
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