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Totally Symmetric Sets

Noah Caplinger and Dan Margalit

ABSTRACT. We survey the theory of totally symmetric sets, with applications
to homomorphisms of symmetric groups, braid groups, linear groups, and map-
ping class groups.

1. Introduction

The theory of totally symmetric sets is a tool that has been proven to be
useful in classifying homomorphisms between certain types of groups. The basic
definitions were introduced by Kordek and the second author in their study of
homomorphisms between braid groups [19]. Since that work, the theory has been
used in the study of homomorphisms between symmetric groups, braid groups,
linear groups, and mapping class groups.

Here is the definition. A totally symmetric set in a group G is a subset

X =A{z1,...,21} cG
with the following property: for every o € ¥, there is a g, € G such that

gaxig;1 =Tq ()

for all 4. It follows from the definition that the elements of a totally symmetric set
lie in a single conjugacy class.

Evidently, if X ¢ G is a totally symmetric set and f: G - H is a homomor-
phism, then f(X) is a totally symmetric set in H. As we show in Section 2] a
much stronger condition is true: f(X) is either a totally symmetric set of size |X|
or it is a singleton. In the phrasing of Salter and the first author: collision implies
collapse. This is the fundamental property of totally symmetric sets.

For groups G and H, the collision-implies-collapse property yields an (unrea-
sonably effective) blueprint for classifying homomorphisms f : G - H, as follows:

Step 1. Find a large totally symmetric set X c G.
Step 2. Classify the large totally symmetric sets in H.
Step 3. Deduce properties of f(X) and draw conclusions about f.

2020 Mathematics Subject Classification. Primary 20E34, 20F65, 20F36, 20B05.
This material is based upon work supported by the National Science Foundation under Grant
No. DMS-2203431.

(©2025 American Mathematical Society

133

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://www.ams.org/conm/
https://doi.org/10.1090/conm/812/16264

134 NOAH CAPLINGER AND DAN MARGALIT

For instance, if G has a totally symmetric set X with | X| =k, and H has no totally
symmetric set of cardinality k, then any homomorphism f: G — H must collapse
X. Moreover, for any x;,z; € X the normal closure of :Cil'j_-l lies in the kernel of f.
In particular, if the xix]fl are normal generators for G, then f is the trivial map.

Step 2 of the blueprint is generally the most challenging (and interesting). For a
given group H, the approach is to choose a space Y on which H acts. As explained in
Section [Z2] totally symmetric sets in H correspond to totally symmetric geometric
configurations in Y. These configurations can be, for example, configurations of
eigenspaces for linear maps or canonical reduction systems for mapping classes.
The main strategy is to classify the totally symmetric configurations, and then use
this to classify the totally symmetric sets.

Overview. In Section Pl we introduce the basic notions and examples in the
theory of totally symmetric sets. We also prove the collision-implies-collapse prop-
erty. We then use the blueprint to give an intuitive explanation for why the outer
automorphism group of the symmetric group is (usually) trivial.

In Sections Bl and [] we explain how the blueprint is applied in the cases of the
general linear group and the braid group. The former case was addressed in a paper
by the first author and Salter [9] and the latter in a paper by the second author
and Kordek [19]. As per the blueprint, the strategy in both cases is to classify
large totally symmetric configurations and then to promote this to a classification
of large totally symmetric sets. For the general linear group, the configurations
are configurations of subspaces. We then use the theory of Jordan normal form
to do the promotion. For the braid group the configurations are configurations
of multicurves. In this case we use Nielsen—Thurston theory to do the analogous
promotion.

In Section Bl we prove a theorem of Kolay, which says that the standard map
B,, - ¥, gives the smallest non-cyclic quotient of the braid group. To streamline
Kolay’s argument, we first introduce a variation on totally symmetric sets, namely,
collapsing sets. These are exactly the sets that satisfy the collision-implies-collapse
property. We then present Kolay’s proof of the theorem.

Finally, in Section [6l we make an explicit analogy between the collision-implies-
collapse property and Schur’s lemma from representation theory. We discuss several
questions that arise from this analogy.

2. Totally symmetric sets and the blueprint

The three subsections in this section correspond to the three steps of the blue-
print for totally symmetric sets. In Section [Z1] we give some basic examples of to-
tally sets, and state and prove the collision-implies-collapse lemma. In Section [Z.2]
we define totally symmetric configurations, and use them to give upper bounds
on the sizes of totally symmetric sets in certain groups. Finally, in Section 23]
we use the results of Sections [Z.1] and to give a conceptual explanation for the
classification of automorphisms of the symmetric group %,,.
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TOTALLY SYMMETRIC SETS 135

2.1. Totally symmetric sets and collision implies collapse.
Examples of totally symmetric sets. Among the most basic examples of totally
symmetric sets are:

{(12),(34),...}¢%,, {(1i),...,(1n)}cX%,, {Ei2,....E1n}cGL,(2),
{El,.. ,En} c GLn(Z), and {0’1,0’3,. } c B,.

where the (i j) are transpositions in the symmetric group X, the o; are the stan-
dard half-twist generators for the braid group B,,, the F; ; are elementary matrices
in the general linear group GL,(Z), and the E; are the elements of GL,(Z) ob-
tained from the identity by negating the i¢th diagonal entry. We leave it as an
exercise to verify that these are all totally symmetric sets.

Collision implies collapse. The following lemma, mentioned in the introduction,
encapsulates the fundamental property of totally symmetric sets. The lemma origi-
nally appears in the work of Kordek and the second author of this paper [19, Lemma
2.1].

LEMMA 2.1. Let f: G - H be a homomorphism of groups. If X € G is a totally
symmetric set then f(X) is either a totally symmetric set of cardinality |X| or a
singleton.

PROOF. Let z,y,2 € X and suppose f(z) = f(y). Total symmetry guarantees
some g € G such that g(z,y,2)g7! = (z,2,y). We have:

Flaz™") = flgey™g™") = F(9)f ey ) f(9) ™ = 1.
Thus f(z) = f(z) and the lemma follows. O

In the original paper by Kordek and the second author, totally symmetric sets
were assumed to have the additional property that the elements commute pairwise.
So in that paper, the set {(1 2), (34),...} would be considered as a totally symmet-
ric set in X, whereas {(1 7),...,(1 n)} would not. The commutativity condition
was included because it simplifies the classification of totally symmetric configura-
tions for braid groups. Since the more general totally symmetric sets considered
here still satisfy Lemma [Z1] we will henceforth use the term “commuting totally
symmetric set” to refer to a totally symmetric set with the additional property that
the elements commute pairwise.

In defining totally symmetric sets, Kordek and the second author were directly
inspired by the work of Aramayona—Souto, who used a symmetric group action on
a collection of Dehn twists to similar effect [, Section 5].

2.2. Totally symmetric configurations and upper bounds on totally
symmetric sets. Recall that Step 2 of the blueprint concerns the classification
of large totally symmetric sets in a given group G (in the blueprint the group is
called H). After the fashion in geometric group theory, we approach this problem
by considering a suitable action of G on a space Y. Given such an action, we often
have at least one natural choice of function:

G — subsets of Y
g— Yg
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136 NOAH CAPLINGER AND DAN MARGALIT

For a given g € G, the subset Yy might be the fixed set, or an eigenspace, or an
invariant axis, etc. As long as the association g + Y} is natural, it will satisfy the
equation

Yign-1=h-Y,

for all h € G (we can take this equivariance condition as the definition of naturality).
In particular, if {x1,..., 2y} is a totally symmetric subset of G, then {Y,,,..., Yz, }
is a totally symmetric configuration in Y in the sense that any permutation of the
Y., can be realized by the action of G.

Totally symmetric configurations. Motivated by this discussion, we can give
the definition of a totally symmetric configuration. Suppose that a group G acts
on a space Y. Let

{Y1,...,Y:}
be a collection of subspaces of Y. We say that {Y;} is a totally symmetric configu-
ration if for each o € X, there is a g, € G so that

9o (S/z) = Yo‘(i)

for all 4. Again, the point of the definition is that, as long as the association of a
subspace to a group element satisfies the naturality property

Yight = h-Y,,

the configuration associated to a totally symmetric set is a totally symmetric con-
figuration.

Unifying the definitions. Our definitions of totally symmetric sets and totally
symmetric configurations are almost identical. As observed by the first author and
Salter [9 Definition 2.1], they can be combined into one definition as follows:

Let G act on a set Z. A subset X = {x1,...,2} ¢ Z is totally

symmetric if for all o € Xy, there is some g, € G such that

Jo *Ti = To(4)
The definition of a totally symmetric set is recovered by considering the action of
G on itself by conjugation, and the definition of a totally symmetric configuration
is recovered by considering the action of G on a set of subsets of a space Y that
carries an action of G. Even in this general setting, totally symmetric sets obey
the collision-implies-collapse principle where the homomorphism in Lemma 21 is
replaced by a G-equivariant map.

Example: Dihedral groups. We will use the notion of totally symmetric config-
urations to prove the following fact:

A totally symmetric set X € D,, has | X| < 3.

The first step is to prove that a totally symmetric set of rotations has cardinality
at most two (exercise). Suppose then that X is a totally symmetric set consisting
of reflections. To each reflection in X we can associate the corresponding line of
reflection in the plane. As above, this gives a totally symmetric configuration of
lines in the plane. The largest such configuration has three lines (another exercise).
Since reflections are determined by the corresponding lines, the desired statement
follows.
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TOTALLY SYMMETRIC SETS 137

This argument shows more:

If X is a totally symmetric set of D, with |X|=3 then 3|n and

X consists of reflections about lines that pairwise form an angle

of /3.
As a sample consequence, we have the following fact:

If n > 8 and m > 3, then every homomorphism B, — D,, has

cyclic image.
While this fact is not difficult to prove directly, the theory of totally symmetric sets
gives a natural, conceptual explanation.

Example: Free groups. We now use totally symmetric configurations to prove
the following;:

A totally symmetric set in X € Fy has | X| < 1.

Consider the action of Fy on its Cayley graph, the regular four-valent tree Ty.
Each element = € F5 acts on T by translating along an axis, which is a bi-infinite
geodesic in Ty. Again, this gives a totally symmetric configuration of geodesics.

Within a given conjugacy class in F, an element is determined by its axis.
Therefore, it suffices to show that there is no totally symmetric configuration con-
sisting of two bi-infinite geodesics in 7.

Let Y c T4 be a totally symmetric configuration of bi-infinite geodesics. If Y3
and Y5 are distinct elements of Y, then by total symmetry there is an element of
F» interchanging Y; and Y,. This is impossible, since (using the usual embedding
of Ty in the plane) the elements of Fy act on Ty by orientation-preserving planar
automorphisms.

An upper bound for all groups. The first author proved the following result [7,
Theorem 1], which gives an upper bound for the cardinality of a totally symmetric
set in an arbitrary group.

THEOREM 2.2 (Caplinger). Let X be a totally symmetric set in a group G. If
|X| >4, then
G| 2 (|X]+1)!
Equality is attained only when G =X,,.

As a sample application, any totally symmetric set in the monster group M
has cardinality less than 44, since 44! > |M]|.

Analogous (but not sharp) upper bounds on the cardinalities of commuting
totally symmetric sets were proved by Chudnovsky—Kordek-Li—Partin [12], Propo-
sition 2.2] and by Scherich—Verberne [22] Theorem A].

Other upper bounds on commuting totally symmetric sets. Kordek—Li—Partin
[18] provide a suite of upper bounds for the cardinality of a commutative totally
symmetric set. For instance they show that the largest cardinality of a commutative
totally symmetric set in the dihedral group is 2 [I8] Theorem 3.3] and that the
largest cardinality of a commutative totally symmetric set in the Baumslag—Solitar
group BS(1,n) with n # -1 is 1. They also prove that the largest cardinality of a
commutative totally symmetric set in a product G x H or G * H is the supremum of
the cardinalities for totally symmetric sets in a single factor. They also prove that
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138 NOAH CAPLINGER AND DAN MARGALIT

a solvable group cannot have a commutative totally symmetric set with 5 elements.
We refer the reader to their paper for a full accounting of their results.

2.3. Application to the symmetric group. Using the basic theory of to-
tally symmetric sets already established, we can give a conceptual explanation of
the following classical theorem. This argument originally appeared in the work of
the first author [7].

THEOREM 2.3. Forn > 7, the outer automorphism group of ¥, is trivial.
Let Z,, denote the totally symmetric set
Z,={(11)|i>2}c%,.

To prove Theorem 23] we use the following auxiliary result [7, Theorem 2], which
is a classification of large totally symmetric sets in X,,:

Letn>7. If X ¢ X, is a totally symmetric set with |X|>n - 1.
Then X is conjugate to Z,.

From this fact, the proof of Theorem 2.3 proceeds as follows. Let f: X, - X, be
an automorphism. Then f(Z,) is equivalent to Z, in the following sense: there
exists 7 € X, with 7f(Z,) = Z,,, where T is the inner automorphism corresponding
to 7. Then 7o f permutes Z,,, so total symmetry gives some o € 3, so that

5’07~'of:o'~7'of

is the identity on Z,,. Since Z,, generates ¥,,, we conclude that &7 o f =id, that is,
f=(77)7L. In particular, f is an inner automorphism, completing the proof of the
theorem.

A slight modification of the above argument yields the following (well-known)
generalization of Theorem

THEOREM 2.4. Let T<n<m, and let f:3,, > X, be a homomorphism whose
image is not cyclic. Then m=n and f is an inner automorphism.

To obtain this stronger theorem, the only additional observation required is
that—Dby the classification of large totally symmetric sets in X,,—the restriction
f1Z, cannot be injective when n < m. Thus it must be trivial, and so the image is
cyclic (of order at most 2).

We would be remiss not to describe the situation for g, which does have a
nontrivial outer automorphism. From the perspective of totally symmetric sets, the
reason why this outer automorphism exists is that g has two conjugacy classes of
totally symmetric sets with five elements: the standard one and its image under
the nontrivial outer automorphism.

The proof of Theorem 23] given here is not simpler than the classical proof.
However, it gives a conceptually simple, structural explanation. Also, the clas-
sification of large totally symmetric sets creates a broad tool for studying any
homomorphism to or from >,,. We will return to this theme several times in what
follows.
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3. Totally symmetric sets in the general linear group

In this section we turn our attention to the general linear group. The first
author and Salter give a classification of large totally symmetric sets in GL,,(C),
Theorem [B] below. They used this classification to give a new, conceptual proof
of the following classical fact:

Any non-abelian representation of ¥, has dimension at least
n—1.

We will start by describing the largest totally symmetric sets in GL,,(C), then state
the classification theorem, and then explain the applications to representation the-
ory. Following the blueprint, we then classify large totally symmetric configurations
in C™, before using this classification to prove the classification of totally symmetric
sets in GL,,(C).

Standard totally symmetric sets. Consider a regular n-simplex A c R™ centered
at the origin. The set of vertices vq,...,v,41 of A is a totally symmetric config-
uration in the sense that for all o € ,,,1, there is an A, in GL,(C) (in fact in
O(n)) such that A,v; = v,(;y. The hyperplanes v} also form a totally symmetric
configuration with the same choice of A,. This allows us to form a totally sym-
metric set in GL,,(C) as follows. Pick A, u € C distinct and non-zero, and define
A; € GL,,(C) by declaring Cv; and v} to be A- and p-eigenspaces respectively. The
set A, = {A1,...,Aps1} is then totally symmetric. We refer to (any conjugate of)
any such A4,, as a standard totally symmetric set in GL,,(C).

The classification of large totally symmetric sets. The following theorem says
that the above construction is the only construction of totally symmetric sets in
GL,(C) of cardinality n + 1.

THEOREM 3.1 (Caplinger—Salter). Let n #5 and let X c GL,(C) be a totally
symmetric set. Then |X| < n+1, and equality is achieved exactly when X is standard.

This theorem immediately applies to bound the dimension of a faithful repre-
sentation of any group: if G contains a totally symmetric subset of size n, then G
has no faithful representations in dimension less than n — 1. In the case of X,,, we
can say more.

Application to representations of the symmetric group. Building on the last
idea, let p: 3, - GL,,(C) be a non-abelian representation of X,,. We would like to
show m >n - 1.

For the standard totally symmetric set Z,, in 3,, we have that p(Z,) c GL,,(C)
is a totally symmetric set. We show that if m < n -1 then p(Z,) is a singleton,
implying that p has cyclic image. We treat the cases m <n—-2and m =n-2 in
turn.

If m < n -2 then Theorem [3]] gives that there is no totally symmetric subset
of GL,,,(C) of size n — 1. Thus by Lemma 21 p(Z,,) is a singleton, as desired.

If m = n -2, Theorem Bl gives that p(Z,) is a singleton or is standard. But
no two distinct elements of the standard totally symmetric set A,, satisfy the braid
relation, so p(Z,) must be a singleton, as desired.
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Application to algebraic geometry. Let U, 4 denote the space of smooth degree d
hypersurfaces in CP". We can continue the above line of reasoning in order to
constrain the dimension of a representation of 7 (U, 4):

If p: mi(Un,a) > GLy(C) is a non-cyclic representation with
d>b5, then
d-11"
m> || -1
2

We now outline the proof of this fact. Lonne gave a presentation of 7 (U, 4) gener-
alizing the standard presentation of the braid group [21]. From this presentation,
we can see that m (U, 4) has a totally symmetric set that is analogous to the stan-
dard totally symmetric set in the braid group (see Section Hl), and has cardinality
[%]" Just like in the braid group, when d > 5 this set collapses if and only if
p has cyclic image, so Theorem [B1] gives the desired bound. (In fact, a slightly
better bound can be obtained from a related result in the paper of the first author
and Salter [9) Theorem A] that classifies commutative totally symmetric sets in

GLn(C).)

Totally symmetric configurations. As per Step 2 of the blueprint, we now ex-
plain the classification of large totally symmetric configurations used in the classi-
fication of large totally symmetric sets in GL,,(C).

The first author and Salter give the following classification [9, Theorem A].
In the statement, a standard totally symmetric configuration is the collection of
1-dimensional eigenspaces of the elements of the standard totally symmetric set, or
the image of this configuration under any element of GL, (C). The dual of such a
configuration is the set of orthogonal complements (in the paper by the first author
and Salter these are referred to as simplex configurations and their duals).

PRrROPOSITION 3.2 (Caplinger—Salter). Let W be a totally symmetric configura-
tion of subspaces in C". Then |W|<n+1, and when n 5, equality is realized only
by a standard configuration or the dual of such.

In the work of the first author and Salter, Proposition [3.2]is proved inductively,
in tandem with Theorem 3.1l Here, we assume the proposition without proof, and
show how the inductive step for Theorem [B.I] proceeds.

Proof of Theorem Bl assuming Proposition 3.2l We discuss the two statements
in turn, namely, the upper bound on the size of a totally symmetric set and the
classification of large totally symmetric sets.

We proceed by induction on n, with base case n = 1. In this base case we are
considering GL;(C) = C*. Since the latter is abelian, the largest totally symmetric
set is a singleton. As 1 < 2 the first statement of the proposition is verified. The
second statement is vacuous since the upper bound n +1 is not realized in this case.

Let X = {4;,...,A;} c GL,(C) be a totally symmetric set. Consider the
generalized eigenspaces

ES j=ker (A; - M)

If for any A and j the arrangement of subspaces

{E},,---EY;}
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is non-degenerate (i.e. not a singleton), then Lemma 2.1] (really, the version for
configurations) and Proposition give the bound k < n +1. Thus, we may hence-
forth assume that all arrangements {E; j}le are degenerate. In other words, the
A; share a common Jordan filtration

7 I
EyicEy ¢

for every eigenvalue A\. We may therefore drop the superscript and write Ey ; for
E5 ;.

Restricting the A; to any E) ; gives a totally symmetric set in some GL4(Z)
with d < n. If this restricted totally symmetric set is non-degenerate, then by
induction we have kK < d+1 < n+ 1, as desired. Similarly, the maps induced by
A; on the quotients C"/E) ; are totally symmetric, and if they are nondegenerate,
induction applies.

We are thus left with the case where all restrictions and quotients associated
to each E) ; are identical. This is a strong condition. From here, the first author
and Salter use a variety of techniques to coax out totally symmetric sets of smaller
dimension. They then apply induction to obtain the bound & < n.

We now turn to the second statement of the theorem, the classification of totally
symmetric sets of size n + 1. The above argument shows that if £k = n + 1, there
must be an eigenvalue A and an index j so that the eigenspace arrangement {E; j}
corresponding to X = {A;} is nondegenerate. Moreover, Proposition implies
that this arrangement must be the standard totally symmetric configuration or the
dual to such.

Let ¢ : 3,41 > GL,(C) be a realization map for X = {A;}, by which we mean
that

#(0)Aip (o) = Ay

forall 0 € ¥,41 and all i € {1,...,k}. The elements of the image of ¢ must permute
the set {E}_ j ¥ | accordingly.

The first author and Salter show that, up to scaling, the only realization map for
the standard totally symmetric subspace configuration (or its dual) is the standard
representation ¥,.1 — GL,(C). Since the standard representation is irreducible,
no (proper) arrangement of eigenspaces can be degenerate, as such an arrangement
would give an invariant subspace.

The next step is to show that each A; has two eigenvalues. There are two
cases, namely, where {E; j }X | is the standard totally symmetric configuration and
its dual. To illustrate the idea, we treat the former case. Assume for the purposes
of contradiction that A is the only eigenvalue for the A;. In this case, C" is a
single Jordan block, and {E} ;} does not stabilize until j = n. But then if n > 2,
the generalized eigenspace {E) 2} would be a non-degenerate totally symmetric
collection of 2-dimensional subspaces with n + 1 elements. This is impossible by
Proposition

By the previous paragraph, we may assume that each A; has two distinct
eigenvalues, A and p. The standard representation ¢ : X,.1 -~ GL,(C) must be a
realization map for both {E 1} and {E,, 1}. Then both the A- and p-eigenspaces of
A; must be stabilized by ¢(Stab(i)), whose fixed subspaces are D; and Cv;. Since
Stab(i) - D, has no subrepresentations, the eigenspaces must be exactly D, and
Cuv;. The theorem follows.
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4. Totally symmetric sets in braid groups

In this section we use the theory of totally symmetric sets to outline a proof
of the following result originally due to Dyer—Grossman [14]. Our argument is a
modification of the one used by Kordek and the second author [19], simplified for
this special case.

For the statement, let o4,...,0,_1 denote the standard half-twist generators
for the braid group By, and let € be the automorphism of B,, given by o; ~ o;! for
all 7.

THEOREM 4.1 (Dyer—Grossman). For n >3 the automorphism € represents the
unique nontrivial outer automorphism of B, . In particular,

Aut(B,) 2 B,/Z(B,) xZ/2.

The original proof of this theorem by Dyer—Grossman has an algebraic flavor.
The proof we outline here, while only valid as stated for n > 5, uses combinatorial
topology and the theory of mapping class groups.

In what follows we consider B, as the mapping class group of the disk D,
with n marked points in the interior (not to be confused with the dihedral group!).
We will use a number of aspects of the theory of mapping class groups, including
the Nielsen—Thurston classification theorem, the canonical reduction systems of
Birman—Lubotzky—McCarthy, and the change of coordinates principle. We refer
the reader to the book by Farb and the second author of this article for background
on these topics [I5]. From the point of view of mapping class groups, the Dyer—
Grossman theorem can be stated as: every automorphism of B,, is induced by a
homeomorphism of D,,.

The outline for this section mirrors the one for SectionBl This stands to reason,
as we will be following the same blueprint.

A large commutative totally symmetric set. As per Step 1 of the blueprint, we
will require the services of a large (commutative) totally symmetric set in B,,. The
desired set is:

{017037057 v ;Um}
where m is n — 1 or n — 2, according to whether n is even or odd, respectively. As
such, the cardinality of this set is [2/2]. That this set is a totally symmetric set is an
application of the change of coordinates principle from the theory of mapping class
groups. We refer to any B,-conjugate of this totally symmetric set as a standard
totally symmetric set in B,,.

Crash course in Nielsen—Thurston theory. Briefly, the Nielsen—Thurston clas-
sification gives that every braid is periodic, pseudo-Anosov, or reducible. Periodic
braids have powers that are central in B,,; they correspond to rotations of D,,. Each
reducible braid preserves a multicurve, that is, the isotopy class of a collection of
pairwise disjoint and pairwise non-homotopic simple closed curves in D,,. Any such
multicurve is called a reduction system for the braid. Pseudo-Anosov braids do not
preserve any multicurve.

For a reducible braid b, we may restrict b to the complementary components,
and inductively apply the classification. Thus, there exists a reduction system with
the property that the associated restrictions are all periodic or pseudo-Anosov.
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There is in fact a unique minimal such reduction system, called the canonical re-
duction system CRS(b). We will use the following properties of canonical reduction
systems:

(1) for a,be B, we have CRS(aba™!) = a CRS(b), and
(2) if a and b commute then CRS(a) and CRS(b) have trivial geometric in-
tersection.

For the proof, the main points to keep in mind are that there is a map
CRS: B,, - {multicurves in D, },

and that this map satisfies the above two properties.

Totally symmetric configurations of multicurves. The configurations we will
use to address Step 2 of the blueprint are collections of multicurves in the disk
D,,. To each element g of B,, we associate its canonical reduction system CRS(g).
Then, to a totally symmetric set X = {g1,...,gr} we can associate the collection of
multicurves

{CRS(gl), ey CRS(g/C)}

Because X is totally symmetric, this multicurve configuration is totally symmetric
in the sense that for any o € X there is a braid g, so that

9o - (CRS(g1),---,CRS(gx)) = (CRS(go(1)); - - -» CRS(go(x)))

(using the first property of CRS above). When X is a commutative totally sym-
metric set, the multicurves CRS(g;) have trivial intersection pairwise (using the
second property); in what follows, we refer to such a collection as a noncrossing
multicurve configuration.

In the original work of Kordek and the second author, they associate a single
labeled multicurve to X instead of a configuration of multicurves. This is equivalent,
but we take this point of view to make the analogy with GL,,(C) more clear.

Large noncrossing totally symmetric multicurve configurations. We now turn
towards Step 2 of the blueprint. Let us realize D,, at the closed unit disk in the
complex plane, with all marked points on the real axis. For 1 <i<n -1, let ¢; be
the isotopy class of curves corresponding to a round circle surrounding the ith and
(i + 1)st marked points. The curves are chosen precisely so that CRS(c;) is equal
to ¢;. We define the following noncrossing totally symmetric multicurve in D,,:

Mn = {61,637 e }

This is the noncrossing totally symmetric multicurve configuration associated to
the totally symmetric set {c1,03,...} in B,.

There are two variations on M,, that we will need to consider. First, we have
the dual totally symmetric configuration

My = {{e1)® {es}C,
where {c;}C is the complementary configuration to ¢; in M,,. In other words, {c;}©
is the multicurve whose components are all the curves appearing in M,, except for
C;.
Second, when n is odd, we have the totally symmetric labeled multicurve

M, = {{c1,d}, {5, d},...},
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where d is represented by the round curve surrounding the first n—1 marked points.
Finally, we can combine these two variations in order to obtain

M= {{c1}Cu{d}, {c3}Cu{d},...}.

That all of these multicurve configurations are totally symmetric follows again from
the change of coordinates principle.

Kordek and the second author prove [19] Lemma 2.3] that in fact these are the
only examples of large noncrossing totally symmetric multicurve configurations in
D,,. In the statement, a configuration of multicurves {my,...,my} is degenerate if
two m; are equal.

PROPOSITION 4.2 (Kordek-Margalit). Let M = {m1,...,my} be a nondegener-
ate, noncrossing, totally symmetric multicurve configuration in D, with k= |n/2].
Then M is B,,-equivalent to one of M,,, M), My, or M.

The main idea of the proof is as follows. Suppose that some m; contains a
curve ¢! surrounding p marked points. By total symmetry each of the m; contains
such a curve. Then if p > 2 it must be that these ¢! are not distinct (otherwise
the noncrossing condition would be violated). We are then led to consider the
case that some curve ¢ surrounds exactly p marked points and lies in exactly d of
the m;. Again applying total symmetry, there must be (S) such curves, all with
pairwise trivial geometric intersection, and all surrounding p marked points. But
for d < k, the quantity (S) is quadratic in k = |n/2], hence quadratic in n. Again,
this violates the noncrossing condition (there are in fact at most n — 2 pairwise
non-isotopic curves in D,, with pairwise trivial geometric intersection). It follows
that the only possibilities are that each curve appearing in an m; surrounds exactly
two marked points, or it lies in all the m;. From here the proof is straightforward.

Large commutative totally symmetric sets. Continuing with Step 2 of the blue-
print, we now explain how Proposition is used to classify large commutative
totally symmetric sets in B,.

To each noncrossing totally symmetric multicurve configuration M,,, M, M,
and M;{ , there is an associated commutative totally symmetric set in B,,, namely:

Zy ={o1,03,...}, Z) ={o0],05,...},
Z\n = {Ule,JgTd,...}, and Z\; = {Ude,O';Td,...}.

Here o is the product of the elements of Z,, not equal to o; and T} is the Dehn
twist about the curve used in the definitions of M, and M}. We refer to any
B,,-conjugate of any of these as a standard commutative totally symmetric set in
B,.

We can modify any of the standard totally symmetric sets by raising all elements
to the same nonzero power. We can also modify them by multiplying all elements
of the set by the same power of z, a generator for the (cyclic) center of B,,. We refer
to any totally symmetric set obtained in this way as a modification of a standard
commutative totally symmetric set in B,,. Kordek and the second author prove the
following [19] Lemma 2.6].

PROPOSITION 4.3. Let n >3 and let k = [n/2]|. Any commutative totally sym-
metric set X in B,, with |X|=k is a modification of a standard one.
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To prove the proposition, we of course first use the fact that, through canonical
reduction systems, X gives rise to a noncrossing totally symmetric multicurve con-
figuration. We then use Proposition to reduce to the four cases of multicurve
configurations given there.

We then treat the four cases in turn. For the case CRS(X) = M, the idea is
as follows. Say that X is {g1,...,gx}. Up to conjugation in B,, we may assume
that CRS(g;) is equal to cg;-1. Note that this is the canonical reduction system of
09;_1, the ith element of Z,.

We would like to show that X is equal to Z,. On the exterior of ¢; the element
g1 is either the identity, periodic, or pseudo-Anosov. But since g; commutes with
the other g;, it must fix the curves cs,cs,... There is no (nontrivial) periodic or
pseudo-Anosov map that can fix these curves. It follows that this exterior compo-
nent of ¢ is trivial, and hence that g, is equal to U{ z® for some nonzero ¢ and some
s. The other three cases are similar.

Proof of Theorem 1] assuming Proposition L3l Let p: B,, - B, be an auto-
morphism. By Lemma 2] the image of Z,, = {01,03,...} is either a singleton or
a commutative totally symmetric set of the same size. In the first case, it follows
that p has cyclic image. Indeed, for n > 5 the normal closure of oy03! is B!, and
B, /B}, =2 Z. Thus, we may henceforth assume that p(Z,) is a commutative totally
symmetric set of cardinality |Z,|.

By Proposition[£3] p(Z,,) is conjugate to a modification of Z,,, Z:, Zn, OF Z’;
Let us consider the first case. Up to conjugating p, we may assume that p(Z,) is
exactly a modification of Z,, that is,

p(o;) = otz
for all odd 1.
For i even, we then have that p(c;) is conjugate to o¥z°. So each such p(o;) is
equal to H, ﬁizs, where H,, is the half-twist about a curve a;.

It is a fact that if H, and H;, are the half-twists about curves a and b in D,,,
and they satisfy the braid relation

Lyl 7l L7l 1yl
HaHbHa = HbHaHb7

then i(a,b) = 2 and ¢ = +1; see [5l, Lemma 4.9]. Up to the exceptional automor-
phism €, we may assume that ¢ = 1. It then further follows that s = 0, since an
automorphism of B,, must preserve word length, that is, it respects the abelianiza-
tion B,, > Z.

It also follows that the sequence of curves

C1,02,C3,04, ...

is a chain, meaning that consecutive curves intersect twice and all other pairs of
curves have trivial geometric intersection. Up to automorphisms of B,,, we then
have (by change of coordinates)

p(oi) =0y
for all 7. In other words, up to modifying p by automorphisms, it is the identity.

This completes the proof in the first case. Using similar reasoning, we rule out the
other three possibilities for p(Z,), completing the proof.
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From braid groups to mapping class groups. Chen—Mukherjea [11] use a similar
approach to classify homomorphisms from the braid group B,, to the mapping class
group Mod(S;) when g <n—-2. As a corollary, they partially recover the result of
Aramayona—Souto [I] classifying homomorphisms Mod(S,) - Mod(S},) for h < 2g.

5. Finite quotients of braid groups and mapping class groups

In 1947, Emil Artin [3] proved that for n > 5 every non-cyclic homomorphism
B, — X, is standard. This means that up to conjugacy, the map sends o; to the
transposition (¢ i+1) for all i. His proof uses Bertrand’s postulate, a deep fact from
number theory which states that every interval [n,2n] contains a prime number.
Artin wrote: “it would be preferable if a proof could be found that does not make
use of this fact.”

Kolay [17] found in 2021 a short, elementary proof of Artin’s theorem, and in
fact proved more. In the statement, we say that a quotient map is minimal if there
is no quotient map whose codomain has smaller cardinality.

THEOREM 5.1 (Kolay). Let n>3. Up to conjugacy, there is a unique minimal
non-cyclic quotient of B,,, namely, the standard map B, — %, for n # 4 or the
standard map By — X3.

In 2019 the second author of this paper had asked: What is the smallest non-
cyclic quotient of B, ? Is it ¥, ¢ Kolay’s theorem answers this in the affirmative.

We give Kolay’s stunningly simple proof below. The main ingredients are (1) a
large collapsing set in B,, and (2) the orbit-stabilizer theorem. While Artin never
defined collapsing sets, he certainly had all of the tools to prove Kolay’s theorem.
It is remarkable that 74 years passed in between the two works.

Before Kolay’s work, partial answers to the second author’s question were
given by Chudnovsky—Kordek-Li-Partin [12], Caplinger-Kordek [8], and Scherich—
Verberne [22].

5.1. Braid groups. In this section we explain Kolay’s proof of Theorem [B.1],
and in the next we explain how Kolay applied the same ideas to the case of the
mapping class group.

Collapsing sets. Let G be a group. We say that a subset X ¢ G is a collapsing
set if for every group homomorphism f : G — H the restriction f|X is either
injective or constant. This notion is a generalization of totally symmetric sets.
Indeed, Lemma [Z.1] implies that every totally symmetric set is a collapsing set.

We also remark that under any homomorphism, a collapsing set maps to a
collapsing set. Therefore, there is an analogous blueprint for collapsing sets, an
idea that seems to be unexplored.

Strong collapsing sets. Let G be a group and let X = {x1,...,25} € G be a
subset. We say that X is a strong collapsing set if

G/{xi;")

is abelian for all pairs {i,j}. This is the same as saying that the normal closure of
each xw;l contains the commutator subgroup [G,G]. If the x; are all conjugate,

the xz;z;" lie in [G,G] and so each G/(z;x;') must exactly be the abelianization
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of G. It follows from this that a strong collapsing set of conjugate elements is a
collapsing set, since conjugate elements in an abelian group are equal.

A large collapsing set. Similar to Step 1 of the totally symmetric set blueprint,
we will make use of a large strong collapsing set in B,, for n > 5.

For each unordered pair I = {i,5} € {1,...,n} let o; denote the half-twist in
B,, given by the counter-clockwise exchange of the ith and jth marked points in
the upper half of D,,. If I and J are distinct ordered pairs then 010}1 is conjugate
in B, to exactly one of the following: o105, o103', or b= 0{1,3}052174}.

We claim that for n > 5 the normal closure of any of these three elements in
B,, is the commutator subgroup Bj,. For the first two elements, this is a standard
fact. Similarly, the commutator [b,04] both lies in the normal closure of b and
is conjugate to oy05t. It follows that the normal closure of b is again B/,. (An
alternate, but equivalent, proof of the claim is given by the well-suited arc criterion
of Lanier and the second author [10, Lemma 6.2].)

It follows from the claim that the set of all o is a strong collapsing set for B,,.
We refer to this as the standard strong collapsing set for B,, and denote it X,.

Two basic group theory facts. In the proof of Theorem [B.J] we will use the
following fact:

(1) If f:Z x H - G is a group homomorphism, and t denotes a
generator of Z, then f(t) ¢ f(H) if and only if
|f(ZxH)|>2|f(H)|
This fact is true because both conditions are equivalent to the statement that
f(@&)f(H) is a nontrivial coset of f(H) in f(Zx H). We will also use the following;:
(2) If G is a group, then Z(QG) is nontrivial if and only if
|G| > 2|G/Z(G)).

This is true because if Z(G) is nontrivial then each coset has at least two elements.
While both statements make sense for infinite groups, we will only apply them when
G is finite.

Base cases. We can prove the n = 3 and n = 4 cases of Theorem [B.1] by direct
inspection. Because the abelianization of B,, is cyclic, a non-cyclic quotient of B,,
is non-abelian. The only non-abelian group of order 6 or less is 3. Thus, all other
finite non-abelian quotients of B3y and By have order strictly greater than 6.

To see that the standard maps By — Y3 and By — Y3 are unique up to au-
tomorphisms of 33, we simply check that (up to automorphisms of X3) the only
ordered pair of elements of X5 satisfying the braid relation is ((1 2),(2 3)).

Extension of the n =4 case. We also will require the following statement:
If f: By - G is a quotient map that is injective on X, then
|G| > 4!. Further, if |G| = 4! then G = X4 and f is standard.
Since this can be easily proved with a computer, we omit the proof (although it is
a fun exercise to do it by hand!).

KoLAY’S PROOF. We prove the theorem by induction on n, with the base cases
n =3 and n =4 (and the extension of the latter) handled as above.
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Let f: B,, > G be a non-cyclic quotient map. Let X, be the standard strong
collapsing set in B,,. The group G = f(B,) acts by conjugation on the conjugacy
class of f(o1) in G. To prove that |G| > n!, we will apply the orbit-stabilizer theorem
to this action. A further analysis will give the statement that f is conjugate to the
standard map to X,,.

For the orbit-stabilizer argument there are, naturally, two steps. Specifically,
if O c G and S € G are the orbit and stabilizer of f(o1) then we will show that

0] > (’;) and [S]>2- (n-2)\.

Orbit. Since X, is a strong collapsing set, and since G is not cyclic, it follows
that |£(X,)| = [Xn| = (3). In particular |O] > (7).

Stabilizer. We consider the action of B,, on itself by conjugation. The stabilizer
of o1 in B,, contains a subgroup

(Ula03a04a s ;0-'nﬁl> = 7 x Bn72~

The image f(Z x B,,—2) is a subgroup of S. We would like to bound the cardinality
of this image from below. We treat two cases, according to whether f(oy) lies in
f(Bn72)'

By induction we may assume that |f(Bp-2)| > (n—2)!. Indeed, if f(B,-2) were
cyclic, then f would be cyclic, contrary to assumption. We will use this assumption
in both cases.

CASE 1 (f(o1) ¢ f(Bn-2)). By the first basic group theory fact above, we have
12 [f(Z x Bn2)| 2 2/f(Bn-2)| 2 2(n - 2)!
as desired.

CASE 2 (f(0o1) € f(Bn-2)). In this case f(Z x B,—2) = f(Bp-2). Since f is
nontrivial, f(oy) is nontrivial. Since o; lies in the centralizer of B,,_s it must be
that f(o1) lies in the center of f(Bj-2). In particular, Z(f(B,-2)) is nontrivial.

We claim that f(B,-2)/Z(f(Bn-2)) is not cyclic. Indeed, if it were cyclic
then f(Bj-2) would be abelian (for any group G, if G/Z(G) is abelian then G
is). The abelianization of B,,_» is cyclic, and so any abelian quotient of it is cyclic.
In particular, f(B,_2) is cyclic. It then follows that f(B,) is cyclic, contrary to
assumption.

By the claim, the group f(Bn-2)/Z(f(Bn-2)) is a non-cyclic quotient of B,_s.
By induction, its order is bounded below by (n —2)!. By the second basic group
theory fact, we have

181 |£(Z % Buea)| = |f(Bu2)| > 2f (Bues) | Z(F(Bu-2))| > 2(n - 2)!

We may now complete the proof of the first statement. By the orbit-stabilizer
theorem, we have

G| > £(By) = |0]IS] > (;’)2 A(n-2)! = @ 2. (n-2)! = nl
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The first statement, n = 6 case. For n = 6 the argument is the same, except
we must use the extension of the base case n = 4. Since we may assume that f is
injective on Xg, it is injective on the copy of X, associated to By < Bg. Hence the
size of the stabilizer S is bounded below by 2 -4!.

The second statement. To prove the stronger statement that any quotient of
B,, with order n! is the standard one, it suffices to show that the f(o;) have order
2 (because the quotient B, — B, /{0?) = ¥, is the standard quotient). But this is
true because in order to realize the lower bound |S| > 2- (n —2)! it must be true by
induction that f(B,-2) is the standard quotient. O

5.2. Mapping class groups. We now turn our attention to the analogue
of Theorem [51] for mapping class groups. The natural action of Mod(S,) on
H;(Sy;F2) gives rise to a representation

Mod(S) — Spag (F2).

The order of the latter group is

g9

Sy (F2)| = 29" [](2% - 1).
=1

Remarkably, we again have that the most natural small quotient is the smallest.

THEOREM 5.2 (Kielak—Pierro). Let g > 1. Up to conjugacy, there is a unique
minimal non-cyclic quotient of Mod(Sy), namely, the standard map Mod(S;) —

Sp2g (IFQ) :

This theorem was conjectured by Zimmermann [23] in 2012. Kielak—Pierro [16]
proved it in 2019, using the approach established by Baumeister—Kielak—Pierro [4]
in their work on the analogous problem about outer automorphisms of free groups.

The Kielak—Pierro proof of Theorem relies on the classification of finite
simple groups and the representation theory of the mapping class group, as well
as the deep work of Berrick—Gebhardt—Paris [6], which itself uses the Matsumoto
presentation of the mapping class group. It is astonishing that Kolay’s argument
for the braid group applies with little modification to prove the same theorem.

Again, the keys to Kolay’s proof of Theorem [5.2] are the construction of a large
strong collapsing set in Mod(S,), and an orbit-stabilizer argument.

The general outline is closely analogous to the argument for the braid group.
Even the description of the large collapsing set constructed in Step 1 is similar.
Several new tools are required. We introduce these in turn as we go.

Reduction to the open case. Let S, ; denote the surface with one boundary com-
ponent obtained from S, by removing the interior of an embedded disk. Since
Hl(S;;IFg) is naturally isomorphic to H1(S,;F2) we also have a natural map

MOd(S;) - Sp2g(]F2)'
By filling the disk back in, we also obtain a quotient map
Mod(S;) = Mod(Sy).

In general if (within some class of groups) G is the smallest quotient of a group M,
and M is a quotient of M; that also has GG as a quotient, then G is the smallest
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quotient of M (in that class of groups). Thus to prove Theorem it suffices to
prove the analogous statement for Mod(S;).

The base case. The base case for the Mod(S; )-version of Theorem is the
case g = 1. In this case Dehn [13, p. 172] proved that Mod(S;) = Bs. By Theo-
rem [5.T] the smallest non-cyclic quotient of this group is X3 = Spy(F3), as desired.
(One way to prove the last isomorphism is to use the formula for the cardinality of
Spy(F2) and apply Theorem [B.11).

A well-suited curve criterion. We now turn our attention to Step 1. In the braid
group case, the construction of the large strong collapsing set used the well-known
fact that for ¢ # j the quotient

By [{oio5")

is cyclic. To mimic this step, we will use the following fact:
Let f € Mod(S,) and suppose ¢ is a curve with i(c, f(c)) = 1.
Then the normal closure {(f) contains the commutator subgroup
Mod(S;)" and
Mod(S,)/{(f)

is cyclic.

This fact is an instance of the well-suited curve criterion of Lanier and the second au-
thor [20, Lemma 2.1]. While their argument is given explicitly for Mod(.Sy), it ap-
plies verbatim for Mod(S’;). The key points are that—Ilike Mod(Sy)—the abelian-
ization of Mod(S,) is cyclic for g > 1 and—like Mod(Sy)—the group Mod(S}) has
a generating set consisting of Dehn twists about curves that have pairwise inter-
section at most 1. (In the construction of the large strong collapsing set for B,, we
noted that we could have used the well-suited arc criterion in the proof. Similarly,
it is true here that we can give a proof that mimics the braid group case more
closely. We leave it to the reader to decide which approach they prefer.)

The hyperelliptic involution and mod 2 homology. A hyperelliptic involution of
S; is a homeomorphism ¢ of order two with 2¢+1 fixed points. The quotient S;/ (¢)
is Dog41, the disk with 2g + 1 marked points. These marked points are the images
of the fixed points of . We denote the set of marked points by P.

Let D3,,; denote the disk with 2g + 1 punctures obtained by removing P.
The homology group Hy(D3,,;) = (F2)29*1 has a canonical generating set, namely,
the classes represented by small loops around the punctures. This gives rise to a
canonical homomorphism

Hl(D;g+1) - Iy,
whereby each of these generators maps to 1. We denote the kernel of this map by
Hi(D5,,1;F2)"*". The elements of this kernel are exactly the ones represented by
simple closed curves in D41 surrounding an even number of marked points.

We will define a map

U Hi (S Fs) » Hy(D3y,1:F2)

as follows. Given v € Hl(S;;IFg), we may represent v by a simple closed curve ¢
that avoids the fixed points of «. The image of ¢ in Dyg4.1 represents an element of
Hy(D5,1;F2).
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Arnol’d [2] gave the following (easy-to-prove but) remarkable fact:

The map ¥ is an isomorphism
U Hi(S);F2) > Hi(D5,,03F) "

The map W' can be described as follows. Given an element v of Hy(D3,,q;F2
we represent it by a simple closed curve ¢, and U1 (v) is the class represented by
one component of the preimage of c.

Say that a subset of P is even if it has an even number of elements. By the
above discussion we have natural bijections

Hi (D313 F2)" Hl(S;;]Fg) < {even subsets of P}

)CVCI]

Further, the nonzero elements of Hl(S;;IFg) correspond to the nonempty even
subsets of P.

The large collapsing set. Let us represent Doy, as a disk with the points of P
lying on a circle. For each nonempty subset A € P there is, up to isotopy, a unique
curve c4 in Dygyq that bounds a convex disk containing exactly the points of P
contained in A.

If A is even then the preimage of ¢4 in S; has exactly two components. We
choose one of these (arbitrarily) and call it ¢4.

We will show that the set of Dehn twists

Xy={T:,| AcPeven, A3}

is a strong collapsing set in Mod(S}).
In order to prove this, we take A and B to be distinct nonempty even subsets
of P, and we assume that
f:Mod(S)) -~ G
is a homomorphism with
f(Ten) = f(T5p).
For any choices of A and B, there exists an arc ¢ in Dy, that connects two marked
points, that intersects ¢4 in one point, and that is disjoint from cg. To check this,
we consider two cases, according to whether or not Au B is a proper subset of P or
not. In the first case, let p € P\ (Au B); we take ¢ to connect p to a point g € A. If
AuB = P, then since A and B are even there is a point p in An B, and ¢ connects
any such p to a point ¢ € A\ B.
The preimage of ¢ in S; is a simple closed curve ¢ with i(¢,é4) = 1 and i(¢,¢g) =
0. It follows that
i(6,Te, T3 () = (6, Tx, (€)) = 1.

CA—~cp
By the above well-suited curve criterion, we conclude that X, is a strong collapsing
set, as desired.
A derivative collapsing set. Say that two elements of the strong collapsing set
X, are dual if the corresponding curves have intersection number 1 (equivalently if
they have algebraic intersection number 1). We define

X, ={(z,y) € Xy x X, |z is dual to y}.

The set X is a collapsing set in the following sense: if f : Mod(S, 1) - (G is a non-
cyclic homomorphlsm then each f(x,y) is an ordered pair of distinct elements, and
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if the f-image of any two elements of X ; coincide, they all coincide. Both of these
statements follow from the fact that X, is a collapsing set.

Since X, is in bijection with the nonzero elements of Hl(S;; Fy), it has 229 — 1
elements. Given one nonzero element of Hy (.S, gl; F3), there is a codimension-1 affine
subspace of H1(Sy;F2) corresponding to dual elements in H1(S;;IE‘2). Thus we
have

X = (220 - 1) 2P
We are finally ready for the proof of the Kielak—Pierro theorem.

Proof of Theorem [5.2l. We proceed by induction on g. We already checked the
base case g = 1. Assume then that the theorem holds for Mod(S;) with g > 1. We
will show that it holds for Mod(S,, ;).

Let f: Mod(S; +1) = G be a non-cyclic quotient. We use essentially the same
orbit-stabilizer argument that was used in the proof of Theorem £l The group G
acts by conjugation on the set of ordered pairs of elements of G. Because X ; 41 18
a collapsing set in the sense described above, the orbit is bounded below by

£l = X = (22070 =1 220D = (226D 1) g2

The stabilizer contains a copy of the image of Mod(S;). By induction this gives a
lower bound of .
F(Mod (S| > 29" T(2% - 1).
i=1
Multiplying these together gives the desired bound

+1
2(9+1)* g]’I(Q% ~1).
=1

For this bound to be realized, the elements of X, must map to elements of order 2.
From there it follows that the quotient is Spy(,.1)(F2). This completes the proof.

A final lament. Kolay’s proof of Theorem goes through the derived collaps-
ing set X ;. An analogous argument can be used to give an unnecessarily compli-
cated proof of Theorem [B1] (about braid groups). The situation suggests to the
authors that there should be a proof of Theorem that uses X, directly, and
decreases genus in two inductive steps. We were not able to find such a proof. We
implore the reader to find one.

6. Speculations and representations

As suggested to us by Kordek, there is a strong analogy between the collision-
implies-collapse property and Schur’s lemma from representation theory. We can
give weight to this analogy as follows.

A homomorphism f : G - H induces a linear map f, : C[G] -» C[H]. The
vector spaces C[G] and C[H] come equipped with a G-action and an H-action,
respectively, where both groups act by conjugation on the basis elements. If X ¢ G
is a totally symmetric set with |X| = k, and Gx is the stabilizer of X in G, then
C[X] is a representation of Gx. By total symmetry Gx surjects onto X, and
so C[X] is a representation of Gx; in fact this representation factors through the
permutation representation of ¥ on C[X]. On the other hand, the vector space
C[f(X)] is a representation of f(Gx) S Hy(x). Lemma 2Tl implies that the latter
representation has either the same dimension as C[X] or it has dimension 1. This
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statement can be derived from Schur’s lemma using the following three facts: (1) the
first representation factors through 3, (2) f. intertwines the two representations,
and (3) the permutation representation of Xy, is the direct product of two irreducible
representations of ¥, namely, the standard representation and the trivial one.

Other groups. Because total symmetry can be understood within representa-
tion theory as above, we are led to speculate on which aspects of representation
theory can be brought to bear in the theory of totally symmetric sets. To begin, we
know that, while the representation theory of the symmetric group is rich in and
of itself, there is a broad landscape of representations of various groups.

QUESTION 1. To what extent, and to what end, can the theory of totally
symmetric sets be generalized to arbitrary groups besides ;7

As an example of what we have in mind, we note that there is no lift of the
totally symmetric set {(1 )} € X, to a totally symmetric set in B,,. On the other
hand, there is a lift to a cyclically symmetric set, that is, a set with an action of
Z[(n-1). Similarly, there are large sets of Dehn twists in Mod(S,) that carry an
action by the dihedral group D»,. How can these sets be used in the classification
of homomorphisms between braid groups and mapping class groups?

Ezxtending the analogy to representation theory. Because of the connection be-
tween totally symmetric sets and representation theory described above, it is nat-
ural to ask which notions from representation theory have analogues for totally
symmetric sets.

QUESTION 2. Which of the concepts in representation theory—direct sum,
direct product, tensor product, etc.—have analogues in the theory of totally sym-
metric sets?

Already in their work, Salter and the first author give versions of subrepresen-
tations and induced representations for totally symmetric sets [9].

Multiple totally symmetric sets. The arguments presented in this paper are car-
ried out by analyzing the action of a homomorphism on a single totally symmetric
set or collapsing set. But many groups, such as the braid group, contain totally
symmetric sets that are compatible in some sense (for instance, elements either
commute or braid).

QUESTION 3. How can multiple totally symmetric sets in a group be used to
give stronger constraints on homomorphisms than can be obtained with a single
totally symmetric sets?

One step in this direction is taken in the work of Scherich—Verberne, where they
study homomorphisms of virtual, welded, and classical braid groups by considering
multiple totally symmetric sets at once [22].

Bounds on representations. As we have seen, the fact that X, has a totally
symmetric set of cardinality n — 1 can be used, along with the work of the first
author and Salter, to give a lower bound on the dimension of a non-cyclic linear
representation of ¥,,. We are curious to what extent this line of reasoning holds for
other groups.
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As a first test case, we might consider the monster group M. The smallest
nontrivial representation of M has dimension 47-59-71 = 196,883. Based on the
case of the symmetric group, one might hope that this is because M contains a
totally symmetric set of cardinality 196,883. But we already showed in Section
that M cannot contain a totally symmetric set whose cardinality is greater than 43.

QUESTION 4. What are the largest totally symmetric sets of the monster group?
Can they give insight into the 196883-dimensional representation?

It is tantalizing that totally symmetric sets might give new insights into the
notoriously mysterious monster group. And similarly for other groups, discovered
and not.

Acknowledgments

We are grateful to Michael Griffin, Koichi Oyakawa, Larry Rolen, Shuxian Song,
Isabelle Steinmann, and an anonymous referee for helpful comments and conversa-
tions. We would also like to thank Lei Chen, Kevin Kordek, Justin Lanier, Dan
Minahan, and Nick Salter for enlightening conversations about totally symmetric
sets.

References

[1] Javier Aramayona and Juan Souto, Homomorphisms between mapping class groups, Geom.
Topol. 16 (2012), no. 4, 2285-2341, DOI 10.2140/gt.2012.16.2285. MR3033518
[2] V.1 Arnol'd, A remark on the branching of hyperelliptic integrals as functions of the param-
eters (Russian), Funkcional. Anal. i Prilozen. 2 (1968), no. 3, 1-3. MR244266
[3] E. Artin, Braids and permutations, Ann. of Math. (2) 48 (1947), 643-649, DOI
10.2307/1969131. MR20989
[4] Barbara Baumeister, Dawid Kielak, and Emilio Pierro, On the smallest non-abelian
quotient of Aut(Fy), Proc. Lond. Math. Soc. (3) 118 (2019), no. 6, 1547-1591, DOI
10.1112/plms.12232. MR3957829
[5] Robert W. Bell and Dan Margalit, Braid groups and the co-Hopfian property, J. Algebra 303
(2006), no. 1, 275-294, DOI 10.1016/j.jalgebra.2005.10.038. MR2253663
[6] A. J. Berrick, V. Gebhardt, and L. Paris, Finite index subgroups of mapping class
groups, Proc. Lond. Math. Soc. (3) 108 (2014), no. 3, 575-599, DOI 10.1112/plms/pdt022.
MR3180590
[7] Noah Caplinger, Large totally symmetric sets, New York J. Math. 29 (2023), 931-938.
MR4627651
[8] Noah Caplinger and Kevin Kordek, Small Quotients of Braid Groups, E-prints,
arXiv:2009.10139, 2020.
[9] Noah Caplinger, Large totally symmetric sets, New York J. Math. 29 (2023), 931-938.
MR4627651
[10] Lei Chen, Kevin Kordek, and Dan Margalit, Homomorphisms between braid groups,
arXiv:1910.00712, Oct 2019.
[11] Lei Chen and Aru Mukherjea, From braid groups to mapping class groups, Math. Z. 303
(2023), no. 2, Paper No. 27, 26, DOI 10.1007/s00209-022-03167-5. MR4527842
[12] Alice Chudnovsky, Kevin Kordek, Qiao Li, and Caleb Partin, Finite quotients of braid groups,
Geom. Dedicata 207 (2020), 409-416, DOI 10.1007/s10711-019-00505-6. MR4117579
(13] M. Dehn, Die Gruppe der Abbildungsklassen (German), Acta Math. 69 (1938), no. 1, 135—
206, DOI 10.1007/BF02547712. Das arithmetische Feld auf Flachen. MR1555438
[14] Joan L. Dyer and Edna K. Grossman, The automorphism groups of the braid groups, Amer.
J. Math. 103 (1981), no. 6, 1151-1169, DOI 10.2307/2374228. MR636956
[15] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical
Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR2850125
[16] Dawid Kielak and Emilio Pierro, On the smallest non-trivial quotients of mapping class
groups, Groups Geom. Dyn. 14 (2020), no. 2, 489-512, DOI 10.4171/GGD/552. MR4118626

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://mathscinet.ams.org/mathscinet-getitem?mr=3033518
https://mathscinet.ams.org/mathscinet-getitem?mr=244266
https://mathscinet.ams.org/mathscinet-getitem?mr=20989
https://mathscinet.ams.org/mathscinet-getitem?mr=3957829
https://mathscinet.ams.org/mathscinet-getitem?mr=2253663
https://mathscinet.ams.org/mathscinet-getitem?mr=3180590
https://mathscinet.ams.org/mathscinet-getitem?mr=4627651
https://arxiv.org/abs/2009.10139
https://mathscinet.ams.org/mathscinet-getitem?mr=4627651
https://arxiv.org/abs/1910.00712
https://mathscinet.ams.org/mathscinet-getitem?mr=4527842
https://mathscinet.ams.org/mathscinet-getitem?mr=4117579
https://mathscinet.ams.org/mathscinet-getitem?mr=1555438
https://mathscinet.ams.org/mathscinet-getitem?mr=636956
https://mathscinet.ams.org/mathscinet-getitem?mr=2850125
https://mathscinet.ams.org/mathscinet-getitem?mr=4118626

TOTALLY SYMMETRIC SETS 155

[17] Sudipta Kolay, Smallest noncyclic quotients of braid and mapping class groups, Geom. Topol.
27 (2023), no. 6, 2479-2496, DOI 10.2140/gt.2023.27.2479. MR4634752

[18] Kevin Kordek, Lily Qiao Li, and Caleb Partin, Upper bounds for totally symmetric sets,
Involve 14 (2021), no. 5, 853-870, DOI 10.2140/involve.2021.14.853. MR4384026

[19] Kevin Kordek and Dan Margalit, Homomorphisms of commutator subgroups of braid groups,
Bull. Lond. Math. Soc. 54 (2022), no. 1, 95-111, DOI 10.1112/blms.12560. MR4396925

[20] Justin Lanier and Dan Margalit, Normal generators for mapping class groups are abundant,
Comment. Math. Helv. 97 (2022), no. 1, 1-59, DOI 10.4171/cmh/526. MR4410724

[21] Michael Lonne, Fundamental groups of projective discriminant complements, Duke Math. J.
150 (2009), no. 2, 357-405, DOI 10.1215/00127094-2009-055. MR2569617

[22] Nancy Scherich and Yvon Verberne, Finite image homomorphisms of the braid group and its
generalizations, Glasg. Math. J. 65 (2023), no. 2, 430-445, DOI 10.1017/S0017089523000022.
MR4625994

[23] Bruno P. Zimmermann, On minimal finite quotients of mapping class groups, Rocky Moun-
tain J. Math. 42 (2012), no. 4, 1411-1420, DOI 10.1216/RMJ-2012-42-4-1411. MR2981051

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, 5734 UNIVERSITY AVE., CHICAGO,
ILLINOIS 60637
Email address: nccaplinger@gmail.com

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, 1326 STEVENSON CENTER LN,
NASHVILLE, TENNESSEE 37240
Email address: dan.margalit@vanderbilt.edu

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


https://mathscinet.ams.org/mathscinet-getitem?mr=4634752
https://mathscinet.ams.org/mathscinet-getitem?mr=4384026
https://mathscinet.ams.org/mathscinet-getitem?mr=4396925
https://mathscinet.ams.org/mathscinet-getitem?mr=4410724
https://mathscinet.ams.org/mathscinet-getitem?mr=2569617
https://mathscinet.ams.org/mathscinet-getitem?mr=4625994
https://mathscinet.ams.org/mathscinet-getitem?mr=2981051

	Totally Symmetric Sets
	1. Introduction
	2. Totally symmetric sets and the blueprint
	3. Totally symmetric sets in the general linear group
	4. Totally symmetric sets in braid groups
	5. Finite quotients of braid groups and mapping class groups
	6. Speculations and representations
	Acknowledgments
	References


