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Sharp bounds for multiplicities
of Bianchi modular forms

By WEIBO Fu

Abstract

We prove a degree-one saving bound for the dimension of the space of
cohomological automorphic forms of fixed level and growing weight on SL2
over any number field that is not totally real. In particular, we establish a
sharp bound on the growth of cuspidal Bianchi modular forms. We transfer
our problem into a question over the completed universal enveloping alge-
bras by applying an algebraic microlocalization of Ardakov and Wadsley
to the completed homology. We prove finitely generated Iwasawa modules
under the microlocalization are generic, solving the representation theo-
retic question by estimating growth of Poincaré-Birkhoff-Witt filtrations
on such modules.
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Let F' be a number field of degree r = r1 + 2ro, with r1 real places and ro
complex places. Let Fiw = F' ®g R, so that SLy(Fu) = SLa(R)™ x SLa(C)"2.
Let Z be the centre of SLo(Fi), K¢ be a compact open subgroup of SLa(A%),

and let
X(Kf) = SLQ(F)\SLQ(AF)/KJCZOO
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If k = (k1,...,kr+ry) is an (11 + 72)-tuple of positive even integers, we de-
fine Wy to be the representation of SLy(F) obtained by taking the tensor
product of the representation Sym*~2 of SLy(F,,) when v; is a real place and
the representation Sym*/?~! @ %ki/ 1 of SLa(F,,) when v; is a complex
place. We also use Wy to denote the local system on X (K¢) coming from the
representation Wy. We let Si(K¢) be the space of cohomological cusp forms

on X (Ky) with weight k. We define A(k) to be

A(k) = H ki X H k22 .
1<e<ry r1<i<ri+ra
In this paper, we will adapt p-adic algebraic methods to study the growth
of dimension of Sk(Ky) as k varies and K is fixed.

When F is totally real, Shimizu [Shi63] has proven that
dime Sk(Ky) ~ C - A(k)

for some constant C' independent of k.
When F is not totally real, the growth rate of dimc Sk (K) is wildly open.
The first non-trivial bound is given by a trace formula method:

(1) dime Sk(Kyf) = o(A(k)).

CONJECTURE 1.1. If F is imaginary quadratic, k = (k), there exists a
constant ¢ depending only on Ky such that for k > 1,

dime Sk (Kyf) < c-k.

This conjecture is supported by experimental data of Finis—Grunewald—
Tirao [FGT10] and the work of Calegari-Mazur [CM09] (for Hida families).
Under mild conditions, such an upper bound of linear growth rate is sharp
from the base change of classical elliptic modular forms.

In this paper, we prove this conjecture by giving a polynomial saving
improvement of (1).

If F' is imaginary quadratic, Finis, Grunewald and Tirao [FGT10] estab-
lished the bounds

k2
k < dime Sk(Ky) <k, mh k = (k)

for suitable K using base change and the trace formula respectively. In [Mar12],
Marshall improved (1) by a power saving bound: supposing k = (k,..., k) is
parallel,

dim¢ Sk(Kf) LKy Er—1/8te,
Later on in [Hu21], Hu proved a better power saving bound

dim¢ Sk(Kf) LKy Er—l/2te,
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Both of them use mod p representation theory methods applied to Emer-
ton’s completed homology and relate the completed homology back to Sk (Ky)
via a spectral sequence and the Eichler—Shimura isomorphism summarized as

(2) dime H'72(Y (K ), Wy) = 2" dime Sk(K)
in [Mar12]. Here Y (K}) is defined to be
V(Ky) = X(Ky)/ Koo,

and Ko is the maximal compact subgroup of SLa(Fs).

If F' is imaginary quadratic, then Y (Ky) is a hyperbolic 3-manifold. The
space Sk(K ) consists of cuspidal Bianchi modular forms of parallel weight
(k,k). This space corresponds to the first compactly supported cohomology
with coefficient local system Wy = Symk/ 1 %k/ > by the Eichler—
Shimura isomorphism (2).

The main result of our paper is to bound dimc Sk (K):

THEOREM 1.2. If F' is not totally real, then for any fized Ky, we have

(3) dime Sic(Ky) <, (min k) rO(A(K)).
If, moreover, k = (k, ..., k) is parallel, we have

dime Sk(Ky) <x, O(k"™1).

COROLLARY 1.3. Conjecture 1.1 is correct. Suppose Ky is sufficiently
small. For the arithmetic hyperbolic 3-manifold Y (Ky) and cohomological de-
gree n = 1,2, we have the sharp bounds

dime HP (Y (K), Wi) ~k, k.

Compared to [Marl2, Th. 1, Cor. 2] and [Hu2l, Th. 1.1], we get a degree-
one saving bound and we do not need € weakening. Let F,, = FF®gQ), with ring
of integers Op. It is very worth noting that both [Mar12, Th. 1, Cor. 2] and
[Hu21, Th. 1.1] crucially use the SLy(F})-action on the completed homology,
but we only make use of the group action of the first congruence subgroup of
SL2(Op).

If F' only admits one complex place, or equivalently ro = 1, it seems
likely (3) gives a sharp upper bound by heuristics from the Calegari-Emerton
conjecture.

Let K be a finite extension of Q,. Now we fix a compact open level
subgroup G C SLa(O)). If Ky further decomposes as

K¢ = K,K? for K, C G, K? C SLa(AP™),
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we introduce completed homology of tame level KP (see [CE09]) as

(4) Ho(K?) :=1lim lim H.(Y (K,K?),Z/p*Z) @z, K.

s KpCG
They are finitely generated modules over the Iwasawa algebra KI[[G]] (see
[Eme06]).

To prove Theorem 1.2, we establish the following theorem on sub-poly-
nomial growth of algebraic quotients and their higher cohomology of a finitely
generated Iwasawa Q,[[G]]-module for G being a product of uniform (see
[DASMS99, §4]) pro-p compact open subgroups of SLs(Z,). Therefore, the
main theorem can be obtained by using a fundamental spectral sequence due
to Emerton [Eme06], [CE09] (also see [Marl2] and [Hu21)).

By [Ven02], the Iwasawa algebra K|[[G]] is Auslander regular. In particu-
lar, it is of finite global dimension. The G-homology of any Iwasawa module
should be vanishing above a degree that only depends on G. A multiplicity-
free polynomial p;; of k is a polynomial such that for each monomial term
E{' o k7 of pyps each g; is at most 1 for 1 <4 <.

Foreach 1 <17 <, let

G; = (I2 + pMa(Zy)) N SLa(Zy).
Let G = ﬁ Gi, k= (ki1,...,k.) € N, and Wy be the algebraic representation
&;ZISymZk:ilof G.
THEOREM 1.4. Let M be a finitely generated Q,[[G]]-module of rank d.

There exists a multiplicity-free polynomial py; of k of degree at most v — 1
associated to M such that for any k € N” and any i > 1,

| dimg, Ho(G, M @ Wi) — d [ (ki + 1) < py;(K),
=1

dimg, H;(G, M @ Wi) < py;(k).

Let us first consider the growth of algebraic representations for some sim-
plest K[[G]]-modules.

If M is of canonical dimension 0, then M is finite dimensional by [AW13,
Lemma 10.13]. The polynomials can be chosen to be constants (of degree 0).

IfM~K [[G]] as the module over itself, in Section 6, we explicitly exhibit

Hom (g (K[[G]], W) = Hom (g (End g (W), Wi).

Therefore
I8

dimK HomK[[G]](K[[G]]v Wk) = dimK Wk = H(kl + 1).
i=1
This is an analogue of the classical algebraic Peter—-Weyl theorem for SLs.
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Let gx be the Lie algebra of G with coefficients in K. To deduce Theo-
rem 1.4, we pass our problem to an algebraic microlocalization of E@\Iwasawa
algebra via a completed universal enveloping algebra K[[G]] — U(gk) intro-
duced in [AW13]. In Section 6, we further apply homological degree-shifting
arguments to reduce to only treat the degree-zero case for a cyclic torsion
Iwasawa module M. -

The completed enveloping algebra U(gx) is the p-adic completion of the
usual universal enveloping algebra U(grx). Note that Wy admits actions of

U(gr) and U(gxk). -

Although the Iwasawa algebra has a very small center [Ard04], U(gx)
has a larger center containing Casimir operators Aq,...,A,. If K = Q, and
A= (A1,...,\r) € Zy, we may specialize A; to be A\; for 1 < i < r. We

use U(g), to denote this specialization. The goal of Section 5 is to prove the
following theorem.

THEOREM 1.5. For any A € Zj,, the following map is injective:

—

() Qp[[G1] = U(g),-

The right-hand side of (5) as a Noetherian algebra has a smaller dimension
compared to the left-hand side, a priori the kernel of it is a two-sided ideal.
But it surprisingly turns out to be zero.

After we completed this paper, Konstantin Ardakov pointed out to us
that Theorem 1.5 can be deduced from the main results of [AW14, Ths. 4.6
and 5.4]. Since our proof is different and the intermediate results may be of
independent interest, we still include Section 5 as part of the paper.

A generic element 0 € [7(9\) is an element such that the image of § under
the specialization [7(;) — (7@ » is non-zero for any A € Z;. Theorem 1.5
asserts that the image of the Iwasawa algebra via the microlocalization consists
of generic elements (Section 3) of the completed enveloping algebra.

THEOREM 1.6. Let M be a cyclic torsion module over UT’;) with a gen-
erator killed by a generic element. There exists a multiplicity-free polynomial
py; in 7 variables of degree at most r — 1 such that for any k € N",

dimg HomU(A)(J\Y, Wi) < prp(k) for k € N'.

We will prove some comparison results identifying Wy-quotients of the
or/lgﬂal Iwasawa module M and Wi-quotients of its microlocalization M=
U(gr) ® K[[G]] M. Theorem 1.4 will be deduced from combining Theorems 1.6
and 1.5.

Finally, we prove Theorem 1.6 by estimating the growth of dimension of
a Poincaré-Birkhoff-Witt filtration on M. There is a natural integral model
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m of U(gk). It is important for us to consider the image of U(go) in
End(Wy). The PBW filtration is linked to multiplicities by Proposition 3.4.

Acknowledgments. 1 would like to thank Yongquan Hu for helpful discus-
sions. I want to thank Richard Taylor for checking the details of this paper and
catching an error in our earlier draft. T would also like to thank Konstantin
Ardakov, Shilin Lai, Lue Pan, Zicheng Qian, and Peter Sarnak for interesting
conversations about this paper, as well as the anonymous referee for expository
corrections.

2. Results on algebra

The rings of interest will always be Noetherian.

Definition 2.1. Let A be an integral domain (not necessarily commuta-
tive), and let M be a finitely generated A-module. The field of fractions £ of
A is a division ring that is flat over A on both sides. We use dimg £ ®4 M to
denote the rank of M.

Let A be a partially ordered abelian group. A A-filtration Fy A on a ring
Ais a set {F\A|X € A} of additive subgroups of A such that
o 1€ [yA;
o [ZAC F, A whenever \ < u;
o I\A-F,AC Fy\;,Aforall \,u€A.
The filtration on A is said to be separated if N cp FaA = {0}, and it is said
to be ezhaustive if | Jycp FAA = A.

In a similar way, given a A-filtered ring FoA and an A-module M, a
filtration of M is a set {FAM|A € A} of additive subgroups of M such that
o I"\M C F,,M whenever A < u;
o [NA-F,M C Fx;, M for all A\, n € A.
Again, the filtration on M is said to be separated if (ycp FaM = {0}, and it
is said to be exhaustive if | Jyep FAM = M.

If A C R, we can define graded rings and modules for the A-filtration. Let
A be a A-filtered ring. For any A € A, we put

Fx-A:=|J F.A
s<A
The associated graded ring is defined to be
gr(A) == P RA/Fr-A.
AEA

Given a filtered Fy A module Fy M, we similarly define associated graded module

(F\—M is similarly defined):

gr(M) = @ F\M/Fy_M.
A€A
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Here gr(M) is a natural gr(A)-module. For any m € F\M\F\_M, we use

M
P M

gr(m) € C gr(M)

to denote the corresponding principal symbol.

LEMMA 2.2. Let A be a A-filtered ring with A C R. Suppose that for
any non-zero x € A, there exists Ay € A such that x € F\ A\F\,_A. If
a€ F,A\F,_A for a € A, and gr(a) is a non-zero divisor of gr(A), we have

gr(A/A-a) >~ gr(A)/gr(A) - gr(a),
where the filtration on AJ/A - a is induced from the filtration on A.

Proof. By the assumptions, a € A is a non-zero divisor. For any A € A,
we have

A-aNF\A=F\ A0, A-anNF\_A=F,_,_A-a.
By definition of the induced filtration,
F \(A/A-a) = F\A/F \_,A-a.
For saving notation, let
gryA = F\A/Fx_A and gr\(A/A-a) .= F\(A/A-a)/F\_(A/A - a).
We have the following commutative diagram with exact rows and exact columns:

0 0 0

0—— F\_(A/A-a) —— F\(A/A-a) —— gry(A/A-a) —— 0

0O—— P A— P A————egryA—0

0—— F_og-A-a—— Fp_gA-a——gry_,A-gr(a) —0

0 0 0.

The claim follows from the last vertical short exact sequence applying the snake
lemma. ([l
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LEMMA 2.3. Let A be a Noetherian ring with a two-sided ideal I such that
A/I is p-torsion free. The p-adic completion A of A has a two-sided ideal

A~ a A~ A A
I::hm<(p()”) —A-T=T1-ACA

i )

and /l/f is isomorphic to the p-adic completion of A/I.

)+I

Proof. We have to prove L ( ) CA I; the other inclusion is clear.

Suppose I is generated by {ml,.. ,m;} C I. Choose any compatible

System
(m )ey_(( (ﬁf), m ¢ 1

We use induction to choose coefficients of m; in the expression of m( a),

For a = 1, we pick coefficients {:U( ) € A} such that m() Z 1‘ ). For
=1

a given a € N, suppose we have constructed {xia € A}, and express

1
P — a +I
m@) — Zx(a)mi c w,
= (p)

We want to inductively construct {anH) € A}. We lift mgaﬂ) tom € I. Since
A/I is p-torsion free, there exists {d£a+1)|1 <4 <1} such that

m — Z a:l(-a)mi =p? Zl: dl(-aﬂ)mi.

Let x(a+1) = ;rga) —i—padl(aﬂ) mod pt! for 1 < i < 1. The lift mgaﬂ) can be
expressed as

1
(a+1 Z z! (a+1) - ( 41
+1
P (p*)

Therefore for each 1 <1 <1, (xga)) defines an element in A, I ¢ A-I. Similarly,
I=T1-A
Consider the short exact sequence of inverse systems:

)+ 1 A A
0— M — = ——]—0.
(p*) () (") +1
The system (%;L?I) satisfies the Mittag-Leffler condition, and the inverse
limits give a short exact sequence by [Sta, 02MY Lemma 12.31.3]. Therefore
A/I is isomorphic to the p-adic completion of A/I. O
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3. Growth of algebraic quotients for
(completed) enveloping algebras

Let K be a field with a subring R such that 2 is invertible in R. Let gg
be a direct sum of R-Lie algebras with K-valued extension g:

90 = Pslor, 9:=Pslax = K @r go-
=1 =1

The universal enveloping algebra U(go) = &i—; U(slz,r) (and similarly for
U(g),/x) is a multi-filtered R-algebra with index group A = Z". To be precise,
let h;, e;, f; be the basis of sl g with the relations

(6) (hi,ei) = 2e;,  [his fil = =2fi,  lei, fi] = i
Letting
1 1
A= ih? +eifi + fiei = §h@2 —hi+2eif;

be the Casimir operator for i-th component, we are interested in the polynomial
ring K[Aq,...,A]) C Z(U(g))-
For A = (A1,...,\) € R", we define

Annz(\)° = Z Z(U(g0)) - (A; — X)), Anng(A) := K - Anngz(\)°

as ideals of Z(U(go)) and Z(U(g)), giving rise to the extension ideal and quo-
tient ring of U(gp) and U(g):

Uz(A)° := U(go) - Annz(X)°, Uz(A) := U(g) - Annz(X),
UX = U(g0)/Uz(A)°, Ux:=U(g)/Uz(N).

Let p be an odd prime. If K is a finite extension of Q, with ring of integers
R, we define

(7)

Ulao) +=ljm (pUU(fgz)) , Ulg) = K @, Ulgo).

Similarly for @ and (7(\), we define /U\f , Uy to be the quotient rings
by nulhfymg the relations {(A; — \;)|1 <i <r}.

For e U( ), we say that ¢ is generic if the image of 0 via U/(E) —» U, is non-
zero for all A € Z;. An equivalent torsion condition is given by compactness

of Z,, via the following lemma.

LEMMA 3.1. Ifd € m s generic, there exists a natural number ns > 1
such that the image of § via U(go) — Uy /p" is non-zero for all X € Zy,.



132 WEIBO FU

Proof. We define a function fs : Z; — Z>1: for each A\ € Z, f5()\)
is defined to be the minimal positive integer such that the image of 0 via
Ul(go) — US/pf™ is non-zero. We have

DA =)+ P) =D (A = i+ pP V) + (V) vy € 7,
i=1 i=1
therefore

fs(A+2) < fs(\) Vo € plWNzr

Since Z;, is compact and f5 is upper-semicontinuous, fs is bounded above. [

For k = (k1,..., k) € N", we use W (resp. W) to denote the U(go)
module & 1Sym ki R? (resp. U(g)-module ®I_,Sym*i K2). We use Uy, Uk7 U
for Uy, UA7 UA when \ = ( ki (k1 +2),. ..,%kzr(k‘r +2)).

The goal of this section is to prove the following statement.

THEOREM 3.2. If]\? is cyclic, torsion and a given generator is annihilated
by a generic element 0 € U(g), there exists a multiplicity-free polynomial Pii

in r variables ki, ..., k. of degree at most r — 1 associated to M such that for
all k € N", we have
HO (k) < prr(K).

To prove such a result, we will prove that the image of m -0 in
Endg, (Wk) modulo p" (here ns is a positive integer given by Lemma 3.1)
requires suitably many generators over Z,. This motivates us to estimate the
number of generators using the filtration on U(gp), which we illustrate below.
Since the natural U/(QF) action on Wy factors through ﬁl‘z, our observations
that /Ijﬁ /p is an integral domain in Lemma 3.3 and this image is generated by
the first k-th filtered piece of U(go) (Proposition 3.4, Remark 3.5) will achieve
the desired estimate.

To prevent any confusion, we emphasize that our argument is mostly inte-
gral. But we also include corresponding rational statements for completeness.

Going back to the Lie algebra go, for each sly p-component, by the PBW
theorem there is a Z-filtration with Fil; generated by polynomials of {h;, e;, f;}
up to degree [. The Z" filtration is supported on N" C Z", so sometimes we
write N” instead of Z".

We equip U(gp) with the product filtration indexed by A. The abelian
group A = Z" comes with the partial order

A< pif M <pase A < g
We write

(8) 0 MNif 0« Ignn)\l,and)\%ooﬁ min \; — oo.

1<i<lr
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We have F,U(go) = 0if p ¢ N C Z", and we have rankr F\U(go) < oo for
all A € A. There exists a polynomial py(g,) in r variables such that

rankp F/\U(go) = pU(go)(A) for 0 A e N".

But to form a graded ring, we use the Z-filtration, and its associated graded
ring is
Sr:=gr(U(go)) ~ R[hi,e1, f1,--, hr,er, fr].
Let M be a finitely generated U(g)-module (resp. U(gp)-module), with
a set of generators {mq,...,m;}. We define two filtrations on M valued in
A =7" or A = Z, both given by the formula (and similarly for U(gg)-modules)

1
F\M = ZFAU(g) -mg, X € A.
i=1
If A = Z, we have the associated graded module gr(M) over S = gr(U(g)).
Let Iz be the ideal of S generated by {%hf +2efi | 1<i<r}
We prove some useful properties of the rings U, ,\,/[7/‘\’ and /U\A:
LEMMA 3.3. For A € Zy,, v € R, the following hold:

o Let h,e, f be the basis of slo g with A = %h2 — h + 2ef and the same
commutation relations as (6). Then {e®f°h¢la,b € N,c € {0,1}} is a basis
of U(sla,r)/(A — ).

o [ U(slp ) induces a Z-filtration on U(sly r)/(A — t). Therefore both Z"
and Z filtrations induce corresponding filtrations on Uy and Uy, and for the
7" filtration,

r
rankp FdU§ =dimg FyUy = I_I(d2 + 1)2
=1
is a polynomial in d = (dy,...,d,) € N".
e The Noetherian ring Uy is an integral domain.
Moreover, if K is a finite extension of Q, for p > 3,
e the ring ﬁ§ is isomorphic to the p-adic completion of Uy, and
KQpUS~Uy, K@rUS~ U
o the rings ﬁ;’ , ﬁA are also Noetherian integral domains.

Proof. The first part follows from the commutation relations and an in-
duction on the total degree.

The second part follows from the first part.

The K-algebra K|h,e, f]/(3h? + 2ef) is an integral domain over the al-
gebraic closure K of K. Furthermore, so is the tensor product of r-copies of
Klh,e, f]/(3h* 4+ 2ef). Hence Sk /I is also an integral domain. For the last
part, consider the Z-filtration on U)y. Its graded ring gr(U),) is isomorphic to
the integral domain Sk /Iz by Lemma 2.2. For any non-zero a, b€ Uy, let i, i
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be the minimal natural numbers such that a € F; Uy,b € F;,Uy. The image
of ab in
FioviyUx/ Fiyqiy—1Un

is non-zero, and so is ab € U,.

The fourth part follows from Lemma 2.3 and the flat base change R — K.

For the last part, we may assume K = Q,. We have that /U\AO /p~ Uy /pis
isomorphic to Uy over F,, (defined in (7) for K = Fp). The claim then follows
from the third part for IF,,. O

For the rest of the section, K is a finite extension of Q, with the ring
of integers R. Let Ann(k) (resp. Ann(k)) be the annihilator ideal of U(g)

(resp. U(g)) for Wy. As will be discussed in Section 4, there is an algebraic
isomorphism (see (19))
U(g)/Ann(k) = U(g)/Ann(k) = End g (Wio).
If M is a finitely generated U/'(E)—module, we define
My == M /Ann(k) - M
and the Wy-multiplicity H]%(k) to be
(9) HY (k) = dimyc Homg o (M, W) = m.

—

Note that the natural U(g), U(g) actions on Wy factor through U, Uk.

PRroPOSITION 3.4. For any k € N", as R-modules, the image of Fi U,
equals to the full image of Uy in Endr(Wy). As a corollary, there are isomor-
phisms of K -vector spaces:

Uy = U(g)/Ann(k) = End g (Wy).

Proof. It suffices to prove the case r = 1, k = (k). We first observe that
for any a > 0, e®f® can be expressed as an R-linear combination of h’ as an
operator in Uyp. For example, let Ay = 1k(k + 2). Then we have

1 1
202 _ S P
ef—e()\k+2h 4h>f
1 1
:)\k-ef+§(he—2e)f—Z(he—?e)(fh—?f)
1 1
:()\k+h—2)ef+§efh—1hefh
— (- 3_12)< 1_12>
—(/\k 2+2h 4h )\k+2h 4h .
Let vp,...,v; be the weight vectors of W) of increasing weights, with

Wy = @;C:OR’UZ', f raising a weight and e lowering a weight. Let W>; :=
E?zi Rv;. Note that we want to prove that each monomial e* fPhe (c is either
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zero or one by the first part of Lemma 3.3) with total degree strictly larger
than k can be reduced to an R-linear combination of lower degree terms. For
explanation, we only show the reduction for the monomial e® f°, where a+b>k,
a < b, the monomial e f? is equal to e®f* =2, (Other cases can be similarly
obtained.) The operator e®f® can be viewed as an endomorphism of Wx;_,
since '~ maps W to W=p—_q. We know it is an R-linear combination of powers
of h. By Cayley-Hamilton,

k—b+a
eafa = Z Cihi S EndR(WZb—a)y Ci € R.
=0

As k — b+ a < 2a, the degree of e®f? is reduced. We can similarly argue the
other cases.
The corollary for K-isomorphisms follows from counting the dimensions
of both sides by Lemma 3.3. (]
Remark 3.5. Let EY be the image of Uy in Endg(Wy). As it is p-adic

complete, it coincides with the image of U(gg) as well. Moreover, we have
Fe(U/p™) ~ Ex/p™
for all m > 0.

Proof of Theorem 3.2. Let ]\/4\0 be a cyclic f(g?)—lattice inside M such that
My ®r K = M. We may assume § € U/(g\o). The surjection U/(g\o) — M
corresponding to the generator factors through U/(g\o) / mé .

We pick % 1 satisfying Lemma 3.1. Under the natural identification

U(go)/p™ ~ U(go)/p™, there exists a € N” such that § € Fa((T(g\o)/p"é) ~
Fa(U(g0)/p™).
If k > «, then

Fie_o(U2/p") - 8 C F(UZ/p"™).

Let w be a uniformizer of R. For any k € N”, and e € U}, such that e ¢ wUy,
we have e - § # 0 in U /p™ since Uy /w is an integral domain by Lemma 3.3.
The composition of maps of vector spaces

Fk—aUk — Fk—aUk 20— EndK(Wk)
is injective; otherwise, there exists e € Fx_o,Ug\wUy such that e - § maps to
0e Eﬁ — EndK(Wk),

contradicting Remark 3.5 of Proposition 3.4 since e-6 € Fi(Uy /p™®) is non-zero
modulo p™s.
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—_

Therefore the image of U(g)d in U(g), ~ Endg(Wy) has dimension at

least dimg Fik_o Uy, and we have the following bound for (U/(;)/U/(;)é)k:

HY (k)= dimg (U(9)/U (@) _ [Tica (ki +1)* = [Tiza (ki — i + 1)°

Ulg)/U(g)d dim g Wy - T (ki + 1) :
[Lies (kit1)
by |ess/| - [Ties(ki +1) for SUS" C {1,...,7}. We get the desired bound for

U(g)/U(g)o. O

Remark 3.6. If M is a finitely generated module over U(g), in general,
the rank of M does not have to agree with the rank of Uy ®u(g) M over Ux
without the genericity condition. If r = 2,9 = sly g @ sly g, and Ay, Ay are
Casimir operators for the two components, the algebraic representations Wy, j,

Regarding each (k; 4+ 1) as a variable, each term cg g - is bounded

of parallel weights grow in quadratic order in the cyclic torsion U(g)-module
Ulg)/(A1 — Ag).
These Casimir operators do not exist in K[[G]], and we will see elements

—

in U(g) obtained from base change over the microlocalization (18) are generic.

4. Comparison of algebraic quotients

Let K be a finite extension of Q, with the ring of integers R, residue field k.
Let G be a uniform pro-p group of dimension d = dimG. We define the
completed group rings by

R[[G]] == lim R[G/N], K[[G]] := K ®@r R[[G]),
where N runs over all the open normal subgroups N of G.

Lazard [Laz65] defines a Z,-Lie algebra Lg associated to G (see also
[DASMS99, §4.5]). We briefly recall some basic facts about Lg here. We

fix a minimal topological generating set {g1,..., g4} of G. Each element of G
can be written uniquely in the form gf‘l .- -g;l\d for some A1,...,\g € Zp. By
[DASMS99, Th. 4.30], the operations
(10) Aoz =gz,
N

(11) r+y= lim (:vp yP ) ,

71— 00

i i \P

(12) [z,y] = lim (33*” y Pa? yp)

1—00

define a Lie algebra structure Lg on G over Z,. Note that Lg is a powerful
Lie algebra in the sense that it is free of rank d = dim G over Z, and satisfies
[Lg, Lg] < pLg. Letting

1
gRr = ELG ®z, R, 9k = 9r ®r K,
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—_—

the completed universal enveloping algebras U(gr), U(gk) are defined to be

= ._ .. ( _U(gRr) N
U =lm| ——~ |, U =U ®r K,
(gr) := lim (an(gR) (0x) == U(gr) ©r
following [STO03] (appearing as the “largest” distribution algebra D, (G, K))
and [AW13].

LEMMA 4.1. If G is a compact open uniform pro-p subgroup of SLy(Q,),
then the associated Lie algebra

gr ~ sl K
is isomorphic to the Lie algebra of s, over K.

Proof. This is an exercise [DASMS99, Part II, Ch. 9, Ex. 9] following from
Lazard’s paper [Laz65]. O

As G is a uniform pro-p-group, by [DASMS99, Th. 8.18] it is compact
locally Qp-analytic. Moreover, G satisfies the assumption (HYP) of [ST03,
§4] by the remark before [ST03, Lemma 4.4]. Schneider and Teitelbaum have
introduced the K-Fréchet—Stein algebra D(G, K) of K-valued locally analytic
distributions on G ([ST02b], [ST03]). We briefly recall some basic properties
of D(G, K) from [ST03] here.

Let b; := g; — 1 € R[G], and write

(13) b® = b2 .. b3 € R[G]

for any d-tuple o € N4 We write |a| := 2%, ;. Tt follows from the proof
of [DASMS99, Th. 7.20] that R[[G]] can be naturally identified with the set of

non-commutative formal power series in by, ..., by with coefficients in R:
RG] =14 > Xab*|Xa€R
aeNd

There is a faithfully flat natural map from the Iwasawa algebra to the
distribution algebra

(14) K[[G]] = D(G,K)

by [ST03, Th. 4.11], such that D(G, K) can be identified with power series in
b1, ...,bq with convergence conditions

D(G,K) =< Y Xb® X €K, and for V0 <7 < 1, sup [Aa|rl® < oo

d
a€eNd aeN
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For G, there is an integrally valued p-valuation w : G\{1} — Z>1 such
that
w(gh™") = min(w(g), w(h)),
w(g~th™ gh) > w(g) +w(h), and
w(g”) =wlg) +1
for any g, h € G, with w(1) := oo [Laz65, III 2.1.2].

For G being uniform, we may define w(g) to be n > 1 such that g €
Gpnfl\Gp". It is indeed an integrally valued p-valuation on G by, for example,
[AW13, Lemma 10.2]. By the discussion in [DASMS99, §4.2], w is characterized
by
(15) w(gi) =1for 1 <i<d, and

_ : , _ T T
wlg) =1+ min wy(z;) Vg = gi" -~ g4" € G,
where w;, denotes the p-adic valuation on Z,.

The Fréchet topology of D(G, K) is defined by the family of norms

Al :== sup |)\a|r|a|
a€eNd
for 0 < r < 1, where the absolute value |- | is normalized as usual by |p| = p~!.
We let
D, (G, K) := completion of D(G, K') with respect to the norm || ||,

As a K-Banach space,

(16) Di(G,K)={ Y Xab® [ Ag € K, sup [AoJrl® < oo

aeNd aeNd
THEOREM 4.2. If 1/p < r < 1, then D,.(G,K) is a Banach noetherian
integral domain with multiplicative norm || ||,. The distribution algebra

D(G, K) = lim D,(G., K)

is a K-Fréchet—Stein algebra.
Proof. This is the main result of [ST03, §4]. O

We remark that Schneider—Teitelbaum’s definition of || ||, is slightly more
complicated in general, but it agrees with our || ||, because of (15) due to the
uniform assumption of G.

Let m := ker(R[[G]] — k) be the unique maximal ideal of R[[G]]. Following
[AW13, §10], we consider a microlocal Ore set Sp:

(17) So:=J (»" +m**) € RG],

a=0
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Associated to Sp, there is a flat extension (see remarks in [AW13, §1.4])

—

(18) K[[G]] = Ulgx)

by construction of [AW13, §10], called the microlocalization of Iwasawa alge-

—_— —

bra. For a finitely generated K[[G]]-module M, we use M :=U(gg) Rx(ay M

to denote the microlocalization of M.

From now on we assume gg is a split, semisimple Lie algebra over K. We
refer to [Bou05] for a treatment of such a Lie theory. Let W be an irreducible
finite dimensional representation of U(gx) with a U(gg)-lattice Wy C W.

As Wy is of finite rank, it is automatically p-adic complete. The U(gr)

L —

action on Wy extends to a U(ggr) action, and the U(gx) action on W extends

—

to a U(gk) action (also see [AW13, §9.2]).

We pull back W as a K[[G]]-module via the microlocalization (18). Iwa-
sawa modules arising from this way are called Lie modules in [AW13, §11.1].
By [AW13, Th. 11.1, Cor. 11.1], W remains irreducible as a K[[G]]-module.

Let

— — e/~

Ann(W) C U(gk), Ann(W) C U(gk), Ann(W) C KI[[G]]

o —

respectively be the annihilator ideals of U(gx ), U(gk), K[[G]] for W. Similarly,
we have

—

(19) U(gr)/Ann(W) = U(gr)/Ann(W) BN Endg (W),
(20) K[[G))/Ann(W) < U(gx)/Ann(W) = Endg ().

The second map of (19) is surjective by [Bou05, Ch. VIII, §6.2, Cor. of Prop. 3].
By [AW13, Th. 11.1], every finite dimensional K [[G]]-module is semisim-
ple. For a finitely generated K[[G]]-module M, we use

—_— —

My := M /Ann(W) - M (resp. My, := M /Ann(W) - M)

to denote the maximal quotient of M (resp. M ) that is isomorphic to a finite
sum of W as a K[[G]]-module (resp. U(gx)-module).

THEOREM 4.3. Let M be a finitely generated K[[G]]-module with microlo-

—

calization M = U(or) @kjia]] M. Then the natural map

is an isomorphism. In particular, K[[G]]/Am) = U/(’;)/AE(\VV) in (20)
18 an isomorphism.
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—

Proof. We apply the flat base change microlocalization K[[G]] — U(gk)
(18) to the short exact sequence

P

O—)Ann(W)-M%M%MW%O
to get
(21) 0= Ulgx) @y Ann(W) - M — M — U(gx) @) Mw — 0.

The microlocal Ore set Sy (17) acts invertibly on W as Sy consists of units in
(ﬁg?) (Note that Sy is inverted to form the microlocalization in Ardakov-
Wadsley’s construction; also see the proof of part (b) of [AW13, Th. 11.1].)
We can apply [AW13, Prop. 11.1] to W taking n = 0, which asserts that the
natural map My = U/(g;) R K[ My is an isomorphism as K [[G]]-modules
because MW is isomorphic to a direct sum of W. By our assumption on W,
the K[[G]] action on My (uniquely) extends to U/(g;) Moreover, it is an
i&n&rphism over U/(g-;?) due to the natural U/(g?)—equivariant reverse map
U(gx) ®k[a]] MW — ]f\;jl/v
By maximality of My, the exact sequence (21) gives

— e/~

Ann(W) - M C U(gx) ® ey Anmn(W) - M,

both as submodules of M. From (20) we get UTQ?) -Ann(W) C Am),
therefore

U(QK) ®KHGH Ann(W) . M C Ann(W) . U(gK) ®K[[G]] M = Ann(W) - M.

— /Y~

This forces U(gx )@ (g Ann(W) -M:Ann(W) - M and thus My =My, O
5. Infinitesimal specialization

We continue to use notation from Section 4. For simplicity, we take K to
be Q. The norm | | on Q, is normalized as usual by |p| = p~!. Let C(G,Q))
and C'*(G,Q,), C*™(G,Q,) be respectively the space of continuous functions
on G, the space of locally analytic functions on G, and the space of smooth
functions on G, all valued in Q,. The Lie algebra g acts on Cla(G,Qp) by
continuous endomorphisms defined by

(22) of o= tim (DTS

for r € go, f € C'®(G, Q,), where the dot action t - ¢ is given by (10). We have
a natural inclusion

(23) U(g) = D(G,Qp).

We further assume that G is an open subgroup of the group of Q,-rational
points of a connected split reductive Qp,-group G with Borel pair (B, T). The
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Qyp-split Lie algebra of G should be identified with the Lie algebra g associated
to G in Section 4. We use go to denote gz,

Let T := T(Qp) N G be a torus of G, and let B := B(Q,) N G be a
Borel subgroup with unipotent radical N such that B = T'N. Let {g, bg, ng
respectively be their associated Lie algebras over Z,, with generic fibres t, b,
n. Suppose 1y is an opposite nilpotent of n such that gg admits a triangular
decomposition

go = g Dty D ng.

Let Z(go), Z(g) respectively be the centers of U(go), U(g). Any character
of Z(go) is naturally extended to a character of Z(g). There is the Harish-
Chandra homomorphism [Bou05, Ch. VIII, §6.4] associated to the triangular
decomposition

(24) HC : Z(g) — U(Y).

If x : T'— 14-pZ, is a continuous/locally analytic character of the torus T,
it induces a character dx : U(ty) — Z, by formula (22), extending to dy :
U(t) - Qp. We call an infinitesimal character A : Z(g) — Q, induced if
A = dx o HC for a character x of T

Our main theorem in this section is the following.

THEOREM 5.1. Let A be an induced infinitesimal character. If G is a
finite product of first congruence subgroups of SLa(Z,), the composition of mi-
crolocalization (18) with infinitesimal specialization is injective:

Qp[[GH — U(g) ®Z(g),)\ Qp‘

The corresponding statement for distribution algebra turns out to be much
easier, and it serves as a first step to prove Theorem 5.1.

For a proof, we make use of the locally analytic principal series of x : T —
1+ pZy:

Ind(x):={f:G—Q,|f locally analytic, f(gtn)=x(t)f(g) VteT,neN,geG}.

The locally analytic principal series has an induced infinitesimal character
determined by dy via the Harish-Chandra homomorphism (24).

THEOREM 5.2. As Qp-Fréchet spaces, D(G,Qp) ®z(g),x Qp is the strong
dual of the locally conver vector space of compact type C'*(G,Q,)[)], where
C™(G,Qp)[A] is the A-isotypic part of the space of locally analytic functions
on G.

If the infinitesimal character A is induced, the composition of (14) with
infinitesimal specialization is injective:

QP[[GH — D(Ga Qp) ®Z(g),)\ Qp-
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Proof. Let z1,...,z, be a set of generators of the kernel of A. By [ST02b,
Prop. 3.7], these differential operators define G-equivariant endomorphisms of
C'"(G,Qp). Therefore we have a short left exact sequence of admissible locally
analytic representations of G:

(25) 0 — C*(G,Qp) [N = C*(G, Q) — C™(G,Qy)",
(26) fr=(zi-f

By taking the strong dual of (25) and the anti-equivalence of categories between
admissible locally analytic representations and coadmissible D(G, Q,)-modules
[ST03, Th. 6.3], we identify D(G,Q)) ®z(g)» Qp with c(a, Qp) [}

For the second part, as Q,[[G]] is dual to C(G,Q,), it suffices to prove
that C'*(G, Q,)[)\] is dense in C(G,Q,).

We choose any locally analytic character x : T — K* such that Ind(x)
has the infinitesimal character A\. Let X be the quotient space X := G/B,
then there is a splitting X < G — X as p-adic manifolds such that Ind(y) ~
Cla(X ,Qp) as topological K-vector spaces. We choose any nowhere vanishing
function fo € C'*(X,Q,) so that fo € C**(G,Q,)[A]. The pointwise product of
fo with any smooth function still has the infinitesimal character A. We see that
fo- C™(G,Qp) C C'*(G,Qp)[\ C C(G,Qy) is clearly dense in C(G,Q,). O

Following [Fro03], [Koh07], we define U,(g) to be the closure of U(g) in
D, (G,Qp) with respect to the norm || ||, for 0 <r < 1. If A: Z(g) — Q, is an
infinitesimal character, we define

UrA(g) = Ur(Q) ®Z(g),)\ Qpa D?(G7 Qp) = Dr(Ga Qp) ®Z(g),)\ Qp'

PROPOSITION 5.3. Ifr = Pm forn € Z>y, then D,.(G,Q)) is a crossed
product ([MRO1, §1.5.8], [AW13, Proof of Prop. 10.6]) of U,(g) by G/GP".
Consequently,

D} (G, Qp) ~ Up(g) * (G/G™)
is a crossed product of UMg) by G/GP".

Proof. See [Sch13, (6.8), Cor. 5.13] for a similar statement of the first
claim. We give a proof as follows. By (22), for any ¢ € G,r € go,f €

CP (G, Qp),

g(x- (gilf)) =g (lim t-r)(g'f) - (g_lf))

t—0 t

g IR f

t—0 t

t- -y _
i 9k ) f
t—0 t

=(grg™ ") - f.
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We see that U(g) is stable under the conjugation action of G. By Frommer’s
theorem [Fro03], [Koh07, Th. (Frommer), Proof of Cor. 1.4.1],

(27) Ur(g) = {Z doX?|do € Qp, Tmn_|dal |27, = o}

for X* = log(1+b1)*" - - -log(14bq)“¢ compared to (13), and D,(G,Qy) is a free
(left or right) U,.(g)-module of basis given by representatives of G/G?". It suf-
fices to prove that for any g € G, its p"-th power belongs to U,(g), and we may
further assume g = b; for certain 1<i<d. As a formal power series, we have

> nkyk

" =exp(px) =Y L ,f“

k=0

for X; :=log(1 + b;). Here, by Taylor series of log(1 + x), we have

7 Pt _e L
. frd e _— o, —
I%sllr = max = e R = maxp et et = maxp

ko

k
(k,;%) _ pnfl7
and since || ||, is multiplicative by [ST03, Th. 4.5], || X¥||, = p(*~D*  we have

p"* Dk ke g
Jim || p IR < prr pE =0,

As a consequence, gP" € U,(g) by characterization (27).
The second claim follows from the first claim since Z(g) is in the center
of D,(G,Qp) by [ST02b, Prop. 3.7] and Z(g) C U(g) C U,(g). O

Remark 5.4. It is pointed out in [AW13, Rem. 10.6] that D, (G, Q,) should
be a crossed product of the microlocalization of Q,[[GP"]] by G/GP" for r =
r\/1/p. Tt is quite likely that U,.(g) coincides with such a microlocalization .

For each n > 0, GP" is isomorphic to its (unnormalized) Lie algebra
Lepn = p" 2y ~ 7
as p-adic manifolds. We define
C"M(G,Qyp) = {f € C(G,Qy) | f is analytic on each GP" coset} ,
with C'*(G, Q,) = lim C™ (G, Qp).

n>0

(28)

In particular, C*(G,Q,) := C%*"(G,Q,) is the space of analytic functions on G.
For any n > 0, let r, := *\/1/p. The transition of spaces of analytic
functions of decreasing radius is compact

Cn,an(G? Qp) N Cerl,an(CTv7 Qp)

. — _ . n—1 .
For any n > 1, if 2 Lo, 2y L are coordinates of GP" ™, then it follows that
— _ . n n+1
2 = pay 1,...,25‘ = pzy L are coordinates of GP". For any g € GP " , We
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may pull back
g = Y AT e oG, Qy), d €,

d
anZO

and the constant term cé is divided by p?. Consider the commutative diagram
LA (G, Qp) —— C™N(G, Q)
B
cnban(G Qp) —— C™A(G, Q).
We have
= 3 e e 0ME @), b € T,

a€Z>O

Since g € Gr induces the identical map on G”"/GPH1 we have ci =J;; mod p
for 2™’s coefficient c in g*(2]"). We see that the operator g — 1 has norm at

J
most 1/p on the Banach space cm*(G,Qp) for any n > 1, g € GP""' | and

so is the operator (g — 1) ' for any g € G. Any power series of D,(G,Q))
converges as an endomorphism of C™*"(G,Q,),

D,, 1 (G,Qp) — Endg, (C™™(G,Qy)),
by the description (16). Composed with the evaluation map at identity
™G, Qp) = Qp
[ fGd),
we have a natural map
(29) Dy, (G, Q) = (C™*(G,Qp))p-

PRrOPOSITION 5.5. There is an algebraic isomorphism

D(G, @p) ®Z(g))\ @p = @ Dq))n (G, Qp)-

n>1

Proof. 1t suffices to construct the inverse of the natural map

D(G,Qp) @z 1 Qp = Im(Dy,, (G, Qp) @z(g),x Qp)-

n>1

By Theorem 5.2,

D(G,Qp) @z(g) 2 Qp — (C(G, Qp)[\])}-
From (28),
(C™(G, Qp)[A])y =~ Im(C™™ (G, Qy) [N}
n>0
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as Qp-Fréchet spaces. The inverse

@ Dy, (G,Qp) @z 2 Qp — @(Cm’an(G’ Qp) [\

n>0 n>0
is given by (29). O
Let m > 1 be a positive integer. For each 1 < i < m, let

G; = (12 +pM2(Zp)) N SL2(Zp).

For the rest of this section, let G = ﬁ G; C G = ﬁ C~?, be r copies of the
first congruence subgroup of SLQ(ZP).Z:1 =
LEMMA 5.6. The associated Lie algebra for Gi = ker(SLa(Zy,) — SLa(F)))
go~=sly, =Zy h®&Zy-edZLy- f,
has the standard commutator brackets
hye] =2e, [hf]=-2f, le,f]=h.
Proof. We set

10 0 1 0 0
hz(o —1)’€:<0 0)’f:<1 0>€M2(Z”)'

We let exp(ph), exp(pe), exp(pf) be a set of minimal generators of Gy. The p-
adic manifolds G and psly(Z,) are identified via the exponential and logarithm
maps. The commutator brackets on psla(Z,) transfer to Gy, for example, by
the computations in [DASMS99, Lemma 7.12]. O

For example, if m = 1, the Iwasawa algebra Z,[[G]] is identified with a
non-commutative formal power series ring Z,[[F, H, E]] in three variables for

F :=exp(pf) — 1, H :=exp(ph) — 1, E :=exp(pe) — 1

as in the lemma. Actually we may explicitly describe the microlocalization
map (18) for our case when we identify psly(Z,) with Lg = pgo (proof of
[AW13, Th. 10.4)):

F —exp(pf) — 1, H— exp(ph) — 1, E — exp(pe) — 1.
Under such an identification, the Lie algebra action (22) is equivalent to
(30) tf ==log(1+(x—1) - f
for r € go ~ G and f € C'*(G, Q).

THEOREM 5.7. Let p be an odd prime. If 1/p < r < 1, then D)G,Q)) is
an integral domain.
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Proof. For saving notation, we prove the case m = 1. Let F, H, E be the
formal variables with

pf =log(l1+F), ph =log(l+ H), pe =log(l + E)

defined after Lemma 5.6.
For any 1/p < r < 1, we can find v’ < r such that 1/p <1’ < y/1/p. The

Nk
sequence {%Uﬁ € Z>1} has the property that

Nk np
max (r') = (r ) =7
k>1 |k >0 |pY
Note that we can endow the topology of D, (G,Qy) on D,(G,Q,) since
(31) D,(G,Qp) — D/ (G,Qp)

is naturally a dense subalgebra by characterization (16).
On R = D,(G,Q,), or D,v(G,Q,), we have the filtration

FR = {a € R:|al, < pfs} .

The associated graded ring is denoted by gr,/(R). By the density of (31), we
have the isomorphism

gr,. D, (G, Q) ~ gr,, D (G, Q) ~ Fyle,e '|[F, H, E]
by [ST03, Th. 4.5].
Let A := %hQ — h + 2ef be the Casimir operator. The kernel of A is

generated by p?A + \g for A\g € Q,. The associated graded ring for D)}(G,Q,)
is

g1, DN (G, Qp) = gr, Dr (G, Qp) /g1, (07 A + Ao)
by Lemma 2.2, where the principal symbol of generator gr,,(p?A + Ag) (Sec-
tion 2.1) in gr,.(D,(G,Qp)) equals

1
gr,, <§ log(1 + H)? — plog(1 + H) + 2log(1 + E)log(1 + F) + )\0>

1
= gr,, <§H2 +2EF + >\0>
by the assumption of r’. If the valuation of )y is at most 1, then
g (p?A 4 o) = gr,.(Mo)
is a unit in gr,, D, (G, Qp), making the quotient equal to zero. Otherwise,

1
g (p*A + \o) = 5H2 + 2EF,

1
gt DNG,Q,) ~ Fyle, e '|[F, H, E]/ (51'{2 + 2EF>

is an integral domain by the proof of the third part of Lemma 3.3. U
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Remark 5.8.

e Although gry/,D;(G,Qp) is non-commutative, it can probably be shown
that gry /pDﬁ(G, Qp) is an integral domain as well.
e The infinitesimal character X is induced if and only if the valuation A\g is

at least 2 since for any continuous character x : 7' ~ 1 + pZ, — 1 + pZy,
dx(p*h?) € p*Zy.

Proof of Theorem 5.1. For any non-zero § € Q,[[G]], there exists ns > 1
such that the image of § in D} G, Q,) is non-zero for r = »"{/1/p by The-
orem 5.2 and Proposition 5.5. The right D}G,Q,)-module D}NG,Q,)/d -
DG, Qp) is torsion. Since DG, Qp) is an integral domain by Theorem 5.7,
DNG,Q,)/d - D)G,Qp) has positive codimension by [AW13, Prop. 2.5]. By
applying Proposition 5.3 and [ABO07, Cor. 5.4], D})NG,Q,)/d - D)(G,Q,) also
has positive codimension over U (g). By Lemma 3.3, UX(g) is an integral do-
main, and there exists an element &' € D}G,Q,) such that 66’ € Ul(g) is
non-zero. By the description (27) of U,(g), we leave it the reader to prove

Ur/\(g):{zda :0}

similar to the first part of Lemma 3.3 giving topological basis of U2 (g), and sim-

ilarly for @ ®27(g),x Qp- Given the basis for both UX(g) and @ ®2z(a).x Qp
it is direct to see that the natural inclusion

UXNg) = U(g) @z Qp

oy pagpag
Hei fith;

i=1
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is injective, hence §¢’ is non-zero in U(g) ® 7(g),» Qp. The completed enveloping
algebra is identified with D, /,(G,Q,) ([AW13, Rem. 10.5, (c)], [AW14, Lemma
5.2]). The image of ¢ via the microlocalization (18) is non-zero as well. O

6. Local applications to finitely generated Iwasawa modules

We continue to use notation from the previous sections. Let p be an odd
prime, and let » > 1 be a positive integer. For each 1 <7 < r, let

G; = (IQ +pM2(Zp)) N SLQ(ZP).

,
Let G = [] Gi, k = (k1,...,kr) € N", and let Wy be the algebraic repre-
i=1

sentation &{leymki of G. As G is compact, by choosing an integral lattice,

Wy is equipped with a structure of finite dimensional Banach representation
of G. We leave it as an exercise for the reader to show that Wy is irreducible
self-dual. By the main result of [ST02a], Wy ~ Wy admits an action of K[[G]],
and we do not distinguish W), and Wy.
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We exhibit the Wy-quotient of K[[G]] explicitly using the theory of
Schneider—Teitelbaum as follows. To ease notation, we do this for » = 1,
k = k € N. As a module over itself, the dual (constructed in [ST02a]) of
K|[|G]] is the Banach representation of the continuous function C(G, K) on
G. Our choice of G' can be viewed as an open subgroup of Z,-points of the
group scheme SLy over Z,. We define the space of algebraic vectors C¥8(G, K)
of C(G, K) to be the following K-linear vector space of polynomial functions
on G,

{K[z,y, z,w]/(zw —yz = 1)},
as (79) € G C SLa(Zp). There is a natural two sided action of G on
C8(@, K) with a G-stable filtration C’;E(G,K ) by degrees of polynomials
in variables x, ¥y, z, w such that

&mKaﬁaGJoﬂﬁsAGJQ>=(”§3)—(”§1>=<n+U?
Here the dimension of the space of homogeneous polynomials of degree n (resp.
n — 2) in 4-variables is (”;3) (resp. (”;1))

The space of degree k homogeneous polynomials in variables x, z is iso-
morphic to W}, as a left representation of G. The vector z* is left invari-
ant under the lower triangular nilpotent subgroup and right invariant un-
der the lower upper triangular nilpotent subgroup with the highest weight
in Wy. It generates an irreducible G x G subrepresentation Wj, ® W} inside
Cil,f(G, K)/ C’illffl(G, K). By counting the dimensions, we have

CU5(G, K)/CYE_ (G, K) ~ Wy @ W

By complete reducibility of finite dimensional representations, Wj @ W' is
identified with Wj-algebraic vectors in C(G, K) as a left or right representation
of G. Tt is automatically closed in C(G, K) by finite dimensionality. Again by
the main result of [ST02al], W}, ® W} is also identified with the maximal Wj-
quotient of K[[G]].

Note that as an algebraic representation of G, Wy receives a Lie algebra
action (with respect to the explicit algebraic structure of G above). When
restricted to arbitrarily small open subgroups of G, Wy remains irreducible.
According to [AW13, Th. 11.3], any finite dimensional simple Iwasawa module
is a tensor product of a smooth G-representation and a Lie module (Section 4).
Therefore our W); ~ Wy is a Lie module, and we are entitled to apply results
in Section 4.

Let m(k) == Anngjg(Wx) = Ann(Wy) be the annihilator ideal of
K|[|G]] for Wx. We have an isomorphism of algebras

(32) K[[G]]/Ann(k) = End g (Wy).
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Here the surjectivity follows from either directly counting dimensions of both
sides given our explicit computation for SLg, or combining (20) and Theo-
rem 4.3.

Proof of Theorem 1.4. Any Q,[[G]]-equivariant map from M to Wy fac-
tors through My, . We have Homg, ) (M, Wi) = Homg, iaj(Mw,,, Wk). By
Theorem 4.3,

Homg, (¢ (M, Wi) =~ Hom_— (M, Wy).

Ulg )(
There are multiple ways to express the multiplicity of Wy in M. We have
Homg, (¢ (M, Wi) =~ Homg, o) (M @ Wy, 1) = Ho(G, M ® W)™

The dimensions of these K-vector spaces all agree with H%(k) in (9).
We choose short exact sequences

(33) 0= (QGN? = M = Q — 0,
(34) 0— N — (QG]) — M — 0,

where a is torsion. Let M = (7(\) g Nitel) M be the microlocalization of ]Tj and
similarly for 5, . The microlocalization s preserve short exact sequences like
(33) and (34) as (18) is flat. We may filter Q by cyclic subquotients Q1, . .. ,Qq
with Q,[[G]]/Qp[[G]] - 0; — Q; with non-zero §; € Q,[[G]]. By Theorem 5.1, ¢;
are generic (Section 3). Theorem 3.2 produces pg, such that I %i (k) < Pg, (k).

And we may choose PG = Zgzlp@ so HY (k) < p@(k). By applying the

microlocalization s to the sequence (33) followed by taking Wy quotient
(U(@)/Am ()" — My = Qi = 0.
we have

<de: +1) +pg(k),

thus proving one side of the i = O case for any finitely generated Q,[[G]]-
module M. Similarly, by applying the microlocalization s to the sequence (34)
followed by taking the Wy quotient, we get the other side of inequality for the
case 1 = 0 using

rankU( )N—i—rank@M =1.

Because (Q,[[G]])! is acyclic, the long exact sequence associated to (34)
in homology gives

0 — Hy(G, M @ Wy) = Ho(G, N @ W)

35 S —
(35) — Hy(G, (Qp[[G]]/Ann(k)) ® Wi)! = Ho(G, M @ Wy) — 0

(36) Hi(G, M ® Wy) ~ H;_1(G, N © Wy), i > 2.
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The case ¢ = 1 is obtained by applying case ¢ = 0 to both M and N using
(35). Furthermore, the ¢ > 2 cases follow from an induction using (36). O

7. Global automorphic applications

In this final section, we refer to the notation in Section 1. We choose an
odd prime p that splits completely in F. Recall that r := [F : Q]. Let

G:= HGU, Gy = (I2 + pMa(Zy)) N SLa(Zy),
vlp

as the ring of integers in F, is identified with Z, for all v|p.

For k € N, it defines a C-representation Vi of SLo(F), as well as a
Qp-representation Wy of SLa(F}). These representations give rise to a C-local
system Vi and its corresponding Q,-local system Wy. It is explained in [Mar12,
§5] that

(37) dimc H; (Y (Ky), Vi) = dimg, H;(Y (Ky), Wi).
We cite some properties of the completed homology (4),

Ho(K?) :=lim lim Ho(Y (K,K?),Z/p'Z) @z, Qp,
s KpCG

from [Eme06], [CE09]:

e If F'is not totally real, ﬁZ(K P) is a finitely generated torsion Q,[[G]]-module.
e There is a spectral sequence

(38) By = Hi(G, Hj(K?) ® W) = Hiy (Y (K{), Wio),
where Kf = GKP.

By (37), the spectral sequence (38) implies an upper bound

dime Hy (Y (Ky), i) < Y dimg, Hi(G, H;(KP) @ Wi).
1+j=q

Theorem 1.4 produces a multiplicity-free polynomial pg, of degree at most
r — 1 for the right-hand side, giving

dim¢ Hq(Y(Kf), Vi) < PK; (k), k e N".

Finally, we apply the Poincaré duality and Eichler—Shimura isomorphism (2)
to finish our proof of Theorem 1.2.
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