
Annals of Mathematics 200 (2024), 123–152
https://doi.org/10.4007/annals.2024.200.1.3

Sharp bounds for multiplicities
of Bianchi modular forms

By Weibo Fu

Abstract

We prove a degree-one saving bound for the dimension of the space of

cohomological automorphic forms of fixed level and growing weight on SL2

over any number field that is not totally real. In particular, we establish a

sharp bound on the growth of cuspidal Bianchi modular forms. We transfer

our problem into a question over the completed universal enveloping alge-

bras by applying an algebraic microlocalization of Ardakov and Wadsley

to the completed homology. We prove finitely generated Iwasawa modules

under the microlocalization are generic, solving the representation theo-

retic question by estimating growth of Poincaré–Birkhoff–Witt filtrations

on such modules.
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1. Introduction

Let F be a number field of degree r = r1 + 2r2, with r1 real places and r2

complex places. Let F∞ = F ⊗Q R, so that SL2(F∞) = SL2(R)r1 × SL2(C)r2 .

Let Z∞ be the centre of SL2(F∞), Kf be a compact open subgroup of SL2(A∞F ),

and let
X(Kf ) := SL2(F )\SL2(AF )/KfZ∞.
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If k = (k1, . . . , kr1+r2) is an (r1 + r2)-tuple of positive even integers, we de-

fine Wk to be the representation of SL2(F∞) obtained by taking the tensor

product of the representation Symki−2 of SL2(Fvi) when vi is a real place and

the representation Symki/2−1 ⊗ Sym
ki/2−1

of SL2(Fvi) when vi is a complex

place. We also use Wk to denote the local system on X(Kf ) coming from the

representation Wk. We let Sk(Kf ) be the space of cohomological cusp forms

on X(Kf ) with weight k. We define ∆(k) to be

∆(k) =
∏

1≤i≤r1

ki ×
∏

r1<i≤r1+r2

k2
i .

In this paper, we will adapt p-adic algebraic methods to study the growth

of dimension of Sk(Kf ) as k varies and Kf is fixed.

When F is totally real, Shimizu [Shi63] has proven that

dimC Sk(Kf ) ∼ C ·∆(k)

for some constant C independent of k.

When F is not totally real, the growth rate of dimC Sk(Kf ) is wildly open.

The first non-trivial bound is given by a trace formula method:

dimC Sk(Kf ) = o(∆(k)).(1)

Conjecture 1.1. If F is imaginary quadratic, k = (k), there exists a

constant c depending only on Kf such that for k ≥ 1,

dimC Sk(Kf ) ≤ c · k.

This conjecture is supported by experimental data of Finis–Grunewald–

Tirao [FGT10] and the work of Calegari–Mazur [CM09] (for Hida families).

Under mild conditions, such an upper bound of linear growth rate is sharp

from the base change of classical elliptic modular forms.

In this paper, we prove this conjecture by giving a polynomial saving

improvement of (1).

If F is imaginary quadratic, Finis, Grunewald and Tirao [FGT10] estab-

lished the bounds

k � dimC Sk(Kf )�Kf

k2

ln k
, k = (k)

for suitableKf using base change and the trace formula respectively. In [Mar12],

Marshall improved (1) by a power saving bound: supposing k = (k, . . . , k) is

parallel,

dimC Sk(Kf )�ε,Kf k
r−1/3+ε.

Later on in [Hu21], Hu proved a better power saving bound

dimC Sk(Kf )�ε,Kf k
r−1/2+ε.
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Both of them use mod p representation theory methods applied to Emer-

ton’s completed homology and relate the completed homology back to Sk(Kf )

via a spectral sequence and the Eichler–Shimura isomorphism summarized as

dimCH
r1+r2
c (Y (Kf ),Wk) = 2r1 dimC Sk(Kf )(2)

in [Mar12]. Here Y (Kf ) is defined to be

Y (Kf ) := X(Kf )/K∞,

and K∞ is the maximal compact subgroup of SL2(F∞).

If F is imaginary quadratic, then Y (Kf ) is a hyperbolic 3-manifold. The

space Sk(Kf ) consists of cuspidal Bianchi modular forms of parallel weight

(k, k). This space corresponds to the first compactly supported cohomology

with coefficient local system Wk = Symk/2−1 ⊗ Sym
k/2−1

by the Eichler–

Shimura isomorphism (2).

The main result of our paper is to bound dimC Sk(Kf ):

Theorem 1.2. If F is not totally real, then for any fixed Kf , we have

dimC Sk(Kf ) ≤Kf ( min
1≤i≤r

ki)
−1O(∆(k)).(3)

If, moreover, k = (k, . . . , k) is parallel, we have

dimC Sk(Kf ) ≤Kf O(kr−1).

Corollary 1.3. Conjecture 1.1 is correct. Suppose Kf is sufficiently

small. For the arithmetic hyperbolic 3-manifold Y (Kf ) and cohomological de-

gree n = 1, 2, we have the sharp bounds

dimCH
n
c (Y (Kf ),Wk) ∼Kf k.

Compared to [Mar12, Th. 1, Cor. 2] and [Hu21, Th. 1.1], we get a degree-

one saving bound and we do not need ε weakening. Let Fp = F⊗QQp with ring

of integers Op. It is very worth noting that both [Mar12, Th. 1, Cor. 2] and

[Hu21, Th. 1.1] crucially use the SL2(Fp)-action on the completed homology,

but we only make use of the group action of the first congruence subgroup of

SL2(Op).
If F only admits one complex place, or equivalently r2 = 1, it seems

likely (3) gives a sharp upper bound by heuristics from the Calegari–Emerton

conjecture.

Let K be a finite extension of Qp. Now we fix a compact open level

subgroup G ⊂ SL2(Op). If Kf further decomposes as

Kf = KpK
p for Kp ⊂ G, Kp ⊂ SL2(Ap,∞),
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we introduce completed homology of tame level Kp (see [CE09]) as‹H•(Kp) := lim←−
s

lim←−
Kp⊂G

H•(Y (KpK
p),Z/psZ)⊗Zp K.(4)

They are finitely generated modules over the Iwasawa algebra K[[G]] (see

[Eme06]).

To prove Theorem 1.2, we establish the following theorem on sub-poly-

nomial growth of algebraic quotients and their higher cohomology of a finitely

generated Iwasawa Qp[[G]]-module for G being a product of uniform (see

[DdSMS99, §4]) pro-p compact open subgroups of SL2(Zp). Therefore, the

main theorem can be obtained by using a fundamental spectral sequence due

to Emerton [Eme06], [CE09] (also see [Mar12] and [Hu21]).

By [Ven02], the Iwasawa algebra K[[G]] is Auslander regular. In particu-

lar, it is of finite global dimension. The G-homology of any Iwasawa module

should be vanishing above a degree that only depends on G. A multiplicity-

free polynomial p
M̃

of k is a polynomial such that for each monomial term

kg11 · · · k
gr
r of p

M̃
, each gi is at most 1 for 1 ≤ i ≤ r.

For each 1 ≤ i ≤ r, let

Gi := (I2 + pM2(Zp)) ∩ SL2(Zp).

Let G =
r∏
i=1

Gi, k = (k1, . . . , kr) ∈ Nr, and Wk be the algebraic representation

�ri=1Symki of G.

Theorem 1.4. Let M̃ be a finitely generated Qp[[G]]-module of rank d.

There exists a multiplicity-free polynomial p
M̃

of k of degree at most r − 1

associated to M̃ such that for any k ∈ Nr and any i ≥ 1,

| dimQp H0(G, M̃ ⊗Wk)− d
r∏
i=1

(ki + 1)| ≤ p
M̃

(k),

dimQp Hi(G, M̃ ⊗Wk) ≤ p
M̃

(k).

Let us first consider the growth of algebraic representations for some sim-

plest K[[G]]-modules.

If M̃ is of canonical dimension 0, then M̃ is finite dimensional by [AW13,

Lemma 10.13]. The polynomials can be chosen to be constants (of degree 0).

If M̃ ' K[[G]] as the module over itself, in Section 6, we explicitly exhibit

HomK[[G]](K[[G]],Wk) ' HomK[[G]](EndK(Wk),Wk).

Therefore

dimK HomK[[G]](K[[G]],Wk) = dimKWk =
r∏
i=1

(ki + 1).

This is an analogue of the classical algebraic Peter–Weyl theorem for SL2.
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Let gK be the Lie algebra of G with coefficients in K. To deduce Theo-

rem 1.4, we pass our problem to an algebraic microlocalization of the Iwasawa

algebra via a completed universal enveloping algebra K[[G]] → Û(gK) intro-

duced in [AW13]. In Section 6, we further apply homological degree-shifting

arguments to reduce to only treat the degree-zero case for a cyclic torsion

Iwasawa module M̃ .

The completed enveloping algebra Û(gK) is the p-adic completion of the

usual universal enveloping algebra U(gK). Note that Wk admits actions of

Û(gK) and U(gK).

Although the Iwasawa algebra has a very small center [Ard04], Û(gK)

has a larger center containing Casimir operators ∆1, . . . ,∆r. If K = Qp and

λ = (λ1, . . . , λr) ∈ Zrp, we may specialize ∆i to be λi for 1 ≤ i ≤ r. We

use Û(g)λ to denote this specialization. The goal of Section 5 is to prove the

following theorem.

Theorem 1.5. For any λ ∈ Zrp, the following map is injective:

(5) Qp[[G]] ↪→ Û(g)λ.

The right-hand side of (5) as a Noetherian algebra has a smaller dimension

compared to the left-hand side, a priori the kernel of it is a two-sided ideal.

But it surprisingly turns out to be zero.

After we completed this paper, Konstantin Ardakov pointed out to us

that Theorem 1.5 can be deduced from the main results of [AW14, Ths. 4.6

and 5.4]. Since our proof is different and the intermediate results may be of

independent interest, we still include Section 5 as part of the paper.

A generic element δ ∈ Û(g) is an element such that the image of δ under

the specialization Û(g) � Û(g)λ is non-zero for any λ ∈ Zrp. Theorem 1.5

asserts that the image of the Iwasawa algebra via the microlocalization consists

of generic elements (Section 3) of the completed enveloping algebra.

Theorem 1.6. Let M̂ be a cyclic torsion module over Û(gK) with a gen-

erator killed by a generic element. There exists a multiplicity-free polynomial

p
M̂

in r variables of degree at most r − 1 such that for any k ∈ Nr,

dimK Hom
Û(gK)

(M̂,Wk) ≤ p
M̂

(k) for k ∈ Nr.

We will prove some comparison results identifying Wk-quotients of the

original Iwasawa module M̃ and Wk-quotients of its microlocalization M̂ =

Û(gK)⊗K[[G]] M̃ . Theorem 1.4 will be deduced from combining Theorems 1.6

and 1.5.

Finally, we prove Theorem 1.6 by estimating the growth of dimension of

a Poincaré–Birkhoff–Witt filtration on M̂ . There is a natural integral model
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Û(g0) of Û(gK). It is important for us to consider the image of Û(g0) in

End(Wk). The PBW filtration is linked to multiplicities by Proposition 3.4.

Acknowledgments. I would like to thank Yongquan Hu for helpful discus-

sions. I want to thank Richard Taylor for checking the details of this paper and

catching an error in our earlier draft. I would also like to thank Konstantin

Ardakov, Shilin Lai, Lue Pan, Zicheng Qian, and Peter Sarnak for interesting

conversations about this paper, as well as the anonymous referee for expository

corrections.

2. Results on algebra

The rings of interest will always be Noetherian.

Definition 2.1. Let A be an integral domain (not necessarily commuta-

tive), and let M be a finitely generated A-module. The field of fractions L of

A is a division ring that is flat over A on both sides. We use dimL L⊗AM to

denote the rank of M .

Let Λ be a partially ordered abelian group. A Λ-filtration F•A on a ring

A is a set {FλA|λ ∈ Λ} of additive subgroups of A such that

• 1 ∈ F0A;

• FλA ⊂ FµA whenever λ ≤ µ;

• FλA · FµA ⊂ Fλ+µA for all λ, µ ∈ Λ.

The filtration on A is said to be separated if
⋂
λ∈Λ FλA = {0}, and it is said

to be exhaustive if
⋃
λ∈Λ FλA = A.

In a similar way, given a Λ-filtered ring F•A and an A-module M , a

filtration of M is a set {FλM |λ ∈ Λ} of additive subgroups of M such that

• FλM ⊂ FµM whenever λ ≤ µ;

• FλA · FµM ⊂ Fλ+µM for all λ, µ ∈ Λ.

Again, the filtration on M is said to be separated if
⋂
λ∈Λ FλM = {0}, and it

is said to be exhaustive if
⋃
λ∈Λ FλM = M .

If Λ ⊂ R, we can define graded rings and modules for the Λ-filtration. Let

A be a Λ-filtered ring. For any λ ∈ Λ, we put

Fλ−A :=
⋃
s<λ

FsA.

The associated graded ring is defined to be

gr(A) :=
⊕
λ∈Λ

FλA/Fλ−A.

Given a filtered F•A module F•M , we similarly define associated graded module

(Fλ−M is similarly defined):

gr(M) :=
⊕
λ∈Λ

FλM/Fλ−M.
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Here gr(M) is a natural gr(A)-module. For any m ∈ FλM\Fλ−M , we use

gr(m) ∈ FλM

Fλ−M
⊂ gr(M)

to denote the corresponding principal symbol.

Lemma 2.2. Let A be a Λ-filtered ring with Λ ⊂ R. Suppose that for

any non-zero x ∈ A, there exists λx ∈ Λ such that x ∈ FλxA\Fλx−A. If

a ∈ FaA\Fa−A for a ∈ Λ, and gr(a) is a non-zero divisor of gr(A), we have

gr(A/A · a) ' gr(A)/gr(A) · gr(a),

where the filtration on A/A · a is induced from the filtration on A.

Proof. By the assumptions, a ∈ A is a non-zero divisor. For any λ ∈ Λ,

we have

A · a ∩ FλA = Fλ−aA · a, A · a ∩ Fλ−A = F(λ−a)−A · a.

By definition of the induced filtration,

Fλ(A/A · a) = FλA/Fλ−aA · a.

For saving notation, let

grλA := FλA/Fλ−A and grλ(A/A · a) := Fλ(A/A · a)/Fλ−(A/A · a).

We have the following commutative diagram with exact rows and exact columns:

0 0 0

0 // Fλ−(A/A · a) //

OO

Fλ(A/A · a) //

OO

grλ(A/A · a) //

OO

0

0 // Fλ−A //

OO

FλA //

OO

grλA //

OO

0

0 // F(λ−a)−A · a //

OO

F(λ−a)A · a //

OO

grλ−aA · gr(a) //

OO

0

0

OO

0

OO

0.

OO

The claim follows from the last vertical short exact sequence applying the snake

lemma. �
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Lemma 2.3. Let A be a Noetherian ring with a two-sided ideal I such that

A/I is p-torsion free. The p-adic completion Â of A has a two-sided ideal

Î := lim←−
a

Ç
(pa) + I

(pa)

å
= Â · I = I · Â ⊂ Â,

and Â/Î is isomorphic to the p-adic completion of A/I .

Proof. We have to prove lim←−a
(

(pa)+I
(pa)

)
⊂ Â ·I; the other inclusion is clear.

Suppose I is generated by {m1, . . . ,ml} ⊂ I. Choose any compatible

system

(m(a)) ∈ lim←−
a

Ç
(pa) + I

(pa)

å
, m(a) ∈ I.

We use induction to choose coefficients of mi in the expression of m(a).

For a = 1, we pick coefficients {x(1)
i ∈ A} such that m(1) =

l∑
i=1

x
(1)
i m̄i. For

a given a ∈ N, suppose we have constructed {x(a)
i ∈ A}, and express

m(a) =
l∑

i=1

x
(a)
i m̄i ∈

(pa) + I

(pa)
.

We want to inductively construct {x(a+1)
i ∈ A}. We lift m

(a+1)
i to m̃ ∈ I. Since

A/I is p-torsion free, there exists {d(a+1)
i |1 ≤ i ≤ l} such that

m̃−

Ñ
l∑

i=1

x
(a)
i mi

é
= pa

l∑
i=1

d
(a+1)
i mi.

Let x
(a+1)
i := x

(a)
i + pad

(a+1)
i mod pa+1 for 1 ≤ i ≤ l. The lift m

(a+1)
i can be

expressed as

m
(a+1)
i =

l∑
i=1

x
(a+1)
i m̄i ∈

(pa+1) + I

(pa+1)
.

Therefore for each 1 ≤ i ≤ l, (x
(a)
i ) defines an element in Â, Î ⊂ Â·I. Similarly,

Î = I · Â.

Consider the short exact sequence of inverse systems:

0→
Ç

(pa) + I

(pa)

å
→
Ç

A

(pa)

å
→
Ç

A

(pa) + I

å
→ 0.

The system
(

(pa)+I
(pa)

)
satisfies the Mittag-Leffler condition, and the inverse

limits give a short exact sequence by [Sta, 02MY Lemma 12.31.3]. Therefore

Â/Î is isomorphic to the p-adic completion of A/I. �
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3. Growth of algebraic quotients for

(completed) enveloping algebras

Let K be a field with a subring R such that 2 is invertible in R. Let g0

be a direct sum of R-Lie algebras with K-valued extension g:

g0 :=
r⊕
i=1

sl2,R, g :=
r⊕
i=1

sl2,K = K ⊗R g0.

The universal enveloping algebra U(g0) =
⊗r

i=1 U(sl2,R) (and similarly for

U(g)/K) is a multi-filtered R-algebra with index group Λ = Zr. To be precise,

let hi, ei, fi be the basis of sl2,R with the relations

(6) [hi, ei] = 2ei, [hi, fi] = −2fi, [ei, fi] = hi.

Letting

∆i :=
1

2
h2
i + eifi + fiei =

1

2
h2
i − hi + 2eifi

be the Casimir operator for i-th component, we are interested in the polynomial

ring K[∆1, . . . ,∆r] ⊂ Z(U(g)).

For λ = (λ1, . . . , λr) ∈ Rr, we define

AnnZ(λ)◦ :=
r∑
i=1

Z(U(g0)) · (∆i − λi), AnnZ(λ) := K ·AnnZ(λ)◦

as ideals of Z(U(g0)) and Z(U(g)), giving rise to the extension ideal and quo-

tient ring of U(g0) and U(g):

UZ(λ)◦ := U(g0) ·AnnZ(λ)◦, UZ(λ) := U(g) ·AnnZ(λ),

U◦λ := U(g0)/UZ(λ)◦, Uλ := U(g)/UZ(λ).
(7)

Let p be an odd prime. If K is a finite extension of Qp with ring of integers

R, we define

Û(g0) := lim←−
a

Ç
U(g0)

paU(g0)

å
, Û(g) := K ⊗R Û(g0).

Similarly for Û(g0) and Û(g), we define “U◦λ , “Uλ to be the quotient rings

by nullifying the relations {(∆i − λi)|1 ≤ i ≤ r}.
For δ∈ Û(g), we say that δ is generic if the image of δ via Û(g)�“Uλ is non-

zero for all λ ∈ Zrp. An equivalent torsion condition is given by compactness

of Zp via the following lemma.

Lemma 3.1. If δ ∈ Û(g0) is generic, there exists a natural number nδ ≥ 1

such that the image of δ via Û(g0)� “U◦λ/pnδ is non-zero for all λ ∈ Zrp.



132 WEIBO FU

Proof. We define a function fδ : Zrp → Z≥1: for each λ ∈ Zrp, fδ(λ)

is defined to be the minimal positive integer such that the image of δ via

Û(g0)� “U◦λ/pfδ(λ) is non-zero. We have

r∑
i=1

〈∆i − λi〉+ 〈pfδ(λ)〉 =
r∑
i=1

〈∆i − (λi + pfδ(λ)xi)〉+ 〈pfδ(λ)〉 ∀xi ∈ Zp,

therefore

fδ(λ+ x) ≤ fδ(λ) ∀x ∈ pfδ(λ)Zrp.
Since Zrp is compact and fδ is upper-semicontinuous, fδ is bounded above. �

For k = (k1, . . . , kr) ∈ Nr, we use W ◦k (resp. Wk) to denote the U(g0)-

module �ri=1SymkiR2 (resp. U(g)-module �ri=1SymkiK2). We use Uk, “U◦k, “Uk

for Uλ, “U◦λ , “Uλ when λ = (1
2k1(k1 + 2), . . . , 1

2kr(kr + 2)).

The goal of this section is to prove the following statement.

Theorem 3.2. If M̂ is cyclic, torsion and a given generator is annihilated

by a generic element δ ∈ Û(g), there exists a multiplicity-free polynomial p
M̂

in r variables k1, . . . , kr of degree at most r − 1 associated to M̂ such that for

all k ∈ Nr, we have

H0
M̂

(k) ≤ p
M̂

(k).

To prove such a result, we will prove that the image of Û(g0) · δ in

EndQp(Wk) modulo pnδ (here nδ is a positive integer given by Lemma 3.1)

requires suitably many generators over Zp. This motivates us to estimate the

number of generators using the filtration on U(g0), which we illustrate below.

Since the natural Û(g0) action on Wk factors through “U◦k, our observations

that “U◦k/p is an integral domain in Lemma 3.3 and this image is generated by

the first k-th filtered piece of U(g0) (Proposition 3.4, Remark 3.5) will achieve

the desired estimate.

To prevent any confusion, we emphasize that our argument is mostly inte-

gral. But we also include corresponding rational statements for completeness.

Going back to the Lie algebra g0, for each sl2,R-component, by the PBW

theorem there is a Z-filtration with Fill generated by polynomials of {hi, ei, fi}
up to degree l. The Zr filtration is supported on Nr ⊂ Zr, so sometimes we

write Nr instead of Zr.
We equip U(g0) with the product filtration indexed by Λ. The abelian

group Λ = Zr comes with the partial order

λ ≤ µ if λ1 ≤ µ1, . . . , λr ≤ µr.

We write

0� λ if 0� min
1≤i≤r

λi, and λ→∞ if min
1≤i≤r

λi →∞.(8)
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We have FµU(g0) = 0 if µ /∈ Nr ⊂ Zr, and we have rankR FλU(g0) < ∞ for

all λ ∈ Λ. There exists a polynomial pU(g0) in r variables such that

rankR FλU(g0) = pU(g0)(λ) for 0� λ ∈ Nr.
But to form a graded ring, we use the Z-filtration, and its associated graded

ring is
SR := gr(U(g0)) ' R[h1, e1, f1, . . . , hr, er, fr].

Let M be a finitely generated U(g)-module (resp. U(g0)-module), with

a set of generators {m1, . . . ,ml}. We define two filtrations on M valued in

Λ = Zr or Λ = Z, both given by the formula (and similarly for U(g0)-modules)

FλM :=
l∑

i=1

FλU(g) ·mi, λ ∈ Λ.

If Λ = Z, we have the associated graded module gr(M) over S = gr(U(g)).

Let IZ be the ideal of S generated by {1
2h

2
i + 2eifi | 1 ≤ i ≤ r}.

We prove some useful properties of the rings Uλ,“U◦λ and “Uλ:

Lemma 3.3. For λ ∈ Zrp, r ∈ R, the following hold :

• Let h, e, f be the basis of sl2,R with ∆ = 1
2h

2 − h + 2ef and the same

commutation relations as (6). Then {eaf bhc|a, b ∈ N, c ∈ {0, 1}} is a basis

of U(sl2,R)/(∆− r).

• F•U(sl2,R) induces a Z-filtration on U(sl2,R)/(∆ − r). Therefore both Zr
and Z filtrations induce corresponding filtrations on U◦λ and Uλ, and for the

Zr filtration,

rankR FdU
◦
λ = dimK FdUλ =

r∏
i=1

(di + 1)2

is a polynomial in d = (d1, . . . , dr) ∈ Nr.
• The Noetherian ring Uλ is an integral domain.

Moreover, if K is a finite extension of Qp for p ≥ 3,

• the ring “U◦λ is isomorphic to the p-adic completion of U◦λ , and

K ⊗R U◦λ ' Uλ, K ⊗R “U◦λ ' “Uλ;

• the rings “U◦λ , “Uλ are also Noetherian integral domains.

Proof. The first part follows from the commutation relations and an in-

duction on the total degree.

The second part follows from the first part.

The K-algebra K[h, e, f ]/(1
2h

2 + 2ef) is an integral domain over the al-

gebraic closure K of K. Furthermore, so is the tensor product of r-copies of

K[h, e, f ]/(1
2h

2 + 2ef). Hence SK/IZ is also an integral domain. For the last

part, consider the Z-filtration on Uλ. Its graded ring gr(Uλ) is isomorphic to

the integral domain SK/IZ by Lemma 2.2. For any non-zero a, b∈Uλ, let ia, ib
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be the minimal natural numbers such that a ∈ FiaUλ, b ∈ FibUλ. The image

of ab in
Fia+ibUλ/Fia+ib−1Uλ

is non-zero, and so is ab ∈ Uλ.

The fourth part follows from Lemma 2.3 and the flat base change R ↪→ K.

For the last part, we may assume K = Qp. We have that “U◦λ/p ' U◦λ/p is

isomorphic to Uλ over Fp (defined in (7) for K = Fp). The claim then follows

from the third part for Fp. �

For the rest of the section, K is a finite extension of Qp with the ring

of integers R. Let Ann(k) (resp. Ânn(k)) be the annihilator ideal of U(g)

(resp. Û(g)) for Wk. As will be discussed in Section 4, there is an algebraic

isomorphism (see (19))

U(g)/Ann(k)
∼−→ Û(g)/Ânn(k)

∼−→ EndK(Wk).

If M̂ is a finitely generated Û(g)-module, we define

M̂k := M̂/Ânn(k) · M̂

and the Wk-multiplicity H0
M̂

(k) to be

(9) H0
M̂

(k) := dimK Hom
Û(g)

(M̂,Wk) =
dimK M̂k

dimKWk
.

Note that the natural U(g), Û(g) actions on Wk factor through Uk, “Uk.

Proposition 3.4. For any k ∈ Nr, as R-modules, the image of FkU
◦
k

equals to the full image of U◦k in EndR(W ◦k). As a corollary, there are isomor-

phisms of K-vector spaces :

FkUk
∼−→ U(g)/Ann(k)

∼−→ EndK(Wk).

Proof. It suffices to prove the case r = 1, k = (k). We first observe that

for any a ≥ 0, eafa can be expressed as an R-linear combination of hi as an

operator in U◦k. For example, let λk = 1
4k(k + 2). Then we have

e2f2 = e

Å
λk +

1

2
h− 1

4
h2

ã
f

= λk · ef +
1

2
(he− 2e)f − 1

4
(he− 2e)(fh− 2f)

= (λk + h− 2)ef +
1

2
efh− 1

4
hefh

=

Å
λk − 2 +

3

2
h− 1

4
h2

ãÅ
λk +

1

2
h− 1

4
h2

ã
.

Let v0, . . . , vk be the weight vectors of W ◦k of increasing weights, with

W ◦k = ⊕ki=0Rvi, f raising a weight and e lowering a weight. Let W≥i :=∑k
j≥iRvj . Note that we want to prove that each monomial eaf bhc (c is either
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zero or one by the first part of Lemma 3.3) with total degree strictly larger

than k can be reduced to an R-linear combination of lower degree terms. For

explanation, we only show the reduction for the monomial eaf b, where a+b>k,

a ≤ b, the monomial eaf b is equal to eafaf b−a. (Other cases can be similarly

obtained.) The operator eafa can be viewed as an endomorphism of W≥b−a
since f b−a maps W to W≥b−a. We know it is an R-linear combination of powers

of h. By Cayley-Hamilton,

eafa =
k−b+a∑
i=0

cih
i ∈ EndR(W≥b−a), ci ∈ R.

As k − b + a < 2a, the degree of eaf b is reduced. We can similarly argue the

other cases.

The corollary for K-isomorphisms follows from counting the dimensions

of both sides by Lemma 3.3. �

Remark 3.5. Let E◦k be the image of U◦k in EndR(W ◦k). As it is p-adic

complete, it coincides with the image of Û(g0) as well. Moreover, we have

Fk(U◦k/p
m) ' E◦k/pm

for all m ≥ 0.

Proof of Theorem 3.2. Let M̂0 be a cyclic Û(g0)-lattice inside M̂ such that

M̂0 ⊗R K
∼−→ M̂ . We may assume δ ∈ Û(g0). The surjection Û(g0) � M̂0

corresponding to the generator factors through Û(g0)/Û(g0)δ.

We pick nδ ≥ 1 satisfying Lemma 3.1. Under the natural identification

U(g0)/pnδ ' Û(g0)/pnδ , there exists α ∈ Nr such that δ ∈ Fα(Û(g0)/pnδ) '
Fα(U(g0)/pnδ).

If k ≥ α, then

Fk−α(“U◦k/pnδ) · δ ⊂ Fk(“U◦k/pnδ).
Let $ be a uniformizer of R. For any k ∈ Nr, and e ∈ U◦k such that e /∈ $U◦k,

we have e · δ 6= 0 in U◦k/p
nδ since U◦k/$ is an integral domain by Lemma 3.3.

The composition of maps of vector spaces

Fk−αUk → Fk−αUk · δ → EndK(Wk)

is injective; otherwise, there exists e ∈ Fk−αU
◦
k\$U◦k such that e · δ maps to

0 ∈ E◦k ↪→ EndK(Wk),

contradicting Remark 3.5 of Proposition 3.4 since e·δ ∈ Fk(U◦k/p
nδ) is non-zero

modulo pnδ .
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Therefore the image of Û(g)δ in Û(g)k ' EndK(Wk) has dimension at

least dimK Fk−αUk, and we have the following bound for (Û(g)/Û(g)δ)k:

H0

Û(g)/Û(g)δ
(k) =

dimK(Û(g)/Û(g)δ)k
dimKWk

≤
∏r
i=1(ki + 1)2 −

∏r
i=1(ki − αi + 1)2∏r

i=1(ki + 1)
.

Regarding each (ki + 1) as a variable, each term cS,S′ ·
∏
i∈S(ki+1)∏
i∈S′ (ki+1) is bounded

by |cS,S′ | ·
∏
i∈S(ki + 1) for S t S′ ⊂ {1, . . . , r}. We get the desired bound for

Û(g)/Û(g)δ. �

Remark 3.6. If M is a finitely generated module over U(g), in general,

the rank of M does not have to agree with the rank of Uk ⊗U(g) M over Uk

without the genericity condition. If r = 2, g = sl2,K ⊕ sl2,K , and ∆1,∆2 are

Casimir operators for the two components, the algebraic representations Wk,k

of parallel weights grow in quadratic order in the cyclic torsion U(g)-module

U(g)/(∆1 −∆2).

These Casimir operators do not exist in K[[G]], and we will see elements

in Û(g) obtained from base change over the microlocalization (18) are generic.

4. Comparison of algebraic quotients

LetK be a finite extension of Qp with the ring of integersR, residue field k.

Let G be a uniform pro-p group of dimension d = dimG. We define the

completed group rings by

R[[G]] := lim
←−

R[G/N ], K[[G]] := K ⊗R R[[G]],

where N runs over all the open normal subgroups N of G.

Lazard [Laz65] defines a Zp-Lie algebra LG associated to G (see also

[DdSMS99, §4.5]). We briefly recall some basic facts about LG here. We

fix a minimal topological generating set {g1, . . . , gd} of G. Each element of G

can be written uniquely in the form gλ11 · · · g
λd
d for some λ1, . . . , λd ∈ Zp. By

[DdSMS99, Th. 4.30], the operations

λ · x = xλ,(10)

x+ y = lim
i→∞

(
xp

i
yp

i
)p−i

,(11)

[x, y] = lim
i→∞

(
x−p

i
y−p

i
xp

i
yp

i
)p−2i

(12)

define a Lie algebra structure LG on G over Zp. Note that LG is a powerful

Lie algebra in the sense that it is free of rank d = dimG over Zp and satisfies

[LG, LG] ≤ pLG. Letting

gR =
1

p
LG ⊗Zp R, gK = gR ⊗R K,
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the completed universal enveloping algebras Û(gR), Û(gK) are defined to be

Û(gR) := lim←−
a

Ç
U(gR)

paU(gR)

å
, Û(gK) := Û(gR)⊗R K,

following [ST03] (appearing as the “largest” distribution algebra D1/p(G,K))

and [AW13].

Lemma 4.1. If G is a compact open uniform pro-p subgroup of SLn(Qp),

then the associated Lie algebra

gK ' sln,K

is isomorphic to the Lie algebra of sln over K .

Proof. This is an exercise [DdSMS99, Part II, Ch. 9, Ex. 9] following from

Lazard’s paper [Laz65]. �

As G is a uniform pro-p-group, by [DdSMS99, Th. 8.18] it is compact

locally Qp-analytic. Moreover, G satisfies the assumption (HYP) of [ST03,

§4] by the remark before [ST03, Lemma 4.4]. Schneider and Teitelbaum have

introduced the K-Fréchet–Stein algebra D(G,K) of K-valued locally analytic

distributions on G ([ST02b], [ST03]). We briefly recall some basic properties

of D(G,K) from [ST03] here.

Let bi := gi − 1 ∈ R[G], and write

bα = bα1
1 · · · b

αd
d ∈ R[G](13)

for any d-tuple α ∈ Nd. We write |α| :=
∑d

i=1 αi. It follows from the proof

of [DdSMS99, Th. 7.20] that R[[G]] can be naturally identified with the set of

non-commutative formal power series in b1, . . . , bd with coefficients in R:

R[[G]] =

∑
α∈Nd

λαbα | λα ∈ R

 .

There is a faithfully flat natural map from the Iwasawa algebra to the

distribution algebra

K[[G]]→ D(G,K)(14)

by [ST03, Th. 4.11], such that D(G,K) can be identified with power series in

b1, . . . , bd with convergence conditions

D(G,K) =

∑
α∈Nd

λαbα | λα ∈ K, and for ∀ 0 < r < 1, sup
α∈Nd

|λα|r|α| <∞

 .
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For G, there is an integrally valued p-valuation ω : G\{1} → Z≥1 such

that

ω(gh−1) ≥ min(ω(g), ω(h)),

ω(g−1h−1gh) ≥ ω(g) + ω(h), and

ω(gp) = ω(g) + 1

for any g, h ∈ G, with ω(1) :=∞ [Laz65, III 2.1.2].

For G being uniform, we may define ω(g) to be n ≥ 1 such that g ∈
Gp

n−1\Gpn . It is indeed an integrally valued p-valuation on G by, for example,

[AW13, Lemma 10.2]. By the discussion in [DdSMS99, §4.2], ω is characterized

by

ω(gi) = 1 for 1 ≤ i ≤ d, and(15)

ω(g) = 1 + min
1≤i≤d

ωp(xi) ∀g = gx11 · · · g
xd
d ∈ G,

where ωp denotes the p-adic valuation on Zp.
The Fréchet topology of D(G,K) is defined by the family of norms

‖λ‖r := sup
α∈Nd

|λα| r|α|

for 0 < r < 1, where the absolute value | · | is normalized as usual by |p| = p−1.

We let

Dr(G,K) := completion of D(G,K) with respect to the norm ‖ ‖r.

As a K-Banach space,

Dr(G,K) =

∑
α∈Nd

λαbα | λα ∈ K, sup
α∈Nd

|λα|r|α| <∞

 .(16)

Theorem 4.2. If 1/p ≤ r < 1, then Dr(G,K) is a Banach noetherian

integral domain with multiplicative norm ‖ ‖r. The distribution algebra

D(G,K) = lim←−
r

Dr(G,K)

is a K-Fréchet–Stein algebra.

Proof. This is the main result of [ST03, §4]. �

We remark that Schneider–Teitelbaum’s definition of ‖ ‖r is slightly more

complicated in general, but it agrees with our ‖ ‖r because of (15) due to the

uniform assumption of G.

Let m := ker(R[[G]]→ k) be the unique maximal ideal of R[[G]]. Following

[AW13, §10], we consider a microlocal Ore set S0:

S0 :=
⋃
a>0

Ä
pa + ma+1

ä
⊆ R[[G]].(17)
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Associated to S0, there is a flat extension (see remarks in [AW13, §1.4])

K[[G]]→ Û(gK)(18)

by construction of [AW13, §10], called the microlocalization of Iwasawa alge-

bra. For a finitely generated K[[G]]-module M̃ , we use M̂ := Û(gK)⊗K[[G]] M̃

to denote the microlocalization of M̃ .

From now on we assume gK is a split, semisimple Lie algebra over K. We

refer to [Bou05] for a treatment of such a Lie theory. Let W be an irreducible

finite dimensional representation of U(gK) with a U(gR)-lattice W0 ⊂W .

As W0 is of finite rank, it is automatically p-adic complete. The U(gR)

action on W0 extends to a Û(gR) action, and the U(gK) action on W extends

to a Û(gK) action (also see [AW13, §9.2]).

We pull back W as a K[[G]]-module via the microlocalization (18). Iwa-

sawa modules arising from this way are called Lie modules in [AW13, §11.1].

By [AW13, Th. 11.1, Cor. 11.1], W remains irreducible as a K[[G]]-module.

Let

Ann(W ) ⊂ U(gK), ̂Ann(W ) ⊂ Û(gK), ˜Ann(W ) ⊂ K[[G]]

respectively be the annihilator ideals of U(gK), Û(gK),K[[G]] for W . Similarly,

we have

U(gK)/Ann(W )
∼−→ Û(gK)/ ̂Ann(W )

∼−→ EndK(W ),(19)

K[[G]]/ ˜Ann(W ) ↪→ Û(gK)/ ̂Ann(W )
∼−→ EndK(W ).(20)

The second map of (19) is surjective by [Bou05, Ch. VIII, §6.2, Cor. of Prop. 3].

By [AW13, Th. 11.1], every finite dimensional K[[G]]-module is semisim-

ple. For a finitely generated K[[G]]-module M̃ , we use

M̃W := M̃/ ˜Ann(W ) · M̃ (resp. M̂W := M̂/ ̂Ann(W ) · M̂)

to denote the maximal quotient of M̃ (resp. M̂) that is isomorphic to a finite

sum of W as a K[[G]]-module (resp. Û(gK)-module).

Theorem 4.3. Let M̃ be a finitely generated K[[G]]-module with microlo-

calization M̂ = Û(gK)⊗K[[G]] M̃ . Then the natural map

M̃W
∼−→ M̂W

is an isomorphism. In particular, K[[G]]/ ˜Ann(W )
∼−→ Û(gK)/ ̂Ann(W ) in (20)

is an isomorphism.
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Proof. We apply the flat base change microlocalization K[[G]] → Û(gK)

(18) to the short exact sequence

0→ ˜Ann(W ) · M̃ → M̃ → M̃W → 0

to get

0→ Û(gK)⊗K[[G]]
˜Ann(W ) · M̃ → M̂ → Û(gK)⊗K[[G]] M̃W → 0.(21)

The microlocal Ore set S0 (17) acts invertibly on W as S0 consists of units in

Û(gK). (Note that S0 is inverted to form the microlocalization in Ardakov-

Wadsley’s construction; also see the proof of part (b) of [AW13, Th. 11.1].)

We can apply [AW13, Prop. 11.1] to W taking n = 0, which asserts that the

natural map M̃W
∼−→ Û(gK)⊗K[[G]] M̃W is an isomorphism as K[[G]]-modules

because M̃W is isomorphic to a direct sum of W . By our assumption on W ,

the K[[G]] action on M̃W (uniquely) extends to Û(gK). Moreover, it is an

isomorphism over Û(gK) due to the natural Û(gK)-equivariant reverse map

Û(gK)⊗K[[G]] M̃W → M̃W .

By maximality of M̂W , the exact sequence (21) gives

̂Ann(W ) · M̂ ⊂ Û(gK)⊗K[[G]]
˜Ann(W ) · M̃,

both as submodules of M̂ . From (20) we get Û(gK) · ˜Ann(W ) ⊂ ̂Ann(W ),

therefore

Û(gK)⊗K[[G]]
˜Ann(W ) · M̃ ⊂ ̂Ann(W ) · Û(gK)⊗K[[G]] M̃ = ̂Ann(W ) · M̂.

This forces Û(gK)⊗K[[G]]
˜Ann(W ) · M̃= ̂Ann(W ) · M̂ and thus M̂W =M̃W . �

5. Infinitesimal specialization

We continue to use notation from Section 4. For simplicity, we take K to

be Qp. The norm | | on Qp is normalized as usual by |p| = p−1. Let C(G,Qp)

and C la(G,Qp), C
sm(G,Qp) be respectively the space of continuous functions

on G, the space of locally analytic functions on G, and the space of smooth

functions on G, all valued in Qp. The Lie algebra g acts on C la(G,Qp) by

continuous endomorphisms defined by

xf := lim
t→0

(t · x)f − f
t

(22)

for x ∈ g0, f ∈ C la(G,Qp), where the dot action t · x is given by (10). We have

a natural inclusion

U(g)→ D(G,Qp).(23)

We further assume that G is an open subgroup of the group of Qp-rational

points of a connected split reductive Qp-group G with Borel pair (B,T). The
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Qp-split Lie algebra of G should be identified with the Lie algebra g associated

to G in Section 4. We use g0 to denote gZp .

Let T := T(Qp) ∩ G be a torus of G, and let B := B(Qp) ∩ G be a

Borel subgroup with unipotent radical N such that B = TN . Let t0, b0, n0

respectively be their associated Lie algebras over Zp, with generic fibres t, b,

n. Suppose n0 is an opposite nilpotent of n such that g0 admits a triangular

decomposition

g0 = n0 ⊕ t0 ⊕ n0.

Let Z(g0), Z(g) respectively be the centers of U(g0), U(g). Any character

of Z(g0) is naturally extended to a character of Z(g). There is the Harish-

Chandra homomorphism [Bou05, Ch. VIII, §6.4] associated to the triangular

decomposition

HC : Z(g)→ U(t).(24)

If χ : T → 1+pZp is a continuous/locally analytic character of the torus T ,

it induces a character dχ : U(t0) → Zp by formula (22), extending to dχ :

U(t) → Qp. We call an infinitesimal character λ : Z(g) → Qp induced if

λ = dχ ◦HC for a character χ of T .

Our main theorem in this section is the following.

Theorem 5.1. Let λ be an induced infinitesimal character. If G is a

finite product of first congruence subgroups of SL2(Zp), the composition of mi-

crolocalization (18) with infinitesimal specialization is injective:

Qp[[G]] ↪→ Û(g)⊗Z(g),λ Qp.

The corresponding statement for distribution algebra turns out to be much

easier, and it serves as a first step to prove Theorem 5.1.

For a proof, we make use of the locally analytic principal series of χ : T →
1 + pZp:

Ind(χ) :={f :G→Qp|f locally analytic, f(gtn)=χ(t)f(g) ∀t∈T, n∈N, g∈G}.

The locally analytic principal series has an induced infinitesimal character

determined by dχ via the Harish-Chandra homomorphism (24).

Theorem 5.2. As Qp-Fréchet spaces, D(G,Qp) ⊗Z(g),λ Qp is the strong

dual of the locally convex vector space of compact type C la(G,Qp)[λ], where

C la(G,Qp)[λ] is the λ-isotypic part of the space of locally analytic functions

on G.

If the infinitesimal character λ is induced, the composition of (14) with

infinitesimal specialization is injective:

Qp[[G]] ↪→ D(G,Qp)⊗Z(g),λ Qp.
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Proof. Let z1, . . . , zn be a set of generators of the kernel of λ. By [ST02b,

Prop. 3.7], these differential operators define G-equivariant endomorphisms of

C la(G,Qp). Therefore we have a short left exact sequence of admissible locally

analytic representations of G:

0→ C la(G,Qp)[λ]→ C la(G,Qp)→C la(G,Qp)
n,(25)

f 7→ (zi · f)i.(26)

By taking the strong dual of (25) and the anti-equivalence of categories between

admissible locally analytic representations and coadmissible D(G,Qp)-modules

[ST03, Th. 6.3], we identify D(G,Qp)⊗Z(g),λ Qp with C la(G,Qp)[λ]′b.

For the second part, as Qp[[G]] is dual to C(G,Qp), it suffices to prove

that C la(G,Qp)[λ] is dense in C(G,Qp).

We choose any locally analytic character χ : T → K× such that Ind(χ)

has the infinitesimal character λ. Let X be the quotient space X := G/B,

then there is a splitting X ↪→ G� X as p-adic manifolds such that Ind(χ) '
C la(X,Qp) as topological K-vector spaces. We choose any nowhere vanishing

function f0 ∈ C la(X,Qp) so that f0 ∈ C la(G,Qp)[λ]. The pointwise product of

f0 with any smooth function still has the infinitesimal character λ. We see that

f0 · Csm(G,Qp) ⊂ C la(G,Qp)[λ] ⊂ C(G,Qp) is clearly dense in C(G,Qp). �

Following [Fro03], [Koh07], we define Ur(g) to be the closure of U(g) in

Dr(G,Qp) with respect to the norm ‖ ‖r for 0 < r < 1. If λ : Z(g)→ Qp is an

infinitesimal character, we define

Uλr (g) := Ur(g)⊗Z(g),λ Qp, D
λ
r (G,Qp) := Dr(G,Qp)⊗Z(g),λ Qp.

Proposition 5.3. If r = pn
√

1/p for n ∈ Z≥1, then Dr(G,Qp) is a crossed

product ([MR01, §1.5.8], [AW13, Proof of Prop. 10.6]) of Ur(g) by G/Gp
n
.

Consequently,

Dλ
r (G,Qp) ' Uλr (g) ∗ (G/Gp

n
)

is a crossed product of Uλr (g) by G/Gp
n
.

Proof. See [Sch13, (6.8), Cor. 5.13] for a similar statement of the first

claim. We give a proof as follows. By (22), for any g ∈ G, x ∈ g0, f ∈
C la(G,Qp),

g(x · (g−1f)) = g

Ç
lim
t→0

(t · x)(g−1f)− (g−1f)

t

å
= lim
t→0

g(t · x)g−1f − f
t

= lim
t→0

(t · gxg−1)f − f
t

= (gxg−1) · f.
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We see that U(g) is stable under the conjugation action of G. By Frommer’s

theorem [Fro03], [Koh07, Th. (Frommer), Proof of Cor. 1.4.1],

Ur(g) =

{∑
α

dαX
α|dα ∈ Qp, lim

|α|→∞
|dα| ‖Xα‖r = 0

}
(27)

for Xα = log(1+b1)α1 · · · log(1+bd)
αd compared to (13), and Dr(G,Qp) is a free

(left or right) Ur(g)-module of basis given by representatives of G/Gp
n
. It suf-

fices to prove that for any g∈G, its pn-th power belongs to Ur(g), and we may

further assume g = bi for certain 1≤ i≤d. As a formal power series, we have

gp
n

= exp(pnXi) =
∞∑
k=0

pnkXki
k!

for Xi := log(1 + bi). Here, by Taylor series of log(1 + x), we have

‖Xi‖r = max
i≥1

ri

|i|
= max

k≥0

rp
k

|pk|
= max

k≥0
p
− p

k

pn · pk = max
k≥0

p
(k− p

k

pn
)

= pn−1,

and since ‖ ‖r is multiplicative by [ST03, Th. 4.5], ‖Xki ‖r = p(n−1)k, we have

lim
k→∞

|p
nk

k!
| · p(n−1)k ≤ p

k
p−1 · p−k = 0.

As a consequence, gp
n ∈ Ur(g) by characterization (27).

The second claim follows from the first claim since Z(g) is in the center

of Dr(G,Qp) by [ST02b, Prop. 3.7] and Z(g) ⊂ U(g) ⊂ Ur(g). �

Remark 5.4. It is pointed out in [AW13, Rem. 10.6] that Dr(G,Qp) should

be a crossed product of the microlocalization of Qp[[G
pn ]] by G/Gp

n
for r =

pn
√

1/p. It is quite likely that Ur(g) coincides with such a microlocalization .

For each n ≥ 0, Gp
n

is isomorphic to its (unnormalized) Lie algebra

LGpn ' pn+1Zdp ' Zdp
as p-adic manifolds. We define

Cn,an(G,Qp) :=
¶
f ∈ C(G,Qp) | f is analytic on each Gp

n
coset

©
,

with C la(G,Qp) = lim−→
n≥0

Cn,an(G,Qp).
(28)

In particular, Can(G,Qp) :=C0,an(G,Qp) is the space of analytic functions on G.

For any n ≥ 0, let rn := pn
√

1/p. The transition of spaces of analytic

functions of decreasing radius is compact

Cn,an(G,Qp) ↪→ Cn+1,an(G,Qp).

For any n ≥ 1, if zn−1
1 , . . . , zn−1

d are coordinates of Gp
n−1

, then it follows that

zn1 = pzn−1
1 , . . . , znd = pzn−1

d are coordinates of Gp
n
. For any g ∈ Gpn+1

, we
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may pull back

g∗(zn−1
i ) =

∑
α∈Zd≥0

ciα(zn−1)α ∈ Can(Gp
n−1

,Qp), c
i
α ∈ Zp,

and the constant term ci0 is divided by p2. Consider the commutative diagram

Cn−1,an(G,Qp) //

g∗

��

Cn,an(G,Qp)

g∗

��

Cn−1,an(G,Qp) // Cn,an(G,Qp).

We have

g∗(zni ) =
∑
α∈Zd≥0

p|α|−1ciα(zn)α ∈ Can(Gp
n
,Qp), c

i
α ∈ Zp.

Since g∈Gpn+1
induces the identical map on Gp

n
/Gp

n+1
, we have cij≡δij mod p

for znj ’s coefficient cij in g∗(zni ). We see that the operator g − 1 has norm at

most 1/p on the Banach space Cn,an(G,Qp) for any n ≥ 1, g ∈ Gp
n+1

, and

so is the operator (g − 1)p
n+1

for any g ∈ G. Any power series of Dr(G,Qp)

converges as an endomorphism of Cn,an(G,Qp),

Drn+1(G,Qp)→ EndQp(C
n,an(G,Qp)),

by the description (16). Composed with the evaluation map at identity

Cn,an(G,Qp)
ev−→Qp

f 7→ f(id),

we have a natural map

Drn+1(G,Qp)→ (Cn,an(G,Qp))
′
b.(29)

Proposition 5.5. There is an algebraic isomorphism

D(G,Qp)⊗Z(g),λ Qp
∼−→ lim←−

n≥1

Dλ
rn(G,Qp).

Proof. It suffices to construct the inverse of the natural map

D(G,Qp)⊗Z(g),λ Qp → lim←−
n≥1

(Drn(G,Qp)⊗Z(g),λ Qp).

By Theorem 5.2,

D(G,Qp)⊗Z(g),λ Qp → (C la(G,Qp)[λ])′b.

From (28),

(C la(G,Qp)[λ])′b ' lim←−
n≥0

(Cn,an(G,Qp)[λ])′b
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as Qp-Fréchet spaces. The inverse

lim←−
n≥0

Drn+1(G,Qp)⊗Z(g),λ Qp → lim←−
n≥0

(Cn,an(G,Qp)[λ])′b

is given by (29). �

Let m ≥ 1 be a positive integer. For each 1 ≤ i ≤ m, let

Gi := (I2 + pM2(Zp)) ∩ SL2(Zp).

For the rest of this section, let G =
m∏
i=1

Gi ⊂ ‹G :=
m∏
i=1

‹Gi be r copies of the

first congruence subgroup of SL2(Zp).

Lemma 5.6. The associated Lie algebra for G1 = ker(SL2(Zp)→ SL2(Fp))

g0 ' sl2,Zp = Zp · h⊕ Zp · e⊕ Zp · f,

has the standard commutator brackets

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Proof. We set

h =

Ç
1 0

0 −1

å
, e =

Ç
0 1

0 0

å
, f =

Ç
0 0

1 0

å
∈ M2(Zp).

We let exp(ph), exp(pe), exp(pf) be a set of minimal generators of G1. The p-

adic manifolds G1 and psl2(Zp) are identified via the exponential and logarithm

maps. The commutator brackets on psl2(Zp) transfer to G1, for example, by

the computations in [DdSMS99, Lemma 7.12]. �

For example, if m = 1, the Iwasawa algebra Zp[[G]] is identified with a

non-commutative formal power series ring Zp[[F,H,E]] in three variables for

F := exp(pf)− 1, H := exp(ph)− 1, E := exp(pe)− 1

as in the lemma. Actually we may explicitly describe the microlocalization

map (18) for our case when we identify psl2(Zp) with LG = pg0 (proof of

[AW13, Th. 10.4]):

F 7→ exp(pf)− 1, H 7→ exp(ph)− 1, E 7→ exp(pe)− 1.

Under such an identification, the Lie algebra action (22) is equivalent to

xf := log(1 + (x− 1)) · f(30)

for x ∈ g0 ' G and f ∈ C la(G,Qp).

Theorem 5.7. Let p be an odd prime. If 1/p < r < 1, then Dλ
r (G,Qp) is

an integral domain.
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Proof. For saving notation, we prove the case m = 1. Let F,H,E be the

formal variables with

pf = log(1 + F ), ph = log(1 +H), pe = log(1 + E)

defined after Lemma 5.6.

For any 1/p < r < 1, we can find r′ ≤ r such that 1/p < r′ <
√

1/p. The

sequence { (r′)k

|k| |k ∈ Z≥1} has the property that

max
k≥1

(r′)k

|k|
= max

i≥0

(r′)p
i

|pi|
= r′.

Note that we can endow the topology of Dr′(G,Qp) on Dr(G,Qp) since

(31) Dr(G,Qp) ↪→ Dr′(G,Qp)

is naturally a dense subalgebra by characterization (16).

On R = Dr(G,Qp), or Dr′(G,Qp), we have the filtration

F sr′R :=
¶
a ∈ R : ‖a‖r′ ≤ p−s

©
.

The associated graded ring is denoted by grr′(R). By the density of (31), we

have the isomorphism

grr′Dr(G,Qp) ' grr′Dr′(G,Qp) ' Fp[ε, ε−1][F,H,E]

by [ST03, Th. 4.5].

Let ∆ := 1
2h

2 − h + 2ef be the Casimir operator. The kernel of λ is

generated by p2∆ + λ0 for λ0 ∈ Qp. The associated graded ring for Dλ
r (G,Qp)

is

grr′D
λ
r (G,Qp) ' grr′Dr(G,Qp)/grr′(p

2∆ + λ0)

by Lemma 2.2, where the principal symbol of generator grr′(p
2∆ + λ0) (Sec-

tion 2.1) in grr′(Dr(G,Qp)) equals

grr′

Å
1

2
log(1 +H)2 − p log(1 +H) + 2 log(1 + E) log(1 + F ) + λ0

ã
= grr′

Å
1

2
H2 + 2EF + λ0

ã
by the assumption of r′. If the valuation of λ0 is at most 1, then

grr′(p
2∆ + λ0) = grr′(λ0)

is a unit in grr′Dr(G,Qp), making the quotient equal to zero. Otherwise,

grr′(p
2∆ + λ0) =

1

2
H2 + 2EF,

grr′D
λ
r (G,Qp) ' Fp[ε, ε−1][F,H,E]/

Å
1

2
H2 + 2EF

ã
is an integral domain by the proof of the third part of Lemma 3.3. �
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Remark 5.8.

• Although gr1/pDr(G,Qp) is non-commutative, it can probably be shown

that gr1/pD
λ
r (G,Qp) is an integral domain as well.

• The infinitesimal character λ is induced if and only if the valuation λ0 is

at least 2 since for any continuous character χ : T ' 1 + pZp → 1 + pZp,
dχ(p2h2) ∈ p2Zp.

Proof of Theorem 5.1. For any non-zero δ ∈ Qp[[G]], there exists nδ ≥ 1

such that the image of δ in Dλ
r (G,Qp) is non-zero for r = pnδ

√
1/p by The-

orem 5.2 and Proposition 5.5. The right Dλ
r (G,Qp)-module Dλ

r (G,Qp)/δ ·
Dλ
r (G,Qp) is torsion. Since Dλ

r (G,Qp) is an integral domain by Theorem 5.7,

Dλ
r (G,Qp)/δ ·Dλ

r (G,Qp) has positive codimension by [AW13, Prop. 2.5]. By

applying Proposition 5.3 and [AB07, Cor. 5.4], Dλ
r (G,Qp)/δ ·Dλ

r (G,Qp) also

has positive codimension over Uλr (g). By Lemma 3.3, Uλr (g) is an integral do-
main, and there exists an element δ′ ∈ Dλ

r (G,Qp) such that δδ′ ∈ Uλr (g) is
non-zero. By the description (27) of Ur(g), we leave it the reader to prove

Uλr (g)=

∑
α

dα

m∏
i=1

e
αi

a
i f

αi
b

i h
αi

c
i | α

i
c∈{0, 1}, dα∈K, lim

|α|→∞
|dα|

∥∥∥∥∥∥
m∏
i=1

e
αi

a
i f

αi
b

i h
αi

c
i

∥∥∥∥∥∥
r

=0

 ,

similar to the first part of Lemma 3.3 giving topological basis of Uλr (g), and sim-

ilarly for Û(g)⊗Z(g),λQp. Given the basis for both Uλr (g) and Û(g)⊗Z(g),λ Qp,

it is direct to see that the natural inclusion

Uλr (g) ↪→ Û(g)⊗Z(g),λ Qp

is injective, hence δδ′ is non-zero in Û(g)⊗Z(g),λQp. The completed enveloping

algebra is identified with D1/p(G,Qp) ([AW13, Rem. 10.5, (c)], [AW14, Lemma

5.2]). The image of δ via the microlocalization (18) is non-zero as well. �

6. Local applications to finitely generated Iwasawa modules

We continue to use notation from the previous sections. Let p be an odd

prime, and let r ≥ 1 be a positive integer. For each 1 ≤ i ≤ r, let

Gi := (I2 + pM2(Zp)) ∩ SL2(Zp).

Let G =
r∏
i=1

Gi, k = (k1, . . . , kr) ∈ Nr, and let Wk be the algebraic repre-

sentation �ri=1Symki of G. As G is compact, by choosing an integral lattice,

Wk is equipped with a structure of finite dimensional Banach representation

of G. We leave it as an exercise for the reader to show that Wk is irreducible

self-dual. By the main result of [ST02a], W ∗k 'Wk admits an action of K[[G]],

and we do not distinguish W ∗k and Wk.
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We exhibit the Wk-quotient of K[[G]] explicitly using the theory of

Schneider–Teitelbaum as follows. To ease notation, we do this for r = 1,

k = k ∈ N. As a module over itself, the dual (constructed in [ST02a]) of

K[[G]] is the Banach representation of the continuous function C(G,K) on

G. Our choice of G can be viewed as an open subgroup of Zp-points of the

group scheme SL2 over Zp. We define the space of algebraic vectors Calg(G,K)

of C(G,K) to be the following K-linear vector space of polynomial functions

on G,

{K[x, y, z, w]/(xw − yz − 1)},
as ( x y

z w ) ∈ G ⊂ SL2(Zp). There is a natural two sided action of G on

Calg(G,K) with a G-stable filtration Calg
≤n(G,K) by degrees of polynomials

in variables x, y, z, w such that

dimK(Calg
≤n(G,K)/Calg

≤n−1(G,K)) =

Ç
n+ 3

3

å
−
Ç
n+ 1

3

å
= (n+ 1)2.

Here the dimension of the space of homogeneous polynomials of degree n (resp.

n− 2) in 4-variables is
(n+3

3

)
(resp.

(n+1
3

)
).

The space of degree k homogeneous polynomials in variables x, z is iso-

morphic to Wk as a left representation of G. The vector xk is left invari-

ant under the lower triangular nilpotent subgroup and right invariant un-

der the lower upper triangular nilpotent subgroup with the highest weight

in Wk. It generates an irreducible G × G subrepresentation Wk ⊗W ∗k inside

Calg
≤k(G,K)/Calg

≤k−1(G,K). By counting the dimensions, we have

Calg
≤k(G,K)/Calg

≤k−1(G,K) 'Wk ⊗W ∗k .

By complete reducibility of finite dimensional representations, Wk ⊗ W ∗k is

identified with Wk-algebraic vectors in C(G,K) as a left or right representation

of G. It is automatically closed in C(G,K) by finite dimensionality. Again by

the main result of [ST02a], Wk ⊗W ∗k is also identified with the maximal Wk-

quotient of K[[G]].

Note that as an algebraic representation of G, Wk receives a Lie algebra

action (with respect to the explicit algebraic structure of G above). When

restricted to arbitrarily small open subgroups of G, Wk remains irreducible.

According to [AW13, Th. 11.3], any finite dimensional simple Iwasawa module

is a tensor product of a smooth G-representation and a Lie module (Section 4).

Therefore our W ∗k ' Wk is a Lie module, and we are entitled to apply results

in Section 4.

Let fiAnn(k) := AnnK[[G]](Wk) = ˜Ann(Wk) be the annihilator ideal of

K[[G]] for Wk. We have an isomorphism of algebras

K[[G]]/fiAnn(k)
∼−→ EndK(Wk).(32)
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Here the surjectivity follows from either directly counting dimensions of both

sides given our explicit computation for SL2, or combining (20) and Theo-

rem 4.3.

Proof of Theorem 1.4. Any Qp[[G]]-equivariant map from M̃ to Wk fac-

tors through M̃Wk
. We have HomQp[[G]](M̃,Wk) = HomQp[[G]](M̃Wk

,Wk). By

Theorem 4.3,

HomQp[[G]](M̃,Wk) ' Hom
Û(gK)

(M̂,Wk).

There are multiple ways to express the multiplicity of Wk in M̃ . We have

HomQp[[G]](M̃,Wk) ' HomQp[[G]](M̃ ⊗W ∗k ,1) ' H0(G, M̃ ⊗W ∗k)∗.

The dimensions of these K-vector spaces all agree with H0
M̂

(k) in (9).

We choose short exact sequences

0→ (Qp[[G]])d → M̃ → ‹Q→ 0,(33)

0→ ‹N → (Qp[[G]])l → M̃ → 0,(34)

where ‹Q is torsion. Let M̂ = Û(g)⊗K[[G]]M̃ be the microlocalization of M̃ , and

similarly for ‹Q, ‹N . The microlocalization s preserve short exact sequences like

(33) and (34) as (18) is flat. We may filter ‹Q by cyclic subquotients ‹Q1, . . . , ‹Qq
with Qp[[G]]/Qp[[G]] · δi � ‹Qi with non-zero δi ∈ Qp[[G]]. By Theorem 5.1, δi
are generic (Section 3). Theorem 3.2 produces p“Qi such that H0“Qi(k) ≤ p“Qi(k).

And we may choose p“Q :=
∑q

i=1 p“Qi so H0“Q(k) ≤ p“Q(k). By applying the

microlocalization s to the sequence (33) followed by taking Wk quotient

(Û(g)/Ânn(k))d → M̂k → “Qk → 0,

we have

H0
M̂

(k) ≤ d
r∏
i=1

(ki + 1) + p“Q(k),

thus proving one side of the i = 0 case for any finitely generated Qp[[G]]-

module M̃ . Similarly, by applying the microlocalization s to the sequence (34)

followed by taking the Wk quotient, we get the other side of inequality for the

case i = 0 using

rank
Û(g)
“N + rank

Û(g)
M̂ = l.

Because (Qp[[G]])l is acyclic, the long exact sequence associated to (34)

in homology gives

0→ H1(G, M̃ ⊗Wk)→ H0(G, ‹N ⊗Wk)

→ H0(G, (Qp[[G]]/fiAnn(k))⊗Wk)l → H0(G, M̃ ⊗Wk)→ 0,
(35)

(36) Hi(G, M̃ ⊗Wk) ' Hi−1(G, ‹N ⊗Wk), i ≥ 2.
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The case i = 1 is obtained by applying case i = 0 to both M̃ and ‹N using

(35). Furthermore, the i ≥ 2 cases follow from an induction using (36). �

7. Global automorphic applications

In this final section, we refer to the notation in Section 1. We choose an

odd prime p that splits completely in F . Recall that r := [F : Q]. Let

G :=
∏
v|p

Gv, Gv := (I2 + pM2(Zp)) ∩ SL2(Zp),

as the ring of integers in Fv is identified with Zp for all v|p.
For k ∈ Nr, it defines a C-representation Vk of SL2(F∞), as well as a

Qp-representation Wk of SL2(Fp). These representations give rise to a C-local

system Vk and its corresponding Qp-local system Wk. It is explained in [Mar12,

§5] that

dimCHi(Y (Kf ), Vk) = dimQp Hi(Y (Kf ),Wk).(37)

We cite some properties of the completed homology (4),‹H•(Kp) := lim←−
s

lim←−
Kp⊂G

H•(Y (KpK
p),Z/psZ)⊗Zp Qp,

from [Eme06], [CE09]:

• If F is not totally real, ‹Hi(K
p) is a finitely generated torsion Qp[[G]]-module.

• There is a spectral sequence

Ei,j2 = Hi(G, ‹Hj(K
p)⊗Wk) =⇒ Hi+j(Y (Kf ),Wk),(38)

where Kf = GKp.

By (37), the spectral sequence (38) implies an upper bound

dimCHq(Y (Kf ), Vk) ≤
∑
i+j=q

dimQp Hi(G, ‹Hj(K
p)⊗Wk).

Theorem 1.4 produces a multiplicity-free polynomial pKf of degree at most

r − 1 for the right-hand side, giving

dimCHq(Y (Kf ), Vk) ≤ pKf (k), k ∈ Nr.

Finally, we apply the Poincaré duality and Eichler–Shimura isomorphism (2)

to finish our proof of Theorem 1.2.
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