ZENITH: Towards A Formally Verified Highly-Available Control

Plane
Pooria Namyar* Arvin Ghavidel* Mingyang Zhang
University of Southern California University of Southern California Google
Harsha V. Madhyastha Srivatsan Ravi Chao Wang

University of Southern California

University of Southern California

University of Southern California

Ramesh Govindan
University of Southern California

Abstract

Today, large-scale software-defined networks use microservice-
based controllers. Bugs in these controllers can reduce network
availability by making the data plane state inconsistent with the
high-level intent. To recover from such inconsistencies, modern con-
trollers periodically reconcile the state of all the switches with the
desired intent. However, periodic reconciliation limits the availabil-
ity and performance of the network at scale. We introduce ZENITH,
a microservice-based controller that avoids inconsistencies by de-
sign rather than always relying on recovery mechanisms. We have
formally verified ZENITH’s specifications and have proved that it
ensures the network state will eventually be consistent with intent.
We automatically generate ZENITH’s code from its specification
to minimize the likelihood of errors in the final implementation.
ZENITH's guarantees and abstractions also enable developers to in-
dependently verify SDN applications and ensure end-to-end safety
and correctness. ZENITH resolves inconsistencies 5X faster than
today’s designs and significantly improves availability.

CCS Concepts

« Networks — Network reliability; Network manageability;
Control path algorithms.

Keywords
Software Defined Networking, Formal Methods, Availability

ACM Reference Format:

Pooria Namyar, Arvin Ghavidel, Mingyang Zhang, Harsha V. Madhyastha,
Srivatsan Ravi, Chao Wang, Ramesh Govindan. 2025. ZENITH: Towards A
Formally Verified Highly-Available Control Plane. In ACM SIGCOMM 2025
Conference (SIGCOMM °25), September 8-11, 2025, Coimbra, Portugal. ACM,
New York, NY, USA, 25 pages. https://doi.org/10.1145/3718958.3750533

1 Introduction

SDN controllers are essential for managing modern data centers
and wide-area networks [19, 28, 33, 34]. They simplify network
management by providing high-level interfaces for developers to

*Equal contribution

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1524-2/25/09

https://doi.org/l().1145/3718958.3750533

u SDN Applications ‘ [Routing Engine }

v) v 4
[Network Information Base (NIB)
v A
{ OpenFlow Controller (OFC)
: Y
v 3
SW1 SW1

FIGURE 1: A microservice-based architecture similar to Orion [19] and
ONOS [12].

build applications. These applications communicate their intended
network state to the controller, either to achieve a particular man-
agement objective (e.g., removing a switch from the network) or to
react to network events (e.g., switch failures). The controller must
(1) program the switches to match the high-level intent specified
by applications, and (2) report the correct state of switches to ap-
plications. As a result, the controller’s performance, scalability, and
reliability can significantly impact cloud applications.

Microservice-based designs. Early controllers were monolithic
(e.g., Onix [33]). In contrast, modern large-scale proprietary (e.g.,
Orion [19]) and open-source controllers (e.g., OpenDaylight [4] and
Onos [12]) adopt a microservice-based design. They consist of a col-
lection of independently deployable microservices that collaborate
to achieve controller functionality. A microservice-based design
has two advantages: it can scale to networks with thousands of
switches [51] and support over a million updates per second [19].
It also permits high feature velocity by allowing multiple teams to
concurrently develop and deploy features [19].

Figure 1 shows a controller [19, 33] comprising two microser-
vices: an OpenFlow Controller (OFC) and a Routing Engine (RE).
OFC programs flow entries into switches. RE schedules network op-
erations. They communicate through a Network Information Base
(NIB). SDN applications [9, 42, 43, 56] also function as independent
microservices in this design.

Internally, each microservice contains several components. For
example, the OFC consists of a monitoring server, a worker pool,
and event handlers. Components can execute concurrently and
communicate through message passing or shared memory. Concur-
rent execution permits high operation throughput by leveraging
multiple cores in modern server-class machines.

https://doi.org/10.1145/3718958.3750533
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3750533

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Switch A Controller State 1
Routing Table for dst =D| | ID=2 : Installed On Switch A : (When B Fails)
NextHop|Priority| ID 1 Controller will
B 200 n > | setup the path
A D », acp
B 100 2 e} .
= by removing
Switch A Controller State & instruction with
Routing Table for dst =D| | ID=3 : Installed On SwitchA |} ID=2 from A
NextHop [Priority| ID 2 1 and installing
[S—— [ID=3o0nA
ST - o,
c 100 3 ¢} \4
1.0
X
b aé 08 M;e MW
N |
5506 \
€204 1
o \
ZF 02 —— ZENITH PR
0.0 LR X X
5 10 15 20 25

Time (seconds)
FIGURE 2: (Above) Example inconsistency between the control and
data planes causing packet drops, see §G. (Below) Periodic Reconcil-
iation (PR) reduces availability by waiting for the next scheduled
reconciliation to find and resolve the inconsistency.

1.1 State Inconsistency

Both monolithic and distributed designs can suffer from inconsis-
tency between the control and data planes. For example, if the
controller mishandles component or switch failures, the data plane
state may not reflect the operator’s desired intent. This inconsis-
tency can result in blackholing traffic or routing it along congested
paths. Inconsistency is a root cause of large failures at Google [24]
that are reportedly difficult to diagnose. Many of these failures
last for tens of minutes, extending network unavailability. As a
result, state inconsistency poses a direct threat to availability bud-
gets and remains a key obstacle in achieving high availability at
hyperscalers [24].

Certain state inconsistencies are unavoidable. For example, after
an application specifies intent, the switch state cannot be updated
instantaneously due to processing and networking delays. During
this interval, the state is inconsistent. Similarly, components in mod-
ern controllers (Figure 1) do not share fate: switches or controller
components can fail independently of each other. The intent be-
comes consistent only when controller components have recovered
and the controller has correctly processed switch events.

However, state inconsistency can arise from incorrect design or
implementation as well. These can be avoided by fixing the con-
troller or the application. To understand the types and prevalence
of avoidable inconsistencies, we analyzed the commit history of
OpenDayLight [4] (ODL, a widely-used open-source microservice-
based SDN controller). In §A, we summarize 26 instances of ODL
commits that fix inconsistencies resulting from incorrect controller
or application designs. We briefly describe two examples here.

Networking Events. When an event such as switch failure oc-
curs, the controller must update its own view of network state and
notify applications. In ODL, separate threads handle switch failure
and recovery. In one incident [5], a switch experienced a brief fail-
ure followed by a rapid recovery. Due to a race condition between
these threads, the controller processed the recovery event before
the failure event, leading to an incorrect perception of the switch

Namyar et al.

N
o

=8— median p99

= e
o wu

Convergence
(seconds)
w

*r—0——o0—0——p——0—0—0—0

10.0 12.5 15.0 17.5 20.0 225 250 27.5 30.0
Reconciliation Period (seconds)

FIGURE 3: The impact of periodic reconciliation on tail conver-
gence increases as the reconciliation period decreases.

status. The controller believed the switch was down while it was
actually operational.

Component or microservice interactions. In ODL, multiple
threads schedule route updates in response to switch failures. In one
incident [6], two switches disconnected within a short timeframe.
The first thread began calculating new routes without considering
the second failure, while the second thread started computing routes
based on both failures. The first thread ultimately updated the
network after the second thread, but the second thread’s updates to
the NIB took precedence. This resulted in the applications believing
the correct routes were installed (based on the NIB state), even
though the routes were actually incorrect.

State inconsistency can reduce network availability. Inconsis-
tency can cause traffic to be dropped or routed inefficiently on con-
gested paths [31, 45]. Figure 2 shows a simplified example. Switches
A and D communicate via B. As a result of state inconsistency (de-
scribed in §G), the controller is unaware that A has a high-priority
flow entry for D with B as the next hop. The adverse impact of
this hidden entry becomes evident only when B fails. To get A
to begin forwarding traffic to D via C, the controller replaces the
low-priority entry (with ID 2) with a new entry that has C as the
next hop. Instead of using the new entry, switch A continues to
use the hidden entry, which results in blackholed traffic. This ex-
ample is not hypothetical; §6 describes how we reproduced this
inconsistency in ODL.

1.2 Consistency Recovery in Modern
Controllers

Modern controllers [4, 12, 19] recover from avoidable state incon-
sistencies using a mechanism called periodic reconciliation (or PR).
A PR controller periodically (every 30s in Orion [19]) retrieves all
flow state from every switch, compares it with the locally stored in-
tent, and updates inconsistent entries. Although PR can eventually
detect and remove the hidden flow entry of Figure 2, it has several
drawbacks.

PR can still impact availability. Figure 2 shows that, after the
controller updates switch A’s table, throughput remains zero until
PR reconciles the hidden entry. In complex networks with greater
path diversity and multi-path routing, such inconsistencies may
not result in blackholed traffic but can still degrade throughput
(see Figure 14).

More frequent reconciliation is not effective. One cannot im-
prove availability by simply reducing the reconciliation period.
Figure 3 shows the time it takes for the network to converge to
the desired intent for different reconciliation periods on a testbed
with 200 switches; see Figure 11 and §6.1 for a description of the

ZENITH: Towards A Formally Verified Highly-Available Control Plane

$0.12
20.10
19
£0.08
@ 0.06
a4
o 0.04
8
(]
20.02
F 0.00

o N b~ O ©

0 1000 2000 3000 4000 0 1000 2000 3000 4000
#flow entries per switch #flow entries per switch

(a) Single Switch (b) Network of 100 switches

FIGURE 4: It takes longer to reconcile the state as the topology
and the flow tables grow. (a) a Cumulus switch (SN2100) running OVS,
and (b) a topology with 100 switches.

methodology. More frequent reconciliations increase the likelihood
of network updates colliding with reconciliation cycles. Hence,
reconciliation itself becomes a dominant source of tail latencies.

PR scales poorly with network size. Reconciliation time in-
creases with network and flow table size. We show this in three
ways. First, on a single Cumulus SN2100 switch, the time to com-
plete reconciliation grows by 9% from 13 ms to 117 ms when table
size grows by 8x (from 512 entries to 4096 entries, Figure 4(a)).
Second, in a network with multiple switches, the controller can
read the state of all switches in parallel, but updating the NIB with
the received updates is the bottleneck. For example, in an other-
wise unloaded network of 100 switches on the Sphere testbed [7],
reconciliation time increases by an order of magnitude from 831 ms
to 8.58 s when the number of entries in every switch’s flow table
increases from 500 to 4000 (Figure 4(b)). Third, the tail of the con-
vergence time distribution increases with the network size. 99th
percentile convergence time of PR is 4.2x larger than the median
on a testbed with 350 switches (Figure 11). This is again because
convergence is delayed when network updates coincide with rec-
onciliation.

Operators must, therefore, configure longer reconciliation pe-
riods to limit overhead in large networks. These delays adversely
impact network availability.

1.3 ZENITH: Preventing Inconsistency

Given hyperscalers’ quest for stringent availability targets [24], we
assert that recovering from inconsistencies is no longer sufficient.
Availability budgets are increasingly tight: five-nines availability
allows for only 5 minutes of downtime per year. A single SDN
controller bug that introduces inconsistency, even if it occurs once
before being fixed [11, 18, 38, 48], can lead to an outage that exceeds
this availability budget.

In this paper, we explore a proactive approach that seeks to pre-
vent inconsistency by design. We present ZENITH, a microservice-
based controller which is architecturally similar to Orion [19],
ONOS [12], and ODL [4], but with a key distinction: it is formally-
verified to ensure eventual consistency between intent and switch
state under a wide range of switch, link, component, and microser-
vice failures. ZENITH thus prevents inconsistency for all modeled
failures and only needs to fall back to consistency recovery in rare
cases involving unmodeled failures. As such, ZENITH enables data
plane state to converge to intent faster, improving availability.

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Designing and implementing such a controller is challenging
for three reasons. First, modern controller designs are complex
and incorporate significant concurrency to achieve high operation
throughput; specifying and verifying complex concurrent software
is non-trivial [44]. Second, both the controller and SDN applications
must be correct for the correctness property to hold end-to-end.
However, in a microservice-based design, SDN applications evolve
independently of the controller core. Finally, manually translating
a specification into an implementation can be error-prone, voiding
any guarantees inherent in the verified specification. In addressing
these challenges, we make three contributions.

Contributions. ZENITH-core, our core controller, captures the
component-wise decomposition of modern microservice-based con-
trollers and presents a simple abstraction for SDN applications in
the form of a directed cyclic graph (DAG) of operations on the net-
work (§3). A DAG captures dependencies between operations on
network state to ensure hitless updates (i.e., no traffic impact [19]).

Our first contribution is a specification of ZENITH-core in
TLA+ [35] (one of the largest known TLA+ specifications to date).
We use the TLC model-checker [54] to verify that this specification
ensures eventual consistency between the desired DAG and
network state. To scale model checking, we develop an aggressive
suite of optimizations that leverage symmetry, commutativity,
and abstraction. Finally, enabled by the conciseness of the DAG
abstraction, we prove the correctness of ZENITH-core using the
TLA+ proof system [16]. To our knowledge, no prior work has
developed a provably correct controller.

To ensure end-to-end correctness, ZENITH allows developers to
formally specify and verify their SDN applications (ZENITH-apps,
for short). However, verifying an application alongside the entire
core is expensive and time-consuming. Our second contribution is
a technique to verify ZENITH-apps independently of the core. This
is made possible by the succinctness of the DAG abstraction (§4).

Our third contribution is NADIR, a tool to automatically generate
code from ZENITH’s specifications (§5). NADIR borrows ideas from
PGo [25] and has comparable correctness guarantees. Unlike PGo,
NADIR supports microservice-based designs.

We evaluate ZENITH (§6) on a large testbed and show that it
enables the data plane state to converge to the intent more than 5x
faster at the 99th percentile compared to a controller that uses peri-
odic reconciliation. Without our optimizations, our specification is
too big to be model checked even within a day; with them, it com-
pletes in 3 seconds. Our code is available at https://github.com/USC-
NSL/ZENITH.

Ethics. This work does not raise any ethical issues.

2 ZENITH Overview

Avoiding inconsistency requires writing controller and application
code that (1) is correct and robust to races and (2) can correctly han-
dle a wide range of single and concurrent failures despite network
delays and switch state uncertainty. Writing such code is hard since
programmers have for long had trouble reasoning about concurrent
execution and the impact of failures. Fuzzing and testing can help
find some bugs arising from incorrect implementation but may not
be able to uncover subtle logical errors triggered under specific and
complex circumstances [44]. Using a strongly consistent design (§7)

https://github.com/USC-NSL/ZENITH
https://github.com/USC-NSL/ZENITH

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Namyar et al.

~ DAG 1 (Healthy)

.3’ (START)
ZENITH Role | Orion[19]] ONOS [12]] ODL [4] LB S L)—~8:D~A:B
A logically centralized in-memory database that “ “ /—PAG 2 (Drain B) @
ol stores the network state, shares the state with dif- NIB Store MD-SAL 8 (START)—~(C:D~A:C @
z ferent components, and is a central point for com- DAG 3 (If B fails)
munication between microservices. () Install Entry J— C:D
— - Fr— 5 : (START:H@
Momt(irmg A set of workers that communicate with switches. OFE OF Plugin | O Delete Entry PR 2.0
Server” | T e
O | Topo Event | Updates topology and routing state in NIB based | Topo OF Topo/SW
w . -
O | Handler on OpenFlow events. Mangaer Controller Manager FIGURE 5: Example dep e_ndency gra}phs to route traf
OF A set of workers that translate high-level OPs to OFE OF Plugin fic from A to D. For brevity, we omit the source and
u; e .
Worker* protocol-dependent flow messages. & destination in our notation.
DAG Schedules a new DAG on one of the Sequencers and Requires | Requires
Schedul tale DAG deleted 1y. Network . . Application
chedu er* censures stale S are defeled propery. - Standalone| Standalone Updates LA EEm DAG
| Sequencer® | A set of workers that ensure OPs are installed in RE App App
a =
the order DAG enforces. ' ' A NIB Event = -
NIB Event | Produces/Consumes events for/from NIB and is Provider/ | Provider/ Handles Sequencer g equler| A
Handler familiar with NIB semantics. Listener Listener
. Send
Q | Watchdog | Monitors all the submodules and restarts them if Runtime | Runtime N1B [Update NIB + Event Generation] oPs
<) they fail. Environ- | Environ- 3]
g ment ment ‘ Monit. ServerHEvent HandlerH Worker Pool H%
I
> : . x ; ;
TaBLE 1: Each component’s roles in ZENITH. The last three columns show the corresponding : ACKOPs 1 RF“““"’/ v 'l’)“;”"’
® ecovery elete

components in existing large-scale controllers with the same responsibilities. In some cases, we

Event OPs

do not know the individual components inside the microservice. For example, Orion [19] does

not describe the details of RE. For these, we only mention the high-level responsible service. (* =

worker pool)

may help, but given the high throughput requirements of modern
controllers, is likely to be impractical.

Key Ideas. We develop a model-checked formal specification of an
SDN controller that provably achieves eventual consistency between
intent and switch state. Our approach is inspired by work at large
content providers that has demonstrated the feasibility of formally
specifying and verifying practical systems [44]. ZENITH has two
additional properties that bring it within the realm of feasibility.
First, developers can formally specify and verify SDN applications
independently of the controller. This preserves the ability to decou-
ple application development from controller evolution (§1). Second,
ZENITH automatically generates code, avoiding errors that might
arise in manually implementing specifications.

ZENITH Overview. ZENITH has three components:

ZENITH-core (§3) is a microservice-based SDN controller that re-
ceives intent from applications. It ensures that (1) the network state
will eventually align with the specified intent and (2) applications
will eventually receive a consistent network state.

ZENITH-apps (§4). To develop a correct SDN application in
ZENITH, users (1) develop a formal specification of their application
and (2) define the desired correctness properties for their applica-
tion. ZENITH verifies the application specification independently of
ZENITH-core, yet ensures that the final specification is safe and will
result in end-to-end correctness when used with ZENITH-core. This
step is optional, and developers can also choose to build applica-
tions that use ZENITH-core without verifying them, at the expense
of end-to-end correctness guarantees.

NADIR (§5). ZENITH specifications use an imperative language
called PlusCal [54]. NADIR automatically generates ZENITH code
from PlusCal specifications.

FIGURE 6: The ZENITH-core components and opera-
tion.

3 ZENITH-core

ZENITH-core’s functional decomposition resembles existing con-
trollers, such as Orion [19], ONOS [12], and ODL [4] (Table 1). In
this section, we describe how we derive a formal specification of
ZENITH-core and verify it over a wide range of scenarios (Table 3).

3.1 An Abstraction for Application Intent

SDN applications respond to network events (e.g., failures) or
changes in high-level intent (e.g., draining a switch) by specifying
operations (OPs) on one or more switches. An OP can trigger a
topology change (e.g., by disabling a port), or modify switch state
(e.g., by changing a table entry). To ensure hitless updates [19],
OPs often have dependencies [30, 47]: an OP may need to precede
or follow one or more OPs on the same switch or across multiple
switches.

ZENITH succinctly captures such dependencies using a directed
acyclic graph or DAG of OPs. For example, Figure 5 shows one
DAG for a healthy network, one for draining switch B, and one
for recovering from B’s failure. Assume there is a single flow from
A to D and the notation A : C denotes an instruction to route that
flow’s traffic from A to C. If an application wants to “drain switch
B”, the controller must route the traffic via C instead of B. A naive
solution might install A: C and C: D in parallel. However, if A: C is
installed before C : D, switch C will drop packets destined to D until
C:D is installed. To prevent this, a controller must enforce an order,
installing C: D before A: C.

The DAG abstraction allows us to: (a) precisely specify correctness
conditions for an eventually consistent controller (§3.3), (b) verify
ZENITH-core independent of ZENTTH-apps (§3.6) and (c) prove the
correctness of ZENITH-core (§3.8). Without it, these would have
been difficult, if not impossible.

ZENITH: Towards A Formally Verified Highly-Available Control Plane

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

AbstractApp DAG Scheduler Sequencer NIB Event Handler OF Worker Topo Event Handler Monitoring Server Data Plane
I I New “C:D” I Append “C:D” I I I I

to OPQueue I P(‘;:lisch ']';’:v I | I I

New DAG = Schedule the . 5 Translate “C:D” to OF and add
OpenFlow Ms;

{C:D — A 3 I New DAG = I I I the message to Forward Queue | P 4

Publish State T |

_—
{C:D— A C, I e MOd “C:D State Write “C:D State = installed” ———

I I New “A:C” I

e
|

| | |
|

| I I

FIGURE 7: A simplified view of how ZENITH’s components interact to install the second DAG in Figure 5. For readability, this example simplifies the

interactions. (Green: OFC, Blue: NIB, Orange: DE, Purple: AbstractApp, §3.6)

3.2 ZENITH-core Components

ZENITH-core consists of three main components (similar to existing
microservice-based controllers [4, 12, 19]), each with one or more
sub-components (Figure 6 and Table 1).

Network Information Base (NIB) is an in-memory database [33]
that stores network state and facilitates inter-module communica-
tion. DAG Engine (DE) receives DAGs from applications and notifies
them about new events. It includes a DAG Scheduler that processes
DAG requests from applications, a pool of Sequencers that process
OPs while enforcing DAG dependencies, and a NIB Event Handler
that processes events from the NIB. The OpenFlow Controller (OFC)
manages communication with switches. It has a pool of workers
that translate OPs to protocol-dependent messages, a Monitoring
Server that communicates with switches, and an Event Handler that
processes switch failure and recovery.

Figure 7 shows how these components interact when ZENITH-
core receives the second DAG in Figure 5. The state of each OP is
recorded in the NIB, and the NIB Event Handler generates updates
about the status of OPs for both Sequencer and other applications.
Once Sequencer notices that C:D is done, it schedules A:C. The
Sequencer’s output (e.g., C: D) is processed by one of the workers in
the Worker Pool. Workers convert OPs into OpenFlow messages and
send them to switches through Monitoring Server.

After a switch installs C : D, it sends an acknowledgment (ACK)
to OFC. The Monitoring Server collects these ACKs and notifies the
NIB that C: D is done. Sequencer is eventually notified of this event
and can resume its operation by submitting the next OP (Figure A.7
has a more complex example).

3.3 ZENITH-core Correctness

Respecting dependencies in a DAG can be tricky, especially under
failures. For example, when draining B in Figure 5, suppose ZENITH-
core receives the ACK for C:D, but immediately fails and loses
state about the ACK. Upon recovery, it will not install A : C as its
dependency appears unsatisfied. In this case, C: D is installed in
the network, but the controller has no record of it, leading to an
inconsistency between network state and intent.

Furthermore, imagine switch B fails, and an application requests
the controller to apply the third DAG in the middle of installing
the first DAG and while OP A : B is still in-flight. To be correct, the
controller must explicitly remove A:B. Otherwise, the OP A:B
might be installed after the third DAG is complete, overwriting A: C
and blackholing traffic.

Term Definition

OoP Protocol-agnostic flow instruction

DAG A graph to describe order of OPs
={r} set of all OPs where r is a single OP

D = Data plane state

{74, Topology state
Ga} Sequence of OPs
C= Control plane state
{7, Controller’s perceived topology
Rc} Controller’s perceived routing state

P The intended DAG.

TABLE 2: Terminology.

To avoid such cases, we define several correctness conditions
for ZENITH-core. Below, we provide a formal description of these
correctness conditions using TLA+ syntax [54]. These correctness
conditions rely on the notation introduced below and listed in
Table 2.

Control and Data Plane State (Figure 8). ZENITH-core takes
DAGs from applications and converts them to the desired network
state, which describes OPs performed on specific switches.

At any instant, the data plane state (D) consists of: (1) switch
topology state (T;), the current health status of each switch and
its ports, and (2) switch routing state (G), the sequence of OPs
installed on each switch. The controller also maintains its view of
the topology state (7;) and every switch’s routing state (R.), which
can differ from the data plane due to delays and failures.

Correctness and Eventual Consistency. To ensure ZENITH-
core’s correctness, it is sufficient to verify three conditions:

(D ZEn1TH-COTE Never violates DAG OP dependencies. We
verify every OP is installed after its predecessor in the DAG, stated
formally as:

CorrectDAGOrder = V(r1,r2) € P.Edges :
firstinstall(Gy, r1) < firstinstall(Gy, r2)

where firstInstall returns the time of an OP’s first installation. We
consider only the first time an OP is installed, for two main reasons.
First, an OP may be redundantly installed multiple times due to
delays or inconsistencies, but only the initial installation determines
whether the DAG ordering is respected. Second, in the event of a
switch failure, an OP might be lost even though its successors have
already been installed elsewhere — this is not considered a DAG
violation, and the controller cannot prevent it.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

- > { Topology —> DAG } Alz::;m
N Add / Delete DAG l Network Events T
:' ,:') Routing State Desired State Topo. State z:;]t::;H
I‘.\ \® oPACKs | OPs | Network Events |

e '% [Routing State] [Topo. State] D;ttztl:ane

FIGURE 8: Correctness conditions for ZENITH-core.

(2) Switch routing state eventually matches intended DAGs.
We verify that all the OPs in the target DAG are eventually processed
in the switches and remain installed thereafter:

CorrectDAGInstalled = ¢O(Vrel:reP —reGy)

where OP enforces invariant P at every step (always operator), and
¢P indicates that P must hold at least once (eventual operator). In
combination, ¢OP is an eventual always operator, meaning that P
will eventually become true and will continue to hold true afterward.
The invariant P validates that switch routing state conforms to the
target DAG and that all OPs from the DAG have been successfully
installed on the switch. In practice, the target DAG can change
anytime by SDN applications based on the data plane state. We
describe how we incorporate this in §3.6.

(3) ZENITH-core’s view of routing state eventually matches
each switch’s routing state. We ensure the controller has, even-
tually, the correct view of the routing state and remains consistent
thereafter.

CorrectRoutingState = o0 (Vre I :reR. @ r e Gy)

A controller that respects these conditions will eventually be con-
sistent and correctly handle scenarios like those described above.
We encode these conditions as safety (1) and liveness (2)(3) prop-
erties. (2)(3) also ensure that the controller’s view of the desired
state — derived from DAGs — eventually matches its view of the rout-
ing state. We list other requirements that help debug our design
and avoid unnecessary operations in §B.

3.4 Developing the ZENITH-core Specification

We specified ZENITH-core components and correctness properties

in TLA+ [54], then systematically model-checked ZENITH-coOre:

(1) We started with a single monolithic controller incorporating
all components and verified its correctness in the absence of
failures.

(2) Next, we decomposed ZENITH-core into DE and OFC, but with-
out introducing concurrency within each microservice. We ver-
ified this in the absence of failures.

(3) Finally, we incrementally decomposed each microservice into
components. For example, we added the Worker Pool to the
OFC and verified the specification with failures; then added the
NIB Event Handler to the DE and verified again, continuing this
process until we had a verified microservice-based controller.

At each step, the model checker revealed specification errors,
accompanied by a counterexample trace. We used these traces
to iteratively fix the specification. We uncovered 83 specification

errors, which we taxonomize in §3.9.

Namyar et al.

L1sTING 1: A part of our monolithic specification that forwards OPs to
switches.

1 fair process monolithicWorkerPool

2 variables OPToSend = NADIR_NULL; begin

3 ControllerThread: while TRUE do

4 (, OPToSend); \» Read an OP object from queue

5 if (OPToSend.sw) then \« Check if sw is healthy
6 ForwardOP: (OPToSend);

7 UpdateNIBSend: ((OPToSend));
8 else \« Report failure if switch is dead

9 UpdateNIBFail: ((OPToSend));

To complete our description of how we verified ZENITH-core,
we explain: (a) our model of delay and failures (§3.5), (b) how we
verified ZENTTH-core independently of ZENITH-apps (§3.6), and (c)
how we scaled model-checking (§3.7).

Before doing so, we illustrate the process of specifying ZENTTH-
core using the PlusCal language in TLA+. Listing 1 shows a portion
of our initial monolithic specification (step (1) above). We define it
as a separate PlusCal process called monolithicWorkerPool
for readability. This process defines an independent thread of exe-
cution and is responsible for sending OPs to switches. For clarity,
we color keywords dark blue, constants purple,

cyan, orange, and process labels red. Each
process must have a unique identifier and may define and initialize
its own local variables. The constant NADIR_NULL is a reserved
name for NADIR (§5) that mocks a typical null-like value. The
monolithicWorkerPool contains a ControllerThread
that repeatedly reads an OP from a queue (Line 4), sends it to the
switch (Line 6), and updates NIB state about the OP (Line 7).

3.5 Modeling Causes of Inconsistency

ZENITH-core’s correctness relies on how its components cope with
delays and failures. When verifying ZENITH-core’s specification, it
is unnecessary to model switches with full fidelity in order to cap-
ture these causes of inconsistency. Instead, our switch abstraction
(AbstractSW) faithfully captures how failures and delays in switch-
controller interactions impact the controller (see compositional
verification in §3.7). Listing 2 shows our model of the switch.

Communication Delays. We capture non-deterministic delays
in controller-switch communications [45] using two queues per
switch: SWInQ and SWOutQ (Line 4). AbstractSW receives messages
via SWInQ and responds to the controller via SWOutQ. The model
checker can arbitrarily delay queue reads, modeling the variability
of communication latency.

Switch Operations. As in other SDN controllers [12, 19, 33, 45],
AbstractSW exports an OpenFlow [40]-like interface: it notifies
the controller of status changes and acts upon flow programming
events. In addition, AbstractSW is not Byzantine: if it acknowledges
an OP, it has completed that OP correctly.

AbstractSW supports (1) installing a new rule, (2) deleting an
existing rule, (3) returning the routing table, and (4) changing the
controller role (important for failover). We model these as a fair
process [35] (swMainProcess, Line 5) — a fair process is a concurrent

ZENITH: Towards A Formally Verified Highly-Available Control Plane

L1STING 2: Our AbstractSW model for a single switch.

1 variables \: Switch global variables
2 = .., \x State (routing table, ..)
3 = .

4 = ., = .., \x Queues from/to the controller
5 fair process swMainProcess

6 variables ingressPkt = NADIR_NULL; begin

7 SwitchSimpleProcess: while TRUE do

3 await (B

, ingressPkt);

10 OP: (
11 ACK: (

12 \+ Note lack of *fair® prefix for failure and recovery processes

, ingressPkt); \+ no-op if switch is down

, ingressPkt); \» Send ACK if necessary

13 process swFailure begin

14 SwitchFailureProcess : while TRUE do

15 await ();

16 (); \+ Can be None/Partial /Complete
Y 0;

18 process swRecovery begin

19 SwitchResolveFailureProcess : while TRUE do

20 await ~ (B

21 0;

unit of execution that would eventually take a specific step if the
step remains continuously enabled (a property that holds in prac-
tice). swMainProcess internally calls a function PerformOP (Line 10)
that takes the current switch state and the next request as input and
alters the switch state accordingly. If needed, it also responds to the
request by sending a message to the controller (Line 11). PerformOP
is only enabled if the switch is healthy (Line 8).

Switch Failures can be triggered by many factors [22, 24, 43], such
as faulty hardware or software bugs. Rather than modeling the
root causes, we capture their impact. This simplifies abstraction as
different root causes can have similar outcomes (e.g., reboot after
an outage, or a kernel panic).

We capture failures along two dimensions. (1) State loss: a switch
may lose all of its state (including the routing table and any ongo-
ing requests from the controller), some of its state (retaining the
routing table but losing all or part of ongoing requests from the
controller), or none of its state after a failure. (2) Duration: a failure
may be permanent or transient, with recovery occurring after a
non-deterministic period. Together, this approach can capture a
broad range of failure scenarios (see Table 3).

To model this, we introduce two processes, swFailure (Line 13)
and swRecovery (Line 18). swFailure forces a healthy switch to fail,
while the swRecovery restores a failed switch. We deliberately made
the failure processes unfair — the model checker explores both
executing or not executing these processes. This helps express
transient failures (failure followed by recovery), permanent ones
(swRecovery simply is not executed), as well as no-failure scenarios
(both processes do nothing).

Controller Failures. We model failures at the level of both mi-
croservice and components within a microservice (e.g., the failure
of a worker in a Worker Pool). We conservatively assume that the

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

failed component or microservice loses all of its state. The model
checker can decide to fail a component or microservice at any step.

Fallback to Consistency Recovery. The model checker verifies
ZENITH-core’s correctness under any combination of message de-
lays, and switch and controller failures (Table 3). An implementation
of this specification ensures that the switch state will eventually
become consistent with intent. It removes all sources of avoidable
inconsistency (§1), thereby increasing availability.

However, as with any formal specification, the correctness of an
implementation of the ZENITH specification is contingent upon: (a)
the failure scenarios we model, (b) the assumptions we make about
switches, and (c) how faithfully the implementation captures the
specification. Violating any of these conditions may lead to incon-
sistencies. For example, we have assumed that switches install and
then acknowledge an OP. If a switch bug violated this assumption,
controller state would be inconsistent with switch state.

If such a violation were to occur in practice, we can update our
AbstractSW model to reflect them and model-check ZENITH-core.
In addition, a practical ZENITH-core implementation can include a
component that recovers consistency, using periodic reconciliation,
when such bugs manifest. This recovery component will likely need
to fix inconsistencies very rarely relative to a PR-based controller,
since ZENITH-core prevents most forms of inconsistency by design.

3.6 Verifying ZENITH-core without Apps

In practice, SDN applications are developed independently of, and
sometimes long after, the controller. It would be tedious to re-verify
ZENITH-core each time a new application is developed or an existing
one changes. Fortunately, the DAG abstraction allows verifying
ZENITH-core independently of application.

To do this, we verify the controller together with an AbstractApp
which operates over a simple test topology. It contains a set of
pre-defined DAGs: one consistent with the original topology, and
others that correspond to specific events (e.g., a switch or a port
failure). Unlike a real ZENITH-app, AbstractApp does not include
logic for generating DAGs. It simply reacts to data plane events by
deleting the current DAG and installing a new one consistent with
the updated topology.

When model-checking ZENITH-core together with AbstractApp,
the correctness conditions in §3.3 ensure that: (a) the data plane
will never have a routing state corresponding to a deleted DAG
and (b) the controller correctly notifies applications of data plane
events. These properties guarantee that control plane topology state
eventually matches the switch topology state, and enable ZENTTH-
apps to be verified independently of ZENITH-core (§4).

3.7 Scaling Model Checking

ZENITH's specification is 8.6K lines, larger than that of other model-
checked systems such as S3 and EBS at Amazon [44] (Table A.1).
ZENITH also includes multiple concurrent components (Figure 7)
and handles a broad class of failures (Table 3). This leads to a state-
space explosion [37], rendering verification infeasible. To overcome
this, we adopt several well-known scaling techniques, which are all

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Namyar et al.

Scenario Details Example cause
Complete Permanent | Switch completely fails and never recovers. Hardware Bug
Complete Transient Switch completely fails, but it recovers after some time. As part of the failure, the switch | Transient Power Outage
E loses all its state (including its routing tables in TCAM).
Partial Transient One or more components of a switch (e.g., ASIC) fail for a period of time. The sw may | CPU overload
lose some of its states (e.g., buffers), but the TCAM state remains.
Partial Each of the components inside a microservice can fail independently and lose their local | Software Bug
o state. Eventually, a Watchdog would detect and restart the process.
© | Complete OFC, DE, and NIB can completely fail. In this case, ZENITH fails over to another instance | Power Outage
of these services.
Traffic Engineering It sequences and schedules the operations necessary to reroute the traffic. New demands
SW Drain/Undrain It sequences and schedules the operation to drain the traffic from a switch or to reinstate | Software Upgrade
% the switch in the network.
Planned Failover It receives requests for failing over some microservices and ensures they are done | Maintenance
without any disruption to the network or to other components.
Concurrent We also allow for these failures and operations to happen concurrently (e.g., a switch | SW Software bug during
failure during a management operation) SW Drain

TABLE 3: ZENITH is robust to different failures and management operations. (DP=Data Plane, CP=Control Plane, MO=Management Op)

sound: if the specification after applying these techniques is correct,
the initial specification is correct too.

Compositional verification. Verifying certain aspects of a system
does not require modeling every component in full detail. Consider
two interacting components, A and B. To verify the correctness
of A, we can abstract the impact of B on A as By, and verify a
system consisting of A and B,y,. For this approach to be sound, B,p,
must be an over-approximation of B [14, 15]. For example, when
verifying ZENTTH-core alongside a switch under complete failure,
we can over-approximate the switch with a single component that
either installs the OP and sends back an ACK or fails.

Partial order reduction. We can reduce the state space substan-
tially by identifying sets of execution steps (potentially in different
components) that are independent of (or commute with) each other
and forcing a particular order of execution [8, 23, 37, 46]. This ap-
proach is sound since the ordering between independent execution
steps results in the same final state. For example, a step in which a
component modifies the internal state is independent of any step in
any other component or microservice because these cannot access
the internal state. Thus, we enforce a single order when writing a
local variable in a component but allow component interleavings
when writing a local variable in a microservice. We use locks and
labels in TLA+ to exploit commutativity.

Symmetry reduction. Workers in Worker Pool have identical roles,
and any of them can handle an incoming task without affecting
controller correctness due to symmetry [13]. Thus, we can soundly
eliminate redundant states by assigning tasks deterministically (e.g.,
always selecting the available worker with the lowest ID).

3.8 Proving Correctness

Even with these optimizations, parallelized model checking ZENITH-
core in the presence of a single switch failure and recovery for a 16-
node topology and DAGs with a total of 15 OPs takes about 2 hours.
Thus, model checking ZENITH-core does not scale to arbitrary DAGs
and topologies. Moreover, model-checking for a few topologies and
DAGs does not guarantee ZENITH correctness for all possible inputs.

To obtain such a guarantee, we have developed a proof (§F) of
correctness for ZENITH-core. This uses the TLA+ proof system [16]
to show that ZENITH-core is correct for (a) any topology and DAG,
(b) for the failures we model, and (c) under the switch behavior
assumption we make. At a high-level, our proof works as follows.
First, we identify several properties and prove by contradiction that,
if ZENITH-core is not correct, at least one of these properties must be
violated. Second, we use the TLA+ proof system to prove that each
of these properties holds for our ZENITH-core specification. Prior
proofs (e.g., for Paxos correctness [36]) have used this methodology.

3.9 A Taxonomy of Specification Errors

While verifying ZENITH-core, we encountered several subtle
specification errors, which we summarize in this section (see
§C for a detailed taxonomy and §G for an example TLA+ trace).
The description references Listing 3, the final specification of the
WorkerPool. Listing 1 describes the initial specification.

State Management Errors. The state of an ongoing operation
can be spread across multiple microservices, their components,
or switches. We have found three common approaches to ensure
robust state management. Where possible, these apply fixes that
minimally impact performance since high operation throughput is
important for modern controllers.

Careful ordering of operations. Many components (e.g., List-
ing 1) have to take some actions (e.g., forward C:D) and update
some shared state (e.g., update NIB) to reflect the action. If com-
ponent (A) performs the action before updating a relevant shared
state (Lines 6 and 7 in Listing 1), other parts of ZENITH-core may
progress and update the same shared state before (A) does, causing
an inconsistency. In these cases, we first update the state and then
perform the actions. This implicitly serializes future updates to the
same state (Lines 9 and 10 in Listing 3).

State recording and crash recovery. The above fix can be fragile.
Suppose the component fails after updating the state but before
taking the action. When it restarts, it might mistakenly assume that
the action has completed, causing the controller to wait indefinitely

ZENITH: Towards A Formally Verified Highly-Available Control Plane

Li1sTING 3: The final WorkerPool specification

1 fair process WorkerPool

2 variables OPToSend = NADIR_NULL; begin

3 StateRecovery: \» State recovery logic, executed on startup
4 ():

5 ControllerThread: while TRUE do

6 (, self, OPToSend);

7 [self] := OPToSend; \= Record state

8 if (OPToSend.sw) then \+ Check if sw is healthy
9 UpdateNIBSend: ((OPToSend));
10 ForwardOP: (OPToSend);

11 else \« Report failure if switch is dead

12 UpdateNIBFail: () (OPToSend));
13 RemoveOPFromQueue:

14 [self] := NADIR NULL; \« Clear state

15 (, self);

(e.g., for an OP to get installed). To fix this, each component must
devise a state machine to track the progress of actions. For example,
the component responsible for forwarding an OP to a switch should
first record it as in-progress (Line 7), update the shared state (Line 9),
perform the action (Line 10), and then mark the action as done
(Line 14). Now, if the controller fails, it can read the state and
recover from the crash upon restart (Line 4).

Event Processing. Many components use an event-based
processing model where they receive and process events from
other components. The WorkerPool (Listing 3) processes OPs
from an OP-Queue and sends them to switches. If it crashes after
dequeuing the event but before completely updating the state, the
event is lost. To avoid this, our specification reads the head of the
queue (Line 6), processes the event, and removes the event once
its processing is complete (Line 15).

State machine design errors. Multiple components can track the
state of DAG or OP installation, and each component may contribute
to a different transition in the state machine. For example, we keep
the state of OPs in the NIB. One component can mark the OP as
DONE after receiving an acknowledgment from the switch. Another
can reset the OP’s state to NONE when a switch recovers from a
failure. We illustrate two sources of errors in such designs.

Designing a correct state machine. In the above example, it is
possible for the two components to receive an OP acknowledgment
and a switch recovery event at the same time. This can happen dur-
ing a short switch failure/recovery event, which creates ambiguity:
Was the OP installed before the switch failure or after its recovery?
In such cases, it is better to be conservative and assume the OP was
not installed.

Accounting for delays in operations. Ignoring delays in OP
installation is another source of error. Suppose a controller starts
draining a switch, then receives a request to undrain the same
switch. If the controller assumes that the drain completes instantly
and starts the undrain prematurely, the operations can be executed

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

in the wrong order. We account for these delays by adding transition
states to the state machine.

Directed Reconciliation. When a switch recovers (§3.5), the
controller does not know the extent of state loss. To mitigate this
uncertainty, we can: (a) wipe out and reprogram the switch or (b)
identify and resolve inconsistencies with the corresponding switch.
Unlike periodic reconciliation, which queries all the switches,
approach (b) uses directed reconciliation, which reads the state only
from the switches known to be potentially inconsistent. The optimal
approach depends on the severity of state loss; for small inconsis-
tencies, directed reconciliation is faster. Such tradeoffs are harder
to determine at the specification level, so we develop and evaluate
(§6) both versions, with and without directed reconciliation.

4 ZENITH-apps

SDN applications request ZENITH-core to add or remove DAGs.
However, the apps themselves can be error-prone, which can also
impact network availability [11, 49].

We now describe how developers can specify and formally verify
apps in ZENITH to ensure that correctness guarantees apply end-to-
end and not just to ZENITH-core. This step is optional: a developer
can instead modify an existing application to use the DAG abstrac-
tion without verification. In this case, end-to-end correctness may
be violated - the application may schedule an incorrect DAG.

Developer view. ZENITH developers can (1) formally specify their
applications in PlusCal [1] and (2) define the correctness properties
of their applications. They can use TLA’s model checker to itera-
tively fix errors until they obtain a verified specification. They can
then use NADIR (§5) to generate the application’s code. §E describes
the PlusCal specification of a ZENITH-app that drains switches.

Guaranteeing end-to-end correctness requires jointly verifying
ZENTTH-app and -core. However, model-checking the entire specifi-
cation can be time-consuming and hinder app development. Fortu-
nately, ZENITH-core’s design allows developers to verify ZENITH-
apps independently of the core.

Independently verifying ZENITH-apps. ZENITH-core guaran-
tees (§3.3) that (a) a DAG submitted by an app is eventually installed
in the data plane, absent intervening modifications, and (b) the
NIB’s view of topology and routing state is eventually consistent
with that of the data plane. Given this, we can guarantee end-to-end
correctness by ensuring ZENITH-apps: (1) correctly and safely react
to the events (that they are guaranteed to receive from ZENITH-
core) by recomputing the DAGs consistent with current network
state and (2) correctly add the DAGs as input to ZENITH-core.

To do this, we verify ZENITH-apps with an AbstractCore, rather
than the full ZENTTH-COre specification. AbstractCore maintains a
list of DAGs and delivers the arbitrary network events generated
by the model-checker to the app. The app processes these events,
determines whether they invalidate an existing DAG, deletes the
DAG, and installs a new one consistent with the current state.

ZENITH-app designers can verify correctness for two types of
invariants: (1) App-specific invariants — e.g., ensuring that a drain
app does not disable more than 25% of the network’s capacity [51,
56]; and (2) DAG correctness invariants — e.g., ensuring no traffic
flows over a drained switch.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Application Specification Refine .
Model
aRNLTH Developer PlusCal Code | S
AbstractCore . Model
Specification NADIR Alnnotatlons Check Checker
v v . Model A

NADIR

AN * AN
Executable Code

F1GURE 9: Input and output of NADIR. A TLA+/PlusCal specification is
directly turned into executable code.

Other than drain, we also developed and verified specifica-
tions for a traffic engineering (TE) app, and one that executes
OFC planned failover. We show that independent verification
significantly reduces the time-to-verify these apps (§6).

5 Generating Code

We have developed NADIR, a tool that automatically generates
executable code from ZENITH-core and ZENITH-app specifications.
It takes as input a PlusCal [54] specification. It outputs an Abstract
Syntax Tree (AST) for the specification. Then, given a pre-defined
runtime code library for a specific programming language (Python,
in our case), NADIR generates executable code matching the
specification for that language.

This is difficult, as specifications are too abstract for direct con-
version to executable code. For example, PlusCal does not require
specifying types of global and local variables, of inputs and out-
puts, as well as the entry point of each process. Therefore, prior
work, PGo [25], which generates code for TLA+ specifications re-
quires specifications to be written in a new programming language,
Modular PlusCal, which includes constructs for type and entry
point specifications. But, requiring a new language would likely
hinder adoption. More importantly, PGo generates code for concur-
rent threads of execution that share a single address space, so is
unsuitable for a microservice-based design like ZENITH.

To overcome PGo’s shortcomings, NADIR requires developers
of ZENITH-apps to annotate their PlusCal specifications with type
information. These annotations enable NADIR to convert the speci-
fication into an AST. After the programmer verifies their PlusCal
specification of an app, they must re-verify their specification after
they annotate it (Figure 9).

Second, in ZENITH, all persistent state is in the NIB. In our specifi-
cation, global variables are fully persistent and must survive failures;
local variables have no persistence. Therefore, NADIR automatically
generates code to ensure persistence and serialized access for global
variables stored in the NIB and accessed by other microservices.
NADIR analyzes the AST to distinguish between operations on local
and global variables.

NADIR-generated code preserves the specification’s correctness
guarantees under the following conditions: (a) the PlusCal speci-
fication is verified to be correct with NADIR annotations, (b) the im-
plementation of synchronization primitives and the runtime library
is correct. These guarantees are similar to those that PGo provides.

Namyar et al.

1.0
8os = ZENITH-NR
S E 0.6 = ZENITH-DR
o=
S804 PR
e Better
5 0.2 —
o
0.0
10° 10!
Convergence in seconds (log scale)
(a) CDF of Convergence Time
102

Bette"l [ZENITH-NR [0 ZENITH-DR [PR

CLEp ity

é@%ﬁié@ﬁ?%q% @??;?B??é??%?q?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Trace ID

Convergence in
seconds (log)
=
o
2,

-
o
=3

(b) Individual Example Traces

FIGURE 10: Our ZENITH-core implementation is robust to the
TLA+ traces and converges faster than PR. The dashed lines show
the reconciliation period (=30s, as in Orion [19]).

6 Evaluation

Our evaluations demonstrate that ZENITH-core converges faster and
scales better than PR-based controllers. ZENITH maintains higher
throughput in practical scenarios such as WAN failures [34]. Our
scaling optimizations (§3.7) are crucial for verifying ZENITH-core
(§3.6). Decoupling app from core also speeds up verification by a
few orders of magnitude (§4).

Experiment setup. We use the implementation of ZENITH that
NADIR generated from the fully verified specifications (§5). All
results described in this section use the Sphere (formerly Merge)
testbed [7], which can materialize hundreds of VMs running Open
vSwitch. On these, we evaluate synthetic, data center, and WAN
topologies of varying scales.

Metrics. Most experiments measure convergence time, the time
between when DAG installation commences and when the controller
certifies in the NIB that the data plane has converged to the state
corresponding to the DAG. Some experiments also measure the
throughput achieved by flows during the DAG installation. Other
results quantify the time-to-verify specifications and the complexity
of the specifications (§6.3).

Trace Replay: Switch and Component Failures. We run
ZENITH and each baseline on the set of TLA+ traces obtained
during the process of developing the ZENITH-core specification
(§3.4). When TLA+ detects a safety or liveness violation, it produces
a trace of the steps needed to generate that violation. We developed
a Trace Orchestrator (TO) which enforces the execution of a trace
by blocking modules from proceeding until the trace demands
it. It enforces which blocked module should be allowed to take
a step in the trace and which failure to be injected into which
component at what step. For each trace, a correct implementation
of ZENITH-core should converge, while a PR controller will incur an
inconsistency that will be resolved by periodic reconciliation. Thus,
these experiments have two goals: (1) to validate the correctness

ZENITH: Towards A Formally Verified Highly-Available Control Plane

915
Sl :
=T PR without recon. =—@= ZENITH PR
€ o
N O S50 mim el T el = e e ——=—O
2= o
o 100 200 300 400 500 600 700
Number of Switches
(a) Median of Convergence Time
.30
o5
¢35 20
c
So
8 g0
2~ o
o

100 200 300 400 500 600 700
Number of Switches

(b) 99 percentile of Convergence Time

FIGURE 11: ZENITH scales better than PR. ZENITH's median and 99p
remain the same with the network size. PR’s tail convergence increases
by up to 5x due to reconciliation interfering with convergence. We
confirm this by evaluating a controller with the same implementation as
PR that does not do the reconciliation. PR is unable to scale beyond 500
nodes since it fails to converge within the reconciliation interval.

of NAaDIR-generated code and (2) to compare convergence time
differences between ZENITH and PR for the corresponding trace.

TO does not scale to large topologies. To evaluate on a larger
network, we disable TO and instead randomly induce switch and
component failures. This tests ZENITHs ability to scale to larger
topologies as well as further validates NADIR.

Comparison Baselines. We consider two variants of ZENITH: (a)
without any reconciliation (Zenith-NR) and (b) with only directed
reconciliation (Zenith-DR, §3.9). The PR controller we use is a sim-
plified version of ZENITH-core that is robust to concurrency errors
but relies on periodic reconciliation to be correct under switch or
component failures. Some experiments also use a PR variant in
which the controller preemptively reconciles switch state when a
switch comes up (PRUp). Our reconciliation implementation fol-
lows open-source controllers such as ONOS [3], and follows the
description in Orion [19].

In one experiment, we compare ZENITH against an open source
controller (ODL). The complexity of ODL precludes a more complete
evaluation; many of our experiments use trace orchestration, which
requires changes to controller code.

6.1 Evaluating ZENITH-core

ZeNITH-NR converges an order of magnitude faster than PR.
Fig. 10(a) shows the distribution of convergence times for ZENITH-
core and PR across 170 different runs over 17 TLA+ traces (10 runs
per trace). These traces trigger either inconsistencies between data
and control plane or state update races and cause deadlocks in a
microservice component. PR includes a timeout, much shorter than
the PR interval, to resolve such deadlocks.

On average, PR takes 11.2s to converge in these scenarios,
whereas ZENITH-NR takes 2.11s (5.3% lower). At the 99th percentile
(p99), PR converges within 26.8s, whereas ZENITH-NR does so
within 3.3s in all cases (8.1x lower).

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

1.0 5 1.0 ¥
5 _.' " 8 am .'l
E 0.8 E 0.8
c c
ot 0.6 Better «— 3 Bett
A9 ! 0.6 etter €—
Y Y
[e]
c 0.4 2 0.4
o m—— ZENITH o == ZENITH
- -
0.2 PR R 0.2 PR
e === PRUp e === PRUp
0.0LL 0.0+=
0 5 10 15 20 25 0 5 10 15 20 25

Convergence in seconds Convergence in seconds

(a) Single Failure (b) Concurrent Failure

FIGURE 12: ZENITH has better tail convergence on random switch
failures, measured on a 300-node topology.

Fig. 10(b) shows the boxplot for individual sample traces. ZENITH
has lower variation compared to PR for most of the traces. PR’s
convergence depends on the timing of failures relative to the rec-
onciliation. When the failures occur just after the reconciliation,
PR must wait a full round.

ZeENITH-NR and ZENITH-DR have comparable convergence.
TO only works with small and shallow DAGs, thus the two systems
show virtually identical results. Unless otherwise stated, ZENITH-
NR is the system used in what follows.

Convergence time on large-scale topologies. To evaluate
ZENITH's performance at scale, we obtained 750 physical nodes
on the Sphere testbed [7] and configured them to match the KDL
topology from the Topology Zoo [32], the largest one in that
collection. The rest of this subsection reports results of experiments
on topologies of different sizes, where each is a subgraph of KDL.

Even in the absence of failures, PR tail convergence time
scales poorly (Figure 11). In a network with no failures, network
policy changes and management operations trigger DAG installa-
tion. To mimic this, we run 5-minute-long experiments where we
repeatedly install a new DAG and measure how long it takes for
the controller to install it. We schedule a new DAG only after the
controller converges on the previous one. Each DAG only updates a
portion of the topology (i.e., 5 switches). We repeat each experiment
10 times.

ZENITH s median convergence time is comparable to that of PR
across all topology sizes (Figure 11). However, unlike ZENITH, PR’s
99p latency increases as the network scales. This is because PR must
retrieve and process switch state, which delays DAG installation. We
confirmed this by disabling reconciliation in PR; for such a controller
(which is not robust to failures), 99p convergence is unaffected by
topology size. In our experiment, PR fails to converge within the
30-second reconciliation interval once the network size exceeds
500 nodes. In contrast, the topology size does not affect ZENITH’s
tail convergence.

With random switch failures, PR tail behavior degrades
significantly (Fig. 12). We compare how ZENITH handles switch
failures against PR and PRUp (we use PRUp only in this experiment
since it differs from PR on handling switch recovery). For this and
the next experiment, we used a 300-node subgraph of the KDL
topology. Fig. 12(a) shows convergence under randomly generated

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

1.0 1.0
(%] %]
o o
‘= 0.8 ‘S 0.8
@© ©
c c
8 0.6 Better «— 3 0.6 Better «—
wn (e
Y— Y—
o)
c 04 c 0.4
0o o
+— -
o2 m— ZENITH Qo2 m— ZENITH
s PR fre PR

0.0 0.0

0 5 10 15 20 25 0 5 10 15 20 25

Convergence in seconds Convergence in seconds

(a) Single Component Failure (b) Component and SW Failure

FIGURE 13: ZENITH’s tail convergence is lower during random
component failure, measured on a 300-node topology.

switch failures, with at most one failure at a time. ZENITH has the
same median as PR and PRUp, but its tail convergence time is much
lower (4.1% lower p99 convergence). A single switch failure triggers
a DAG update but does not typically cause state inconsistencies.
Thus, PR and PRUp often converge as fast as ZENITH. At the tail,
however, both PR and PRUp encounter inconsistencies that only
reconciliation can resolve.

In Figure 12(b), we study convergence under concurrent failures.
We set the average failure inter-arrival time to be shorter than the
convergence time. ZENITH s median convergence is unaffected, but
PR and PRUp perform worse. PR’s and PRUp’s median convergence
is 2.5% and 1.5X worse than ZENITH. At tail (p99), PR and PRUp’s
convergence is 2.8X and 1.9X worse than ZENITH. PRUp fares better
than PR due to the additional reconciliation upon switch recovery,
but both still fail to manage in-flight OPs correctly at the tail.

ZENITH converges faster under component failure (Fig. 13).
Under single failures, ZENITH’s median is 1.9 and its p99 conver-
gence is 3.4x lower than PR. With concurrent failures, ZENITH's
benefit is 2.0 on median and 3.2X at the tail.

6.2 Evaluating ZENITH-apps

Traffic Engineering (TE). We quantify how much ZeNn1iTH (TE +
core) improves flow throughput. We use the B4 WAN topology [29],
which we created in our testbed. We compare against a TE app on
PR and on ODL [4].

Experiment setup. We first let the network run for a few seconds
with traffic between selected sources and destinations. Then, we
force one of the switches to completely fail. This triggers a fast local
recovery (at t = 8) where the impacted sources detect the failure
and migrate their corresponding traffic to a predefined backup
path [34]. Local recovery helps maintain the connection but can
push the traffic to a path with lower available capacity (caused
by congestion or fiber errors [52]). Switch failure triggers DAG
installation around t = 16. Before this DAG is fully installed, TE
notices the congested link and schedules another DAG installation.
PR fails to handle overlapping DAG installations and creates an
inconsistency, which it later resolves using reconciliation. ODL
behaves similarly (Figure A.2).

ZENITH's TE maintains higher throughput than PR’s TE (Fig-
ure 14). In ZEN1TH, throughput improves as soon as TE schedules a

Namyar et al.

O‘!CO;
&
)%x
b

Y]
i [IRRARRS S

i K
S

5 10 15 20 25 30
Time (seconds)

Normalized
Throughput
© © o o O
ESy

N

m—— ZENITH PR

o

FIGURE 14: ZENITH maintains higher throughput compared to PR
on the 12-node B4 topology in our testbed (see also §D.1).

new DAG (at t=16). However, PR fails to maintain consistency and
has to wait for reconciliation (at t = 26s). This means the traffic is
running at a lower throughput for 10s. Overall, ZENITH exhibits
1.47% higher throughput than ODL, and 1.23X than PR.

OFC Planned Failover. Fig. 15 shows the convergence times dur-
ing planned OFC failover. We use TO to replay 5 of the traces that
exhibit inconsistencies. Fig. 15(a) shows the distribution of conver-
gence times across 50 runs of these traces. ZENITH has a bounded
and small convergence time. Compared to PR, it reduces conver-
gence time significantly: on average, it is 2.3x faster, and its p99 con-
vergence is 3.8% lower. Moreover, the variance with ZENTTH is much
smaller (Fig. 15(b)) than with PR for the same reason as in Fig. 10(b).

Drain/undrain. On a Fat-tree with background traffic at ~80%
load, we drain an aggregate switch at =20 and undrain it at =40.
Figure 16 shows the aggregate throughput of impacted traffic nor-
malized by the link capacity. ZENITH is able to keep the throughput
consistently high, with only a slight throughput decrease when the
switch is drained, because of reduced network capacity.

6.3 Quantifying the ZENITH Specification

Decoupling apps from core. We verified drain/undrain both with
the full specification of ZENITH-core and with AbstractCore
(§4). We found that decoupling and using Abst ractCore reduces
the verification time by more than 100X (from 30 m to 2 s). Other
apps can also be verified quickly: TE in 6 s, Failover in 3 s.

Scaling techniques from §3.7 (Table 4). We apply multiple scal-
ing techniques to verify ZENITH-core, with much larger specifica-
tions than prior work. To quantify the impact of each technique,
we measure the verification time under a single switch failure that
cause a transition from a DAG of size 2 to a DAG of size at most
3 (involving up to 5 OPs).! Without any of our techniques, TLA+
explores more than 200M states and crashes after 30 hours due
to memory exhaustion. Applying symmetry reduces the time to
under 11 hours and 82M distinct states. Applying compositional
verification on top of symmetry further reduces the runtime by
7.6x and the number of states by 7.5X. The final runtime with all
the optimizations, including partial order reduction, is 3s, and TLA+
only needs to verify 12K distinct states. Our optimizations also
reduce the diameter (number of steps on the longest trace).

Error and Specification Complexity. Our TLA+ traces from
ZENITH-core have a median length of 56 steps, with a maximum of
110 and a minimum of 21 (Figure A.6 shows the distribution). This

Verification in the presence of switch recovery or larger DAG sizes is only feasible
with our full suite of optimizations.

ZENITH: Towards A Formally Verified Highly-Available Control Plane

=
=)

=
o
~

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

+

Better @m—— Better:

o
©

7 PR

=
N

[ZENITH-NR

=
o

o

Fraction

of scenarios

o o o
IS

PR
= ZENITH

seconds (log)
=
A

N
Convergence in

o

o
=
o
>

L=t 8

o g]

Normalized
Throughput
o o
o

N
>

10! 1
Convergence in seconds (log scale)

(a) CDF of Convergence Time

FIGURE 15: ZENITH improves the convergence during planned OFC failover.

Optimizations [Time #Distinct States Diameter
None >30h > 200M -
Sym 10h 43m 82M 393
Sym/Com 1h 25m 11M 302
Sym/Comm/Part ‘ 3s 12K 109

TABLE 4: Our optimizations reduce the verification time from more than
30 hours to 3 s. (Sym = Symmetry, Com = Compositional verification,
Part = Partial order reduction)

indicates the subtlety of the errors we encountered in the process
of developing the specification.

In §D.2, we quantify the specification complexity for four com-
ponents after verifying under 1) switch partial failure, 2) controller
partial failure, 3) switch and controller partial failure, 4) switch com-
plete permanent failure, and 5) and 6) switch complete transient
failure (with and without reconciliation). We measure complex-
ity using the Henry-Kafura information flow metric [27], which
captures the complexity of each component and the information
flow between components. In short, Sequencer is the most complex
component of ZENITH-core as it has to correctly undo DAG instal-
lation after a complete switch failure before installing a new one.
Monitoring Server is also complex since it must reason about partial
transient switch failures. Finally, ZENITH-DR is more complex than
ZENITH-NR since tracking directed reconciliation adds complexity.

7 Related Work

Network Controller Designs. Onix [33] and ONOS [12] moti-
vate the need for a distributed software-defined control plane and
provide mechanisms for distributed agreement for consistent log
replication. Orion’s [19] eventually consistent network controller
replaced Onix’s monolithic design with a microservice-based de-
sign, but requires periodic reconciliation. ZENITH, unlike Orion, is
a model-checked controller specification robust to transient and
permanent failures of both controller and switch components.

SDN Consistency Specifications. ZENITH avoids reconciliation
by using formal methods to ensure controller correctness. Recon-
ciliation can also be avoided using higher-overhead strong syn-
chronization among control plane microservices and data plane
components (e.g., distributed transactions [17, 31], consistent up-
dates [47], or causally consistent updates using network event
structures NES [39]). Other work studies customizable consistency
properties for network updates [21, 30, 57] that determine safety

(b) Individual Example Traces

3 4 5 10 20 30 40 50 60
Trace ID Time (seconds)
FIGURE 16: ZENITH maintains high
throughput when draining (t=20) and
undraining (t=40) a switch in Fat-tree.

and liveness conditions that a controller must satisfy, but typically
require distributed protocols that may not scale well.

Networked Systems Verification. Verification tools have been
used to test network configurations [20, 55]. SDN controller plat-
forms, however, pose a new challenge due to network dynam-
ics of the interaction between control and data planes. In prior
work, TLA+ has been used to verify the network topology in the
SDN context [50], but no prior work has explored verification of
microservice-based SDN controllers.

Distributed Systems Verification. Prior work [26] has verified
distributed systems by modeling them as state machines (e.g., a
Mealy machine). Most closely related to our work is Anvil [53],
which uses this approach to implement a formally verified dis-
tributed systems controller. There is no straightforward transfor-
mation for the existing Anvil API to describe a microservice-based
SDN controller and its interaction with a switch. Moreover, ZENITH
contains complex and coupled interacting microservices, which
may not be amenable to a classic Mealy-machine specification.

8 Conclusions and Future Work

ZENTTH avoids periodic reconciliation using a systematically model-
checked specification. It exhibits an order of magnitude improve-
ment in tail convergence when inconsistencies arise. A suite of
optimizations enables us to verify its large and complex specifi-
cation, and its ability to independently verify ZENITH-apps helps
preserve the benefits of microservices-based controllers.

ZENITH takes a first step toward building a correct-by-
construction controller, but much work remains. Future directions
include supporting other switch-configuration protocols [20],
incorporating other SDN applications such as those that bridge
legacy protocols like BGP, and scaling verification. Another
direction is to extend NADIR to generate code for these new
components and to evaluate and optimize its overhead.

Our approach can be used to explore alternative microservice
decompositions, helping identify configurations that optimize con-
vergence time. Future work can also explore verifying performance
properties of controllers [10, 41].

Acknowledgments. We thank the anonymous reviewers for their
insightful comments. This material is based upon work supported
by the U.S. National Science Foundation under grants CNS-1901523
and 2330066. Pooria Namyar was supported by the Google PhD
Fellowship.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

References

(1]

[10]

[11

[12]

[13]

[14

[15]

[16]

[17]

[18

[19

[20]

[21

[22

[23]

[24

[25

[n. d.]. A High-Level View of TLA+. https://lamport.azurewebsites.net/tla/high-
level-view.html. ([n. d.]).

[n. d.]. MongoDB. https://www.mongodb.com/. ([n. d.]).

[n. d]. ONOS Network Topology State Management.
//wiki.onosproject.org/display/ONOS/Network+Topology+State. ([n. d.]).
[n. d.]. OpenDaylight. https://www.opendaylight.org/. ([n. d.]).

[n. d.]. OpenDayLight Incident 1. https://git.opendaylight.org/gerrit/c/controller/
+/32352?usp=search. ([n. d.]).

[n. d.]. OpenDayLight Incident 2. https://git.opendaylight.org/gerrit/c/bgpcep/
+/33697?usp=search. ([n. d.]).

[n. d.]. The Sphere Testbed Platform. https://sphere-project.net/. ([n. d.]).
Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014.
Optimal Dynamic Partial Order Reduction. SIGPLAN Not. (2014).

Omid Alipourfard, Jiaqi Gao, Jeremie Koenig, Chris Harshaw, Amin Vahdat,
and Minlan Yu. 2019. Risk Based Planning of Network Changes in Evolving
Data Centers. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP °19). Association for Computing Machinery.

Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh,
and Hari Balakrishnan. 2021. Toward Formally Verifying Congestion Control
Behavior. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SSIGCOMM
’21). Association for Computing Machinery.

Thomas Ball, Nikolaj Bjerner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. 2014. VeriCon:
towards verifying controller programs in software-defined networks. In Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI °14). Association for Computing Machinery.

Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow,
and Guru Parulkar. 2014. ONOS: Towards an Open, Distributed SDN OS. In
Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). Association for Computing Machinery.

Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla. 1998.
Symmetry Reductions in Model Checking. In Computer Aided Verification, 10th
International Conference, CAV.

Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model Checking
and Abstraction. ACM Trans. Program. Lang. Syst. (1994).

Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. 1989. Compositional
Model Checking. In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science (LICS °89).

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts,
and Hernan Vanzetto. 2012. TLA+ Proofs. (2012). arXiv:1208.5933

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: consensus at network speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, SOSR ’15. ACM.
Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin
Vechev. 2016. SDNRacer: concurrency analysis for software-defined networks.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16). Association for Computing Machinery.
Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar
Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vi-
cisano, Richard Alimi, Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal,
Karthik Nagaraj, Kondapa Naidu Bollineni, Amr Sabaa, Shidong Zhang, Min
Zhu, and Amin Vahdat. 2021. Orion: Google’s Software-Defined Networking
Control Plane. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21).

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network
Configuration Analysis. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). USENIX Association.

Klaus-Tycho Férster, Ratul Mahajan, and Roger Wattenhofer. 2016. Consistent
Updates in Software Defined Networks: On Dependencies, Loop Freedom, and
Blackholes. In IFIP NETWORKING.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications.
SIGCOMM Comput. Commun. Rev. (2011).

Patrice Godefroid. 1990. Using Partial Orders to Improve Automatic Verification
Methods. In Computer Aided Verification, 2nd International Workshop, CAV ’90.
Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA.
Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschast-
nikh. 2023. Compiling Distributed System Models with PGo. In Proceedings
of the 28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (ASPLOS 2023). Association for
Computing Machinery.

https:

[26

[27

[28

[29

[30

[31

@
&,

[33

(34

&
2

[36

[37

[38

[39

[40

[41

=
)

[43

[44]

~
)

Namyar et al.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet: proving practical
distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP ’15). Association for Computing Machinery.

S. Henry and D. Kafura. 1981. Software Structure Metrics Based on Information
Flow. IEEE Transactions on Software Engineering (1981).

Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill
Mendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jonathan Zolla, Joon Ong, and Amin Vahdat. 2018. B4 and after:
Managing Hierarchy, Partitioning, and Asymmetry for Availability and Scale
in Google’s Software-Defined WAN. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18). Association
for Computing Machinery.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Holzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a Globally-
deployed Software Defined Wan. SIGCOMM CCR (2013).

Xin Jin, Honggiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014. Dynamic Scheduling
of Network Updates. In Proceedings of the 2014 ACM Conference on SIGCOMM
(SIGCOMM °14). Association for Computing Machinery.

Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford. 2015. Ravana:
Controller Fault-Tolerance in Software-Defined Networking. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR
’15). Association for Computing Machinery.

Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. 2011. The Internet Topology Zoo. IEEE journal on Selected Areas in
Communications (2011).

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama,
and Scott Shenker. 2010. Onix: a distributed control platform for large-scale
production networks. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI’10). USENIX Association.

Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C Bissonnette,
Nikolaj Bjerner, Zahira Nasrin, Sonal Kothari, Prabhakar Reddy, John Abeln,
Srikanth Kandula, Himanshu Raj, Luis Irun-Briz, Jamie Gaudette, and Erica Lan.
2023. OneWAN is better than two: Unifying a split WAN architecture. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
USENIX Association.

Leslie Lamport. 1994. The temporal logic of actions. ACM Trans. Program. Lang.
Syst. (1994).

Leslie Lamport. 2011. Byzantizing Paxos by Refinement. In Proceedings of the
25th International Conference on Distributed Computing. Springer-Verlag.
Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Daniar H. Kurni-
awan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye, Tanakorn Leesa-
tapornwongsa, Aarti Gupta, Shan Lu, and Haryadi S. Gunawi. 2019. FlyMC:
Highly Scalable Testing of Complex Interleavings in Distributed Systems. In
Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys '19). Association
for Computing Machinery.

Roman May, Ahmed El-Hassany, Laurent Vanbever, and Martin Vechev. 2017.
BigBug: Practical Concurrency Analysis for SDN. In Proceedings of the Symposium
on SDN Research (SOSR ’17). Association for Computing Machinery.

Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. 2016. Event-
driven Network Programming. In SIGPLAN Notices.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev.
(2008).

Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj,
Umesh Krishnaswamy, Ramesh Govindan, and Srikanth Kandula. 2024. Finding
Adversarial Inputs for Heuristics using Multi-level Optimization. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24).

Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santiago Segarra, Daniel
Crankshaw, Umesh Krishnaswamy, Ramesh Govindan, and Himanshu Raj. 2024.
Solving Max-Min Fair Resource Allocations Quickly on Large Graphs. In 21st
USENIX Symposium on Networked Systems Design and Implementation (NSDI 24).
Pooria Namyar, Arvin Ghavidel, Daniel Crankshaw, Daniel S. Berger, Kevin
Hsieh, Srikanth Kandula, Ramesh Govindan, and Behnaz Arzani. 2025. Enhancing
Network Failure Mitigation with Performance-Aware Ranking. In 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI 25). USENIX
Association.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. 2015. How Amazon web services uses formal methods.
Commun. ACM (2015).

Aurojit Panda, Wenting Zheng, Xiaohe Hu, Arvind Krishnamurthy, and Scott
Shenker. 2017. SCL: Simplifying Distributed SDN Control Planes. In 14th USENIX

https://lamport.azurewebsites.net/tla/high-level-view.html
https://lamport.azurewebsites.net/tla/high-level-view.html
https://www.mongodb.com/
https://wiki.onosproject.org/display/ONOS/Network+Topology+State
https://wiki.onosproject.org/display/ONOS/Network+Topology+State
https://www.opendaylight.org/
https://git.opendaylight.org/gerrit/c/controller/+/32352?usp=search
https://git.opendaylight.org/gerrit/c/controller/+/32352?usp=search
https://git.opendaylight.org/gerrit/c/bgpcep/+/33697?usp=search
https://git.opendaylight.org/gerrit/c/bgpcep/+/33697?usp=search
https://sphere-project.net/
https://arxiv.org/abs/1208.5933

ZENITH: Towards A Formally Verified Highly-Available Control Plane

[46]

[47

[48

[50

[51

[52

[53

[54

[56

[57

]

]

]

]

]

]

Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association.

Doron A. Peled. 1993. All from One, One for All: on Model Checking Using
Representatives. In Computer Aided Verification, 5th International Conference,
CAV ’93.

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for Network Update. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’12). Association for Computing Machinery.

Natali Ruchansky and Davide Proserpio. 2013. A (not) NICE way to verify the
openflow switch specification: formal modelling of the openflow switch using
alloy. SIGCOMM Comput. Commun. Rev. (2013).

Leonid Ryzhyk, Nikolaj Bjerner, Marco Canini, Jean-Baptiste Jeannin, Cole
Schlesinger, Douglas B. Terry, and George Varghese. 2017. Correct by Con-
struction Networks Using Stepwise Refinement. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17).

Vadym Shkarupylo and Olga Polska. 2018. The approach to SDN Network
topology verification on a basis of Temporal Logic of Actions. In 2018 14th Inter-
national Conference on Advanced Trends in Radioelecrtronics, Telecommunications
and Computer Engineering (TCSET).

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hol-
zle, Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s Datacenter Network. In Sigcomm
’15.

Rachee Singh, Monia Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa
Gill. 2017. Run, Walk, Crawl: Towards Dynamic Link Capacities. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks (HotNets ’17). Association
for Computing Machinery.

Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon Howell,
Andrea Lattuada, Oded Padon, Lalith Suresh, Adriana Szekeres, and Tianyin
Xu. 2024. Anvil: Verifying Liveness of Cluster Management Controllers. In 18th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 24).
USENIX Association.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model checking TLA+
specifications. In Advanced Research Working Conference on Correct Hardware
Design and Verification Methods. Springer, 54-66.

Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to Verify
Forwarding Tables in Huge Networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association.

Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C. Mogul, and Amin
Vahdat. 2019. Minimal Rewiring: Efficient Live Expansion for Clos Data Center
Networks. In Proc. 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2019).

Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten God-
frey. 2015. Enforcing Customizable Consistency Properties in Software-defined
Networks. In NSDI 73-85.

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Appendix

Appendices are supporting material that have not been peer-reviewed.

A State Inconsistency in a Real-World
Controller

We study the commit history of OpenDaylight [4] to understand
the root causes of state inconsistency in modern controllers. Our
analysis focuses on bugs that met at least one of the following
criteria:

e Are enabled by a race condition between threads within the
controller.

o Are enabled by a race condition between one or more controller
threads and a device being managed by the controller.

o Resulted in a deadlock among a set of threads in the controller.

To ensure relevance and impact, we only consider bugs that
were fixed and committed into a released version of the controller.
Additionally, we limited our analysis to modules that have direct
counterparts in our controller design:

o OpenFlow Plugin, which corresponds to ZENITH’s Worker Pool.

o BGP And PCEP Plugin, which is a large and complex plugin
that implements functionality similar to both the DE and Worker
Pool in ZENITH.

o NETCONF Plugin, which is similar to the Monitoring Server
and manages the distribution of updates from devices to the
controller.

Outcome Of Each Bug. The commit histories include detailed
steps for reproducing each bug. The bugs we selected fall into three
classes:

o State Inconsistency: The bug causes a mismatch between the
state in a data-plane element and the state recorded in the control
plane.

o Exception: The bug triggers an exception in the thread that ob-
serves the result of the bug. If this exception causes a component
to crash or requires the client to retry the operation, it can delay
state consistency.

e Deadlock: Threads may enter a deadlock while waiting for one
another to complete operations involving controller state or the
network. These situations can also lead to state inconsistency.

Taxonomy Of Bugs. We identify a total of 26 race conditions.
From this set:

o 9 bugs result in state inconsistencies between the controller and
the data plane, requiring reconciliation to restore correctness.

o 7 bugs lead to some form of deadlock, with varying conse-
quences:

— 2 traces traces block a connection until it times out, causing
certain operations (e.g., statistics collection) to fail during that
period.

— 1 trace trace prevents a connection from being properly
cleaned up in the NIB.

— 4 traces prevent any response to the caller, potentially delay-
ing operations until a timeout occurs.

Namyar et al.

:,C: ¢ |2| Data Plane | Control Management
o 2B Failure Plane Failure Operation
o Y "
=< Perman| Partial Compllete
og| ent | Transient Transient
o
b= Partial Complete
o Q
o
9]
2a| No other Concurrent
5O Failure Failure
=
cC o . .
2.9 Without Directed
2 Reconciliation Reconciliation
oo
0 0.2 0.4 0.6 0.8 1

Fraction of bugs
FI1GURE A.1: Classification of Specification Errors.

e 10 bugs cause exceptions within the controller.

ODL developers addressed these issues through a combination of
strategies: changing the execution order (5 bugs); enforcing correct
synchronization (20 bugs); and changing the implementation (1
bug).

B Other Controller Requirements

We also check for two conditions that help us debug our design and
avoid unnecessary operations (formalisms omitted for space).

(Safety) Unnecessary OP installation. This check ensures that
the controller installs an OP at most once on the target switch.
However, in some cases (e.g., when a controller cannot determine
if a switch received an in-flight OP before it failed or after it recov-
ered), we cannot avoid duplicate OPs; in these cases, we relax this
constraint.

(Safety) Concurrency Violation. Modern controllers use worker
pools to perform certain types of tasks: e.g., translating an OP to an
OpenFlow message or communicating with a switch. Any worker
can work on a task taken from a task queue. This design leverages
concurrency to improve throughput. We add a constraint to ensure
that no two workers can work on the same task at the same time.

C Classification of Specification Errors
This section taxonomizes the dimensionality of specification errors.

Plane. We attribute a specification error to data, control, or man-
agement plane, depending on the location of failure that triggered
the error (first row of Figure A.1). For example, if an error occurs
when a switch fails, we attribute it to the data plane. For concurrent
failures, we attribute the error to the component or microservice
whose robustness we were examining. For example, if a data plane
failure triggers a specification error during partial failure of a man-
agement app (e.g., drain or undrain), we would attribute the error
to the management operation because it was not able to handle the
data plane failure correctly.

Only 4% of our specification errors occur when designing a con-
troller in the absence of failures. This illustrates the difficulty of
ensuring robustness to failure. Control and data plane failures ac-
count for the same number of errors, but management operations

ZENITH: Towards A Formally Verified Highly-Available Control Plane

1.00 ¢ S
o5 ‘><&%><
¢a0.75
= c
g 20.50 m— ZENITH PR
o
gé 0.25
0.00 RRRIRARZA) RRARRARRARARRIRHIHAOODHAHK

10 20 30 40 50
Time (seconds)

FIGURE A.2: ZENITH maintains higher throughput compared to
ODL [4] on the B4 topology in our Testbed (Note that ODL is based on
Java whereas ZENITH is based on Python and hence, we expect ODL to
perform the same operations much faster).

account for twice this number. This makes intuitive sense: man-
agement operations need to be carefully sequenced to avoid any
impact on customers. In practice, most (e.g., 70% from Google [24])
failures also occur during management operations.

Failure type. We now look at how specification errors in each plane
are distributed across partial, transient, and concurrent failures.

Data plane failures. A large fraction of data plane specification
errors occur due to transient failures. Designing a correct controller
to handle transient failures is particularly challenging, as it requires
the controller to frequently change its routing strategy. If the re-
covery is quick, the controller must adjust its routing in the middle
of the previous change (for switch down event) and also deal with
many in-flight operations. Among transient failures, complete fail-
ures are harder to manage since they cause the switch to completely
lose its routing state.

Control plane failures. These occur as a result of component
failures (partial) or complete microservice failures (which requires
failover). Understandably, partial failures account for a majority of
the errors, since correct specifications have to account for the loss
of component internal state. Complete failures also account for a
large fraction (nearly 40%) of the errors, since designing a correct
failover is hard.

Management operations. Errors in this category have two main
reasons. First, correctly orchestrating microservices to sequence
management operations is inherently difficult. Second, errors occur
when failures happen during the execution of these operations. Such
failures are harder to handle correctly because they can occur at
any point in the middle of a complex sequence. For instance, while
verifying the robustness of an OFC planned failover —- originally
designed and verified to be correct in the absence of failures - we
uncovered 26 additional specification errors, representing more
than a 5X increase compared to the failure-free case.

D Extended Evaluation

In this section, we present an extended evaluation of ZENITH.

D.1 Throughput Experiments

We have also conducted a similar experiment to Figure 14, in
which we compare against an open-source controller, OpenDaylight
(ODL) [4] (Figure A.2). In this experiment, a complete switch failure
and a partial transient failure occur concurrently. Our ODL DE app
fails to clean up state, resulting in traffic being blackholed until rec-
onciliation resolves the inconsistency. For the same set of failures,
ZENITH recovers faster. In Figure A.2, ZENTTH’s failure detection

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

3 1.SWPT [3.SW + Cont. PT [5.SW CT (wo recon.)
S [/ 2.Cont. PT [4.SWCP [6. SW CT (w recon.)
<]
= X S
5. 10° BB p
Fn Yy~N<I<S® x 0
% 10¢] S s & ©
@ 10 ~~pAe A A
- oINH =25
2 o [=X=X=]
§1° P@ ENE B
O

OF Event Handler OF Monitoring OF Worker RE Seq‘uencer)

FIGURE A.3: Specification complexity. (PT=Partial Transient,
CP=Complete Permanent, CT=Complete Transient)

System Line Count

S3 804 PlusCal
DynamoDB 939 TLA+

EBS 102 PlusCal

AWS Internal Lock Manager 223 PlusCal, 318 TLA+
ZENITH (no failover) 1.8K PlusCal, 4.9K TLA+
Zen1TH (with failover) 2.1K PlusCal, 6.5K TLA+

TABLE A.1: ZENITH’s specifications are much larger than prior
work. For ZENITH, we show the numbers for two of our specifications
(one that contains our failover logic and one that does not). The numbers
for other systems are from [44].

time is set to match that of ODL, so it takes longer to recover from
the failure than in Figure 14.

D.2 Specification Complexity

Figure A.3 shows the software complexity of the specifications of
four of the components after verifying ZEN1TH-core for (1) switch
partial failure, (2) controller partial failure, (3) switch and controller
partial failure, (4) switch complete permanent failure, and (5) and (6)
switch complete transient failure (with and without reconciliation).
We measure complexity using the Henry-Kafura information flow
metric [27], which captures the complexity of each component and
the information flow between components.

Sequencer is most complex since it must sequence OPs in the DAGs
and manage the transition from one DAG to another in response
to network events, while considering all in-flight OPs. Sequencer
complexity increases significantly after verifying switch complete
permanent failures, since we had to introduce extra mechanisms to
correctly manage transitions between DAGs.

Monitoring Server complexity increases after verifying switch
complete transient failures. To deal with these failures, Monitoring
Server needs to check acknowledgments at the granularity of flows
instead of OPs. This is because DE schedules some OPs to install
new flows when the switch fails. Later, when the switch recovers,
these flows need to be cleaned up using some other OPs. As a result,
we not only need to keep track of the OPs but also their actions.

E Specification of a ZENITH App

We present the PlusCal specification of an SDN application to il-
lustrate both the process and the practicality of this approach. The
application schedules switch updates to drain a switch (i.e., remove
it from the network) given the current topology and active paths
in the network. Operators require drains to be hitless; they should
not result in traffic drops caused by incomplete network state.
Our specification of this hitless drain app is on the order of a
hundred lines of PlusCal and TLA+. Cloud providers like Amazon

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

L1sTING 4: Drain Application Process

1 process drainer \in ({app0} \X {DRAIN_APP})
2 variables

3 \= Process local variables

4 currentRequest = NADIR_NULL, currentTopology = NADIR_NULL,
5 nodeToDrain = NADIR_NULL, currentPaths = {},

6 currentOPs = {}, endpoints = {},

7 pathsAfterDrain = {}, drainPathSetOPs = {},

8 drainedDAG = {}, nextDAGID = 1;

9 begin

10 DrainLoop:
11 while TRUE do

12 \+ Wait until a new drain request comes in

13 (, currentRequest);

14 \+ Read the contents of the request

15 (currentRequest, currentTopology,

16 currentPaths, nodeToDrain, currentOPs);
17 ComputeDrain:

18 \» First, get the set of endpoints that we need to

19 \» keep connected during/ after drain

20 endpoints := (currentPaths) \

21 {nodeToDrain};

22 \+ Compute the new paths

23 pathsAfterDrain := (

24 endpoints,

25 (currentTopology.Nodes \ {nodeToDrain}),

2 (nodeToDrain,

27 currentTopology .Edges)) ;

28 \» Compute the new DAG and OPs that implement the paths
29 call ComputeDrainDAG(pathsAfterDrain, currentOPs,

30 drainPathSetOPs, drainedDAG);
31 SubmitDAG:

32 \» Generate an ID for this DAG and send it to the core
33 (, [id -> nextDAGID, dag -> drainedDAG]);

34 nextDAGID := nextDAGID + 1;
35 end while;
36 end process;

have written larger specifications (up to 800 lines) and used them
to verify several deployed systems [44].

Preliminaries. For clarity, we color keywords dark blue, constants
purple, cyan, orange,
Procedure calls brown, and process labels red. The constant
NADIR_NULL is a reserved name for NADIR that mocks a typical
null-like value.

We specify each application as a process. A process is an inde-
pendent thread of execution in PlusCal and must have a unique
identifier. Listing 4 shows the process for the drainer and is
identified by the tuple «app0, DRAIN_APPx». Each process can
define and initialize its own local variables (currentRequest
in Line 4).

Each process can also access and modify global variables.
Listing 4 uses two global variables:

(Line 13) and (Line 33). These variables
capture communication between specifications, using message
queues between processes. For example, drainer uses the

to submit its final DAG to ZENITH-core.
Similarly, management software (not shown as part of this

Namyar et al.

specification) can use to submit their

drain requests to the drainer.

LisTING 5: Drain Application Global Variable Declarations

1 variables

2 * —-—-- CORE GLOBAL VARIABLES ----

3 \+ Queue of DAGs from applications to the controller

4 =<<>>,

5

6 \+ ———- APPLICATION GLOBAL VARIABLES ----

7 \» This is the queue of drain requests.

8 \+ A drain request has 4 parts:

9 \+ - The current topology (i.e. set of running switches and
links)

10 \« - The set of paths active in the network (i.e. current
routing configuration in the network)

11 \+ - The set of OPs that implement the paths in the previous set

12 \+ - The node index to drain

13 = <<>>

Each PlusCal process consists of a sequence of atomic steps,
defined between labeled blocks. In Listing 4, the code between the
label ComputeDrain (Line 17) and Line 30 is an atomic step that
computes the DAG that drains the network.

Drainer Application Logic. Given a drain request, the drain ap-

plication (Listing 4) performs the following steps:

(1) Get the set of endpoints (Line 20) that must remain connected
and be able to exchange traffic both during and after the drain
procedure.

(2) Compute the set of viable paths for each pair of endpoints,
assuming the target node for draining has been completely
removed from the network (Line 23).

(3) Generate a DAG that installs the new paths and safely removes
the old ones without causing traffic drop (Line 29).

(4) Submit the DAG to the ZENITH-core for installation (Line 33).

Logic for Generating DAG. Central to the drain application is
generating a DAG that can safely install the new paths and remove
the old ones. Listing 6 shows the logic for this part, encapsulated in
a procedure named ComputeDrainDAG. In PlusCal, procedures
are a series of atomic steps (i.e., statements between labels) that are
executed by a process (Line 29 in Listing 4).

The ComputeDrainDAG procedure constructs a DAG that en-
sures new paths are installed and fully operational before removing
the old ones. This guarantees that the drain is hitless, even during
the transition. To achieve this, the procedure (1) ensures all the
OPs that remove the old paths are installed after all the OPs that
install the new ones (Line 38), and (2) assigns higher priority to the
new paths (Lines 13 and 24). As a result, once the new paths are
installed, switches fully shift their traffic onto them, making it safe
to remove the old paths.

Operator and Macro Calls. We use the operator

(Line 13 in Listing 6) as an example to illustrate
how operators are specified in Listing 7. This operator computes
the maximum priority among all the OPs in the previous paths. It is
possible to specify this in PlusCal using logical quantifiers, which
makes it simpler. However, we implement it using TLA+ recursion,
as it speeds up model checking.

ZENITH: Towards A Formally Verified Highly-Available Control Plane

LISTING 6: A Procedure to Compute the Drain DAG

procedure ComputeDrainDAG(newPaths, previousOPs, newOPs, newDAG)
\« A procedure can define its own local variables, just like a process
variables nextPriority = NADIR NULL,
newOPsStartingIndex = NADIR_NULL, newOPSet = {},
newDAGEdgeSet = {}, newDAGNodeSet = {},
currentPath = NADIR_NULL, currentPathResult = {};
begin
ComputePriority:
\+ The new OPs MUST be installed with a higher priority than
\« previous paths (otherwise, there is no way to guarantee the
\« drain is hitless). To do this, sift through previous OPs and
\« get the highest priority in it.
nextPriority := (previousOPs) + 1;
\+ Each hop in a new path will have a new OP associated with it.
\+ Each OP needs an index, and so will start at the end of
\« the current OP list for indexing.
newOPsStartingIndex := (previousOPs);

ComputeNewPathsDAG:
while (newPaths) > 0 do
\+ Pick one of the new paths
currentPath := (CHOOSE p \in newPaths: TRUE);
\+ Compute the OPs and the ordering that implements the new path
currentPathResult := (currentPath,
newOPsStartingIndex,
nextPriority) ;
\+ Combine the results and remove the processed path from the set
newOPSet := newOPSet \cup currentPathResult.ops;
newDAGEdgeSet := newDAGEdgeSet \cup currentPathResult.edges;
newDAGNodeSet := newDAGNodeSet \cup currentPathResult.nodes;
newPaths := newPaths \ {currentPath };
end while;

CleanupPreviousOPs:
\+ To cleanup the previous OPs, add the deletion instruction for
\+ all the previous OPs at the end of the DAG (i.e. attach them
\+ to all the leaves of the DAG)
newDAG := ([v -> newDAGNodeSet, e —> newDAGEdgeSet],
(previousOPs));
end procedure;

Li1sTING 7: An Operator to Compute the Highest Priority

RECURSIVE ()]
(setOfOPObjects, priority) ==
IF Cardinality (setOfOPObjects) = 0
THEN priority
ELSE
LET
currentOPObject == CHOOSE x \in setOfOPObjects: TRUE
currentPriority ==
IF priority < currentOPObject. priority
THEN currentOPObject.priority
ELSE priority
IN
(
setOfOPObjects \ {currentOPObject},
currentPriority)
(setOfOPObjects) ==
(setOfOPObjects, 0)

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

We omit the specifications of other for
brevity. For example, uses a recursive breadth-
first search to compute shortest paths between specified pairs. The
macros and specify queue operations.

NaDIR Type Annotations. All of the previous listings describe
a specification that can be model-checked with TLC. However,
NADIR cannot process them as-is, since they lack the necessary type
annotations. The type annotations for Listing 4 are the following:

LisTING 8: Drain Application Type Annotations for NADIR

1 STRUCT SET RC _DAG == [

2 v: SUBSET NADIR_INT_ID_SET,

3 e: SUBSET (NADIR_INT ID_SET \X NADIR_INT ID_SET)]

4 STRUCT_SET_DAG_OBJECT == [

5 id: NADIR_INT_ID_SET,

6 dag: STRUCT_SET_RC_DAG]

7 STRUCT_SET_OP_OBJECT == [

8 priority : Nat,

9 sw: SW,

10 op: NADIR_INT ID_SET]

11 STRUCT_SET_TOPOLOGY == [

12 Nodes: SUBSET Nat,

13 Edges: SUBSET (Nat \X Nat)]

1 STRUCT SET DRAIN_REQUEST == [

15 topology: STRUCT_SET TOPOLOGY,

16 paths: Seq(Nat),

17 node: Nat,

18 ops: SUBSET STRUCT_SET_IR_OBJECT]

19 \+ This aggregator defines the name of structs during code generation
20 NadirStructSet == ("StructRCDAG" :> STRUCT_SET_RC_DAG)

21 ("StructDAGODbject" :> STRUCT_SET_DAG_OBJECT)
22 ("StructOPObject" :> STRUCT_SET_OP_OBJECT)
23 ("StructTopology" :> STRUCT_SET_TOPOLOGY)
24 ("StructDrainRequest” :>

STRUCT_SET_DRAIN_REQUEST)

25\« The type annotation. It is also an invariant of the specification

26 TypeOK == /\ (

27 STRUCT_SET_DAG_OBJECT, DAGEventQueue)

28 N (

29 STRUCT_SET_DRAIN_REQUEST, DrainRequestQueue)

30 A (

31 (STRUCT_SET_DRAIN_REQUEST),
currentRequest)

32 N (

33 (STRUCT_SET_TOPOLOGY),
currentTopology)

34 A (

35 SUBSET Seq(Nat), currentPaths)

36 A (

37 NadirNullable (Nat), nodeToDrain)

38 N (

39 SUBSET STRUCT_SET_OP_OBJECT, currentOPs)

40 A (

11 SUBSET Nat, endpoints)

42 A (

43 SUBSET Seq(Nat), pathsAfterDrain)

44 N (

45 SUBSET STRUCT_SET_OP_OBJECT, drainPathSetOPs)

46 A (

47 SUBSET STRUCT_SET_RC_DAG, drainedDAG)

48 N (

49 Nat, nextDAGID)

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

The type annotation describes the type of all the variables de-
fined within the specification for NADIR. Users can introduce C-like
structs to NADIR. For example, Line 7 describes what an OP object
looks like. It is a struct that has 3 fields:

e priority determines the priority of this OP. TLA+ uses Nat to
describe the set of natural numbers, so priority is just a number
as well.

o sw represents the corresponding switch. It is defined as a member
of the constant set SW, which itself is defined as part of ZENITH-
core. SW is the set of all the switches that we would ever have in
the network.

e op is a unique identifier. The set NADIR_INT_ID_SET is a
special name reserved by NADIR. It means that this value is a
pointer to some other struct. In our case, this struct would be an
OpenFlow packet during runtime.

F Proof of ZENITH-core Correctness

We now prove that our ZENITH-core specification satisfies the three
correctness conditions listed in §3.3. The proof proceeds in two
steps. First, we identify a set of properties and prove these properties
are sufficient to ensure a controller specification is correct (§F.2).
Then, we use the TLA proof system to show that ZENITH-core’s
specification satisfies these properties and is therefore correct (§F.3).

F.1 Assumptions

We make the following assumptions:

Al. Switch and controller processes are at least weakly fair [35].

A2. NIB operations are atomic and consistent. The NIB never loses
its state or undergoes any failure of any kind.

A3. Switches acknowledge OPs if and only if they have completed
them correctly. Furthermore, switches process requests one
at a time and completely and correctly wipe the TCAM if
requested by the controller and eventually generate failure/re-
covery events.

A4. The NIB and the network are initially consistent.

We discuss why these assumptions are practical/necessary.

A1: Weak fairness asserts that if a process is continuously able
to take a certain action, then the action must occur eventually.
This is a standard assumption for distributed systems [53, 54]. We
also assume switches are weakly fair, which ensures that switches
eventually acknowledge messages and produce events in case of
failure.

A2: NIB implementations that use modern replicated database
systems (e.g., MongoDB [2]) provide atomicity, consistency, and
durability.

A3 ensures that ZENITH can always converge to the dataplane
state by (1) starting from some known state that is consistent with
the switch state (e.g., an empty TCAM), and (2) processing ac-
knowledgments from the switches. In practice, some switches may
aggregate acknowledgments (e.g., OpenFlow), we disallow this for
simplicity.

A4 formalizes the need for a known starting state of the system.

F.2 Proof of Correctness

We first state several properties, then use these to prove that any
controller that satisfies these properties must be correct. In §F.3,

Namyar et al.

we use the TLA+ proof system [16] to show ZENITH-core follows
these properties.

Terminology. We say an OP is in-flight when it has been emitted
by the controller and is in transit to the corresponding switch. An
OP is deemed in-flight when the controller believes it is still in
transit, regardless of its actual status. We similarly differentiate
between an installed OP and an OP deemed installed.

Properties:

P1. Each process is always eventually able to process a request.

P2. The controller processes an OP if and only if all its preceding
OPs in the DAG have been installed and the controller is aware
of this.

P3. The controller can successfully install a single OP on a healthy
switch. It marks the OP as in-flight before sending it to the
switch, and always updates the NIB upon receiving the corre-
sponding ACK.

P4. The controller guarantees (1) in-order delivery of OPs to each
switch, and (2) in-order processing of OP ACKs from each
switch.

P5. The controller treats every DAG the same, regardless of its
size and structure.

P6. Upon detecting the recovery of a switch from failure, the
controller schedules OPs to clean up the switch state, and
subsequently removes the routing state from the NIB upon
receiving the ACK. These OPs go through the same pipeline
as the rest of the OPs and follow property P4.

P7. Upon detecting a failure, the controller does not update the
state of any affected OPs in the NIB and does not send any new
OPs until the switch has recovered and the cleanup operation
has been acknowledged. The instruction to clear a switch is
an exception, and the controller can send it at any time.

P8. The controller eventually detects switch failure/recovery and
updates the NIB to reflect the health status of the switch.

Before proceeding, we reiterate the correctness conditions we
impose on ZENITH-cOre:
(1) ZentTH-core never violates DAG OP dependencies.
(2) Switch routing state eventually matches intended DAGs.
(3) ZenrTH-coOre’s view of routing state eventually matches each
switch’s routing state.

Single DAG. We first consider the case where a single application
wants to install a single DAG, and all involved switches remain
healthy throughout the process.

THEOREM F.1. A controller that satisfies P1 — P8 is correct under
any single DAG.

ProOF. We prove this by contradiction. Suppose the controller
violates at least one of the three correctness properties (§3.3). One
of the following cases must occur:

Case 1: The controller violates DAG OP dependencies ((1)). This
means the controller processes an OP even though at least
one of its preceding OPs in the DAG has not been installed.
This contradicts property P2 of the controller and, there-
fore, cannot occur.

Case 2: There exists an OP such that the controller either (i) fails
to install it (violating (2)), or (ii) installs it but is unaware

ZENITH: Towards A Formally Verified Highly-Available Control Plane

of its installation (violating (3)) - despite all OP dependen-

cies being satisfied. By properties P1 and P2, the controller

will eventually begin processing this OP once its depen-

dencies are satisfied. At that point, the OP can be treated

as an independent DAG (i.e., a subgraph of size 1). Fail-

ure to install such an OP or to update the NIB contradicts
property P3 or P5. Therefore, it cannot occur.

Since both cases lead to contradictions, the controller must be

correct if it satisfies P1 - P8.]

DAG transitions. We now consider the case where a single applica-
tion issues multiple updates to the DAG, and all switches involved
in the final DAG remain healthy once the final DAG is scheduled,
but other switches may fail and recover.

In this setting, correctness means that:

e The controller installs the final DAG, respecting the correctness
properties in §3.3;

o Its view of the routing state eventually reflects both the final DAG
and any OPs from earlier DAGs that were not explicitly cleaned
up by subsequent updates or switch recovery;

e At any point in time, there must not exist an OP associated with
a healthy switch that is in-flight or installed, but not deemed as
either by the controller; and

o The controller eventually detects switch failure/recovery and
updates the NIB to reflect the health status of the switch (property
P8).

The latter two conditions ensure that the application has full visi-

bility into the network state and can decide whether to retain or

remove any installed or in-flight OP when updating the DAG.

THEOREM F.2. At any point in time, a controller that satisfies
P1 — P8 correctly reflects the status of all the OPs; that is, there must
not exist an OP associated with a healthy switch that is in-flight or
installed, but not deemed as either by the controller.

Proor. We prove this by contradiction. Suppose such an OP
exists. We need to analyze two cases based on the state of the
corresponding switch:

Case 1: The switch remains healthy. By property P3, the controller
marks an OP as in-flight before sending it to the switch.
This means the OP is deemed in-flight. If the switch re-
mains healthy, the controller continues to deem the OP as
in-flight or installed, unless it is explicitly overwritten by
another OP from a subsequent DAG. In that case, the con-
troller updates the NIB only after the new OP is installed
and its ACK is received (property P3). This ensures that
the period during which the controller deems the OP as
in-flight or installed is at least as long as the period during
which it is actually in-flight or installed.

Case 2: The switch fails and then recovers. By property P7, the
controller does not send any new OPs after detecting the
failure and until after the switch is cleaned up. Therefore,
the controller must have sent the OP before detecting the
failure. By property P7, the controller does not modify
the state of such OPs upon detecting the failure. After
the switch recovers, properties P4 and P6 ensure that the
switch receives the cleanup OP after all in-flight OPs, guar-
anteeing that the switch processes it only after completing

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

those earlier operations. Consequently, the controller re-
ceives the ACK for the cleanup OP only after the switch
has been fully cleaned up. This sequencing ensures that
the controller continues to deem an OP as in-flight or
installed for at least as long as it is actually in-flight or
installed on the switch.

This means such an OP cannot exist, completing the proof. O

REMARK. Theorem F.2 guarantees that the switch is completely
empty before the controller begins sending new OPs. This follows from
the fact that the controller only issues new OPs after receiving the
clean-up acknowledgment and after removing the switch state in NIB.
If the switch were not completely empty, there should exist an OP
present in the switch that the controller does not deem as in-flight or
installed, contradicting Theorem F.2.

TuEOREM F.3. A controller that satisfies P1 — P8 is correct under
any arbitrary sequence of DAG transitions.

Proor. We prove this by contradiction. Suppose the controller
violates at least one of the correctness properties. One of the fol-
lowing cases must occur:

Case 1: The controller fails to install the final DAG and update
the NIB. This directly contradicts Theorem F.1, which
guarantees that the controller can correctly install any
individual DAG and update the NIB.

Case 2: The switch state does not reflect the final DAG since a
stale OP from a previous DAG overwrites an OP from the
final DAG on a switch. By property P4, OPs from the fi-
nal DAG are delivered to each switch after any OPs from
earlier DAGs. Consequently, OPs from the final DAG will
overwrite any prior state, and the final switch state will
always respect the final DAG. Note that the switch may
retain some OPs from previous DAGs if the final DAG does
not explicitly overwrite or delete them. However, this does
not violate correctness, as the application is responsible
for correctly scheduling the DAGs.

Case 3: The controller’s view of the routing state does not even-
tually match the switch state because the controller over-
writes the state of an OP from the final DAG to reflect
the installation of a stale OP. This contradicts property
P4, which guarantees both in-order installation of OPs
and in-order processing of OP ACKs from each switch.
Therefore, this cannot exist.

Case 4: The controller’s view of the routing state does not even-
tually match the switch state because the controller does
not correctly reflect the state of an OP from an earlier DAG
that was not cleaned up by subsequent DAGs. Such an
OP should belong to a switch that has remained healthy
since the installation of the OP (property P6). Since the
switch has remained healthy, the controller should have
eventually received the ACK and should have updated the
NIB (property P3). Thus, this case also can not happen.

All these cases lead to a contradiction. Combined with property
P8 and Theorem F.2, this establishes that a controller satisfying
Properties P1 -— P8 guarantees correctness across arbitrary DAG
transitions. O

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Concurrent DAGs. In cases where multiple applications submit
concurrent DAGs, a controller that satisfies properties P1 — P8 re-
mains correct as long as the DAGs do not contain conflicting OPs
(e.g., one DAG installs a routing entry while another attempts to
delete the same entry). In the absence of such conflicts, we can treat
each DAG independently, and our proof still applies. If the DAGs
do contain conflicting OPs, we require applications to de-conflict
outside ZENITH-core. It may also be possible to design controllers
that are correct in the presence of conflicting DAGs, but this will
require first revisiting correctness conditions in the presence of
conflicts.

F.3 Proof of Properties

To complete our proof of ZENITH-core correctness, we must show
that the listed properties P1 — P8 hold for our specification of
ZENTTH-core. We do this by writing a proof for each property?
in the TLAPS [16] language, and machine-checking the proof for
our PlusCal specification of ZENITH-core. In the paragraphs below,
we provide a natural language description of the proof.

Note About TLAPS: At the time of writing, TLAPS does not sup-
port certain constructs. Most notably, it cannot directly prove cer-
tain temporal properties with the current implementation of the
toolbox. We address this limitation by introducing history variables
into the specification. These auxiliary variables record the events
that happen for each behavior. For example, to prove that queue
operations preserve the order of insertion, we construct a history
variable that records the sequence of dequeued objects. Although
history variables can make the specification unwieldy, they allow
TLAPS backends to work. Our use of these variables is inspired by
prior work [36].

Terminology. We say an OP is "in progress" from the instant it
is scheduled by the Sequencer until either the Sequencer receives a
notification that it has been installed or the corresponding switch
fails.

We will now describe how ZENITH-core satisfies each of the
properties P1 - P8.

P1: For the OFC processes, property P1 follows from assertion Al
(i.e., weak fairness). This is because our OFC specifications con-
tain no AWAIT statements except for blocking when awaiting new
requests. If queue operations and particularly switch queue opera-
tions are fair and an unprocessed request exists, it will eventually
appear on a queue and unblock the corresponding OFC process.

The proof is more involved for the Sequencer. Unlike OFC pro-
cesses, the Sequencer has an additional AWAIT statement. It waits
for the acknowledgment of previously issued OPs before it can
schedule new OPs with satisfied dependencies. To prove that the Se-
quencer never deadlocks, we must show that this AWATT statement
eventually unblocks until the Sequencer is done with the DAG.

To prove this property, we state an Inductive Invariant of ZENITH:

THEOREM F.4. For each non-empty DAG being processed, at least
one of the following is true at all times:

2The one exception is P5, discussed below.

Namyar et al.

(1) The DAG is finished AND the DAG is stable (meaning that there
are no in-progress OPs that overwrite any operation associated
with it).

(2) There exists at least one schedulable OP (i.e., an OP with satisfied
dependencies that has not yet been processed by the Sequencer).

(3) There exists at least one in-progress OP associated with the current
DAG.

(4) A switch that has an associated OP in the DAG fails.

Proor. We will prove this by induction. The theorem holds for
the initial state according to A4 and the definition of a DAG. The DAG
is non-empty and thus must have at least one root node without
any dependencies. This OP is our first schedulable OP and clearly
satisfies the second object of the disjunction that we stated.

Assume that the invariant has held up to some particular state,
we now show that it must hold for the next state as well by contra-
diction. Assume that all of the statements have failed to hold, thus
it must be the case that all the associated switches are healthy, and
the following conjunction is true:

e There are no schedulable or in-progress OPs; ZENITH-core and
the switches have processed every single one of them.

e The DAG is not finished OR an OP that overwrites it is still in-
progress.

Since there are no in-progress OPs, we can refine the second case

to assert that the DAG has failed to finish. At the same time, there

are no schedulable OPs. So, it must be the case that there exists

an OP in the DAG that has been in progress but has not finished,

which contradicts the assertion that all in-progress OPs have been

processed. O

Using Theorem F.4, we can show that DE never deadlocks. As
established earlier, Weak Fairness guarantees that OFC eventually
sends all in-progress OPs, and as we later demonstrate (proof of P3),
it does so correctly. As a result, all in-progress OPs will eventually
be installed. Therefore, it must eventually be the case that either
the DAG is finished and stable, or there exists a schedulable OP. In
both cases, the Sequencer’s AWAIT statement unblocks, allowing
it to either keep processing the DAG by scheduling a new OP or
announcing the DAG complete.

REMARK. It may seem that combining the fact that neither the
OFC or DE ever deadlock with the statement of Theorem F.4, would
imply that eventually a DAG would have to be finished and stable
because all in-progress and schedulable OPs eventually finish.

This is only true if no switch associated with the DAG ever fails.
Otherwise, any in-flight OPs heading toward it would fail too. This
prompts the Sequencer to schedule it again eventually, and hence
ZENITH-core will keep trying to send an OP to a switch that is dead.
Clearly, this DAG cannot finish, and hence the applications must
change the DAG.

P2: Each OP goes through a pipeline of modules in order to reach
the designated switch. In particular, DE begins scheduling an OP
through the Sequencer module, and then hands it over to the Worker
Pool in OFC, which will then transmit it to the switch if and only if
the NIB records the switch as healthy at the time of inspection. We
will prove below (as part of property P4) that this pipeline keeps the
scheduling order, and as such, to prove P2, it suffices to assert that

ZENITH: Towards A Formally Verified Highly-Available Control Plane

OP processing pipeline
Sequencer schedules the OP, Worker Pool emits it to the healthy switch.

Worker

Switch ToSW Pool OPQueue

Sequencer

Switch ACK/Event processing pipeline
The Monitoring Server processes ACKs, but delegates switch events
(UP/DOWN) to Event Handler.

Monitoring Event

Switch FromSw Server EventQueue Handler

FIGURE A.4: ZENITH-core processing pipeline.

DE only begins scheduling an OP, if and only if its dependencies in
the DAG were recorded as satisfied. (Note that P2 is an end-to-end
assertion about ZENITH-core, but using P4, we are showing that it
can be satisfied by only proving a property about one particular
module, the DE).

This requirement is satisfied verbatim in the Sequencer module,
where the set of schedulable OPs at each instant is defined as the
set of all OPs that: (a) are a member of the current DAG, (b) are
not in-progress or installed, and (c) have all of their dependencies
finished. Clearly, this satisfies our requirement, and combined with
our proof of P4, P2 is satisfied as well.

P3: P3 is closely related to P1. At its core, it requires that:

o If OFC has received the request to install an OP, and the switch
remains healthy, then eventually the OP must always be installed.

o If an unprocessed acknowledgment exists, then the controller
must eventually process it.

e The OFC must mark the OP as in-flight before actually emitting it
towards the switch.

We can refer to Figure A.4 to formulate the first two requirements

in TLA* terms:

o Ifthe length of OPQueue is greater than 0, then the Worker Pool
action is enabled.

o If the length of FromSW is greater than 0, then the Monitoring
Server action is enabled.

Both of these follow immediately from Al. If any of these two
requirements fail, then the action that dequeues the OP or ACK from
the associated queue has not been taken, despite being continuously
enabled, violating Weak Fairness. Thus, the actions that send OPs
to working switches, and collect ACKs in OFC are enabled when
needed. We may finally invoke A3 in order to make sure switches
process OPs correctly and return the ACK once some OP has been
received.

We now only need to show the correctness of steps taken indi-
vidually by modules in OFC. The main requirements in order to
satisfy P3 would be the following:

o The Monitoring Server must always record any ACKed OP as fin-
ished, regardless of its current state. Per A3, switch only sends
correct information (although it can be stale).

o The Worker Pool must record the OP as in-flight before sending it
(as stated directly in P3). This is required since not doing so may
put the Worker Pool in a race with the Monitoring Server in case
the ACK arrives very quickly.

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Worker
4 — 3

V/ Ecol NIB
Event 7) Reset AllIRs
SR Handler 8) Set Switch to UP
\\ 1., Monitoring | > } ;

5 —> Server | — g

Transitioning a switch from DOWN to UP

1) The switch emits a keep alive as a recovery event to the
Monitoring Server.

2) The Monitoring Server forwards the event to the Event
Handler.

3) Event Handler issues a CLEAR _TCAM request by putting it
on the OPQueue.

4) The Worker Pool eventually forwards the instruction to the
switch.

5) The switch handles the instruction and clears the TCAM of
any OPs. The ACK is forwarded to the Monitoring Server.

6) Event Handler receives the ACK via Monitoring Server.

7) Event Handler now first resets all OPs associated with the
recovered switch.

8) Event Handler finally marks the switch as UP, completing the
process.

FIGURE A.5: Procedure for returning a previously dead switch per P5.

Both of these requirements can be satisfied verbatim, as they only
describe individual module steps. Listing 3 shows how this can be
done for Worker Pool.

P4: Part (2) is an assertion of a queue property (in particular, it is
the assertion that FromSW is actually a queue). The specification
of a queue is a standard TLA* construct and we make use of it
in our specification of ZENITH as well. Part (1) is slightly more
complicated, since OPs traverse 2 queues to reach a switch, those
being OPQueue and ToSW. If the Worker Pool was single threaded
and processed only one object at a time, then the requirement would
be trivial.

Assuming queues guarantee that dequeue ordering agrees with
enqueue ordering, ZENITH satisfies the second requirement for a
multi-threaded Worker Pool by ensuring the following:

e Fach individual thread in Worker Pool works on only a single
OP at a time.

e Each thread in Worker Pool only works on OPs destined to a
predefined and fixed set of switches. Essentially, switches are
consistently sharded among threads such that each switch maps
exactly to one thread in the Worker Pool.

P5: This property is difficult to express with the tools provided by
TLAPS. We have verified by inspection that ZENITH-core compo-
nents do not distinguish DAGs by size or shape. Specifically, we
inspected each boolean expression in OFC and Sequencer, and veri-
fied they only reference individual OPs, not the DAG as a whole.

P6 and P7: P6 describes the procedure to return a previously dis-
abled switch to the topology. In Figure A.5, we detail the procedure
as demanded by the statement of P6. Similarly, P7 describes the

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

procedure for handling switch failure. Both properties can be satis-
fied verbatim in the specification, but we find it helpful to highlight
why these steps are necessary.

First, it is crucial to note that the CLEAR_TCAM request in step
3 MUST traverse the Worker Pool (i.e., the Topo Event Handler cannot
forward the instruction directly to the switch). Not doing so would
enable a race between the OPs sent by the Worker Pool, and the
CLEAR_TCAM instruction sent by Topo Event Handler.

Second, the requirement of P7 would mean that the controller
must check the switch state in the NIB before attempting to for-
ward any OP to it. In our specification, Worker Pool handles this
responsibility. Combined with atomicity of NIB writes per A2, the
Worker Pool would prevent forwarding OPs to a switch as soon as the
Event Handler suspends it. This explains why the CLEAR_TCAM
instruction is exempt from the same rule.

These observations, combined with P4, imply that the switch
receives the CLEAR_TCAM instruction after all the in-flight OPs,
making sure that the TCAM is empty in the end (as discussed in
the remark for Theorem F.2).

P8: The Event Handler is the only module that may change the
health status of a switch, thus P8 can be satisfied by making sure
that:
(@ If the Event Handler receives a switch failure event from the
Monitoring Server, it immediately sets the switch state to DOWN.
(@ The Event Handler sets the switch state to UP only after reset-
ting all OPs for the recovering switch (i.e., the step ordering in
Figure A.5 is honored).
If the Event Handler obeys these rules, then P8 must inductively
hold as follows; Per A4, the property clearly holds for the initial
state of the controller. Now assume that there exists some next state
where the property is violated. For this to be the case, all switch
failure/recovery events must have been processed and there must
exist a switch such as S$* whose actual state is not in consensus
with what has been recorded on the NIB and continuously remains
so. Naturally, this would allow for only 2 cases:

Case 1: S* is dead, yet the NIB records it as UP. Per A3, the switch
must have generated a failure event and per P1, the con-
troller must have eventually forwarded it to the Event
Handler. If the switch remains continuously DOWN on the
NIB, then the Event Handler must have failed to set the
state to DOWN, violating (D).

Case 2: S* is healthy, despite being recorded as DOWN. Since all
events have been processed, the recovery event for the
switch must have already been received by the Event Han-
dler and the cleanup procedure per Figure A.5 must have
been initiated as well. The switch has remained healthy,
and per P1, it must have eventually received the request
to clear the TCAM, and per A3, it must have executed and
then acknowledged it. Invoking P1 again would mean that
the ACK must have been received by the Event Handler.
Thus, if the switch remains continuously DOWN on the
NIB, then the Event Handler must have violated (2) and
failed to set the switch state to UP.

Note that the request to clear the switch or its acknowledgment
may be lost, if and only if the switch has failed again after recovery.

Namyar et al.

In this case, the property still remains true, as the state still remains
as DOWN in the end.

G Example of a TLA+ trace

Figure A.8 shows an example trace that is a simplified version
of one of our TLA+ traces that caused a violation of consistency
requirements in our design of ZENITH. As described in §1, such
inconsistencies can lead to packet drops and, potentially, blackholed
traffic.

In this example, a switch (SW-A) fails but recovers after a short
duration (e.g., transient power outage). Both failure and recovery
events propagate through the controller until they reach Abstrac-
tApp. In response, AbstractApp schedules a new DAG that installs a
new flow rule (OP1) on the recovered switch. The OP1 is eventually
forwarded and installed on SW-A, and the Sequencer stops working
on it as the DAG is successfully in place.

During all these steps, Topo Event Handler was computing all the
necessary changes in response to the switch recovery event. This
includes resetting the state of all the OPs that the controller observes
as in flight at that point (which includes OP1). This process rewrites
the state of the NIB and causes an inconsistency. NIB thinks the OP
is not installed while the OP is in fact installed on SW-A. This is
an example of an inconsistency leading to the hidden flow
entry in Figure 2.

Note that even controllers that reconcile the state with recovered
switches (i.e., switch up reconciliation) are not robust to this trace
as the reconciliation can happen before the OP1 is installed.

The TLA+ trace that demonstrates this inconsistency involves 64
steps and 3 switches, close to the median trace length (Figure A.6).

Solution (careful ordering of operations within a component
as discussed in §3.9). In the initial design leading to this trace, Topo
Event Handler first updates the state of the topology and then modi-
fies the state of OPs. This was correct under SW Partial Transient
and SW Complete Permanent failures (Table 3). However, verifying
this approach under SW Complete Transient Failure triggered this
issue, and we fixed it by changing the order of operations (first,
change the state of OPs and then update the topology).

1.0

Fraction of
scenarios
o O O
H» o0

© ©
o N

20 40 60 80 100 120
#steps in TLA+ trace

FIGURE A.6: The number of steps in TLA+ traces that caused some
safety/liveness violation during our design of ZENITH.

ZENITH: Towards A Formally Verified Highly-Available Control Plane SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

AbstractApp DAG Scheduler Sequencer NIB Event Handler NIB OF Worker Topo Event Handler Monitoring Server Data Plane
I Add new Topology Event to Event Queue I‘ < Add Event to SW Failed
I T | Publish Topo Mod Write “SW State = SUSPEND” Event Queue. |
DAG Stal —
| B I sl | | S| I I I I
DAG as Stale Suspend
I I I I I I I
| DAG I Unlock DAG
| | I I I I I I I
New OP1 & £
—) Append “OP1 Publish new
I |—)I 3 I to OPQueue I OP “OP1” I 1 I I
New DAG = Schedule the Translate OP1 to OF and add the OpenFlow
{OP1 — OP2} DAG = [message to Forward Queue 1 Msg
| | {OP1 — OP2} | | Publish State | | | . |
“ = D ——
Mod OE S‘t:te Write “OP1 State = Installed” 1
| I | OP1 installed | | < ACK |
1 1 1
| I oo 1 | I I I I
—

FIGURE A.7: A simplified illustration of how ZENITH’s components interact when a switch fails. For readability, this example simplifies the interactions.
(Green: OFC, Blue: NIB, Orange: DE, Purple: AbstractApp, §3.6)

Abstract - r
App A A A
\ \
| | / |
DAG I I V I} v + New DAG (Opl »
Scheduler I I »ﬂ 1 T [}
+newTop | +newTop | 'y : |
Sequencer .. Event L. Event [\ 7 ¥ . - [>
| | +OPlon | op1 |
A l
NIB Event I I SW-A W Installed i
Handler A A I $ 7 y)
Pub Topo Pub Topo +OP1to Pub OP
' Moa ! Mod OP-Queue Mode I ' I
1
A A Publish Write OP1 4 4
I I new OP1 ¥ Installed | | I
OF Worker m—k SW e SW X . y Retset OtPI ——
I Suspend | Run I | tomo |
\ installed
I I] I
Handler
4 + Event to 4 + Event to 4
L. I Queue [Queue Translate and l I
Monitoring 1 1 prepare OP1 f >
Server A A | 4 A
I SW1] SW1 ACK [}
Failed recovered Forward OP1
Data * W 1 * >
Plane
SW-A SW-A ,SW"I‘I SW-B
down up L down

FIGURE A.8: An example trace from TLA+ that causes inconsistency between control and data plane, leading to packet drops. We simplified the trace
significantly to improve its understandability. The original TLA+ trace for this bug consists of 64 steps and involves 3 switches.

	Abstract
	1 Introduction
	1.1 State Inconsistency
	1.2 Consistency Recovery in Modern Controllers
	1.3 Zenith: Preventing Inconsistency

	2 Zenith Overview
	3 Zenith-core
	3.1 An Abstraction for Application Intent
	3.2 Zenith-core Components
	3.3 Zenith-core Correctness
	3.4 Developing the Zenith-core Specification
	3.5 Modeling Causes of Inconsistency
	3.6 Verifying Zenith-core without Apps
	3.7 Scaling Model Checking
	3.8 Proving Correctness
	3.9 A Taxonomy of Specification Errors

	4 Zenith-apps
	5 Generating Code
	6 Evaluation
	6.1 Evaluating Zenith-core
	6.2 Evaluating Zenith-apps
	6.3 Quantifying the Zenith Specification

	7 Related Work
	8 Conclusions and Future Work
	References
	A State Inconsistency in a Real-World Controller
	B Other Controller Requirements
	C Classification of Specification Errors
	D Extended Evaluation
	D.1 Throughput Experiments
	D.2 Specification Complexity

	E Specification of a Zenith App
	F Proof of Zenith-core Correctness
	F.1 Assumptions
	F.2 Proof of Correctness
	F.3 Proof of Properties

	G Example of a TLA+ trace

