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Abstract

In this work, we relate two recent constructions that generalize classical (genus-
zero) polylogarithms to higher-genus Riemann surfaces. A flat connection valued in
a freely generated Lie algebra on a punctured Riemann surface of arbitrary genus
produces an infinite family of homotopy-invariant iterated integrals associated to all
possible words in the alphabet of the Lie algebra generators. Each iterated integral
associated to a word is a higher-genus polylogarithm. Different flat connections
taking values in the same Lie algebra on a given Riemann surface may be related
to one another by the composition of a gauge transformation and an automor-
phism of the Lie algebra, thus producing closely related families of polylogarithms.
In this paper we provide two methods to explicitly construct this correspondence
between the meromorphic multiple-valued connection introduced by Enriquez in
e-Print 1112.0864 and the non-meromorphic single-valued and modular-invariant
connection introduced by D’Hoker, Hidding and Schlotterer, in e-Print 2306.08644.
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1 Introduction

Perturbative computations in quantum field theory and string theory involve complicated
multidimensional integrals. It has become increasingly clear over the past few decades
that these integrals may profitably be organized in terms of polylogarithms, and various
generalizations thereof. Broadly defined, the term polylogarithm is being used here for a
multiple-valued function on a manifold M defined as a homotopy-invariant iterated integral
over an integration path « : [0,1] — M starting at some fixed integration base-point
7(0) = y and depending on the integration end-point (1) = z. By homotopy-invariant
iterated integral we mean a suitable linear combination [1] of iterated integrals along the
path v over differential 1-forms ¢y, - - -, ¢,

/0 61 (1(1) / ba(r(t) - / o (t), (11)

whose value depends on the base-point y, on the end-point « and on the homotopy class [7]
of the integration path 7, but not upon the specific path v in a given homotopy class [v].

Polylogarithms on the punctured sphere, also known as hyperlogarithms [2, 3, 4, 5],
complete the space of rational functions to a space of multiple-valued functions that is
closed under addition, multiplication, differentiation and the taking of primitives. Poly-
logarithms were generalized to the elliptic case [6, 7, 8, 9], where they complete the space
of elliptic functions to a function space on the punctured torus with the same properties
as its genus-zero analogue [10, 11]. When evaluated at special points, genus-zero polylog-
arithms produce multiple zeta values while their genus-one counterparts produce elliptic
multiple zeta values [12, 13, 14, 15] (see also section 1.3 of this introduction). Recently,
different further generalizations of polylogarithms to Riemann surfaces of arbitrary genus
have been proposed with the goal of providing spaces of functions that are closed under
the taking of primitives [16, 17, 18]. There is good evidence that these higher genus
polylogarithms may provide a useful organizational set-up for perturbative string the-
ory calculations [19, 20, 21, 22] while also promising relevance to higher loop Feynman
integrals in quantum field theory [23, 24, 25, 26, 27, 28].

A general and efficient geometrical construction of polylogarithms is by taking the
path-ordered exponential solution of the differential equation induced by a flat connection
valued in a (completed) free Lie algebra. Indeed, the coefficient of the path-ordered
exponential corresponding to a given word in the Lie algebra generators is an iterated
integral which is homotopy invariant, due to the flatness of the connection. At genus
zero classical polylogarithms arise from the Knizhnik—Zamolodchikov connection, whose
holonomy is closely related to the Drinfeld associator [29, 30]; the significance of the
latter to number theory has been discussed in [31, 32, 12], whereas its relevance to string
amplitudes was proposed in [33, 34, 35, 36].
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The approaches to generalize polylogarithms to arbitrary punctured Riemann surfaces
of genus A > 1 in terms of flat connections can be divided into three different categories.
Chronologically, the first is via a holomorphic multiple-valued! connection with a regular
singularity at the puncture: the connection d — Kg introduced by Enriquez [37]. The
second is via a holomorphic single-valued connection with an irregular singularity at
the puncture, which is the case of the families of connections introduced by Enriquez
and Zerbini in [38, 16]. The third is via a non-holomorphic single-valued and modular-
invariant connection with a regular singularity at the puncture: the connection d — Jpus
introduced by D’Hoker, Hidding, and Schlotterer (DHS) in [17]. All these connections
take values in the (completed) freely generated Lie algebra g on 2h generators and give
rise to different, but closely related, families of polylogarithms. The relation between the
first two approaches was partly discussed in [38] and will be the subject of the forthcoming
article [39].

In the present paper, we shall relate the first and the third approaches by showing
that d — Kg can be obtained from d — Jpgs by combining a gauge transformation and
an automorphism of the Lie algebra g. As a corollary, we can deduce relations between
the function spaces generated by the two corresponding families of polylogarithms. We
shall prove this correspondence via two different constructions, provide explicit formulas
for the relations between connections and generating functions for polylogarithms, and
evaluate the general formulas to low orders.

1.1 Flat connections, iterated integrals, and polylogarithms

An efficient geometric construction of polylogarithms starts from a flat connection d, —
J (3 ¢), with J (x; ¢) a differential 1-form in 2 on a Riemann surface 3, possibly multiple-
valued, taking values in the completion? g of the Lie algebra that is freely generated by
aset ¢ = {c1, - ,c,}. Flatness of the connection, which is expressed in terms of the
Maurer—Cartan equation

d.J (v;¢) = T (w50) N T (7;¢) = 0, (1.2)
guarantees the integrability of the differential equation

d.I(z,y;¢) = T (z;¢) T'(z,y;0), (1.3)

!The expression “multiple-valued connection” (resp. “single-valued connection”) is an abuse of termi-
nology, and expresses here the fact that, if a connection V is written as d — 7, then J is a multiple-valued
(resp. single-valued) differential 1-form.

2If one assigns degree 1 to each variable ¢;, the Lie algebra freely generated by c is a graded Lie algebra
(of Lie polynomials); its completion with respect to this grading is the Lie algebra g of Lie series.



subject to the initial condition I'(y, y; ¢) = 1, for a function I'(x, y; ¢) that is a scalar in x
and y and which takes values in the Lie group® exp(g) of g. The solution of (1.3) can be
written in terms of the path-ordered exponential of 7%

D(z,y:¢) = Pexp / T(te). (1.4)

Taylor expanding the path-ordered exponential in powers of 7 gives an explicit expression
for I'(z,y; ¢) in terms of a series of iterated integrals, each of which takes values in C({(c))
(see footnote 3),

(2, y: ¢) = 1+§/:J(tl;c) /ytl J(tg;c)---/ytkl T(tso). (1.5)

Flatness of J(z;c¢) further guarantees that I'(x,y;c) is homotopy invariant, namely, it
depends® only on the homotopy class of the integration path from y to z and is independent
of the specific representative in the class. Also, I' satisfies the path-concatenation formula

I(z,z;¢) =T (z,y;¢) (y, 25 0), (1.6)

where the product on the right is taken in the group exp(g) and concatenates the words
in ¢ from the two factors. This property can be used to deduce useful formulas for the
monodromy of the solution, namely for the value of I'(y - z,y;¢) in terms of I'(z,y;c),
with 7 an element of the fundamental group® m;(3,y). Indeed, using (1.6) to write
L(y-2,y;¢) =T(y 2,7 y;¢0) D(v-y,y; ¢), setting pu(y,y;¢) = T'(v - y,y; ¢), and assuming
that J(z;c¢) is single-valued, we obtain the following formula

L(y-2,y;¢) =T(x,y;¢) u(v,y;¢). (1.7)

3This is defined to be the group of group-like elements in the (Hopf) algebra C((c)) of formal series in
non-commutative generators c1, - -+ , ¢,. The latter is the free associative algebra generated by ¢ equipped
with the Hopf algebra structure associated with word concatenation, and should be interpreted here as
the degree completion of the universal enveloping algebra of the free Lie algebra generated by c.

41t will often be convenient to indicate the variable over which a given integration is being carried out,
especially so when several integrations are involved; we shall reserve the letter ¢ for this purpose.

5The dependence on the path is suppressed from the notation, because we will rather consider z and y
as variables on the universal cover ¥ of 3, which is equivalent to specifying the class of the path between
points x and y on X.

6 Here and elsewhere we are denoting by y both a chosen integration base-point in the universal cover %
and its image in ¥. The notation 7 -y, inspired by the induced isomorphism 71 (2, ) ~ Aut(X/%), stands
then for the endpoint of the (unique) lift to 3 of the path ~ which starts at y. There is then a unique
element vy of Aut(i /%) which takes y to v -y, and 7 - denotes the image of z under this automorphism.



For fixed y and ¢, and assuming that J(x;c) is single-valued, one verifies using (1.6)
that p is a homomorphism from (%, y) to the group exp(g), namely that”

(1, yi ) p(y2, ys €) = (%72, ¥ €), (1.8)

thus yielding a monodromy representation.

While T' is homotopy invariant, the contribution to the series in (1.5) from a single
value of k£ > 1 is not homotopy invariant. Thus, it is understood that the iterated integrals
for all values of k are taken along the same path in a given homotopy class. The expansion
in powers of J may be expressed as a series over words to € W(c),

L(z,y;0)= Y wl(w;z,y), (1.9)
weW(c)

where W(c) is the set of all words in the alphabet of letters {ci,--- ,¢,}, which is the
monoid freely generated by ¢, where the sum in (1.9) includes the empty word () for which
['(@;z,y) = 1. For each non-empty word to, the coefficient T'(to;z,y) is a homotopy-
invariant iterated integral, to which we shall generally refer as a polylogarithm associated
with the connection J. It follows from the fact that I'(z, y; ¢) takes values in exp(g) that
the product of polylogarithms for words tv; and tv, and identical endpoints x,y may be
expressed as a sum of polylogarithms associated with words v belonging to the shuffle
product® v W 1y (see [40] and [41] for proofs and further discussions).

D(wy;z,y)l(yz,y) = Y D(wsz,y). (1.10)

toeto L o2

1.2 Relating flat connections and polylogarithms

We shall from now on consider connections on a once-punctured surface ¥, = ¥ \ {p},
where ¥ is a compact Riemann surface of arbitrary genus h > 1 (not necessarily hyperel-
liptic as those higher-genus surfaces encountered in the current particle-physics literature

"Here ;%72 stands for the composition of two paths 71,72 € (X, y) with the convention that the
composed path traverses first 11 followed by 72. This implies that (y1*72)-y = v2-(71-y) and therefore
w(y*y2,y;¢) = T(va-(71-y), y; ¢) = T(va-(71-y), v2-y; )T (y2-y, y; ¢) which then leads to the concatenation
order on the left side of (1.8) since I'(y2-(v1-¥),v2-y;¢) = L(v1-y, y;¢) and T'(y;-y, y;¢) = p(7;,y; ¢).

8We recall that the shuffle product to LI tvy is the subset of W(c) containing the words tv obtained
from all possible ways of interlacing the letters of tv; and tvg such that the order of the letters in each word
is preserved, see appendix B.2. The shuffle product extends to a commutative and associative operation
which turns the C-vector space of linear combination of words o € W(c¢) into a ring, with neutral element
given by the empty word (. A useful reference on free Lie algebras and the shuffle product is [41].
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23, 24, 25, 26, 27, 28]). The fundamental group m (X, y), with base-point y € ¥, is freely
generated by closed loops 24/, for I = 1,--- , h which can be chosen such that the inter-
section pairing J of their images (denoted with the same symbol) in the homology group
Hy(%,,7Z) satisfies J(A, A7) = J(B7,B;) = 0 and J(A!,B;) = 6. The completed free
Lie algebra g in which the connections take their values will be chosen to be generated by
2h independent elements. We shall denote a choice of such generators of g by aUb, where
a=1{al,---,a"} and b= {b;,---,b,}; these are elements of g" and can be interpreted as
a basis of the dual of Hlz(%,), corresponding to the cycles A, -+ A" B ... B, via
the isomorphism induced by the period pairing (see [16]).

As shown in appendix A, two flat connections J;, J> on the trivial exp(g)-principal
bundle over ¥, are necessarily related by a combination of a Lie algebra automorphism of g
and a gauge transformation, as long as the respective monodromy representations piy, fio
are such that the families ([log(u;(20))]1, - -+, log(p: (A"))]1, log(12:(B1))]1, - - -, [log (s (Br))1)
(where [-]; is the projection to the degree-one part of g) for i = 1,2 are bases of the vector
space generated by a UD.

In the remainder of this paper we shall consider two specific connections on ¥, both
taking values in g. The first is a holomorphic multiple-valued connection d, —Kg(x, p; a, b)
given by specializing a more general construction from [37], while the second is the non-
holomorphic, single-valued and modular-invariant connection d, — Jpus(z, p; a, b) intro-
duced in [17]. Their definition and properties will be reviewed in section 2 below. More
precisely, we will uniquely characterize the g-valued differentials Kr and Jpug through
their functional properties in Theorems 2.1 and 2.5, respectively. Generalizations of both
connections to acquire simple poles in x at an arbitrary number of punctures may be
found in [37, 17].

By construction, the connection d — Jpys is defined on the trivial exp(g)-principal
bundle over ¥, and it follows from Thm. 2.33 in [38] (applied to the case n = 1) that this
is the case also for d — Kg. Since both connections satisfy the above-mentioned technical
condition on their monodromy representations, it follows that d— Jpus and d— g must be
related by combining a gauge transformation with a Lie algebra automorphism of g. The
key result of this paper is to provide two different methods for the explicit construction of
the gauge transformation and of the automorphism which relate the two connections. In
both constructions, the gauge transformation will be a smooth multiple-valued function
on ¥ x ¥ which takes values in exp(g,), where g, is the Lie sub-algebra of g given by the
(completed) free Lie algebra generated by b.
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1.2.1 First construction: g from Jpgus

More specifically, section 3 is devoted to the construction (see Theorem 3.9) of a gauge
transformation Upys(x, p), which will be a smooth function in x on the universal cover
of ¥,, and an automorphism mapping a U b to an alternative set of generators a U b of g
such that

Ke(z, p; a,b) = Upns(z, p) " Tous(z, p; @, b) Upns (x, p)
_UDHS(xap)_ldquHS(xap)a (111)

which is equivalent to the following relation between the two connections

dx - ICE(x>p7 a, b) = uDHS(x>p)_l (dx - jDHS(Iap; da B)) Z/IDHS(ZIZ',p). (112)

Here, the gauge transformation Upgs(x, p) is obtained from the path-ordered exponential
Tpus(z,y,p;€,m) = Pexp/ Jpus(t, p;€,n) (1.13)
y

by specializing the free non-commutative variables £ = {¢!, -+ &"} and = {n1, - ,m}
to appropriate values &7 € gl which satisfy® [f;,&/] = 0. This in turn implies that
Tons(t,p; €,7) is regular at t = p, and therefore that Tpys(z, v, p; €, 1) is regular when y
approaches p; we are therefore allowed to set

UDHS($>Z9) :FDHS($ap>p; 5777) (114)

Throughout we shall suppress the variables é and 7 in writing Upgs(z,p). The notation
a, b stands for an alternative set of generators a = {a',...,a"} and b= {131, c f)h} of g,
so that each hatted element is a Lie series in the original unhatted elements from the set
a Ub, and the map aUb — a U b from unhatted to hatted elements can be viewed as an
automorphism of the Lie algebra g.

We outline a procedure to determine the gauge transformation Upys(z,p) and the
automorphism a Ub — a U 13, constructed above, in a series expansions in powers of the
generators b. This procedure leads to explicit formulas relating the expansion coefficients
gl (z, p) and flIr j (2, p) of Kg(z, p; a, b) and Jpus(z, p; a, b), respectively, which fur-
nish the integration kernels for the associated polylogarithms [37, 17]. For example, to

9Throughout, unless otherwise indicated, we will follow the Einstein convention in which a pair of
identical upper and lower indices are summed over 1,2, --- , h, without writing the summation sign.



low degree, the formulas of Proposition 3.14 imply the relations

9" 5(x,p) = f1o(z,p) + T' (2, p)ws(x) + wi (z) M 5 (p), (1.15)
9" (e, p) = [ (2, p) + T (2, p) f24 (2, p)
+ [P (2, p) MBT 5 (p) — MBE g (p) f5 5 (2, p)
+ TH (2, p)ws(x) + T (2, p)wk (2) ME 5(p)
— MBE ()T (2, p)ws (@) + wic () MO (p).

The smooth functions T (z, p), T12(x, p) and MEL;(p), MELL ;(p) arise as expansion
coefficients of the gauge transformation Upys(x, p) and the automorphism aU b — aU b
in powers of b, respectively, and may be algorithmically computed to arbitrary rank.

1.2.2 Second construction: Jpus from Kg

Section 4 is devoted to the construction (see Theorem 4.8) of another gauge transformation
Ug(x,p) and automorphism mapping a U b to alternative generators a U b of g such that

Jous(x,p; a,b) = Us(w,p) " Ke(, p; a,0) Us (2, p) — Us(,p) " doUsp(z,p),  (1.16)
which is equivalent to the following relation between the two connections
dy — Jous(z, p; a,b) = Ug(z,p) " (do — Ki(z, p; a, b)) Ug(z, p). (1.17)
Here, the full gauge transformation
Us(z,p) = Tz, p,p; & 0) T (z,p;b) (1.18)

takes the form of a product. The second factor is the inverse of the (anti-holomorphic)
path-ordered exponential

I' (z,p;b) = Pexp /x (=7 (t)by), (1.19)

with suitably normalized anti-holomorphic Abelian differentials w’ defined in (2.3) and
(2.5) below (also, see footnote 11 for the raising of indices of @’ in (1.19) through the
inverse of the imaginary part of the period matrix). The first factor in (1.18) is obtained
by specializing the arguments &, 7 of the path-ordered exponential

To(e, y,p;€,17) = Pexp / Ku(t,p;€,1) (1.20)

Y
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to appropriate values &7 € gl which satisfy [1);, /] = 0. Since the residue of the pole
of Kg(t,p;&,7) in t at p is proportional to [, ], this in turn implies that Ky in the
integrand of (1.20) is regular at ¢t = p, and therefore that we are allowed to take y = p as
integration base-point. As in the first construction from (1.11), the dependence of Ug(x, p)
on the Lie algebra elements is omitted, and the notation @, b stands for an alternative set
of generators @ = {a',...,a"} and b = {by, ..., by} of g which are Lie series in the original
generators a,b, so that the map @ U b — @ U b induces an automorphism of the Lie
algebra g.

The expansion of this second construction in the generators b leads to an equivalent set
of explicit formulae between the integration kernels g/t%r ;(x,p) and f1I ;(z,p). The
resulting analogues of the low-order relations (1.15) feature an alternative formulation of
its coefficients 7 and M which can also be algorithmically computed to any desired order.

1.2.3 Relating the polylogarithms obtained from Jpps and Kg

The path-ordered exponentials I'pgg and I'g exploited in the construction of the gauge
transformations are the generating series of polylogarithms associated to the connections
d — Jpus and d — Kg, respectively. These two series are related by

FE(93> Yy,p;a, b) = UDHS(93>P)_1 FDHS(ZE, Y, p;a, B) UDHS(?/>P) (1-21)

as well as by

Tpus(7,y, p; a,b) = Us(z, p) ' Tr(z,y, p; &, b) Us(y, p), (1.22)

because it follows from (1.11) (resp. (1.16)) that both sides of (1.21) (resp. (1.22)) satisfy
the same differential equation with the same initial condition. The expansion of Upys and
Ug in words, analogous to the expansion of T' in (1.9), together with the expansion of the
Lie series &, 1, a,b and &, 71, a, b, leads to two different families of explicit formulas which
can be used to relate the polylogarithms for the two connections. By comparing these
formulas one can obtain non-trivial identities among functions of y, p and of the moduli
of the surface.

Moreover, one can use (1.21) and (1.22) to deduce information about the spaces of
functions generated by the respective polylogarithms. Suppose we denote by H(J) the
algebra of polylogarithms associated with a flat connection d — J, namely the ring of
functions on the universal cover of ¥, generated by the coefficients I'(to;z,y) in (1.9)
(for a fixed punctured Riemann surface ¥, and any' fixed y € ¥,) of the path-ordered

ONotice that, by the path-concatenation formula (1.6), changing the base point y does not change the
space of polylogarithms H (7).
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exponential I'(x, y; ¢) = P exp fyx J (t; ¢). Then, combining the two gauge transformations,
we will prove (see Theorem 5.2 below) the relation

H(Tous) = H(Ke) - H(TSns), (1.23)

where jé%ls) (z;0) = —m! (x)by is the (purely anti-holomorphic) (0, 1)-part of the differen-
tial form Jpps. In other words, the polylogarithms generated from the single-valued but
non-meromorphic connection d — Jpgs in (2.31) are polynomials in the polylogarithms
constructed from the meromorphic connection d — Kg in (2.16) and in the iterated in-
tegrals of w!, whose coefficients will in general depend on y and on the moduli of 3,.
Moreover, we deduce from (1.23) that H(Kg) is given by the intersection of H(Jpus)
with the algebra of holomorphic multiple-valued functions (see Corollary 5.3).

1.3 Further directions

The results of this work suggest a variety of follow-up questions and future lines of inves-
tigation that should be relevant to both mathematicians and physicists.

First, various iterated integrals over 2/ and B; cycles that arise as expansion coeffi-
cients of the gauge transformations and automorphisms constructed in this work may be
viewed as higher-genus analogues of elliptic multiple zeta values [12, 13, 14, 15]. Their
detailed structure and interrelations remain to be explored and their evaluation remains
to be further simplified beyond the genus-one case. More generally, an improved under-
standing of the relations among higher-genus multiple zeta values may shed light on the
generalization of Tsunogai’s derivation algebra [42] and analogues beyond genus one of
the elliptic associator [43, 44, 45] (see e.g. [46] for associators at higher genus).

Second, our investigations into the monodromies of higher-genus polylogarithms have
implications for the construction of their single-valued counterparts, which is relegated
to future work. At genus one already, special values of single-valued analogues of elliptic
polylogarithms, known as modular graph functions [47, 48] and modular graph forms
[49], are playing a key role in organizing the low energy expansion of string theory (recent
overviews may be found in [50, 51]; see also [52, 53]). Number theoretic properties of
modular graph forms were further studied in [54, 55, 56, 57, 58]. At higher genus, single-
valued versions of the polylogarithms encountered in this work generalize the modular
tensors introduced in [59, 60, 61, 62] and the higher genus modular graph forms introduced
in [19, 20] to depend on various marked points on the surface. They provide powerful
tools for string-amplitude computations, offer a novel perspective on the Fay identities
for products of Szego kernels [22, 63, 64] and provide promising new angles on the theory
of single-valued periods [65, 66].
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Organization

The remainder of this paper is organized as follows. Section 2 is dedicated to a review
of flat connections on Riemann surfaces of arbitrary genus. We discuss the meromor-
phic multiple-valued connection d — Kg introduced in [37], and the non-meromorphic but
single-valued and modular-invariant connection d — Jpus of [17], and their respective re-
striction to genus-one surfaces. In section 3 and section 4 we present the two announced
constructions of a relation between d — Ky and d — Jpus given by the composition of a
gauge transformation and an automorphism of the Lie algebra g. In section 5 we relate
the two associated spaces of polylogarithms. For some of the results in the main text,
the proofs are relegated to appendices A, B and C. Explicit expressions for the relation
between the connections are worked out to low orders in appendix D, and the structure
of the general construction is provided in appendix E.

Acknowledgments

We are grateful to Martijn Hidding for helpful discussions in early stages of this project
and collaboration on related topics. The research of ED is supported in part by NSF
grant PHY-22-09700. The research of BE has been partially funded by ANR grant
“Project HighAGT ANR20-CE40-0016”. The research of OS is supported by the Eu-
ropean Research Council under ERC-STG-804286 UNISCAMP as well as the strength
area “Universe and mathematical physics” which is funded by the Faculty of Science and
Technology at Uppsala University. This research was supported in part by grant NSF
PHY-2309135 to the Kavli Institute for Theoretical Physics (KITP), and ED and OS
thank the organizers of the program “What is string theory” for creating a stimulating
atmosphere in which part of this work was done. OS and FZ are grateful to the Haus-
dorff Research Institute for Mathematics in Bonn for their hospitality and the organizers
and participants of the Follow-Up Workshop “Periods in Physics, Number Theory and
Algebraic Geometry” for valuable discussions. Moreover, OS and FZ cordially thank the
Galileo Galilei Institute (GGI) for Theoretical Physics in Florence for the hospitality and
the INFN for partial support during the program “Resurgence and Modularity in QFT
and String Theory”. OS is grateful to the Simons foundation for financial support during
the GGI programme. Finally, the research of OS and FZ was supported by the Munich
Institute for Astro-, Particle and BioPhysics (MIAPbP) which is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy — EXC-2094 — 390783311. The research of FZ was partly supported by the
Spanish Ministry of Science, Innovation and Universities under the 2023 grant “Proyecto
de generacién de conocimiento” PID2023-152822NB-100, as well as by the Royal Society,
under the grant URF\R1\201473.

13



2 Review of the flat connections

Let ¥ be a compact Riemann surface of genus h. We denote by % the universal (simply-
connected) cover of ¥, and the associated canonical projection by 7 : > — %. For any
p € X, let us consider also the once-punctured surface ¥, = ¥ \ {p}. Its fundamental
group m1(3,,y) of ¥, is freely generated by A/, B, I = 1,--- h, which are 2h closed
loops in X based at y that do not contain the point p. We assume that, when viewed as
generators of m1(3, y), they satisfy the relation

h
TT 2 +Br @)« (B)" =1. (2.1)
=1
Let ¥, denote the universal cover of ¥,. Then, a choice of preferred pre-image of y € %,
in 3, induces a canonical identification of the fundamental group m(%,,y) with the
automorphism group Aut(X,/%,). This canonical identification sets the action of an
clement v € 7 (%,,y) on ¥, (see footnote 6). The image of z € %, under ~ will be
denoted by v - x. The preferred pre-image of y in i)p, as well as its image in X ~ 7 (p)
via the the natural map i]p — 3~ 7 Y(p), will also be denoted by y, and is part of the
topological setup of our construction. Part of this setting is illustrated in figure 1 for a
surface of genus two.

The homology groups H;(%,Z) and H,(X,,Z) are both isomorphic to Z*', and one
can choose the loops 217, B in such a way that their image in H,(%,Z) = m3*(%,y) (resp.
Hy(%,,Z) = 7(3,,y)) is a symplectic basis with respect to the canonical intersection
pairing J, i.e. JA, A7) = J(B;,B;) = 0 and JA,B,;) = 6% for [,J =1,--- ,h. The
symplectic group Sp(2h,Z) takes symplectic bases to symplectic bases as follows,!*

%I%AIJ%J—FB[JQH <A B)
: M = € Sp(2h,Z). (2.2
{911 — C1V%B; + D!y ¢ p)€SCLD- (22)

The choice of a symplectic basis of H;(3,Z) induces a canonical choice of representatives
for the h generators of H'(X), namely the holomorphic Abelian differentials w;, with

I =1,---,h. These differentials are normalized on the 2’ cycles, and their integrals on
the B ; cycles give the components of the period matrix €2:
f w[:5}], f (A)[:Q[J, }/}J:Im(Q[J). (23)
A7 B,

1YWe reiterate that, unless otherwise indicated, we will follow the Einstein convention in which a pair
of identical upper and lower indices are summed over, without writing the summation sign. Indices may
be lowered or raised with the help of the metric Y = Im (€2), whose components Y7 ; are defined in (2.3),
or its inverse Y !, whose components are denoted by Y!/. Following these conventions we have, for
example, wy = Yiyw’, w! =Yw;, @ =Y/ %; and Y7, Y/K = 5}‘{.
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Figure 1: The left panel represents a genus-two Riemann surface ¥ in terms of a funda-
mental domain D C ¥ for the action of Aut(X/%) ~ (%, y), which can be obtained by
cutting X along the cycles in the right panel. The surface ¥ may be reconstructed from D
by pairwise identifying inverse boundary components with one another under the dashed
arrows; the projection 7 : > — ¥ maps all the vertices yand y; fort=1,--- 7 of D to
the same point y in X. The points y; € & are related toy € & by y; = A1 -y, y2 = By - 41,
Ys = A7 y2, ya =BTy, Y5 = Ao - ya, Yo = Ba - y5 and yr = Ay - yg, the product of
loops being understood here as a composition of the corresponding elements in Aut(X/Y)
with B, - y; = y in view of (2.1).

By the Riemann relations we have Qf = Q and the matrix Y = Im () is positive definite.
Equivalently, the following pairing holds,

E/wJA w! =64, (2.4)
2 Js
where, as mentioned in the footnote 11,

o =Y"m;. (2.5)

Under a modular transformation M € Sp(2h,Z) of (2.2), the row matrix w of holomorphic
Abelian differentials and the period matrix Q transform by M : w — w(CQ + D)~! and
M :Q— (AQ+ B)(CQ + D)™, respectively.

We recall from section 1 that the Lie algebra g, in which the connections that we
will consider take their values, is freely generated by a set of 2h elements a U b where
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a={a',---,a"} and b= {by,---,b,} and is completed with respect to the degree, while
the (completed) sub-algebra of g that is freely generated by the elements of b alone is
denoted g,. In the remainder of this section, we will review the construction of the two
g-valued connections d — Kg and d — Jpns, and compare them with their more classical
genus-one analogues. More precisely, in sections 2.1 and 2.2 we will uniquely characterize
Kg and Jpps, respectively, through their functional properties, and review some further
features. In section 2.3 we will compare them with their genus-one analogues, introduced
by Calaque-Enriquez—Etingof and Brown-Levin, respectively.

2.1 The Enriquez connection d — Kg

In this subsection we shall give the definition and list some basic properties of the Enriquez
connection d — Kg needed in this paper. The following result, which defines g through a
functional characterization, essentially follows from [37] but was never stated in this form.
We therefore include also its proof for completeness. The flatness of the corresponding
connection trivially follows from the meromorphicity of Kg.

Theorem 2.1. For any fized p € X there exists a unique differential form (in the vari-
able x) Kg(z,p; a,b) which is multiple-valued on 3, meromorphic on ¥ with simple poles
at all points in w1 (p) and holomorphic elsewhere, takes values in g and satisfies:

1. the monodromy conditions
ICE(QlK “ X, psa, b) = ]CE(xupa a, b)v
Ke(Bx - 2,p;a,b) = e ™ Kg(x, p; a, b) €27 (2.6)
2. the residue condition (where a preferred pre-image of p in ¥ is also denoted by p)'
Resx:p KE(zapa a, b) = [bI> al]; (27)

3. it is linear in the generators a’.

Proof. Tt follows from [37], Lemma'® 6, that for fixed p € ¥ there exists a family of
multiple-valued differentials (in the variable x) g™ ;(z, p), meromorphic on ¥ with

12The residues of the poles at the points in 7=1(p), other than p itself, may be obtained by combining
(2.7) with the monodromy relations of (2.6).

13Condition (a) in the original reference (which is (2.11) in this work) is not necessary, as it follows
from the other properties (see our proof of the uniqueness of the family).
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simple poles at (a subset of) points in 77!(p) and holomorphic elsewhere, which satisfy
the monodromy conditions'*

gIlmIT'J(QlK : Z’,p) = ghmITJ(Iap%

9T (B p) = g () + S

s=1

(—2mi)®

TR g (@), (28)

and which are holomorphic at (the preferred pre-image of) p for r > 2 (see footnote 12),
whereas for r = 1 they satisfy the residue condition

Res,—, ¢' 7(z,p) = 0. (2.9)

It follows that, if we define g as the g-valued generating series of this family,

]CE(xupa a, b) = Zgllth(xvp)Bh o BlraJu (210)

r=0
where we set B;X = [by, X]| for arbitrary X € g, then Kg satisfies all the required
properties, which proves the existence part of the statement.

For the uniqueness, notice first that, by properties of Lie brackets, linearity in the
generators al is equivalent for K to have an expansion like (2.10), hence it is enough
to verify the uniqueness of a family of differentials g/t ;(z, p) as above. By Cauchy’s
residue theorem, one can prove, using (2.8) and (2.9), that

B,
f;lK gll"'IrJ(t7p> — (_QWZ)TF 5§1...IT-K7 (211)

where 2% denote the pre-images of the 2-cycles in a fundamental domain D C % con-
taining p (see figure 1) and B, denote the Bernoulli numbers. For r = 0 the coefficients

gs(x,p) =wy(x), (2.12)

are the holomorphic Abelian differentials on . This implies that this family is uniquely
determined by (2.8) and (2.9), which in turn implies the uniqueness of Kg(z,p;a,b). O

Remark 2.2. We have departed from the conventions in the original reference [37], as
well as [38] and [18], by factors of —2mi to align the genus-one instance of the Enriquez

4Here the generalized Kronecker symbol 5%'"13 is defined for arbitrary s > 1 by the product of standard
Kronecker symbols: 5%"'15 = 62 e 55;.
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connections and its expansion coefficients with the common conventions of the particle-
physics and string-theory literature reviewed in section 2.3 below. More specifically, the
conventions of this work are obtained by rescaling the generators by — —2miby in'® [38,
18] (while leaving the a’ unchanged) which leads to slightly different conditions for the
monodromies (2.6) and the residue (2.7), and to the dictionary

gy (z,p) = (=2mi) W (2, p)

between the differentials g™ ;(z,p) in (2.10) and the w™ T ;(x,p) in [37].

Remark 2.3. It will be useful in the sequel to rephrase the residue conditions (2.7) and
(2.9) in terms of distributions. Consider the Dirac 0-function 6(x,y) which is of type (1,1)
i x and type (0,0) in y, normalized by [, 6(x,y)o(x) = ¢(y) for an arbitrary scalar test
function ¢. It is given in local coordinates by §(z,y) = Ldz Ndz 0P (z,y), where 6P (z,y)
is the standard coordinate d-function. Then (2.7) is equivalent to'®

0, Kg(w,p;a,b) = 2mi [br, a’] 6(x, p), (2.13)

and (2.9) is equivalent to

0» g" y(w,p) = 2mi 6% 6(z, p). (2.14)

Corollary 2.4 (See [37], Lemma 9). For r = 0 or if I, # J the differential form
gl I (x, p) is independent of p, otherwise it is a meromorphic multiple-valued function
of p, whose monodromies are given by

gll.“ITJ(xa Q[K ' p) = ghmITlJ(x7p>7

Yo gt () 65 (2.15)

5The notation used for these generators in the original reference [37] is actually z1,..., x5, and the
translation into our notation is z; = —2mib;. Also, rather than considering a g-valued differential
with a simple pole at p, one considers in [37] a differential valued in the (completion of) the quotient
Lie(a, b)/[a’,bs], which turns out to be independent of p, but whose analytic construction is exactly the
same as that presented here. One may also think of the differential Kg as obtained as the restriction from
¥2 N {z1 = 22} to ¥, of the two-variable version of the Enriquez connection of [37], fixing the second
component to zo = p and restricting the target Lie algebra accordingly.

oThroughout, we shall use the notations 9, = da 8/dxz and 0, = dz 8/9z, so that the total differential
is given by d; = 0, + 0.
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Following (1.4) and (1.9), the path-ordered exponential and its expansion in terms of
words tv in non-commutative letters from the set a U b and associated polylogarithms
['g(; z,y, p) for the connection Kg are given by

]-_‘E(x>y>p; a, b) = Pexp/ ’CE(tapa a, b) = Z mPE(mazvyap) (216)

Yy 0 € W(aUb)

The resulting Enriquez polylogarithms ['g(1v; z, y, p) are multiple-valued functions of x, v,
p € X, which for certain choices of tv have a logarithmic singularities at x = p and y = p.
They can be straightforwardly expressed in terms of the iterated integrals introduced in
(18, 63]

f(%%:zf;x,@:/zdtg?lJl(t,pl)f<%:::gg;t,;;), f(g;x,y>:1 (2.17)
y

P1 P2 - Pe pa -

upon specializing p; = p; = --- = p; = p, where the multi-indices ?j = [}I?...I7 may
be empty to recover the integration kernels w;(t). It should be possible to define by
tangential base point regularization [67, 5, 68] also the value at x = p or y = p, where the
integral is otherwise logarithmically divergent, see [9, 14, 11] for the genus-one case.

Formulas for the integration kernels gt ;(x,p) of the higher-genus polylogarithms
[g(to; x,y, p) in terms of the fundamental form of the third kind and of iterated integrals
of Abelian differentials, or in terms of averages on the Schottky cover in the case of real
hyperelliptic curves, can be deduced from [38] (see section 5) and [18], respectively.

2.2 The DHS connection d — Jpus

The DHS connection Jpus(z, p; a, b) is a single-valued smooth differential form in x € 3,
which is the sum of a (1,0)-form jlgl}’lg) that has a regular singularity at x = p, and a

(0, 1)-form jlg%ls) that is purely anti-holomorphic and single-valued on the whole . The
connection Jpus(z, p; a,b) takes values in the Lie algebra g. It was defined in [17] via an
expansion, similar to the one given for Kg in (2.10), which we shall repeat below, and
may also be characterized by its functional properties as follows.

Theorem 2.5. For any fized p € X there exists a unique differential form (in the vari-
able x) Jpus(z,p;a,b) which is smooth and single-valued on %, takes values in g, and
satisfies:

1. the Maurer—Cartan equation for x # p, and it has a simple pole in x at p:
doJpns(z, p; a,b) — Jons(z, p; a, b) A Jpns(z, p; a,b) = 2mi d(x,p) [br,a’];  (2.18)
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2. its (0,1) component is given by Jé%’ls) (z,p;a,b) = —mwb; w! (x) with @' given in (2.4);

3. its (1,0) component J]glﬁos) (z,p;a,b) is linear in the generators a’.

Proof. The existence follows from the explicit construction of [17] of a family of differ-
entials f71"I*; whose generating series, similar to the expansion of Ky in (2.10), is a

(1,0) differential \7&{’%) (x, p; a,b) which satisfies the required properties. Let us show here
how the properties in the statement uniquely characterize the construction of [17]. The
combination of item 1 and item 2 gives a differential equation for the (1,0) component,

Oy \7&{’%) (z,p;a,b) + 7w’ (z) A [br, \7&{’%) (z,p;a,b)] =2mi6(x,p) [br,a’].  (2.19)

Linearity of j&fs)(x, p; a,b) in the generators of a, as prescribed by item 3, combined with
the structure of the Maurer-Cartan equation given in (2.19) is equivalent to the condition
that jlgl}’lg) (x, p; a,b) admits the following expansion

jlgh%)(xvp7 a, b) = (,UJ(;U)CLJ + Z fIlMIT.J(':Cvp)Bh o BlraJv (220)

r=1
where we recall that B X = [b;, X] for X € g, and where 11 ;(z,p) are (1,0) forms
in z and scalars in p that are single-valued for (z,p) € ¥ x X, with a simple pole at = p
for r = 1 and smooth otherwise. The equation (2.19) translates into the following set of
differential equations for fi1Ir ;(z, p), referred to as a Massey system,
5xfIJ($vp) = —7'[‘@[(;1;') A WJ(I’) + 2mi 6§ 5(1',]9),

5wf11mITJ(x7p> = _ﬂ-wll (LU) A fITHITJ(xvp)u r>2. (221)

Note that integrability of the Massey system requires that 71 ;(z, p) € Range(d,) for

all » > 1 since the integral of the left side of each equation vanishes and therefore so must
the right side. The solution of this system is the content of the following lemma.

Lemma 2.6. The solution for f!;(x,p) of the first equation in the Massey system of
(2.21) is unique and given in terms of the Arakelov Green function G(x,y) as follows,

Foten) =0, [ Gat) (=530 nws(t) = 5} d(e.p)). (2.22)

The solution for fiv-Ir ;(z,p) with r > 2 of the second equation of the Massey system of
(2.21) is unique and given recursively in r by the absolutely convergent integrals for x # p

FIl (2 p) = 8, /E Q(:c,t)(—%wh(t)/\ Flae ¢, p)). (2.23)
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Proof of the lemma. To prove the lemma, we use the Arakelov Green function G(zx,y),
which was introduced in mathematics in [69] and applied in physics in [70, 19]. It is the
unique real-valued symmetric function of (z,y) € ¥ x ¥ which is smooth for y # = and
satisfies the following equations,

0,0, G(w,y) = 2mi(w(x) = d(a.y)). [ sty =0 @2
b
where x is the canonical volume form on X, given by,
i
K= g wr A W, /;:1. (2.25)

Thus, G(z,y) is a smooth function away from the diagonal x = y, where it has a log-
arithmic singularity given by G(z,y) = —In|z — y|* + regular, as a result of which its
differential has a simple pole,

d
0. G(z,y) = _a:——xy + regular, (2.26)

and the integrals in (2.23) are absolutely convergent for x # p. The limit x — p of (2.23)
and its regularization in case of r = 2 were discussed in section 8 of [63].

Returning to establishing the solution to the Massey system, we readily obtain the
solution (2.22) to the equation for = 1 in terms of G(x, y) since the right side of the first
equation in (2.21) integrates to zero. By construction, the solution for f7;(x,p) given in
(2.22) belongs to the range of the operator d,, as argued already earlier. As a result the
integral over x of the right side of the r = 2 equation in (2.23) vanishes, so that one may
solve the r = 2 equation for f11%2 ;(z, p) in terms of the Arakelov Green function as well.
By induction on r one establishes (2.23) for all values of r. This concludes the proof of
Lemma 2.6. O

The family of differentials f71Ir ;(x, p) obtained from the lemma, which coincides with
the family originally defined in [17], is therefore uniquely determined by items 1-3, thus
concluding the proof of the theorem. O

Remark 2.7. Note that linearity of \7&{’%) (z,p;a,b) in a’ which is required in item 3 is
consistent with the linearity of the right side of (2.18).

2.2.1 Modular invariance of the DHS connection

The holomorphic Abelian differentials w;, and their conjugates @! introduced in (2.4),
transform under non-linear realizations of the modular group P,@ : Sp(2h,Z) x 5 —
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GL(h, C), where $;, denotes the Siegel upper half-space, whose action is given as follows,

wr — P(M, Q)17 w, P(M, Q) = (Q(M, Q)t)—l o
{wI%Q(M,Q)IJwJ {Q(M,Q)ZOQ+D M_<C D)’ (2.27)

for M € Sp(2h,Z) and Q € §;. The composition law for M;, My € Sp(2h,Z) is given by,

{P(Mle, Q) = P(M,, V)P (M, 2) Q' = (A + By)(Co + Dy) ™. (2.28)

Q(M; My, Q) = Q(M,, Q")Q(Ma, Q2)

The equations defining the Arakelov Green function in (2.24) are modular invariant, and
so is G(z,y). Therefore, the functions i1 ;(x, p) are actually modular tensors in the
sense introduced in [62], whose transformation law may be deduced from that of the
Abelian differentials in (2.27),

M : fllm[rJ(xvp) — Q11K1 o QITKTPJLlemKTL(xvp)u (229)

where we have abbreviated P = P(M,Q) and @ = Q(M,Q) for M € Sp(2h,Z). Note
that the dependence of both P(M, Q) and Q(M, ) on 2 is holomorphic, as is the entire
transformation factor of the modular tensors ffr;(x,p). The factors P and @ and
their tensor products generalize the automorphy factors (er+d)* associated with SL(2, Z)
modular transformations of genus one.

The result may be summarized by the following proposition (see Theorem 3.2 of [17]).

Proposition 2.8. The connection Jpus(x,p;a,b) is invariant under the action of the
modular group Sp(2h,Z) provided the generators of the Lie algebra g transform as follows,

M:a" — Q(M, Q) ;a’, M by — P(M,Q);” by, (2.30)
where P(M, Q) and Q(M,QY) are defined in (2.27) for M € Sp(2h,Z).

2.2.2 Modular properties of the DHS polylogarithms

Following (1.4) and (1.9), the path-ordered exponential and its expansion in terms of
words tv in non-commutative letters from the set a U b and associated polylogarithms
Ipus(o; z,y, p) for the connection Jpps are introduced as follows,

I‘DHS(%yap;a,b):PGXp/ Jous(t, p;a,b) = Z w Ppus(ro; 2, y,p).  (2.31)
Y weW(aUb)

The implications for the modular transformation law of the polylogarithms I'pys(to; x, y, p)
are summarized by the following proposition (see section 4.4 of [17]).
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Proposition 2.9. The polylogarithms T'pus(to; x,y, p) associated with words composed of
the alphabet a U b with a = {a',--- ,a"} and b= {by,--- ,by} map to modular tensors,

Sodn (2, p), (2.32)
whose transformation law under M € Sp(2h,Z) is given by,
M: Upog, = P P Q0 Q- T, B (2.33)

where again P = P(M,Q) and Q = Q(M, Q) for brevity.

FDHS(ah . 'CLImel .. .an N ’x7y7p> = Fh---lm

2.3 Restriction to genus one

We follow the customary notation 7 = €, for the restriction of the period matrix (2.3)

to genus h = 1, and we identify ¥ with its Jacobian, the complex torus C/(Z + 7Z) for

Im7 > 0. The restriction of both the Enriquez connection Kg and the DHS connection

Jpus to genus one can be explicitly expressed in terms of the odd Jacobi theta function,
Oi(x) = 2¢" P sin(mr) [J(1 = ¢)(1 = ") (1 — e7>™q"),  q=¢"". (2.34)

n=1
Specifically, the genus-one connections involve the Kronecker function F'(x; o) (also known
as Kronecker-Eisenstein series), which can be defined as [71, 72]

L 01(0)01(z + )
F(z;a) = h@h@

(2.35)

The function F'(x;«) is meromorphic on C x C and, viewed as a function on ¥ x X is
multiple-valued and has the following monodromies in the variable x,

Fx+ 1;a) = F(z; o), F(z +710) = ™F(z; ). (2.36)
These monodromies cancel if one considers the modified version'”
I
Qz;a) = exp (27Ti e a) F(z; o), (2.37)
ImT7

which is doubly periodic but non-meromorphic in . The Laurent expansions at o = 0 of
(2.35) and its single-valued analogue (2.37) produce the integration kernels g™ and f(,
respectively:

F(w;a) =) o™ g"(x), Qz;a) =Y a7 fO(x), (2.38)

1"The notation Q(z;a) is customary and not to be confused with the period matrix.
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with ¢ (z) = fO(z) = 1, ¢V (z) = L log¥;(z) and fD(z) = L log ¥y (z) + 2mi L.

At genus one, the Lie algebra g in which the Enriquez and DHS connections take values
is generated by two elements a and b, with a = a' and b = b; in our earlier notation. In
terms of the Kronecker function defined in (2.35), the Enriquez and DHS connections in

Theorems 2.1 and 2.5 reduce to the following expressions at genus one,

Kg(z,p;a, b)’h = dx F(z — p; B)Ba, (2.39)

Jpus(z, p; a, b)‘ = dz Q(x — p; B)Ba—deb

h=1 Im7

where BX = [b, X| for any X € g. The right side of the first line is a connection intro-

duced and generalized to multiple variables by'® Calaque-Enriquez—Etingof [43], whereas

the right side of the second line coincides (upon adding dz 7 b/Im 7) with a connection in-

troduced and generalized to multiple variables by Brown-Levin [8]. The Enriquez kernels

g™ I ;(x, p) introduced in (2.10) and the DHS kernels f/Ir ;(z, p) introduced in (2.20)

on a Riemann surface of arbitrary genus, reduce at genus one to the genus-one kernels
g (x —p) and f0)(z — p) introduced in (2.38) as follows,

LIy

g s(ap)| =" @ —p)dr,

)| = = p) d. (2:40)

In (2.39) and (2.40) the restrictions to genus one of Kg(x,p;a,b) and Jpus(zx,p;a,b)
become dependent only on the difference x — p thanks to translation invariance on the
torus . Without loss of generality one may fix p to be at the origin of . The monodromy
conditions (2.8), (2.15) both specialize to the genus one case as follows,

27rz
9" (@ +1) = g"(x), 9"z +7) ) + Z 9" (z), (2.41)

consistently with the Laurent expansion of (2.36) with respect to .

The meromorphic multiple-valued connection of Calaque-Enriquez—Etingof and the
non-meromorphic single-valued connection of Brown-Levin on the right side of the two
equations in (2.39) may be related by a gauge transformation and an automorphism of
the Lie algebra g. This relation provides an explicit realization of the correspondence
(1.11) in the introduction. Indeed, one readily verifies that the gauge transformation

Imx
Upy(z) = exp <2m Tmr b) (2.42)

18This connection was independently introduced in the one-variable case by Levin-Racinet [7].

24



together with the automorphism @ = a + 7b/(Im7) and b = b reproduce the relation

’CE(I,p;aab)’h :UBL(I—P)_ljDHS(IL",P;d>8)‘h_1UBL(95—P)

_Z/{BL (l’—p)_ldm Z/{BL (S(Z—p), (243)

which implies that the two connections are related by

d — Kg(z, p; a, b)‘ = Upy(z—p)~" (d — Jous(z, p; a, (;)‘ ) UpL(z—p). (2.44)

h=1

The anti-holomorphic dependence of (2.42) ensures that the (0, 1)-form components cancel
between the two terms on the right side of (2.43).
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3 Gauge transforming Jpus to Kg

In this section, we give the first explicit construction of a gauge transformation and an
automorphism of the Lie algebra g that relate the connection d — Kg with the connec-
tion d — Jpus. More precisely, we will relate the differential forms Kg(x,p;a,b) and
Jpus(z, p; a, 13) by a gauge transformation Upys(x, p), where a, b and a,b are two distinct
sets of generators of the algebra g, whose elements are given by

a={a',--- a"}, a=1{a',--- a"},

b={by, - by}, b={by,--,bn}. (3.1)
The replacement a Ub — a Ub corresponds to an automorphism of g whose explicit
form we shall construct. The construction of the full relation between Kg(z,p;a,b) and
Jpus(z, p; a,b) may be conveniently decomposed into two parts: first the construction of

the gauge transformation Upys(z, p) and second the construction of the automorphism.
We shall now proceed to each part in turn.

3.1 Construction of the gauge transformation Upyg

To prove the existence of the relation of (1.11), in this section we shall construct a suitable
gauge transformation Upys(z, p) in terms of the connection Jppug subject to (1.11), which
we repeat here for convenience,

Kg(x, p; a,b) = Upns (2, p) " Tous (2, p; @, b) Upus (2, p)
~Upns(z,p) " dy Upns(z, p). (3.2)
The key role of Upps(z, p) is to produce the monodromy of Kg, given in equation (2.6) of

Theorem 2.1, starting from the connection Jpys which has trivial monodromy. Thus, we
seek to construct a gauge transformation with the following monodromy;,

Upus(AX - 2, p) = Upns(z, p),
Upns (B - x,p) = Upns(z, p) 7K. (3.3)

To obtain Upys in terms of Jpus, we begin by considering the solution I'pgg to the
following differential equation in the variable z,

dx FDHS($7 Y, Dp; 67 77) = jDHS(%?? 57 77) I‘DHS(:% Y, p; 57 77)7 (34)

along with the initial condition I'pus(y,y,p;&,m) = 1. Here, £ and n are taken to be
arbitrary elements of g" so that Jpus and I'pys take values in g and exp(g), respec-
tively. While Jpus(x, p; €, n) is single-valued in x on ¥, the function I'pus(z, v, p; &, 1) is
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multiple-valued in x,y on ¥,. Therefore, we shall consider (3.4) for z,y € ip, and repre-
sent ¥ by the fundamental domain D illustrated in figure 1, where the points y in the left
and right panels of figure 1 denote the image of y under the natural maps ip > 7 H(p)
and ‘Zp — Xp, respectively. The presence of the pole in = at the point p,

. o [nJ7£J]
Joms(,pi &) = = = dx + regular, (3.5)

implies that, for generic &, 7, the path-ordered exponential I'pys(x,y, p; &, n) is singular
in x at p and has non-trivial monodromy as x € D circles around p. The solution to (3.4)
and the initial condition is given by the path-ordered exponential,

Tpus(z,y,p; &, n) = Pexp/ Jous(t,p;€,m). (3.6)
Yy

3.1.1 Implementing the monodromy conditions

In the remainder of this subsection, and in subsection 3.1.2 below, we will develop a
systematic method to determine special elements £ and 7 of g such that Tpus(z, v, p; &, 1)
specializes for y = p to the desired gauge transformation Upys(x, p) in (3.2).

To proceed, recall from section 1.1 that the monodromy action of an element v €
m(2p,y) on the end-point x € ¥, of the path-ordered exponential I'pyg for arbitrary
elements &, 7 € g" is such that

Tous(y - z,y,p;€,m) = Tous(z, y, p; €,m) wous(v, ¥, p; €, 1), (3.7)

where we set upus(v,y, ;€. n) = Tpous(v - v, y,p; €, n), inspired by the notations of (1.7).
The monodromy conditions of (3.3) are implemented using the following lemma.

Lemma 3.1. For any y # p there exist unique elements é(y,p) = {él (y,p),- - ,éh(y,p)}
and 1(y,p) = {m(y,p), X Nn(y, p)} of gt such that the monodromy of the path-ordered

exponential Tpus(z,y, p; £(y,p), 1(y,p)) is given by

poms (A%, y, p, ,p),(y.p)) =1
MDHS<%K7 Y, p7 ),f](y,p)) = 627”'bK' (38>

Y

Before proceeding to the proof of this lemma we notice that, intuitively, its statement
is justified by the fact that, given by for K = 1,--- , h, there are 2h equations for 2h
unknowns &, 7).
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Proof. By construction, for any 7 the element pupus(v,y,p;&,n) belongs to C{(&,n)),
namely, it is a formal series in 2h non-commutative variables &, n;. The first order
in £ and 7 is obtained by expanding the path-ordered exponential of (3.7) to first or-
der in Jpus, and then retaining from the latter only its part linear in £ and 7, namely
JIpus(x, p; €,n) = wy(2)é) — 7wl (z)nr + O(€n), which gives the following contributions,

pons(AS y, pi&m) =1 — 5 + ™ + O(€, 0, &n),
pons(Bre, v, 0 €,m) = 1 — Q& + 7 m” + O(E23, 12, €n). (3.9)

Combining this with the desired monodromy relations of (3.8) leads to simple first order
relations between &, 71 and b,

¢ —m™ + 00, &n) =0,
QKJgJ - 71-fzKJUJ + 0(527 772> 677) = 27T'ébK7 (310)

whose unique solution é , M) to this order is given by
iy, p) = br + O(b), 'y, p) = 7' + O?). (3.11)

This can be used to prove inductively that there is a unique solution & (y,p),n(y,p) to
all orders whose components belong to C((b)). The fact that these components actually
belong to the subset g, of C{(b)) follows from the fact that both sides of (3.8) belong to
exp(gy), because one can take the logarithm on both sides and inductively deduce that
the components of & (y,p) and 7(y, p) are Lie series. O

3.1.2 Regularity of the gauge transformation

Although for generic &, € g" the differential Jpus(x, p; €,n) has a pole in x at p, which
produces a logarithmic singularity in I'pgg, the lemma below guarantees that, for & =
£(y,p), 7 =1y, p) as in Lemma 3.1, the coefficient [);, 7] of this singularity vanishes, so

that in this case I'pgg is smooth and single-valued on X.

Lemma 3.2. The quantity [’f/],éJ] vanishes when & = é(y,p), i = N(y,p) € g are such
that Tpus(x,y, p; €, 1) satisfies the monodromy conditions (3.8).

Proof. To prove this lemma, we observe that [n 7, &7 | is the residue of Jpus(x, p; £, n) at
the pole at p and consider the fundamental domain D, C S for ¥ depicted in figure 2,
whose boundary curve 9D, is the 4h-gon obtained from the union of the curves 21/, B
and their inverses, with vertices in 7~!(7(y)), as illustrated in figure 2. The curves are
chosen such that a preferred preimage p € S of the point p € ¥ is in the interior of D,.
The closed boundary curve 9D, C ¥~ 7~!(p) is homotopic to a small circle €, around
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the point p (see figure 2), so that the homotopy invariance of the integral defining I'pys
implies the relation'?

FDHS(aDp LY, P, év 77) = FDHS(Q:p “T,Y,D; é? ﬁ) (312)

Using the composition law (1.8) of the map uppns, considered here as a map on m(2,, )
with every other dependence omitted, we evaluate I'pus(0D,, - x,y, p; €, 1) explicitly,

Tous(0D, - ,y, p; €, 1) = ons(2, v, p; €, 1) (3.13)

h
x T rons () oms (B x) poms (A°) ™ poms (Br) ™
K=1

Since é and 7) are the solutions to the monodromy relations of (3.8), the factors of

pous(y) = pous(y,y,p;€,79) take the values upps(AX) = 1 and ppus(Bx) = e2™x,
so that their product on the right side of (3.13) cancels. As a result, the monodromy of

T'pus(z,y, p; 3 1) around the point p is trivial,

Tons (€, - 7,9, 1; €M) = Tous(z, 9, p; €, 7). (3.14)

Finally, the monodromy may also be evaluated via explicit calculation by choosing local
coordinates x in a neighborhood of p, parametrizing the circle €, by polar coordinates
2.(0) — p=ee? for e > 0, and deriving from (3.4) a differential equation in 6,

0 R . .
5 Tpus(2:(0),y,p;&,1) = (i[m, ¢+ 0(6)) Cpus(2:(0),y,p; €, 7). (3.15)

Integrating this equation in 6 from 0 to 27, in the limit ¢ — 0, we obtain,
I‘DHS(Q:p "L, Y, Ps év ﬁ) = 627rimJ7£J} I‘DHS(:% Y, D; év ﬁ) (316)

Combining equations (3.14) and (3.16) imposes the condition e[/ ¢l = 1. Since the Lie
algebra gy, is freely generated this implies that the residue of Jpus(z,p; €, 7n) vanishes,

~

[75,67] =0, (3.17)
and therefore that Jpus(z, p; £, n) is smooth for z € 3. O

It is instructive to verify that the relation [A;,£7] = 0 is obeyed to low orders of &
and 7 in b. To first order, the result readily follows from (3.11). The verification of the
relation to second order is relegated to appendix D.

9Here and elsewhere, dD,, and €, denote also the lifts of dD,, and €, from ¥ ~ 7~ 1(p) to %, which
are uniquely determined by the choice of a preferred preimage of y in 3,,.
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A, Y7

Figure 2: A genus-two Riemann surface ¥, with puncture p can be represented in terms of
a (punctured) fundamental domain D, C Xx7~'(p). The surface ¥, may be reconstructed
from D, by pairwise identifying inverse cycles with one another under the dashed arrows.
The points y; € 3 are related to y € ¥ as detailed in the caption of figure 1. The curve
¢, is homotopic to the boundary curve 9D,

Lemma 3.3. 1. If ®1Ir j(z) is given by equation (3.21) of [17] then one has

1
Op @1y () = f1 g (,p) = o S ke, ) O (3.18)

where the differentials f1"I" ;(x,p) are as in Lemma 2.6. In particular, the right
side in this equation is independent of p.

2. IfXx={\', - N} and = {p1, -+, un} are in g" such that [pr, \'] = 0, then the
differential Jpus(z, p; \, p) is independent of p, and has the expansion

jDHS(xu "5 >\7 M) = wJ(x))‘J - le(l‘),u[ + Zam(l)ll"'lrJ(x)Mh e MITAJ7 (319)

r=1
where M X = [ur, X]| for all X € g.

Proof. 1. We first prove the case r = 1 and then show how the case for arbitrary r > 2
can be derived from the case r = 1 via a recursion relation. Equations (3.19) and (3.21)
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in [17] imply the following relations,
0,07 5( :——/09552 (2) Nwy(2),
0,1 () = __/a G(x,2) @ (2) A 0,021 ;(2), (3.20)

while the analogous equations for f!;(z, p) and fIr ;(x, p) are given in (2.22) and (2.23)
of Lemma 2.6, respectively. Expressing the combination on the right side of (3.18) with
the help of (2.22), we observe that the term proportional to ¢} under the parentheses in
the integrand of (2.22) cancels so that we obtain,

o) =3 P =0, [ G@n(- 5o 0rwm) B2

which is readily seen to coincide with 9,®7;(x), thereby establishing item 1 for the case
r = 1. For the case r > 2, we express the combination on the right side of (3.18) with the
help of (2.23) and obtain the following recursion relation,

1
P ) = SR () 6

= / 0,G(z,t) ( L) A {flz'"ITJ(tP) - %%be“'thK(t’p)}) - (3:22)

This recursion relation is identical to the second line in (3.20), so that the identity for
r = 1 implies the identity for any r. The result is manifestly independent of p, thereby
completing the proof of item 1 of the lemma.?

2. Expressing the coefficients f/I ;(z,p) in (2.20) in terms of 9, ;(z) and
fhelr=1iK (1 p) 6% using (3.18) and setting a = A and b = p we obtain,

j}%{’%)(ff,p; M) = wy(T)A + Z <5x¢11~~~IT-J(x)

1
+Ef11...IT71KK(x7p)(SLI]T)MII R ML«)\J' (323)

Using the assumption [u7, Af] = 0 of the lemma, we see that the effect of the Kronecker
6% factor is to produce the combination 6% M; A/ = [us, A\’] = 0, so that the terms in
1/h cancel. Combining the result with the jé%ls (x,p; A\, ) = —m @’ (x) s part proves the
expression claimed in (3.19). O

20An alternative proof may be obtained by combining formula (30) of [22] with its trace over the
indices I, and J and using the tracelessness of 835(1)11"'17‘(](1:) which follows from the tracelessness of
0, ®! () with the recursion relation in the second line of (3.20).
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Corollary 3.4. For £ = £(y,p) and f) = 7y, p) obeying the monodromy conditions (3.8)
of Lemma 3.1, the differential Jpus(z, p; &, 1) is given by

Tons(,1€,19) = wy(x)§” — 7@’ (x)ir + Z 0, @1 () Hy, - Hi, €. (3.24)

r=1

where H X = [i;, X] for X € g.

Proof. This follows from combining item 2 of Lemma 3.3 and Lemma 3.2. O

Lemma 3.5. If \,u € g" are such that [u;, \'] = 0, then for any y € > and any
K € {1,---,h}, the functions p — ppus(AX,y,p; A\, 1) and p — ppus(Bx,y, p; A, 1)
(defined for p in the complement in % of Aut(X/%) - y) are constant. The maps taking
(y, A\, j1), where y € 3 and \, p € g such that (1, ] = 0, to these constant values will
be denoted (y, \, i) — ppus (A%, y, -5\, 1) and (y, A\, 1) — ponrs(Br, Y, 5 A, ).

Proof. 1t follows from Lemma 3.3 and from the assumption on A, p that Jpus(z, p; A, i)
is independent on p. These functions, being defined as the holonomies of the connection
d, — Jpus(z, p; A, 1) based at y, are therefore also independent of p. O

Corollary 3.6. For any y € %, the maps p — g(y,p), i(y,p) € git, where p € I
Aut(X/%) -y giwen by Lemma 3.1, are constant; we denote by é(y, ), n(y,-) these constant
values. The maps y — £(y,-), H(y,-) are smooth functions of y € %, and therefore well-
defined for y = p; their values at this point satisfy (and are uniquely determined by) the
monodromy conditions

pons (2, p, -1 €, ) ilp, ) = 1,

pons (B, p, -1 €(p, ), Ap,-)) = 2. (3.25)
Proof. The identity [7;(y, p), & (y,p)] = 0 follows from Lemma 3.2. This fact, combined
with Lemma 3.5, enables us to rewrite the system (3.8) as follows

pons (A, y, 1€y, ), iy, p)) = 1,

pons (B, v, 5 £y, p), iy, p)) = ¥, (3.26)

The self-map of g2 given by

(A, 1) = (10gMDHs(9lK,y, -3\, 1), log ppns (B, v, ‘;)\,M)>K " (3.27)

is smooth in y, triangular with respect to the degree filtration of g2, and bijective. The
inverse of this self-map is therefore also smooth in y. The above system implies that the

pair ({(y,p),n(y,p)) is the image of (0,2mib) by this inverse map, which proves at the
same time its independence in p and its smoothness in y. O
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Definition 3.7. Henceforth, the notation &,7 will refer to the elements &(p,- ), H(p,-)
of gt which solve the monodromy conditions (3.25) from Corollary 5.6 (i.e. abandoning
the notation of Lemma 3.2 and Corollary 3.4).

An explicit evaluation of £ and 7 to second order in b is relegated to appendix D.
Unlike the contributions linear in b; spelled out in (3.11) which are independent of the
moduli?' of X, (besides b’ = Y'5py), all the higher order contributions in b to 7j; and &
will be non-trivial functions of the moduli of ¥,,.

3.1.3 Construction of the gauge transformation Upps(z, p)

Finally, we define the gauge transformation Upys(z, p) as follows.

Definition 3.8. For & and 1) as in Definition 3.7, the gauge transformation Upns(z,p) =
Upns(z, p; €,1) is defined to be the specialization Tpys(x,p,p;€,7) of Tpus, namely the
unique solution of the differential equation

~

dy Upns(z,p; €, 1) = Tous(, - &, 1) Upns (x, p; €, 1) (3.28)

with the boundary condition Uppus(p, p; £, n) = 1.

It follows from Lemma 3.2 that the gauge transformation Upus(x,p) is a smooth
function of x,p € ¥. It can be written as a path-ordered exponential,

Z/{DHs(l’,p; g, f]) =P eXp/ jDHS(tv : ;57 ﬁ)> (329)
p

with Jpus(t, - €, 7n) as in (3.24). Notice that Upps(z, p; £, n) obeys the following mon-
odromy conditions equivalent to (3.25) which determine both &7 and 7j; as a Lie series in
bi (see section 3.3 below for details),

Upus(AX - p,p: €,7) =1,
Upns (B - p,p; €, 77) = X%, (3.30)

3.2 Relating the connections d — Jpps and d — Kg

In this subsection we shall show that the gauge transformation Upys(x, p) introduced in
Definition 3.8, combined with a suitable automorphism of the Lie algebra g, relates Jpus
and Kg. The result is summarized in the following theorem.

21 Among the moduli of ¥,,, we include here and elsewhere also the topological datum of a choice of a
preferred preimage y € ¥, which determines the action of the fundamental group m1(X,,y) on 3.
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Theorem 3.9. The flat connections d, — Kg(x,p;a,b) and d, — Jpus(z,p; a, b) are re-
lated by the gauge transformation Upns(z,p) = Upns(x,p; &, 1) defined by (3.29), whose
arguments £, 71 € gl are the uniquely determined solutions of (3.30), so that

dx - ICE(ZL',p; a, b) = Z/{DHS(l’ap; 57 ﬁ)_l <d:c - jDHS(x>p; d> 8)>UDHS(x>p; 57 77) (331)

The elements a,b € g are uniquely determined in terms of a,b, and the moduli of 3, by
the linearity of Kg(x,p;a,b) in a, the linearity of \7&{’%) (z,p;a,b) in a and the following
residue matching relations,

BI = f]], [b], CLI] = [ﬁ], &I — é"] (332)

These conditions for a' and by may be recursively solved as formal series in (the non-
commutative components of) b, the leading order solution being given by a' = a’ + O(b)
and b[ = b[ + O(bQ)

Proof. We begin by noting that the right side of (3.31) has the same monodromy as Kg
given in (2.6) for arbitrary a, Z;, thanks to the monodromy condition on the gauge trans-
formation Uppus(z, p; £, n) of (3.30). Next, requiring the right side of (3.31) to be a form
of type (1,0) in z, as indeed Kg should be, is equivalent to requiring the vanishing on its
(0,1) component, which is equivalent to the following relation

5x UDHS(xvp; év 77) UDHS(xvp; éu ﬁ)_l = jIS%IlS) (l’,p7 dv Z;) (333)

By construction in (3.28), we have

532 Z/{DHS (LU, b; éa 77) Z/{DHS (LU, D; éu ﬁ)_l = jlg(I)JIIS) (l’,p7 éa 77)7 (334)
while we have jé%ls) (2,p;a,b) = —w @ ()b; in view of item 2 of Theorem 2.5. Combining

these results with (3.33) reduces to by = 7y, which gives the first relation in (3.32).

To determine a, we substitute the (1,0) component of (3.28) into (3.31) and use the
linearity of j]ghos) (x,p;a,n) in a, to arrive at the following simplified relation,

Ke(z, p; a,b) = Upns (@, p; €,1) 7" Tiye (2, p; @ — &, 1) Upms (z, p; €, 7). (3.35)

By construction, the right side has the monodromies required on Kg(x,p;a,b) and is
meromorphic in z, because it is a (1,0) form which satisfies the Maurer-Cartan equation
(1.2) (recall that gauge transformations preserve flatness). Moreover, it is clear by con-
struction that its only poles in x are placed at all pre-images 7—!(p) of p on 3, and are
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all simple. In view of Theorem 2.1, to identify the right side with Cg(x, p; a, b) it remains
to match the residues of their poles in x, which leads to the condition

[br,a'] = [, a" — '] (3.36)

and gives the second relation in (3.32). Using the lowest-order solution of the monodromy
conditions for € and ), given in (3.11), reduces the conditions of (3.32) to b; = b; + O(b?)
and [br,a’] = [br,a’] + O(b) whose solution is the one stated in the last line of Theorem
3.9, thereby completing its proof. O

Remark 3.10. Fquation (3.31) of Theorem 3.9 is invariant under right-multiplication
of the gauge transformation by an x-independent element V € exp(g) accompanied by a
conjugation of a and b, while leaving &%, 7, a’ and by invariant,

. 2 a’ = Va' V!
U D& m) = U D8NV, ’ 3.37
pus (T, p; €, 1) pus (T, ;&5 1) {bl S Vb VL ( )
The residue-matching conditions transform covariantly as follows,
br = i, Vibr,a' V" = [y, a" — &1, (3.38)

Linearity of Kg(z,p;a,b) in the generators a' requires restricting to V € exp(gy). In

particular, changing the base point of the path-ordered integral in (8.29) from p to an
arbitrary point p' € X is equivalent to multiplying U(x,p;&,7n) to the right by the x-
independent factor V =U(p', p;,1) 7 € exp(gs).

Remark 3.11. Upon restriction to genus h = 1, the results in Theorem 3.9 and its
proof reproduce the automorphism (a,b) = (a+xb/(Im7),b) and the gauge element (2.42)
mapping the Brown—Levin connection d — Jpus|n=1 to that of Calaque—Enriquez—Etingof
d — Kg|p=1 via (2.43). This can be seen from the fact that any bracket [br, b;] vanishes at
h = 1, which truncates the Lie-series expansion of & and 1) to their first order 7b/(Im 1)
and b, respectively, see (3.11). As a consequence, the gauge transformation (3.29) reduces
to the path-ordered exponential of w(dx—dz)b/(Im 1) obtained from (3.24) which matches
exp{2mib(Imz)/(Im7)} in (2.42).

The first part & = a+7b/(Im 7) of the automorphism at h = 1 follows from comparison
of a and & in (3.35) and recalling the restriction € = wb/(Im7) at genus one. Note that
the genus-one generators correspond to the placement of uppercase and lowercase indices
according to a = a*, b="by as well as € = L, ) = y.
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3.3 Iterative construction relating g and Jpus

In this last subsection, we shall outline an iterative procedure for the explicit construction
of the gauge transformation Upys(z, p) in (3.35) and the automorphism a Ub — a U b to
arbitrary order as a Lie series in b. This procedure will express the Enriquez differentials
g™ I j(x,p) in (2.10) in terms of the DHS differentials f/r ;(z,p) in (2.6) and their
iterated integrals. Calculations to low orders are relegated to appendices D and E.

3.3.1 Solving for é in terms of 7
The starting point is the path-ordered exponential Upys(x, p; £, 7)) given in (3.29), where

~

M) € gi satisfy the relation [fr,£f] = 0. The monodromy conditions of (3.30) may be
solved in two step. First, the A-monodromy conditions are solved for é in terms of 7, as
stated in the lemma below. Second, the B-monodromy conditions may subsequently be
solved for both € and 7 as functions of b, which will be done in subsection 3.3.3 below.

Lemma 3.12. The solution to the monodromy conditions Upus(AX - p, p; é, n) =1 of
(8.30) for & as a function of 7 is unique and given by the following associative series

[e.9]

E =Xy iy, (3.39)

r=1
1. The coefficients X depend on the moduli of ¥ but are independent of the point p.
2. They obey the following shuffle relations (see (B.8), (B.9) for the shuffle product)

XI(Jl"'J’rLUKl"'KS) — O’ T, S Z 1. (340)

3. They are invariant under cyclic permutations of their indices,

XIJ1J2"'JT — XJ1J2“‘JTI. (341)

The proof of the lemma is presented in appendix B. The leading order solution of
(3.11) gives X!/ = 7Y!/ while higher orders will be evaluated in appendices D and E.
3.3.2 Applying the gauge transformation Upys to j](;l’f%

The ¢ dependence of Upus(z, p; £, 7) may be eliminated using the expansion (3.39) of
Lemma 3.12. The resulting gauge transformation may be expanded in an associative
power series in 7 as follows,

Upps (o,0:€,7) " =1+ > T (@, p) iy, - s, (3.42)

r=1
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The path-ordered exponential (3.29) determines the coefficients 77/ (x,p) in terms of
DHS polylogarithms and the coefficients X7/1/» defined in (3.39), see (E.3) for ranks
r = 1,2. The key relation (3.35) is expressed instead in terms of the following Lie series

uDHS (xapv éa ﬁ)_lXuDHS (xapv éa ﬁ) =X+ Z TIlmIT(x>p) IA{Il e ﬁIT'X’ (343)
r=1

where again H; X = [1j;, X] for all X € g.

Applying the gauge transformation Upps(z, p; €,1) to Jpus(x, p; X+€,7) produces a
connection, denoted by K(z,p; X, 7), for an arbitrary X € g",

K, p; X, ) = Upns(x, p; &)~ Tiwe (@, p5 X, ) Upns (z, p; €, ) (3.44)
which is meromorphic in x and whose Lie series in powers of H; may be written as follows,
K(z,p; X, 1) = wy(x) X7 +> Wity (a,p)Hy, -+ H X (3.45)

r=1

The quantities A% ;(x,p) are (1,0)-forms in z and scalars in p, which may be viewed
as intermediate objects between the f-tensors and the g-kernels. They are meromorphic
in x but neither in p nor in the moduli of ¥, and are simply related to the f-tensors, as
may be seen by combining the expansions for Upgs(z, p; %)~ and j&fs)(x,p; X,n),

Wl (e,p) = (e p) + YT @ p) fl (2, p), (3.46)
j=1

where we set f?;(z,p) = wy(x), as usual.

3.3.3 Implementing the automorphism aUb — a U b

To extract the connection Kg from K in (3.44), it remains to implement four operations

1. solving the B-monodromy condition Upus(B - p,p;€,7) = ™K of (3.30), after
having eliminated & using (3.39), for 77 in terms of Lie series in b as follows

ﬁ] - bI“‘Zﬁ]JlmJTKBJl "‘BJTbK, (347)

r=1

where B;X = [b;, X] for all X € g, the coefficients £;7/"K are non-holomorphic
functions of the moduli of ¥, but this dependence is suppressed throughout;

37



2. setting 7j = b so that the last argument of j&fs) equals b;

3. setting X T =al—€£0 in (3.45) and solving the residue matching equation [b7, al] =
[br,a’ —¢'] of (3.36), with the help of the linearity of Kg(z, p;a,b) in a, the linearity
of K(z,p; X,%) in X, and the fact that a,&, 7 € g", to obtain a Lie series in b

dI _ é] _ aI + ZMII:[N.IT.JBI:[ . ‘BLﬂja (3.48)
r=1
which determines the coefficients M*11"Ir ; in terms of the £;71/K in (3.47);

4. identifying
Ke (@, p; a,b) = K(z,p;a — £,b). (3.49)

The residue matching condition provides a convenient relation between H and B ,

I:IJ:BJ—Z./\/lKIl”'ITJI:IKB[1 "'B[T, (350)

r=1
which may be solved iteratively for H as a series in B.
Corollary 3.13. The coefficients L in the Lie series expansion (3.47) of n; may alterna-

tively be expressed in terms of the following associative series expansion

oo

iy =by = ML by by, (3.51)

r=2

where the coefficients MLt ; are given in terms of the coefficients M Ir ; in the ex-
pansion (3.48) of al — &1 by

r—2 r—1
Mﬂj"'l'rJ - Mh---IrJ + Z(_l)f Z Mtz 1y KlMK11j1+1--'1j2K2 N
=1 2<j1<g2<<Jpe
X MGy AR (3.52)

and obey shuffle relations similar to those in (3.40),
M-I Es - r,s > 1. (3.53)

The proof of the corollary is given in appendix C. We reiterate that, even though this
is not exposed in our notation, all of £, MIv-Ir j  MIIr  wwith r > 2 depend non-
holomorphically on p and the moduli of X.
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3.3.4 Expressing the g-differentials in terms of the f-differentials

The explicit relations between the g-differentials and the f-differentials may be obtained
by combining the relation (3.49) with the expansion (3.45),

]CE(QU,p, a, b) = WJ(':C>(&J - éJ) + Z hllm[r](xvp)[:[[l e ﬁl’l‘(&J - gJ) (354)

r=1

and then expressing @ — € in terms of a, b using (3.48), eliminating H in favor of B using
(3.50), and expressing the functions A in terms of the tensors f using (3.46).

Proposition 3.14. Up to rank four, the expressions for g in terms of f are determined
by combining the relations between g and h given to rank four by

gllJ(xap) = hllJ(xvp) + WK(x)MKllJ(p)7
1112 _ 1 IiIs I Ko
g2 (x,p) = h 2 5 (x,p)+ A g (2, p) M™ 25 (p)
—h" 5 (2, p) MP  (p) +wic () MEIE 4 (p),
g (2, p) = BRI (2, p) — M (p)RETS (2, p) — M5 ()R 5 (2, p)

+RI 2 e (2, p) MBS S (p) — M2 1 (p)BE (2, p) M3 5 (p)
H{ ML (p) MPT i (p) — MBED i (p) 0" 5 (2, p)
+h" e (2, p) MEPE () + wie () MEIETS 5 (p), (3.55)

and the relations (3.46) between h and f expanded to rank four

Ay (z,p) = f1y(x,p) + T (2, p)ws(z),
Wit (x,p) = [0 (2, p) + T (@, p) f12 (2, p) + THE (2, plwy (),
WO (2, p) = f125 5 (2, p) + T (2, p) £ (2, p)
+T2 (2, p) £ 5 (2, p) + T3 (2, p)wy (2), (3.56)

resulting, for example, in the lowest two ranks in the formulas of (1.15).

The detailed proof for rank two, including the calculation of the coefficients X', M, T
and L involved in the derivation, will be given in appendix D. The proof for rank three
will be presented in appendix E, while the derivation for rank four is left to the reader.

Further details on the implementation of the procedure outlined in this subsection
may be found in appendix E, including

e a more extensive discussion of the symmetry properties of the coefficients £;71/rK
and M1 in section E.3 (see (3.40), (3.41) and section B.2 for those of X!7/17r);
e the explicit form of the gauge transformation (3.42) in sections E.1 and E.2; and

e the detailed construction of the automorphism in sections E.3 and E.4.
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4 Gauge transforming Kg to Jpus

In this section we give the second explicit construction of a gauge transformation and
of an automorphism of the Lie algebra g that relate the connection d — Kg with the
connection d — Jpus. The construction of the gauge transformation in section 4.1 is
divided into two steps. In the first step we exploit the (0,1) component of Jpgs, which
is purely anti-holomorphic, to reproduce the anti-holomorphic part of d — Jpus. In the
second step, we then exploit the differential g to complete the construction of a gauge
transformation Ug(x, p) which reproduces the desired monodromies. Finally, in section
4.2 we construct a Lie algebra automorphism in the form of an appropriate redefinition
aUb — aUb to match the residue of the gauge transformation of Kg(z, p; @, b) with that
of Jpus(z, p;a,b). Explicit formulas at low degree for the gauge transformation and for
the automorphism are given in section 4.3.

4.1 Construction of the gauge transformation Uy

We now proceed with presenting the two steps of the construction of the gauge transfor-
mation Ug(z, p), which will be combined to define Ug(z, p) in subsection 4.1.3.

4.1.1 Step 1: holomorphicity

Recall from Theorem 2.5 that jé%ls) (z,p;a,b) = —7wbyw’(z). Tt is therefore independent
of the point p and the generators a’ of g, which will be removed from the notation
throughout this section. We define I'_(z, y; b) as the unique solution of

duT (2, y;b) = Tinig (:0) T (w, y;b), (4.1)
such that T'_(y,y;b) = 1. It can be explicitly constructed as a path-ordered exponential,

C(e.yit) = Pexp [ T3 (60) (1.2)
Yy

The role of I'_(z,y;b) for the construction of the gauge transformation Ug(x,p) will be
to recast the anti-holomorphic part of Jpus out of a differential which is purely holomor-
phic in z € ip. This can be intuitively understood as follows: consider the differential
J(x,p;a,b), defined by*

J(z,p;a,b) = T_(z, p; b) " T (x, p; a, b) T (x, p; b). (4.3)

22Note that T'_ (x,y;b) is well-defined also when taking the base-point y = p as will be done in Defini-
tion 4.6 below.
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It follows from its definition that J is a (1, 0)-form. Moreover, one has
F_(Z',p; b)_l(dﬂc - jDHS(zap; a, b)) F_(Z',p; b)
= dy — J (2, p;a,b) + T (z,p;b) ', (,p; b)
—T_(a,p;b) " Tiis (2, pi 0, )T (2, p; ), (4.4)

and since by the definition (4.1) of I'_ the last two terms cancel each other, we obtain
dx - j(Iapa a, b) = I‘—(vaa b)_l (d:c - jDHS(:E>p; a, b)) F_(I7p7 b) (45)

Since gauge transformations preserve flatness, it follows that d, —J (z, p; a, b) is flat which,
combined with the fact that 7 is a (1, 0)-form, implies that J must be purely holomorphic
inx e ip (but not in p and the moduli of the surface), namely I'_(x, p; b) can be used to
gauge transform Jpys to a holomorphic (1,0)-form in = € 3,,.

Let us also consider the monodromy representation (see section 1.1)

p-(v:y;0) =T (v y,y;b), (4.6)

so that one has
L (v 2y;0) =T (2,y;0) p—(7,y;0). (4.7)

It follows from its definition and from the single-valuedness of Jpug that J is multiple-
valued in z, with monodromies given by

J @5z, pra,b) = p (A p;0) T (2, p; a,b) p— (A, p; b),
J(Bk - z,p;a,b) = p_(Br,p;b) " T (2, p;a,b) i (B, p; b). (4.8)

The idea of the second step below will then be to gauge transform g into a holomorphic
(1,0)-form in = € ‘Zp with the same monodromy properties (4.8) as J, because then we
know that by further applying the gauge transformation I'_(z, p; )~ we would obtain a
single-valued smooth differential with the same (0, 1) component as Jpgs, thus matching
two fundamental properties which uniquely characterize Jpys in Theorem 2.5.

4.1.2 Step 2: monodromies

Let us now consider the solution T'g(x,y, p; &, n) to the differential equation

d. Tz, y,p;€,n) = Ke(z,p;&,n) Te(z, y,p;€,1), (4.9)

along with the initial condition I'g(y, y, p; £, ) = 1. As in section 3, £ and n are arbitrary
elements of g”, so that K and Uy take values in g and exp(g), respectively, and we will
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later make a specific choice by requiring I'g(x,y, p;£,n) to satisfy suitable monodromy
properties. The function I'g can be explicitly constructed as the path-ordered integral

Tz, y,p;&,n) =P6Xp/ Ke(t,p; €, n), (4.10)
Y

the integral being taken as usual in the universal cover ‘Zp, and can be seen as a multiple-
valued function of x,y,p € ¥, with logarithmic singularities at * = p and ¥y = p and
holomorphic elsewhere.

Combining the path-concatenation formula (1.6) with the monodromies (2.6) of Kg,
one obtains that, for every K =1,--- ,h,

I‘E(QLK T, Y, P; 57”) = I‘E(LU, Y,D; 57”) ME(Q[K7 Y,D; 5777)7
I‘E(%K T, Y, P; é-v 7]) = 6—27”771( FE(LU, Y, D é-v 7]) 627”771( /’LE(%K7 Y, D, é-v 7])7 (411)

where for v € 71(3,,y) we define ug(v,y,p; €, n) to be the element?® of exp(g) given by

pe(7, Yy, 06 =Te(v-y,v,p; €, n). (4.12)

As will become clearer in the sequel, one might be tempted to impose the condition that
the monodromies of the differential

Le(z, v, p; &) doTe(z, v, p;€,m) = Tr(z,y,p;§,n) ' Ke(z, p; &, n) Te(z,y,p; &, 27) |
4.13
should match the monodromies (4.8) of the differential J defined in (4.3). If the path-
ordered exponentials involved had the same base-point, one would readily obtain the
desired condition by combining (2.6) with (4.11). However, in the absence of further
constraints on £ and 7, the path-ordered exponential in (4.10) diverges for y = p, thereby
invalidating this approach. Instead, we shall seek to specialize £ and 7 to (p and y # p
dependent) elements &(y, p), 7(y, p) of g which satisfy the monodromy conditions adapted
to J at integration base-point y, namely that, for every K =1,--- ,h,

(A", y;b),
(Bk,y:b), (4.14)

e (A5, y,p: €y, p), 7y, p)) = po
¥ g (B, y, 0 E(y, p), 71y, D)) = pi—

with p_ given by (4.6). Since the right sides of these equations are independent of a, the
elements £(y, p) and 7j(y, p) naturally belong to the subspace gl

ZNotice that, since K is multiple-valued, the map ug : m1(p,y) — exp(g) given by setting up(y) =
ue(y,y,p; &, 1) does not preserves multiplication, and is therefore not a homomorphism.
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Lemma 4.1. For any y # p there exists a unique pair of elements &€ = £(y,p), 7 = 71(y,p)
of gl which satisfy (4.14). Their components satisfy the identity

[, €' = 0. (4.15)

Similarly to the case of Lemma 3.1, notice that, intuitively, the first statement of this
lemma is justified by the fact that there are 2h equations for 2h unknowns &, 7.

Proof. The proof of the existence and uniqueness of & = £(y, p) and 7 = 7(y, p) is similar
to the proof of Lemma 3.1, because both sides of the equations (4.14) belong to exp(g),
and one can recursively (on the degree of the Lie monomials in the components of b) prove
that their logarithms, which belong to g, have a unique solution &,7 € gr. For the first
step of the induction, notice that we have, at order one,

log (s (A',y,p:€,7)) = €' + O(€, €], [, [€, 7)),
log (e2mmME(%I> Y, p; ga fl)) = QIJSJ + 27”;77] + O([éa g]’ [777 f]]? [57 77])7 (416)

as well as

log (u— (A, y; b)) = =Y by + O([b, b)),
log (u—(Br,y;b)) = —7Q Y b, + O([b, 1)), (4.17)

which we can equate to find that the components of £, 77 that satisfy (4.14) are constrained
at order one to be

= —aYtb; + O([b, b)), 1 = by + O([b, b]). (4.18)

We are now left with proving that these elements &,7 € g must necessarily satisfy
the condition (4.15). First of all, even though the map ug : m(%,,y) — exp(g) is not a
homomorphism (see footnote 23), one can verify using the path-concatenation property
(1.6) of path-ordered exponentials that, for any y,p € ¥ and any &, € g", the map jig
defined on the generators of m;(X,,y) by setting

fe7) = ue@ y,p;6,m),  ae(Br) = M ug(Br, v, p; €, ) (4.19)

preserves multiplication and is therefore a homomorphism from 7 (X,,y) to exp(gs). It
follows from the first part of the statement that £ and 7 are such that

[LE(Q[I> = M—(Q[I)a fie(B1) = p—(B1). (4.20)
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Because jig is @ homomorphism, one can use the same argument inspired by Cauchy’s
theorem exploited in the proof of Lemma 3.2 to deduce that

H B(B)jin(A) i (By) ! = >l (4.21)

Similarly, the fact that p_ : m (X, y) — exp(gs) is a homomorphism implies that

[Ln-@u-(Brp- @) (B~ = 1. (4.22)

The identity (4.15) then follows from combining equations (4.20), (4.21) and (4.22). O

Remark 4.2. Similar to the case of f(y,p) and 1(y,p) from the first construction in
section 3, the defining equations (4.14) for the elements € = £(y,p) and 71 = 7(y, p) may
in principle lead to a separate dependence on the base-point y of the A- and B-cycles and
on p (as well as on the moduli of ). However, the result (4.15) of Lemma 4.1 will lead
to Corollary 4.4 below showing that & and ) do not depend on their second argument p.

4.1.3 Combining the two steps

The fact that, by Lemma 4.1, the elements £(y, p), 7(y, p) of gl which satisfy (4.14) are
such that [7;(y, p), & (y, p)] = 0 implies that the residue of the pole of the differential
Ke(z,p; €y, p), 7y, p)) at 2 = p vanishes, and therefore that this differential is holomor-
phic on the whole . This implies the following analogue of Corollary 3.4.

Corollary 4.3. For & = £(y, p) and 71 = 7i(y, p) obeying (4.14), Kg(z, pf 1) is indepen-
dent of its second argument p (and henceforth will be denoted {CE( z,-;€,1)), so that it
may depend on p only through the corresponding dependence of & and 7.

Proof. One could set up a proof based on uniqueness arguments of [37], but we shall
instead give a constructive proof here: analogously to Corollary 3.4, one can establish the
independence of Kg(x,p; &, 1) of its second argument p through the expansion

’CE(Iv : a€> ) - CUJ §J + Z wll IT )Hh Hfrgj7 (423)
r=1

where H; = = [y, X] for all X € g. Moreover, the differentials ! ;(x) are the traceless
parts of g/t"Ir ;(x,p) in the following sense

1
—§krgh =K (2, p) (4.24)

wll..,er(:w _ gh”'lrj(x,p) o -
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and independent on p as the notation suggests (see [37] or section 9.1 of [63]). The
manifestly p—independent expansion (4.23) of Ky follows from that in (2.10) since the
factors of 7 produced by the difference /! ;(x) —g"+!* ;(, p) give rise to the vanishing
commutator 87 Hy £/ = [, €'] = 0. O

Thanks to the result of Corollary 4.3, we can deduce also the following corollary, whose
proof is analogous to that of Corollary 3.6, and will therefore be omitted.

Corollary 4.4. The elements &(y,p), 7(y,p) € g determined by Lemma 4.1 are in-
dependent of p. They extend to smooth functions of y € ¥, so that (y,-),7(y,-) are
well-defined elements of g also for y = p which satisfy (and are uniquely determined by)
the monodromy conditions

ME(QlKapa : 7g(p> ' )? ﬁ(p> ' )) = M—(QLKJ?; b)>
627ri77KNE (%Kap> : 7g(p> : )? f](p> : )) = M—(%K7p’ b) (425)

Here again the dot in the argument of a function is meant to stress the independence of
the function on that argument.

Definition 4.5. Henceforth, the notation &,7 will be used for the elements &(p,- ), 7(p, -)
of gt which solve the monodromy conditions (4.25) from Corollary 4.4 (i.e. abandoning
the notation of Lemma 4.1 and Corollary 4.3).

Definition 4.6. For£ and 1 as in Definition 4.5, we define the gauge transformation
Ug(z, p) = Ug(z,p; €,7) as the product of the specialization Tg(x, p, -1 €, 1) of T(x,y, p; €, 1)
from (4.9) with the inverse of I'_(x,p;b), obtained by specializing (4.1) to y = p,

U (,p;€,7) = To(z,p,-; &7 T (z,p;0) " (4.26)
with £, 7, determined as a Lie series in bg by the following equivalent of (4.25),
UE(QLK P, p; 57 f]) = ]-7
Z/{E(%K P, D; 67 f]) = 6_27ri77K' (427)

Note that (4.27) is the direct analogue of the monodromy conditions (3.30) that de-
termine the generators &7, 7y of Uppg in terms of by.

4.2 Relating the connections d — K and d — Jpus

We are left with constructing suitable elements a,b € g that, combined with the pre-
viously constructed gauge transformations, will enable to obtain Jpus(z,p;a,b) out of
Kg(x,p;a,b). As we will see below, a key ingredient is the following statement.
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Lemma 4.7. There is a unique element & of g, linear in a, which satisfies

b, a”] = [7, a7, (4.28)

with 17 as in Lemma 4.1, and aUb — a Un is a Lie automorphism of g.

Proof. This result can be proven along similar lines to the proof of Theorem 3.9 (see the
discussion on the algorithmic determination of @ in section 4.3). However, we will take a
different route: to prove existence, we will construct an automorphism 6 of g and show
that its inverse v satisfies 1(b;) = 7j; and is such that the element a = 1 (a) satisfies the
conditions of the statement. We will conclude the proof by showing the uniqueness of a.

Recall from the proof of Lemma 4.1, equation (4.18), that 7, = by + O([b,b]) for
J =1,--- h, with 77 € g. This implies that the map b — 7 can be inverted and the
elements 77y generate g, so it can be viewed as an automorphism of g;. One can therefore
view each b; as an element of the completed free Lie algebra g; ~ g, generated by 1.
Since elements of g,; can also be viewed as elements of the (associative) algebra C((7)) of

power series in the (non-commutative) variables 7y, - - - ,7,, we can write
by = 77J+Z<711"'1TJ7711"'771M (4.29)
r=2
with ¢tI* ; € C depending on the moduli of ¥,. If we set

shy=Y o by, by € (D), (4.30)
r=2

then since s’; = O(b) one can recursively (on the degree in b) construct elements ¢ ; €
C((b)) that satisfy the relation
tIJ+SIK tKJ = 55, (431)

so that the A x h matrix ¢t with entries ¢! is the inverse of the matrix I + s with entries
6% + s’;. Up to and including the second order in bg, we find

tIJ = 55 — O'IKJbK + (O'IKlLO'LKQJ — O'IKlKQJ)bKleZ + O(bs) (432)

One can extend the usual adjoint action on g given by ad(X)(Y) = [X, Y], with X, Y € g,
to elements X = > 2 X7t Irpy - b; of C((b)) by setting

ad(Z ‘thmhbllbl2 o 'blr) (Y) = ZXHI?”IT [bhv [b127 T [b1r7 Y] o ]] (433)

r=0 r=0
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Notice that, if X is in the first place an element of g, then one has the non-trivial identity,
also known as Dynkin’s lemma,

{Z XTIy, by Y] = ad(Z Xhtpy, - -bzf.) (Y), (4.34)
r=0 r=0

where the right side of the equation is defined by (4.33).

Let us now define a Lie algebra endomorphism 6 of g by setting 8(a’) = ad(t! ;)(a”)
and 0(1;) = by, with ad(t!;)(a”’) as in (4.33). As remarked above, the assignment 7 — b
induces an automorphism of g,, which combined with the invertibility of the matrix (¢! )
implies that 6 is invertible, and is therefore an automorphism of g. Notice that 6 preserves
the degree in the variables a! of the generators (6(a’) has degree one, #(b;) has degree
zero), hence it preserves the degree of every element. In the remainder we will show that,
if we define ¥ to be the automorphism given by the inverse of 6, then v satisfies all the
desired properties.

By construction we immediately obtain 1 (b;) = 7;. Moreover, notice that, since 6
preserves the a-degree, then so does v, and therefore @ = 1)(a) is linear in a, as requested.
We are left to show that eq. (4.28) holds for this a, namely that

U([by, a’]) = [bs,a’]. (4.35)
As a first step, notice that we can combine the formula (4.29) with Dynkin’s lemma
(4.34) to obtain the identity

by, a’] = [y, a”] + Z ot i, -+ i, 0] = ad <77J + Z o i, -ﬁlr) (a”).
r=2
(4.36)

Applying 6(77;) = b; on these identities we find

0([bs,a’]) = ad (bJ + i R T bb) (6(a”))

r=2

= ad(b,)(0(a”)) + ad(z o1 by by - m) (6(a”))

r=2

(9 +ad( 20”2 b, - bfr)(H(aJ))>

(9 )(9(aJ))) — ad(b;) (ad(af, + sfj)(e(aJ)))
(ad (&% + s") (ad(t ) (a K))) - ad(b,)(ad((af,+st)tJK)(aK))
br) (ad(d%)(a”)) = [by,a’]. (4.37)
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Since 1 o § = Id, applying ¥ to the first and the last term of this chain of identities we
obtain [by, a’] = ¥([by, a’]).

Finally, let us prove uniqueness of @ € g" as in the statement. Suppose that @’ € g"
satisfies the same properties, then we would get an element ¢ = @ — & € g" which is linear
in a and such that [, ¢’] = 0, but this is impossible, because the left side would have
degree 1 in a, whereas the right side has degree 0. O

We shall now prove that Ug(x, p; 5 ,7) indeed provides the gauge transformation re-
quired in the relation (1.16) between Kg(z, p; @, b) and Jpus(z, p; a, b), for suitable a, b € g"
constructed out of the elements &,7) € gy from Definition 4.5 and of the element a € g"
from Lemma 4.7. The result is summarized in the following theorem.

Theorem 4.8. The flat connections d, — Jpus(x, p; a,b) and d, — Kg(z, p; @, b) are related
by the gauge transformation Ug(z,p) = Ug(z,p;&, 1) defined by (4.26), whose arguments
£,11 € gl are the uniquely determined solutions of (4.27), namely we have

d:c - jDHS(x>p; a, b) = UE(x>p7 57 77)_1 <d:c - ’CE($7pa da B))UE('Iapa gv f]) (438)
The elements a and b are defined as & = a+& and b = 7, with a € g" as in Lemma 4.7
and £,1 € gl as in Definition 4.5.

Proof. We want to prove that the connection on the right side of (4.38) satisfies the
properties of Theorem 2.5 which uniquely characterize the DHS connection. Recall from
its defining equation (4.26) that Ug(z, p; €, 1) = Tr(z, p, ;& 1) T_ (2, p; b) L.
First of all, by definition of I'g and by the linearity of Kg(z, p; £, n) in its argument &,
one has
FE(I7p> : ;57 ’f/)_l’CE(l’,p, a+ 57 77) I‘E(Iap> 5 ga f]) - FE(x>p7 o) 57 f])_l d:c FE(x>p7 o) 57 f])
= FE(x>p7 "5 57 77)_1 <’CE(vaa a+ 57 77) - ICE(x>p7 ga f])) FE(x>p7 o) 57 f])
= I‘E(x7p7 ) é? 77>_1ICE('T7P7 aa 77) I‘E(x7p7 ) é? 77) (439)
Equation (4.38) is therefore equivalent to proving that

Jous(z, p;a,b) = T_(2,p;b) Tr(z,p, &, 1) " Ke(z, p; a,9) Tz, p, £, %) T (2, p; b) !
—T_(z,p;b) dy T_(, p; b) " (4.40)

Notice that the first term on the right side of (4.40) is a (1, 0)-form, whereas the second
term can be rewritten as (d, T'_(z,p; b)) T_(z, p; b)~!, which by definition of T'_ is equal
to j]%ls) (x,p;a,b). This implies that item 2 of Theorem 2.5 is satisfied. Moreover, putting
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together egs. (2.6), (4.7), (4.11) and (4.25), it follows that the first term on the right side
of (4.40) is single-valued as a differential in x, and by construction of a, together with
the fact that &, 7 € gr, it is linear in a, thus verifying item 3. Finally, item 1 follows by
combining (4.28) with the flatness of the right side of (4.38), which in turn follows from
the flatness of Kg and the fact that gauge transformations preserve flatness. O

As an intermediate step of the proof, we have verified the validity of (4.40), which can
be combined with the identity (d, T'_(x, p;b))T_(z, p; b)~* j(o Y (z,p; a,b) to obtain the
following immediate consequence.

Corollary 4.9. For £,1 € o as in Definition 4.5 and a € g as in Lemma 4.7, one has
j(l 2 (Zlf,p7 a, b) = Z/{E(Ilf,]% 57 ﬁ)_llCE(x>p; C~1,, 77) Z/{E(Zlf,p7 57 77) (441)

This identity can be exploited to compare the expansion coefficients f71r ;(z, p) of
T with the expansion coefficients g/t (z, p) of Kg (see section 4.3).

Remark 4.10. Similar to Remark 3.11, restricting the conjugation (4.41) to genus h = 1
reproduces the gauge transformation (2.42) relating the Brown—Levin and Calaque—Enriquez—
Etingof connections. More specifically, it is convenient to rearrange (2.43) into

Tons (@.p; 0, b)| = Ups(2—p) K. pra, )| _ Upn(z—p) 7", (4.42)

where Upr, (z—p) = exp(Z2LIm(z—p)), and the (1,0)-form part of Upr,(z—p) " d, Upr(z—p)
cancels the admizture of b in the genus-one generator & = a + wb/(Im7). In order to
recover (4.42) from the genus-one instance of (4.41), we specialize the factorized form
Ug(z,p;€,17) " = T_(z,p;b) Tg(x,p, - &,7) 7" of (4.26) to h = 1. Since ¢ = —nb/(Im7)
at genus one, the two factors reduce to T'g(x,p,-;€,7) pe1 = exp (L (z— p)) as well as
T_(z,p;b)|ne1 = exp(— £ (Z—p)), respectively. As a result, we have Ug(z, P&, 7)  Haet =
UpL(z—p). Since the element a = (a) of Lemma 4.7 reduces to a at genus one** this

completes our derivation of (4.42) from the specialization of (4.41) to h = 1.

Note that the genus-one genemtors correspond to the placement of uppercase and low-
ercase indices according to a = a', b="b, and € = &', §) = 0.

24This follows from the fact that the expansion coefficients R¥11Ir ; of a! in (4.48) below with r > 1
are polynomials in coefficients Qr71"7/» of a Lie series (4.44) which obey shuffle relations in their upper
indices Ji,-- -, J, and thereby vanish at genus one.
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4.3 Iterative construction relating Jpus and Kg

As in the case of the first construction of a gauge transformation, we conclude this section
by outlining an algorithmic procedure to iteratively construct the gauge transformation Ug
and the Lie algebra automorphism a U b — a U b. The steps of the procedure are similar
to those spelled out in section 3.3 (and associated appendices), therefore we will give fewer
details and present just a summary, together with the resulting low-degree formulas.

The main challenge is to obtain expressions for the first orders of the series expansion
in the set of generators b of the elements &, 7 € g from Lemma 4.1, as well as the series
expansion of @ € g" from Lemma 4.7 (we recall that @ = @ — &, and b = 7). Notice that,
if we simply want to relate the differentials f/1Ir ;(x, p) and g"¥ ;(x, p), we can bypass
Theorem 4.8 and use instead Corollary 4.9.

4.3.1 Second order of £ and 7 in b

We have already spelled out in the proof of Lemma 4.1 how to obtain the first order of
the solutions £, 77 to the system of equations (4.25), which we repeat here for convenience,

g =—nY"b, +00%), = b+ OW) (4.43)

and which takes the same form with the choice of basepoint y = p fixed in Definition 4.5.
More generally, we need to determine two families of coefficients P!/t/r and Q;/v/r,
dependent on the moduli of ¥, such that

g[ _ Z P1J1---erJ1 L bJT.,
r=1

=Y Q" by by, (4.44)
r=1

and such that the monodromy conditions (4.25) hold, and we already know by (4.43) that
Pl = —7Y17 and Q;7 = §7. Combining the degree-one terms with the first equation in
(4.25), one obtains

Al p 11
PIJ1J2 — _9x% Im(/ wJ1(t1)/ sz(tg))
p p

Al p
+7r/ (@ k()Y E — w2 ()Y )
p
Al p t1
:@'w?{afglym — 01y KN —21m( / w’ () / w‘]z(tg))}, (4.45)
p p
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where the traceless part w” () of the differential ¢71 (¢, p) is defined in (4.24). The
second equality in (4.45) follows from the formula (2.11) for the 2A-cycle integrals of the
g-differentials.

Combining the degree-one terms with the second equation in (4.25) one obtains

Brp t1 1
QM = ¢ Im(/ w (tl)/ w‘]z(tz)) — 7Ti5}h5}]2 — Qe PEIL
» » 271

Br-p
+ 10 QY K — % / (@ k()Y K — o ()Y ), (4.46)
p

which in turn determines Q;/'/? upon substituting (4.45) into (4.46). Similarly, one may
recursively obtain the higher-order terms.

4.3.2 Implementing the automorphism aUb— aUb

As for the computation of the element @ € g" from Lemma 4.7, one can either follow the
steps of the proof of Lemma 4.7, or directly use the condition

(b, a'] = [, a"], (4.47)

together with the Ansatz?® (implied by imposing linearity of a in a)

T

al = iR”l“'“JBh ---By a’, (4.48)
r=0
where as usual By X = [by, X] for all X € g, and R!"*"*; depend on the moduli of 3,.
We will take here the second route. It follows immediately from (4.43) and (4.48) that
[, a') = [br, RTy a”] + O(1?), (4.49)
from which we deduce that (4.47) requires R!; = 6% and therefore, at first order,
a' =a' + O(b). (4.50)
This can in turn be used to compute the second order of the right side of (4.47),

[7717 &I] = [blv al] + [QIJlJQleszv al] + [blv RHlJ[bthLJ“ + O(b3>
- [b17 aI] + QIJ1J2 [bJ1> [bJ27 a'I]] + RIIlJ[b.U [bflv a'JH + O(b3)7 (451)

ZNotice that this is the analogue in this setting of (3.48).
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where in the second equality we made use of Dynkin’s lemma (4.34). Comparing this with
the left side of (4.47) immediately yields

RN, = -9, (4.52)

with Q7' as in (4.46), and one can recursively iterate this procedure to obtain the
coefficient RI1Ir ; in terms of Q;/» and of R!!'"la; with p < r and ¢ < r. In
fact, the computations of section 3.3.3 can be straightforwardly adapted from the case of
(7, @’ — &) = [br, a'] to the present case of [, a!] = [b7, a’]. More specifically, the results
of Corollary 3.13 translate into the following all-order relation between the expansion
coefficients Q ;111 of 1j; and R+ 1a; of al:

r—2 r—1
lel"'lf' — _RII.“IT'J . § (_1)5 § Rh]g---fjlKlRK1]j1+1~“Ij2K2 N
=1 2<j1<g2<<Jpe
K, +I; el .
X oo R+ JZKZRKUMH IT'J. (4‘53)

Note that, as a consequence of the expansion (4.44) and 7; € gy, the coefficients Q ;1
obey shuffle relations (see (B.8), (B.9) for the shuffle product)

ijl"'IT'LUKl"'KS _ O, r, s Z 1’ (454)

which via (4.53) imply similar relations with admixtures of lower-rank terms for the
coefficients RI111a 5 in (4.48).

4.3.3 Expressing the f-differentials in terms of the g-differentials

We are now in the position to apply Corollary 4.9 to relate the f-differentials and the
g-differentials at degree two?®. To do so, first notice that the degree-one computation of
&, 1 is sufficient to obtain the expression

Ug(z,p) =1 —2mi Im(/ wf(t)) by + O(b?). (4.55)

26At degree one, it can easily be checked that Corollary 4.9 yields the identity f;(z,p) = gs(x,p),
which is correct because we have seen that both sides are equal to the normalized holomorphic Abelian
differential w;(z).
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Recall that, if X,Y € g, then exp(X)Y exp(X)™" = exp(ad(X))(Y). The expression

Ug(z, p; €,7) 'Kg(z, p; a, 1) Us(x, p; €, 7) on the right side of (4.41) is therefore equal to
gs(z,p)a’ + (gIJ(:L’,p) + 2mi Im(/ wI(t))gJ(x,p)) [, a’] + O(b*)
P

= wy(z)a’ + <g{](x, p) + 2mi Im( /p ' wl(t))wJ(x) - QJKIwK(SC)) [br, a”] + O (%),
(4.56)

where to pass from the first to the second line we used the known low-degree expressions
for 7j; and a”, as well as the fact that g;(z,p) = w;(x). Corollary 4.9 then implies that

(2, p) = g’ j(x,p) + 2mi Im</m wI(t))wJ(x) + wi (2)RE 5 (p), (4.57)

where we have exposed the p-dependence of the coefficients R%! ;(p) to highlight the
analogy with the relation between f!;(z,p) and ¢’ ;(z, p) in the first line of (1.15): using
the expression 77 (z, p) = —2milm [*w’ by (E.3), we find the relation

R¥ 5 (p) = =M™ 5(p) (4.58)

by matching (4.57) with the first line of (1.15), where the explicit form of the coefficient
MEI;(p) in the expansion (3.48) can be found in (E.23) and (E.27). Note that both sides
of (4.58) additionally depend on the moduli of ¥.
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5 Comparing spaces of higher-genus polylogarithms

To compare the higher-genus polylogarithms that arise from the connections Jpus and Kg,
we begin by comparing their generating series I'y and I'pgg whose expansions are displayed
in (2.16) and (2.31) and given in terms of the path-ordered exponentials of Jpus and Kg,
respectively.

Lemma 5.1. The generating series of higher-genus polylogarithms I'y and I'prs are re-
lated by

Tr(z,y,p; a,b) = Upns(z,p) "' Tprs(@,y, p; &, b) Upns (v, p) (5.1)
as well as by
Tpus(,y, p; a,b) = Up(z,p) "' Tu(z, y,p; 4, b) Us(y, p), (5.2)
with Upys(,p), @, b as in section 3 and Ug(x,p), a,b as in section 4.

Proof. 1t follows from Theorem 3.9 (resp. Theorem 4.8) that both sides of (5.1) (resp.
(5.2)) satisfy the same differential equation with the same initial conditions. O

Recall from section 1.2 that, given a flat connection d — J, one can define a space
H(J) of polylogarithms associated with 7, which is the ring of multiple-valued func-
tions generated over C by all the polylogarithms I'(to; x, y), namely the coefficients of the
path-ordered exponential I'(z, y; c) = Pexp fyx J (t; c), as specified by (1.9). The polylog-
arithms I'(w; z, y) are considered here only as functions of z, namely we fix the Riemann
surface and we fix a choice of integration base-point y € ip, hence the coefficients of
the ring H(J) can be functions of these parameters. As a consequence of the two con-
structions presented in sections 3 and 4, respectively, we are able to deduce the following
precise relation between the spaces of polylogarithms associated with Jpus and Kg.

Theorem 5.2. One has
H(JIpns) = H(Kg) ~H(JIS%§)), (5.3)

where H(J]g?_ils)) denotes the ring of polynomials in the anti-holomorphic iterated integrals
fpm wr, (t1) f;l W, (ta) - - -f;r’l wr, (t.), 7 > 1, with complex coefficients which may depend
on the other fized parameters, such as y or the moduli of ¥,,.

Proof. The generators of H(Jé%ls)) are immediately deduced from the expansion of the
path-ordered exponential of j]g?ils) (2;b) = —wbro! (), see section 4.1.1.
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The inclusion H(Jpus) C H(KE) - ’H(j]g%ls)) follows by combining the identity (5.2)
with the expansions displayed in (2.16) and (2.31), because we recall that Ug(z,p) =
Ti(x, p,p: &, 1) T_(x,p;b)~", with T_(z,p;b) = Pexp fpw «71%15)(15; b) and £, 7 as in Defini-
tion 4.5.

To conclude the proof we need to show the opposite inclusion H(Kg) - ’H(Jé%’ls)) C
H(Ipnus). This follows by combining the inclusion H(Kg) C H(Jpns), which is a con-
sequence of (5.1) and of the fact that Upus(z,p) = Tpus(z,p, p; £, 1) with £,7 as in
Definition 3.7, with the obvious inclusion H(7\%¢) € H(JTpus)- O

If we denote by Hol(¥,) the space of all holomorphic multiple-valued functions on ¥,
then we have the following consequence of Theorem 5.2.

Corollary 5.3. One has
H(Kg) = H(Jpus) N Hol(ip). (5.4)

Proof. The statement follows by combining (5.3) with the fact that Jé%ls) (x;b) is purely
anti-holomorphic in x. O
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A Relating flat connections on trivial bundles

In this appendix we want to show the claim from the introduction that two flat connec-
tions on the trivial principal g-bundle over ¥, are necessarily related by a combination of
an automorphism of g and a gauge transformation, as long as their monodromy represen-
tations satisfy a technical condition.

Let us first fix the notation: for M a smooth real manifold, we denote by E*(M
the space of smooth C-valued differential forms of degree k. We then set E*(3,,g) =
EMX,)®c g.

Proposition A.1. Suppose that J,Jo € E'(X,,9) give rise to two flat connections
d — J; on the trivial principal g-bundle over X,, 1 = 1,2, and suppose that the asso-
ciated monodromy representations py, o : 71 (X,,y) — exp(g) are such that the fam-
ilies ([log(ps(AM))]1, - -+, [log(pi (X)), [log(ps(B1))]i, -~ -, log(ui(Br))1) (where []y is
the projection to the degree-one part of g) fori = 1,2 are bases of the vector space gener-
ated by a Ub. Then there exists 6 € Aut(g) and u € E°(X,,g) such that

Jo = € 9(j1) e " —e" d(e_u)a (A-l)
or equivalently such that
d—Js = €"o(d—0(J))oe™ (A.2)

(equality of linear maps E°(3,,9) — E'(2,,9)), so that the two connections are related
by a combination of the Lie algebra automorphism 6 and the gauge transformation e*.

Proof. By the properties of 11; and ps, and by the freeness of g, there exists an automor-
phism 6 of g such that py = 6 o yuy (equality of group morphisms m(%,,y) — exp(g), ¢
being identified with the induced automorphism of exp(g)). We want now to construct
the function u € E°(3,, g) of the statement. To do so, we decompose u = uy + ug + - - -
according to the degree in g, and construct u; (k > 1) inductively. Assume that & > 1
and that (ug,...,ux_1) have been constructed such that, if we set u—p = uy + - - + ug_1,
one has ux(y) =0 and d— T = e“<t o (d—0(J1)) o e "<k + a>k, where asy, is an element
of EY(3,, 95k), with g>r = [, 9. Let us denote by a; € E'(X,, gx) the class modulo
g~ of this element. -

On the one hand, the monodromy representation of d — 75 is 2. On the other hand,
the monodromy representation of €<t o (d — 0(J;)) o e~ <k is o py (since e'<k(y) = 1),
therefore the monodromy representation of e, o (d —6(J1)) o e” "<k + a>, is a morphism
m(Xp,y) = exp(g), v+ Oopui(y) (1 — fv ag) - exp(gsk). Since pg = 0 o uy, it follows that
for any v € m(X,,y), one has fv ar = 0. But one knows that the complex

0—C— E'%,) = EYZ,) = C*" =0 (A.3)
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is exact, where the second map is the canonical inclusion, the third map is the differential,
and the fourth map is given by a — ([ ..., f%h «). Therefore there exists u;, such
that d(u) = —ay and ug(y) = 0.

Then (uy, ..., ux) is such that ucp41(y) = 0 and

U<k (d — e(jl)) o U<kt

= e 0"k o (d— 0(71)) 0 €< o¢™ modulo (S, g2rr1)

=" o (d— Ty — ax) o €™ modulo E' (%, g>k11)

= (d — Jo — d(wy) — azy) modulo E' (S, g>p+1)

=d— J, modulo E'(3,, g>k41)- (A-4)

We conclude that we can define the function u as the infinite sum ;- ux, where
(ug)g>1 is the inductively defined family. O
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B Proof of Lemma 3.12

This appendix is dedicated to establishing properties of the coefficients X7/1*/r in the
expansion (3.39) of the solution € to the monodromy conditions Upns(p +2AX, p; £, n) =1
of (3.30). Their independence on p and symmetry properties (3.40), (3.41) under permu-
tations of the indices I, Jy,-- -, J, will be proven in sections B.1 and B.2, respectively.

B.1 Proving independence of X on p

Proof. The proof of item 1. of Lemma 3.12, namely the independence of the coefficients X
on the point p, proceeds via a recursive formula for the derivatives 81,5 7 and 51,5 7. These
derivatives are obtained by differentiating the 2-monodromy conditions with respect to p,
while keeping 7 fixed (the derivative with respect to p is obtained analogously),

. AXp . R A
ap UDHS(QLK 2y e ga ﬁ) = / UDHS(QLK P, ta ga ﬁ)j]gh%) (t> ) apga ﬁ) UDHS(t>p; 57 ﬁ)
p
+[~71§1ﬁ%)(p, €M), Upus(AX - p, pi €, 77)]- (B.1)

Here we have used the linearity of \7&{’%) (t,- ;é, 7)) in f to carry out the derivative of
Jpns(t, - 3 7) and to regroup the result in the form j]ghos)(t, . ;8p§, 7). In view of the
monodromy conditions Upps(AX - p, p; £, 1) = 1, the left side of (B.1) vanishes; the com-
mutator on the second line of the right side vanishes for the same reason, and the remaining
equation may be simplified as follows,

AX . p . . R
/ Uns (£, p; & 7)™ TSd (8, 5 008, 7) Us (£, p; €, 7) = 0. (B.2)
p
Both Upps(t, p; £, 7)) and Jé}{’%)(t, . ;0p§, 7)) admit expansions in powers of 7,

UDHS(tvp; év ﬁ>_1XUDHS(t7p; év 77) =X + Z TIlmIT(tvp)[:Ih e ﬂIT‘X7 (B3>

r=1

TS (6,1 0,€,7) = ws()0,67 + Y 011 () Hy, - - H;, 0,87

r=1

Combining the two expansions, we may rearrange the result in terms of a single expansion,
£ oav—1 41,0 A o
Uprs (93 €, 1) Tpig (¢, 5 O, ) Unms (8. p: €. 1)

=wy(t)0,87 + Y 8" (¢, p)Hy, - Hi,0,¢7 (B.4)

r=1
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where the coefficients S are functions of 7, 9;® and w. Substituting the expansion (B.4)
into (B.2) and carrying out the 2A¥ integral of the first term in the expansion gives

0,8+ " 2Kt (p) Hy, - H 0,67 =0, (B.5)
r=1
where Z has been defined by,
AK . p
ZRID () = / " (¢ ). (B.6)
p

Finally, we substitute the derivative 81,5 7 obtained from differentiating the Lie series (3.39)
into (B.5), and identify terms of degree r > 1 in 7,

o0

OpX I ()i - -y, = — Z ZR Ly (p) B XM (p) Hyy -+ Hiig, -y, (BT)

s,t>1
s+t=r

The key observation is that the rank of the tensor 9,X*/*Jt(p) under the sum on the
right side is strictly smaller than the rank of the tensor 9, X%7I*(p) on the left side since
t < r. Since we have already shown that XY™/ = 7Y™/ is independent of p, it follows that
O, XKI-Ir(p) = 0 for all 7 > 1 by induction on r. From implementing the corresponding
argument on the derivative 8135 we conclude analogously that 9,X571I"(p) = 0 for all
r > 1, so that XX7Ir(p) is independent of p for all » > 1. This result can be readily
confirmed at rank three by differentiating the expressions (D.18) or (E.11) for X!/ below
with respect to p and p. O

B.2 Proving the shuffle property and cyclic invariance

The shuffle product is an associative and commutative binary operation on words for
which the empty set () is the neutral element (see footnote 8). For multi-index words
Ji---J.and K --- K, of length r,s > 1, the shuffle product is defined recursively by

Jyooo WKy Kg=Jy(Jy oo Jp WKy - Kg) + Ky (Jy -+ J, WK - K), (B.8)
along with the neutrality of the empty set
JioJowh=J -y, r > 0. (B.9)

On functions of multi-index words, such as X7t/ the shuffle product acts linearly

XJl---JrLLIKl"'Ks — XJl(J2~~~JTLLIK1---KS) _'_XKl(Jl"'JTLLIKz---KS)

Y

e S (B.10)
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Proof. The proof of item 2. of Lemma 3.12, namely the relation (3.40) claiming the van-
ishing of all shuffles X1(/1JritK1Ks) with r s > 1, proceeds as follows. The monodromy
condition Uppus(AX - p, p; é ,7)=1is a group-like element for é .7 € gt so that each order
X1l ooy in the expansion of € in (3.39) must be a Lie polynomial in 7). By Ree’s
theorem [73], this implies the shuffle properties in (3.40).

The proof of item 3. of Lemma 3.12, namely cyclic permutation relation of (3.41),

proceeds by exploiting the vanishing of the commutator [ﬁl,él] established in Lemma
3.2. Given that all r'f-order contributions to ¢! in 7; are bound to separately result in

vanishing commutators, we have

[ﬁfa ﬁhﬁh e ﬁJr'] = ﬁfﬁhﬁh e ﬁJr-(XLther - XJlszJT'I)' (Bll)

Linear independence of different words in 7 then completes the proof. O

0 — XIJIJQ“'J’F

B.3 Several remarks

We conclude this appendix with several remarks upon Lemma 3.12.

e By combining the symmetry properties (3.40) and (3.41), the number of independent
permutations of X172+ in the s indices is (s — 2)!: the cyclic symmetry (3.41) can
be used to move any given index [ (with fixed kK = 1,2,---,s) to the first entry,
and the vanishing shuffles (3.40) imply that only (r — 1)! out of the r! permutations
of X1/tJ2Jrin J; ... J,. are independent.

e As aresult of item 2. of Lemma 3.12, we obtain an explicit formula for the Lie series
associated with the coefficients X. Upon inserting the r*"-order contribution to &7
in 77; into (3.39), the series may be recast in a Lie series form

_ 1X1J1J2"'J'r|:

XIJlJQmJTﬁjlﬁJg"‘ﬁJT == ﬁjl?[ﬁJZ?.'.[ﬁJr717/f/Jr]'.'H' (B'12)

e Finally, at low ranks, the shuffle and cyclicity properties, established in Lemma
3.12, imply the following relations. For rank three, the shuffle relation X!(/WK) =0
implies anti-symmetry in the last two indices X7/% = — X% which, combined with
the cyclic property, makes X7/ totally anti-symmetric,

XK = UK (B.13)

For rank four, X'i/ille with any permutation 4, j, k, [ of 1,2, 3,4 can be expressed in
a basis generated by the functions X71/2/3l4 and x11/21als with coefficients 0 or +1.
For example, the shuffle properties imply

x1hTds _ plJsladi ()

XTI2Is o oyvel(Jy, Ja, J3) = 0. (B.14)
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C Proof of Corollary 3.13

In this appendix, we shall prove that the coefficients M1/ in the expansion (3.51) of
f; in by are explicitly given in terms of the coefficients M1 ; of al — ¢! by (3.52) and
obey shuffle relations (3.53).

Proof. Starting with an Ansatz

H;=DB; - ZMS“LJ(P)BA - B, (C.1)
r=2
for the derivation that implements the adjoint action of 7y, the 7*" order in the expansion
of (3.50) in Bk implies the recursion relation
r—1
MG = M =N Mg M Tt (C.2)
=2
among the coefficients. We shall now prove by induction that this recursion is solved by
(3.52). For r = 2, one readily shows that M2 ; = M52 ; obeys both (C.2) and (3.52).
Assuming that the claim (3.52) holds for » = 2,3, -+, n, and substituting these relations
into the case of (C.2) at r = n+1 yields

n £—2 /—1
M{ul"'ln+lJ = Mt Z Z(_l)s Z M2 T KlMK1[j1+1"'112K2 X e
=2 s=0 2<g1 < <Js

%+ MEs=1 L g1 KSMKSIJ‘S+1---1zKMK1z+1~'1n+1J_ (C.3)

This needs to be lined up with the r = n+1 instance of the claim (3.52),

n—1 n
Miul"'[mq] _ MIl.“In+1J + z :(_1)u § : Mhlz...ljlKlMK1IJ'1+1~..Ij2K2 X oo

u=1 2<51<j2 < <Ju
% .- .MKuflljuflJfl"'IjuKuMKququl"'InJrlJ. (0_4)

We have renamed the summation variable of (3.52) to £ — w and note that the first term
MI-Inst on the right side readily matches that of (C.3). The remaining contributions
in the nested sums of (C.3) can be shown to match those of (C.4) by interchanging the
sums over ¢ and s and then renaming s = u—1,

n—1 n -1
/\/l{ul'“I"“J _ Mh,,.]nﬂj +§ :(_1)u § : § Mhlz...ljlKlMK1IJ’1+1~..Ij2K2 NEEE

u=1 l=u+12<j1<<Ju—1

X o MRzt e Ml A ety (O
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where the last summation index has been renamed from K to K,. As a last step, we re-
. . n /—1 . n

name /£ in (C.5) to j, and rearrange the nested sum » 5, ., Z2§jl<---<ju71 into Z2§j1<---<ju

(the lower bound ¢ > u+1 is consistent with j; > i+1). This recovers the expression (C.4)

for the claim (3.52) at » = n+1 and completes both the inductive step and the inductive

proof of (3.52).

Finally, the shuffle relations (3.53) are necessary by Ree’s theorem to ensure that the
expression (3.51) for 77, is in g as exposed by (3.47). O

62



D Explicit evaluation to low orders

The purpose of this appendix is to illustrate the relation between the connections d — Kg
and d — Jpus, stated in (1.12) of the introduction and proven in Theorem 3.9 of section 3,
by providing a detailed derivation of explicit formulas for the gauge transformation Uppg
and the automorphism a Ub — a U b to lowest and next-to-lowest orders in the generators a
and b. Along the way, we shall produce a number of useful properties of the connections
and their interrelation. We begin by summarizing the approach suitably readied for
practical calculations.

Throughout this appendix, we shall denote the solutions ¢ and 7 of the monodromy
equations (3.30) simply by £ and 7 in order to avoid cluttering.

D.1 Practical summary of the approach

A convenient starting point for the construction of the gauge transformation is obtained
by combining the results of Lemmas 3.1, 3.2 and Corollaries 3.4, 3.6 which guarantee that
Upns(z, p) is given by the path-ordered exponential,

Upns(z,p;€,m) = PeXp/ Jpus(t, -5 €,n). (D.1)
p

Here ¢ and 7 obey [nr,£'] = 0 so that the connection Jpus(t, p; €,n) is independent of p,
smooth in z, and given by the simplified formula,

Tous(t, - &,m) = ws ()" — 7" (t)n + Z "t () Hy, -+ - Hp, &7, (D.2)
r=1

where H; X = [n;, X] for any X € g, the smooth functions &1 ;(t) were defined in
equation (3.21) of [17], and £ and 7 are the unique solutions to the system of monodromy
conditions,

Upns (A" - p,p;€.m) =1,
UDHS(%K D, p; &, 77) = e?mibKc, (D-3)

Solving the above system of equations gives £, and Upyg in terms of b.

D.2 Expansions in words of the alphabet £ Un

To solve the monodromy relations (D.3) for £ and 7 as a function of b (and the moduli of
the surface ¥,), it will be convenient to obtain first the expansion of Upus(z, p; €, 1) in a
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power series in ¢ and 7, subject only to the constraint [n;,&f] = 0. This expansion may
be organized in terms of the integer r which is the sum of the number of letters £ and the
number of letters n (or equivalently the total word length),

Z,{DHS(x,p;ﬁ,n) =1 + ZUT(%P%&U)- (D4)

r=1

We refrain from imposing any relation between £ and n due to the monodromy relations
at this stage which in general do not preserve the total word length. While Upps(z, p; €, 1)
takes values in exp(gy), each term U, (x, p; &, n) takes values in C((b)). The expansion of
(D.4) has the advantage of leading to simple shuffle relations obeyed by the polylogarithms
in their coefficients. It will be convenient to also consider the complementary expansion
of the Lie series upps(z, p; &, n) € g, defined by

Upus(z, p; €,m) = exp {upus(z,p; €, 1) } (D.5)

in a power series in ¢ and 7, whose terms u,.(z, p; £, n) have word length r,
uDHS($7P;€>n) = Zur(l’vp;gﬂﬂ' (D6)
r=1

Being directly in terms of Lie algebra elements, this expansion?” provides a convenient
way to relate the connections of (3.31) which are valued in g, but it has the disadvantage
of obscuring the role of the shuffle relations and lacking a canonical presentation due to
the Jacobi identity. The terms in the two expansions may, of course, be simply related to
one another using (D.5), and the lowest three orders are given by

wi(z,p; €, m) = Us(x,p;€,m),
up(z, p; &) = Us(, p; &, ) — S (m,p; €, m)?,
ug(x,p;&,m) = Us(x, p;&,m) — U (x, p; &, m)Ua(z, p; €, 1)
— LU (z, p; &, U (2, p; €, ) + U (2, p; €, ). (D.7)

These relations allow us to pursue the two expansions in parallel. Since Jpus(z,-;&,n) is
a flat connection, the gauge transformation Upys(x, p; £, 1), and its expansion components
U (x,p;&,m) and u,.(x, p; £, n) are all homotopy invariant.

In the remainder of this appendix, we shall evaluate U; and Us, or equivalently uy
and uy, enforce the monodromy relations (D.3) to second order in b, and then use the
result to obtain &, n and Upys to second order in b.

2TThe expansion is often referred to as the Magnus expansion of the path-ordered exponential, see for
example [74] and references therein.
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D.3 Calculating U, U and ug, u,

The contributions U, Us are obtained by substituting the connection (D.2) into the path-
ordered exponential of (D.1) and using the expansion (D.4),

Uy(z,p;€,n) = /x (ws€” — mw'ny), (D.8)

T t T
Us(,p; €,m) :/ (wi()g" = le(t)nl)/ (wst” = 7mwm?) + [77175‘]]/ 0, (1)
p p p
Using the first two lines of (D.7), we obtain the second order contributions to uy, us,

ul(fc,p;&n):/ (wig! = 77ny),

us(w, p;€,m) = [nr, €] /pm (851){,(15) - gaﬂ(t) /pt Wy + gw(t) /pt @1)
%[5[’5]] /m“’f(t) /ptwﬁ%z[m,m] /:@I(t) /pth, (D.9)

p

where we have used the familiar rearrangement formula underlying shuffle relations

T T T t1 T t2
p p p p p p

to present us in a form that manifestly belongs to g. The contributions u; and the second
line of u, are manifestly homotopy invariant for arbitrary &, 7 € g. Using the relation,

0,0, ;(t) = wr(t) 0 — 7! (t) A wy(t), (D.11)

where x(x) was defined in (2.25), we see that the integrand of the first line of us is a closed
1-form in view of the fact that the term in x cancels thanks to the relation [n;, £] = 0.
Thus, uy is homotopy invariant to this order in £, 7, as expected on general grounds.

D.4 Solving the monodromy relations to order b?

The monodromies of u; are p-independent, and we recover the result of (3.10),

w (AT p,pi &) =5 —m,
w (B -p.p;&n) = Ueré" — Q. (D.12)

Setting these monodromies equal to 0 and 27ibg, respectively, we recover the result of
(3.11) to first order in b, namely n; = by + O(b?) and &; = wb; + O(V?).
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The monodromies of 1y may be simplified by using the fact that we need their evalu-
ation only to second order in £ and 7 so that we are allowed to substitute the first order
relation £ = 7 into uy in (D.9). The result is as follows,

u2(95>P§7T77>77):7T77177J</ 20@1"]()—4%110&/ Im/ ) (D.13)
p

where the square brackets stand for anti-symmetrization of the indices I, .J, such as for
example 71y = %(77177 7 —nynr). We have used this property to recast the commutators
in (D.9) in terms of a product 7;n; in (D.13). The integral of 9,®”] may be simplified
by using the following rearrangement,

20,017 = g, 1 9,01 + 9,011, (D.14)

which is obtained with the help of the complex-conjugation property ®/1(t) = —®U/l(t).
Integrating the total differential d;®!/] and recasting the remainder as a sum of an integral
and its complex conjugate, we obtain the following formula for u, to this order,

us(x,p; ™, n) = TNy (q)”‘”(x) —@[zﬂ(p)+/ A”(t,p)ﬂL/ A”(t,p))- (D.15)
p p
The (1,0)-form \7(t,p) is given by,
t
A (t,p) = 0,057(t) + 2mi W (t) Tm / wl, (D.16)
p

One verifies that A7 (¢, p) is anti-symmetric in its indices I, .J as well as holomorphic in
t in view of the relation (D.11). As a result, the function uy(x,p;7n,n) is homotopy
invariant, as expected. Its monodromies are given by,

w (AN - p,pyn,n) = =X (D) nmy,
u(Bx - p,p;n,m) = —Vr' (p) Ny, (D.17)

where & and ) are given by

AK.p
XKIJ

—T >\”tp+cc

—7 M (t,p) + cec. (D.18)

/%
e
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By construction, X%;; and Vg;; are anti-symmetric in 7,.J and real multiple-valued
harmonic functions of p. Using the properties of A’/ one readily shows that

9, XK1 (p) = 0, XX (p) = 0, (D.19)

i.e. XX17 is independent of p as expected on general grounds by the proof in appendix B.1.

Combining the conditions of (D.3) with (D.5) and the monodromies of u; in (D.12)
and uy in (D.17), we obtain the full monodromy relations to second order,

gK _ 7TT]K _ XKIJnInJ + O(ni’)) — 0’
QKJSJ — WQKJT]J — yKU(p) nmy + O(T]3) = 27TZbK (D20)

Solving the first equation of (D.20) for £ in terms of 7, substituting the result into the
second equation of (D.20), and then solving for n and £ up to second order in b gives the
final result which may be summarized in terms of the following lemma.

Lemma D.1. The solution to the monodromy equations (D.3) is given as follows,

€5 = 7 (XK1 — e MUK (D)) brby + O(),

N = b — M i (p) brby + O(b?), (D.21)
where X517 s independent of p and M7 i (p) is given by
1J _ b Iy _ L1J
M 1e(p) = o= (Vi () = ucr X (D.22)

in terms of X and Y given in (D.18).

Remark D.2. An alternative way to express the first line in (D.21) is as follows,

£ = by — %(nyJ(p) — QKLXW)bIbJ + 0O, (D.23)

D.5 Matching residues and relating the connections

We are now ready to state and prove the main proposition of this appendix.

Proposition D.3. The relation between the connections d — Kg and d — Jprs which, to
the lowest and next-to-lowest orders in b are given by

]CE(x7p7 a, b) = (,UJ(I)CLJ + gIJ<x7p)[bI7 CLJ] + O(ab2)7
T8N, pya, b) = wy(x)a’ + f1y(x, p)[br, a’] + O(ab?), (D.24)
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1s determined by the automorphism a Ub — aU b of g,

K — gl e 4 MKIJ(p)[b[,CLJ] + O(ab*,b%),

i
bi = b — MYk (p)brby + O(b?), (D.25)

and the following relation between the forms f!; and g,
I gl , Cor KI
g j(x,p) = fs(x,p) — 2miw,(x) Im/ w' 4+ wg ()M 5(p). (D.26)
p

The coefficients X and M are given by the first equation in (D.18) as well as (D.22)
and £ is given in terms of b to this order in (D.21).

Proof. To prove the proposition, we begin by using the first equation in (3.32) to establish
by = 7, which by the second line in (D.21) readily proves the second equation in (D.25).
To prove the first equation in (D.25), we substitute the expression for 1, obtained in the
second line of (D.21) to second order in b, into the residue matching condition (3.36),

[b[{, aK] = [bK - MUK(p) b]bJ, &K — §K} + O(bs) (D27)

Since the Lie algebra g is freely generated, the unique solution to first order in a and
zeroth order in b is given by a® = a® + O(b). To first order in b we obtain uniquely,

af* — &% =a + M* 5 (p)[bs, a”] + OB, (D.28)

which establishes the first line in (D.25). Finally, using the relation (3.35) to first order
in b by expanding Upys accordingly, we obtain the condition

Ki(z,p;a,b) = Tiue (,p;a — €,1) — [ul(x,p; &), T (@, pya— & n)| + O1%),(D.29)

where Kg(x,p;a,b) is given in the first line of (D.24), uy(z,p;&,n) can be found in the
first line of (D.9), and j]gh%) (x,p;a — &,n) is given by,

TSt (x,p;a — €,1) = wie(2)(@X — €5) + fLy(x, ), a” — €71+ OB?).  (D.30)

Using the relation by = nr and the solution of (D.28) for a!, we readily obtain the relation
(D.26), thereby completing the proof of Proposition D.3.
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D.6 Evaluation of X%/ and M/

To evaluate the coefficients X*!7 and Vg’ and thus M!’x in Lemma D.1 we begin by
simplifying the integral of the differential form A;; defined in (D.16). To do so, we recall
the expression for 9;®7 ;(t), raise the index J and anti-symmetrize in the indices I, J,

O, @ (1) = —= / oGt ) (@ () Aw () — @ (t) A wf(t’)). (D.31)
The derivative of G(t,t') may be expressed in terms of the prime form E(z,y),
t
0G(t,t'") = -0, In E(t,t") — 0yy(t) — 2mi wk (t) Im / Wk, (D.32)
t/

where the expression for 7(¢) may be found in [19], but will not be needed here as its
contribution is y-independent and integrates to zero against @’ (') Aw?’ (') —w” (') Aw! (¥').
To proceed, we denote the imaginary part of the Abelian integral on X, by

= Im / w'. (D.33)
p

One verifies that ¢! has vanishing 2-monodromies while its B-monodromies are given by
¢ (B - 1) = ¢! (z) + 6k. We also have the following relation,

() AW () — @ () AW () = 4dot(t) A dp? (). (D.34)

Expressing (D.31) in terms of ¢; we have

1J _ . E(tvt/) Ky e J (4!
0,017 (¢) —/Z<18tln Bt p) + 2w ()™ (¢ )>d¢ (t") A do? (1), (D.35)

where we have used the fact that the contributions inside the parentheses proportional
to ¢X(t) and 9;In E(t,p) integrate to zero against d¢! A d¢’. The term in ;In E(t, p)
has been included to render the integrand monodromy free in ¢, while its monodromy
in ¢ integrates to zero against d¢’ A d¢’. Using the fact that the first term inside the
parentheses has vanishing 2-periods in ¢ and that the ®B-periods are given by

E(t,t) , /t’
Oy In = 2 wgk(t), D.36
2 E(tp) p ) (D.36)

we evaluate the periods of 9,7 as follows,

o, = ox / oK dot A de?,
)

AK

1 = 2”/ (‘ / et %&(t”) de' () Adg’(#).  (D.37)
Br Py D
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As a result, we find
XKIJ:_47T2/¢Kd¢I/\d¢J_'_2ﬂ_2% (¢Jd¢l—¢ld¢J>,
b AK

Y (p) = —4r® /

by

(—Re / wi + Re (Q)KL¢L(t’)> do' (t') A do” (1),
B p
or? / (¢J Aot — o d¢J). (D.38)

Both expressions are manifestly real-valued and antisymmetric in I and J as expected on
general grounds. The combination M’/ (p) then follows from (D.22) and is given by

tl
MY i (p) = —2mi / do' (t') A de” (t) / Wk (D.39)
b
Bg-p ’
i / (qu Ao’ — d¢J) i Qe ]{ (qu Ao’ — d¢J).
p AL
For later use, we record the following simplification

$ (- o'as) =2 o aof (D.40)

AK AK

in view of the fact that the integrand has vanishing 2(-monodromies, so that d(¢¢”) has
vanishing 2-period. Note, however, that no such simplification applies to the correspond-
ing integral over the By cycles since ¢! does have non-vanishing B-monodromy. For the
same reason the integrals over the B cycles depend on the base-point of the cycle, which
is why we have left the base point p exposed in the above formulas for B periods.

D.7 Verifying the cyclic property of A x

The relation [ng, 5] = 0 requires the following identity on X,
X5 by, [br,by]] = 0. (D.41)

Since the algebra g, is freely generated, the only relation the commutators can satisfy is
the Jacobi identity. As a result, the above relation implies the following condition on X,

A)(‘K'IJ — XJKI — XIJK (D42)
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which is proven on general grounds in appendix B.2. Here, we shall verify that this
condition holds by explicit calculation. We regroup the difference as follows,

XIKI _ yKIJ _ —47?2{ / d(qu ¢Kd¢>1> + 7{ oM do! + b ¢’ d¢1} (D.43)
> 27 UK
by using the simplifications of (D.40) to convert ¢! dp® — —¢ de! and ¢ dp? —

—¢7 d¢" in the integrand of A’ and AKX, respectively. The first term may be recast
as a line integral using Stokes’s theorem,

[ a(e'okael) = § 6okasr, (D.44)
D oD

which in turn may be evaluated using the canonical decomposition of the boundary 0D
of the fundamental domain depicted in figure 2,

h ALy
J K T J(NAK (2 AP . I
RESTEDS A G R LA LA I
h ALy
- _ 5J¢K_'_5K¢J_'_5J5K d¢1
z/ (516" + 58" + o155

— _f;w oK de! — 72}( o7 do!. (D.45)

The last term in the integrand on the second line above cancels by itself and the remaining
integrals cancel the second and third integrals on the right side of (D.43), thus confirming
the identity (D.42).
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E Explicit construction of Enriquez kernels

This appendix describes the explicit construction of the Enriquez kernels g/ ;(x, p) in
(2.10) in terms of the f-tensors in Lemma 2.6, Abelian differentials as well as their iterated
integrals. In particular, we spell out detailed examples and intermediate results in the
procedure of section 3.3 including the coefficients of the contributing series expansions.

Throughout this appendix, we shall denote the solutions ¢ and 7 of the monodromy
equations (3.30) simply by ¢ and 7 in order to avoid cluttering.

E.1 Expanding the gauge transformation

Before determining the explicit form of the X7/t/r coefficients in the expansion (3.39)
of ¢!, it is convenient to first compute the expansion of the path-ordered exponential
Upns(z,p;€,m)~ " in (3.42) for generic z. By the vanishing of [n;, &!] and Corollary 3.4,
the DHS polylogarithms in this expansion boil down to iterated integrals involving the
d{ -traceless and p-independent parts 9,9 ;(x) of the f/Ir;(x,p)-tensors in (3.18).
Homotopy invariance at the subleading order in 7; relies on the combination of terms in

t1

w0l (ty) — mul(tl)/

p

t1

T4 (z, p) = / ' (&(I)”(t)—8t<1>”(t)+7rwj(t1) / w‘](tg)) (E.1)

p p

with ®17(t) = & ()Y X7 and manifest antisymmetry T''//) (x, p) = —T'/I)(z,p). The ex-
pression (E.1) enters Upys(z, p; €,17)~! in combination with the following iterated Abelian
integrals realized as DHS polylogarithms associated with ro = a’* - - - a" in (2.31)

Curaen (o) = [ nt) [ " wn(ts) / ) (£2)

In slight abuse of notation, we shall write I'/172/r (x, p) for their contraction with Y71/1 ...
YIrJr (which does not refer to the DHS polylogarithms associated with to = by, ---b; )
and I'/1/2Jr(z, p) for the complex conjugates of these contractions.

With these prerequisites in place, we can write the coefficients 77 Ir (x, p) at the order
r < 2 of the expansion (3.42) of Upys(z, p; €,n)~! in the following form:

T'(z,p) = =(T(x,p) = T'(x,p)), (E.3)
T (z,p) = = X" TM (2, p) — 7T (2, p)
+ 72 (07 (2, p) = T (2, p)T (2, p) + T/ (x, p)).

72



Together with the results for the coefficients X7 in section E.2 below, the expressions
(E.3) determine all instances of the key ingredients (3.46) at r < 2, e.g.

W (@, p) = f1o(z,p) + T (2, p)ws (), (E4)
Wy (w,p) = f12 (2, p) + T (@, p) f2 (2 p) + TH (2, p)ws(2).

This is an important step towards expressing the Enriquez kernels g ;(x,p) at r < 2
in terms of f-tensors, Abelian differentials and DHS polylogarithms.

E.2 Determining the explicit form of the X-coefficients

We now proceed to determining the X'-coefficients from the 2l-monodromy condition (3.30)
which translates into the vanishing

Th @b pp) =0, r>1 (E.5)

of the coefficients in the expansion (3.43) at the special value z = p+2(X. By their explicit
form (E.3) at r < 2 and for generic endpoints, the solution to (E.5) will express X’/ in
terms of A-periods of iterated integrals of Abelian differentials (E.2) and antisymmetric
kernels in (E.1). In view of the similar B periods to be encountered in section E.4 below,
we introduce the shorthand notation

o I (p)y = TN (AL - p, p)
B\ (p) =T (B - p,p) (E.6)

and more generally write the special values x = 2AY-p or z = B} -p of the iterated Abelian
integrals in (E.2) as follows

CYLhmIT- (p) =T1, (QLL “p,Dp)
Brin.1, () =T1..1,(BL - p,p) (E.7)

with the usual raising of indices via Y/ to ollftIr(p) = ThIn(AL . p p). While the
periods (2.3) lead to simple, p-independent expressions at r = 1,

ofp =067, Bri=u (E.8)

equivalent to o = Y1 | 3,1 = YIEQu; generic instances of (E.7) depend non-trivially
on p as exemplified by d,a%r;(p) = wi(p)d% — ws(p)d¥. The shuffle relations (1.10)
straightforwardly propagate to (see (B.8) and (B.9) for )

o' e tywn 0. (p) = &' g (p) @ g, ()
5L|(Il~~~IT-LL|J1~~~J5)(p) = BL\hmIT. (p) 5L|J1~~J5 (p) (E9)
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and reduce certain permutation sums of (E.7) in the I; to combinations of (E.8). For
instance, the fact that both of af;;(p) + al;;(p) and its complex conjugate simplify to
6E6% implies the antisymmetry of Im a®7;(p) = —Im ol ;7 (p).

In this setting, we can express the contribution of 777 (z, p) in (E.3) to the 2-monodromy

of Upns(z,p;§,n)~" as

TIJ(QlL ‘p’p) — _XLIJ . 7rozL<U>(p) + 7T2(aL|JI(p) . YLJyLI + QL‘J[(p))‘ (ElO)

Hence, the monodromy condition 77/(AL - p, p) = 0 determines

2
XHT = D () %(a””(p) +alI(p) — (I & ), (E.11)
where we have rewritten o/ (p) = (a1 (p) — o1 (p) + YETYET) and similarly for its
complex conjugate to expose the antisymmetry X/ = —X%/I Even though individual
terms on the right side of (E.11) depend on p, one can verify that 9,X*7 = 9, X% =0
by combining the derivatives in (E.25) below. Note that both of a*/)(p) and 8,7 (p)
in (E.6) are antisymmetric in I, J since I/} (z, p) is.
Inserting the result (E.11) for X%/ into the expressions (E.3) makes the intermediate
objects h1tI ;(z, p) in (3.46) for the relations between Enriquez kernels g% ;(x, p) and
f-tensors fully explicit for r < 2.

E.3 Implementing the automorphism

The next step is to express the Enriquez kernels ¢g’'*;(z,p) in terms of the above
hfiIr ;(z,p) and the expansion coefficients £;717/"K(p) and M1 ;(p) in (3.47) and
(3.48) that implement the automorphism a Ub — @ U b. This is most conveniently done
after eliminating one of the infinite families of coefficients M or £ in terms of the other
by exploiting the matching (3.36) of residues in the connections (3.35).

The order-by-order computations amount to inserting the expansions (3.47) and (3.48)
into [br,al] = [n7,a’ — &'] and bringing all the nested brackets into the standard form
By, - - By, a’ by exhaustive use of Jacobi identities, for instance [[b7, bs], '] = [br, [bs, a®]]
—[by, [br, a™]]. Matching the coefficients of By, - -+ Br.a’ in (3.36) then implies identities
such as

L't — 5 =M% (E.12)
£[JKP - £[JPK - £1PJK—|—£1PKJ — MJKQMQPI - MJKP[.

Their generalization to higher order is most conveniently obtained by iterative use of (3.50)
and leads to the closed formula (3.52) for the coefficients M1 ;(p) of the reorganized
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expansion (3.51) of n;. By the shuffle symmetries
LK R — g 0 s > 1 (E.13)
following from Ree’s theorem and 7; € g, we have
rLpT = — M > 2 (E.14)
where (E.12) for instance identifies M2 = MT52 ;- and
MR o= phels o A2 A B (E.15)

With the relations in (E.12), one can now express the Enriquez kernels ¢t ;(z, p)
solely in terms of the expansion coefficients h*Ir;(x,p) in (3.46) and the quantities
M-I 4 (p): Inserting all of (3.47), (3.48) and (E.12) into (3.35) and comparing the
coefficients of By, - - - By, a’ determines

g s(x,p) = h' y(z,p) + wi (2)M™ ;(p),
I112 _ il I Ko
g2 5(x,p) = b2 5 (z,p) + A" g (2, p) MT 2 5 (p)
—hE (2, p) M2 e (p) 4 wie () MEDL2 4 (p). (E.16)

Now the only missing piece of information in the above relations between gt

h'iIr 1 is the explicit form of the M7&1 K+ which will be determined next.

7 and

E.4 Explicit form of the automorphism and Enriquez kernels

The last step in our explicit construction of the Enriquez kernels is the extraction of the
coefficients M7E1Kr 1 in the automorphism (3.48) from the B-monodromy condition in
(3.30). The latter is particularly suitable for order-by-order computations when rewritten
in the form

6—27T’ibK — Z/IDHS (%K X p’p7 5’ n)_l _ 1 + Z ,)7]1 N nIT.ThMIT(%K . p’p) (El?)
r=1

that incorporates the expansion in (3.43) with explicit results for its coefficients 771
in (E.3). The desired M”55 are determined by lining up the Lie-algebra valued
expansion variables n; and bk on the two sides of (E.17) which can be done in a variety
of ways. We found it convenient to invert the expansion of 7; in (3.51) while eliminating
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the coefficients My, in favor of M using (3.52), e.g.?®

by =y + nnnpM™2 (p)
+nrnenn (MR 5 (p) + MP2 () MED (D)) + O(n?), (E.18)

where the coefficient of n;,ny,n;, is another shuffle-symmetric combination different from
MIEIs 1 (p) in (E.15). After inserting the expansion (E.18) into the exponentials of (E.17),

T = 1 = 2min S + 0y, (5 (2m0) 08" — 2miM I ke (p)) (E.19)

iy (—5(2mi) 0 2 + 5 (2mi) 2 MB e(p) 0y + (27”)251%213 (p)
— 27 [MhIzIsK(p) o MIQIS MLII )

e

p)+o

we can equate the unknown M-dependent coefficients of 7y, - - - n;, with the computable
quantities 77" (p + B, p). Among the resulting conditions at rank r < 3,

T8y - p,p) = l(27?@')25[112 —2mi M2 (p),
Thils (98, . p p) = (27?@)3511]213 + 12mi) 2 MP P g (p) 532 + 3(2mi) 25 M3 e (p)

+ 2mM1213N( )MNflK(p) — 2miMBT2Ts (),

the first line is trivially satisfied since the leading order b; = n; + O(n?) in the expansions
(3.47) and (E.18) already takes our computations in (3.10) into account. The second line
of (E.20) in turn can be solved for M/ (p) in terms of the following 9B-periods

T (B - p.p) = —QucrX™ — 78" (p) (E.21)

+ 72 [Br” (p) = Y Qi Y Qs + BT (p)]
obtained from (E.3) at x = Bk - p, with X given by the -periods (E.11), and the «,
notation introduced in (E.6) as well as (E.7). One can view the second line of (E.20) as

providing both an expression for the unknown coefficient M/ (p) and as a crosscheck
of the B-periods (E.21): the antisymmetry of the solution

MY ie(p) = im0} + T (Bic - p.p) (B:22)

Z8The coefficient of ny, nr,nr,n1, at the next order of the expansion (E.18) of b; is given by MI1l2lla ;4
M11[2KJMI3I4K 4 MIIK,]MI2ISI4K + M11K14JMI213K 4 MIIK,]MI2LKMISI4L and does not line up
with a closed formula where the number of terms doubles at each order as in the coefficients (3.52) of the
inverse expansion of n; in terms of b, - - - br,..
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in [ <> J derived from (E.12) is not manifest term by term and relies on finding the
symmetric part T/ (B -p,p) + T (Bk -p,p) = (2mi)?5%/ in (E.21). This can be verified
using the consequence S 15(p) + Br|s1(p) = Qx1k s of the shuffle relations (E.9), so the
desired coefficient can be alternatively expressed as the antisymmetric part

1

AT
= (QKRQR<IJ> (p) — A" (p))

T _
T (5}(‘”(17) — Qura 1 (p) + YIEQR Y79 Qgk

+ BT (p) — Qucra™7(p) — (1 4 7)),

Mk (p) [T (B -p.p) = T (Bx - p,p)] (E.23)

where the antisymmetrization prescription —(I <+ J) applies to the last two lines.

One can similarly solve the third equation of (E.20) for M2 (p) in terms of B-
monodromies 7717253 (B - p, p) and lower-order expressions. Again, the shuffle symmetry
of MN1s - (p)y — MBI (p) MET i (p) will not be obvious from the resulting expression
but can be verified using a sequence of shuffle relations (E.9) of the (- and B periods and
their special cases (E.8). An alternative approach towards M2 (p) is to project the
third equation of (E.20) to those symmetry components with respect to the permutation
group of I; that eliminate all the admixtures of Kronecker deltas as done in (E.23).

E.5 Summary and further simplifications

The explicit form of low rank Enriquez kernels may be obtained by combining (E.4) with
(E.16), resulting in equation (1.15) of the Introduction. The simplest components 77 (z, p)
and T12(x,p) of the gauge transformation are explicitly available by combining (E.3)
with the expression (E.11) for X%/, The coefficients MEIr ;(p) of the automorphism
are explicitly given in (E.23) for r = 1 and implicitly given in (E.20) for r = 2, resulting
from the second- and third-order expansion of Upus(Bx - p, p; €, )1, respectively.

The analogous expressions for gt/ ;(x,p) at higher order r > 3 require the con-
tributions to the automorphism up to and including the rank of M&1-Ir ;(p) which is
computed from expansions of Upns(Bx -p,p;{,n)_l to the (r + 1) order in n; or b;.
With the expression for M ;(p) in (E.23), we have the fully explicit form of the Enriquez
kernel g’;(z,p), and the solution ME%2 ;(p) of the last equation in (E.20) completely

fixes g"2 ;(z, p) in (1.15).

However, we have not yet attempted an exhaustive simplification of the 2- and 98B-
periods appearing in the expressions for M%7 ;(p) due to the procedure in section 3.3.

7



The expression (E.23) for M%7 ;(p) admits a more minimal form that can be anticipated
from the differential equations

(67w (p) — 65w’ (0)), (E.24)

which follow from

ﬁ(wJ(p)YKI — wl(p)YKJ), (E.25)
0, (p) = 7 (@7 ()Y X! — &' (p)Y ™),

8pOéK|IJ(p) _ p)YJK—wJ(p)YIK,
as well as
5p5K<”> (p) = W(WJ(p)YIR - WI(P)YJR) QRKa (E.26)
B " (p) = 7 (@ ()Y — &' (p)YF) Qg

Matching the p- and p-derivatives of (E.24) with those of 27i Im ax !’ (p), we establish
M ie(p) = 2mi Tm ag™ (p) + 277 g, (B.27)

where 27y = —Z/1 is independent on p but may depend non-meromorphically on the
moduli of . Hence, the final form of the first non-trivial Enriquez kernel to be provided
in this work is given by

g's(x,p) = f15(x,p) — 2mi wy(x)Im /le + wi () <2m' Im ;7 (p) + ZKIJ>, (E.28)

which follows from (1.15) and (E.27). While meromorphicity in z is a consequence of
the absence of (0,1)-form components in (3.31), meromorphicity of g’ ;(z,p) in p relies
on the interplay of the first three terms in (E.28) and is guaranteed by the uniqueness of
the Enriquez kernels based on the defining properties of Kg. We leave obtaining a direct
derivation of (E.27), an explicit formula for Z7x, and the generalizations to simplify
higher-rank contributions MX7--Ir ;(p) to the automorphism to future work.
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