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Abstract—We consider a decentralized optimization problem
for networks affected by communication delays. Examples of
such networks include collaborative machine learning, sensor
networks, and multi-agent systems. To mimic communication
delays, we add virtual non-computing nodes to the network,
resulting in directed graphs. This motivates investigating de-
centralized optimization solutions on directed graphs. Existing
solutions assume nodes know their out-degrees, resulting in
limited applicability. To overcome this limitation, we introduce
a novel gossip-based algorithm, called DT-GO, that does not
need to know the out-degrees. The algorithm is applicable in
general directed networks, for example networks with delays
or limited acknowledgment capabilities. We derive convergence
rates for both convex and non-convex objectives, showing that
our algorithm achieves the same complexity order as centralized
Stochastic Gradient Descent. In other words, the effects of the
graph topology and delays are confined to higher-order terms.
Additionally, we extend our analysis to accommodate time-
varying network topologies. Numerical simulations are provided
to support our theoretical findings.

Index Terms—Decentralized optimization, gossip algorithms,
networks with delays, collaborative machine learning, non-convex
optimization.

I. INTRODUCTION

In many applications, such as decentralized estimation in
sensor networks, collaborative machine learning, or decen-
tralized coordination of multi-agent systems, the goal is to
minimize a global objective function that is the average of
local objective functions. Formally, we model the network as
a graph G, including N nodes, representing sensors, agents,
etc., and the corresponding edges, representing communication
links – see Fig. 1 for an example. We start with a time-invariant
network, where the graph edges are fixed throughout time,
and extend the results to time-varying networks in Section IV.
To formalize the objective functions, we define each node’s
local objective function fn : Rd → R, as the expectation of
a stochastic cost function fn(x) := Eξn∼Dn

[Fn(x, ξn)]. Here,
ξn samples the local distribution Dn, which can vary from
node to node. The nodes collaborate to find a common model
x ∈ Rd that minimizes a global objective function f of the
form

f(x) :=
1

N

N∑
n=1

fn(x). (1)

Throughout the paper, we use the terms “cost” and “objective”
functions interchangeably.
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Fig. 1. A directed communication graph example, with N = 5.

A. Previous work

There exist multiple techniques to minimize Eq. (1). To the
best of our knowledge, the first work studying this problem
is [2]. Gossip algorithms [3], [4], suggested for finding a
common solution among nodes, borrow ideas from mixing in
Markov chains to allow averaging over graphs. A combination
of gradient descent with gossip steps [5] has been proposed to
minimize Eq. (1). In addition, problem-specific methods such
as alternating direction method of multipliers (ADMM) [6]
are used as well. Most research efforts consider undirected
communication graphs, in various settings like asynchronous
communications [7], time-varying graphs [8], [9], or quantized
communications [10]–[12]. The case where G is directed is
studied less. In most existing algorithms, nodes must know
their out-degree to achieve consensus [13]. The knowledge of
the out-degree is exploited in a family of algorithms known as
Push-Sum methods [5], [14]. These have also been extended
to alleviate several real-world limitations of communication
networks, such as adding quantization [10], and asynchronous
communications [15].

For excellent surveys on decentralized optimization, see [13]
for synchronous methods, and [16] for asynchronous methods.

After the publication of [1], the authors were made aware
of prior work in decentralized optimization that proposes
algorithms which do not require out-degree knowledge. A
comparison is presented in Table I.

B. Contributions

Existing algorithms for directed decentralized optimization
assume that nodes in the network know their out-degree. In this
paper, we propose a gossip-based decentralized optimization
solution for which nodes do not need to know their out-
degree to achieve convergence. Such a property is desired in
many scenarios which arise naturally. For example, consider
networks with directed links established without a handshake,
i.e, transmitters send messages and the receivers do not need
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TABLE I
RELATED WORK COMPARISON.

Work
Algorithm characteristics Analysis

Only in-degree Time-Varying No warm-up No extra Non-convex objective Allows unbounded
knowledge phase variables communicated gradients

[17] ✓ ✗ ✓ ✗ ✗ ✗
[18] ✓ ✗ ✓ ✗ ✗ ✓

This work ✓ ✓ ✗ ✓ ✓ ✓

to acknowledge their reception. Such a setting is likely in
heterogeneous network scenarios where some nodes have
smaller transmit powers, making bidirectional communication
impossible for some links. Networks with broadcast capabili-
ties are another example as broadcasting nodes do not know
who receive their messages. We present an algorithm, called
Delay Tolerant Gossiped Optimization (DT-GO), that allows
decentralized optimization in such networks.

The main contributions of our work can be summarized as
follows. We propose a decentralized stochastic optimization
algorithm that

• works on time-varying directed communication networks,
where nodes do not know how many listeners they have,
and is robust in the presence of communication delays;

• has convergence guarantees for L-smooth convex and
non-convex objectives, where topology and delays are
shown to affect only the higher order terms;

• does not need multiple rounds of gossip per each round
of local optimization or bounded gradient assumptions to
guarantee convergence;

• generalizes decentralized SGD, as for the case of bidi-
rectional communication graphs, it recovers decentralized
SGD both in theory and practice;

• is shown to converge, as analytically proven, on a set of
logistic regression problems, with directed time-varying
networks suffering from communication delays.

C. Organization
The rest of the paper is organized as follows. Section II

formally sets up our approach to minimize Eq. (1). First,
the problem is divided into optimization and decentralized
averaging in Section II-A. Then, we illustrate the challenges
with existing decentralized averaging schemes in Section II-B.
We provide a numerical toy example to illustrate our theoret-
ical insights. This gives way to the algorithm design, which
is described in Section II-C. The framework to extend our
setup to incorporate delays is illustrated in Section II-D. We
then theoretically analyze our algorithm for time-invariant
communication graphs in Section III, first for cases without
delays, and afterwards with delays. We extend our analysis to
time-varying graphs in Section IV and provide convergence
guarantees for convex and non-convex objectives. Finally, we
present a set of experimental results for logistic regression
problems in Section V and provide the paper conclusions in
Section VI.

D. Notation
We denote a vector corresponding to Agent n and Round k

as x[k]
n . The matrix whose N rows are the vectors x[k]

1 , . . . , x
[k]
N

is denoted X [k]. Note that subscripts identify agents and
superscripts between brackets identify rounds. The expectation
operator is denoted E[·]. We denote the 2-norm and Frobenius
norm of x as ∥x∥2 and ∥x∥F , respectively.

II. PROPOSED ALGORITHM

A. Problem setup

We consider a directed graph G including N nodes that
share their information over the network modeled by the graph.
We assume the nodes can only know their in-degree and
communicate with their directed neighbors since there is no
handshake mechanism to know the out-degrees.

To minimize Eq. (1), we iterative over the following two
phases: (i) local optimization, and (ii) consensus. At each
local optimization phase, nodes optimize their local models
using their local data. This makes local models drift from
the average, and the problem of making them drift back to
the average is known as decentralized averaging. To solve
decentralized averaging, we introduce a consensus phase,
where nodes communicate among themselves to converge to
the average of their models.

B. Decentralized averaging

In this section, we introduce a decentralized averaging algo-
rithm that allows nodes’ states to converge to the average of all
states without using their out-degrees. Let us denote the initial
model, or initial state, of Node n as x

[0]
n , which is a vector

in Rd. The state of Node n at iteration k is denoted by x
[k]
n .

At each iteration, nodes broadcast their models and collect
the neighbors’ models. Then, the nodes perform a gossip step,
i.e., calculate the weighted average over the received models.
Specifically, Node n weighs information received from Node
m with weight Wnm. A natural choice for these weights is
the inverse of the in-degree of each node. For example, for
the graph in Fig. 1, the matrix W can be

W =


1
2

1
2 0 0 0

0 1
2 0 1

2 0
1
4

1
4

1
4 0 1

4
0 0 1

2
1
2 0

0 0 1
2 0 1

2

 . (2)

Other choices also work, as long as they satisfy our definition
of a gossip matrix.

Definition 1 (Gossip matrix). Given a strongly connected
directed graph G, its gossip matrix W is an N×N real matrix
whose entries satisfy:

(i) W is row-stochastic: the sum of the entries in every row
is one, i.e.,

∑N
m=1 Wnm = 1 for all n.
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(ii) Every entry Wnm is non-negative, and zero only if there
is no directed edge from Node m to Node n in G.

(iii) Diagonal entries are positive, i.e., each node has a self-
loop.

Formally, each gossip iteration is

x[k+1]
n =

N∑
m=1

Wnmx[k]
m , (3)

which can be written in a matrix form as

X [k+1] = WX [k]. (4)

Here, X [k] is the N × d real matrix whose rows are the node
states. Notice from Item (ii) in Def. 1 that Wnm is only positive
when Node n can actually receive model x[k]

m .
The goal is to generate a sequence of models at every node

that converges to the average, i.e,

lim
k→∞

x[k]
n → x̄ =

1

N

N∑
n=1

x[0]
n , (5)

for all nodes n. However, the local models do not necessarily
converge to the average if the gossip matrix is row-stochastic.
Fig. 2 shows an example in which the nodes using a regular
gossip algorithm, marked by the “non-corrected node values”,
converge but not to x̄. It can be shown that instead the nodes
converge to a weighted average

x̃ :=
N∑

n=1

πnx
[0]
n , (6)

where πn are non-negative weights that add up to one [19,
Lemma 5]. We later prove in Section III that π1, . . . , πN are
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Fig. 2. Plot of corrected and non-corrected node values at different rounds.
Initial node values are chosen at random from a normal N (0, 5). The gossip
weights are the inverse of the in-degrees, where G is shown in Fig. 1.

positive. In this section, first, we present an algorithm that
“corrects” the values such that the local models converge
to the average. Then, we show how to handle links with
communication delays using our algorithm.

C. Algorithm design

We present DT-GO, which corrects the weighted average
described in Eq. (6) and allows the consensus phase to
converge to the true average. As we introduced in Section II-A,
we later interchange consensus and local optimization phases
to minimize the cost function in Eq. (1).

The key idea is described in the following Lemma.

Lemma II.1. Consider a strongly connected directed graph
G with an associated gossip matrix W as in Def. 1. If every
node n multiplies its initial state x

[0]
n by a factor dn := 1

Nπn
,

then the gossip iterations

x[k+1]
n =

N∑
m=1

Wnmx[k]
m

converge to the true mean, i.e.,
N∑

n=1

πndnx
[0]
n =

N∑
n=1

1

N
x[0]
n = x̄. (7)

The proof of this lemma follows immediately from Eq. (6)
by inserting the re-weighted initial states.

We illustrate this lemma with a toy example in Fig. 2. Re-
weighting the initial state of Node n with dn for all n in
Fig. 1 results in curves labeled with corrected node values.
These curves converge to the true average of the initial state. In
contrast, curves labeled non-corrected node values, related to
the original gossip algorithm, converge to a weighted average
x̃.

Thus, it is paramount to obtain the correction weights dn :=
1

Nπn
to converge to the real average. Let us start with assuming

that N is known to all nodes. We will relax this assumption
later. To compute dn, nodes must obtain πn first. We observe
that if every node starts with an initial state x

[0]
n = en, a vector

of length N that includes all zeros, except a one in coordinate
n, the gossip iterations converge to

x̃ =

N∑
n=1

πnen = π1


1
0
...
0

+ · · ·+ πN


0
...
0
1

 =


π1

π2

...
πN

 , (8)

that is, a vector with πn in the n-th coordinate. Therefore,
each node can compute dn when convergence is achieved by
simply retrieving πn from the n-th coordinate and dividing
by N . Leveraging this observation, we propose Alg. 1. Note
that we do not use vectors en, because nodes do not know the
network size N a priori. This challenge can be solved elegantly
by using dictionaries, as done in Alg. 1. At round zero, every
node starts with a dictionary initialized with the key that
corresponds to their identification and the value one. Namely,
every node n initializes its dictionary by dict = {idn : 1}.
Note that this serves as a proxy for en, where the zero entries
are conveniently not in the dictionary. Next, the dictionaries
are broadcasted to the neighbors. Elements that do not appear
in neighboring dictionaries are simply treated as zero, and
the algorithm remains unchanged. The decentralized averaging
is run for a certain number of rounds, denoted the warm-up
period, until convergence. Once the warm-up period is over,
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nodes obtain N from the dictionary size and compute the
correction weights dn.

D. Incorporating Delays

The framework proposed for DT-GO is designed to easily
accommodate links with delays, i.e., links where information
takes more than one round to arrive at the receiver. To
incorporate the delays, similar to [2], [19], we introduce the
notion of virtual nodes, or non-computing nodes, that serve as
a relay of the message for a round. If Node n sends messages
to Node m with a delay of ℓ rounds, we simply add ℓ nodes to
the graph G, each with objective function 0 to avoid modifying
the objective function in Eq. (1). For example, in Fig. 3,

34

12

56

7

1

1

W24

Fig. 3. Example of a graph with delayed links. We have added a delay of 2
rounds to the edge between Node 4 and Node 2 of the graph in Fig. 1.

Node 4 sends messages to Node 2 with a delay of 2 rounds.
Therefore, to accommodate the delay, we add two nodes, 6
and 7, to the graph and modify the connections as follows:
Node 4 sends messages to Node 6, which sends messages to
Node 7, which finally sends messages to Node 2. The weight
of the old edge from Node 4 to 2, W24, is now assigned to
the edge from Node 7 to 2 and the weights of the other new
edges are set to 1. If we set the edge weights to be the inverse

Algorithm 1 DT-GO at Node n

1: Generate local id number idn.
{WARM-UP PERIOD}

2: Initialize dictionary dict← {idn : 1}.
3: for Kwarm-up rounds do
4: Broadcast dict and receive neighbors’ dictionaries.
5: dict← weighted average of available dictionaries.
6: end for
7: From dict, obtain N and πn, as in Eq. (8).
{MINIMIZING f PERIOD}

8: Initialize x
[0]
n .

9: for k in 0, . . . ,K − 1 do
10: Initialize auxiliary variables zn, y.

{Optimization phase}
11: SGD step: y ← x

[k]
n − η∇Fn(x

[k]
n , ξn).

{Consensus phase}
12: Adjust update: zn ← x

[k]
n + 1

Nπn
(y − x

[k]
n ).

13: Broadcast zn and receive neighbor states.
14: Average states: zn ←

∑N
m=1 Wnmzm.

15: x
[k+1]
n ← zn.

16: end for

of the in-degrees as in Eq. (2), the extended weight matrix W
is

W =



1
2

1
2 0 0 0 0 0

0 1
2 0 0 0 0 1

2
1
4

1
4

1
4 0 1

4 0 0
0 0 1

2
1
2 0 0 0

0 0 1
2 0 1

2 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0


, (9)

where we have highlighted the terms that are involved with
the virtual nodes, as shown in Fig. 3. Crucially, this procedure
ensures that the nodes’ input weights still add up to one and
W is row-stochastic. Also, the resulting extended graph is still
strongly connected.

III. TIME-INVARIANT ANALYSIS

In this section, first, we discuss the case without delays,
as it gives a stronger and more illustrative bound. Then, we
present the case with delays.

A. Case without delays

We introduce a proposition to show that our algorithm
converges on strongly connected directed graphs.

Proposition III.1. Given a gossip matrix W satisfying Def. 1,
we can ensure that

(i) The limit of the gossip matrix powers limk→∞ W k :=
W∞ exists, that is, our gossip algorithm converges to a
stationary solution.

(ii) The matrix W∞ is row-stochastic and its rows are all
identical, with positive entries π1, . . . , πN that add up to
one. Namely,

W∞ =


π1 π2 . . . πN

π1 π2 . . . πN

...
...

. . .
...

π1 π2 . . . πN

 .

(iii) The squared Frobenius norm of the global state con-
verges to the stationary solution at a geometric rate, i.e.,
there exist positive constants C and ρ, with ρ < 1, such
that for all k > 0,

∥∥W k −W∞
∥∥2
2
≤ Cρk.

Proof: Since W is primitive, Statements (i) and (ii) are
immediate consequences of applying the Perron-Frobenius
theorem [20]. Furthermore, π1, . . . , πN are the coordinates
of the left Perron eigenvector of W . Following the ideas
in [21, Fact 3], Statement (iii) has a straightforward proof
via eigendecomposition. In addition, we have ρ = |λ2|2, the
second largest eigenvalue of W in absolute value squared.

B. Case with delays

Let us now assume that we have a network with arbitrary
delays. The number of real nodes is N . We add virtual nodes
to obtain a network of size N . Similarly, the original gossip
matrix W is extended as previously described to a gossip
matrix W .
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Proposition III.2. Given a gossip matrix W satisfying Def. 1
and its extended version with delays W , we can ensure that

(i) The limit of the matrix powers limk→∞Wk := W∞

exists, that is, our gossip algorithm with delays converges
to a stationary solution.

(ii) The matrix W∞ is row-stochastic and its rows are all
identical, with non-negative entries π1, . . . , πN that add
up to one.

(iii) The squared Frobenius norm of the global state con-
verges to the stationary solution at a geometric rate, i.e.,
there exist constants C and ρ, with ρ < 1, such that for
all k > 0,

∥∥Wk −W∞
∥∥2
2
≤ Cρk.

(iv) The weights that correspond to non-virtual nodes are all
positive, i.e., π1, . . . , πN > 0.

Proof: From [19, Lemma 5], Facts (i) and (ii) follow
immediately. For Fact (iii), [19, Lemma 5] ensures that∥∥Wk −W∞∥∥

F
≤ 2

1 + η−B2

1− ηB2
(1− ηB2)

k
B2 , (10)

where B2 := N − 1 +NB1, B1 is the maximum number of
delays between two nodes in G, and η ∈ (0, 1) is a positive
lower bound for all the non-zero entries of W . Squaring the
expression and knowing that the Frobenius norm upper-bounds
the 2-norm proves the statement. The proof of (iv) follows
from [2, Lemma 5.2.1].

Proposition III.2 guarantees convergence for graphs with
delays, albeit it often provides a looser bound for delay-less
graphs. Note that in what follows, we do not use the extended
weight matrix notation W or the extended node quantity N
in the derivations, but the statements hold for those cases as
well. We provide extra explanations in the crucial steps.

A corollary of Propositions III.1 and III.2 is that after a
number τ of gossip rounds, such that Cρτ < 1, the quantity
∥W τ −W∞∥2 is less than 1, as needed for our convergence
results. In other words, if Def. 1 is satisfied, our gossip phase
converges to a weighted average of the initial states. Moreover,
the weighted average of states is preserved through iterations.
This can be verified easily in matrix notation by denoting x̃[k]

as the weighted average of node models at Round k,

x̃[k] :=

N∑
n=1

πnx
[k]
n , (11)

and the corresponding extension to matrix notation,

X̃ [k] := W∞X [k]. (12)

Thus, by the definition of our gossip iterations from Eq. (4),
for all positive k,

X̃ [k] = W∞WX [k−1] = W∞X [k−1], (13)

and, by induction, the weighted average of the initial states is
preserved.

A second remark on Propositions III.1 and III.2 is that if W
is doubly stochastic and we do not add delays, then C = 1 and
τ = 1. In addition, limk→∞ W k converges to an all-one matrix
divided by N and our algorithm is equivalent to Decentralized
SGD (DSGD) [5]. Furthermore, if G is a complete graph and
we set edge weights to 1/N , then the gossip matrix is the

averaging matrix and both DT-GO and DSGD are equivalent
to centralized SGD.

IV. TIME-VARYING ANALYSIS

We now extend Alg. 1 to the case of time-varying com-
munication networks. Note that the number of nodes remains
the same, but the existence of edges at different rounds may
change. We denote the communication graph at Round k as
G[k] and its associated weight matrix as W [k] (which may not
satisfy Def. 1, as is discussed later). This allows us to model
several scenarios of interest, such as networks where links are
available only with a certain probability, or networks that only
communicate every several rounds (equivalent to multiple local
SGD steps).

Assuming that the warm-up phase is complete, we redefine
X [k] to include the corrected gradient step. Then, the combi-
nation of Steps 10-15 in Alg. 1 results in the following matrix
equation:

X [k+1] = W [k]
(
X [k] − ηD∂F

(
X [k]

))
, (14)

where ∂F
(
X [k]

)
is an N × d real matrix that repre-

sents the stochastic gradients at Round k and D :=
diag( 1

Nπ1
, . . . , 1

NπN
) is the diagonal correction matrix. If

there are virtual nodes, the corresponding entries in the di-
agonal matrix D are set to 1, ensuring D is well defined.
This matrix notation allows us to adopt the following standard
assumptions [9], [22].

Assumption 1. Given a set of (possibly random) graphs
G[0], G[1], . . . and associated N × N real weight matrices
W [0],W [1], . . ., where an entry is zero if and only if the
corresponding edge does not exist, we assume:

(i) The limit limk→∞ E
[∏k

s=0 W
[s]
]
:= W∞ exists and

satisfies W [k]W∞ = W∞ and W∞W [k] = W∞ for all
k.

(ii) The matrix W∞ is row-stochastic and each of its
rows contains identical non-negative entries denoted
π1, . . . , πN that add up to one. These entries are positive
for non-virtual nodes.

(iii) There exists a positive constant p ≤ 1 and integer τ ≥ 1
such that for all k ≥ τ ,

E

∥∥∥∥∥W∞ −
τ−1∏
ℓ=0

W [k+ℓ]

∥∥∥∥∥
2

2

≤ 1− p. (15)

(iv) There exists a positive constant β such that for all k and
all non-negative ℓ < τ ,

E

∥∥∥∥∥
(

τ−1∏
m=ℓ

W [k+m]D

)
− J

∥∥∥∥∥
2

2

≤ β2,

where D is the diagonal correction matrix and J is the
average matrix with all entries equal to 1/N .

Note that for the time-invariant case, Assumption 1 is
satisfied by gossip matrices satisfying Def. 1, as shown in
Propositions III.1 and III.2 for the cases without and with
delays, respectively. However, Assumption 1 covers many
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more scenarios, for example, G[k] does not necessarily have
to be connected at each iteration, and W [k] need not be row-
stochastic or satisfy Def. 1, as long as the assumption holds.

Assumption 1 is an extension of Proposition III.2, simply
avoiding a pathological unbounded sum of norms when defin-
ing β in (iv). Note that β is independent of k, and depends
only on the graph topology and chosen weights.

Assumption 1 also accommodates multiple common scenar-
ios. For the sake of brevity, we only present a few examples.
The first is the standard bidirectional communications case.
If G[k] is a bidirectional connected communication network,
we can design a doubly stochastic W [k]. This implies that
π1, . . . , πN are all 1/N and D is simply the identity matrix.
Therefore, τ = 1 and β = 1. Another common scenario is
the multiple local steps setting. To recover this setting, we
now consider that G[k] is a fixed strongly connected directed
graph every R rounds and is an empty graph (only self-loops
exist) for every other round. For the empty graph rounds, the
gossip matrix is the identity. Following the same reasoning
from Proposition III.1, one can see that this setting satisfies
Assumption 1.

Let us now define the notion of L-smoothness, as we use
it extensively for the analysis.

Definition 2. We call a function L-smooth if it is continuously
differentiable and its gradient is Lipschitz continuous with
Lipschitz constant L. That is, for all x, y ∈ Rd:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .

A. Convex case

For the convex case, we assume the stochastic gradients are
L-Lipschitz and that the noise and heterogeneity of our cost
functions is bounded at the optimum. The precise assumptions
are as follows.

Assumption 2a. Each function Fn(x, ξn) is L-smooth with
respect to x, that is, for all x, y ∈ Rd:

∥∇Fn(x, ξn)−∇Fn(y, ξn)∥ ≤ L ∥x− y∥ . (16)

Assumption 3a. Let f be convex, with global minimizer x⋆,
and define

ζ2n := ∥∇fn(x⋆)∥22 , ζ̄2 := 1
N

∑N
n=1 ζ

2
n.

Similarly, define

σ2
n := E

[
∥∇Fn(x

⋆, ξn)−∇fn(x⋆)∥22
]
, σ̄2 := 1

N

∑N
n=1 σ

2
n.

We assume that σ̄2 and ζ̄2 are bounded.

Here, σ̄2 measures the noise level and ζ̄2 the heterogeneity,
or diversity, of the functions fn. If all functions are identical,
then ζ̄2 = 0. Prior to [9], most work assumed bounded
heterogeneity and noise everywhere, whereas this assumption
only requires bounds at x⋆.

Theorem IV.1. Given weight matrices (possibly extended
with delays as in Section II-D) satisfying Assumption 1, cost
functions satisfying Assumptions 2a and 3a, and a target
accuracy ϵ > 0, there exists a constant step-size η such that

Alg. 1 reaches said accuracy 1
K

∑K−1
k=0 Ef(x̃[k]) − f⋆ ≤ ϵ

after at most K iterations, where K is of order

O

(
σ̄2

Nϵ2
+

β
√
L(ζ̄τ + σ̄

√
pτ)

pϵ3/2
+

βLτ

pϵ

)
·
∥∥∥x̃[0] − x∗

∥∥∥2
2
.

The proof of Theorem IV.1 is provided in Appendix B.

B. Non-convex case

For the non-convex case, we relax the L-smoothness as-
sumption and only require it for the expectation of the local
cost functions, i.e., fn.

Assumption 2b. Each function fn(x) is L-smooth, that is, for
all x, y ∈ Rd:

∥∇fn(x)−∇fn(y)∥ ≤ L ∥x− y∥ . (17)

Assumption 2b is more general than Assumption 2a,
since for convex Fn(x, ξn), Assumption 2a implies Assump-
tion 2b [23]. Nevertheless, we use the stronger L-smoothness
assumption in the convex case to allow the weak noise
assumption of boundedness at x⋆.

For the non-convex case, where a unique x⋆ does not
necessarily exist, we replace Assumption 3a with the following
assumption.

Assumption 3b. We assume that there exists non-negative
constants P and ζ̂ such that for all x ∈ Rd,

1
N

∑N
n=1 ∥∇fn(x)∥

2
2 ≤ ζ̂2 + P ∥∇f(x)∥22 , (18)

and constants M and σ̂ such that for all x1, . . . , xN ∈ Rd,

Ψ ≤ σ̂2 + M
N

∑N
n=1 ∥∇fn(xn)∥22 , (19)

where Ψ := 1
N

∑N
n=1 E

[
∥∇Fn(xn, ξn)−∇fn(xn)∥22

]
.

These are standard assumptions from the literature. For
example, further discussion on these assumptions and their
comparisons with existing literature can be found in [9].

Theorem IV.2. Given weight matrices (possibly extended
with delays as in Section II-D) satisfying Assumption 1, cost
functions satisfying Assumptions 2b and 3b, and a target
accuracy ϵ > 0, there exists a constant step-size η such that
Alg. 1 reaches said accuracy 1

K

∑K−1
k=0 E

∥∥∇f(x̃[k])
∥∥2
2
≤ ϵ

after at most K iterations, where K is of order

O

(
σ̂2

Nϵ2
+

β(ζ̂
√
M + 1 + σ̂

√
pτ)

pϵ3/2

)
· LF0

+O

(
βτ
√
(P + 1)(M + 1)

pϵ

)
· LF0.

The proof of Theorem IV.2 is provided in Appendix C.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results conducted on
a logistic regression problem with ℓ2 regularization, employing
the mushrooms dataset from LIBSVM [24]. This optimization
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Fig. 4. Cost and consensus suboptimality plots for various values of λ and p. Cost is defined as 1
N

∑N
n=1 fn(x

[k]
n ), and consensus is 1

N

∑N
n=1(x̄

[k]−x
[k]
n )2.

The suboptimality is the difference with respect to the baseline, p = 1, which is centralized SGD. (a) Cost suboptimality plot for varying levels of p, without
delays. (b) Consensus suboptimality plot for varying levels of p, without delays. (c) Cost suboptimality plot for varying levels of delays, with a complete
graph. (d) Consensus suboptimality plot for varying levels of delays, with a complete graph. (e) Cost suboptimality for varying levels of p, with a fixed delay
probability of λ = 0.3. (f) Consensus suboptimality for varying levels of p, with a fixed delay probability of λ = 0.3.

problem, which is convex, consists of finding the weight vector x that minimizes

f(x) =
1

Ns

Ns∑
n=1

log(1 + exp(−ynx⊤sn)) +
λ

2
∥x∥2, (20)
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where Ns is the number of samples, sn is the n-th sample, yn
is its corresponding label (−1 or 1), and λ is the regularization
parameter.

We run simulations for 1,000 rounds with 1,024 warm-up
rounds and 100 clients. The number of samples in the dataset
is 8,124. The learning rate and the ℓ2 regularization strength
are set to 2 and 1

8124 , respectively. For all experiments, each
node uniformly averages all received messages and the weights
are proportional to the inverse of the in-degree.

In what follows, we present results for time-invariant and
time-varying communication networks in separate subsections.
The code for both cases is publicly available [25].

A. Time-invariant graph experiments

We categorize our time-invariant experiments into three dis-
tinct scenarios, each shedding light on different aspects of our
approach. For each scenario, we conduct 1,000 experiments
(each running for 1,000 rounds and 1,024 warm-up rounds),
generating a time-invariant graph for each experiment, and
report the mean value of the results.

In the first scenario, we consider G(N, p) Gilbert random
graphs [26], where N = 100 is the number of nodes and p
is a parameter that controls the sparsity of the graph, as each
edge is included in the graph with probability p, independently
from every other edge. A higher value of p implies a greater
likelihood of edge existence and thus lower sparsity. Separable
graphs are discarded and regenerated until they are strongly
connected. In the second scenario, we add delays to the
full graph. These delays follow a Poisson distribution with
parameter λ, where a higher λ signifies an increased average
number of delays per link. For the third scenario, we explore
random graphs with varying p values while introducing delays
with a fixed parameter λ = 0.3, to investigate the interplay
between topology and delays.

It is worth noting that when p = 1, the graph becomes com-
plete. Moreover, λ = 0 implies no delays and for a complete
graph without delays, our algorithm becomes centralized SGD,
which serves as our benchmark. Cost and consensus metrics
are defined as

1

N

N∑
n=1

fn(x
[k]
n ) and

1

N

N∑
n=1

(x̄[k] − x[k]
n )2,

respectively. For both measures, the suboptimality is defined
as the difference between the value and that of the centralized
SGD method, which is equivalent to the case of p = 1 and
λ = 0, as was previously mentioned.

Figs. 4a and 4b show how graph topology, quantified by
the edge probability p, influences the performance of our
algorithm. Higher graph connectivity accelerates consensus
and a smaller consensus value results in solutions that diverge
more at each node, consequently reducing local costs. This
phenomenon is reflected in the faster disappearance of cost
suboptimality for smaller values of p.

Figs. 4c and 4d display the effects of communication delays
on our algorithm’s performance. As expected, higher values of
λ lead to slower convergence.

Figs. 4e and 4f confirm what was shown in both previous
cases. Namely, the presence of delays slows down consensus,
but has a small effect on cost suboptimality. Conversely,
higher graph sparsity affects cost suboptimality more than the
presence of delays, but does not hinder consensus as much.

B. Time-varying graph experiments

For our time-varying experiments, we simulate a typical
situation found in real-world networks, where the topology
changes from round to round due to links drop at certain
rounds. Each experiment begins with a randomly generated
G(100, 1/2) graph G0, including all possible self-loops. At
each round, we consider that an edge between two distinct
nodes has an error probability perr and in the case of an error
disappears from the graph for that round.

To account for the larger variance due to the time-varying
topology, we present results averaged over 40,000 experi-
ments, each of 250 rounds.

Fig. 5 displays the simulation results, which are consistent
with the findings from Fig. 4. Observe that higher error
probabilities affect consensus negatively. Thus, as nodes drift
further away from the consensus, they can obtain lower local
costs, which is reflected in the cost plot.

VI. CONCLUSIONS

We have addressed the problem of decentralized optimiza-
tion in networks with communication delays and directed
communication graphs. The key contribution of our work is
the introduction of a novel gossip-based optimization algo-
rithm, named DT-GO, which circumvents the requirement for
knowledge of out-degrees. This algorithm opens new avenues
for decentralized optimization in various real-world scenarios,
such as networks with delays in their communication links or
limited acknowledgment capabilities.

We have studied the performance of DT-GO through
theoretical analysis and numerical simulations. Our analysis
includes time-varying directed communication networks. Im-
portantly, we have established convergence guarantees for both
convex and non-convex objectives under mild assumptions.
Our analysis shows that the effects of topology and delays
are confined to higher-order terms, and the main error term
remains the same as that of plain centralized SGD.

Furthermore, our algorithm offers practical advantages, in-
cluding its ability to operate without the need for multiple
rounds of gossip per local optimization step or bounded
gradient assumptions. By generalizing decentralized Stochastic
Gradient Descent, our algorithm can be applied in bidirectional
communication graphs, ensuring compatibility with existing
decentralized optimization frameworks.

In summary, our work presents a novel decentralized
optimization approach, that addresses the challenges posed
by communication delays and time-varying directed network
topologies. We believe that this work can lead to applications
in diverse fields such as collaborative machine learning, sensor
networks, and multi-agent systems.
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Fig. 5. Cost and consensus suboptimality plots for various values of perr . Cost is defined as 1
N

∑N
n=1 fn(x

[k]
n ) and consensus is 1

N

∑N
n=1(x̄

[k] − x
[k]
n )2.

The suboptimality is the difference with respect to the baseline, p = 1, which is centralized SGD. (a) Cost suboptimality plot for different values of perr .
(b) Consensus suboptimality plot for different values of perr .

APPENDIX A
LEMMAS AND REMARKS

For our proof, we generalize the analysis framework for
convex and non-convex decentralized optimization from [9]
to non-doubly stochastic matrices and our re-weighted opti-
mization iterations in DT-GO, as we require. The following
results are needed to prove Theorems IV.1 and IV.2.

Lemma A.1 (Descent recursion for the convex case). Under
Assumptions 1 to 3a, with η ≤ 1

12L , we can ensure

E
[∥∥∥x̃[k+1] − x⋆

∥∥∥2] ≤ ∥∥∥x̃[k] − x⋆
∥∥∥2 + η2σ̄2

N

− η(f(x̃[k])− f(x⋆)) + η
3L

N

N∑
n=1

∥∥∥x[k]
n − x̃[k]

∥∥∥2 . (21)

Proof: Using the matrix form of DT-GO iterations from
Eq. (14), the weighted average at Round k is

X̃ [k+1] = W∞W [k]
(
X [k] − ηD∂F

(
X [k]

))
.

Observe that W∞D = J , where J is the average matrix whose
entries are all 1/N . Then, using W∞W [k] = W∞ from Item
(i) in Assumption 1, we obtain

X̃ [k+1] = X̃ [k] − ηJ∂F
(
X [k]

)
. (22)

In vector notation, Eq. (22) is equivalent to

x̃[k+1] = x̃[k] − η

N

N∑
n=1

∇Fn(x
[k]
n , ξn). (23)

Note that this implies that our algorithm preserves the
weighted average of previous iterations, plus the un-weighted
average of the gradient steps at each node. Using this obser-
vation, the rest of the proof follows as in [9, Lemma 8] and
is omitted in this manuscript for brevity.

Lemma A.2 (Descent recursion for the non-convex case).
Under Assumptions 1, 2b and 3b, with η ≤ 1

4L(M+1) , we
can ensure

E
[
f(x̃[k+1])

]
≤ f(x̃[k]) +

η2Lσ̂2

N

− η

4

∥∥∥∇f(x̃[k])
∥∥∥2 + η

L2

N

N∑
n=1

∥∥∥x[k]
n − x̃[k]

∥∥∥2 . (24)

Proof: Using the same preservation of the weighted
average argument from Eq. (23), the proof follows as in [9,
Lemma 10] and is omitted for brevity.

Lemma A.3 (Consensus distance recursion for the convex

case). Let g[k] = 1
N

∑N
n=1 E

∥∥∥x[k]
n − x̃[k]

∥∥∥2
2
. Under Assump-

tions 1 to 3a, and η ≤ p
12τLβ , we can ensure

g[k] ≤
(
1− p

2

)
g[k−τ ] +

p

16τ

k−1∑
ℓ=k−τ

g[ℓ]

+
18Lβ2τ

p

k−1∑
ℓ=k−τ

η2(f(x̃[ℓ])− f(x⋆))

+ β2(σ̄2 +
9τ

p
ζ̄2)

k−1∑
ℓ=k−τ

η2. (25)

Proof: By definition of g[k],

Ng[k] = E
∥∥∥X [k] − X̃ [k]

∥∥∥2
F
. (26)

DT-GO iterations in matrix notation satisfy Eq. (14) and
X̃ [k] = W∞X [k]. Therefore, defining T := X [k] − X̃ [k],

T = (W [k] −W∞)
(
X [k−1] − ηD∂F

(
X [k−1]

))
, (27)
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where we have used W∞W [k] = W∞ from Item (i) in As-
sumption 1. Note that (W [k]−W∞)X̃ [k−1] = 0, by the same
argument. Thus, we obtain

T = (W [k] −W∞)
(
X [k−1] − X̃ [k−1]

)
− η(W [k] −W∞)D∂F

(
X [k−1]

)
.

We repeat this procedure τ times and the term T becomes

T =

(
k−1∏

ℓ=k−τ

(W [ℓ] −W∞)

)
(X [k−τ ] − X̃ [k−τ ])

− η
k−1∑

ℓ=k−τ

(
k−1∏
m=ℓ

(W [m] −W∞)

)
D∂F

(
X [ℓ]

)
.

Note that for k < τ , we can simply define the gossip
matrices as the identity, and the gradients as zero, and
the expression holds. Now, we simplify the products using
W∞(W [k] −W∞) = 0, for all k, and obtain

T =

((
k−1∏

ℓ=k−τ

W [ℓ]

)
−W∞

)
X [k−τ ]

︸ ︷︷ ︸
T1

− η
k−1∑

ℓ=k−τ

((
k−1∏
m=ℓ

W [m]

)
D − J

)
∂F
(
X [ℓ]

)
︸ ︷︷ ︸

T2

. (28)

Finally, we plug this into Eq. (26) and observe that the term T1

can be bounded using Item (iii) in Assumption 1 and the sum
of gossip matrix products can be bounded using Item (iv) in
Assumption 1. The rest of the proof follows as in [9, Lemma
9] and is omitted for brevity.

Lemma A.4 (Consensus distance recursion for the non-convex

case). Let g[k] = 1
N

∑N
n=1 E

∥∥∥x[k]
n − x̃[k]

∥∥∥2
2
. Under Assump-

tions 1, 2b and 3b, and η ≤ p
12τLβ , we can ensure

g[k] ≤
(
1− p

2

)
g[k−τ ] +

p

16τ

k−1∑
ℓ=k−τ

g[ℓ]

+ 2Pβ2(
3τ

p
+M)

k−1∑
ℓ=k−τ

η2
∥∥∥∇f(x̃[ℓ])

∥∥∥2
+ 2β2(σ̂2 + (

3τ

p
+M)ζ̂2)

k−1∑
ℓ=k−τ

η2. (29)

Proof: We follow the derivations of Lemma A.3, pre-
sented above, and conclude as in the proof for [9, Lemma
11], which is omitted for brevity.

Lemma A.5. (Re-stated from [9, Lemma 14]) If non-negative
sequences e[0], . . . e[K] and r[0], . . . r[K] satisfy

1

2K

K−1∑
k=0

be[k] ≤ r[0]

Tη
+ cη + 64ABη2, (30)

where b > 0, c, A,B ≥ 0, then there exists a constant positive
step-size η < 1

d such that

1

K

K−1∑
k=0

e[k] ≤ O

((
cr[0]

K

) 1
2

+ (BA)
1
3

(
r[0]

K

) 2
3

+
dr[0]

K

)
.

APPENDIX B
PROOF OF THEOREM IV.1

The main goal of the proof is to derive an upper bound on
the distance to the solution, which is r[k] = E

∥∥x̃[k] − x⋆
∥∥2.

Let us start by using Lemma A.1 to obtain

r[k+1] ≤ r[k] − bηe[k] + cη2 + ηBg[k], (31)

where g[k] = 1
N

∑N
n=1 E

∥∥∥x̃[k] − x
[k]
n

∥∥∥2, e[k] = f(x̃[k]) −
f(x⋆), b = 1, c = σ̄2

N , and B = 3L. Note that g[k] is
a measure of the mean distance to the weighted average of
models and corresponds to the equal-weight average in the
doubly stochastic case, since all weights would be 1/N , as
previously discussed.

Now, we bound the distance to the weighted average, or con-
sensus distance, with the recursion obtained from Lemma A.3:

g[k] ≤
(
1− p

2

)
g[k−τ ] +

p

16τ

k−1∑
ℓ=k−τ

g[ℓ]

+D′
k−1∑

ℓ=k−τ

η2eℓ +A
k−1∑

ℓ=k−τ

η2,

(32)

where A = β2(σ̄2 + 9τ
p ζ̄2) and D′ = 18Lβτ

p . Note that for
k ≤ τ , we can define g[k] = 0, e[k] = 0, and the recursion
in Eq. (32) holds. Next, for any positive integer K, we add
Eq. (32) from k = 0 to K − 1 and simplify to obtain

K−1∑
k=0

g[k] ≤
(
1− p

4

)K−1∑
k=0

g[k] +D′
K−1∑
k=0

τη2e[k]

+ATτη2.

(33)

We multiply both sides by B and re-arrange, resulting in

B
K−1∑
k=0

g[k] ≤ b

2

K−1∑
k=0

e[k] + 64BA
τ

p
Kη2, (34)

as long as η ≤ 1
16

√
pb

D′Bτ . Then, we substitute Eq. (34) into
the last term of Eq. (31), added from 0 to K − 1, and divided
by η to obtain

1

2

K−1∑
k=0

be[k] ≤
K−1∑
k=0

r[k] − r[k+1]

η
+Kcη +K64ABη2.

We divide by K and telescope the sum, resulting in

1

2K

K−1∑
k=0

be[k] ≤ r[0] − r[K]

Kη
+ cη + 64ABη2. (35)

We conclude by applying Lemma A.5 to Eq. (35), with r[k] =

E
∥∥x̃[k] − x⋆

∥∥2, e[k] = f(x̃[k]) − f(x⋆), b = 1, c = σ̄2

N , d =
p

12τLβ , A = β2(σ̄2 + 9τ
p ζ̄2), and B = 3L.
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APPENDIX C
PROOF OF THEOREM IV.2

The proof follows the same line as the convex case, but now
the distance to the solution is r[k] = Ef(x̃[k])− f⋆, since we
do not have a global minimum. Using Lemma A.2, we arrive
to the expression in Eq. (31), only now r[k] = Ef(x̃[k]) −
f⋆, e[k] =

∥∥∇f(x̃[k])
∥∥2
2
, b = 1

4 , c = Lσ̂2

N , and B = L2.
We can obtain a consensus distance recursion, similar to that
of Eq. (32) with Lemma A.2, where A = 2β2(σ̂2 + ( 3τp +

M)ζ̂2) and D′ = 2Pβ2( 3τp +M). The rest of the proof follows
unmodified, and we obtain the theorem statement by applying
Lemma A.5 to Eq. (35) with the new constants, where d =

32Lβ
√
2(P + 1)( 3τp +M) τp .
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