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1.1 Introduction

When implementing a Markov chain Monte Carlo (MCMC) algorithm, one simulates a

Markov chain (Xt)
∞
t=0 such that the distribution of Xt approaches a target distribution ϖ(·)

as t increases. Inference about the target distribution is then conducted based on a Monte

Carlo sample, which is a finite portion of the chain (Xt)
n
t=n. The integer n is the amount

of burn-in, while the integer n is the time at which the simulation is terminated. For the

Monte Carlo sample (Xt)
n
t=n to be representative of the target distribution, the distribution

of most of the Xt’s, n ≤ t ≤ n, should be similar to ϖ(·). To be certain of this, one would

need to know how fast the distribution of Xt converges to ϖ(·) as t → ∞. This chapter

reviews several popular methods for convergence analysis, i.e., ascertaining the convergence

properties of a Monte Carlo Markov chain using mathematics. To be specific, we investigate

ways to construct bounds on the distance between the distribution of a Markov chain at a
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given time point and the chain’s stationary distribution.

Convergence analysis plays a pivotal role in the theory and application of MCMC. Some

important asymptotic results for MCMC estimators, such as the central limit theorem and

the strong invariance principle, rely on conditions on the convergence rate of the Monte Carlo

Markov chain; see, e.g., Jones (2004) and Kuelbs and Philipp (1980). This type of condition

can be verified through appropriate convergence bounds. It is also possible to derive non-

asymptotic error bounds for Monte Carlo estimators based on convergence bounds (Rudolf,

2012, Theorems 3.34 and 3.41).

A class of methods related to convergence analysis is convergence diagnostics, which aims

to assess the performance of an MCMC algorithm by scrutinizing its output (Brooks and

Roberts, 1998; Gelman and Rubin, 1992; Gelman and Shirley, 2011; Roy, 2020). Convergence

diagnostics can detect problems with an MCMC simulation, but they cannot prove that

the simulation is generating a representative sample. While convergence analysis is often

mathematically challenging, it offers robust theoretical guarantees that diagnostics cannot

provide.

There is an enormous body of literature devoted to the topic at hand. This chapter serves

primarily as an introductory guide for those embarking on further research in this area. It is

assumed that readers possess a moderate level of familiarity with the languages of measure

theoretic probability and linear algebra within Hilbert spaces.

The rest of this chapter is organized as follows. In Section 1.2, we lay out the basic

concepts and notations. In Section 1.3, we review the coupling method for constructing

convergence bounds. In Section 1.4, we describe the L2 framework for convergence analysis,

with a focus on methods involving isoperimetric inequalities. Finally, some other methods

for constructing convergence bounds are listed in Section 1.5.
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1.2 Basic Setup

We begin by setting up some notations. Let X be a Polish (separable and complete) metric

space with metric ψ : X2 → [0,∞), and let B be its Borel σ algebra. Denote by P(X)

the collection of probability measures, or distributions, on (X,B). Let (Xt)
∞
t=0 be a time-

homogeneous Markov chain whose state space is X. Let K : X × B → [0, 1] be its Markov

transition kernel (Mtk) so that P (Xt+1 ∈ A | Xt = x) = K(x,A) for x ∈ X and A ∈ B.

For t ∈ N+ := {1, 2, . . . }, we can define the t-step Mtk of the chain, which is a function

Kt : X × B → [0, 1] satisfying P (Xt ∈ A | X0 = x) = Kt(x,A). Indeed, one simply let

K1(x,A) = K(x,A), and K t+1(x,A) =
∫
X
Kt(x, dy)K(y, A). For µ ∈ P(X), let µK t(·) =∫

X
µ(dx)Kt(x, ·) if t ∈ N+, and, by convention, let µK0 = µ. Then µKt(·) is the distribution

of Xt if X0 ∼ µ.

Assume that (Xt)
∞
t=0 has a stationary distribution ϖ ∈ P(X), so that ϖK t(·) = ϖ(·) for

t ∈ N = {0}∪N+. If this chain is associated with an MCMC algorithm targeting ϖ(·), then

the distribution of Xt should converge to ϖ(·) in some sense as t→ ∞. When conducting a

convergence analysis, we seek to understand how fast µK t(·) approaches ϖ(·) as t grows for

some class of initial distributions µ(·).

To conduct a quantitative analysis, we need to define a distance function that quantifies

the difference between two probability measures. A common way to construct such a distance

is as follows (Müller, 1997; Zolotarev, 1984). Let F be a collection of real measurable

functions on X. Let F ′ be a subset of P(X) such that
∫
X
|f(x)|µ(dx) < ∞ for each f ∈ F

whenever µ ∈ F ′. For µ, ν ∈ F ′, we define the “integral probability metric”

∥µ− ν∥F = sup
f∈F

|µf − νf |,

where µf =
∫
X
f dµ. One can check that, for µ, ν, ω ∈ F ′,

∥µ− ν∥F ≤ ∥µ− ω∥F + ∥ω − ν∥F .

Assume that F is rich enough so that ∥µ − ν∥F = 0 implies that µ(A) = ν(A) for A ∈ B.
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Then ∥µ− ν∥F serves as a distance between µ and ν.

Below we list some commonly used distances constructed in this manner.

(I) F is the set of functions f such that supx∈X |f(x)| = 1/2, and F ′ = P(X). Then

∥µ− ν∥F is the total variation distance between µ and ν for µ, ν ∈ F ′. The same goes

if F is the set of measurable indicator functions. In this case, we write ∥µ − ν∥F as

∥µ− ν∥TV. If µ and ν are absolutely continuous with respect to some σ-finite measure

λ, then

∥µ− ν∥TV =
1

2

∫
X

∣∣∣∣dµdλ
(x) − dν

dλ
(x)

∣∣∣∣λ(dx) = 1 −
∫
X

min

{
dµ

dλ
(x),

dν

dλ
(x)

}
λ(dx).

(1.2.1)

(II) F is the set of functions f such that supx̸=y |f(x) − f(y)|/ψ(x, y) = 1, i.e., the set of

functions whose Lipschitz constant is 1. F ′ is the set of probability measures µ such

that
∫
X
ψ(x0, x)µ(dx) < ∞ for some x0 ∈ X. Then by the Kantorovich-Rubinstein

duality (see, e.g., Villani, 2008, Theorem 5.10), ∥µ−ν∥F is the 1-Wasserstein distance

between µ and ν induced by ψ. In this case, we write ∥µ− ν∥F as Wψ(µ, ν).

(III) F is the set of functions f such that
∫
X
f(x)2ϖ(dx) = 1. F ′ is the set of probability

measures µ such that µ is absolutely continuous with respect to ϖ (i.e., µ≪ ϖ), and

that ∫
X

[
dµ

dϖ
(x)

]2
ϖ(dx) <∞.

(It can be checked that, if µ≪ ϖ, then the above display is equivalent to
∫
X
|f(x)|µ(dx)

being bounded as f varies in F .) Then ∥µ− ν∥F is the L2 distance between µ and ν.

In this case, we write ∥µ − ν∥F as ∥µ − ν∥2. One can show via the Cauchy-Schwarz

inequality that the L2 distance has a dual representation

∥µ− ν∥2 =

√∫
X

[
dµ

dϖ
(x) − dν

dϖ
(x)

]2
ϖ(dx). (1.2.2)

Throughout this chapter, assume that F ′ contains the stationary distribution ϖ. We also

assume that µK ∈ F ′ whenever µ ∈ F ′, so that µKt ∈ F ′ for t ∈ N whenever µ ∈ F ′. It can
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be shown that the two assumptions always hold in scenarios (I) and (III); see, e.g., Lemma

22.1.3 of Douc et al. (2004). In scenario (II), the second assumption holds if, say, there exist

a point x0 ∈ X and finite constants c1 and c2 such that
∫
X
ψ(x0, x

′)K(x, dx′) ≤ c1ψ(x0, x)+c2

for x ∈ X. All examples herein satisfy these two assumptions.

A central goal of convergence analysis is to construct bounds on ∥µK t−ϖ∥F for at least

some initial distribution µ ∈ F ′ that is practically feasible. We are mainly concerned with

constructing upper bounds on ∥µK t−ϖ∥F , although lower bounds will also be touched on.

In particular, we shall focus on several methods that enable us to form convergence bounds

of the form

∥µKt −ϖ∥F ≤ Cµρ
t, t ∈ N+,

where Cµ ∈ (0,∞) is a function of the initial distribution µ, and ρ is a constant in [0, 1).

This type of bound, among others, can be used to bound the (ϵ, µ)-mixing time, which is

the smallest t ∈ N+ such that ∥µKt−ϖ∥F ≤ ϵ, where ϵ ∈ (0,∞) is some prescribed level of

tolerance. Indeed, denoting the (ϵ, µ)-mixing time by tF(ϵ, µ), the above bound would yield

tF(ϵ, µ) ≤
⌈

logCµ − log ϵ

− log ρ

⌉
if ρ ∈ (0, 1), where ⌈·⌉ is the ceiling function.

The choice of the distance function would of course affect the outcome of one’s analysis,

but bounds in terms of one distance can often be translated to those in terms of another. For

instance, using (1.2.1), (1.2.2), and Jensen’s inequality, one can show that if dµ/dϖ exists

and is squared integrable with respect to ϖ, then

2∥µKt −ϖ∥TV ≤ ∥µKt −ϖ∥2,

so an upper bound on the right-hand-side upper bounds the left-hand-side as well. See

Roberts and Rosenthal (1997), Roberts and Tweedie (2001), and Kontoyiannis and Meyn

(2012) for additional details on the relationship between convergence bounds in the L2 and

total variation distances. In Section 1.3.2, we discuss how to translate a bound in terms of

the 1-Wasserstein distance to one in terms of the total variation distance.
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For the construction of upper bounds on ∥µK t−ϖ∥F , we review (a) the coupling method

when ∥ · − · ∥F is the total variation distance or the 1-Wasserstein distance, and (b) the L2

theory, especially techniques based on the conductance and isoperimetric inequalities, when

∥ · − · ∥F is the L2 distance. We will then describe a simple method for lower bounding the

“convergence rate” in the L2 framework, which quantifies how slow a chain converges. Some

other important methods are listed with references at the end of the chapter.

To end Section 1.2, we give a couple running toy examples on which we will demonstrate

several techniques for convergence analysis.

Example 1.2.1. Let X = [0, 1], and let B be the Borel subsets of [0, 1]. Let s : [0, 1] →
(0,∞) be a positive continuous probability density function, and denote the corresponding

distribution by πs(·). Note that, due to continuity, Ms := supx∈[0,1] s(x) <∞. For x, x′ ∈ X,

let as(x, x
′) = min{1, s(x′)/s(x)}. Let (Xt)

∞
t=0 be a Markov chain such that, given Xt, the next

state Xt+1 is generated using the following procedure: Draw X ′ from the uniform distribution

on [0, 1]; with probability as(Xt, X
′), set Xt+1 = X ′; with probability 1 − as(Xt, X

′), set

Xt+1 = Xt. Then (Xt)
∞
t=0 is associated with an independent Metropolis Hastings algorithm

targeting πs(·). Its transition kernel is

Ks(x,A) =

∫
A

as(x, x
′) dx′ +

[
1 −

∫ 1

0

as(x, x
′) dx′

]
1x∈A, x ∈ [0, 1], A ∈ B,

where 1x∈A is 1 if x ∈ A and 0 otherwise. It is well-known that chains associated with

Metropolis Hastings algorithms are reversible with respect to their target distributions.

Example 1.2.2. Let X = Rp, where p is a positive integer, and let B be the Borel sets. Let

α ∈ [0, 1) be a constant. Define the Gaussian chain as a Markov chain (Xt)
∞
t=0 such that,

given Xt = x ∈ Rp, Xt+1 follows the Np(αx, (1−α2)Ip) distribution, where Np(m,V ) means

the p-variate normal distribution with mean m and variance V , and Ip is the p× p identity

matrix. Its transition kernel is

Kp,α(x,A) =

∫
A

1

[2π(1 − α2)]p/2
exp

[
− 1

2(1 − α2)
∥x′ − αx∥2

]
dx′, x ∈ Rp, A ∈ B,

where ∥ · ∥ is the Euclidean norm. This chain is reversible with respect to the Np(0, Ip)
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measure, which will be denoted by ϖp(·). Indeed,∫
A

ϖp(dx)Kp,α(x,B) =
1

(2π)p(1 − α2)p/2

∫
A×B

exp

[
−∥x′∥2 + ∥x∥2 − 2αx⊤x′

2(1 − α2)

]
dx dx′

is a symmetric function of A ∈ B and B ∈ B.

Due of the simplicity of the chains in these examples, their convergence properties are

well-understood, but for illustrative purposes we will feign ignorance in most of our analyses.

1.3 Bounds via coupling

The coupling method is a powerful tool in probability theory that enables one to compare

two distributions. Numerous works have utilized the technique to obtain useful convergence

bounds for a wide range of important Markov chains. See Aldous (1983); Bou-Rabee et al.

(2020); Bubley and Dyer (1997); Burdzy and Kendall (2000); Durmus and Moulines (2019);

Eberle and Majka (2019); Lindvall and Rogers (1986); Pillai and Smith (2017), just to name

several. In this section, we describe the general idea of this approach, and illustrate it

through a few simple examples. In particular, we use it to derive a convergence bound from

a set of “drift and minorization conditions.”

1.3.1 Basic theory

For µ, ν ∈ P(X), a coupling of theirs is a distribution in P(X2), say γ, such that γ(A×X) =

µ(A) and γ(X×A) = ν(A) for A ∈ B. In other words, γ is a coupling of µ and ν if it is the

joint distribution of some random vector (X, Y ) such that, marginally, X ∼ µ and Y ∼ ν.

Denote the set of all couplings of µ and ν by C(µ, ν). Suppose that we can find a measurable

function D : X2 → [0,∞] such that, for f ∈ F ,

|f(x) − f(y)| ≤ D(x, y), (x, y) ∈ X2. (1.3.1)



8 CHAPTER 1. CONVERGENCE BOUNDS

(The function D(·, ·) is often some semi-metric.) Then, for µ, ν ∈ F ′ and γ ∈ C(µ, ν),

∥µ− ν∥F = sup
f∈F

|µf − νf |

= sup
f∈F

∣∣∣∣∫
X2

[f(x) − f(y)] γ(d(x, y))

∣∣∣∣
≤
∫
X2

D(x, y) γ(d(x, y)).

(1.3.2)

If one can construct a random vector (X,Y ) whose joint distribution is in C(µ, ν), then

∥µ− ν∥F ≤ E[D(X,Y )]. In particular, if one can, on some probability space, define a copy

of Xt along with a random element Yt such that Xt ∼ µKt and Yt ∼ ϖ, i.e., (Xt, Yt) ∼ γt ∈
C(µKt, ϖ), then ∥µKt −ϖ∥F ≤ E[D(Xt, Yt)]. Usually, to obtain a sharp bound, Xt and Yt

need to be correlated in some suitable manner.

This approach can be used to bound the total variation and the 1-Wasserstein distances.

Indeed, if F is the set of functions f such that supx∈X |f(x)| = 1/2, then (1.3.1) holds for

f ∈ F when D(x, y) ≥ 1x̸=y. Thus, if (X, Y ) ∼ γ ∈ C(µ, ν), then taking D(x, y) = 1x̸=y

yields

∥µ− ν∥TV ≤
∫
X2

1x̸=y γ(d(x, y)) = P (X ̸= Y ). (1.3.3)

If F is the set of functions f such that supx̸=y |f(x)−f(y)|/ψ(x, y) = 1, then (1.3.1) holds for

f ∈ F when D(x, y) ≥ ψ(x, y). Thus, if (X, Y ) ∼ γ ∈ C(µ, ν), then taking D(x, y) = ψ(x, y)

yields

Wψ(µ, ν) ≤
∫
X2

ψ(x, y) γ(d(x, y)) = E[ψ(X, Y )].

This is obvious if one knows the more standard definition of the 1-Wasserstein distance:

Wψ(µ, ν) = inf
γ∈C(µ,ν)

∫
X2

ψ(x, y) γ(d(x, y)).

It is worth noting that, in the above display, there always exists a coupling γ that attains

the infimum (see, e.g., Villani, 2008, Theorem 4.1).

It is common (but not always optimal) that couplings of µK t and ϖ = ϖKt are con-

structed in a Markovian manner. That is, one constructs a bivariate Markov chain (Xt, Yt)
∞
t=0
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with state space X2 such that the distribution of (Xt, Yt) is in C(µKt, ϖKt) for t ∈ N.

This can be achieved if X0 ∼ µ, Y0 ∼ ϖ, and the Mtk of the bivariate chain, denoted by

K̃ : X2×B2 → [0, 1], is a coupling kernel of K in the following sense: For x, y ∈ X, K̃((x, y), ·)
is in C(δxK, δyK), where δx is the point mass at x (i.e., δx(A) = 1x∈A for A ∈ B) so that

δxK(·) = K(x, ·). In other words, given (Xt, Yt) = (x, y), Xt+1 is distributed as K(x, ·), and

Yt+1 is distributed as K(y, ·).

A coupling kernel always exists, since we can let∫
A

K̃((x, y), d(x′, y′)) =

∫
A

K(x, dx′)K(y, dy′), (x, y) ∈ X2, A ∈ B2.

But this construction wouldn’t be very helpful since there is no dependence between Xt and

Yt conditioning on (X0, Y0), which usually renders the bound ∥µK t − ϖ∥F ≤ E[D(Xt, Yt)]

too loose. The following is an elementary result that provides a more useful coupling kernel

under a simple but restrictive condition.

Theorem 1.3.1. Suppose that there exist ε > 0 and a probability measure ν ∈ P(X) such

that, for x ∈ X and A ∈ B,
K(x,A) ≥ εν(A).

(This is called Doeblin’s, or a global minorization condition.) Then one may construct a

coupling kernel K̃ of K such that∫
X2

1x′ ̸=y′K̃((x, y), d(x′, y′)) ≤ (1 − ε)1x̸=y (1.3.4)

for (x, y) ∈ X2.

Remark 1.3.1. If (Xt, Yt)
∞
t=0 is a bivariate chain whose Mtk satisfies (1.3.4), then, for t ∈ N,

P (Xt+1 ̸= Yt+1 | Xt, Yt) = E(1Xt+1 ̸=Yt+1 | Xt, Yt) ≤ (1 − ε)1Xt ̸=Yt.

Proof of Theorem 1.3.1. Let (Xt, Yt)
∞
t=0 be a bivariate Markov chain with state space X2 that

evolves as follows. Suppose that the current state is (Xt, Yt) = (x, y) ∈ X2. If x = y, let

Xt+1 = Yt+1 be distributed as K(x, ·). When x ̸= y, do the following. With probability ε,

let Xt+1 = Yt+1 be distributed as ν; with probability 1− ε (if ε < 1), let Xt+1 be distributed
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according to the probability measure

A 7→ K(x,A) − εν(A)

1 − ε
, (1.3.5)

and, independently, let Yt+1 be distributed according to the probability measure

A 7→ K(y,A) − εν(A)

1 − ε
. (1.3.6)

Note that the two measures are well-defined whenever ε ∈ (0, 1) due to Doeblin’s condition.

Evidently, given (Xt, Yt) = (x, y), Xt+1 is distributed as K(x, ·), and Yt+1 is distributed as

K(y, ·). Thus, the Mtk of the bivariate chain, which we denote by K̃, is a coupling kernel

of K.

By construction, for x, y ∈ X2,

∫
X2

1x′=y′K̃((x, y), d(x′, y′)) ≥

ε, x ̸= y,

1, x = y.

This establishes (1.3.4) for (x, y) ∈ X2.

Consider the independent Metropolis Hastings chain in Example 1.2.1. Since s(x) ≤ Ms

for x ∈ X, it holds that, for x ∈ X = [0, 1] and A ∈ B,

Ks(x,A) ≥
∫
A

inf
x∈[0,1]

as(x, x
′) dx′ =

∫
A

min

{
1,
s(x′)

Ms

}
dx′ =

∫
A

s(x′)

Ms

dx′ =
1

Ms

πs(A).

(1.3.7)

That is, Doeblin’s condition holds with ε = 1/Ms. Hence, there exists a coupling kernel

of Ks satisfying (1.3.4) for (x, y) ∈ [0, 1]2 with 1 − ε = 1 − 1/Ms. On the other hand, the

Gaussian chain in Example 1.2.2 does not satisfy Doeblin’s condition with any positive ε

since, for any bounded A ∈ B, infx∈XKp,α(x,A) = 0.

As implied by Remark 1.3.1, (1.3.4) is a type of “contraction condition” that indicates

1Xt ̸=Yt decreases in expectation at a geometric rate as t grows. Let us now show exactly how

a coupling kernel that satisfies a contraction condition can be used to construct a convergence
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bound.

Theorem 1.3.2. Let K̃ be a coupling kernel of K. Suppose that there exist a constant ρ < 1

and a measurable function D : X2 → [0,∞] satisfying (1.3.1) for all f ∈ F such that the

following contraction condition holds:∫
X2

D(x′, y′) K̃((x, y), d(x′, y′)) ≤ ρD(x, y) (1.3.8)

for (x, y) ∈ X2. Then, for µ ∈ F ′ and t ∈ N,

∥µKt −ϖ∥F ≤
∫
X2

D(x, y) γ(d(x, y)) ρt,

where γ is any coupling of µ and ϖ.

Proof. Let µ ∈ F ′ be arbitrary. Let (Xt, Yt)
∞
t=0 be a bivariate chain associated with K̃ such

that (X0, Y0) ∼ γ ∈ C(µ,ϖ). Then the distribution of (Xt, Yt) is in C(µKt, ϖ). Thus, by

(1.3.2), for t ∈ N,

∥µKt −ϖ∥F ≤ E[D(Xt, Yt)].

On the other hand, by (1.3.8), for t ∈ N,

E[D(Xt+1, Xt+1) | Xt, Yt] ≤ ρD(Xt, Yt).

By the two displays above and the tower property of conditional expectations,

∥µKt −ϖ∥F ≤ E[D(Xt, Yt)] ≤ ρtE[D(X0, Y0)] =

∫
X2

D(x, y) γ(d(x, y))ρt.

We may apply Theorem 1.3.2 to Example 1.2.1. It was already demonstrated through

Theorem 1.3.1 that there is a coupling kernel ofKs that satisfies (1.3.8) for (x, y) ∈ [0, 1]2 with

D(x, y) = 1x̸=y and ρ = 1− 1/Ms. Let F be the set of functions f such that supx̸=X |f(x)| =

1/2 so that ∥ ·− · ∥F corresponds to the total variation distance, and (1.3.1) holds for f ∈ F .
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By Theorem 1.3.2, for µ ∈ P(X),

∥µKt
s − πs∥TV ≤

∫
X2

1x̸=y µ(dx) πs(dy)

(
1 − 1

Ms

)t
≤
(

1 − 1

Ms

)t
.

If Ms is known, then this is a fully computable convergence bound for the independent

Metropolis Hastings chain.

Turning to the Gaussian chain in Example 1.2.2, we note that Theorem 1.3.1 is insufficient

to provide a coupling kernel with a proper contraction condition. To effectively utilize

Theorem 1.3.2 in this context, we would need some other techniques for constructing coupling

kernels. This will be resolved in Section 1.3.2.

1.3.2 One-shot coupling

To obtain a sharp convergence bound using Theorem 1.3.2, one needs to find a coupling

kernel K̃ such that ρ is small (or at the very least, strictly less than 1) in the contraction

condition (1.3.8). This is not always easy, but for some functions D(·, ·) it may be easier than

for others. Of course, the choice of D(·, ·) depends on the distance function ∥ ·− ·∥F because

of the restriction (1.3.1). When a bound in terms of the total variation distance is desired,

D(x, y) is often taken to be a weighted version of 1x̸=y, i.e., 1x̸=y h(x, y) for some h(x, y) ≥ 1;

see Section 1.3.3. When a bound in terms of the 1-Wasserstein distance induced by ψ(·, ·)
is desired, one may consider D(x, y) of the form ψ(x, y)rh(x, y)1−r for some h(x, y) ≥ 1 and

r ∈ (0, 1] (Douc et al., 2018, Section 20.4). Sometimes, for the distance function ∥ · − · ∥F
that we are interested in, it is too difficult to establish a good contraction condition for a

function D(·, ·) that satisfies (1.3.1) for f ∈ F . In such cases, it may be helpful to consider

some other distance function ∥ · − · ∥G first, establish a good contraction condition suitable

for that distance, and then transform the resulting convergence bound to one in terms of the

original distance.

Starting from a convergence bound in terms of the 1-Wasserstein distance, it is often

possible to obtain a bound in terms of the total variation distance through a technique called

“one-shot coupling” (Madras and Sezer, 2010; Roberts and Rosenthal, 2002). In particular,
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one can use the following theorem.

Theorem 1.3.3. (Madras and Sezer, 2010, Theorem 12) Let F ′ be the set of probability

measures µ ∈ P(X) such that
∫
X
ψ(x0, x)µ(dx) for some x0 ∈ X. Let ν be a σ-finite measure

on (X,B). Assume that there is a measurable function k : X2 → [0,∞) such that, for x ∈ X

and A ∈ B, K(x,A) =
∫
A
k(x, x′) ν(dx′). Suppose further that there exists a constant b <∞

such that

1 −
∫
X

min{k(x, x′), k(y, x′)} ν(dx′) ≤ bψ(x, y) (1.3.9)

for x, y ∈ X. Then, for t ∈ N and µ ∈ F ′,

∥µKt+1 −ϖ∥TV ≤ bWψ(µKt, ϖ).

Proof. Recall that

Wψ(µKt, ϖ) = inf
γt∈C(µKt,ϖ)

∫
X2

ψ(x, y) γ(d(x, y)),

and one can find γt ∈ C(µKt, ϖ) that attains the infimum. Let (X,Y ) ∈ γt, so that

Wψ(µKt, ϖ) = E[ψ(X, Y )] (1.3.10)

For x, y ∈ X, let

qx,y(z) = min{k(x, z), k(y, z)},

and set ax,y =
∫
X
qx,y(z) ν(dz), so that 1−ax,y is the left-hand-side of (1.3.9). Given (X,Y ) =

(x, y), generate (X ′, Y ′) in the following manner: With probability ax,y, let X ′ = Y ′ be

distributed according to the probability density function qx,y(·)/ax,y; with probability 1−ax,y
(if ax,y < 1), let X ′ be distributed according to the probability measure

A 7→
K(x,A) −

∫
A
qx,y(z) ν(dz)

1 − ax,y
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and, independently, let Y ′ be distributed according to the probability measure

A 7→
K(y,A) −

∫
A
qx,y(z) ν(dz)

1 − ax,y
.

It is easy to see that, given (X, Y ) = (x, y), X ′ is distributed as K(x, ·) and Y ′ is distributed

as K(y, ·). Thus, marginally, X ′ is distributed as∫
X2

K(x, ·) γt(d(x, y)) =

∫
X

µKt(dx)K(x, ·) = µK t+1(·),

while Y ′ is distributed as ϖK(·) = ϖ(·). Hence, the joint distribution of (X ′, Y ′) is in

C(µKt+1, ϖ).

By (1.3.3), (1.3.9), and (1.3.10),

∥µKt+1 −ϖ∥TV ≤ P (X ′ ̸= Y ′)

= E[P (X ′ ̸= Y ′ | X, Y )]

≤ E(1 − aX,Y )

≤ bE[ψ(X, Y )]

= bWψ(µKt, ϖ).

Application to the Gaussian chain

Let us apply Theorem 1.3.2 and Theorem 1.3.3 to the Gaussian chain in Example 1.2.2, and

use it as a stage for discussing some practical issues concerning the application of coupling

methods.

Suppose that our goal is to bound ∥µK t
p,α−ϖp∥TV from above. To apply Theorem 1.3.2,

one could let D(x, y) = 1x̸=y for x, y ∈ Rp. But, in this case, it is impossible to establish a

nontrivial contraction condition. Indeed, by (1.3.3), for any coupling kernel K̃ of Kp,α and
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x, y ∈ Rp, ∫
Rp×Rp

1x′ ̸=y′ K̃((x, y), d(x′, y′)) ≥ ∥δxKp,α − δyKp,α∥TV.

But, by (1.2.1), whenever α > 0, the total variation distance between Np(αx, (1−α2)Ip) and

Np(αy, (1 − α2)Ip) goes to 1 as ∥x− y∥ → ∞. Thus, the contraction condition∫
Rp×Rp

1x′ ̸=y′ K̃((x, y), d(x′, y′)) ≤ ρ1x̸=y, x, y ∈ Rp,

can only hold when ρ ≥ 1. One could get somewhere if D(x, y) is taken to be, say,

1x̸=y [p−1∥x∥2 + p−1∥y∥2 + 1]1−r for some r ∈ (0, 1); see Section 1.3.3. However, it turns

out that it is much easier to construct a sharp convergence bound by first considering the

1-Wasserstein distance induced by the Euclidean distance, and then utilize one-shot coupling.

For x, y ∈ Rp, let ψ(x, y) = ∥x − y∥. Let F ′
p be the set of probability measures µ

such that
∫
Rp ∥x∥µ(dx) < ∞. We will bound Wψ(µKt

p,α, ϖp) from above for µ ∈ F ′
p using

Theorem 1.3.2.

There are many possible ways of constructing coupling kernels. Here, we use a con-

struction sometimes referred to as the “common random number coupling.” Let N be an

Np(0, Ip) distributed random vector. For (x, y) ∈ Rp, let K̃p,α((x, y), ·) be the joint distribu-

tion of αx+
√

1 − α2N and αy+
√

1 − α2N . Since αx′ +
√

1 − α2N ∼ Kp,α(x′, ·) for x′ ∈ Rp,

K̃p,α is a coupling kernel of Kp,α. For (x, y) ∈ Rp × Rp,∫
Rp×Rp

∥x′ − y′∥ K̃p,α((x, y), d(x′, y′)) = E[∥(αx+
√

1 − α2N) − (αy +
√

1 − α2N)∥]

= α∥x− y∥.

Thus, the contraction condition (1.3.8) holds on Rp ×Rp for K̃ = K̃p,α with D(·, ·) = ψ(·, ·)
and ρ = α. By Theorem 1.3.2 and the triangle inequality, for t ∈ N,

Wψ(µKt
p,α, ϖp) ≤

(∫
Rp

∥x∥µ(dx) +

∫
Rp

∥y∥ϖp(dy)

)
αt. (1.3.11)

This bound reveals that µK t
p,α approaches ϖp in the 1-Wasserstein distance at a geometric

rate α.
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If this were a practical problem, the stationary distribution ϖp would likely be intractable,

and one would not be able to evaluate
∫
Rp ∥y∥ϖp(dy). It is however possible to bound the

integral from above via the following result for a generic Markov chain with Mtk K(·, ·).

Theorem 1.3.4. (Hairer, 2006, Proposition 4.24) Let h : X → [0,∞) be a measurable

function. Suppose that there exist λ ∈ [0, 1) and L ∈ [0,∞) such that, for x ∈ X,∫
X

h(x′)K(x, dx′) ≤ λh(x) + L.

(This is called a drift condition.) Then∫
X

h(x)ϖ(dx) ≤ L

1 − λ
.

Proof. By the drift condition, for x ∈ X and t ∈ N+,∫
X

h(x′)Kt(x, dx′) ≤ λth(x) +
L(1 − λt)

1 − λ
.

For n ∈ N+, let hn : X → [0,∞) be such that hn(x) = min{h(x), n}. Then∫
X

hn(x′)Kt(x, dx′) ≤ min

{
λth(x) +

L(1 − λt)

1 − λ
, n

}
.

Integrating with respect to ϖ yields∫
X

hn(x)ϖ(dx) =

∫
X2

hn(x′)Kt(x, dx′)ϖ(dx) ≤
∫
X

min

{
λth(x) +

L(1 − λt)

1 − λ
, n

}
ϖ(dx).

By the dominated convergence theorem, letting t→ ∞ shows that∫
X

hn(x)ϖ(dx) ≤ min

{
L

1 − λ
, n

}
.

By the monotone convergence theorem, letting n→ ∞ yields the desired result.

In Example 1.2.2, we can pretend that we know little of ϖp, and bound
∫
Rp ∥y∥ϖp(dy)
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in the following manner. Note that∫
Rp

∥x′∥2Kp,α(x, dx′) = α2∥x∥2 + (1 − α2)p.

Thus, by Theorem 1.3.4,

∫
Rp

∥x∥ϖp(dy) ≤

√∫
Rp

∥x∥2ϖp(dy) ≤
√

(1 − α2)p

1 − α2
=

√
p. (1.3.12)

Let us now apply Theorem 1.3.3 to transform the Wasserstein distance bound into a total

variation bound. For x ∈ Rp, let kp,α(x, ·) be the density function of the Np(αx, (1 − α2)Ip)

distribution, i.e., Kp,α(x, ·), with respect to the Lebesgue measure. A bit of calculus reveals

that, for x, y ∈ Rp,

1 −
∫
Rp

min{kp,α(x, x′), kp,α(y, x′)} dx′ = 1 − 2FN

(
−α∥x− y∥

2
√

1 − α2

)
≤ α√

(2π)(1 − α2)
∥x− y∥,

(1.3.13)

where FN(·) is the cumulative distribution function of the one-dimensional standard normal

distribution. By Theorem 1.3.3 along with (1.3.11) to (1.3.13), for µ ∈ F ′
p and t ∈ N,

∥µKt+1
p,α −ϖp∥TV ≤ α√

(2π)(1 − α2)

(∫
Rp

∥x∥µ(dx) +
√
p

)
αt. (1.3.14)

This bound indicates that µK t
p,α approachesϖp in the total variation distance at a geomet-

ric rate α, which does not depend on the dimension p. By considering the L2 convergence

rate of the chain (see Section 1.4.1) and utilizing Theorem 2.1 of Roberts and Rosenthal

(1997), it is possible to show that the convergence rate indicated by (1.3.14) is in fact sharp.

That is, it is not possible to find a bound of the form ∥µK t
p,α − ϖp∥TV ≤ Cp,α,µρ

t
p,α, where

Cp,α,µ < ∞ and ρp,α < α, that holds for all µ ∈ F ′
p and t ∈ N+. This is an example of the

convergence bound scaling well with the dimension in the sense that the convergence rate

indicated by the bound does not deteriorate (go to 1) faster than the true convergence rate

does as the dimension grows. Good scaling is not always easily achieved, as obtaining sharp

convergence bounds often becomes more difficult in problems with higher dimensions. In
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Section 1.3.3, we give a type of bound that is tremendously popular and powerful in certain

settings but scales poorly with the dimension when applied to Example 1.2.2.

We may also use (1.3.14) to obtain a bound on the mixing time. For µ ∈ F ′
p and ϵ > 0,

let tTV(ϵ, µ) be the smallest t ∈ N+ such that ∥µKt −ϖ∥TV ≤ ϵ. Then (1.3.14) implies that

tTV(ϵ, µ) ≤

⌈
(− logα)−1

{
log

[
α√

(2π)(1 − α2)

(∫
Rp

∥x∥µ(dx) +
√
p

)]
− log ϵ

}⌉

if α ∈ (0, 1). If
∫
Rp ∥x∥µ(dx) = O(p) as p→ ∞, then tTV(ϵ, µ) = O(log p).

1.3.3 Drift and minorization

As a final application of the coupling method, we use it to derive a convergence bound

based on a set of drift and minorization conditions. Many important convergence bounds

in the literature are constructed based on this type of condition (Mengersen and Tweedie,

1996; Meyn and Tweedie, 2012; Roberts and Tweedie, 1999; Rosenthal, 1995; Tierney, 1994).

While these bounds are often far from sharp (Qin and Hobert, 2020), they are very powerful

for establishing qualitative results like geometric ergodicity (Hobert and Geyer, 1998; Jarner

and Hansen, 2000; Jones and Hobert, 2001, 2004; Khare and Hobert, 2013; Livingstone et al.,

2019; Roy and Hobert, 2007).

Recall the drift condition in Theorem 1.3.4. We say that the Mtk K satisfies a drift

condition with drift function h : X → [0,∞) if there exist λ ∈ [0, 1) and L ∈ [0,∞) such

that, for x ∈ X,

Kh(x) :=

∫
X

h(x′)K(x, dx′) ≤ λh(x) + L.

We say that K satisfies a minorization condition associated with h if there exist ε > 0, a

probability measure ν ∈ P(X), and ∆ > 2L/(1 − λ) such that

K(x,A) ≥ εν(A)

for A ∈ B whenever h(x) ≤ ∆.
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The following convergence bound is reminiscent of a famous result from Rosenthal (1995).

Its proof uses ideas from Butkovsky (2014); Douc et al. (2018); Hairer and Mattingly (2011);

Hairer et al. (2011).

Theorem 1.3.5. Suppose that the above drift and minorization conditions hold. Then, for

µ ∈ P(X), r ∈ (0, 1), and t ∈ N,

∥µKt −ϖ∥TV ≤
(
µh+

L

1 − λ
+ 1

)
ρt.

where

ρ = max

{
(1 − ε)r(2L+ 1)1−r,

(
λ+

2L+ 1 − λ

∆ + 1

)1−r
}
. (1.3.15)

Remark 1.3.2. Note that ∆ > 2L/(1−λ) implies that λ+ (2L+ 1−λ)/(∆ + 1) < 1. Thus,

there exists r ∈ (0, 1) such that ρ, as given in (1.3.15), is strictly less than 1.

Proof of Theorem 1.3.5. We will make use of Theorem 1.3.2. Take F to be the set of func-

tions f such that supx∈X |f(x)| = 1/2 and F ′ = P(X), so that ∥ · − · ∥F = ∥ · − · ∥TV.

Fix r ∈ (0, 1). For (x, y) ∈ X2, let

D(x, y) = 1x̸=y[h(x) + h(y) + 1]1−r.

Then D(x, y) ≥ 1x̸=y ≥ |f(x) − f(y)| for f ∈ F , i.e., (1.3.1) holds for f ∈ F .

Let us now construct a coupling kernel that satisfies a contraction condition. The con-

struction is somewhat similar to the one in the proof of Theorem 1.3.1. Let S = {x ∈ X :

h(x) ≤ ∆}. Let (Xt, Yt)
∞
t=0 be a bivariate Markov chain that evolves as follows. Suppose that

the current state is (Xt, Yt) = (x, y). When x = y, simply generate Xt+1 = Yt+1 according to

the probability measure K(x, ·). When x ̸= y, do the following. If (x, y) ̸∈ S2, then generate

Xt+1 ∼ K(x, ·) and Yt+1 ∼ K(y, ·) independently. If (x, y) ∈ S2, then, with probability ε,

let Xt+1 = Yt+1 be distributed as ν; with probability 1− ε, let Xt+1 be distributed according

to the probability measure (1.3.5), and, independently, let Yt+1 be distributed according to

the probability measure (1.3.6). It is straightforward to check that the Mtk of this chain,

denoted by K̃, is a coupling kernel of K.
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Now, for (x, y) ∈ X2, by Höder’s inequality,∫
X2

D(x′, y′) K̃((x, y), d(x′, y′))

=

∫
X2

1rx′ ̸=y′ [h(x′) + h(y′) + 1]1−r K̃((x, y), d(x′, y′))

≤
[∫

X2

1x′ ̸=y′ K̃((x, y), d(x′, y′))

]r {∫
X2

[h(x′) + h(y′) + 1] K̃((x, y), d(x′, y′))

}1−r

=

[∫
X2

1x′ ̸=y′ K̃((x, y), d(x′, y′))

]r
[Kh(x) +Kh(y) + 1]1−r.

By construction,

∫
X2

1x′ ̸=y′ K̃((x, y), d(x′, y′)) ≤

(1 − ε)1x̸=y, (x, y) ∈ S2,

1x̸=y, otherwise.

By the drift condition,

Kh(x) +Kh(y) + 1 ≤ λh(x) + λh(y) + 2L+ 1

=

[
λ+

2L+ 1 − λ

h(x) + h(y) + 1

]
[h(x) + h(y) + 1]

≤

(2L+ 1)[h(x) + h(y) + 1], (x, y) ∈ S2,(
λ+ 2L+1−λ

∆+1

)
[h(x) + h(y) + 1], otherwise.

Combining terms, we find that∫
X2

D(x′, y′) K̃((x, y), d(x′, y′)) ≤ ρD(x, y),

where ρ is given in (1.3.15).
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Let γ be a coupling of µ and ϖ. By Theorem 1.3.2, for µ ∈ P(X) and t ∈ N,

∥µKt −ϖ∥TV ≤
∫
X2

D(x, y) γ(d(x, y))ρt

≤
∫
X2

[h(x) + h(y) + 1] γ(d(x, y))ρt

= (µh+ϖh+ 1)ρt.

Applying Theorem 1.3.4 to bound ϖh gives us the desired result.

For alternative derivations of drift and minorization-based convergence bounds that rely

less on the coupling method, see Baxendale (2005); Jerison (2019); Meyn and Tweedie (1994).

The drift and minorization condition presented here is just one among several commonly

used forms. For some other useful versions of drift and minorization, including those used for

establishing subgeometric convergence, see Andrieu et al. (2015); Butkovsky (2014); Douc

et al. (2004, 2008); Durmus et al. (2016); Jarner and Roberts (2002); Zhou et al. (2022).

Application to the Gaussian chain

We now apply Theorem 1.3.5 to the Gaussian chain in Example 1.2.2. A drift function we

can use is h(x) = p−1∥x∥2, x ∈ Rp. Then

Kp,αh(x) = α2h(x) + 1 − α2.

So a drift condition holds with λ = α2 and L = 1 − α2. Let ∆ > 2L/(1 − λ) = 2, and let

S = {x ∈ Rp : h(x) ≤ ∆}. Recall that kp,α(x, ·) is the density of Kp,α(x, ·) for x ∈ X. For

x′ ∈ Rp, let

q(x′) = inf
x∈S

kp,α(x, x′) =
1

[2π(1 − α2)]p/2
exp

[
−(∥x′∥ + α

√
p∆)2

2(1 − α2)

]
.
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Then, for x ∈ S and x′ ∈ Rp,

kp,α(x, x′) ≥ ε
q(x′)∫

Rp q(x′′) dx′′
,

where

ε =

∫
Rp

q(x′′) dx′′ =

∫
Rp

1

[2π(1 − α2)]p/2
exp

[
−(∥x′′∥ + α

√
p∆)2

2(1 − α2)

]
dx′′.

Thus, a minorization condition holds with this value of ε. Applying Theorem 1.3.5 shows

that, for µ ∈ P(Rp) and t ∈ N,

∥µKt
p,α −ϖp∥TV ≤ (µh+ 2) ρt,

where, for some r ∈ (0, 1),

ρ = max

{
(1 − ε)r(3 − 2α2)1−r,

(
α2 +

3(1 − α2)

∆ + 1

)1−r
}
. (1.3.16)

For concreteness, take p = 10 and α = 1/2. Then

ε =

∫
R10

(
2

3π

)5

exp

[
−2(∥x′′∥ +

√
2.5∆)2

3

]
dx′′

=

∫ ∞

0

26u9

35 × 4!
exp

[
−2(u+

√
2.5∆)2

3

]
du.

For instance, if ∆ = 4, then ε ≈ 2.28×10−7. In (1.3.16), we can optimize the value of r to find

the smallest value of ρ, which yields ρ ≈ 1−6×10−8. Other choices of ∆ ∈ (2,∞) would result

in values of ρ that are very close to unity as well. When t is large, the resulting upper bound

on ∥µKt
p,α−ϖp∥TV, which is proportional to ρt, is extremely conservative. Indeed, recall that

the much sharper bound from (1.3.14) is proportional to αt = 0.5t. Through experiments

one can find that the conservativeness of (1.3.16) is exacerbated when the dimension p is

increased. This is consistent with empirical evidence and theoretical analyses in the existing

literature, which suggest that bounds based on drift and minorization conditions typically

scale poorly with dimensions (Qin and Hobert, 2020). Oftentimes, this type of bound is
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more suitable for establishing qualitative results such as geometric ergodicity.

1.4 L2 theory

The L2 theory for Markov chains is a framework for studying the convergence properties of a

Markov chain, usually reversible, in terms of the L2 distance by examining the linear operator

associated with the chain’s transition kernel. A substantial body of literature works within

this theoretical framework, offering a diverse array of analytical techniques (Amit, 1996;

Andrieu et al., 2022; Diaconis et al., 2000, 2008; Dwivedi et al., 2019; Hobert and Marchev,

2008; Khare and Hobert, 2011; Liu et al., 1994; Roberts and Rosenthal, 1997; Roberts and

Sahu, 1997, to name some). We will first review some basic concepts. Then, we explain

how isoperimetric inequalities, a type of inequality that regulates the geometric features of

the target distribution, can be leveraged to analyze Markov chains within this framework.

Finally, we review some simple techniques for showing how slow a chain converges.

1.4.1 Basic theory

Throughout Section 1.4, let F be the set of functions f such that
∫
X
f(x)2ϖ(dx) = 1, and let

F ′ be the set of probability measures µ such that dµ/dϖ is squared integrable with respect

to ϖ. Then ∥µ− ν∥F is the L2 distance ∥µ− ν∥2 for µ, ν ∈ F ′.

The L2 theory for Markov chains begins with the examination of a linear space formed by

some functions on X. Denote by L2(ϖ) the set of real measurable functions f on X such that∫
X
f(x)2ϖ(dx) <∞, with the understanding that two functions are equal if their difference

is ϖ-almost everywhere vanishing. For c ∈ R and f, g ∈ L2(ϖ), let (−f)(x) = −f(x),

(cf)(x) = cf(x), (f + g)(x) = f(x) + g(x), and (f − g)(x) = f(x) − g(x) for x ∈ X. Then

L2(ϖ) forms a real linear space. For f, g ∈ L2(ϖ), define their inner product as

⟨f, g⟩ =

∫
X

f(x)g(x)ϖ(dx),
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and let ∥f∥2 = ⟨f, f⟩1/2. Then ∥ · ∥2 is a norm, and shall be referred to as the L2(ϖ) norm.

It can be shown that L2(ϖ) is a Hilbert space (see, e.g., Bruckner et al., 2008, Theorem

13.15).

The space L2(ϖ) provides a natural stage for studying the L2 distance between distribu-

tions. Indeed, a distribution µ is in F ′ if and only if the function dµ/dϖ exists and is in

L2(ϖ). Moreover, using the Cauchy-Schwarz inequality, one can derive (1.2.2), which states

that, for µ, ν ∈ F ′,

∥µ− ν∥2 =

∥∥∥∥ dµ

dϖ
− dν

dϖ

∥∥∥∥
2

.

It will be convenient to work with the subspace L2
0(ϖ), which consists of functions f ∈

L2(ϖ) such that ϖf = 0.

Remark 1.4.1. If a random element X is distributed as ϖ, and f and g are in L2
0(ϖ), then

E[f(X)] = E[g(X)] = 0, ⟨f, g⟩ = cov [f(X), g(X)], and ∥f∥22 = var [f(X)].

The Mtk K(·, ·), which satisfies ϖK(·) = ϖ(·), can be regarded as a bounded linear

operator (called a Markov operator) on L2
0(ϖ) in the following way. For f ∈ L2

0(ϖ), let

Kf(x) =

∫
X

f(x′)K(x, dx′), x ∈ X.

The map f 7→ Kf is clearly linear. To see that its range is in L2
0(ϖ), note that when

f ∈ L2
0(ϖ), ∫

X

Kf(x)ϖ(dx) =

∫
X

∫
X

f(x′)K(x, dx′)ϖ(dx) =

∫
X

f(x)ϖ(dx) = 0,

and, by Jensen’s inequality,

∫
X

[∫
X

K(x, dx′)f(x′)

]2
ϖ(dx) ≤

∫
X

∫
X

f(x′)2K(x, dx′)ϖ(dx) =

∫
X

f(x′)2ϖ(dx′) <∞.

(1.4.1)

The operator norm of K is

∥K∥2 = sup
f∈L2

0(ϖ), f ̸=0

∥Kf∥2
∥f∥2

= sup
f∈L2

0(ϖ), ∥f∥2=1

∥Kf∥2.
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By (1.4.1), ∥K∥2 ≤ 1.

Remark 1.4.2. Let (Xt)
∞
t=0 be a chain associated with K. Then, for f ∈ L2

0(ϖ), Kf(X0) =

E[f(X1) | X0]. If, furthermore, X0 ∼ ϖ, then, for f, g ∈ L2
0(ϖ),

∥Kf∥22 = var {E[f(X1) | X0]}, ⟨f,Kg⟩ = cov (f(X0), g(X1)).

For t ∈ N+, the t-step Mtk Kt(·, ·) also defines an operator Kt on L2
0(ϖ), with K1f = Kf ,

and

Ktf(x) =

∫
X

f(x′)Kt(x, dx′) =

∫
X

Kf(x′)Kt−1(x, dx
′)

when t ≥ 2. Note that Ktf is K applied to f t times. In other words, Kt is just Kt, the

product (composition) of t K’s. By convention, K0 is the identity operator.

The convergence behavior of a Markov chain associated with the Mtk K(·, ·) is tied to

the properties of the operator K. Indeed, the following theorem is well-known, and can be

found in, e.g., Roberts and Rosenthal (1997).

Theorem 1.4.1. For µ ∈ F ′ and t ∈ N,

∥µKt −ϖ∥2 ≤ ∥µ−ϖ∥2∥Kt∥2 ≤ ∥µ−ϖ∥2∥K∥t2. (1.4.2)

Proof. The second inequality follows from the sub-multiplicity of operator norms. We will

focus on establishing the first inequality. Note that if f ∈ F so that ∥f∥2 = 1, then

f −ϖf ∈ L2
0(ϖ), and ∥f −ϖf∥22 = ∥f∥22 − (ϖf)2 ≤ 1. (For a constant c, f − c means the
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function satisfying (f − c)(x) = f(x) − c.) Then

∥µKt −ϖ∥2 = sup
f∈F

|(µKt)f − (ϖKt)f |

= sup
f∈F

|(µKt)(f −ϖf) − (ϖK t)(f −ϖf)|

= sup
f∈F

∣∣∣∣∫
X2

[µ(dx) −ϖ(dx)]K t(x, dx′)[f(x′) −ϖf ]

∣∣∣∣
= sup

f∈F

〈
dµ

dϖ
− 1, Kt(f −ϖf)

〉
≤
∥∥∥∥ dµ

dϖ
− 1

∥∥∥∥
2

∥Kt∥2 sup
f∈F

∥f −ϖf∥2

≤ ∥µ−ϖ∥2∥Kt∥2.

Note that we have used the Cauchy-Schwarz inequality and the definition of the operator

norm.

Theorem 1.4.1 implies that, if ∥K∥2 ≤ ρ for some ρ < 1, then asymptotically ∥µK t−ϖ∥2
decreases with t at a geometric rate of ρt or faster. In fact, if the Mtk K(·, ·) is reversible

with respect to ϖ(·), then the converse is true as well. Note that K(·, ·) is reversible if and

only if ∫
X2

f(x)g(x′)K(x, dx′)ϖ(dx) =

∫
X2

g(x)f(x′)K(x, dx′)ϖ(dx)

for f, g ∈ L2
0(ϖ), i.e., ⟨f,Kg⟩ = ⟨Kf, g⟩. In other words, the Mtk K(·, ·) is reversible if and

only if the operator K is self-adjoint. Using this fact we can establish the following result.

Theorem 1.4.2. (Roberts and Rosenthal, 1997, Theorem 2.1) Suppose that K(·, ·) is re-

versible. Suppose further that there exist C : F ′ → [0,∞) and ρ < 1 such that, for µ ∈ F ′

and t ∈ N,
∥µKt −ϖ∥2 ≤ C(µ)ρt. (1.4.3)

Then ∥K∥2 ≤ ρ.

Proof. By assumption, K is a self-adjoint operator. Then K has a spectral decomposition:
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for f, g ∈ L2
0(ϖ) and t ∈ N,

⟨Ktf, g⟩ =

∫ ∞

−∞
λt⟨EK(dλ)f, g⟩,

where EK(·) is the spectral measure of K, which is a projection-valued measure that is sup-

ported on the spectrum of K. See, e.g., Conway (1990), §IX.2; Arveson (2006), Section 2.7.

An important property of EK(·) is that, for a measurable subset B of R, if a non-vanishing

function f ∈ L2
0(ϖ) is in the range of the orthogonal projection operator EK(B), then

∥f∥−2
2 ⟨f, EK(·)f⟩ is a probability measure concentrated on B.

Suppose that ∥K∥2 > ρ so that ∥K∥2 ≥ ρ + ε for some ε > 0. Then there exists a

non-vanishing function f ∈ L2
0(ϖ) in the range of the projection operator EK([ρ + ε,∞) ∪

(−∞,−ρ − ε]). Let f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0} for x ∈ X, so that

f = f+ − f−. Let

µ+(A) =
2
∫
A
f+(x)ϖ(dx)

∥f∥1
, µ−(A) =

2
∫
A
f−(x)ϖ(dx)

∥f∥1

for A ∈ B, where

∥f∥1 =

∫
X

|f(x)|ϖ(dx) = 2

∫
X

f+(x)ϖ(dx) = 2

∫
X

f−(x)ϖ(dx).

Then µ+ and µ− are in F ′. Moreover, f/∥f∥2 is in F . By the spectral decomposition, for

t ∈ N,

∥µ+K
2t − µ−K

2t∥2 ≥
∫
X2

[µ+(dx) − µ−(dx)]K2t(x, dx′)
f(x′)

∥f∥2

= 2

〈
f+ − f−
∥f∥1

, K2t f

∥f∥2

〉
=

2

∥f∥1∥f∥2

∫ ∞

−∞
λ2t⟨f, EK(dλ)f⟩

≥ 2∥f∥2
∥f∥1

(ρ+ ε)2t.

The last line holds because the probability measure ∥f∥−2
2 ⟨f, EK(·)f⟩ is concentrated on
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[ρ+ ε,∞) ∪ (−∞,−ρ− ε]. The L2 distance satisfies the triangle inequality, so

∥µ+K
t −ϖ∥2 + ∥µ−K

t −ϖ∥2 ≥ ∥µ+K
t − µ−K

t∥2 ≥
2∥f∥2
∥f∥1

(ρ+ ε)t

for t ∈ N. Then it is impossible for (1.4.3) to hold for all µ ∈ F ′ and t ∈ N. Thus, it must

hold that ∥K∥2 ≤ ρ.

Theorems 1.4.1 and 1.4.2 show that, if K(·, ·) is reversible, then ∥K∥2, which lies in [0, 1],

can be regarded the convergence rate of the corresponding chain. The smaller ∥K∥2 is, the

faster the chain converges.

In some simple scenarios, it is possible to calculate ∥K∥2 directly using functional analytic

techniques. For instance, in Example 1.2.2, it can be shown, using orthogonal polynomials,

that ∥Kp,α∥2 = α (see, e.g., Diaconis et al., 2008). One can compare this rate with that

in Section 1.3 involving the total variation distance. In more complex scenarios, one hopes

to derive some reasonably sharp bounds on ∥K∥2. Of course, to apply Theorem 1.4.1 in

practice, one would also need to get a handle on ∥µ − ϖ∥2. But since ∥K∥2 is the more

important quantity in (1.4.2) when t is large, it will be our focus herein.

We end Section 1.4.1 with an elementary method for bounding ∥K∥2 from above which

can be applied to Example 1.2.1. More sophisticated methods will be given later.

Theorem 1.4.3. Suppose that there exists ε > 0 such that K(x,A) ≥ εϖ(A) for x ∈ X and

A ∈ B. Then ∥K∥2 ≤ 1 − ε.

Proof. It is clear that ε ≤ 1. If ε = 1 then Kf = ϖf = 0 for f ∈ L2
0(ϖ), indicating that

∥K∥2 = 0. Suppose that ε < 1. Let R(x,A) = (1 − ε)−1[K(x,A) − εϖ(A)] for x ∈ X

and A ∈ B. Then R(·, ·) is an Mtk such that ϖR = ϖ, and we may view R as a Markov

operator on L2
0(ϖ). Replacing K(·, ·) with R(·, ·) in (1.4.1), we find that ∥R∥2 ≤ 1. Thus,

for f ∈ L2
0(ϖ),

∥Kf∥2 = ∥εϖf + (1 − ε)Rf∥2 = (1 − ε)∥Rf∥2 ≤ (1 − ε)∥f∥2.



1.4. L2 THEORY 29

This implies that ∥K∥2 ≤ 1 − ε.

Let us apply Theorem 1.4.3 to the independent Metropolis Hastings chain in Example

1.2.1. Recall from (1.3.7) that, for x ∈ X = [0, 1] and A ∈ B, Ks(x,A) ≥ (1/Ms)πs(A).

Hence, by Theorem 1.4.3, ∥Ks∥2 ≤ 1 − 1/Ms. In Section 1.4.4, it will be shown that this

bound is tight.

1.4.2 The spectral gap and the conductance

Let K(·, ·) be reversible, so that the corresponding operator is self-adjoint. Consider the task

of bounding ∥K∥2, particularly from above. Self-adjoint-ness implies that

∥K∥2 = max

{
sup

f∈L2
0(ϖ), f ̸=0

⟨f,Kf⟩
∥f∥22

,− inf
f∈L2

0(ϖ), f ̸=0

⟨f,Kf⟩
∥f∥22

}
(1.4.4)

(see, e.g., Helmberg, 2014, §14, Corollary 5.1). In certain cases, it is possible to bound the

second term in the maximum quite easily. For instance, if K is associated with a random-

scan Gibbs algorithm or a data augmentation algorithm, then K is positive semi-definite in

the sense that it is self-adjoint, and ⟨f,Kf⟩ ≥ 0 for f ∈ L2
0(ϖ), so the second term is at

most zero. See Theorem 3 of Liu et al. (1995) and Theorem 3.2 of Liu et al. (1994). This

is also the case if K(·, ·) is the two-step Mtk of some reversible chain, i.e., K = T 2 for some

Mtk T (·, ·) that is reversible with respect to ϖ(·). Finally, if the chain is lazy in the sense

that K(x, {x}) ≥ c for every x and some positive constant c, then the second term is at

most 1 − 2c. For various MCMC algorithms, much effort has been spent on bounding the

first term from above, or equivalently, bounding the spectral gap, defined as

G(K) = 1 − sup
f∈L2

0(ϖ), f ̸=0

⟨f,Kf⟩
∥f∥22

,

from below.

It is worth mentioning that the spectral gap is also closely related to the asymptotic

variance of Monte Carlo estimators. To be more precise, let (Xt)
∞
t=0 be a chain associated
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with K, and let f ∈ L2(ϖ). Then, under regularity conditions, n1/2[n−1
∑n

i=1 f(Xi) −ϖf ]

is asymptotically normally distributed as n → ∞, and the asymptotic variance is upper

bounded by [2 −G(K)]/G(K). See, e.g., Chan and Geyer (1994), equation (7).

One important approach for bounding the spectral gap is relating it to a quantity called

the “conductance” (Jerrum and Sinclair, 1988). The conductance of K is defined to be

ΦK = inf
A∈B, 0<ϖ(A)<1

ϕK(A), where ϕK(A) =

∫
A
ϖ(dx)K(x,Ac)

ϖ(A)ϖ(Ac)
.

Loosely speaking, ϕK(A) measures the probability flow from A to its complement Ac, after

adjusting for the probability masses of A and Ac. A large conductance indicates that the

chain can freely move around the state space X, and vice versa.

The conductance is related to the spectral gap through the following remarkable result,

called Cheeger’s inequality.

Theorem 1.4.4. (Lawler and Sokal, 1988, Theorem 2.1) For the reversible Mtk K(·, ·),
Φ2
K/8 ≤ G(K) ≤ ΦK.

Proof. For A ∈ B and x ∈ X, let ηA(x) = 1x∈A − ϖ(A). Then ηA ∈ L2
0(ϖ), and it is

straightforward to check that

ϕK(A) = 1 − ⟨ηA, KηA⟩
∥ηA∥22

, A ∈ B.

Then G(K) ≤ ϕK(A) for any A and thus, G(K) ≤ ΦK .

We now establish the other inequality. Using the fact that ϖK = ϖ, one can obtain

G(K) = inf
f∈L2

0(ϖ), f ̸=0

∫
X
f(x)2ϖ(dx) −

∫
X2 f(x)f(x′)K(x, dx′)ϖ(dx)

∥f∥22

=
1

2
inf

f∈L2
0(ϖ), f ̸=0

∫
X2 [f(x) − f(x′)]2K(x, dx′)ϖ(dx)

∥f∥22

(1.4.5)

For now, fix f ∈ L2
0(ϖ) such that f ̸= 0 and s ∈ R. Let fs(x) = f(x) − s for x ∈ X. By the



1.4. L2 THEORY 31

Cauchy-Schwarz inequality,∫
X2

[f(x) − f(x′)]2K(x, dx′)ϖ(dx) =

∫
X2

[fs(x) − fs(x
′)]2K(x, dx′)ϖ(dx)

≥
{∫

X2 |fs(x)2 − fs(x
′)2|K(x, dx′)ϖ(dx)

}2∫
X2 [fs(x) + fs(x′)]2K(x, dx′)ϖ(dx)

≥
{∫

X2 |fs(x)2 − fs(x
′)2|K(x, dx′)ϖ(dx)

}2
2
∫
X2 [fs(x)2 + fs(x′)2]K(x, dx′)ϖ(dx)

=

{∫
X2 |fs(x)2 − fs(x

′)2|K(x, dx′)ϖ(dx)
}2

4∥fs∥22

(1.4.6)

Let As,f (t) = {x : fs(x)2 ≥ t} for t ∈ [0,∞). Then∫
X2

|fs(x)2 − fs(x
′)2|K(x, dx′)ϖ(dx)

=

∫
X2

1fs(x′)2<fs(x)2

∫ fs(x)2

fs(x′)2
dtK(x, dx′)ϖ(dx) +

∫
X2

1fs(x)2<fs(x′)2

∫ fs(x′)2

fs(x)2
dtK(x, dx′)ϖ(dx)

=

∫ ∞

0

∫
X2

1fs(x′)2<t≤fs(x)2 K(x, dx′)ϖ(dx) dt+

∫ ∞

0

∫
X2

1fs(x)2<t≤fs(x′)2 K(x, dx′)ϖ(dx) dt

=

∫ ∞

0

∫
As,f (t)

ϖ(dx)K(x,As,f (t)c) dt+

∫ ∞

0

∫
As,f (t)c

ϖ(dx)K(x,As,f (t)) dt

≥2ΦK

∫ ∞

0

ϖ(As,f (t))[1 −ϖ(As,f (t))] dt.

(1.4.7)

A similar calculation reveals that∫
X2

|fs(x)2 − fs(x
′)2|ϖ(dx′)ϖ(dx) = 2

∫ ∞

0

ϖ(As,f (t))[1 −ϖ(As,f (t))] dt. (1.4.8)

Letting f and s vary, we have the following:

G(K) ≥ inf
f∈L2

0(ϖ), f ̸=0
sup
s∈R

{∫
X2 |fs(x)2 − fs(x

′)2|K(x, dx′)ϖ(dx)
}2

8∥f∥22∥fs∥22
by (1.4.5) and (1.4.6)

≥ Φ2
K

8
inf

f∈L2
0(ϖ), f ̸=0

sup
s∈R

(∫
X2 |fs(x)2 − fs(x

′)2|ϖ(dx′)ϖ(dx)

∥f∥2∥fs∥2

)2

by (1.4.7) and (1.4.8)

=
Φ2
K

8
inf

f∈L2
0(ϖ), f ̸=0

sup
s∈R

(
E[|(X − s)2 − (Y − s)2|]√

var(X)
√
E[(X − s)2]

)2

,
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where X and Y are independently and identically (iid) distributed as ϖ ◦ f−1, i.e., the

distribution of f(W ) with W ∼ ϖ. Note that E(X) = ϖf = 0, and var(X) = ∥f∥22 ∈ (0,∞).

To conclude the proof, it suffices to show that, for two iid random variables X and Y

with mean zero and some standard deviation σ > 0,

sup
s∈R

E[|(X − s)2 − (Y − s)2|]
σ
√
E[(X − s)2]

≥ 1. (1.4.9)

By the dominated convergence theorem, lims→∞E[s−2(X − s)2] = 1, while

lim
s→∞

E[s−1|(X − s)2 − (Y − s)2|] = 2E[|X − Y |]

= 2E[E(|X − Y | | X)]

≥ 2E[|E(X − Y | X)|]

= 2E(|X|) since E(Y | X) = E(Y ) = 0.

Thus,

sup
s∈R

E[|(X − s)2 − (Y − s)2|]√
E[(X − s)2]

≥ lim
s→∞

E[|(X − s)2 − (Y − s)2|]√
E[(X − s)2]

≥ 2E(|X|). (1.4.10)

On the other hand, using the assumption that E(X2) = E(Y 2) = σ2 and the fact that

|u2 − σ2| ≥ (|u| − σ)2 for u ∈ R, we have

E(|X2 − Y 2|) ≥ E[|E(X2 − Y 2 | X)|] = E(|X2 − σ2|) ≥ E[(|X| − σ)2] = 2σ2 − 2σE(|X|).

Thus,

sup
s∈R

E[|(X − s)2 − (Y − s)2|]√
E[(X − s)2]

≥ E|(X − 0)2 − (Y − 0)2|√
E[(X − 0)2]

≥ 2σ − 2E(|X|). (1.4.11)

Combining (1.4.10) and (1.4.11) gives (1.4.9).
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Figure 1.1: A dumbbell-shaped domain partitioned into three parts. The sets S1 (horizontal
stripes) and S2 (vertical stripes) are separated by a narrow corridor S3 (diagonal stripes).

1.4.3 Bounds via isoperimetric inequalities

We now describe a method for bounding ΦK , and in turn, G(K) from below. The method

is particularly powerful when ϖ(·) admits a log-concave density function. It is based on

a certain type of isoperimetric inequality. Let dist : B2 → [0,∞] be some function that

quantifies how far two sets are from each other. We say ϖ(·) satisfies a three-set isoperimetric

inequality of Cheeger type if one can find some δ ∈ (0,∞) and κ ∈ (0,∞) such that, for any

partition of X consisting of three measurable sets, say, {S1, S2, S3},

ϖ(S3) ≥ κϖ(S1)ϖ(S2) whenever dist(S1, S2) ≥ δ. (1.4.12)

Ideally, κ is not close to zero, especially if δ is large. This would indicate that, if two sets S1

and S2 are not too close, then S3 = (S1 ∪ S2)
c must have a non-negligible probability mass

relative to the masses of S1 and S2. Loosely speaking, this means that the state space X

cannot exhibit two disjoint subdomains, each possessing substantial probability mass, where

transitioning from one subdomain to the other necessitates covering extensive distances

through a low-probability region.

Figure 1.1 shows a scenario where a good isoperimetric inequality, i.e., one with a large

value of κ, would eliminate. Here, a dumbbell-shaped domain X is presented. Let ϖ(·)
be the uniform distribution on X. We can partition X into three regions, S1, S2, and S3,
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which are filled with, respectively, horizontal, vertical, and diagonal stripes. Imagine that

δ = dist(S1, S2), and ϖ(S3) is small relative to ϖ(S1)ϖ(S2). Then (1.4.12) cannot hold for

large values of κ. Scenarios like this could prevent the fast mixing of some Markov chains

whose stationary distributions are ϖ(·). Indeed, it may be difficult for a chain to travel from

S1 to S2 due to how narrow the corridor connecting the two sets is.

There is a large literature devoted to establishing isoperimetric inequalities, especially for

distributions on Euclidean spaces with log-concave density functions. We will not attempt

to establish an inequality ourselves since this typically requires some sophisticated analysis.

Instead, we state, without proof, a well-known inequality for distributions with strongly

log-concave density functions (see, e.g., Bobkov, 2003; Ledoux, 1999).

Theorem 1.4.5. (Bobkov, 2003, Theorem 1) Let X = Rp for some p ∈ N+. Suppose that ϖ

admits a probability density function with respect to the Lebesgue measure that is proportional

to exp[−∥x∥2/(2σ2)]g(x), where σ > 0, and x 7→ g(x) is log-concave, i.e., for all x, y ∈ Rp

and λ ∈ (0, 1), the inequality g(λx + (1 − λ)y) ≥ g(x)λg(y)1−λ holds. Let {S1, S2, S3} be a

measurable partition of Rp. Then, for i = 1, 2,

ϖ(S3) ≥ FN

(
F−1
N (ϖ(Si)) +

dist (S1, S2)

σ

)
−ϖ(Si),

where FN(·) is the cumulative distribution function of the standard normal distribution, and

dist(S1, S2) = infx∈S1,y∈S2 ∥x− y∥.

We can get an inequality of the form (1.4.12) from Theorem 1.4.5 using some calculus. Let

r = min{ϖ(S1), ϖ(S2)} so that F−1
N (r) ≤ 0, and denote by fN(·) the density function of the

standard normal distribution. Under the assumption of Theorem 1.4.5, if dist(S1, S2) ≥ δ
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for some δ ∈ (0,∞), then

ϖ(S3) ≥
∫ F−1

N (r)+δ/σ

F−1
N (r)

fN(t) dt

≥

fN
(
F−1
N (r) + δ/σ

)
δ/σ if F−1

N (r) + δ/σ ≥ −F−1
N (r) ≥ 0

fN(F−1
N (r)) δ/σ otherwise

≥

fN (δ/σ) δ/σ if F−1
N (r) + δ/σ ≥ −F−1

N (r) ≥ 0

fN(F−1
N (r)) δ/σ otherwise

≥
√

2π fN(F−1
N (r)) fN (δ/σ)

δ

σ
.

By (4) in Sampford (1953), one can show that fN(q)/[1 − FN(q)] ≥ 4FN(q)/
√

2π for q ≥ 0.

Letting q = −F−1
N (r) yields fN(F−1

N (r)) ≥ 4r(1−r)/
√

2π. Moreover, r(1−r) ≥ ϖ(S1)ϖ(S2).

Thus, for an arbitrary choice of δ ∈ (0,∞),

ϖ(S3) ≥
4δfN (δ/σ)

σ
ϖ(S1)ϖ(S2) whenever dist(S1, S2) ≥ δ,

i.e., (1.4.12) holds with δ ∈ (0,∞) and κ = 4(δ/σ)fN(δ/σ).

For other examples of three-set isoperimetric inequalities, see, e.g., Theorem 2.6 of Lovász

and Simonovits (1993), Theorem 2.1 of Kannan and Li (1996), Theorem 1 of Lovász (1999),

and Theorem 4.2 of Cousins and Vempala (2014). Three-set isoperimetric inequalities can

also be obtained through more standard forms of isoperimetric inequalities that involve the

perimeter and volume of an arbitrary measurable set (see, e.g., Andrieu et al., 2024; Bobkov

and Houdré, 1997).

We now give a bound on G(K) based on a three-set isoperimetric inequality of Cheeger

type. It is largely similar to existing results from, e.g., Lovász (1999), Belloni and Cher-

nozhukov (2009), and Dwivedi et al. (2019).

Theorem 1.4.6. Let ψ′ : X2 → [0,∞) be a measurable function (not necessarily a metric),

and for A,B ∈ B, let
dist(A,B) = inf

x∈A, y∈B
ψ′(x, y).
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Figure 1.2: A domain partitioned into A (grey) and Ac. Depending on the amount of
probability flow from each point in A (resp. Ac) to Ac (resp. A), the domain can be
alternatively partitioned into S1 (horizontal stripes), S2 (vertical stripes), and S3 (diagonal
stripes).

Suppose that there exist δ ∈ (0,∞) and ε ∈ (0, 1] such that the following “close coupling

condition” holds:

∥δxK − δyK∥TV ≤ 1 − ε whenever ψ′(x, y) < δ. (1.4.13)

(Recall that δx is the point mass at x, so δxK(·) = K(x, ·).) Suppose further that ϖ(·)
satisfies a three-set isoperimetric inequality of Cheeger type with δ given above and some

κ ∈ (0,∞). Then, for A ∈ B such that ϖ(A) ∈ (0, 1) and a ∈ (0, 1),

ϕK(A) :=

∫
A
ϖ(dx)K(x,Ac)

ϖ(A)ϖ(Ac)
≥ εmin

{
1 − a

2
,
a2κ

4

}
. (1.4.14)

This inequality holds even when K(·, ·) is non-reversible.

Proof. Let A ∈ B be such that ϖ(A) ∈ (0, 1). Let

S1 = {x ∈ A : K(x,Ac) < ε/2}, S2 = {x ∈ Ac : K(x,A) < ε/2}, S3 = (S1 ∪ S2)
c.

See Figure 1.2. Fix a ∈ (0, 1). We will establish (1.4.14) in three cases: (i) ϖ(S1) ≤ aϖ(A),

(ii) ϖ(S2) ≤ aϖ(Ac), and (iii) ϖ(S1) > aϖ(A) and ϖ(S2) > aϖ(Ac). Note that these three

cases exhaust all possibilities.
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Case (i): By the definition of S3,∫
A

ϖ(dx)K(x,Ac) ≥
∫
S3∩A

ϖ(dx)K(x,Ac) ≥ ε

2
ϖ(S3 ∩ A). (1.4.15)

In Case (i),

ϖ(S3 ∩ A) = ϖ(A) −ϖ(S1) ≥ (1 − a)ϖ(A) ≥ (1 − a)ϖ(A)ϖ(Ac),

so, by (1.4.15), we have (1.4.14).

Case (ii): Since ϖK = ϖ,∫
A

ϖ(dx)K(x,Ac) =

∫
X

ϖ(dx)K(x,Ac) −
∫
Ac

ϖ(dx)K(x,Ac)

= ϖ(Ac) −
∫
Ac

ϖ(dx)[1 −K(x,A)]

=

∫
Ac

ϖ(dx)K(x,A).

Then ∫
A

ϖ(dx)K(x,Ac) ≥
∫
S3∩Ac

ϖ(dx)K(x,A) ≥ ε

2
ϖ(S3 ∩ Ac). (1.4.16)

In Case (ii),

ϖ(S3 ∩ Ac) = ϖ(Ac) −ϖ(S2) ≥ (1 − a)ϖ(Ac) ≥ (1 − a)ϖ(A)ϖ(Ac),

so, by (1.4.16), we have (1.4.14).

Case (iii): By the definition of the total variation distance (see Section 1.1), for x ∈ S1 and

y ∈ S2,

∥δxK − δyK∥TV ≥ K(x,A) −K(y, A) > 1 − ε.

By the close coupling condition (1.4.13), ψ′(x, y) ≥ δ for x ∈ S1 and y ∈ S2, so dist(S1, S2) ≥
δ. By the isoperimetric inequality,

ϖ(S3) ≥ κϖ(S1)ϖ(S2).
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Note that (1.4.15) and (1.4.16) still hold. Combining them with the display above yields∫
A

ϖ(dx)K(x,Ac) ≥ εϖ(S3)

4
≥ εκ

4
ϖ(S1)ϖ(S2) (1.4.17)

In Case (iii),

ϖ(S1)ϖ(S2) ≥ a2ϖ(A)ϖ(Ac),

so, by (1.4.17), we have (1.4.14).

Application to the Gaussian chain

Recall that, in Example 1.2.2, X = Rp, ϖp(·) is the Np(0, Ip) distribution, and Kp,α(x, ·) is

the Np(αx, (1 − α2)Ip) distribution for x ∈ Rp, where α ∈ [0, 1). We can place an upper

bound on ∥Kp,α∥2 using Theorems 1.4.4, 1.4.5, and 1.4.6.

In light of the discussion in Section 1.4.2, we first show that Kp,α, as a linear operator on

L2
0(ϖp), is positive semi-definite. Recall first that the Mtk Kp,α(·, ·) is reversible with respect

to ϖp(·). This is equivalent to Kp,α being self-adjoint. Next, note that, for f ∈ L2
0(ϖp) and

x ∈ Rp,

Kp,αf(x) =
1

[2π(1 − α2)]p/2

∫
Rp

f(x′) exp

[
− 1

2(1 − α2)
∥x′ − αx∥2

]
dx′

=
1

[2π(1 − α)]p

∫
Rp

f(x′)

∫
Rp

exp

[
−∥x′ −

√
αx′′∥2

2(1 − α)
− ∥x′′ −

√
αx∥2

2(1 − α)

]
dx′′dx′

= K2
p,
√
αf(x).

Since Kp,
√
α(·, ·) is also reversible with respect to ϖp(·), the corresponding operator is self-

adjoint. As a result, for f ∈ L2
0(ϖp),

⟨f,Kp,αf⟩ = ⟨f,Kp,
√
αKp,

√
αf⟩ = ⟨Kp,

√
αf,Kp,

√
αf⟩ = ∥Kp,

√
αf∥22 ≥ 0.
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Hence, Kp,α is positive semi-definite. By (1.4.4) and Cheeger’s inequality (Theorem 1.4.4),

∥Kp,α∥2 = 1 −G(Kp,α) ≤ 1 − Φ2
Kp,α

/8.

We now bound ΦKp,α from below. We may pretend that the only thing we know about

ϖp(·) is the following: It has a density function of the form e−hp(x), where ∇2hp(x) − Ip

is positive semi-definite for x ∈ Rp. (∇2hp(x) denotes the Hessian matrix of hp.) Then,

by Theorem 1.4.5, ϖp(·) satisfies a three-set isoperimetric inequality of Cheeger type with

an arbitrary positive δ and κ = 4δfN(δ). On the other hand, by (1.2.1) and (1.3.13), for

x, y ∈ Rp,

∥δxK − δyK∥TV = 1 −
∫
Rp

min{kp,α(x, dx′), kp,α(y, dx′)} dx′ = 1 − 2FN

(
−α∥x− y∥

2
√

1 − α2

)
,

where kp,α(x, ·) is the density function of Kp,α(x, ·). Applying the bound in Theorem 1.4.6

with a = 1/2 and δ =
√

1 − α2/α yields

ΦKp,α ≥ min

{
1

4
,
δfN(δ)

4

}
× 2FN

(
−1

2

)
=

√
1 − α2

2
√

2πα
exp

(
−1 − α2

2α2

)
FN

(
−1

2

)
.

Thus,

∥Kp,α∥2 ≤ 1 − 1 − α2

64πα2
exp

(
−1 − α2

α2

)
FN

(
−1

2

)2

.

Recall that, in truth, ∥Kp,α∥2 = α. The bound correctly indicates that ∥Kp,α∥2 is bounded

away from unity as p → ∞, and that (1 − ∥Kp,α∥2)/(1 − α) is bounded away from zero as

α→ 1.

1.4.4 Lower bounds on ∥K∥2

Let us consider the problem of bounding ∥K∥2 from below, which, by Theorem 1.4.2, would

quantify how slowly the chain converges when K(·, ·) is reversible. The problem is not as

frequently studied as that of bounding ∥K∥2 from above, but it has been examined in the

context of some important MCMC algorithms (Andrieu et al., 2024; Chewi et al., 2021;
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Johndrow et al., 2018; Wu et al., 2022). We provide a concise overview of some of the basic

techniques employed in these studies. Although this problem is most meaningful when K(·, ·)
is reversible, the results we present would not require the assumption of reversibility.

Let f ∈ L2(ϖ) be a non-constant function. Then f −ϖf ∈ L2
0(ϖ), and f −ϖf ̸= 0. By

the Cauchy-Schwarz inequality and the definition of ∥K∥2,

⟨f −ϖf,K(f −ϖf)⟩ ≤ ∥f −ϖf∥2 ∥K(f −ϖf)∥2 ≤ ∥K∥2∥f −ϖf∥22.

This yields the following bound:

Theorem 1.4.7. Let f ∈ L2(ϖ) be a non-constant function. Then

∥K∥2 ≥
⟨f −ϖf,K(f −ϖf)⟩

∥f −ϖf∥22
= 1 −

∫
X2 [f(x) − f(x′)]2K(x, dx′)ϖ(dx)

2∥f −ϖf∥22
.

Theorem 1.4.7 can be directly applied to scenarios where ϖ(·) has a simple form. Consider

the Gaussian chain in Example 1.2.2. For x = (x[1], . . . , x[p]) ∈ Rp, let f(x) = x[1]. Then

ϖpf = 0, ∥f −ϖpf∥22 = 1, and

⟨f −ϖpf,Kp,α(f −ϖpf)⟩ = ⟨f, αf⟩ = α.

By Theorem 1.4.7, ∥Kp,α∥2 ≥ α. Recall that α is in fact the true value of ∥Kp,α∥2.

Letting f be an indicator function in Theorem 1.4.7 gives the following (after a bit of

calculations), which is very similar to parts of Theorem 1.4.4.

Corollary 1.4.1. Let A ∈ B be such that ϖ(A) ∈ (0, 1). Then

∥K∥2 ≥ 1 −
∫
A
ϖ(dx)K(x,Ac)

ϖ(A)ϖ(Ac)
. (1.4.18)

Finally, from Corollary 1.4.1 we can immediately derive the result below.

Corollary 1.4.2. Suppose that there exist A ∈ B and δ ≤ 1 such that K(x, {x}c) ≤ δ for
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x ∈ A. Then, if ϖ(A) ∈ (0, 1),

∥K∥2 ≥ 1 − δ

ϖ(Ac)
.

By Corollary 1.4.2, to obtain a large lower bound on ∥K∥2, we only need to find a set A

such that ϖ(A) is small, and that K(x, {x}) is large when x ∈ A. Oftentimes, we can take

A to be an arbitrarily small neighborhood around a point x0 where K(x0, {x0}) is large.

We may apply Corollary 1.4.2 to the independent Metropolis Hastings chain from Example

1.2.1. Recall that s : [0, 1] → (0,∞) is continuous, and Ms = supx∈[0,1] s(x) < ∞. Then, for

ε > 0, one can find an interval Aε = (aε, bε) ⊂ [0, 1] such that 0 < bε − aε < ε, and that

s(x) > Ms − ε for x ∈ (aε, bε). Then, whenever ε ∈ (0,Ms), it holds that πs(Aε) ≤ εMs,

and, for x ∈ Aε,

Ks(x, {x}c) =

∫ 1

0

as(x, x
′) dx′ =

∫ 1

0

min

{
1,
s(x′)

s(x)

}
dx′ ≤

∫ 1

0

s(x′)

Ms − ε
dx′ =

1

Ms − ε
.

Hence, by Corollary 1.4.2, if ε < Ms and ε < 1/Ms,

∥Ks∥2 ≥ 1 − 1

(Ms − ε)(1 − εMs)
.

Since ε can be arbitrarily small, we have the bound ∥Ks∥2 ≥ 1 − 1/Ms. In Section 1.4.1, it

was shown that ∥Ks∥ ≤ 1 − 1/Ms. Thus, we may conclude that ∥Ks∥2 = 1 − 1/Ms.

Corollary 1.4.2 can be used to analyze Markov chains associated with general Metropolis

Hastings algorithms. See Brown and Jones (2022) for a detailed discussion on this topic.

There are also results showing the slowness of Markov chains outside the L2 framework.

See, e.g., Roberts and Rosenthal (2011), Wang (2022), Brown and Jones (2022).

Example: a random walk Metropolis Hastings algorithm

We now illustrate Theorem 1.4.7 and Corollary 1.4.2 through a semi-toy example, which is

a simplified version of a study from Andrieu et al. (2024).
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Consider a random walk Metropolis Hastings (RWMH) algorithm on Rp targeting the

p-dimensional standard normal distribution, which we denote by ϖp(·). Let σ be a positive

constant. Given the current state x ∈ Rp, the RWMH algorithm proceeds as follows. Draw

X ′ from the Np(x, σ
2Ip) distribution, and call its realization x′. Let

a(x, x′) = min

{
1,

exp(−∥x′∥2/2)

exp(−∥x∥2/2)

}
.

With probability a(x, x′), set the next state to x′, and with probability 1 − a(x, x′), set the

next state to x. The underlying Markov chain is reversible with respect to ϖp(·). Denote

the Mtk of this algorithm by Tp,σ. Then, for x ∈ Rp and A ∈ B,

Tp,σ(x,A) =

∫
A

1

(2πσ2)p/2
exp

(
−∥x′ − x∥2

2σ2

)
a(x, x′) dx′+∫

Rp

1

(2πσ2)p/2
exp

(
−∥x′ − x∥2

2σ2

)
[1 − a(x, x′)] dx′ 1x∈A.

We now apply Theorem 1.4.7 to bound ∥Tp,σ∥2 from below. For x = (x[1], . . . , x[p]) ∈ Rp,

let f(x) = x[1]. Then ∥f −ϖpf∥22 = 1. Moreover, for x ∈ Rp,∫
Rp

[f(x) − f(x′)]2 Tp,σ(x, dx′) =

∫
Rp

[f(x) − f(x′)]2

(2πσ2)p/2
exp

(
−∥x′ − x∥2

2σ2

)
a(x, x′) dx′

≤
∫
Rp

[f(x) − f(x′)]2

(2πσ2)p/2
exp

(
−∥x′ − x∥2

2σ2

)
dx′ = σ2.

By Theorem 1.4.7, ∥Tp,σ∥2 ≥ 1 − σ2/2.

Another lower bound on ∥Tp,σ∥2 can be obtained through Corollary 1.4.2. Elementary

calculations show that

Tp,σ(0, {0}c) =

∫
Rp

1

(2πσ2)p/2
exp

(
−∥x′ − 0∥2

2σ2

)
a(0, x′) dx′

=
1

(σ2 + 1)p/2
.

Moreover, one can verify that x 7→ Tp,σ(x, {x}c) is a continuous function. Hence, there exists

a sequence of open neighborhoods of 0, say, A1, A2, . . . , such that limn→∞ϖp(An) = 0, and
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that

lim
n→∞

sup
x∈An

Tp,σ(x, {x}c) =
1

(σ2 + 1)p/2
.

By Corollary 1.4.2,

∥Tp,σ∥2 ≥ 1 − lim
n→∞

supx∈An
T (x, {x}c)

1 −ϖp(An)
= 1 − 1

(σ2 + 1)p/2
.

Combining the two bounds, we see that

∥Tp,σ∥2 ≥ 1 − min

{
σ2

2
,

1

(σ2 + 1)p/2

}
. (1.4.19)

In practice, we may tune σ in the hopes of making ∥Tp,σ∥2 small. But how small can

∥Tp,σ∥2 go? We can partially answer this by minimizing the lower bound in (1.4.19). The

bound is minimized when σ = σp, where σp satisfies

σ2
p

2
=

1

(σ2
p + 1)p/2

.

It can be shown that, when p is sufficiently large, 1/p ≤ σ2
p ≤ 2(log p)/p, and

1 − min

{
σ2
p

2
,

1

(σ2
p + 1)p/2

}
≥ 1 − log p

p
.

This means that, regardless of how σ is chosen, ∥Tp,σ∥2 is always lower bounded by 1 −
(log p)/p for large values of p.

When σ2 = 1/p, (1.4.19) implies that 1 − ∥Tp,σ∥2 ≤ 1/(2p). In this case, the bound gives

the correct order when p → ∞. Indeed, using isoperimetric inequalities, it is possible to

establish a lower bound on 1 − ∥Tp,σ∥2 that is also of the order 1/p when σ2 = 1/p. See

Andrieu et al. (2024), who studied RWMH algorithms targeting general distributions with

strongly log-concave densities.
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1.5 Other methods

We end this chapter by listing some other important methods for constructing convergence

bounds.

The canonical path technique is a powerful tool for analyzing Markov chains taking values

in a discrete state space (Diaconis and Stroock, 1991; Sinclair, 1992; Yang et al., 2016).

The transition law of a Markov chain can be written into a random function, and con-

vergence bounds may be formed by studying the local contractive behavior of this function

(Jarner and Tweedie, 2001; Qin and Hobert, 2022; Qu et al., 2023; Steinsaltz, 1999).

The convergence properties of a Markov chain with a complicated transition law can be

studied by comparing it to a simpler Markov chain or process (Andrieu et al., 2018; Ascolani

and Zanella, 2024; Dalalyan, 2017; Jones et al., 2014;  Latuszyński and Rudolf, 2024; Pillai

and Smith, 2014; Rudolf and Schweizer, 2018). In particular, the optimal scaling framework

provides a unique perspective for studying the properties of a high-dimensional Metropolis-

Hastings algorithm by relating it to a certain diffusion process (Atchadé et al., 2011; Gelman

et al., 1997; Pillai et al., 2012; Yang et al., 2020).

One can also decompose an intricate transition law into simpler components (Ge et al.,

2018; Guan and Krone, 2007; Jerrum et al., 2004; Madras and Randall, 2002; Qin et al., 2023;

Woodard et al., 2009). Related to this approach, techniques based on spectral independence

and stochastic localization have recently received an increasing amount of attention (Anari

et al., 2021; Chen and Eldan, 2022; Chen et al., 2021a,b; Feng et al., 2022; Qin and Wang,

2024).

Finally, some MCMC algorithms can be conceptualized as certain deterministic optimiza-

tion algorithms over a space of distributions. These algorithms can be analyzed using the

theory of gradient flows. See Cheng and Bartlett (2018), Durmus et al. (2019), and references

therein.
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Séminaire de Probabilités (Strasbourg), Tome 17, pages 243–297. Springer.

Amit, Y. (1996). Convergence properties of the Gibbs sampler for perturbations of Gaussians.

Annals of Statistics, 24:122–140.

Anari, N., Liu, K., and Gharan, S. O. (2021). Spectral independence in high-dimensional

expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium

on Foundations of Computer Science, pages 1319–1330. IEEE.

Andrieu, C., Fort, G., and Vihola, M. (2015). Quantitative convergence rates for subgeo-

metric Markov chains. Journal of Applied Probability, 52:391–404.

Andrieu, C., Lee, A., Power, S., and Wang, A. Q. (2022). Comparison of Markov chains
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