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Abstract

Parser programs are becoming increasingly complex to accom-
modate intricate network packet formats and advanced protocols.
Existing parser compilers incorporate predefined program rewrite
rules to output the low-level parser implementation. Yet, these rules
are often brittle and sensitive to how the input parser program is
written. As a result, generated implementations could consume
more hardware resources than necessary. In some cases, these com-
pilers unnecessarily reject valid parser programs that could have
fit within the target device parser’s resource constraints.

We leverage program-synthesis-based techniques to build a parser
compiler, ParserHawk, for 2 network devices: the Intel Infrastruc-
ture Processing Unit (IPU) and the Barefoot Tofino programmable
switch. Naively formulating code generation as a program synthe-
sis problem can take hours, if not days, to complete. As a result,
ParserHawk incorporates several optimization algorithms, which
achieve a geometric mean speed-up of 309.44x. Within a compile
time on the order of minutes for most benchmarks, ParserHawk can
correctly compile parser programs rejected by existing compilers
and can generate parser implementations that use fewer hardware
resources.
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1 Introduction

Programmable network devices have become popular in data center
networks. We have seen the emergence of several programmable
network devices [1, 8, 10, 14, 20-22] from various vendors (e.g.,
Nvidia, AMD, Intel) over the past several years. A typical pro-
grammable network device includes a line-rate programmable parser
and a packet-processing pipeline. The parser identifies headers
within the packet and stores them in some structured format (e.g.,
a vector of fixed-length containers) for the downstream packet-
processing pipeline to update. More precisely, a network device’s
packet parser is responsible for turning unstructured bitstreams
into a structured collection of packet headers based on a specifica-
tion of the parser’s behavior.

Today’s high-end programmable packet parsers run at line rate [8,
21, 25, 33, 35] and flexibly parse diverse header formats—a flexi-
bility that is increasingly essential for parsing many diverse and
dynamic protocol headers such as Geneve [7]. Enterprises gradu-
ally migrate their business workloads to data centers managed by
professional cloud providers, and therefore, network traffic within a
data center becomes diversified to support a wide range of services
and application-level requirements. Recent partnerships between
Google Cloud and CME [3] drive the need for more sophisticated
parsing logic to analyze financial traffic and identify packet origins
within data centers [38]. These trends suggest that advanced parsers
are required to identify packets sent from different sources (e.g.,
internal servers, premium-level customers) within data centers.

Can existing compilation techniques handle the increasing need
to support complex packet formats over diverse parser targets?
Surprisingly, there is limited prior work on compilation algorithms
for programmable parsers. Gibb et al. [33] propose a dynamic pro-
gramming algorithm for parser compilation, but it only supports
compilation for one parser architecture. Commercial parser com-
pilers incorporate heuristics to improve the quality of generated
code. Yet, their compilation process may still fail to find a good
implementation (§3.2) under certain conditions, especially when
the parsing logic is complex and hardware constraints are tight.
Similar to Gibb et al., commercial compilers are specially designed
to generate code for one device and cannot target diverse network
devices. Based on our conversation with multiple cloud providers,
their developers, usually unaware of all hardware constraints, spend
excessive time “reshaping” parser programs to pass compilation,
significantly reducing production efficiency.

Briefly, a compiler’s job is to convert a parser specification, rep-
resented in a language like P4 or NPL, into an implementation
based on a finite-state machine, realized using high-speed ternary
content-addressable memory (TCAM). The size of the TCAM in
programmable parsers is quite limited, so it is important for the
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compiler to generate an efficient implementation that fits within
the limited resources. The inefficiency of existing compilers stems
from the fact that parser compilation is inherently a combinato-
rial problem. The compiler must solve a resource allocation task
under multiple resource constraints such as state transition key
size limits and TCAM entry limits, as elaborated in §5.1. Existing
parser compilation algorithms fail to consistently generate high-
quality compilation results across all parser programs and hardware
architectures.

Our approach. To generate high-quality parser implementations,
this paper presents ParserHawk (§5), a program-synthesis-based
compiler for programmable line-rate parsers that leverages a com-
binatorial search engine to explore better compilation outcomes.
Concretely, we first analyze the input parser program to get seman-
tic information—such as header transition logic and field extraction
order—and take that as the specification. Next, we generate a pa-
rameterized parser skeleton that encodes a finite-state machine
structure with symbolic variables representing state transitions
and parsing actions within a state. Then, we use the Z3 solver in a
counterexample-guided synthesis (CEGIS) [40] loop to synthesize
a concrete implementation by assigning values to these symbolic
parameters, thereby completing the parser skeleton.

Naively encoding the parser generation process as a synthesis
problem fails to work in practice because of the long compilation
time. The reason is that the search space can be too large for a
solver to quickly find a solution. In response, we propose multiple
optimization algorithms (§6) to remedy this problem. One repre-
sentative algorithm (§6.4) involves learning from the semantics of
the input parser programs and subsequently guiding the synthesis
solver to find constant values within a reduced search space.
Findings. We generate several new benchmarks starting from both
open-source production and self-created synthetic parsers, includ-
ing a subset of switch.p4’s parser program. In practice, these open-
source implementations guide parser developers in designing new
parsing logic. ParserHawk successfully compiles all these bench-
marks (§7) while existing compilers fail to get the compilation
output for some of them (11 out of 58). ParserHawk’s output is
more resource-efficient by using fewer TCAM entries or parser
stages. Optimizations of the synthesis process offer a geometric
mean of 309.44X in compilation speed-up on average, leading to
>80% of the benchmarks completing compilation in one minute.

We evaluated ParserHawk on programs targeting 2 programmable
parser platforms, the Barefoot Tofino switch and the Intel Infras-
tructure Processing Unit (IPU). Although different programmable
parsers may vary in their specific architecture and hardware re-
sources, they generally share a common high-level structure resem-
bling a finite-state machine. This similarity suggests that Parser-
Hawk’s techniques can be generalized to a broader range of parser
architectures (e.g., Pensando DPU, Bluefield DPU).

Our contributions can be summarized as follows:

o Identify parser compilation as a critical problem, including de-
scribing scenarios in which existing compilation algorithms will
fail to generate good parsers.

e ParserHawk a retargetable, program-synthesis-based compiler
that can perform parser compilation across multiple heteroge-
neous parser architectures.
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e Domain-specific optimizations to accelerate program synthesis.

o Evaluation of ParserHawk against state-of-the-art parser compil-
ers, with an analysis of where and why ParserHawk can generate
better results.

We have open sourced ParserHawk along with instructions to
replicate this paper’s results at https://github.com/ParserHawk/
ParserHawk. This work does not raise any ethical issues.

2 Background

2.1 Parser functionality

The parser sits at the beginning of a programmable network device,
responsible for preparing data for downstream processing. It con-
verts the raw input bitstream into a structured format, like a vector
of fixed-length containers storing values of packet fields, for later
modifications in the packet-processing pipeline. A parser operates
as a finite state machine (FSM). Each state of this FSM performs
actions such as extracting bits out of the bitstream to deposit into
various packet header fields (e.g., the IP source address) and state
transitions to move between parsing one header field and another
one (e.g., from parsing Ethernet to parsing IP). The state transition
logic checks the value of a transition key, which may include both
already extracted packet header fields and bits that have not yet
been extracted (called lookahead bits).

2.2 Emerging parser programs

With the broader developments around network programmability,
several new customized network functions (e.g., malicious attack
detection [37], congestion control [23, 28]) have been developed to
meet the requirements of cloud providers. These programs usually
require customized logic to identify header fields in the parser,
leading to various protocols and their associated parsing logic.

In recent developments, cloud providers have begun collabo-
rating with the finance industry. For instance, Google Cloud and
Chicago Mercantile Exchange (CME) have recently initiated a part-
nership [3] to provide cloud-based, ultra-low-latency networking.
Similarly, Myers et al. [38] provide a roadmap to build low-latency
networks for algorithmic trading systems. These advancements
demand new parsing logic capable of analyzing finance-related net-
work packets. Within cloud providers’ data centers, it is essential to
identify the origin of a network packet (e.g., internal users, financial
exchanges) before routing it to the packet-processing pipeline. Such
developments lead to larger and more complex parser programs.

2.3 Parser code generation

cond: key != value1 cond: key == value1
‘ Ext: Field1 Ext: Field1 + Field2
cond: None

Ext: None Ext: None

(@) (b)

icond: key==value1

Ext: Field2

Figure 1: (b) uses one fewer TCAM entry than (b) by clustering
2 states.
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Figure 2: Heterogeneous parsers in programmable network
devices: (a) has a single TCAM table. (b) has pipelined TCAM
tables. All parser nodes from the same stage (e.g., S1,0, S1,1)
can only access TCAM tables allocated to that particular stage
(e.g., TCAM table for stage 1). (c) interleaves pipelined-TCAM-
table parser and the packet-processing pipeline.

Current parser compilers are still quite elementary, as they can
either falsely reject an input program or produce suboptimal com-
pilation results. To the best of our knowledge, Kangaroo [35] and
Gibb et al. [33] are two of the leading works on efficient parser
generator design. Gibb et al. consider more hardware constraints
(e.g., window size to fit the state transition key) than Kangaroo.
Compared to these projects, commercial compilers from vendors
incorporate basic heuristics for parser generation, lacking advanced
optimization techniques.

Usually, one TCAM entry encodes a single parser state transi-
tion. If two adjacent parser states can be merged into a single state,
the internal transitions between them no longer require separate
TCAM entries, potentially reducing the overall TCAM entry us-
age. Therefore, Gibb et al. propose a dynamic programming (DP)
approach by clustering adjacent parser states to perform code gener-
ation for parsers. Each cluster should follow the hardware resource
constraints in entries of the TCAM table (e.g., one transition arrow
"—" in Figure 1 uses one TCAM entry). For instance, Figure 1(b)
uses 1 TCAM entry fewer than Figure 1(a) by clustering 2 adjacent
states. This DP algorithm explores a good clustering strategy that
minimizes the TCAM entry usage.

Gibb et al’s parser generator, while effective at the time of its pro-
posal, has become outdated due to advancements in programmable
devices. It restricts the transition key selection from each state from
its extracted fields and does not support lookahead. Moreover, its
target parser architecture is limited to one particular device, mak-
ing it incompatible with newer devices with different architectures.
Additionally, some of its generated outputs result in suboptimal
hardware resource utilization. §7 shows detailed results.

3 Parser Hardware Model

3.1 Programmable parser architecture

A parser identifies header fields from an input bitstream. These
fields are updated later by the packet-processing pipeline (e.g.,
IPTTL = IP.TTL-1). A parser compiler translates the parser specifi-
cation written by developers into a hardware-compatible format
that integrates with the target device’s architecture. There are 3
typical parser configurations for line-rate programmable parsers.

Single TCAM table: Devices such as the Tofino switch use ONE
TCAM table (Figure 2(a)) to fit the whole parser. Such a design
allows one to visit an entry as many times as one wants. For example,
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suppose that there is a header field (e.g., MPLS) appearing multiple
times in a packet and that we want to iterate over all occurrences
of that header. In this case, no matter how many instances of the
header field, a SINGLE entry can advance over one instance of
the header field and loop back to itself until we have parsed all
instances. But, the next packet cannot enter the parser until the
parsing of the previous packet completes.

Pipelined TCAM tables: Devices such as the Intel IPU chain a series
of TCAM tables in a pipelined structure. There is ONE TCAM table
per pipeline stage (Figure 2(b)). All parser nodes within a stage
can only use TCAM entries allocated to this stage. Because of the
pipelined design, it can process a new packet every cycle, improving
parsing throughput. However, due to the inability to “loop around”
like the previous architecture, we cannot fit a long-depth parser
that consumes more than the available stages of the target device.
Interleaving between parser and pipeline: Devices such as the
Broadcom Trident series support jumping out of the parser to modify
packet fields in the packet-processing pipeline and returning to the
parser (Figure 2(c)). This can be regarded as an interleaving between
subparser components and packet processing pipeline. In Trident,
each subparser consists of a sequence of TCAM tables arranged in
a pipeline. These devices allow more expressive parsing behavior
because the pipeline can execute complex packet field updates to
affect the parsing behavior afterwards.

3.2 Motivating example

To run a parser in the target network device, we need to rely on
the parser compiler to do low-level code generation (i.e., fill in
various TCAM entries). Existing compilers often generate code
that inefficiently utilizes hardware resources. We demonstrate the
suboptimality through 2 cases.

state NO: transition select(tranKey): // tranKey is 4-bit
0b1111, 0b1011, 0b0111, 0bOO11 : N1;
0b1110 : N2;
0b0010 : N3;
default: accept;

Figure 3: Parser specification program used for code genera-
tion in Figure 4.

3.2.1 Suboptimality from parser generation algorithm. Figure 4
shows 2 ways (V1 and V2) to generate a parser implementation
for the input parser program provided in Figure 3. Briefly, this
parser program has multiple state transition rules: if the 4-bit state
transition key has a value in {15, 11, 7, 3}, the parser transits to state
N1. If the value is 14, it goes to state N2; if the value is 2, the next
state is N3. For all other values, the parser accepts the bitstream and
exits. There are 2 target devices (A and B) with different constraints
for the state transition key. Device A can at most fit a 2-bit field in
the state transition entry of the TCAM table while device B can fit
at most a 4-bit field.

The code generation process consists of 2 steps. Stepl merges
multiple state transition rules using the mask (m) and value (v) as
long as key&m == m&w. Step2 splits the key into subfields to fit
into the hardware’s constraints if needed.
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‘ Node ID  [Transition Key

Mask ‘ Value ‘Next Node

state NOZ5entry { NO_5entry TranKey[0:1] Ob11 Ob11  N2_before
transition select(tranKe NO_5entry TranKey[0:1] Ob11 0b00 N3_before
NO_5entry TranKey[0:1] 0b00  0b00 accept
0b0111 &&& 0b0111 : N1; N2_before TranKey[2:3] 0b11  0b10 N2
001 S5 BN N2_before TranKey[2:3] 0b00  0b0O accept
default: accept; N3_before TranKey[2:3] 0b11 0b10 N3

NO_5entry TranKey[0:1] O0b10  0b10 N1_before1
NO_5entry TranKey[0:1] 0bO1 0b01 N1_before2
N1_before1 TranKey[2:3] 0b11 Ob11 N1
N1_before2 TranKey[2:3] 0b11 Ob11 N1

state NORABREY {

V1 Step1
for Device A

V1 Step2
for Device A

(C)
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Transition
Key

NO_4entry TranKey[2:3] 0b11

Next Node

‘ Node ID ‘

Mask ‘ Value

transition select(tranKe

0b0011 &&& 0b0011 : N1; 0b10  N2N3_before

0b1110 &&& Ob 1111 : N2; NO_4entry TranKey[2:3] 0b00  0b00 accept
0b0010 &8& 01111 :N3i{  NoN3_pefore TranKey[0:1] 0b11  Obi1 N2
default: accept;
} N2N3_before TranKey[0:1] Ob11 0b00 N3
N2N3_before TranKey[0:1] 0b0O 0b00 accept
NO_4entry TranKey[2:3] 0b11 0b11 N1

V2 Step1 V2 Step2
for Device B for Device B

(b)

Figure 4: A motivating example demonstrating how different parser generation algorithms (V1 and V2) can produce outputs
with varying hardware resource consumption. Such difference originates from suboptimal entry merging (Step 1) and transition

key splitting (Step 2) strategies.

Target parser program P:
state NO: transition select(tranKey): // tranKey is 4-bit
1, 3,5, 7 : Nl;

‘ Node ID ‘ Tragzclon Mask ‘ Value ‘Nexl Node

NodelDF'a”s‘"m‘ Mask | value | Nex!
Key Node | ., NO tranKey[0:1] 0b10  0b00  N1_before
NO  tranKey 0b1011 0b0001 ~ N1 N1_before tranKey[2:3] 0b11 0b01 N1
NO  tranKey 0b1011 0b0011 N1 N1_before tranKey[2:3] Ob11  Ob11 N1
Same entry Different TCAM
merging result usage outcome
- ‘ Node ID [Transition Key| Mask ‘ Value | Next Node
Node ID[T1S10 gk | value | NeXt
Key Node NO tranKey[0:1] ~ Ob11  0b00  N1_before
NO tranKey Ob1101 0b0001 N1 |==>  NO tranKey[0:1] ~ Ob11  0bO1  N1_before
NO  tranKey Ob1101 0b0101 N1 N1_before tranKey[2:3] ~ 0bO1 0b01 N1
N1_before tranKey[2:3]  0b01 0b01 N1
(a) (b)

Figure 5: For parser program P, Sol1 and Sol2 generate merg-
ing results with the same number of entries in (a) but lead to
different TCAM usage in (b) for devices that can only start
key+value matching from the current extraction cursor.

There are multiple ways in to choose the mask + value
combination, each of which might consume different # entries.
Some existing approaches [33] develop rule-merging algorithms.

Unfortunately, they might lead to a suboptimal result (V1 Step1]in
Figure 4(a)), while we can find a better merging solution that only

needs 4 entries ( in Figure 4(a)). Due to differing bit-width
constraints on the state transition keys of devices A and B, the
output of is sufficient to fit into device B. However, if we
want to generate a parser for device A whose state transition keys
can only be <2-bit, we need to do key splitting in [step2] There are
multiple ways (blue entries in Figure 4) to do key splitting for the
same state transition rules (code in blue rectangle in Figure 4). Each
way uses a different number of TCAM entries.

Two main reasons lead to this result. Firstly, redundant mask
+ value combinations (in the red rectangle) require more TCAM
entries from the hardware device. Secondly, even for the same mask
+ value combination (in the blue rectangle), different orders to check
values of the state transition key (e.g., check tranKey[0:1] before or
after tranKey[2:3] in Figure 4) may lead to different TCAM entry
usage. These reasons cause 6 vs 10 TCAM entry usage from 2 parser
generation solutions.

3.2.2  Suboptimality from decoupling compilation into separate phases.
To make things even more complicated, even if two entry merg-
ing algorithms produce the same number of mask-value pairs to
cover the state transition rules (Figure 5(a)), their resulting TCAM
usage can be different (Figure 5(b)). These issues could be mitigated
by adding more compiler rewrite rules, but similar cases may still
arise where different ways of expressing the same semantics lead to
varying hardware resource usage. The fundamental reason for sub-
optimality is that the generation algorithms depend on the specific
written style of the input parser program. As a solution to such
brittleness, we claim that parser generation is a combinatorial
problem and that a combinatorial search engine should be
used to solve this problem.

3.3 Program-Synthesis-based approach

This inefficiency of existing parser generators may be tolerable
when hardware resources for the parser are relatively abundant.
Unfortunately, this is not the case. Most programmable network de-
vices have severely constrained hardware resources (e.g., # TCAM
entries in Tofino, # parser stages in IPU) to support the high-speed
and high-throughput performance. These resource limitations, com-
bined with the inefficiencies of existing compilers, often result in
compilation failures for parsers with complex parsing logic and
multiple parser states. Such parsers, commonly developed by cloud
providers, are designed to analyze network packets from diverse
sources (e.g., financial exchanges, universities, internal servers).

We believe a program-synthesis-based solution is a good fit
to remedy these drawbacks because it takes into consideration
ONLY the input parser’s semantics rather than the code’s written
style. Accordingly, we turn the compilation into a combinatorial
search problem and utilize state-of-the-art solvers [26] to generate
a semantically equivalent parser implementation by solving this
search problem.

4 Problem Statement

ParserHawk produces a parser implementation for a specification
written in a high-level language. A parser takes a bitstream as input
and identifies header fields through a series of parsing steps. The
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final output of a parser is a dictionary that maps packet fields to
corresponding values.

def Impl(I):
// starting table (TID) and state (SID)
TID = o, SID =0, OD = {}
// each iteration is one state transition
// there are at most K iterations
for i in range(K):
// find all entries
for EID € GetEntry(TID,SID)
// when we first match a condition
if Condition(TID, SID, EID)
// extract relevant bits into output dictionary
for h € ExtractSet(TID,SID,EID)
I,OD = extract(h,I,OD)
// transition to next state
TID,SID = Tran(TID,SID, EID)
break // start next iteration after the first
successful match
return OD

Figure 6: Generic implementation of a parser using TCAMs
for state transitions. Once the parser state (SID) reaches ac-
cept or reject, the SID and TID do not change for the remain-
ing transitions of the parser.

Correctness. ParserHawk’s goal is to generate parser implementa-
tions that match the behavior of the specification. An implementa-
tion is correct if, on all input bitstreams, the dictionary it outputs
is equal to the corresponding specification’s output. Formally, let
Spec be a function from bitstrings to dictionaries representing the
specification of a parser, and let Impl be the corresponding func-
tion for the implementation. Then, Impl is correct if VI € {0, 1}*,
Impl(I) = Spec(I).

Implementation Behavior. The output of ParserHawk is a set of
rows describing the entries in TCAM tables that implement the
parser. Referring Figure 6, each entry row is identified by a TCAM
table id TID € N, a state id SID € N, and a entry ID EID € N. An
entry row has a Condition field, which is a logical predicate that
defines when the entry in that row is active. The ExtractSet of a
row returns the set containing all the packet fields to extract when
that row is active. Finally, the Tran field gives the TCAM table id
and state number to transition to after a row is activated.

Given such a collection of rows, we can define a function Impl
that describes how the parser corresponding to those TCAM tables
executes. Figure 6 shows pseudo-code that defines this function by
simulating the device’s parsing behavior by visiting TCAM tables
for up to K times.! The code builds up a dictionary OD mapping
packet fields to their values. Initially, the parser starts in TCAM
table 0 and state 0. On each step, the parser looks up all of the entries
associated with the current table and state ID using GetEntry, and
then checks if the condition associated with that entry is active. If
so, it extracts each field associated with the entry into the mapping
OD, and then performs the corresponding transition. Finally, the
parser returns the updated OD.

Example. We use 2 examples to show the concrete function of
Parser Program+Spec (Figure 7) and Impl (Figure 6) with the
Tofino switch as the target device. They both assign the first 4 bits

1K is a parameter of our synthesis procedure.
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Spec2.p4:bit<4> field,, field;

Specl.p4:bit<a>field,, field; State0:

State0: pkt.extract(hdr.fieldy)
pkt.extract(fieldy) transition select(fieldy[0])
transition Statel; Q : Statel;

Statel: default : accept;

pkt.extract(field;)
transition accept;

Statel:
pkt.extract(field;)

transition accept;

def Spec2(I):

def Specl(I): oD = )

oD = {} g - .
OD|fieldy] = 1[0 : 4] iof)}gfédfg] _::I[g,' 4l
OD|field;] = I[4:8] OD[fioeld] _ If4-8]
return OD e :

return OD

Figure 7: From parser in P4 to spec in ParserHawk.

Table 1: Suppose fieldy and field; are 4-bit variables.
Red cells for Impl2 parser only and all other cells are for
both Impl1 and Impl2. “Accept” value in the Tran column
means completion and exiting the TCAM table. For these 2
simple programs, we can refer to the Spec in Figure 7 as Impl.

‘ Condition ‘ ExtractSet ‘ Tran
TID:0, SID:0, EID:0 True {field_o0} 0,1
TID:0, SID:1, EID:0 ~ field_0[0] == {field_1}  Accept
TID:0, SID:1, EID:1  field_0[0] # O { Accept

to fieldy. Specl.p4 sets field; to be the next 4 bits unconditionally,
while Spec2.p4 does so only if the first bit of field, is 0.

The job of the parser generator is to concretize Condition,
ExtractSet, and Tran for all entries in all TCAM tables. When
targeting the Tofino switch, which only has a single TCAM table,
the value of TID should always be 0. Using the values in Table 1,
Impl1 achieves the same functionality as Spec1 while Impl2 is
the same as Spec2.

5 Parser Synthesis Procedure
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Figure 8: ParserHawk workflow overview.

The whole workflow of ParserHawk is shown in Figure 8. Con-
cretely, the front-end first processes the input parser description
and hardware configuration through a Code Analyzer and Encoder
(§5.1), and then generates one parser specification and the corre-
sponding hardware implementation. Both of them are fed into a
synthesizer (§5.2) written by Z3 with all speedup optimizations (§6)
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enabled to generate an output. The synthesis output is then passed
to the back-end, containing a Post-Synthesis Optimizer (§5.3) and a
Code generator, to output target-specific implementations (e.g., for
Tofino or IPU in this paper). The core part is the synthesizer and
its optimization algorithms.

ParserHawk uses a program synthesis technique called CEGIS
(Counterexample-Guided Inductive Synthesis [40]) to generate
parser implementations. The CEGIS process consists of 2 phases:
synthesis and verification. During the synthesis phase, ParserHawk
uses the Z3 SMT solver to generate a candidate set of TCAM rows
that satisfy selected input/output examples, where the input is a
bitstream and the output is a dictionary mapping headers to values.
In the verification phase, Z3 checks whether the candidate matches
the specification parser for all possible inputs. If it matches, Parser-
Hawk returns the candidate as a valid solution. Otherwise, Z3 will
generate a counterexample in which the candidate and the specifi-
cation disagree. In that case, the synthesis phase repeats and the
counterexample is added to the set of input/output examples used
during the synthesis phase. The CEGIS loop repeats until either a
solution is found or Z3 indicates that no solution exists (e.g., no
set of TCAM tables with the specified size and resource limits can
correctly match the specification for the current set of input/output
examples). The challenge in making this CEGIS approach work
lies in finding an encoding in Z3 that can be solved in a practical
amount of time.

5.1 Encoding parser implementation and
specification

A parser is a finite state machine (FSM) where each state include
operations (e.g., packet field extraction) and state transition rules as
specified in TCAM entries. ParserHawk encodes this FSM behavior
as a series of logical formulas and constraints in Z3. For this encod-
ing, ParserHawk strives for high-quality parser implementations
and retargetability.

High quality here means that, given developers’ requirements,
ParserHawk should generate a parser implementation using as few
resources (e.g., TCAM entries, pipeline stages) as possible. Fewer
resource usage can leave more room for future incremental changes
to the network parser [39].

To support retargetability to multiple backend devices, Parser-
Hawk divides up the parser encoding into generic rules for how
TCAM tables behave and target-specific details. Concretely, our en-
coding is split into 2 parts, (1) generic FSM simulation rules, which
describe how the state transition system should evolve as TCAM en-
tries are processed; and (2) a hardware configuration profile, which
encodes constraints imposed by a particular hardware device. To
re-target ParserHawk to support new hardware devices, a developer
only needs to write formulas for a new hardware configuration
profile.

5.1.1 Generic FSM Simulation.

ParserHawk defines a collection of Z3 variables (Table 2) to
represent the parser state. The formula ¢¢ommon shown in Figure 9
simulates the parser execution process, essentially encoding the
pseudo-code from Figure 6 as a set of logical formulas. The formulas
encode a process of visiting the TCAM tables for multiple iterations,
with one parser state executing per iteration. In each iteration I,
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these formulas track (1) which parser state is executing, (2) which
fields are extracted, and (3) how to do state transition.

// Initialization condition

CurrID[@] == @ A pos[0] ==

// Packet field extraction in iteration [

Ajik (CurrID[I] == k A Extract[j][k] == 1) =

Arzfietd; (OD[I][f] == OD[L+1][f]]) A OD[l+1][field;] ==

I[pos[l] : pos[l] +sz(field;)] A pos[l+1] == pos[l] + sz(field;)

// Build state transition key for parser state k

Aijk Alloc[i][j] ==k = field;[j] € Trankey[k]

Arjk Lookahead[k][j] ==1= I[pos[l] + j] € Trankey[k]

// Do state transition

ALik(Dstate; ==k A Trankey[k]&M; == V;&M;) = CurrID[I+1] ==
Nxt;

Figure 9: Logical formulas for common hardware constraints
(¢common)- Dstate; represents the state ID in i’? jteration.

5.1.2  Hardware configuration.

ParserHawk additionally uses a hardware-specific configuration
to encode constraints imposed by different devices. For example,
the current profiles in ParserHawk encode the following kinds of
constraints:

Extraction length limit. This constraint imposes a limit on the maxi-
mum number of bits to extract per entry. For large-size packet fields
(e.g., 40-byte IPv6 header), more than one entry may be needed to
complete the extraction of the entire field.

State transition key size limit. The size of a state transition key per
entry in the TCAM table may have limits. For example, if the limit of
the state transition key is 2 bits, a 4-bit transition key must be split
into 2 pieces, using >1 TCAM entries to complete the transition.
Lookahead window size. A parser may look ahead to check bits
that have not yet been extracted when deciding how to transition.
How far a given parser can check is determined by the lookahead
window size. Its value varies by device.

Limited number of TCAM entries and stages. The number of TCAM
entries and parser stages are limited. ParserHawk must generate
an output within the available resources.

ParserHawk use variables keyLimit, tcamLimit, lookaheadLimit,
and stageLimit as constants for the maximum # of bits for state
transition key, max # of TCAM entries, max lookahead window size,
and max # of stages in parser, respectively. Figure 10 and 11 present
the high-level formulas encoding the hardware resource constraints
for Tofino and IPU. The formula for the implementation’s behav-
ior becomes Impl(I, Device) = ¢common N PDevice- Appendix 13
shows more details involved in turning these constraints into the
first-order logic formula. We do not constrain the extraction limit
in synthesis and leave it to the post-synthesis optimization (§5.3).

// Do not use a too-wide state transition key
Ak,ijSum(Alloc[i][j] == k) + Sum(Lookahead|k][j]) < keyLimit
// Do not use more than available TCAM entries

A len(TCAM) < tcamLimit A

// Do not exceed lookahead window size

Aklen(Lookahead|k]) < lookaheadLimit

Figure 10: Hardware constraints for Tofino (¢, fino)-
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Table 2: Z3 variables used to encode parser behavior. They are used to build formulas in Figure 9, 10, 11, and 12

Name Type Description

Extract 2D array of Bool

Extract[i][j] = 1 means field; is extracted at parser state j.

Trankey 1D array of Int

Trankey[k] represents the state transition key in parser state k.

Alloc 2D array of Int

Alloc[i][j] = k means the jth bit of field; is included in Trankey[k].

to.

Lookahead 2D array of Bool Lookahead|k][j] = 1 means the jth bit ahead of the extraction pointer is in Trankey|k].
TCAM 1D array of IntxIntxInt | TCAM[i] has 3 variables: M; for mask, V; for value, and Nxt; for the next parser state ID.
Dist 1D array of IntxInt Dist[i] has 2 variables: Dstage; and Dstate;, giving the stage and parser state ID entry i is allocated

CurrID and pos | 1D array of Int

CurrID[I] and pos[!] record the parser state ID and position in the Ith (out of a max K) iteration.

oD 1D array of dictionary

OD[I][f] stores the value of packet field f in the I (out of a max K) iteration.

Ak,i,jSum(Alloc[i][j] == k) + Sum(Lookahead[k][j]) < keyLimit
A len(TCAM) < tcamLimit A

Aklen(Lookahead[k]) < lookaheadLimit

AiDStage; < stageLimit //New1:0nly use available stages.

AiDStagenx:; > DStage; //New2:Move forward to future stages.

Figure 11: Hardware constraints for IPU (¢;py). Dstage; rep-
resents the stage number in i‘" iteration.

5.1.3  Specification encoding. As part of the CEGIS verification
phase, Z3 also needs an encoding of how the specification for the
parser behaves. To describe specification behavior, ParserHawk re-
uses a similar encoding to describe an FSM as in 5.1.1, but instead
of deriving transitions and extraction rules based on an unknown
(symbolic) TCAM encoding, it directly uses values extracted from
the specification parser program. Figure 12 shows the additional
formula encoding the specification’s behavior. The values of the Val
arrays used in this template describe the specific behavior of the
specification and are derived from the specification parser program.

// Concretize all Z3 variables using ValX arrays
Aij(Extract[i][j] == ValE[i][j]) A

Aij(Lookahead[i][j] == ValL[i][j]) A

Aij(Alloci][j] == ValA[i][j]) A

Ai(Dstage; == ValDstage[i]) A A;(Dstate; == ValDstate[i]) A
Ai(Vi ==ValV[i]) A Aj(M; == ValM[i]) A A;j(Nxt; == ValN[i])

Figure 12: Constraints specification (¢spec)-

The formula for the specification’s behavior is defined as the
conjunction formula: Spec(I) = ¢common A Pspec-

5.2 CEGIS loop in ParserHawk

ParserHawk implements the CEGIS loop in Z3 (in Figure 13) to find
one parser configuration Conf that is semantically equivalent to
the specification’s behavior. For a particular field, if it is updated
in the parser by extracting a subrange of the input bitstream, then
its value should be correctly reflected as the value of the bitstream
portion; otherwise, its value remains unchanged.

Synthesis: Find Conf s.t. VI € TestSet, Spec(I) == Impl(I, Device).
Verification: Given a Conf, whether 3I € Alllnput s.t.
Spec(I) # Impl(I, Device) .

We maintain a test case set (TestSet), containing input-output
pairs used for the synthesis phase. Each element of TestSet includes
(1) an input bitstream I; and (2) all packet fields’ values after parsing
the input bitstream (stored in a list {V; 0, .., V;, N—1}). We use Python

Counterexample =
{l, {Vko, ..., Vkn-1}}

Test case set = {

{lo, {Moy, ..., Von-1}}, ...
l1, {Vk-1,0, ..., ViciN-1}),
{l, {Vxo, ..., Vicn-1}}

) (Synthesis Phase) === (Verification Phase

ol 1O

];Compilation Failuré} Compilation Success

Figure 13: CEGIS loop. (D: go to verification if synthesis finds
a solution; 2): compilation failure if synthesis fails to find
a solution; 3): return to synthesis by adding the counterex-
ample to the test case set; @: compilation success if no coun-
terexample is found in verification.

execution to simulate the parser’s behavior to get the parsed values.
We use AllInput to represent the whole input space. ParserHawk
generates an implementation (Conf) for TestSet in the synthesis
phase and verifies this implementation by finding a counterexample
in the verification phase.

ParserHawk initializes the test case set for synthesis with one
randomly generated input-output pair for simplicity. The verifi-
cation phase checks whether the configuration output from the
synthesis phase satisfies all examples within the input space. If
there exists a counter-example, ParserHawk adds it to the test case
set and re-enters the CEGIS loop.

5.3 Post-synthesis optimization

During the synthesis phase, ParserHawk includes additional restric-
tions on implementations in order to reduce the search space. For
example, ParserHawk disallows one parser state from extracting
>1 packet field without constraining the extraction length limit in
the synthesis phase(§5.1.2). This simplifies the synthesis procedure
because otherwise the synthesis engine would have to consider not
only which fields to extract, but also the order to extract them in
each parser state.

However, these restrictions, while speeding up synthesis, can
lead to potentially more parser state usage than necessary. There-
fore, ParserHawk has a post-synthesis optimization phase that
improves the output from the CEGIS loop. The optimizations in
this phase are simple to perform, but trying to include them in
the synthesis phase would be inefficient. For example, ParserHawk
recursively merges parser states that do field extraction and have
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Spec(...): fieldo, fields, ..., fieldi, ... field
size(field1)=n1; size(fieldi)=ni;

‘Impl(...): size(field1)=n1; size(fieldi)=ni;

li

‘Spec‘(...): size(field1)=1 ;size(fieldi)=1;‘ —}‘Impl'(...): size(field1)=1; size(fieldi)=1; ‘

Figure 14: Spec—Spec’: scale down all irrelevant fields’ size

to 1. Spec’—>Impl!’: using PECETaNSyENess; Impl’—Impl:

Scale up those fields’ size to match original size.

only 1 default state transition rule with their adjacent states. Parser-
Hawk also will divide a parser state that extracts a large-size packet
field into multiple ones.

6 Optimizations in ParserHawk

Naively encoding parser generation as a program synthesis problem
is quite time-consuming due to the exponential growth of both
the search space and input space. The root cause is that the naive
encoding produces a very large number of variables and constraints.

These variables include symbolic constants, which specify the
conditions used in state transitions (e.g., value-mask pairs), and
structural variables, which define the parser’s architecture, includ-
ing field-to-state assignments and next-state selection. For instance,
each TCAM entry contains a value-mask pair, consisting of two
symbolic constants of key width (KW) bits, resulting in 2K% possi-
ble solutions per constant. As the number of TCAM entries grows,
so does the number of symbolic constants, causing the search space
to expand exponentially.

Other symbolic structural variables in the parser exhibit simi-
lar exponential growth as the implementation scales. Meanwhile,
the input space is also a bottleneck: to guarantee correctness, the
synthesized parser must produce the same updates as the speci-
fication for all combinations of input-output pairs. As the parser
specification becomes more complex, the input bitstream length
increases, leading to an exponential blow-up in the number of pos-
sible input values. We see that with a naive encoding, the compiler
fails to generate code for some benchmarks within 24 hours (§7).
Therefore, it is necessary to speed up compilation by leveraging
several optimization algorithms.

6.1 Optl: Spec-guided Key Construction

We optimize the state transition key construction by restricting the
choice of bits to those explicitly used in the specification for state
transitions. For instance, if only the first 4 bits of a packet field (e.g.,
fieldy[0:3]) are used for the state transition key in the specification,
we avoid selecting other bits besides those 4 bits to build transition
keys in the implementation. This significantly reduces the search
space because typically around 1% of the bits of all fields are relevant
for state transition.

6.2 Opt2: Bit-Width Minimization

We regard packet fields whose bits are not used in any state transi-
tion keys in the specification as irrelevant fields. As shown in Fig-
ure 14, this simplifies the representation of these irrelevant packet
fields by treating their sizes as 1 bit rather than their actual sizes
in ParserHawk. This compaction effectively reduces the size of the
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fieldo  fields fieldk : fieldo ; field1

(@)

/ flelko—L

(S0 e 81 e
(b)

Figure 15: First, ParserHawk pre-allocates packet fields to
different parser states (a). Next, ParserHawk determines the
state transition logics (—) using program synthesis (b). This
works because different parser states are symmetric from
the hardware’s perspective.

if (key1 == 0b0000 or key1 == 0b0001) if (key1 & Ob1110 == 0b0001 & Ob1110)
goto State0; goto State0; @

State0: State0:
if (key1 == 0b0000) if (key1 ++ key2 == 0b00001000)
goto State1 goto State2 ()
State1:
if (key2 == 0b1000)
goto State2

(++ is the concatenation operation)

key1 == 0b0000 --> goto State0

2722277 - 27
key1 == 0b0001 —> goto State1 key1 & 72 == 77 --> golo 77 ©

No valid merging sol

The constant set includes all 1-bit d
and 2-bit subranges of 01010 (@)
{0, 1, 0b10, 0bO1}

if (key1 == 0b1010) 0b1010
goto State1 ="

Figure 16: (a) uses values existing in parser spec to merge
entries (b) concatenates constants in adjacent parser nodes
for value selection (c) cannot merge multiple entries if
they transit to different parser states (d) collect all hardware-
compliant subranges of the wide key into constant sets.

input bitstream, thereby shrinking the input space and simplifying
the synthesis problem. After synthesis, the sizes are replaced with
their proper values.

6.3 Opt3: Preallocated field extraction

This optimization leverages the symmetric properties of parser
states. By analyzing the input parser program, the algorithm only
considers packet fields that are explicitly parsed by at least one
parser state. Instead of relying on the synthesis solver to decide
which state is responsible for extracting each field, we pre-designate
certain states for extracting each field (e.g., fieldy is extracted in
So, field; in S in Figure 15). This exploits the symmetry in parser
states, as their execution order is not fixed (e.g., the execution of Sy
can appear before or after S1). The synthesis task is determining
the execution order (e.g., S — ... = S — Sp) among parser
states, narrowing the search space size. Opt3 is ONLY applicable
to parser architectures with such symmetric features (e.g., single-
TCAM-table style parser).

6.4 Opt4: Constant synthesis

Symbolic constants contribute to the large search space in synthe-
sis. To address this, we employ several domain-specific constant
synthesis algorithms to guide the solver toward correct solutions.

6.4.1 Restricting the search space for value selection. ParserHawk
synthesizes value-mask pairs that can merge multiple TCAM en-
tries. For example, if Vi = 1...N, V&M == A; & M, ParserHawk
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_»State 0) State 0
Fieldo: Field0: |b00, b01, b02

Field1: b10 b11 Field1: b10, b11
 —State 1 TT—(State 1
(a) (b)

Figure 17: (a) assigns each individual bit to state transition
keys across parser states while (b) groups bits from the same
field and allocates each group to the same state.

can use one entry/value-mask pair (V, M) to cover N = 2" entries
(e.g., A1, Az...AN). If such a (V, M) exists, then any of the value-
mask pairs (A;, M) are valid as well. One toy example is shown
in Figure 16(a). Thus, rather than trying to search for such a V'
from the space of all possible values, ParserHawk only considers
the constant values Ay, ..., A, present in the parser specification,
reducing the domain size considerably (e.g., 2% — 100 constants).

While this heuristic significantly speed up synthesis, it may
introduce suboptimality. Figure 16(b) shows that it can miss oppor-
tunities to reduce TCAM entries by merging state transition rules
across adjacent parser states. To mitigate this, we include concate-
nations of values in adjacent parser states for ParserHawk to search
symbolic constant values, thereby recovering better solutions in
some cases.

6.4.2 Restricting and parallelizing the search for masks. The previ-
ous optimization reduces the search space for the value component
of value-mask pairs, but it is also possible to speed up the search
for masks as well. Notably, ParserHawk only needs to merge mul-
tiple TCAM entries when they transition to the same next parser
state. For instance, there is no way to merge entries in Figure 16(c)
because of different next parser state values. To exploit this, in the
case where all entries of the specification transition to distinct next
parser states, we simply set all mask bits to 1. For parser specifica-
tions that can do entry merging via mask+value, we can leverage a
server pool to parallelize the search. Conceptually, each server in
the pool solves a subproblem by fixing the value of a subset of mask
variables to all-ones (e.g., 0b111...1), while letting Z3 synthesize the
remaining mask variables. For instance, one subproblem may let Z3
determine the value of one mask, another allows two, and so on.

6.4.3 Splitting large state transition keys’ values. When the parser
specification contains constants exceeding the allowable key width,
they cannot be directly used in the implementation. For instance, if
the target hardware of Figure 16(d) can support at most 2 bits in its
state transition key, it is not helpful to include 0b1010 in the set to
search for the symbolic constants’ value. We develop specialized
algorithms to address this issue. Specifically, for a large-bit constant
C shown in the specification, we generate all candidate constants
that (1) are subranges of the original constants and (2) fit within the
hardware-imposed width limit (KW). Algorithmically, we take all
constants of the form C[i, j], where 0 < i < jand j —i < KW. and
added them to the solver’s constant set. This optimization reduces
the constant search space from exponential (2K") to quadratic
(O(KW*len(C)).
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[ Parser spec with varbit field: J [
S

Final Parser impl:
tate 0: pkt.extract(hdr.value, len* 8)

Extract varbit hdr.value at state0

Extract fixed-bit hdr.value at state0

Parser spec without varbit field:
State 0: pkt.extract(hdr.value)

Synthesis output of parser: }

(ParserHawk)

Figure 18: All varbit fields are treated as fixed-bit in synthesis.
They are then converted back to varbit fields in the final
implementation.

Synhesis Prolem \Y

oblem + | [ Problem + o [ Problem + Problem Problemm Pru:)blz*m
#TCAM=C1[#TCAM=C? ®* B TcAM=CN  |(V==v1) |(V==v2)? ® RV ==v)

(Solution |

Figure 19: Derive multiple synthesis tasks by fixing
the hardware resources (e.g., tran key size limit) or
values of selected Z3 variables or both, and run these tasks
in parallel (one core per job).

6.5 Opt5: Grouping for transition key allocation

ParserHawk determines which bits should be used as state transi-
tion keys at each parser state. Each bit can be assigned to any parser
state, and the total search space grows exponentially with # bits
considered. However, in many examples, we observe that bits from
the same packet field are usually used together for state transitions
within a single parser state, unless the field is intentionally split
across multiple states. Hence, as illustrated in Figure 17, we group
adjacent bits from each field and treat them as an indivisible unit
during synthesis. All bits within a group are allocated to the same
parser state.

6.6 Opté6: Treat all fields as fixed-size during
synthesis

There are 2 types of fields: fields whose sizes are determined at
compile time (called FixField) vs at run time (called VarField). This
introduces complexity in behavior encoding for extracting VarField,
as we must account for all possible sizes of the VarField and update
the extraction pointer accordingly. In practice, ParserHawk only
needs to determine which parser state extracts a particular field,
not how many bits to advance. This decision is independent of
the VarField’s actual size. We leverage this observation by treating
VarFields as if they had a fixed size during the synthesis phase
(Figure 18), thereby unifying their treatment with FixFields. During
a post-synthesis phase, we convert the synthesized output into a
format that correctly extracts VarFields.

6.7 Opt7: Parallelism

Based on specific input parser behavior, we can divide a large
synthesis problem into several subproblems and distribute them
across a server pool for parallel synthesis.
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Does the parser spec
has loopy transition?

Figure 20: When the parser spec contains no loopy state tran-
sitions, we run synthesis for both loop-aware and loop-free
implementations in parallel, hoping that the loop-free ver-
sion can complete faster due to its smaller search space.

6.7.1 Loop-Aware vs. Loop-Free Parser Implementation. The TCAM
table in devices such as Tofino allows revisiting the same entry
multiple times, which can reduce TCAM entry usage by reusing en-
tries. However, other devices such as IPU do not support such reuse.
Therefore, we support both loopy and non-loopy parser generation
in ParserHawk. The flexibility of visiting an entry multiple times
makes the search space of loopy parser implementation larger. As
is shown in Figure 20, for loop-free parser specifications where no
input revisits a TCAM entry, the loopy design could be ineffective
in reducing TCAM usage. In such cases, we adopt both loopy and
non-loopy parser implementation in parallel with the hope that
the non-loopy parser can generate a result faster due to its smaller
search space.

6.7.2  Parallelism in solution exploration. Z3 has built-in support
for trying to solve a query in parallel, but the parallel solver mode
does not automatically improve performance on our queries [9, 12].
Instead, we manually leverage the multiple cores to run the code
generation in parallel (Figure 19). On the one side, we ask Parser-
Hawk to do compilation under different levels of hardware con-
straints. For example, assuming the target device supports a 32-bit
state transition key size, we derive several subproblems by setting
the limit from 32 bits down to 1 bit, and solving them together (1
core per subproblem). Smaller state transition key sizes allow the
synthesis solver to find masks or values with fewer bits, simplifying
the overall synthesis process. On the other side, we divide the code
generation problem into several subproblems by assigning values
to selected Z3 variables (e.g., setting a Z3 boolean variable to 0 in
one subproblem and 1 in the other). This reduces the search space
because the Z3 solver only needs to find the values of the remaining
variables. With this strategy, ParserHawk can halt as soon as one
subproblem yields a valid outcome or if all subproblems fail.

7 Evaluation
We evaluate ParserHawk and other baseline compilers by answering
several questions.

e Compilation completeness and correctness: If there exists a
solution, can a compiler explore that solution? Is the compilation
outcome semantically correct?

Xiangyu Gao et al.

e Compilation speed: How long does it take to get the compila-
tion outcome?

e Resource consumption: How many hardware resources does
each compiler’s output consume?

o Retargetablity: Can these compilers support compilation for
various programmable network devices?

e Optimization impact: How beneficial are the proposed opti-
mizations in ParserHawk quantitatively?

Baseline selection. We compare ParserHawk against the parser gen-
erator in Gibb et al. [13], the open-sourced Tofino compiler [19], and
close-sourced Intel IPU compiler. A research prototype developed
by Gibb et al. leverages a dynamic programming (DP) algorithm
to do parser generation and we call it DPParserGen. Its hardware
constraints are parameterized and therefore this allows us to com-
pare compilation results under various hardware configurations.
Note that the DPParserGen can ONLY target single-TCAM-table
parser architectures and has restrictions to represent input parser
program. For example, DPParserGen disallows mask+value com-
bination/wildcard match (e.g., 0b1**0: N1; where 0b1**0 matches
any 4-bit values starting with 1 and ending with 0) and disallows
transition to the accept state on specific value (e.g.,0: accept;) in
the parser’s state transition entry. The state transition key in each
state of DPParserGen must come from the field extracted in that
state. These constraints are partially due to the fact that the pro-
grammable parser was less expressive before. Therefore, we only
run DPParserGen over benchmarks that can be represented by
its format. By contrast, ParserHawk supports code generation for
various parser architectures.

We also compare ParserHawk against a few commercial com-
pilers that we have access to (e.g., Tofino and IPU compiler). Note
that developers have also added some optimization algorithms into
these commercial compilers to reduce the generated parser’s re-
source usage. However, to our knowledge, these optimizations rely
on a variety of heuristics. Our results show the benefit of including
program synthesis within commercial compilers, allowing them to
generate better compilation outcomes without relying on engineers’
effort to rewrite parsers in semantically preserving ways.
Benchmarks. We evaluate 29 benchmarks [6] generated from vari-
ous sources including realistic parser programs from Gibb et al. [33]
and production parsers [4, 11, 15]. Some benchmarks are created by
randomly selecting a subset of 2-9 parser states from switch.p4 [17],
sai.p4 [15], and dash.p4 [4]. Besides, we create synthetic bench-
marks to reflect particular parser patterns suggested in conversa-
tions with programmers of such parsers.

We further mutate these benchmarks using a combination of
semantic-preserving rewrite rules (Figure 21), including +/-R1:
add/remove redundant entries, +/-R2: add/remove unreachable
entries, +/-R3: split/merge entries, +/-R4: split/merge transition key,
and +/-R5: split/merge parser states. These rewrites are intended at
capturing the parser development process. For instance, developers
may be unaware of the target device’s constraints and therefore
write large-size state transition keys in parser programs.
Experiment setup. We run our experiments in CloudLab x86_64
¢6620 nodes in the Utah cluster, using Ubuntu 22.04 and a 28-core 56-
hyperthreads Intel Xeon Gold 5512U processor. Each synthesis task
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Table 3: ParserHawk vs. Tofino and IPU compiler over several parser benchmarks [6] (OPT: all Opt enabled, Orig: all Opt disabled)

ParserHawk (Tofino)
#TCAM Search Space (bits) OPT time (s) Orig time (s) speedup

Program Name

Tofino compiler
# TCAM

ParserHawk (IPU) IPU compiler
#Stages Search Space (bits) OPT time (s) Origtime (s) speedup # Stages

Parse Ethernet 86 5.13 1271 3 122 1.74 17.81 3
+R1 86 2.8 15.67 3 122 1.74 17.96
-R3 86 2.76 13.21 3 122 1.89 20.17 3
+R2 86 5.18 14.78 3 122 1.75 17.59
Parse icmp 114 9.51 399.94 3 266 22.35 1980.84 3
+R5 114 8.04 430.96 3 266 21.52 343.99
-R3 4 114 6.39 410.58 4 3 266 27.07 147.22 3
Parse MPLS E. 191 68.56 >86400 247 65.24 86400
+ unroll loop 8 191 69.34 >86400 8 247 63.29 >86400
-R1 8 191 67.63 >86400 8 247 63.1 >86400
+R1 E 191 4176 >86400 247 92.29 >86400
Large tran key I 150 1.99 4,747.92 4 220 0.67 3843.08 4
+R4 3 150 2.05 8,849.20 3 4 220 0.73 3783.63 4
+R1+R4 | ] 150 218 24,611.27 4 220 1.82 4061.8 4
+R3 + R4 3 150 2.08 8,833.46 3 4 220 0.72 3816.73 4
Multi-key (same pkt field) 70 0.53 131.17 98 1.61 51.06
-R5 70 0.6 51.58 3 98 2.03 51.51 3
-R5-R3 3 70 0.74 115.20 3 3 98 173 353.72 3
Multi-keys (diff pkt fields) 3 97 7.98 5596.29 3 [ ] 169 15 3001.19
+R5 3 97 8 5,517.97 3 3 169 1.51 3060.11 3
-RS | ] 97 8.26 5562.58 169 15 3003.58
Pure Extraction states 1 108 7.93 >86400 1 s 465 244.61 >86400
+ state merging 1 108 7.84 >86400 1 2 465 245.7 >86400 2
Sai V1 [15] 6 232 5.08 >86400 6 3 472 13.69 >86400 3
+R2 e 232 153.64 >86400 472 8.77 86400
Sai V2 [15] 21 797 2292.21 >86400 1697 7837.68 >86400 5
+R1+R2 oa 797 9353.15 >86400 1697 59073.57 >86400
Dash V2 [4] 19 28 0.37 8.15 42 0.56 >86400 2
+R1+R2 s 28 041 7.87 42 0.57 >86400
arsers and comparing their parsing results against the expected
o Iselect(Key) select(Key) p . p & .p . g & p
select(Key) 0,1:N1; 0,1: N1; behavior defined by the specification. Concretely, we generate an
0,1:N1; 2,3,4 : accept; 0,1 : accept; Input Space Set by randomly sampling from all possible input bit-
default : accept; default : accept; default : accept; streams. Then, we simulate the behavior of both Spec and Impl
(@) (c) to get corresponding output dictionaries (ODspec and OD;pp, 7).
select(Key) select(Key1, Key2) If there exists one input bitstream from the Input Space Set that
(0,0) : N1; makes these 2 dictionaries different, the verification fails. Other-
default : accept; default : accept; wise, the generated Impl passes the verification. Besides, we test the
) Q) generated parser on the open-source bmv2 simulator [2] by using
bit<16> Key select(Key) Scapy [16] to generate test packets and check whether all packet
select(KEY[OX]) 0 : N1Pre: fields are parsed correctly. We use Scapy to generate a TCP packet
: ;
0: N1Pre; with a specified destination IP to test the Ethernet-IP parser. If the

detout . default : accept;
etault : accept; N1Pre: select(Key2
N1Pre: select(Keypxaio]) 0: ISH; :

0:N1; default : accept;
default : accept; (h)
®

Figure 21: Collection of rewrite rules. R1:(a)—(b); R2:(a)—(c);
R3:(a)—(d); R4:(e)—(f); R5:(g)—(h).

(a subproblem within our parallel synthesis procedures) is confined
to a single core so any similar Linux x86_64 machine would suffice
to run experiments. ParserHawk enables all optimizations (§6) by
default.

7.1 Correctness Validation

We encode hardware constraints in ParserHawk based on each de-
vice’s official documentation, ensuring that our encoding faithfully
reflects the documented specifications. We verify that the output
generated by ParserHawk is accepted by commercial compilers.
To test correctness, we perform a check using a simulator (Fig-
ure 22) by feeding randomly selected bitstreams to the hardware

parsing logic is correct, the packet will be successfully delivered
to the target; otherwise, it should be dropped. Currently, all com-
pilation results for the created benchmarks pass the simulator’s
check.

For resource usage, we report the actual number of TCAM entries
for Tofino and parser stages for IPU in Table 3. These numbers
align with ParserHawk’s resource estimations, indicating that it can
accurately predict resource usage without over- or under-reporting.

7.2 Performance: compilation result and
hardware resource usage

Table 3 and Table 4 compare all compilers’ performance. We impose
a 24-hour timeout on the compilation process, as overnight delays
are typically impractical for developers. RE@IGEIS mean worse com-
pilation outcomes Commercial compilers usually falsely reject input
parser programs (11 out of 58) or generate outcome consuming sub-
optimal hardware resources (19 out of 58), which may finally lead
to a compilation failure. By contrast, ParserHawk successfully com-
piles all benchmarks by exploring a larger space of implementation
possibilities.
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To be specific, commercial compilers CANNOT (1) do R4-like
rewrite, (2) unroll loops within parser states (specific to IPU com-
piler), and (3) rule out never-reached entries in Figure 21(c). These
limitations lead to compilation failures. Manually rewriting the
parser into a semantically equivalent format that passes the compi-
lation is not only error-prone but also risks overlooking valid solu-
tions. In contrast, ParserHawk consistently produces semantically
equivalent parser programs that use only the necessary hardware
resources, while both commercial compilers and DPParserGen may
generate outputs that consume more resources than required.
TCAM entry and stages. Compared with baseline compilers, Parser-
Hawk’s compilation outcome uses fewer than or equal hardware
resources for the same benchmark. Besides, ParserHawk use the
same amount of hardware resources while other compilers may use
different amount of hardware resource for semantically equivalent
parser programs. One reason behind this is that the baseline com-
piler cannot detect redundant state transition entries, allocating
resources (e.g., TCAM entry, parser stage) for those entries as a
result. For example, the Tofino compiler uses more TCAM entries
for Parse icmp and the IPU compiler has to use 2 parser stages to
fit all entries of a particular state in Parse Ethernet + R1.

Table 4 compares ParserHawk against DPParserGen over differ-

ent hardware configurations. DPParserGen enables entry merging
using mask+value combinations and transition key splitting, but its
merging algorithm is suboptimal. Besides, similar to the motivat-
ing example in Figure 3.2, DPParserGen’s parser generation rules
sometimes fail to find a good result that use few TCAM entries.
Such issues do not cause problems for ParserHawk because it only
cares about the semantics instead of the written style of the input
parser program.
Compilation speed. All baseline compilers complete the compila-
tion within 1 minute but it takes much longer for ParserHawk to
finish because ParserHawk relies on solver to explore the search
space. The search difficulty increases as the input parser programs
become complex. In Table 3, we report the search space size (in
bits) to quantify the difficulty of compilation problem. However,
by leveraging our optimizations, >90% of benchmarks complete
compilation within 5 minutes and 44 out of 58 complete within 1
minute. For benchmarks with long compilation time (e.g. Sai V2),
the root reason is that these parser specifications are complex (e.g.,
# parser states and transition rules) and therefore the search space
is quite large (797 bits for Tofino, 1697 bits for IPU).

Based on our discussion with industrial developers, it usually

takes engineers 1 hour to rewrite the parser program into a format
that passes the compilation. Considering that ParserHawk can run
24/7, we believe its relatively long compilation time is acceptable.
Given the increasing hourly manual cost [5] and decreasing per-
unit computation cost [18], ParserHawk is and will continue to be
more cost-efficient.
Summary: ParserHawk compiles parser programs that other com-
pilers reject and finishes most benchmarks in under 5 minutes. Its
output uses less than or the same hardware resources as those of
existing compilers for all compilable cases.

Xiangyu Gao et al.

Table 4: ParserHawk vs. DPParserGen over motivating examples
(ME) in Figure 4. ME-1 needs entry emerging strategy; ME-2 needs
to split the state transition key; ME-3 contains redundant entries.

#TCAM Parametrized Hardware Resources
ParserHawk DPParserGen | State tran key width Lookahead window Extraction limit

Large tran key 3 Tofino Tofino Tofino
ME-1 ] 4-bit 2-bit 10-bit
ME-2 4 16-bit 2-bit 10-bit
ME-2 6 8-bit 2-bit 10-bit
ME-3 1 16-bit 2-bit 10-bit

Table 5: Speed up effect from various optimizations.

Tofino 1PU
Program Name | Other OPT(s) +OPT5(s) +OPT4,5(s) | Other OPT(s) +OPT5(s) +OPT4,5 (s)
Sai V1 74.13 49.98 5.08 1674.9 39.68 3.92
Dash V1 587.65 11.74 4.45 320.07 6.6 2.43
Large tran key 53.27 13.99 1.99 50.34 2.38 0.67

7.3 Retargetablity: compile cross-device

Each commercial compiler is developed to serve one type of tar-
get device. DPParserGen can only do parser generation for ar-
chitectures with one big TCAM table. Extending DPParserGen to
do compilation for pipelined-TCAM-table parser is nontrivial be-
cause its clustering strategies might increase the number of entries
within a parser state, leading to split this merged state to multi-
ple TCAM-table stages and increasing the final stage usage. By
contrast, ParserHawk shows its retargetability in Table 3 and Ta-
ble 4 because it can compile for both Tofino’s and IPU’s parser.
Concretely, when switching from the Tofino to the IPU backend,
ParserHawk only needs to add constraints to prevent TCAM en-
tries from being reused across stages and to disallow revisiting
the same entry multiple times. The core synthesis logic—variable
generation and symbolic definitions—remains unchanged, resulting
in <100 lines of code difference between Tofino- and IPU-targeted
versions of ParserHawk, making ParserHawk a lightweight and
easily portable compiler across hardware.

Summary: ParserHawk is retargetable by changing hardware con-
straints in its synthesis procedure while other baseline compilers
are specific to a particular type of device.

7.4 Benefits of Optimization

We measure the speed-up effect of our optimization algorithms
in Table 3 and Table 5. Across all benchmarks, enabling those al-
gorithms reduces the compilation time for all 58 cases. 22 out of
58 cases fail to get compilation outcome within 24 hours without
using optimization techniques. Algorithms described in §6 provide
at least 309.44% (geometric mean) speed up on average (ranging
from 1.46X to 154,285.71X), some of which achieve a leap from
O(hour) to O(second).

We further analyze the performance impact in Table 5, focus-
ing on the speedup that selected algorithms provide. In particular,
we evaluate the effectiveness of Opt4 and Opt5 on 3 benchmarks
by selectively enabling or disabling them, while keeping all other
optimizations enabled by default. The result shows that both Opt4
and Opt5 can provide = 10X speedup respectively because they
can reduce the search space of constants’ value selection and state
transition key selection. Besides, Opt1 is useful when a small por-
tion of fields’ bit are used to build the state transition key. Opt2 is
useful when there are many irrelevant packet fields within a parser
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program. Opt3 is applicable for parser architecture with symmet-
ric features (e.g., the Tofino switch). Using >1 cores for parallel
synthesis is generally useful for speedup across all benchmarks.
Summary: Proposed algorithms offer a significant speedup (hour —
second) to compilation, and each optimization technique is effective
for specific parser features. Usually, a given parser can benefit from
more than 1 optimization technique.

8 Future work

We briefly discuss avenues for future improvement. First, optimiz-
ing across parser and the packet-processing pipeline. Figure 23 shows
a hint in the P4 tutorial to write better parser programs, which
involves redefining the packet fields. Neither ParserHawk nor other
existing compilers can do so. We aim to extend ParserHawk to sup-
port co-optimization across packet definition, parser, and pipeline.
Second, further compilation speed-ups. Table 3 shows an exponential
increase of compilation time when the parser spec becomes more
complex. For large and complex parser graphs, we could apply
graph theory techniques to divide the parser dependency graph
into smaller subgraphs, and then apply divide-and-conquer strate-
gies to the program synthesis problem. Third, more parser features.
We want to add more features in ParserHawk to support compiling
parser programs whose functionality is not determined at compile
time (e.g., P4 valueset and NPL parse break/continue).

9 Related work

Semantic verifier for programmable parsers. Leapfrog [27] verifies
the semantic equivalence of different parsers. ParserHawk solves a
harder problem, generating correct parser implementations using
synthesis-based techniques.

Synthesis-based compiler for packet processing pipelines. CaT [32]
and Chipmunk [30, 31] leverage solver-aided techniques to do
compilation for multiple network devices at the level of packet-
processing pipelines while ParserHawk generates code for the
parser portion of the network device.

Retargetable compiler design across programming languages and
devices. Polyglotter [29] and Metalift [24] build transpilers across
domain-specific languages and devices without considering various
hardware resource constraints. Alkali [36] and Hydride [34] are
cross-device compilers for other modern hardware architectures.
ParserHawk’s contribution in parser compilation is complementary
to these work.

10 Conclusion

We build, ParserHawk, a cross-device and program-synthesis-based
compiler for line-rate parsers. Several optimization algorithms are
incorporated to expedite compilation. ParserHawk can quickly gen-
erate compilation outcome that uses fewer resources in target de-
vices compared with state-of-the-art approaches. We believe such a
compiler can be applicable to do code generation for more emerging
parser architectures in the future.
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header_type FO_t {

header_type FO_t { i
fields { f|6|d5F{00 1 16;
F0O0 : 16; } o
common : 16; } FO;
-} header_type F1_t {
}FO; fields {
FO1: 16;
header_type F1_t { }
fields { }F1;
FO1:16; header_type C_t {
common : 16; fields {
) 16
e ) common : 16;
}Ci

-

parser parse_FO { parser parse_FO0 {

extract(F0); extract(FO);
transition select(FO.common) { transition : common;
v0 : NextvO; }
parser parse_F1 {
vk : Nextvk; extract(F1);
} transition : common;

parser parse_F1 { parser common {

extract(F1); extract(C);
transition select(F1.common) { transition select (C.common) {
vO : NextvO; vO0 : NextvO0;
vk : Nextvk; vk : Nextvk;
} }
} }

Figure 23: Left: original program; Right: new parser program
by separating the common fields from individual fields.

APPENDIX

Appendices are supporting material that has not been peer-reviewed.

11 Simulator to check correctness of
ParserHawk’s output

Figure 22 provides a pseudocode of the simulator we built in Python
to check the behaviors of both Spec and Impl.
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Spec(I) \\simulate spec; Impl(I) \\simulate generated parser
for I € Input Space:
ODspec = Spec(1)§ ODimpl = ImPl(I);
if ODspec # ODimpr:
\\ Verification Failure
\\ Verification Pass

Figure 22: Simulator design to check correctness.

12 Express logical formula of device constraints
inZ3

Encoding logical formulas into first-order logic forms in languages
such as Z3 is not an easy job. For instance, different from other
programming languages, the output for true and false conditions in
Z3 should have the SAME type (e.g., both outputs are X-bit bitvec-
tor). Therefore, to limit the size of the generated state transition
key, we go through all members in Alloc and Lookahead and decide
to either prepend a 1-bit variable whose value is 0 or append the
corresponding bit within a packet field to key_sel. The final state
transition key is achieved by truncating the last keyLimit bits from
key_sel.

The concrete code snippet is shown below:
// Build key_sel
dummy = BitVec('dummy', 1) Solver().add(dummy == @)
for all i, j {
key_sel = If(Alloc[i][j] '= k, Concat(dummy, key_sel),
Concat(key_sel, Extract(j, j, field[il)))} ...
// Generate Trankey by extracting the last keyLimit bits
Trankey = Extract(keyLimit - 1, @, key_sel)

13 Example for future improvement

Dividing packet fields into 2 categories: common parts shared by
multiple fields and individual parts owned only by specific fields.
Then, we could redesign the parser to save the TCAM usage in
Figure 23.
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