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Abstract

Parser programs are becoming increasingly complex to accom-

modate intricate network packet formats and advanced protocols.

Existing parser compilers incorporate prede�ned program rewrite

rules to output the low-level parser implementation. Yet, these rules

are often brittle and sensitive to how the input parser program is

written. As a result, generated implementations could consume

more hardware resources than necessary. In some cases, these com-

pilers unnecessarily reject valid parser programs that could have

�t within the target device parser’s resource constraints.

We leverage program-synthesis-based techniques to build a parser

compiler, ParserHawk, for 2 network devices: the Intel Infrastruc-

ture Processing Unit (IPU) and the Barefoot To�no programmable

switch. Naively formulating code generation as a program synthe-

sis problem can take hours, if not days, to complete. As a result,

ParserHawk incorporates several optimization algorithms, which

achieve a geometric mean speed-up of 309.44×. Within a compile

time on the order of minutes for most benchmarks, ParserHawk can

correctly compile parser programs rejected by existing compilers

and can generate parser implementations that use fewer hardware

resources.

CCS Concepts

• Networks→ Packet-switching networks; • Theory of com-

putation → Formal languages and automata theory.
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1 Introduction

Programmable network devices have become popular in data center

networks. We have seen the emergence of several programmable

network devices [1, 8, 10, 14, 20–22] from various vendors (e.g.,

Nvidia, AMD, Intel) over the past several years. A typical pro-

grammable network device includes a line-rate programmable parser

and a packet-processing pipeline. The parser identi�es headers

within the packet and stores them in some structured format (e.g.,

a vector of �xed-length containers) for the downstream packet-

processing pipeline to update. More precisely, a network device’s

packet parser is responsible for turning unstructured bitstreams

into a structured collection of packet headers based on a speci�ca-

tion of the parser’s behavior.

Today’s high-end programmable packet parsers run at line rate [8,

21, 25, 33, 35] and �exibly parse diverse header formats—a �exi-

bility that is increasingly essential for parsing many diverse and

dynamic protocol headers such as Geneve [7]. Enterprises gradu-

ally migrate their business workloads to data centers managed by

professional cloud providers, and therefore, network tra�c within a

data center becomes diversi�ed to support a wide range of services

and application-level requirements. Recent partnerships between

Google Cloud and CME [3] drive the need for more sophisticated

parsing logic to analyze �nancial tra�c and identify packet origins

within data centers [38]. These trends suggest that advanced parsers

are required to identify packets sent from di�erent sources (e.g.,

internal servers, premium-level customers) within data centers.

Can existing compilation techniques handle the increasing need

to support complex packet formats over diverse parser targets?

Surprisingly, there is limited prior work on compilation algorithms

for programmable parsers. Gibb et al. [33] propose a dynamic pro-

gramming algorithm for parser compilation, but it only supports

compilation for one parser architecture. Commercial parser com-

pilers incorporate heuristics to improve the quality of generated

code. Yet, their compilation process may still fail to �nd a good

implementation (§3.2) under certain conditions, especially when

the parsing logic is complex and hardware constraints are tight.

Similar to Gibb et al., commercial compilers are specially designed

to generate code for one device and cannot target diverse network

devices. Based on our conversation with multiple cloud providers,

their developers, usually unaware of all hardware constraints, spend

excessive time “reshaping" parser programs to pass compilation,

signi�cantly reducing production e�ciency.

Brie�y, a compiler’s job is to convert a parser speci�cation, rep-

resented in a language like P4 or NPL, into an implementation

based on a �nite-state machine, realized using high-speed ternary

content-addressable memory (TCAM). The size of the TCAM in

programmable parsers is quite limited, so it is important for the
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compiler to generate an e�cient implementation that �ts within

the limited resources. The ine�ciency of existing compilers stems

from the fact that parser compilation is inherently a combinato-

rial problem. The compiler must solve a resource allocation task

under multiple resource constraints such as state transition key

size limits and TCAM entry limits, as elaborated in §5.1. Existing

parser compilation algorithms fail to consistently generate high-

quality compilation results across all parser programs and hardware

architectures.

Our approach. To generate high-quality parser implementations,

this paper presents ParserHawk (§5), a program-synthesis-based

compiler for programmable line-rate parsers that leverages a com-

binatorial search engine to explore better compilation outcomes.

Concretely, we �rst analyze the input parser program to get seman-

tic information—such as header transition logic and �eld extraction

order—and take that as the speci�cation. Next, we generate a pa-

rameterized parser skeleton that encodes a �nite-state machine

structure with symbolic variables representing state transitions

and parsing actions within a state. Then, we use the Z3 solver in a

counterexample-guided synthesis (CEGIS) [40] loop to synthesize

a concrete implementation by assigning values to these symbolic

parameters, thereby completing the parser skeleton.

Naively encoding the parser generation process as a synthesis

problem fails to work in practice because of the long compilation

time. The reason is that the search space can be too large for a

solver to quickly �nd a solution. In response, we propose multiple

optimization algorithms (§6) to remedy this problem. One repre-

sentative algorithm (§6.4) involves learning from the semantics of

the input parser programs and subsequently guiding the synthesis

solver to �nd constant values within a reduced search space.

Findings. We generate several new benchmarks starting from both

open-source production and self-created synthetic parsers, includ-

ing a subset of switch.p4’s parser program. In practice, these open-

source implementations guide parser developers in designing new

parsing logic. ParserHawk successfully compiles all these bench-

marks (§7) while existing compilers fail to get the compilation

output for some of them (11 out of 58). ParserHawk’s output is

more resource-e�cient by using fewer TCAM entries or parser

stages. Optimizations of the synthesis process o�er a geometric

mean of 309.44× in compilation speed-up on average, leading to

>80% of the benchmarks completing compilation in one minute.

We evaluated ParserHawk on programs targeting 2 programmable

parser platforms, the Barefoot To�no switch and the Intel Infras-

tructure Processing Unit (IPU). Although di�erent programmable

parsers may vary in their speci�c architecture and hardware re-

sources, they generally share a common high-level structure resem-

bling a �nite-state machine. This similarity suggests that Parser-

Hawk’s techniques can be generalized to a broader range of parser

architectures (e.g., Pensando DPU, Blue�eld DPU).

Our contributions can be summarized as follows:

• Identify parser compilation as a critical problem, including de-

scribing scenarios in which existing compilation algorithms will

fail to generate good parsers.

• ParserHawk a retargetable, program-synthesis-based compiler

that can perform parser compilation across multiple heteroge-

neous parser architectures.

• Domain-speci�c optimizations to accelerate program synthesis.

• Evaluation of ParserHawk against state-of-the-art parser compil-

ers, with an analysis of where and why ParserHawk can generate

better results.

We have open sourced ParserHawk along with instructions to

replicate this paper’s results at https://github.com/ParserHawk/

ParserHawk. This work does not raise any ethical issues.

2 Background

2.1 Parser functionality

The parser sits at the beginning of a programmable network device,

responsible for preparing data for downstream processing. It con-

verts the raw input bitstream into a structured format, like a vector

of �xed-length containers storing values of packet �elds, for later

modi�cations in the packet-processing pipeline. A parser operates

as a �nite state machine (FSM). Each state of this FSM performs

actions such as extracting bits out of the bitstream to deposit into

various packet header �elds (e.g., the IP source address) and state

transitions to move between parsing one header �eld and another

one (e.g., from parsing Ethernet to parsing IP). The state transition

logic checks the value of a transition key, which may include both

already extracted packet header �elds and bits that have not yet

been extracted (called lookahead bits).

2.2 Emerging parser programs

With the broader developments around network programmability,

several new customized network functions (e.g., malicious attack

detection [37], congestion control [23, 28]) have been developed to

meet the requirements of cloud providers. These programs usually

require customized logic to identify header �elds in the parser,

leading to various protocols and their associated parsing logic.

In recent developments, cloud providers have begun collabo-

rating with the �nance industry. For instance, Google Cloud and

Chicago Mercantile Exchange (CME) have recently initiated a part-

nership [3] to provide cloud-based, ultra-low-latency networking.

Similarly, Myers et al. [38] provide a roadmap to build low-latency

networks for algorithmic trading systems. These advancements

demand new parsing logic capable of analyzing �nance-related net-

work packets. Within cloud providers’ data centers, it is essential to

identify the origin of a network packet (e.g., internal users, �nancial

exchanges) before routing it to the packet-processing pipeline. Such

developments lead to larger and more complex parser programs.

2.3 Parser code generation

cond: None
Ext: Field1

cond: None
Ext: None

cond: key==value1
Ext: Field2

cond: key == value1
Ext: Field1 + Field2

cond: key != value1
Ext: Field1

cond: None
Ext: None

(a) (b)

Figure 1: (b) uses one fewer TCAMentry than (b) by clustering

2 states.
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Figure 2: Heterogeneous parsers in programmable network

devices: (a) has a single TCAM table. (b) has pipelined TCAM

tables. All parser nodes from the same stage (e.g., (1,0, (1,1)

can only access TCAM tables allocated to that particular stage

(e.g., TCAM table for stage 1). (c) interleaves pipelined-TCAM-

table parser and the packet-processing pipeline.

Current parser compilers are still quite elementary, as they can

either falsely reject an input program or produce suboptimal com-

pilation results. To the best of our knowledge, Kangaroo [35] and

Gibb et al. [33] are two of the leading works on e�cient parser

generator design. Gibb et al. consider more hardware constraints

(e.g., window size to �t the state transition key) than Kangaroo.

Compared to these projects, commercial compilers from vendors

incorporate basic heuristics for parser generation, lacking advanced

optimization techniques.

Usually, one TCAM entry encodes a single parser state transi-

tion. If two adjacent parser states can be merged into a single state,

the internal transitions between them no longer require separate

TCAM entries, potentially reducing the overall TCAM entry us-

age. Therefore, Gibb et al. propose a dynamic programming (DP)

approach by clustering adjacent parser states to perform code gener-

ation for parsers. Each cluster should follow the hardware resource

constraints in entries of the TCAM table (e.g., one transition arrow

"→" in Figure 1 uses one TCAM entry). For instance, Figure 1(b)

uses 1 TCAM entry fewer than Figure 1(a) by clustering 2 adjacent

states. This DP algorithm explores a good clustering strategy that

minimizes the TCAM entry usage.

Gibb et al.’s parser generator, while e�ective at the time of its pro-

posal, has become outdated due to advancements in programmable

devices. It restricts the transition key selection from each state from

its extracted �elds and does not support lookahead. Moreover, its

target parser architecture is limited to one particular device, mak-

ing it incompatible with newer devices with di�erent architectures.

Additionally, some of its generated outputs result in suboptimal

hardware resource utilization. §7 shows detailed results.

3 Parser Hardware Model

3.1 Programmable parser architecture

A parser identi�es header �elds from an input bitstream. These

�elds are updated later by the packet-processing pipeline (e.g.,

IP.TTL = IP.TTL-1). A parser compiler translates the parser speci�-

cation written by developers into a hardware-compatible format

that integrates with the target device’s architecture. There are 3

typical parser con�gurations for line-rate programmable parsers.

Single TCAM table: Devices such as the To�no switch use ONE

TCAM table (Figure 2(a)) to �t the whole parser. Such a design

allows one to visit an entry asmany times as onewants. For example,

suppose that there is a header �eld (e.g., MPLS) appearing multiple

times in a packet and that we want to iterate over all occurrences

of that header. In this case, no matter how many instances of the

header �eld, a SINGLE entry can advance over one instance of

the header �eld and loop back to itself until we have parsed all

instances. But, the next packet cannot enter the parser until the

parsing of the previous packet completes.

Pipelined TCAM tables: Devices such as the Intel IPU chain a series

of TCAM tables in a pipelined structure. There is ONE TCAM table

per pipeline stage (Figure 2(b)). All parser nodes within a stage

can only use TCAM entries allocated to this stage. Because of the

pipelined design, it can process a new packet every cycle, improving

parsing throughput. However, due to the inability to “loop around”

like the previous architecture, we cannot �t a long-depth parser

that consumes more than the available stages of the target device.

Interleaving between parser and pipeline: Devices such as the

Broadcom Trident series support jumping out of the parser to modify

packet �elds in the packet-processing pipeline and returning to the

parser (Figure 2(c)). This can be regarded as an interleaving between

subparser components and packet processing pipeline. In Trident,

each subparser consists of a sequence of TCAM tables arranged in

a pipeline. These devices allow more expressive parsing behavior

because the pipeline can execute complex packet �eld updates to

a�ect the parsing behavior afterwards.

3.2 Motivating example

To run a parser in the target network device, we need to rely on

the parser compiler to do low-level code generation (i.e., �ll in

various TCAM entries). Existing compilers often generate code

that ine�ciently utilizes hardware resources. We demonstrate the

suboptimality through 2 cases.

state N0: transition select(tranKey): // tranKey is 4-bit

0b1111, 0b1011, 0b0111, 0b0011 : N1;

0b1110 : N2;

0b0010 : N3;

default: accept;

Figure 3: Parser speci�cation program used for code genera-

tion in Figure 4.

3.2.1 Suboptimality from parser generation algorithm. Figure 4

shows 2 ways (V1 and V2) to generate a parser implementation

for the input parser program provided in Figure 3. Brie�y, this

parser program has multiple state transition rules: if the 4-bit state

transition key has a value in {15, 11, 7, 3}, the parser transits to state

N1. If the value is 14, it goes to state N2; if the value is 2, the next

state is N3. For all other values, the parser accepts the bitstream and

exits. There are 2 target devices (A and B) with di�erent constraints

for the state transition key. Device A can at most �t a 2-bit �eld in

the state transition entry of the TCAM table while device B can �t

at most a 4-bit �eld.

The code generation process consists of 2 steps. Step1 merges

multiple state transition rules using the mask (m) and value (v) as

long as :4~&< == <&E . Step2 splits the key into sub�elds to �t

into the hardware’s constraints if needed.
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state N0_4entry {
    transition select(tranKey) {

0b0011 &&& 0b0011 : N1;
0b1110 &&& 0b1111 : N2;
0b0010 &&& 0b1111 : N3;
default: accept;

    }
}

Node ID Transition Key Mask Value Next Node

N0_5entry TranKey[0:1] 0b11 0b11 N2_before
N0_5entry TranKey[0:1] 0b11 0b00 N3_before
N0_5entry TranKey[0:1] 0b00 0b00 accept
N2_before TranKey[2:3] 0b11 0b10 N2
N2_before TranKey[2:3] 0b00 0b00 accept
N3_before TranKey[2:3] 0b11 0b10 N3
N0_5entry TranKey[0:1] 0b10 0b10 N1_before1
N0_5entry TranKey[0:1] 0b01 0b01 N1_before2

N1_before1 TranKey[2:3] 0b11 0b11 N1
N1_before2 TranKey[2:3] 0b11 0b11 N1

state N0_5entry {
    transition select(tranKey) {

0b1011 &&& 0b1011 : N1;
0b0111 &&& 0b0111 : N1;
0b1110 &&& 0b1111 : N2;
0b0010 &&& 0b1111 : N3;
default: accept;

    }
}

Node ID Transition
Key Mask Value Next Node

N0_4entry TranKey[2:3] 0b11 0b10 N2N3_before

N0_4entry TranKey[2:3] 0b00 0b00 accept

N2N3_before TranKey[0:1] 0b11 0b11 N2

N2N3_before TranKey[0:1] 0b11 0b00 N3

N2N3_before TranKey[0:1] 0b00 0b00 accept

N0_4entry TranKey[2:3] 0b11 0b11 N1

(a) (b)

V1 Step1
for Device A

V1 Step2
for Device A

V2 Step1
for Device B

V2 Step2
for Device B

Figure 4: A motivating example demonstrating how di�erent parser generation algorithms (V1 and V2) can produce outputs

with varying hardware resource consumption. Such di�erence originates from suboptimal entry merging (Step 1) and transition

key splitting (Step 2) strategies.

Target parser program P:

state N0: transition select(tranKey): // tranKey is 4-bit

1, 3, 5, 7 : N1;

Node ID Transition
Key Mask Value Next

Node
N0 tranKey 0b1011 0b0001 N1
N0 tranKey 0b1011 0b0011 N1

Node ID Transition
Key Mask Value Next

Node
N0 tranKey 0b1101 0b0001 N1
N0 tranKey 0b1101 0b0101 N1

Node ID Transition
Key Mask Value Next Node

N0 tranKey[0:1] 0b10 0b00 N1_before
N1_before tranKey[2:3] 0b11 0b01 N1
N1_before tranKey[2:3] 0b11 0b11 N1

Node ID Transition Key Mask Value Next Node

N0 tranKey[0:1] 0b11 0b00 N1_before
N0 tranKey[0:1] 0b11 0b01 N1_before

N1_before tranKey[2:3] 0b01 0b01 N1
N1_before tranKey[2:3] 0b01 0b01 N1

Same entry
merging result

Different TCAM
usage outcome

Sol1

Sol2

(a) (b)

Figure 5: For parser program P, Sol1 and Sol2 generate merg-

ing results with the same number of entries in (a) but lead to

di�erent TCAM usage in (b) for devices that can only start

key+value matching from the current extraction cursor.

There are multiple ways in step1 to choose the mask + value

combination, each of which might consume di�erent # entries.

Some existing approaches [33] develop rule-merging algorithms.

Unfortunately, they might lead to a suboptimal result ( V1 Step1 in

Figure 4(a)), while we can �nd a better merging solution that only

needs 4 entries ( V2 Step1 in Figure 4(a)). Due to di�ering bit-width

constraints on the state transition keys of devices A and B, the

output of step1 is su�cient to �t into device B. However, if we

want to generate a parser for device A whose state transition keys

can only be ≤2-bit, we need to do key splitting in step2 . There are

multiple ways (blue entries in Figure 4) to do key splitting for the

same state transition rules (code in blue rectangle in Figure 4). Each

way uses a di�erent number of TCAM entries.

Two main reasons lead to this result. Firstly, redundant mask

+ value combinations (in the red rectangle) require more TCAM

entries from the hardware device. Secondly, even for the same mask

+ value combination (in the blue rectangle), di�erent orders to check

values of the state transition key (e.g., check tranKey[0:1] before or

after tranKey[2:3] in Figure 4) may lead to di�erent TCAM entry

usage. These reasons cause 6 vs 10 TCAM entry usage from 2 parser

generation solutions.

3.2.2 Suboptimality from decoupling compilation into separate phases.

To make things even more complicated, even if two entry merg-

ing algorithms produce the same number of mask-value pairs to

cover the state transition rules (Figure 5(a)), their resulting TCAM

usage can be di�erent (Figure 5(b)). These issues could be mitigated

by adding more compiler rewrite rules, but similar cases may still

arise where di�erent ways of expressing the same semantics lead to

varying hardware resource usage. The fundamental reason for sub-

optimality is that the generation algorithms depend on the speci�c

written style of the input parser program. As a solution to such

brittleness, we claim that parser generation is a combinatorial

problem and that a combinatorial search engine should be

used to solve this problem.

3.3 Program-Synthesis-based approach

This ine�ciency of existing parser generators may be tolerable

when hardware resources for the parser are relatively abundant.

Unfortunately, this is not the case. Most programmable network de-

vices have severely constrained hardware resources (e.g., # TCAM

entries in To�no, # parser stages in IPU) to support the high-speed

and high-throughput performance. These resource limitations, com-

bined with the ine�ciencies of existing compilers, often result in

compilation failures for parsers with complex parsing logic and

multiple parser states. Such parsers, commonly developed by cloud

providers, are designed to analyze network packets from diverse

sources (e.g., �nancial exchanges, universities, internal servers).

We believe a program-synthesis-based solution is a good �t

to remedy these drawbacks because it takes into consideration

ONLY the input parser’s semantics rather than the code’s written

style. Accordingly, we turn the compilation into a combinatorial

search problem and utilize state-of-the-art solvers [26] to generate

a semantically equivalent parser implementation by solving this

search problem.

4 Problem Statement

ParserHawk produces a parser implementation for a speci�cation

written in a high-level language. A parser takes a bitstream as input

and identi�es header �elds through a series of parsing steps. The
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�nal output of a parser is a dictionary that maps packet �elds to

corresponding values.

def �<?; (� ):
// starting table (TID) and state (SID)

) �� = 0, (�� = 0, $� = {}

// each iteration is one state transition

// there are at most K iterations

for i in range( ):

// find all entries

for ��� ∈ �4C�=CA~ () ��, (�� )
// when we first match a condition

if �>=38C8>= () ��, (��, ��� )
// extract relevant bits into output dictionary

for ℎ ∈ �GCA02C(4C () ��, (��, ��� )
� ,$� = 4GCA02C (ℎ, �,$� )

// transition to next state

) ��, (�� = )A0= () ��, (��, ��� )
break // start next iteration after the first

successful match

return $�

Figure 6: Generic implementation of a parser using TCAMs

for state transitions. Once the parser state (SID) reaches ac-

cept or reject, the SID and TID do not change for the remain-

ing transitions of the parser.

Correctness. ParserHawk’s goal is to generate parser implementa-

tions that match the behavior of the speci�cation. An implementa-

tion is correct if, on all input bitstreams, the dictionary it outputs

is equal to the corresponding speci�cation’s output. Formally, let

(?42 be a function from bitstrings to dictionaries representing the

speci�cation of a parser, and let �<?; be the corresponding func-

tion for the implementation. Then, �<?; is correct if ∀� ∈ {0, 1}∗,

�<?; (� ) = (?42 (� ).

Implementation Behavior. The output of ParserHawk is a set of

rows describing the entries in TCAM tables that implement the

parser. Referring Figure 6, each entry row is identi�ed by a TCAM

table id ) �� ∈ N, a state id (�� ∈ N, and a entry ID ��� ∈ N. An

entry row has a �>=38C8>= �eld, which is a logical predicate that

de�nes when the entry in that row is active. The �GCA02C(4C of a

row returns the set containing all the packet �elds to extract when

that row is active. Finally, the )A0= �eld gives the TCAM table id

and state number to transition to after a row is activated.

Given such a collection of rows, we can de�ne a function �<?;

that describes how the parser corresponding to those TCAM tables

executes. Figure 6 shows pseudo-code that de�nes this function by

simulating the device’s parsing behavior by visiting TCAM tables

for up to  times.1 The code builds up a dictionary $� mapping

packet �elds to their values. Initially, the parser starts in TCAM

table 0 and state 0. On each step, the parser looks up all of the entries

associated with the current table and state ID using �4C�=CA~, and

then checks if the condition associated with that entry is active. If

so, it extracts each �eld associated with the entry into the mapping

$� , and then performs the corresponding transition. Finally, the

parser returns the updated $� .

Example. We use 2 examples to show the concrete function of

ČėĨĩěĨ ČĨĥĝĨėģ+ďĦěę (Figure 7) and ąģĦĢ (Figure 6) with the

To�no switch as the target device. They both assign the �rst 4 bits

1 is a parameter of our synthesis procedure.

(?421.?4:bit<4>5 84;30,5 84;31
State0:

pkt.extract(5 84;30)
transition State1;

State1:

pkt.extract(5 84;31)
transition accept;

(?422.?4:bit<4> 5 84;30,5 84;31
State0:

pkt.extract(ℎ3A .5 84;30)
transition select(5 84;30 [0])

0 : State1;

default : accept;

State1:

pkt.extract(5 84;31)
transition accept;

def (?421(� ):
$� = {}

$� [ 5 84;30 ] = � [0 : 4]
$� [ 5 84;31 ] = � [4 : 8]
return $�

def (?422(� ):
$� = {}

$� [ 5 84;30 ] = � [0 : 4]
if 5 84;30 [0] == 0:

$� [ 5 84;31 ] = � [4 : 8]
return $�

Figure 7: From parser in P4 to spec in ParserHawk.

Table 1: Suppose 5 84;30 and 5 84;31 are 4-bit variables.

Red cells for �<?;2 parser only and all other cells are for

both �<?;1 and �<?;2. “Accept" value in the Tran column

means completion and exiting the TCAM table. For these 2

simple programs, we can refer to the (?42 in Figure 7 as �<?; .

Condition ExtractSet Tran

TID:0, SID:0, EID:0 True {�eld_0} 0,1

TID:0, SID:1, EID:0 �eld_0[0] == 0 {�eld_1} Accept

TID:0, SID:1, EID:1 �eld_0[0] ≠ 0 {} Accept

to 5 84;30. (?421.?4 sets 5 84;31 to be the next 4 bits unconditionally,

while (?422.?4 does so only if the �rst bit of 5 84;30 is 0.

The job of the parser generator is to concretize ÿĥĤĚğĪ ğĥĤ,

āĮĪĨėęĪďěĪ , and ĐĨėĤ for all entries in all TCAM tables. When

targeting the To�no switch, which only has a single TCAM table,

the value of ) �� should always be 0. Using the values in Table 1,

ąģĦĢ1 achieves the same functionality as ďĦěę1 while ąģĦĢ2 is

the same as ďĦěę2.

5 Parser Synthesis Procedure

Code Analyzer
(Sec 5.1)

ParserHawk

Tofino
Parser
IPU

Parser

Encoder
(Sec 5.1)

Parser
Spec

HW Impl

CEGIS synthesis
loop using Z3

(Sec 5.2)

Synthesis
Output

Post-synthesis
OPT (Sec 5.3)

Code
generator

Hardware
Configuration

Front-End

Back-End

Optimizations
enabled (Sec 6)

Synthesizer

Figure 8: ParserHawk work�ow overview.

The whole work�ow of ParserHawk is shown in Figure 8. Con-

cretely, the front-end �rst processes the input parser description

and hardware con�guration through a Code Analyzer and Encoder

(§5.1), and then generates one parser speci�cation and the corre-

sponding hardware implementation. Both of them are fed into a

synthesizer (§5.2) written by Z3 with all speedup optimizations (§6)
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enabled to generate an output. The synthesis output is then passed

to the back-end, containing a Post-Synthesis Optimizer (§5.3) and a

Code generator, to output target-speci�c implementations (e.g., for

To�no or IPU in this paper). The core part is the synthesizer and

its optimization algorithms.

ParserHawk uses a program synthesis technique called CEGIS

(Counterexample-Guided Inductive Synthesis [40]) to generate

parser implementations. The CEGIS process consists of 2 phases:

synthesis and veri�cation. During the synthesis phase, ParserHawk

uses the Z3 SMT solver to generate a candidate set of TCAM rows

that satisfy selected input/output examples, where the input is a

bitstream and the output is a dictionary mapping headers to values.

In the veri�cation phase, Z3 checks whether the candidate matches

the speci�cation parser for all possible inputs. If it matches, Parser-

Hawk returns the candidate as a valid solution. Otherwise, Z3 will

generate a counterexample in which the candidate and the speci�-

cation disagree. In that case, the synthesis phase repeats and the

counterexample is added to the set of input/output examples used

during the synthesis phase. The CEGIS loop repeats until either a

solution is found or Z3 indicates that no solution exists (e.g., no

set of TCAM tables with the speci�ed size and resource limits can

correctly match the speci�cation for the current set of input/output

examples). The challenge in making this CEGIS approach work

lies in �nding an encoding in Z3 that can be solved in a practical

amount of time.

5.1 Encoding parser implementation and
speci�cation

A parser is a �nite state machine (FSM) where each state include

operations (e.g., packet �eld extraction) and state transition rules as

speci�ed in TCAM entries. ParserHawk encodes this FSM behavior

as a series of logical formulas and constraints in Z3. For this encod-

ing, ParserHawk strives for high-quality parser implementations

and retargetability.

High quality here means that, given developers’ requirements,

ParserHawk should generate a parser implementation using as few

resources (e.g., TCAM entries, pipeline stages) as possible. Fewer

resource usage can leave more room for future incremental changes

to the network parser [39].

To support retargetability to multiple backend devices, Parser-

Hawk divides up the parser encoding into generic rules for how

TCAM tables behave and target-speci�c details. Concretely, our en-

coding is split into 2 parts, (1) generic FSM simulation rules, which

describe how the state transition system should evolve as TCAM en-

tries are processed; and (2) a hardware con�guration pro�le, which

encodes constraints imposed by a particular hardware device. To

re-target ParserHawk to support new hardware devices, a developer

only needs to write formulas for a new hardware con�guration

pro�le.

5.1.1 Generic FSM Simulation.

ParserHawk de�nes a collection of Z3 variables (Table 2) to

represent the parser state. The formula q2><<>= shown in Figure 9

simulates the parser execution process, essentially encoding the

pseudo-code from Figure 6 as a set of logical formulas. The formulas

encode a process of visiting the TCAM tables for multiple iterations,

with one parser state executing per iteration. In each iteration ; ,

these formulas track (1) which parser state is executing, (2) which

�elds are extracted, and (3) how to do state transition.

// Initialization condition

�DAA��[0] == 0 ∧ pos[0] == 0

// Packet field extraction in iteration ;
∧Ġ,Ģ,ġ (�DAA�� [;] == k ∧ �GCA02C [ 9 ] [: ] == 1) ⇒
∧Ĝ ≠Ĝ ğěĢĚĠ

($� [; ] [ 5 ] == $� [; + 1] [ 5 ] ]) ∧ $� [; + 1] [ 5 84;3 Ġ ] ==

� [?>B [; ] : ?>B [; ] + BI (5 84;3 Ġ ) ] ∧ ?>B [; + 1] == ?>B [; ] + BI (5 84;3 Ġ )
// Build state transition key for parser state :
∧ğ,Ġ,ġ �;;>2 [8 ] [ 9 ] == : ⇒ 5 84;3ğ [ 9 ] ∈ )A0=:4~ [: ]
∧Ģ,Ġ,ġ !>>:0ℎ403 [: ] [ 9 ] == 1 ⇒ � [?>B [; ] + 9 ] ∈ )A0=:4~ [: ]
// Do state transition

∧Ģ,ğ,ġ (�BC0C4ğ == : ∧ )A0=:4~ [: ]&"ğ == +ğ&"ğ) ⇒ �DAA��[;+1] ==

#GCğ

Figure 9: Logical formulas for common hardware constraints

(q2><<>=). �BC0C48 represents the state ID in iCℎ iteration.

5.1.2 Hardware configuration.

ParserHawk additionally uses a hardware-speci�c con�guration

to encode constraints imposed by di�erent devices. For example,

the current pro�les in ParserHawk encode the following kinds of

constraints:

Extraction length limit. This constraint imposes a limit on themaxi-

mum number of bits to extract per entry. For large-size packet �elds

(e.g., 40-byte IPv6 header), more than one entry may be needed to

complete the extraction of the entire �eld.

State transition key size limit. The size of a state transition key per

entry in the TCAM table may have limits. For example, if the limit of

the state transition key is 2 bits, a 4-bit transition key must be split

into 2 pieces, using >1 TCAM entries to complete the transition.

Lookahead window size. A parser may look ahead to check bits

that have not yet been extracted when deciding how to transition.

How far a given parser can check is determined by the lookahead

window size. Its value varies by device.

Limited number of TCAM entries and stages.The number of TCAM

entries and parser stages are limited. ParserHawk must generate

an output within the available resources.

ParserHawk use variables:4~!8<8C , C20<!8<8C , ;>>:0ℎ403!8<8C ,

and BC064!8<8C as constants for the maximum # of bits for state

transition key, max # of TCAM entries, max lookahead window size,

and max # of stages in parser, respectively. Figure 10 and 11 present

the high-level formulas encoding the hardware resource constraints

for To�no and IPU. The formula for the implementation’s behav-

ior becomes �<?; (� , �4E824) = q2><<>= ∧ q�4E824 . Appendix 13

shows more details involved in turning these constraints into the

�rst-order logic formula. We do not constrain the extraction limit

in synthesis and leave it to the post-synthesis optimization (§5.3).

// Do not use a too-wide state transition key

∧ġ,ğ,Ġ(D< (�;;>2 [8 ] [ 9 ] == : ) + (D< (!>>:0ℎ403 [: ] [ 9 ] ) ≤ :4~!8<8C
// Do not use more than available TCAM entries

∧ ;4= ()��" ) ≤ C20<!8<8C ∧
// Do not exceed lookahead window size

∧ġ;4= (!>>:0ℎ403 [: ] ) ≤ ;>>:0ℎ403!8<8C

Figure 10: Hardware constraints for To�no (qC> 5 8=> ).
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Table 2: Z3 variables used to encode parser behavior. They are used to build formulas in Figure 9, 10, 11, and 12

Name Type Description

�GCA02C 2D array of Bool �GCA02C [8] [ 9] = 1 means 5 84;38 is extracted at parser state 9 .

)A0=:4~ 1D array of Int )A0=:4~ [:] represents the state transition key in parser state : .

�;;>2 2D array of Int �;;>2 [8] [ 9] = : means the 9th bit of 5 84;38 is included in )A0=:4~ [:].

!>>:0ℎ403 2D array of Bool !>>:0ℎ403 [:] [ 9] = 1 means the 9th bit ahead of the extraction pointer is in )A0=:4~ [:].

)��" 1D array of Int×Int×Int )��" [8] has 3 variables:"8 for mask, +8 for value, and #GC8 for the next parser state ID.

�8BC 1D array of Int×Int �8BC [8] has 2 variables:�BC0648 and�BC0C48 , giving the stage and parser state ID entry 8 is allocated

to.

�DAA�� and ?>B 1D array of Int �DAA�� [;] and ?>B [;] record the parser state ID and position in the ;Cℎ (out of a max  ) iteration.

$� 1D array of dictionary $� [;] [5 ] stores the value of packet �eld 5 in the ;Cℎ (out of a max  ) iteration.

∧ġ,ğ,Ġ(D< (�;;>2 [8 ] [ 9 ] == : ) + (D< (!>>:0ℎ403 [: ] [ 9 ] ) ≤ :4~!8<8C
∧ ;4= ()��" ) ≤ C20<!8<8C ∧
∧ġ;4= (!>>:0ℎ403 [: ] ) ≤ ;>>:0ℎ403!8<8C
∧ğ�(C064ğ ≤ BC064!8<8C //New1:Only use available stages.

∧ğ�(C064ĊĮĪğ > �(C064ğ //New2:Move forward to future stages.

Figure 11: Hardware constraints for IPU (q�%* ). �BC0648 rep-

resents the stage number in iCℎ iteration.

5.1.3 Specification encoding. As part of the CEGIS veri�cation

phase, Z3 also needs an encoding of how the speci�cation for the

parser behaves. To describe speci�cation behavior, ParserHawk re-

uses a similar encoding to describe an FSM as in 5.1.1, but instead

of deriving transitions and extraction rules based on an unknown

(symbolic) TCAM encoding, it directly uses values extracted from

the speci�cation parser program. Figure 12 shows the additional

formula encoding the speci�cation’s behavior. The values of the+0;

arrays used in this template describe the speci�c behavior of the

speci�cation and are derived from the speci�cation parser program.

// Concretize all Z3 variables using ValX arrays

∧ğ,Ġ (�GCA02C [8 ] [ 9 ] == +0;� [8 ] [ 9 ] ) ∧
∧ğ,Ġ (!>>:0ℎ403 [8 ] [ 9 ] == +0;![8 ] [ 9 ] ) ∧
∧ğ,Ġ (�;;>2 [8 ] [ 9 ] == +0;�[8 ] [ 9 ] ) ∧
∧ğ (�BC064ğ == +0;�BC064 [8 ] ) ∧ ∧ğ (�BC0C4ğ == +0;�BC0C4 [8 ] ) ∧
∧ğ (+ğ == +0;+ [8 ] ) ∧ ∧ğ ("ğ == +0;" [8 ] ) ∧ ∧ğ (#GCğ == +0;# [8 ] )

Figure 12: Constraints speci�cation (qB?42 ).

The formula for the speci�cation’s behavior is de�ned as the

conjunction formula: (?42 (� ) = q2><<>= ∧ qB?42 .

5.2 CEGIS loop in ParserHawk

ParserHawk implements the CEGIS loop in Z3 (in Figure 13) to �nd

one parser con�guration �>=5 that is semantically equivalent to

the speci�cation’s behavior. For a particular �eld, if it is updated

in the parser by extracting a subrange of the input bitstream, then

its value should be correctly re�ected as the value of the bitstream

portion; otherwise, its value remains unchanged.

Synthesis: Find �>=5 B.C . ∀� ∈ )4BC(4C, (?42 (� ) == �<?; (� , �4E824 ).
Verification: Given a �>=5 , whether ∃� ∈ �;;�=?DC B.C .

(?42 (� ) ≠ �<?; (� , �4E824 ).

We maintain a test case set ()4BC(4C ), containing input-output

pairs used for the synthesis phase. Each element of)4BC(4C includes

(1) an input bitstream �8 and (2) all packet �elds’ values after parsing

the input bitstream (stored in a list {+8,0, ..,+8,#−1}). We use Python

Synthesis Phase

Compilation Failure Compilation Success

Test case set = {
{I0, {V0,0, ..., V0,N-1}}, ...
Ik-1, {Vk-1,0, ..., Vk-1,N-1}},
{Ik, {Vk,0, ..., Vk,N-1}}
} 1

2 4

3 Counterexample = 
{Ik, {Vk,0, ..., Vk,N-1}}

Verification Phase

Figure 13: CEGIS loop. 1©: go to veri�cation if synthesis �nds

a solution; 2©: compilation failure if synthesis fails to �nd

a solution; 3©: return to synthesis by adding the counterex-

ample to the test case set; 4©: compilation success if no coun-

terexample is found in veri�cation.

execution to simulate the parser’s behavior to get the parsed values.

We use �;;�=?DC to represent the whole input space. ParserHawk

generates an implementation (�>=5 ) for )4BC(4C in the synthesis

phase and veri�es this implementation by �nding a counterexample

in the veri�cation phase.

ParserHawk initializes the test case set for synthesis with one

randomly generated input-output pair for simplicity. The veri�-

cation phase checks whether the con�guration output from the

synthesis phase satis�es all examples within the input space. If

there exists a counter-example, ParserHawk adds it to the test case

set and re-enters the CEGIS loop.

5.3 Post-synthesis optimization

During the synthesis phase, ParserHawk includes additional restric-

tions on implementations in order to reduce the search space. For

example, ParserHawk disallows one parser state from extracting

>1 packet �eld without constraining the extraction length limit in

the synthesis phase(§5.1.2). This simpli�es the synthesis procedure

because otherwise the synthesis engine would have to consider not

only which �elds to extract, but also the order to extract them in

each parser state.

However, these restrictions, while speeding up synthesis, can

lead to potentially more parser state usage than necessary. There-

fore, ParserHawk has a post-synthesis optimization phase that

improves the output from the CEGIS loop. The optimizations in

this phase are simple to perform, but trying to include them in

the synthesis phase would be ine�cient. For example, ParserHawk

recursively merges parser states that do �eld extraction and have
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Spec(...): field0, field1, ..., fieldi, ... fieldk

size(field1)=n1; size(fieldi)=ni;

Spec'(...): size(field1)=1;size(fieldi)=1; Impl'(...): size(field1)=1; size(fieldi)=1;

Impl(...): size(field1)=n1; size(fieldi)=ni;

Figure 14: Spec→Spec’: scale down all irrelevant �elds’ size

to 1. Spec’→Impl’: using program synthesis; Impl’→Impl:

Scale up those �elds’ size to match original size.

only 1 default state transition rule with their adjacent states. Parser-

Hawk also will divide a parser state that extracts a large-size packet

�eld into multiple ones.

6 Optimizations in ParserHawk

Naively encoding parser generation as a program synthesis problem

is quite time-consuming due to the exponential growth of both

the search space and input space. The root cause is that the naive

encoding produces a very large number of variables and constraints.

These variables include symbolic constants, which specify the

conditions used in state transitions (e.g., value-mask pairs), and

structural variables, which de�ne the parser’s architecture, includ-

ing �eld-to-state assignments and next-state selection. For instance,

each TCAM entry contains a value-mask pair, consisting of two

symbolic constants of key width (KW) bits, resulting in 2 , possi-

ble solutions per constant. As the number of TCAM entries grows,

so does the number of symbolic constants, causing the search space

to expand exponentially.

Other symbolic structural variables in the parser exhibit simi-

lar exponential growth as the implementation scales. Meanwhile,

the input space is also a bottleneck: to guarantee correctness, the

synthesized parser must produce the same updates as the speci-

�cation for all combinations of input-output pairs. As the parser

speci�cation becomes more complex, the input bitstream length

increases, leading to an exponential blow-up in the number of pos-

sible input values. We see that with a naive encoding, the compiler

fails to generate code for some benchmarks within 24 hours (§7).

Therefore, it is necessary to speed up compilation by leveraging

several optimization algorithms.

6.1 Opt1: Spec-guided Key Construction

We optimize the state transition key construction by restricting the

choice of bits to those explicitly used in the speci�cation for state

transitions. For instance, if only the �rst 4 bits of a packet �eld (e.g.,

5 84;30[0:3]) are used for the state transition key in the speci�cation,

we avoid selecting other bits besides those 4 bits to build transition

keys in the implementation. This signi�cantly reduces the search

space because typically around 1% of the bits of all �elds are relevant

for state transition.

6.2 Opt2: Bit-Width Minimization

We regard packet �elds whose bits are not used in any state transi-

tion keys in the speci�cation as irrelevant �elds. As shown in Fig-

ure 14, this simpli�es the representation of these irrelevant packet

�elds by treating their sizes as 1 bit rather than their actual sizes

in ParserHawk. This compaction e�ectively reduces the size of the

Start S0 S1 Sk S0 S1 Sk

field0 field1 fieldk fieldkfield1field0

(a) (b)

Start

Figure 15: First, ParserHawk pre-allocates packet �elds to

di�erent parser states (a). Next, ParserHawk determines the

state transition logics (→) using program synthesis (b). This

works because di�erent parser states are symmetric from

the hardware’s perspective.

if (key1 == 0b0000 or key1 == 0b0001) 
goto State0;

if (key1 & 0b1110 == 0b0001 & 0b1110) 
goto State0;

State0:
if (key1 == 0b0000) 

goto State1
State1:
if (key2 == 0b1000)

goto State2

State0:
if (key1 ++ key2 == 0b00001000) 

goto State2

(++ is the concatenation operation)

(a)

(b)

key1 == 0b0000 --> goto State0
key1 == 0b0001 --> goto State1

(c)

if (key1 == 0b1010) 
goto State1

0b1010 The constant set includes all 1-bit
and 2-bit subranges of 0b1010 

{0, 1, 0b10, 0b01}
(d)

key1 & ?? == ?? --> goto ??
No valid merging sol

Figure 16: (a) uses values existing in parser spec to merge

entries (b) concatenates constants in adjacent parser nodes

for value selection (c) cannot merge multiple entries if

they transit to di�erent parser states (d) collect all hardware-

compliant subranges of the wide key into constant sets.

input bitstream, thereby shrinking the input space and simplifying

the synthesis problem. After synthesis, the sizes are replaced with

their proper values.

6.3 Opt3: Preallocated �eld extraction

This optimization leverages the symmetric properties of parser

states. By analyzing the input parser program, the algorithm only

considers packet �elds that are explicitly parsed by at least one

parser state. Instead of relying on the synthesis solver to decide

which state is responsible for extracting each �eld, we pre-designate

certain states for extracting each �eld (e.g., 5 84;30 is extracted in

(0, 5 84;31 in (1 in Figure 15). This exploits the symmetry in parser

states, as their execution order is not �xed (e.g., the execution of (0
can appear before or after (1). The synthesis task is determining

the execution order (e.g., (: → ... → (1 → (0) among parser

states, narrowing the search space size. Opt3 is ONLY applicable

to parser architectures with such symmetric features (e.g., single-

TCAM-table style parser).

6.4 Opt4: Constant synthesis

Symbolic constants contribute to the large search space in synthe-

sis. To address this, we employ several domain-speci�c constant

synthesis algorithms to guide the solver toward correct solutions.

6.4.1 Restricting the search space for value selection. ParserHawk

synthesizes value-mask pairs that can merge multiple TCAM en-

tries. For example, if ∀8 = 1...# , + &" == �8 &" , ParserHawk
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State 0

State 1

Field0:

Field1:

b00 b01 b02

b10 b11

State 0

State 1

Field0:

Field1:

b00, b01, b02

b10, b11

(a) (b)

Figure 17: (a) assigns each individual bit to state transition

keys across parser states while (b) groups bits from the same

�eld and allocates each group to the same state.

can use one entry/value-mask pair (+ ,") to cover # = 2= entries

(e.g., �1, �2. . .�# ). If such a (+ ,") exists, then any of the value-

mask pairs (�8 , ") are valid as well. One toy example is shown

in Figure 16(a). Thus, rather than trying to search for such a +

from the space of all possible values, ParserHawk only considers

the constant values �1, . . . , �= present in the parser speci�cation,

reducing the domain size considerably (e.g., 232 → 100 constants).

While this heuristic signi�cantly speed up synthesis, it may

introduce suboptimality. Figure 16(b) shows that it can miss oppor-

tunities to reduce TCAM entries by merging state transition rules

across adjacent parser states. To mitigate this, we include concate-

nations of values in adjacent parser states for ParserHawk to search

symbolic constant values, thereby recovering better solutions in

some cases.

6.4.2 Restricting and parallelizing the search for masks. The previ-

ous optimization reduces the search space for the value component

of value-mask pairs, but it is also possible to speed up the search

for masks as well. Notably, ParserHawk only needs to merge mul-

tiple TCAM entries when they transition to the same next parser

state. For instance, there is no way to merge entries in Figure 16(c)

because of di�erent next parser state values. To exploit this, in the

case where all entries of the speci�cation transition to distinct next

parser states, we simply set all mask bits to 1. For parser speci�ca-

tions that can do entry merging via mask+value, we can leverage a

server pool to parallelize the search. Conceptually, each server in

the pool solves a subproblem by �xing the value of a subset of mask

variables to all-ones (e.g., 0b111...1), while letting Z3 synthesize the

remaining mask variables. For instance, one subproblem may let Z3

determine the value of one mask, another allows two, and so on.

6.4.3 Spli�ing large state transition keys’ values. When the parser

speci�cation contains constants exceeding the allowable key width,

they cannot be directly used in the implementation. For instance, if

the target hardware of Figure 16(d) can support at most 2 bits in its

state transition key, it is not helpful to include 0b1010 in the set to

search for the symbolic constants’ value. We develop specialized

algorithms to address this issue. Speci�cally, for a large-bit constant

C shown in the speci�cation, we generate all candidate constants

that (1) are subranges of the original constants and (2) �t within the

hardware-imposed width limit (KW). Algorithmically, we take all

constants of the form � [8, 9], where 0 < 8 ≤ 9 and 9 − 8 ≤ KW. and

added them to the solver’s constant set. This optimization reduces

the constant search space from exponential (2 , ) to quadratic

(O(KW*len(C)).

Parser spec with varbit field: 
State 0: pkt.extract(hdr.value, len* 8)

Parser spec without varbit field: 
State 0: pkt.extract(hdr.value)

Synthesis output of parser: 
Extract fixed-bit hdr.value at state0

ParserHawk

Final Parser impl: 
Extract varbit hdr.value at state0

Figure 18: All varbit �elds are treated as �xed-bit in synthesis.

They are then converted back to varbit �elds in the �nal

implementation.

Synhesis Problem (V)

Problem + 
# TCAM = C1

Problem + 
# TCAM = C2

Problem + 
# TCAM = CN

Problem +
(V == v1)

Problem +
(V == v2)

Problem +
(V == vk)

Solution

Core CoreCoreCoreCoreCore

Figure 19: Derive multiple synthesis tasks by �xing

the hardware resources (e.g., tran key size limit) or

values of selected Z3 variables or both, and run these tasks

in parallel (one core per job).

6.5 Opt5: Grouping for transition key allocation

ParserHawk determines which bits should be used as state transi-

tion keys at each parser state. Each bit can be assigned to any parser

state, and the total search space grows exponentially with # bits

considered. However, in many examples, we observe that bits from

the same packet �eld are usually used together for state transitions

within a single parser state, unless the �eld is intentionally split

across multiple states. Hence, as illustrated in Figure 17, we group

adjacent bits from each �eld and treat them as an indivisible unit

during synthesis. All bits within a group are allocated to the same

parser state.

6.6 Opt6: Treat all �elds as �xed-size during
synthesis

There are 2 types of �elds: �elds whose sizes are determined at

compile time (called FixField) vs at run time (called VarField). This

introduces complexity in behavior encoding for extracting VarField,

as we must account for all possible sizes of the VarField and update

the extraction pointer accordingly. In practice, ParserHawk only

needs to determine which parser state extracts a particular �eld,

not how many bits to advance. This decision is independent of

the VarField’s actual size. We leverage this observation by treating

VarFields as if they had a �xed size during the synthesis phase

(Figure 18), thereby unifying their treatment with FixFields. During

a post-synthesis phase, we convert the synthesized output into a

format that correctly extracts VarFields.

6.7 Opt7: Parallelism

Based on speci�c input parser behavior, we can divide a large

synthesis problem into several subproblems and distribute them

across a server pool for parallel synthesis.
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State 0

State 1

State 2

State 0

State 1

State 2

Does the parser spec
has loopy transition?

State 0

State 1

State 2

Figure 20: When the parser spec contains no loopy state tran-

sitions, we run synthesis for both loop-aware and loop-free

implementations in parallel, hoping that the loop-free ver-

sion can complete faster due to its smaller search space.

6.7.1 Loop-Aware vs. Loop-Free Parser Implementation. The TCAM

table in devices such as To�no allows revisiting the same entry

multiple times, which can reduce TCAM entry usage by reusing en-

tries. However, other devices such as IPU do not support such reuse.

Therefore, we support both loopy and non-loopy parser generation

in ParserHawk. The �exibility of visiting an entry multiple times

makes the search space of loopy parser implementation larger. As

is shown in Figure 20, for loop-free parser speci�cations where no

input revisits a TCAM entry, the loopy design could be ine�ective

in reducing TCAM usage. In such cases, we adopt both loopy and

non-loopy parser implementation in parallel with the hope that

the non-loopy parser can generate a result faster due to its smaller

search space.

6.7.2 Parallelism in solution exploration. Z3 has built-in support

for trying to solve a query in parallel, but the parallel solver mode

does not automatically improve performance on our queries [9, 12].

Instead, we manually leverage the multiple cores to run the code

generation in parallel (Figure 19). On the one side, we ask Parser-

Hawk to do compilation under di�erent levels of hardware con-

straints. For example, assuming the target device supports a 32-bit

state transition key size, we derive several subproblems by setting

the limit from 32 bits down to 1 bit, and solving them together (1

core per subproblem). Smaller state transition key sizes allow the

synthesis solver to �nd masks or values with fewer bits, simplifying

the overall synthesis process. On the other side, we divide the code

generation problem into several subproblems by assigning values

to selected Z3 variables (e.g., setting a Z3 boolean variable to 0 in

one subproblem and 1 in the other). This reduces the search space

because the Z3 solver only needs to �nd the values of the remaining

variables. With this strategy, ParserHawk can halt as soon as one

subproblem yields a valid outcome or if all subproblems fail.

7 Evaluation

We evaluate ParserHawk and other baseline compilers by answering

several questions.

• Compilation completeness and correctness: If there exists a

solution, can a compiler explore that solution? Is the compilation

outcome semantically correct?

• Compilation speed: How long does it take to get the compila-

tion outcome?

• Resource consumption: How many hardware resources does

each compiler’s output consume?

• Retargetablity: Can these compilers support compilation for

various programmable network devices?

• Optimization impact: How bene�cial are the proposed opti-

mizations in ParserHawk quantitatively?

Baseline selection.We compare ParserHawk against the parser gen-

erator in Gibb et al. [13], the open-sourced To�no compiler [19], and

close-sourced Intel IPU compiler. A research prototype developed

by Gibb et al. leverages a dynamic programming (DP) algorithm

to do parser generation and we call it DPParserGen. Its hardware

constraints are parameterized and therefore this allows us to com-

pare compilation results under various hardware con�gurations.

Note that the DPParserGen can ONLY target single-TCAM-table

parser architectures and has restrictions to represent input parser

program. For example, DPParserGen disallows mask+value com-

bination/wildcard match (e.g., 0b1**0: N1; where 0b1**0 matches

any 4-bit values starting with 1 and ending with 0) and disallows

transition to the accept state on speci�c value (e.g.,0: accept;) in

the parser’s state transition entry. The state transition key in each

state of DPParserGen must come from the �eld extracted in that

state. These constraints are partially due to the fact that the pro-

grammable parser was less expressive before. Therefore, we only

run DPParserGen over benchmarks that can be represented by

its format. By contrast, ParserHawk supports code generation for

various parser architectures.

We also compare ParserHawk against a few commercial com-

pilers that we have access to (e.g., To�no and IPU compiler). Note

that developers have also added some optimization algorithms into

these commercial compilers to reduce the generated parser’s re-

source usage. However, to our knowledge, these optimizations rely

on a variety of heuristics. Our results show the bene�t of including

program synthesis within commercial compilers, allowing them to

generate better compilation outcomes without relying on engineers’

e�ort to rewrite parsers in semantically preserving ways.

Benchmarks. We evaluate 29 benchmarks [6] generated from vari-

ous sources including realistic parser programs from Gibb et al. [33]

and production parsers [4, 11, 15]. Some benchmarks are created by

randomly selecting a subset of 2–9 parser states from switch.p4 [17],

sai.p4 [15], and dash.p4 [4]. Besides, we create synthetic bench-

marks to re�ect particular parser patterns suggested in conversa-

tions with programmers of such parsers.

We further mutate these benchmarks using a combination of

semantic-preserving rewrite rules (Figure 21), including +/-R1:

add/remove redundant entries, +/-R2: add/remove unreachable

entries, +/-R3: split/merge entries, +/-R4: split/merge transition key,

and +/-R5: split/merge parser states. These rewrites are intended at

capturing the parser development process. For instance, developers

may be unaware of the target device’s constraints and therefore

write large-size state transition keys in parser programs.

Experiment setup. We run our experiments in CloudLab x86_64

c6620 nodes in the Utah cluster, using Ubuntu 22.04 and a 28-core 56-

hyperthreads Intel Xeon Gold 5512U processor. Each synthesis task
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Table 3: ParserHawk vs. To�no and IPU compiler over several parser benchmarks [6] (OPT: all Opt enabled, Orig: all Opt disabled)

ParserHawk (To�no) To�no compiler ParserHawk (IPU) IPU compiler

Program Name # TCAM Search Space (bits) OPT time (s) Orig time (s) speedup # TCAM # Stages Search Space (bits) OPT time (s) Orig time (s) speedup # Stages

Parse Ethernet 3 86 5.13 12.71 2.48 6 3 122 1.74 17.81 10.24 3

+ R1 3 86 2.8 15.67 5.6 9 3 122 1.74 17.96 10.32 4

- R3 3 86 2.76 13.21 4.69 5 3 122 1.89 20.17 10.67 3

+ R2 3 86 5.18 14.78 2.85 6 3 122 1.75 17.59 10.05 Con�ict transition

Parse icmp 4 114 9.51 399.94 42.05 5 3 266 22.35 1980.84 88.63 3

+ R5 4 114 8.04 430.96 53.6 5 3 266 21.52 343.99 15.98 4

- R3 4 114 6.39 410.58 64.25 4 3 266 27.07 147.22 5.44 3

Parse MPLS 8 191 68.56 >86400 >1260.21 10 5 247 65.24 >86400 >1,324.34 Parser loop rej

+ unroll loop 8 191 69.34 >86400 >1,246.03 8 5 247 63.29 >86400 >1,365.14 6

- R1 8 191 67.63 >86400 >1,277.54 8 5 247 63.1 >86400 >1,369.26 Parser loop rej

+ R1 8 191 41.76 >86400 >2,068.97 22 5 247 92.29 >86400 >936.18 Parser loop rej

Large tran key 3 150 1.99 4,747.92 2,385.89 Wide tran key 4 220 0.67 3843.08 5,735.94 4

+ R4 3 150 2.05 8,849.20 4,316.68 3 4 220 0.73 3783.63 5,183.05 4

+ R1 + R4 3 150 2.18 24,611.27 11,289.57 6 4 220 1.82 4061.8 2,231.76 4

+ R3 + R4 3 150 2.08 8,833.46 4,246.86 3 4 220 0.72 3816.73 5,301.01 4

Multi-key (same pkt �eld) 3 70 0.53 131.17 247.49 6 3 98 1.61 51.06 31.71 4

- R5 3 70 0.6 51.58 85.97 4 3 98 2.03 51.51 25.37 3

- R5 - R3 3 70 0.74 115.20 155.68 3 3 98 1.73 353.72 204.46 3

Multi-keys (di� pkt �elds) 3 97 7.98 5596.29 701.29 3 3 169 1.5 3001.19 2,000.79 4

+ R5 3 97 8 5,517.97 689.75 3 3 169 1.51 3060.11 2,026.56 3

- R5 3 97 8.26 5562.58 673.44 5 3 169 1.5 3003.58 2,002.39 4

Pure Extraction states 1 108 7.93 >86400 >10,895.33 1 2 465 244.61 >86400 >353.22 5

+ state merging 1 108 7.84 >86400 >11,020.41 1 2 465 245.7 >86400 >351.65 2

Sai V1 [15] 6 232 5.08 >86400 >17,007.87 6 3 472 13.69 >86400 >6,311.18 3

+ R2 6 232 153.64 >86400 >562.35 Too many TCAM 3 472 8.77 >86400 >9,851.77 Too many stages

Sai V2 [15] 21 797 2292.21 >86400 >37.69 21 5 1697 7837.68 >86400 >11.02 5

+ R1 + R2 21 797 9353.15 >86400 >9.24 Too many TCAM 5 1697 59073.57 >86400 >1.46 Too many stages

Dash V2 [4] 19 28 0.37 8.15 22.03 19 2 42 0.56 >86400 154,285.71 2

+ R1 + R2 19 28 0.41 7.87 19.20 Too many TCAM 2 42 0.57 >86400 151,578.95 Too many stages

select(Key)
    0,1 : N1;
    default : accept;

select(Key)
    0,1 : N1;
    2,3,4 : accept;
    default : accept;

select(Key) 
    0,1 : N1;
    0,1 : accept;
    default : accept;

(a) (b) (c)
bit<16> Key
select(tranKey) 
    0 : N1;
    default : accept;

(e)
bit<16> Key
select(Key[0:x]) 
    0 : N1Pre;
    default : accept;
N1Pre: select(Key[x:16]) 
    0 : N1;

default : accept;
(f)

select(Key1,  Key2) 
    (0,0) : N1;
    default : accept;

(g)

select(Key1)
    0 : N1Pre;
    default : accept;
N1Pre: select(Key2)
    0 : N1;

default : accept;
(h)

select(Key) 
    0 &&& 1 : N1;
    default : accept;

(d)

Figure 21: Collection of rewrite rules. R1:(a)→(b); R2:(a)→(c);

R3:(a)→(d); R4:(e)→(f); R5:(g)→(h).

(a subproblem within our parallel synthesis procedures) is con�ned

to a single core so any similar Linux x86_64 machine would su�ce

to run experiments. ParserHawk enables all optimizations (§6) by

default.

7.1 Correctness Validation

We encode hardware constraints in ParserHawk based on each de-

vice’s o�cial documentation, ensuring that our encoding faithfully

re�ects the documented speci�cations. We verify that the output

generated by ParserHawk is accepted by commercial compilers.

To test correctness, we perform a check using a simulator (Fig-

ure 22) by feeding randomly selected bitstreams to the hardware

parsers and comparing their parsing results against the expected

behavior de�ned by the speci�cation. Concretely, we generate an

Input Space Set by randomly sampling from all possible input bit-

streams. Then, we simulate the behavior of both Spec and Impl

to get corresponding output dictionaries ($�ĩĦěę and $�ğģĦĢ ).

If there exists one input bitstream from the Input Space Set that

makes these 2 dictionaries di�erent, the veri�cation fails. Other-

wise, the generated Impl passes the veri�cation. Besides, we test the

generated parser on the open-source bmv2 simulator [2] by using

Scapy [16] to generate test packets and check whether all packet

�elds are parsed correctly. We use Scapy to generate a TCP packet

with a speci�ed destination IP to test the Ethernet-IP parser. If the

parsing logic is correct, the packet will be successfully delivered

to the target; otherwise, it should be dropped. Currently, all com-

pilation results for the created benchmarks pass the simulator’s

check.

For resource usage, we report the actual number of TCAM entries

for To�no and parser stages for IPU in Table 3. These numbers

align with ParserHawk’s resource estimations, indicating that it can

accurately predict resource usagewithout over- or under-reporting.

7.2 Performance: compilation result and
hardware resource usage

Table 3 and Table 4 compare all compilers’ performance. We impose

a 24-hour timeout on the compilation process, as overnight delays

are typically impractical for developers. Red cells mean worse com-

pilation outcomes Commercial compilers usually falsely reject input

parser programs (11 out of 58) or generate outcome consuming sub-

optimal hardware resources (19 out of 58), which may �nally lead

to a compilation failure. By contrast, ParserHawk successfully com-

piles all benchmarks by exploring a larger space of implementation

possibilities.
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To be speci�c, commercial compilers CANNOT (1) do R4-like

rewrite, (2) unroll loops within parser states (speci�c to IPU com-

piler), and (3) rule out never-reached entries in Figure 21(c). These

limitations lead to compilation failures. Manually rewriting the

parser into a semantically equivalent format that passes the compi-

lation is not only error-prone but also risks overlooking valid solu-

tions. In contrast, ParserHawk consistently produces semantically

equivalent parser programs that use only the necessary hardware

resources, while both commercial compilers and DPParserGen may

generate outputs that consume more resources than required.

TCAM entry and stages. Compared with baseline compilers, Parser-

Hawk’s compilation outcome uses fewer than or equal hardware

resources for the same benchmark. Besides, ParserHawk use the

same amount of hardware resources while other compilers may use

di�erent amount of hardware resource for semantically equivalent

parser programs. One reason behind this is that the baseline com-

piler cannot detect redundant state transition entries, allocating

resources (e.g., TCAM entry, parser stage) for those entries as a

result. For example, the To�no compiler uses more TCAM entries

for Parse icmp and the IPU compiler has to use 2 parser stages to

�t all entries of a particular state in Parse Ethernet + R1.

Table 4 compares ParserHawk against DPParserGen over di�er-

ent hardware con�gurations. DPParserGen enables entry merging

using mask+value combinations and transition key splitting, but its

merging algorithm is suboptimal. Besides, similar to the motivat-

ing example in Figure 3.2, DPParserGen’s parser generation rules

sometimes fail to �nd a good result that use few TCAM entries.

Such issues do not cause problems for ParserHawk because it only

cares about the semantics instead of the written style of the input

parser program.

Compilation speed. All baseline compilers complete the compila-

tion within 1 minute but it takes much longer for ParserHawk to

�nish because ParserHawk relies on solver to explore the search

space. The search di�culty increases as the input parser programs

become complex. In Table 3, we report the search space size (in

bits) to quantify the di�culty of compilation problem. However,

by leveraging our optimizations, >90% of benchmarks complete

compilation within 5 minutes and 44 out of 58 complete within 1

minute. For benchmarks with long compilation time (e.g. Sai V2),

the root reason is that these parser speci�cations are complex (e.g.,

# parser states and transition rules) and therefore the search space

is quite large (797 bits for To�no, 1697 bits for IPU).

Based on our discussion with industrial developers, it usually

takes engineers 1 hour to rewrite the parser program into a format

that passes the compilation. Considering that ParserHawk can run

24/7, we believe its relatively long compilation time is acceptable.

Given the increasing hourly manual cost [5] and decreasing per-

unit computation cost [18], ParserHawk is and will continue to be

more cost-e�cient.

Summary: ParserHawk compiles parser programs that other com-

pilers reject and �nishes most benchmarks in under 5 minutes. Its

output uses less than or the same hardware resources as those of

existing compilers for all compilable cases.

Table 4: ParserHawk vs. DPParserGen over motivating examples

(ME) in Figure 4. ME-1 needs entry emerging strategy; ME-2 needs

to split the state transition key; ME-3 contains redundant entries.

# TCAM Parametrized Hardware Resources

ParserHawk DPParserGen State tran key width Lookahead window Extraction limit

Large tran key 3 6 To�no To�no To�no

ME-1 5 6 4-bit 2-bit 10-bit

ME-2 4 4 16-bit 2-bit 10-bit

ME-2 6 9 8-bit 2-bit 10-bit

ME-3 1 10 16-bit 2-bit 10-bit

Table 5: Speed up e�ect from various optimizations.

To�no IPU

Program Name Other OPT (s) + OPT5 (s) + OPT4, 5 (s) Other OPT (s) + OPT5 (s) + OPT4, 5 (s)

Sai V1 74.13 49.98 5.08 1674.9 39.68 3.92

Dash V1 587.65 11.74 4.45 320.07 6.6 2.43

Large tran key 53.27 13.99 1.99 50.34 2.38 0.67

7.3 Retargetablity: compile cross-device

Each commercial compiler is developed to serve one type of tar-

get device. DPParserGen can only do parser generation for ar-

chitectures with one big TCAM table. Extending DPParserGen to

do compilation for pipelined-TCAM-table parser is nontrivial be-

cause its clustering strategies might increase the number of entries

within a parser state, leading to split this merged state to multi-

ple TCAM-table stages and increasing the �nal stage usage. By

contrast, ParserHawk shows its retargetability in Table 3 and Ta-

ble 4 because it can compile for both To�no’s and IPU’s parser.

Concretely, when switching from the To�no to the IPU backend,

ParserHawk only needs to add constraints to prevent TCAM en-

tries from being reused across stages and to disallow revisiting

the same entry multiple times. The core synthesis logic—variable

generation and symbolic de�nitions—remains unchanged, resulting

in <100 lines of code di�erence between To�no- and IPU-targeted

versions of ParserHawk, making ParserHawk a lightweight and

easily portable compiler across hardware.

Summary: ParserHawk is retargetable by changing hardware con-

straints in its synthesis procedure while other baseline compilers

are speci�c to a particular type of device.

7.4 Bene�ts of Optimization

We measure the speed-up e�ect of our optimization algorithms

in Table 3 and Table 5. Across all benchmarks, enabling those al-

gorithms reduces the compilation time for all 58 cases. 22 out of

58 cases fail to get compilation outcome within 24 hours without

using optimization techniques. Algorithms described in §6 provide

at least 309.44× (geometric mean) speed up on average (ranging

from 1.46× to 154,285.71×), some of which achieve a leap from

O(hour) to O(second).

We further analyze the performance impact in Table 5, focus-

ing on the speedup that selected algorithms provide. In particular,

we evaluate the e�ectiveness of Opt4 and Opt5 on 3 benchmarks

by selectively enabling or disabling them, while keeping all other

optimizations enabled by default. The result shows that both Opt4

and Opt5 can provide ≈ 10× speedup respectively because they

can reduce the search space of constants’ value selection and state

transition key selection. Besides, Opt1 is useful when a small por-

tion of �elds’ bit are used to build the state transition key. Opt2 is

useful when there are many irrelevant packet �elds within a parser
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program. Opt3 is applicable for parser architecture with symmet-

ric features (e.g., the To�no switch). Using >1 cores for parallel

synthesis is generally useful for speedup across all benchmarks.

Summary: Proposed algorithms o�er a signi�cant speedup (hour→

second) to compilation, and each optimization technique is e�ective

for speci�c parser features. Usually, a given parser can bene�t from

more than 1 optimization technique.

8 Future work

We brie�y discuss avenues for future improvement. First, optimiz-

ing across parser and the packet-processing pipeline. Figure 23 shows

a hint in the P4 tutorial to write better parser programs, which

involves rede�ning the packet �elds. Neither ParserHawk nor other

existing compilers can do so. We aim to extend ParserHawk to sup-

port co-optimization across packet de�nition, parser, and pipeline.

Second, further compilation speed-ups. Table 3 shows an exponential

increase of compilation time when the parser spec becomes more

complex. For large and complex parser graphs, we could apply

graph theory techniques to divide the parser dependency graph

into smaller subgraphs, and then apply divide-and-conquer strate-

gies to the program synthesis problem. Third, more parser features.

We want to add more features in ParserHawk to support compiling

parser programs whose functionality is not determined at compile

time (e.g., P4 valueset and NPL parse break/continue).

9 Related work

Semantic verifier for programmable parsers. Leapfrog [27] veri�es

the semantic equivalence of di�erent parsers. ParserHawk solves a

harder problem, generating correct parser implementations using

synthesis-based techniques.

Synthesis-based compiler for packet processing pipelines.CaT [32]

and Chipmunk [30, 31] leverage solver-aided techniques to do

compilation for multiple network devices at the level of packet-

processing pipelines while ParserHawk generates code for the

parser portion of the network device.

Retargetable compiler design across programming languages and

devices. Polyglotter [29] and Metalift [24] build transpilers across

domain-speci�c languages and devices without considering various

hardware resource constraints. Alkali [36] and Hydride [34] are

cross-device compilers for other modern hardware architectures.

ParserHawk’s contribution in parser compilation is complementary

to these work.

10 Conclusion

We build, ParserHawk, a cross-device and program-synthesis-based

compiler for line-rate parsers. Several optimization algorithms are

incorporated to expedite compilation. ParserHawk can quickly gen-

erate compilation outcome that uses fewer resources in target de-

vices compared with state-of-the-art approaches. We believe such a

compiler can be applicable to do code generation for more emerging

parser architectures in the future.
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header_type F0_t {
fields {

F00 : 16;
common : 16;

}
} F0;

header_type F1_t {
fields {

F01 : 16;
common : 16;

}
} F1;

header_type F0_t {
fields {

F00 : 16;
}

} F0;
header_type F1_t {

fields {
F01 : 16;

}
} F1;
header_type C_t {

fields {
common : 16;

}
} C;

parser parse_F0 {
extract(F0);
transition select(F0.common) {

v0 : Nextv0;
...
vk : Nextvk;

}
}
parser parse_F1 {

extract(F1);
transition select(F1.common) {

v0 : Nextv0;
...
vk : Nextvk;

}
}

parser parse_F0 {
extract(F0);
transition : common;

}
parser parse_F1 {

extract(F1);
transition : common;

}
parser common {

extract(C);
transition select (C.common) {

v0 : Nextv0;
...
vk : Nextvk;

}
}

Figure 23: Left: original program; Right: new parser program

by separating the common �elds from individual �elds.

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

11 Simulator to check correctness of
ParserHawk’s output

Figure 22 provides a pseudocode of the simulator we built in Python

to check the behaviors of both Spec and Impl.

ďĦěę (ą ) \\simulate spec; ąģĦĢ (ą ) \\simulate generated parser

for I ∈ Input Space:

ċĀĩĦěę = ďĦěę (ą ) ; ċĀğģĦĢ = ąģĦĢ (ą ) ;
if ċĀĩĦěę ≠ ċĀğģĦĢ :

\\ Verification Failure

\\ Verification Pass

Figure 22: Simulator design to check correctness.

12 Express logical formula of device constraints
in Z3

Encoding logical formulas into �rst-order logic forms in languages

such as Z3 is not an easy job. For instance, di�erent from other

programming languages, the output for true and false conditions in

Z3 should have the SAME type (e.g., both outputs are X-bit bitvec-

tor). Therefore, to limit the size of the generated state transition

key, we go through all members in�;;>2 and !>>:0ℎ403 and decide

to either prepend a 1-bit variable whose value is 0 or append the

corresponding bit within a packet �eld to :4~_B4; . The �nal state

transition key is achieved by truncating the last :4~!8<8C bits from

:4~_B4; .
The concrete code snippet is shown below:

// Build key_sel

dummy = BitVec('dummy', 1) Solver().add(dummy == 0)

for all i, j {

key_sel = If(Alloc[i][j] != k, Concat(dummy, key_sel),

Concat(key_sel, Extract(j, j, field[i])))} ...

// Generate Trankey by extracting the last keyLimit bits

Trankey = Extract(keyLimit - 1, 0, key_sel)

13 Example for future improvement

Dividing packet �elds into 2 categories: common parts shared by

multiple �elds and individual parts owned only by speci�c �elds.

Then, we could redesign the parser to save the TCAM usage in

Figure 23.
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