State-Compute Replication: Parallelizing High-Speed Stateful Packet Processing

Qiongwen Xu®, Sebastiano Miano®, Xiangyu Gao*, Tao Wang*, Adithya Murugadass®, Songyuan Zhang®,

Anirudh Sivaraman*, Gianni Antichi ¢ ®, Srinivas Narayana

A

A Rutgers University, USA @ Politecnico di Milano, Italy ¥ New York University, USA Q Queen Mary University of London, UK

Abstract

With the slowdown of Moore’s law, CPU-oriented packet
processing in software will be significantly outpaced by
emerging line speeds of network interface cards (NICs).
Single-core packet-processing throughput has saturated.

We consider the problem of high-speed packet processing
with multiple CPU cores. The key challenge is state—memory
that multiple packets must read and update. The prevailing
method to scale throughput with multiple cores involves state
sharding, processing all packets that update the same state,
e.g., flow, at the same core. However, given the skewed nature
of realistic flow size distributions, this method is untenable,
since total throughput is limited by single-core performance.

This paper introduces state-compute replication, a principle
to scale the throughput of a single stateful flow across mul-
tiple cores using replication. Our design leverages a packet
history sequencer running on a NIC or top-of-the-rack switch
to enable multiple cores to update state without explicit syn-
chronization. Our experiments with realistic data center and
wide-area Internet traces show that state-compute replication
can scale total packet-processing throughput linearly with
cores, independent of flow size distributions, across a range
of realistic packet-processing programs.

1 Introduction

Designing software to handle high packet-processing loads
is crucial in networked systems. For example, software load
balancers, CDN nodes, DDoS mitigators, and many other
middleboxes depend on it. Yet, with the slowdown of Moore’s
law, software packet processing has struggled to keep up with
line speeds of network interface cards (NICs), with emerging
speeds of 200 Gbit/s and beyond [20]. Consequently, there
have been significant efforts to speed up packet processing
through better network stack design, removing user-kernel
crossings, running software at lower layers of the stack (e.g.,
NIC device driver), and designing better host interconnects.
We consider the problem of scaling software packet pro-
cessing by using multiple cores on a server. The key challenge

is that many packet-processing applications are stateful, main-
taining and updating regions of memory across many packets.
If multiple cores contend to access the same memory regions,
there is significant memory contention and cache bouncing,
resulting in poor performance. Hence, the classic approach to
multicore scaling is to process packets touching distinct states,
i.e., flows, on different cores, hence removing memory con-
tention and synchronization. For example, a load balancer that
maintains a separate backend server for each 5-tuple may send
all packets of a given 5-tuple to a fixed core, but process dif-
ferent 5-tuples on different cores, hence scaling performance
with multiple cores. Many prior efforts have implemented and
optimized such sharding-oriented solutions [35,46,54,63,68].

However, we believe that the existing approaches to multi-
core scaling have run their course (§2). Realistic traffic work-
loads have heavy-tailed flow size distributions and are highly
skewed. With sharding, large “elephant flows” must be pro-
cessed by one CPU core, reducing overall performance due
to the low throughput of a single CPU core. With emerging
200 Gbit/s—1 Tbit/s NICs, a single packet processing core
may be too slow to keep up even with a single elephant flow.
Additionally, with the growing scales of volumetric resource
exhaustion attacks, packet processors must gracefully handle
attacks where adversaries force packets into a single flow [43].

This paper introduces a scaling principle, state-compute
replication (SCR), that improves the software packet-
processing throughput for a single, stateful flow with addi-
tional cores, while avoiding shared memory and contention.
Figure 1 shows how SCR scales the throughput of a single
TCP connection for a TCP connection state tracker [40] with
more cores, when other scaling techniques fail. A connection
tracker may change its internal state with each packet.

SCR applies to any packet processing program that may
be abstracted as a deterministic finite state machine. Intu-
itively, as long as each core can reconstruct the flow state by
processing all the packets of the flow, multiple cores can suc-
cessfully process a single stateful flow with zero cross-core
synchronization. However, naively processing every packet
with every CPU core cannot improve throughput with more

-®- SCR —@- sharding (RSS)
sharing (lock) -4 sharding (RSS++)
25
*"

N
o

_
/"
P
'
7

-
(&

=
o

PN Tl ety =11 TEY

Throughput (Mpps)

w

o

1 2 3 4 5 6 7
Number of cores

Figure 1: Scaling the throughput of a TCP connection state tracker
for a single TCP connection across multiple cores. Sharing state
across cores degrades performance beyond 2 cores due to contention.
Sharding state (using RSS and RSS++ [35]) cannot improve through-
put beyond a single CPU core (§2). In contrast, State-Compute
Replication (§3) provides linear scale-up in throughput with cores.

cores. We need to meet two additional requirements. First,
in systems where CPU usage is dominated by per-packet
work, we must preserve the total number of packets moving
through the system. Second, we must divide up dispatch—the
CPU software labor of presenting the packets to the packet-
processing program—across multiple cores (§3.1). This leads
to the scaling principle below (more formal version in §3.1):
State-Compute Replication (informal). In a system bound
by per-packet CPU work and software dispatch, replicating
the state and the computation of a stateful flow across cores in-
creases throughput linearly with cores, so long as we preserve
the total number of packets traversing the system.

To meet the requirements for high performance in SCR,
we design a packet history sequencer (§3.2), an entity which
sees every packet and sprays packets across cores in a round-
robin fashion, while piggybacking the relevant information
from packets missed by a core on the next packet sent to that
core. The sequencer must maintain a small bounded history
of packet headers relevant to the packet-processing program.
A high-speed packet-processing pipeline, running either on a
programmable NIC or a top-of-the-rack switch, may serve as
a sequencer. We present sequencer designs for two hardware
platforms (§3.3), a Tofino switch, and a Verilog RTL module
we synthesized into the NetFPGA-PLUS reference pipeline.

We evaluated the scaling efficacy of SCR using a suite of
realistic programs and traffic (§4). SCR is the only technique
we are aware of that monotonically scales the total processing
throughput with additional cores regardless of the skewness
in the arriving flow size distribution. However, no technique
can continue scaling indefinitely. In §3.1 and §4, we demon-
strate the limits of SCR scaling, along with the significant
performance benefits to be enjoyed before hitting these limits.
Additionally, we show the resource usage for our sequencer’s
RTL design, which meets timing at 340 MHz. We believe this
design is simple and cheap enough to be added as an on-chip
accelerator to a future NIC.

All our software is publicly available [31]. This work does
not raise any ethical concerns.

2 Background and Motivation

2.1 High Speed Packet Processing

This paper considers packet-processing programs that must
work at heavy network loads with quick turnarounds for pack-
ets. We are specifically interested in applications implement-
ing a “hairpin” traffic flow: receiving a packet, processing
it as quickly as possible, and transmitting the packet right
out, at the highest possible rate. Such programs exhibit com-
pute and working set sizes that are smaller in comparison to
full-fledged applications (running in user space) or transport
protocols (TCP stacks) running at endpoints.

Examples of the kinds of applications we consider include
(i) middlebox workloads (network functions), such as fire-
walls, connection trackers, and intrusion detection/preven-
tion systems; and (ii) high-volume compute-light applications
such as key-value stores, telemetry systems, and stream-based
logging systems, which process many requests with a small
amount of computation per request [51]. A key characteristic
of such applications is their need for high packet-processing
rate (which is more important than byte-processing rate) and
the fact that their performance is primarily bottlenecked by
CPU usage [44,69,73].

The performance of such applications is mission-critical in
many production systems. Even small performance improve-
ments matter in Internet services with large server fleets and
heavy traffic. As a specific example, Meta’s Katran layer-4
load balancer [8] and CloudFlare’s DDoS protection solu-
tion [44] process every packet sent to those respective services,
and must withstand not only the high rate of request traffic des-
tined to those services but also large denial-of-service attacks.
More generally, the academic community has undertaken sig-
nificant efforts for performance optimization of network func-
tions, including optimization of the software frameworks [46],
designing language-based high-performance isolation [61],
and developing custom hardware offload solutions [64].

In this paper, we consider applications developed within
high-speed packet processing software frameworks. Given
the slowdown of Moore’s law and the end of Dennard scaling,
the software packet-processing performance of single CPU
cores has saturated. Even expert developers must work metic-
ulously hard to improve per-core throughput by small margins
(like 10%) [37,50,52,67]. The community has pursued vari-
ous efforts to improve performance, such as re-architecting
the software stack to make efficiency gains [21, 56, 69], in-
troducing stateless hardware offloads working in conjunc-
tion with the software stack [19,29], full-stack hardware of-
floads [30,34], and kernel extensions [2]. This paper considers
software frameworks that modify the device driver to enable
programmable and custom functionality to be incorporated
by developers at high performance with minimal intervention
from the existing kernel software stack [50].

Specifically, we study performance and evaluate our tech-

niques in the context of kernel extensions implemented using
the eXpress Data Path (XDP/eBPF [50]) within the Linux
kernel. In §3, we will discuss how our observations and prin-
ciples apply more generally to other high-speed software
packet-processing frameworks, including those written with
user-space libraries like DPDK [21].

2.2 Parallelizing Stateful Packet Processing

This paper considers the problem of parallelizing high-speed
packet processing programs across multiple cores. The key
challenge is handling state: memory that must be updated
in a sequential order upon processing each packet to pro-
duce a correct result. Consider the example of the connection
tracker [40], a program which identifies the TCP connection
state (e.g., SYN sent, SYN/ACK sent, efc.) using packets ob-
served from both directions of a TCP connection. Each packet
in the connection may modify the internal connection state
maintained by the program. There are two main techniques
used to parallelize such programs across cores.

Shared state parallelism. One could conceive a parallel im-
plementation that (arbitrarily) splits packets across multiple
cores, with explicit synchronization or retry logic guarding
access to the shared memory, i.e., the TCP connection state,
to ensure a correct result.

Shared-state parallelism works well when the contention to
shared memory is low. Specifically, shared-memory scaling
could work well when (i) packets of a single flow arrive slowly
enough, e.g., if there are a large number of connections with
a roughly-equal packet arrival rate, or (ii) when there are effi-
cient implementations available for synchronization or atomic
updates in software [47] or hardware [18,25]. However, nei-
ther of these conditions are generally applicable. Many flow
size distributions encountered in practical networks are highly
skewed [36, 75] or exhibit highly bursty behavior [70], re-
sulting in significant memory contention if packets from the
heavier flows are spread across cores. Further, the state update
operation in many programs, including the TCP connection
tracker, are too complex to be implemented directly on atomic
hardware, since the latter only supports individual arithmetic
and logic operations (like fetch-add-write). Our evaluation
results (§4) show that the performance of shared-state mul-
ticore processing plummets with more cores under realistic
flow size distributions.

Sharded (shared-nothing) parallelism. Today, the predomi-
nant technique to scale stateful packet processing across mul-
tiple cores is to process packets that update the same memory
at the same core, sharding the overall state of the program
across cores. Sharding is achieved through techniques like
Receive Side Scaling (RSS [4]), available on modern NICs,
to direct packets from the same flow to the same core, and
using shared-nothing data structures on each core.

However, sharding suffers from a few disadvantages. First,

it is not always possible to avoid coordination through shard-
ing. There may be parts of the program state that are shared
across all packets, such as a list of free external ports in a
Network Address Translation (NAT) application. On the prac-
tical side, the RSS implementations on today’s NICs partition
packets across cores using a limited number of combinations
of packet header fields. For example, a NIC may be config-
ured to steer packets with a fixed combination of source and
destination IP addresses (but not a fixed source IP address)
to a fixed CPU core. Further, the granularity at which the
application wants to shard its state—for example, a key-value
cache may seek to shard state by the key requested in the
payload—could be infeasible to implement with the packet
header sets supported by the RSS capabilities of the NIC [63].

Second, sharding state may create load imbalance across
cores if some flows are heavier or more bursty than others,
creating hotspots on single CPU cores. Skewed flow size dis-
tributions [36], bursty flow transmission patterns [70], and
denial of service attacks [43] create conditions ripe for such
imbalance. The research community has investigated solu-
tions to balance the packet processing load by migrating flow
shards across CPU cores [35, 63]. However, the efficacy of
re-balancing is limited by the granularity at which flows can
be migrated across cores. As we show in our evaluation (§4),
the throughput of the heaviest and most bursty flows is still
limited by a single CPU core, which in turn limits the total
achieved throughput. Another alternative is to evenly spray
incoming packets across cores [41,71], assuming that only
a small number of packets in each flow need to update the
flow’s state. If a core receives a packet that must update the
flow state, the packet is redirected to a designated core that
performs all writes to the state for that flow. However, the as-
sumption that state is mostly read-only is not universal, e.g., a
TCP connection tracker may update state potentially on every
packet. Further, packet reordering at the designated core can
lead to incorrect results [35].

2.3 Goals

Given the drawbacks of existing approaches for multi-core
scaling discussed above (§2.2), we seek a scaling technique
that achieves the following goals:

1. Generic stateful programming. The technique must pro-
duce correct results for general stateful updates, eschewing
solutions that only work for “simple” updates (i.e., fitting
hardware atomics) or only update state for a small number
of packets per flow.

2. Skew independence. The scaling technique should improve
performance independent of the incoming flow size distri-
bution or how the flows access the state in the program.

3. Monotonic performance gain. Performance should im-
prove, not degrade or collapse, with additional cores.

3 State-Compute Replication (SCR)

In §3.1, we present scaling principles for multi-core stateful
packet processing, to meet the goals in §2.3. In §3.2 through
§3.4, we show how to operationalize these principles.

3.1 Scaling Principles

To simplify the discussion, suppose the packet-processing
program is deterministic, i.e., in every execution, it produces
the same output state and packet given a fixed input state and
packet (we relax this assumption in §3.4).

Principle #1 (Replication for correctness). Sending every
packet reliably to every core, and replicating the state and
computation on every core, produces the correct output state
and packet on every core with no explicit cross-core synchro-
nization, regardless of how the state is accessed by packets.

This principle asks us to treat each core as one replica of
a replicated state machine running the deterministic packet-
processing program. Each core processes packets in the same
order, without missing any packets. With each incoming
packet, each core updates a private copy of its state, which
is equal to the private copy on every other core. There is no
need to synchronize explicitly. Further, replication provides
the benefit that the workload across cores is even regardless of
how the state is accessed by packets, i.e., skew-independent.

One way to apply this principle naively is to broadcast
every packet received externally on the machine to every core:
with k cores, for each external packet, the system will process
k internal packets, due to k-fold packet duplication. However,
artificially increasing the number of packets processed by the
system will significantly hurt performance. In CPU-bound
packet processing, smaller packets typically require the same
computation that larger packets do. That is, the total amount of
work performed by the system is proportional to the packets-
per-second offered, rather than the bits-per-second [50, 69].

So how should one use replication for multi-core scaling?
Understanding the dominant components of the per-packet
CPU work in high-speed packet-processing frameworks of-
fers insight. There are two parts to the CPU processing for
each packet after the packet reaches the core where it will be
ultimately processed: (i) dispatch, the CPU/software labor of
presenting the packet to the user-developed packet-processing
program, and signaling the packet(s) emitted by the program
for transmission by the NIC; and (ii) the program computation
running within the user-developed program itself. Dispatch
often dominates the per-packet CPU work [50].

While these observations are known in the context of high-
speed packet processing, we also benchmarked a simple ap-
plication on our own test machine to validate them. Consider
Figure 2, where we show the throughput (packets/second (a),
bits/second (b)), and latency (c) of a simple packet forwarder
written in the XDP framework running on a single CPU core.
Our testbed setup is described in much more detail later (§4),

-
n

[t
o
S
3

g .J 4\\ g /' | S S ¢

210 : g 10

5 § 50 // z

5 5 5 I - 1RXQ | §

3 — 1RXQ | 3 e 2RXQ | ® ° —e— 1RXQ

E 2 RXQ E o "b S - o 2 RXQ
0 X N4 0

64 128 256 512 1024
Packet size (bytes)

64 128 256 512 1024

Packet size (bytes) Packet size (bytes)

(a) Packets/second (b) Bits/second (c) Latency (ns)

Figure 2: The nature of CPU work in high-speed packet processing:
Consider the throughput of a simple packet forwarding applica-
tion (packets/second (a), bits/second (b)) running on a single CPU
core clocked at 3.6 GHz, as the size of the incoming packets varies.
The average latency to execute the XDP program is also shown
in nanoseconds (c). CPU usage is tied to the number of packets
(not bits) processed per second. Further, significant time elapses in
dispatch: CPU work to present the input packet to and retrieve the
output packet from the program computation.

but we briefly note here that our device-under-test is an Intel
Ice Lake CPU configured to run at a fixed frequency of 3.6
GHz and attached to a 100 Gbit/s NIC. At each packet size be-
low 1024 bytes, the CPU core is fully utilized (at 1024 bytes
the bottleneck is the NIC bandwidth). The achieved packet-
s/second is stable across all packet sizes which are CPU bound
(see the 2 RXQ curve). With a processing latency of roughly
14 nanoseconds at all packet sizes (measured only for the XDP
forwarding program), back-to-back packet processing should
“ideally” process (14 % 10~°)~! ~ 71 million packets/second.
However, the achieved best-case throughput (=~ 14 million
packets/second) is much smaller—implying that significant
CPU work is expended in presenting the input packets to and
extracting the output packets from the forwarder and setting
up the NIC to transmit and receive those packets. This is not
merely a feature of the framework we used (XDP); the DPDK
framework has similar dispatch characteristics [50].

Our key insight is that it is possible to replicate program
computation without replicating dispatch, enabling multi-core
performance scaling. This leads us to the next principle:

Principle #2 (State-Compute Replication). Piggybacking a
bounded recent packet history on each packet sent to a core
allows us to use replication (#1) while equalizing the external
and internal packets-per-second CPU work in the system.
Principle #2 states that replication (principle #1) is possible
without increasing the total internal packet rate or per-packet
CPU work done by the system. Suppose it is possible to spray
the incoming packets across cores in a round-robin fashion. If
there are k cores, each core receives every k' packet. Then:
1. It is unnecessary for each core to have the most up-to-
the-packet private state at all times. For correctness, it is
sufficient if a core has a state that is “fresh enough” to
make a decision on the current packet that it is processing.
2. With each new packet, suppose the core that receives it
also sees (as metadata on that packet) all the k — 1 packets
from the last time it processed a packet, i.e., a recent packet
history. The core can simply “catch up” on the computa-
tions required to obtain the most up-to-the-packet value

for its private state.

3. If packets are sprayed round-robin across cores, the num-
ber of historic packets needed to ensure that the most up-
dated state is available to process the current packet is
equal to the number of cores. Further, just those packet
bits required to update the shared state are necessary from
each historic packet, allowing us to pack multiple packets’
worth of history into a single packet received at a core.
As a simple model, suppose a system has k cores, and

each core can dispatch a single packet in d cycles and runs a

packet-processing program that computes over a single packet

in ¢ cycles. For each piggybacked packet, the total processing
time is d + (k x ¢). When dispatch time dominates compute
time (d > c), with k cores, the total rate at which externally-
arriving packets can be processed is k x m ~ k/d. Hence,
it is possible to scale the packet-processing rate linearly with
the number of cores k. In Appendix A, we show that a model
like this indeed accurately predicts the empirical throughput
achieved with a given number of cores.

Intuitively, doing some extra “lightweight” program compu-
tation per packet enables scaling the “heavyweight” dispatch
computation with more cores, while maintaining correctness.

Principle #3 (Scaling limits). Principle #2 provides a lin-
ear scale-up in the packets-per-second throughput with more
cores, so long as dispatch dominates the per-packet work.
The scaling benefits of principle #2 taper off beyond a point.
Dispatch can be overtaken as the primary contributor to per-
packet CPU work, for example, when (i) the compute time
k x c for each piggybacked packet becomes sizable; (ii) the
per-packet compute time c itself increases due to overheads
in the system, e.g., larger memory access time when a core’s
copy of the state spills into a larger memory; or (iii) other
components such as the NIC or PCIe become the bottleneck
rather than the CPU. When this happens, the approximation
in our simple linear model (d >> ¢) no longer holds, and the
system’s packet rate no longer scales linearly with cores.

3.2 Operationalizing SCR

Operationalizing the scaling principles discussed above (§3.1)
conceptually requires two pieces.

A reliable packet history sequencer ($3.3). We require an
additional entity in the system, which we call a sequencer,
to (i) steer packets across cores in round-robin fashion, (ii)
maintain the most recent packet history across all packets
arriving at the machine, and (iii) piggyback the history on
each packet sent to the cores. After the packet is processed
by a CPU core, its piggybacked history can be stripped off
on the return path either at the core itself or at the sequencer.
The size of the packet history depends only on the number
of cores and metadata size (§3.1) and is independent of the
number of active flows.

The NIC hardware or the top-of-the-rack switch are natural

f(pi2), f(Pi1), pi
—_—— | Core1 Sis |=>

Sequencer

f(P), f(Pist), f(Pis2)

f(pit), f(P1), Pies
—>| Core 2 Sia -

Packets ‘

f(pi), f(pie1), Pir2
—— Core 3 S‘_1 -

(a) The sequencer stores relevant fields from the packet history, and
piggybacks the history on packets sprayed round-robin across cores.

Core 1 Sis fp2). f(p”)l Siq Pi g
i-1), i Pi+
Core2 Siz f(p-1), f(p) N S q S
Core 3 Siy f(p). f(p1) Si+q Pz Sis2
— —

"ereran. Step 1 ¥ *«. Step 2 W
(b) Each core fast-forwards its private state and then handles its packet.
Figure 3: An example illustrating the scaling principles. p; is the i'"

packet received by the sequencer, f(p;) are relevant fields from p;,
and S; is the state after processing packets py,..., p; in order.

points to introduce the sequencer functionality, since they
observe all the packets flowing into and out of the machine.
Today’s existing fixed-function NICs do not implement the
functionality necessary to construct and piggyback a reliable
packet history. However, we have identified two possible in-
stantiations that could, in the near future, achieve this: (i)
emerging NICs, e.g., with programmable pipelines [1,3,27],
implementing the full functionality of the reliable sequencer;
or (ii) a combination of a NIC implementing round-robin
packet steering [4, 7] and a programmable top-of-the-rack
switch pipeline [17,23,38] for maintaining and piggybacking
the packet history. We believe that either of these instantia-
tions may be realistic and applicable given the context: for ex-
ample, high-speed programmable NICs are already common
in some large production systems [45], as are programmable
switch pipelines [60]. We will show two possible hardware
designs in §3.3. Hereafter, for brevity, we refer to both of
these designs as simply sequencers.

An SCR-aware packet-processing program. The packet-
processing program must be developed to replicate the pro-
gram state and keep private copies per core. Further, the pro-
gram must process the packet history first before computing
over the current packet. In Appendix C, we show an example
that demonstrates how to transform a single-threaded pro-
gram to its SCR-aware variant. We believe that these program
transformations can be automated in the future.

An example showing scaling principles in action. Consider
Figure 3, where a sequencer and three cores are used to run
a packet-processing program. As shown in Figure 3a, the
sequencer sprays packets (i.e., p;, pi+1,...) in a round-robin
fashion across k = 3 cores (i.e., corey,corey, cores). Further,
the sequencer stores the recent packet history consisting of
the packet fields from the last k packets which are relevant
to evolving the flow state. We denote the relevant part of a

packet p; by f(p;). For example, in a TCP connection tracking
program, this includes the TCP 4-tuple, the TCP flags, and
sequence and ACK numbers. Note that this packet history is
updated only by the sequencer and is never written to by the
cores. In the example in Figure 3a, the packet history supplied
to core; processing packet p; is f(pi—2), f(pi—1). As shown
in Figure 3b, each core updates its local private state, first
fast-forwarding the state by running the program through
the packet history f(p;—2), f(pi—1), and then processing the
packet p; sprayed to it.

If the packet-processing program is deterministic (§3.1),
an SCR-aware program is guaranteed to produce the correct
output state and packet if every CPU core is guaranteed to
(losslessly) receive the packets sent to it by the sequencer. We
show how to handle non-determinism and packet loss in §3.4.

3.3 Packet History Sequencer

The primary goal of the sequencer is to maintain and prop-
agate recent packet history to CPU cores to help replicate
the computation with the correct program state (§3.2). We
assume the NIC is already capable of spraying packets across
CPU cores [4, 7], and hence do not discuss that functional-
ity further. We describe the rest of the sequencer’s functions
in terms of the following: (i) designing a packet format that
modifies existing packets to piggyback history from the se-
quencer to the CPU cores; (ii) designing a hardware data
structure that maintains a recent bounded packet history at the
sequencer, and enables reading out the history into metadata
on the packet. The packet fields that are maintained in the
sequencer history depend on the specific fields used by the
packet-processing application. The number of historic packets
that must be tracked depends on the degree of parallelism that
is sought, e.g., the number of available CPU cores over which
scaling is implemented.

We have implemented sequencing hardware data struc-
tures on two platforms, the Tofino programmable switch
pipeline [23] and a Verilog module that we integrated into the
NetFPGA-PLUS project [12].

3.3.1 Packet format

The key question answered in this subsection is: given a
packet, what is the best place to put the packet history on
it? While this may initially appear to be just an engineering
detail, the packet format has important implications to the
design of hardware data structures on the sequencer and the
SCR-aware program.

As shown in Figure 4a, we choose to place the packet his-
tory close to the beginning of the packet, before the entirety
of the original packet. Relative to placing the packet history
between headers of the original packet, this placement simpli-
fies the hardware logic that writes the history into the packet,
as the write must always occur at a fixed address (0) in the

packet buffer. Further, for reasons explained in §3.3.2, we
include a pointer to the metadata of the packet that arrived
the earliest among the ones in the piggybacked history. The
earliest packet does not always correspond to the first piece
of metadata when reading the bytes of the packet in order.

Keeping all the bytes of the original packet together in
one place also simplifies developing an SCR-aware packet-
processing program. The packet parsing logic of the original
program can remain unmodified if the program starts parsing
from the location in the modified packet buffer which contains
all the bytes of the original packet in order.

Finally, we also prefix an additional Ethernet header to the
packet in instantiations of the sequencer which run outside
of the NIC, i.e., a top-of-the-rack switch. Adding this header
helps the NIC process the packet correctly: without it, the
packet appears to have an ill-formatted Ethernet MAC header
at the NIC. Our setup also uses this Ethernet header to force
RSS on the NIC [4] to spray packets across CPU cores (our
testbed NIC (§4.1) supports hashing on L2 headers). This
additional Ethernet header is not needed in a sequencer in-
stantiation running on the NIC.

3.3.2 Hardware data structures for packet history

We show how to design data structures to maintain and update
a recent packet history on two high-speed platforms, a Tofino
programmable switch pipeline [23] and a Verilog module inte-
grated into the NetFPGA-PLUS platform [12]. These designs
are specific to the platform where they are implemented, and
hence we describe them independently.

A key unifying principle between the two designs is that
although the items in the maintained packet history change
after each packet, we only update a small part of the data
structure for each packet. Conceptually, a ring buffer data
structure is appropriate to maintain such histories. Hence, in
both designs, we use an index pointer to refer to the current
data item that must be updated, which corresponds to the head
pointer of the abstract ring buffer where data is written.

Tofino. We use Tofino registers [26], which are stateful mem-
ories to hold data on the switch, to record the bits of each
historic packet relevant to the computation in the packet-
processing program. We use the Tofino parser to extract these
bits, which restricts our design only to support historic fields
up to 4 Kilobits deep in the packet [38].

Suppose the pipeline has s match-action table stages, R
registers per stage, and b bits per register. For simplicity in
this description, we assume there is exactly one packet field
of size b bits used in the computation in the packet-processing
program. Our data structure can maintain a maximum of (s —
1) X R x b bits of recent packet history, i.e., history for (s —
1) x R packets, as shown in Figure 4b. We have successfully
compiled the design to the Tofino ASIC.

First, we use a single register in the first stage to store the
index pointer. The pointer refers to the specific register in the

—
= =1 [= [F=
Pipeline Stages I ndex History tuple T4 8

— 9 Iencrement | History tuple T> |o Tn

o - z|ox QUSS) Write current packet | Index
o) % >a g>s | T 5 if == ij 4 -

Ecleey RS B c9 if index == i3 Copy into History tuple T; il 5=
ES|SES SBR| 2 =8} .. k f metadata_ij Copy history i =
] =k g 8% IR} bits for current — s 3’8
€ € | Unused | packet | History tuple Tn | oo

(a) Packet format

(b) Tofino sequencer

(c) RTL sequencer

Figure 4: Hardware data structures. (a) Packets modified to propagate history from the sequencer to CPU cores. The sequencer prefixes the
packet history to the original packet, which allows for a simpler implementation in hardware (§3.3) and simpler transformations to make a
packet-processing program SCR-aware (Appendix C). In instantiations where the sequencer is partly implemented on a top-of-the-rack switch
(§3.2), we further prefix a dummy Ethernet header to ensure that the NIC can process the packet correctly. (b) The data structure used to
maintain and propagate packet history on the Tofino programmable switch pipeline (§3.3.2). Inset shows the specific actions performed on each
Tofino register. (c) The data structure used to maintain and propagate packet history in our Verilog module on NetFPGA-PLUS (§3.3.2).

subsequent stages that must be updated with a header field
from the current packet. The index pointer is incremented by 1
for each packet, and wraps back to O when it reaches the max-
imum number of packets required in the history. The pointer
is also carried on a metadata field on the packet through the
remaining pipeline stages.

Next, register ALUs in subsequent stages are programmed
to read out the values stored in them into pre-designated
metadata fields on the packet. If the index pointer points to
this register, an additional action occurs: rewrite the stored
contents of the register by the pre-designated history fields
from the current packet.

Finally, all the metadata fields, consisting of the packet
history fields and the index pointer, are deparsed and serialized
into the packet in the format shown in Figure 4a. We also add
an additional Ethernet header to ensure that the server NIC
can receive the packets correctly (§3.3.1).

Recent work explored the design of ring buffers to store
packet histories in the context of debugging [53], reading out
the histories from the control plane when a debugging action
is triggered. A key difference in our design is that reading out
histories into the packet is a data plane operation, occurring
on every packet.

NetFPGA. To show the possibility of developing high-speed
fixed-function hardware for sequencing, we also present a
sequencer design developed in Verilog in Figure 4c.

Suppose we wish to maintain a history of N packets, each
packet contributing b bits of information. A simple design, for
small values of N and b (we used N = 16 and b = 112), uses
a memory which has N rows, each containing a tuple of b
bits. We also maintain a register containing the index pointer
(p bits), initialized to zero. At the beginning, the memory is
initialized with all zeroes. When a packet arrives, it is parsed
to extract the bits relevant to the packet history. Then the entire
memory is read and put in front of the packet (moving the
packet contents by a fixed size known beforehand, N x b+ p
bits). The information relevant to the packet history from the
current packet is put into the memory row pointed to by the
index pointer, and the index pointer is incremented (modulo

the memory size). We have integrated this design into the
NetFPGA-PLUS platform.

3.4 Discussion

In this section, we discuss how to generalize SCR to handle
non-determinism, packet loss, and multiple packet-processing
programs.

Handling Packet Loss. Packets can be lost either prior to the
sequencer, after the sequencer but prior to processing at a CPU
core, or after processing at a core. Among these, we only care
about the second kind of packet loss, since this is the only
one that is problematic specifically for SCR, introducing the
possibility that flow states on the CPU cores might become
inconsistent with each other.

We expect that SCR will be deployed in scenarios where
the event of packet loss between the sequencer and CPU
cores is rare. First, we do not anticipate any packet loss in an
instantiation where the sequencer is running entirely on a NIC,
since the host interconnect between the NIC and CPU cores
uses credit-based flow control and is lossless by design [32,
59]. In an instantiation where the sequencer is running on
a top-of-the-rack switch, it is possible to run link-level flow
control mechanisms like PFC [6] (as some large production
networks do [48]) to prevent packet loss between the switch
and server cores. We discuss below how SCR can handle
rare packet drop and corruption events while maintaining
consistency among the states on CPU cores.

How should a CPU core that has lost a packet arriving from
the sequencer synchronize itself to the correct flow state?
There are two design options: the core can either explicitly
read the full flow state from a more up-to-date core, or it can
read the packet history from either the sequencer or a log
written by a more up-to-date core, and then use the history to
catch up its private state (akin to Figure 3). Since we operate
in a regime where packet losses are rare, but the full set of flow
states is large, we prefer to synchronize the packet history
rather than the state. Further, to simplify the overall design,
we avoid explicit coordination between the cores and the
sequencer, synchronizing the history among the cores only.

Our objective is atomicity: any packet is either processed
by all the cores or none of the cores. If a packet is sent by
the sequencer to any core (in original or as part of the packet
history), it should be processed in the correct order by all the
cores. To achieve this, we (i) have the sequencer attach an
incrementing sequence number to each packet released by
it; (ii) use a per-core, lockless, single-writer multiple-reader
log, into which each core writes the history contained in each
packet it receives (including the relevant data for the original
packet); and (iii) introduce an algorithm to catch up the flow
state on each core upon detection of loss.

The algorithm proceeds as follows (more information
is available in Algorithm | in Appendix B). Each CPU
core ¢ maintains a per-core log with one entry for each se-
quence number i. In a system with N cores, the history meta-
data of the packet with sequence i (say history[i]) will ap-
pear in packets with sequence numbers i through i +N —
1; conversely, a packet with sequence number j contains
history|minseq),- - , history[j] where minseq = max(1,j —
N+1).

For core ¢ and sequence number i, log|c][i] takes on one of
three possible values:

historyli] if history for sequence i was received at ¢
NOT_INIT if the highest sequence received at c is j < i

LOST if ¢ has received sequence j > i,

but sequence i was not received at ¢

At the beginning, for all cores ¢ and sequence numbers i,
log[c][i] is set to NOT_INIT, to denote that each log entry
is uninitialized at every core. When a (fixed) core c receives
a packet with sequence number j, it first detects packet loss
by comparing the max sequence number it has seen so far
(say max|c]) with the earliest sequence number in the new
packet it receives (minseq), assuming no reordering between
the sequencer and the core. Then, ¢ processes every sequence
number k such that max|[c] < k < j, in order of increasing k,
as follows:

1. if k < minseq, i.e., sequence k was lost between the se-
quencer and core c, the core updates log[c][k] + LOST.
For such packets, core ¢ will read from the logs of other
cores ¢’ # ¢ in a loop, until ¢ discovers either that (i)
historylk] is written in Jog[c'][k], in which case c catches up
its private state by reading this history; or (ii) log[c'][k] =
LOST on all cores ¢’ # ¢, concluding that sequence k was
never originally received on any core, and does not need
to be recovered for atomicity;

2. if minseq < k < j, i.e., sequence k is successfully received
at core c (as part of the current packet), core ¢ updates
log|c][k] < history[k] available in the packet, and then
proceeds with regular processing as in §3.2.

In Appendix B, we formally prove that, under some mild
assumptions, this algorithm always terminates in a state that
is eventually consistent across all CPU cores. Despite cores

possibly waiting on one another, there will be no deadlocks.
While the treatment above uses an infinitely large /og, practi-
cally, our log implementation is a circular buffer with a fixed
size (it is unnecessary to garbage-collect the log). The buffer
must be sized large enough to recover from packet losses and
transient speed mismatches across CPU cores, both of which
are expected to be small in practical deployments.

Handling programs that depend on timestamps. The use of
timestamps measured locally at each CPU core (e.g., to im-
plement a token bucket rate limiter) may result in the results
of computations at different CPU cores diverging from each
other. To handle this, we avoid measuring time locally at
each CPU core, and instead have the sequencer attach a times-
tamp for each packet to the packet history. Modern NICs and
programmable switches support high-resolution hardware
timestamping over packets [13,26].

Handling programs involving randomization. For SCR to
produce a consistent state across cores, it is necessary that
the state computations on all CPU cores agree on the result
even if the computations involve random numbers. None of
our current benchmark programs involve randomization. For
those programs that do, we recommend to fix the seed of the
pseudorandom number generator to the same value across
different CPU cores.

Handling chained packet-processing programs. SCR can
handle multiple packet-processing programs run sequentially
(for example, for service function chaining [49]) by piggy-
backing the union of the historical packet fields for all the
programs on each packet from the sequencer to the core. In
addition to the program changes typically needed for SCR par-
allelism (Appendix C), the programs must also be rewritten to
handle packets that include additional fields of history for the
co-resident programs. We believe this can be accomplished
by the design of a suitable automatic compiler. We leave the
design of such compilers to future work.

4 Evaluation

We seek to answer two main questions through the experi-
ment setup described in §4.1.
(1) Does state-compute replication provide better multi-core
scaling than existing techniques (§4.2)?
(2) How practical is sequencer hardware (§4.3)?

4.1 Experiment Setup

Machines and configurations. Our experiment setup consists
of two server machines connected back-to-back over a 100
Gbit/s Nvidia/Mellanox ConnectX-5 NIC on each machine.
Our servers run Intel Ice Lake processors (Xeon Gold 6334)
with 16 physical cores (32 hyperthreads) and 256 GB DDR4
physical memory spread over two NUMA nodes. The system
bus is PCle 4.0 16x. We run Ubuntu 22 with Linux kernel v6.5.

Program State Metadata size | RSS hash Packet traces Atomic HW | Lines of code
Key Value (bytes/packet) fields evaluated vs. Locks (shard/RSS)
DDoS mitigator source IP count 4 src & dst IP | CAIDA, Univ DC | Atomic HW 168
Heavy hitter monitor 5-tuple flow size 18 5-tuple CAIDA, Univ DC | Atomic HW 141
TCP connection state tracking | 5-tuple TCP state, timestamp, seq # 30 5-tuple Hyperscalar DC Locks 1029
Token bucket policer S-tuple | last packet timestamp, # tokens 18 5-tuple CAIDA, UnivDC Locks 169
Port-knocking firewall source IP knocking state (e.g., OPEN) 8 src & dst IP | CAIDA, UnivDC Locks 123
Table 1: The packet-processing programs we evaluated.
)] g 1.0 710 710
One machine serves as a packet replayer/generator, running S &]
x x
a DPDK burst-replay program which can transmit packets 5% g%® Sos
from a traffic trace. We have tested that the traffic genera- Sos 06 5
1 = o =
tor can replay large traces (1 million packets) at speeds of & 00 @t = % 50 = o T 60
x (# flows) x (# flows) x (# flows)

~ 120 million packets/second (Mpps), for sufficiently small
packets (so that the NIC bandwidth is not saturated first).
The traffic generator can be directed to transmit packets at a
fixed transmission (TX) rate and measure the corresponding
received (RX) packet rate. Our second server is the Device
Under Test (DUT), which runs on identical hardware and op-
erating system as the first server. We implement standard con-
figurations to benchmark high-speed packet processing [50]:
hyperthreading is disabled; the processor C-states, DVFS, and
TurboBoost are disabled; dynamic IRQ balancing is disabled;
and the clock frequency is set to a fixed 3.6 GHz. We enable
PCle descriptor compression and use 256 PCle descriptors.
Receive-side scaling (RSS [4]) is configured according to
the baselines/programs, see Table |. We use a single receive
queue (RXQ) per core unless specified otherwise. On our
setup, we have checked that the per-core packet-forwarding
throughput is comparable to prior work benchmarking the
XDP framework [50]. However, the absolute numbers are
lower than the multi-core throughput reported in recent litera-
ture using DPDK. We believe this may be due to the differ-
ences in the packet-processing framework (XDP vs. DPDK).

The definition of throughput. We use the standard maximum
loss-free forwarding rate (MLFFR [5]) methodology to bench-
mark packet-processing throughput. Our threshold for packet
loss is in fact larger than zero (we count < 4% loss as “loss-
free”), since, at high speeds we have observed that the soft-
ware typically always incurs a small amount of bursty packet
loss. We use binary search to expedite the search for the
MLFEFR, stopping the search when the bounds of the search
interval are separated by less than 0.4 Mpps. Experimentally,
we observe that MLFFR is a stable throughput metric: we get
highly repeatable results across multiple runs. We only report
throughput from a single run of the MLFFR binary search.

Traces. We are interested in understanding whether SCR pro-
vides better multi-core scaling than existing techniques on re-
alistic traffic workloads. We have set up and used three traces
for throughput comparison: a university data center trace [36],
a wide-area Internet backbone trace from CAIDA [11], and a
synthetic trace with flows whose sizes and inter-arrivals were
sampled from a hyperscalar’s data center flow characteris-

(a) University DC (b) Internet backbone (c) Hyperscalar DC

Figure 5: Flow size distributions of the packet traces we used. We
used real packet traces captured at (a) university data center [36] and
(b) wide-area Internet backbone by CAIDA [11]. We also synthe-
sized (c) a packet trace with real TCP flows whose sizes are drawn
from Microsoft’s data center flow size distribution [33].

tics [33]. These traces are highly dynamic, with flow states
being created and destroyed throughout—an aspect that we
believe is crucial to handle in real deployment environments
(i.e., the programs are not simply processing a stable set of
active flows). Further, we ensure that all TCP flows that begin
in the trace also end, by setting TCP SYN and FIN flags for
the first and last packets (respectively) of each flow in the
trace. This allows the trace to be replayed multiple times with
the correct program semantics. The flow size distributions of
the traces are shown in Figure 5.

The eBPF framework limits our implementations in terms
of the number of concurrent flows that our stateful data struc-
tures can include. This is not a limitation of the techniques,
but an artifact of the current packet-processing framework
we use (eBPF/XDP). To account for this limitation, specifi-
cally for the CAIDA trace, we have sampled flows from the
trace’s empirical flow size distribution to faithfully reflect the
underlying distribution, without over-running the limit on the
number of concurrent flows that any of our baseline programs
may hold across the lifetime of the experiment.

Baselines. We compare state-compute replication against (i)
state sharing, an approach that uses either hardware atomic
instructions (when the stateful update is simple enough) or
eBPF spinlocks [10] (when it is not) to share state across CPU
cores; (ii) state sharding using classic RSS; and (iii) sharding
using RSS++ [35, 63], the state-of-the-art flow sharding tech-
nique to balance CPU load. RSS++ solves an optimization
problem that takes as input the incoming load imposed by
flow shards, and migrates shards to minimize a linear combi-
nation of load imbalance across CPU cores and the number of
cross-core shard transfers needed. Both SCR and state sharing
spray packets evenly across CPU cores. The packets sent to

each core for the sharding techniques depends on the configu-
ration of RSS, which varies across the programs we evaluated
(see below and Table 1). Running RSS++ over eBPF/XDP
requires patching the NIC driver [9] to expose the RX hash
on packets to XDP programs. Unless specified otherwise, we
run SCR without loss recovery (§3.4) as we believe this is the
most representative scenario in which SCR will be deployed.
We evaluate loss recovery separately (§4.2).

Programs. We tested five packet-processing programs devel-
oped in eBPF/XDP, including (i) a heavy hitter monitor, (ii)
DDoS mitigator, (iii) TCP connection state tracker, (iv) port-
knocking firewall, and (v) a token bucket policer. Table | sum-
marizes these programs. Each program maintains state across
packets in the form of a key-value dictionary, whose size and
contents are listed in the table. We developed a cuckoo hash
table to implement the functionality of this dictionary with
a single BPF helper call [15]. The packet fields in the key
determine how RSS must be configured: packets having the
same key fields must be sent to the same CPU core. However,
today’s NICs do not allow RSS to steer packets on arbitrary
sets of packet fields [63]. We pre-process the trace to ensure
that RSS hashing indeed shards the flow state correctly. For
example, on the NIC in our testbed, the source (srcip) and
destination (dstip) IP addresses may be used together, but
not separately, as the RSS key to hash a packet to a core. For a
program that maintains flow state at the granularity of dstip,
an RSS key (srcip, dstip) could steer two packets with the
same dstip but different srcip to different CPU cores, violat-
ing sharding at the granularity of dstip. To prevent this, and
to evaluate our sharding baselines fairly, we pre-process our
traces (e.g., modifying packets such that every srcip, dstip
combination in the trace hashes to a core that only depends on
dstip) to ensure that RSS hashing indeed shards the flow state
correctly. For the connection tracker, since both directions of
the connection must go to the same CPU core, we use the
keyed hash function prescribed by symmetric RSS [74].

4.2 Multi-Core Throughput Scaling

In this section, we compare the MLFFR throughput (§4.1) of
several packet-processing programs (Table 1) scaled across
multiple cores using four techniques: SCR (§3), state shar-
ing with packets sprayed evenly across all cores, sharding
using RSS, and sharing using RSS++ (§2). Since the TCP
connection tracking program requires packets from the two
directions of the connection to be aligned, we evaluated it on a
synthetic but realistic hyperscalar data center trace (§4.1). For
the rest of the programs, we report results from real university
data center and Internet backbone traces.

We have ensured that these experiments reflect a fair com-
parison of CPU packet-processing efficacy. First, we truncated
the packets in the traces to a size smaller than the full MTU, to
stress CPU performance with a high packets/second (Mpps)
workload (§3.1). Further, we fix the packet sizes used across

all baselines for a given program. We used a fixed packet
size of 256 bytes for the connection tracker and 192 bytes
for the others. The packet size limits the number of items
of history metadata that can be piggybacked on each packet.
Since the metadata size changes by the program (Table 1), the
maximum number of cores we can support for a fixed packet
size also varies by program (we support 7 cores for the token
bucket, heavy hitter detector, and connection tracker, and 14
for the DDoS mitigation and port-knocking firewall).

Throughput results. Figure 6 and Figure 7 show the through-
put as we increase the number of packet-processing cores.
SCR is the only multi-core scaling technique that can mono-
tonically scale the throughput of all the stateful packet-
processing programs we evaluated across multiple cores, re-
gardless of the flow size distribution (§2.3). The throughput
for SCR increases linearly across cores in all of the configu-
rations we tested. Somewhat surprisingly, SCR provides even
better absolute performance than hardware atomic instruc-
tions in the case of the heavy hitter and DDoS mitigation
programs. However, the performance of lock-based sharing
falls off catastrophically with 3 or more cores.

The throughput of sharding using RSS depends on how the
RSS hash function steers flows to cores. On our experimental
setup, RSS can split flows evenly across CPU cores. However,
RSS neither splits individual heavy flows, nor does it intel-
ligently distribute heavy flows across CPU cores to balance
the load. When the packet rates of individual heavy flows in
the workload are within the processing capabilities of a single
CPU core, RSS++ [35] can improve upon RSS by spread-
ing the heavy flows across CPU cores. By measuring and
adapting to the workload on each CPU core, RSS++ can scale
throughput effectively with additional CPU cores, as has been
shown in prior work [35, 63]. However, when the workload
includes heavy flows whose (individual) packet rates exceed
the processing capability of a single CPU core, and the num-
ber of such flows is smaller than the number of available CPU
cores, simply spreading out the heavy flows across cores is in-
sufficient to improve throughput with additional cores. This is
the situation with the real packet workloads we tested (§4.1).
Such situations also arise under attacks that force sharded
packets to be handled on the same CPU core [43, 62]. It
becomes necessary to process individual heavy flows using
multiple cores, which is what SCR does.

Our results also show that RSS++ is not always better than
RSS. Re-balancing load by migrating a flow shard across
cores requires bouncing the cache line(s) containing the flow
states across cores, an action that can degrade performance
if done too frequently. On the other hand, rebalancing too
infrequently may fail to mitigate skew across cores, since the
per-shard load used to make CPU-balancing decisions may
become stale relative to the current load.

Why does SCR scale better than other techniques? Figure 8
shows detailed performance metrics measured from Intel’s

-4 - SCR —m— sharing (lock/atomic hw, see Table 1) —®- sharding (RSS) -4 sharding (RSS++)

50 * * o P
- ,»" =30 _e” | 225 e~ 40 PR hgn 4
g0 r= of s s s »

z hd 2 220 230 %4
30 * 20 T = »
> , > 315 =} /
£ » g £ £20
gzo 4 510 2 §’10 g 4
= = R T T ol TE Y =
10 Q—‘-“—‘:ﬁr'.ﬂ:" = L4 £ s = L
754 6 8 10 12 14 T3 3 4 5 6 7 T3 3 4 5 6 7 732 6 8 10 12 14

Number of cores
(a) DDoS mitigator (CAIDA)

Number of cores
(b) Heavy hitter detector (CAIDA)

Number of cores
(c) Token bucket policer (CAIDA)

Number of cores

(d) Port-knocking firewall (CAIDA)

50 +
— ‘,«“' 30 25 e w0
240 S 4 a 8 »~ 3
s = 220 i o
z .4 = = PR =30
530 Re 520 515 o 5
Q ’ Q Q - Q
520 = 5 » 520
3 * 310 2 31 2] Tl v 8
= b= . — B - = o ol all T) <
£ 101 ¥ -g&gu;,g_—:.vh £ E i sl ol 1o dion JIERINE SR £ £10
0 0 0 0

2 4 6 8 10 12 14
Number of cores

(e) DDoS mitigator (UnivDC)

1 2 3 4 5 6 7
Number of cores

(f) Heavy hitter detector (UnivDC)

1 2 3 4 5 6 7
Number of cores

(g) Token bucket policer (UnivDC)

2 4 6 8 10
Number of cores

(h) Port-knocking firewall (UnivDC)

12 14

Figure 6: Throughput (millions of packets per second) of four stateful packet-processing programs implemented using state-compute replication
(§3), shared state, and sharding (§2). Packet traffic is replayed from real data center and Internet backbone traces (§4.1).

-4- SCR —@- sharding (RSS)
—#— sharing (lock) -4 sharding (RSS++)
20

-
u

Throughput (Mpps)
A
o

v

o

1 2 3 4 5 6 7
Number of cores

Figure 7: Throughput of TCP connection tracking parallelized using
four techniques, SCR (§3), shared state, sharding with RSS, and
sharding with RSS++ [35], on a hyperscalar data center trace (§4.1).

performance counter monitor (PCM [24]) and BPF profil-
ing [14]. We measure the L2 cache hit ratios, instructions re-
tired per cycle (IPC), and the program’s computation latency
(only the XDP portion, excluding the dispatch functionality in
the driver), as the load offered to the system increases, when
our token bucket policer is run across different numbers of
cores (2, 4, or 7). The numbers show the averages for these
metrics across the cores running the program. Error bars for
IPC show the min and max values across cores. IPC is a
meaningful metric to evaluate “CPU goodput” for eBPF/XDP
programs: unlike high-speed packet processing frameworks
like DPDK which poll the NIC and exhibit persistently high
IPC [42], eBPF/XDP drivers adapt CPU usage to load through
a mix of polling and interrupts.

Lock-based sharing in general suffers from lower L2 cache
hit ratios ((a)—(c)) and higher latencies ((g)—(i)) due to lock
and cache line contention across cores—a trend that holds
as the offered load increases and also with additional cores

EN BB ERT D S S PSS SR SOD s chis dai 4
e B i e e Y B P . e o]
—a a2
Bosit o
£
0.4
~
9
. B 0.2
0.0 0.0 0.0

5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35

TX rate (Mpps) TX rate (Mpps) TX rate (Mpps)
-¢- SCR —# sharing (lock) —®- sharding (RSS) --4- sharding (RSS++)

(a) L2 hit ratio: 2 cores (b) L2 hit ratio: 4 cores (c) L2 hit ratio: 7 cores

2.0 2.0 2.0
o O O
15 =15 Z1s
o © ©
10 10 10
o o o

0.5 0.5 0.5

0.0 0.0 0.0

5 10 15 20 25 30 35
TX rate (Mpps)

5 10 15 20 25 30 35 5 10 15 20 25 30 35
TX rate (Mpps) TX rate (Mpps)

mmm SCR === sharing (lock) mssm sharding (RSS) mmsm sharding (RSS++)
(d) Retired IPC: 2 cores (e) Retired IPC: 4 cores (f) Retired IPC: 7 cores

150 600

L T S et Sk e 4

[
o
=3
I
=3
)

Latency (ns)
Latency (ns)

«
=)
N}
o
S

Latency (ns)
=
)
S

eeeend
e

P S S A
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
TX rate (Mpps) TX rate (Mpps) TX rate (Mpps)

-#- SCR —= sharing (lock) —®- sharding (RSS) --¢- sharding (RSS++)
(g) Latency: 2 cores (h) Latency: 4 cores (i) Latency: 7 cores

Figure 8: Hardware performance metrics drawn from Intel PCM
while executing the token bucket program. As the offered load in-
creases, we show the program’s compute latency (measured purely
for the XDP portion), the L2 hit ratio, and the number of instructions
retired per CPU clock cycle (IPC), when the program is scaled to 2,
4, or 7 cores. Packet traffic is from a university data center (§4.1).

BAS & 7 cores X 8- 7 cores 6 —=— 1RX
_ ; . _ X -) Q 7 cores
g N, 4cores | & AN 4cores | 55 2 RXQ 7 cores
830 < g - 3
2 « e 1core | 40 \ e lcore | £, —— 1RXQ 4 cores
= = k]
55 « 5 N\ g, 2 RXQ 4 cores
B : B N e
S \'Y 320 N E2
8 N g N 5
£1o - £ |e-..., b z
[T L RPN - F --0.“._;;& 1
R e
o

a3 - 3
76 28 210 21 75 > 210 212 75 27 29

Compute latency (ns)

(a) Packets/sec (1 RXQ) (b) Packets/sec (2 RXQ) (c) Normalized to 1 core

Figure 9: The throughput scaling of a stateless program using SCR,
as the compute latency of the program varies but the dispatch latency
remains constant ((a) and (b) in packets/second, and (c) normalized
against single-core throughput at the same compute latency). As
discussed in §3.1, the more the dispatch time dominates compute
time, the more effective the multi-core scaling from SCR.

Compute latency (ns) Compute latency (ns)

at the same offered load. As we might expect, [PC increases
with the offered load ((d)—(f)), since the cores get busier with
packet processing. While the sharding approaches (RSS and
RSS++) effectively use the CPU with a high average IPC
for 2 cores, their average IPC values drop significantly with
additional cores, with large variation across cores (see error
bars). This indicates a severe imbalance of useful CPU work
across cores: Flow-affinity-based sharding approaches are
unable to balance packet-processing load across cores, leaving
some cores idle and others heavily used.

In contrast to sharing and sharding approaches, SCR has
a consistently high IPC with more cores and higher offered
loads. SCR has higher packet-processing latency ((g)—(i))
than RSS-sharding since it needs to process the history for
each packet. RSS++ sometimes incurs higher compute latency
than SCR due to its need to monitor per-shard load, which
requires additional memory operations. SCR’s more effective
usage of the CPU cores results in better throughput scaling
than RSS and RSS++ (Figure 6 (g)).

Limits to SCR scaling. SCR suffers from two kinds of scal-
ing limitations. First, as discussed in §3.1, as the compute
latency increases in comparison to the dispatch latency, the
effectiveness of SCR’s multi-core scaling reduces. This is
because more time is spent “catching up” state, incurring sig-
nificant duplicated work across CPU cores. We evaluate how
the throughput of a stateless program varies as the compute
latency of this program increases, shown both in packets/sec-
ond (Figure 9a, Figure 9b) and normalized to the single-core
throughput for that compute latency (Figure 9¢). With a small
compute latency (left of the graph), using N cores provides
~ N x throughput relative to a single core, but this relative
benefit diminishes with increasing compute latency. Latency
profiles of our benchmarks show compute latencies smaller
than 70 nanoseconds (Table 4, Appendix A).

Second, SCR’s attachment of histories to packets incurs
non-negligible byte/second overheads. Adding to the number
of bytes per packet increases L3 cache pressure due to higher
DDIO cache occupancy [22] and incurs additional PCle trans-
actions and bandwidth [59]. Further, when packet histories
are appended outside the NIC (e.g., top-of-the-rack switch),

-4 - SCRw/o LR (0%)
~¥- SCRw/ LR (0%)

sharing (lock, 0%) —@- sharding (RSS, 0%)--4- sharding (RSS++, 0%)
SCR w/ LR (0.01%) SCRw/ LR (0.1%) - SCRw/ LR (1%)

por=y r‘_‘_,_,,o—‘

* [R

w
=]
IS
=)

.."
ot *

w
1=

*

v L

.

SVSPE TSR S SOV RROEY SIY TR

r—‘—/ 'p-o—-*"t-ﬁ--b-@-f:,‘
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Number of cores Number of cores

(a) Adding packet history externally (b) Impact of loss recovery

[T S S

Throughput (Mpps)
Throughput (Mpps)
)
o

3\
*
3
3
P
>4
&
g

o
o

0

o

Figure 10: (a) The throughput of a token bucket policer on the
university data center trace (§4.1), while truncating all packets in the
trace to 64 bytes, with only SCR adding metadata to packets before
feeding them to the NIC. (b) The throughput of a port-knocking
firewall on the university data center trace. SCR is run with and
without loss recovery (§3.4) at multiple packet loss rates.

Rows LUT Flip-flops
Usage | Logic % Usage %o
16 1045 646 | 0.060 | 2369 | 0.069
32 1852 | 1444 | 0.107 | 3158 | 0.091
64 2637 | 2229 | 0.153 | 4707 | 0.136
128 3390 | 2982 | 0.196 | 7786 | 0.226

Table 2: Sequencer resource usage after synthesis into the NetFPGA-
PLUS reference switch and meeting timing at 340 MHz.

SCR may saturate the NIC earlier than other approaches. We
compare SCR against the shared and sharded approaches,
when SCR alone adds history metadata before packets are fed
into the NIC while the packets for the latter approaches are
truncated to 64 bytes. Figure 10 (a) shows the throughput of
the token bucket program with the university data center trace.
After 11 cores, the CPU is no longer the bottleneck for SCR.
This prevents SCR from scaling to a higher packets/second
throughput. Yet, SCR saturates at a throughput much higher
than the other techniques.

Overheads of SCR’s loss recovery handling. We evaluate
how SCR’s loss recovery algorithm impacts throughput with
and without packet loss. Figure 10 (b) compares a version
of SCR without incorporating the loss recovery algorithm,
against a version that incorporates loss recovery at differ-
ent artificially-injected random packet loss rates (0%, 0.01%,
0.1% and 1%). We also show the performance of existing
scaling techniques (shared state, RSS, RSS++). The mere in-
clusion of the loss recovery algorithm impacts performance
due to the additional logging operations. Moreover, SCR’s
throughput degrades with higher loss rate due to recovery-
related synchronization (§3.4). However, SCR still outper-
forms and outscales existing multi-core scaling techniques.

4.3 Practicality of Sequencer Hardware

We integrated our Verilog module implementing the se-
quencer (§3.3.2) into the NetFPGA-PLUS [12] reference

Resource Avg% | Resource Avg %

Exact match crossbars | 23.31% | SRAM 9.69%
VLIW instructions 9.11% | TCAM 0.00%
Stateful ALUs 93.75% | Map RAM | 15.62%
Logical tables 23.96% | Gateway 23.44%

Table 3: Resource usage (average % across stages) of a Tofino im-
plementation of the sequencer that uses as many stateful ALUs as
possible to store packet history, amounting to 44 32-bit fields.

switch, which is clocked at a maximum frequency of 340
MHz with a 1024-bit wide data bus, providing a bandwidth
of 348 Gbit/s. We use the Alveo U250 board, which contains
1728000 lookup tables (LUTs) and 3456000 flip-flops.

We synthesized our sequencer design with different num-
bers of memory rows (§3.3.2), corresponding to the size of
the packet history (in number of packets). Each row is 112
bits long, enough to maintain a TCP 4-tuple and an addi-
tional 16-bit value (e.g., a counter, timestamp, efc.) for each
historic packet. Table 2 shows the resource usage. If each
packet history metadata in the program is smaller than a row
(112 bits), parallelizing across N cores requires N rows. For
such programs, our design can meet timing (340 MHz) while
scaling to 128 cores. The LUT and flip-flop hardware usage is
negligible compared to the FPGA capacity at all row counts
measured. We believe that our sequencer design may be sim-
ple and cheap enough to be added as an on-chip accelerator
to a future NIC.

We have also implemented a stateful-register-based design
of the sequencer on the Tofino programmable switch (§3.3.2).
The resource usage of this design is shown in Table 3. Our
implementation was designed to use as many stateful registers
and ALUs as possible (our design uses 93% on average across
stages) to hold the largest number of bits of packet history. Our
design holds 44 32-bit fields, sufficient to parallelize (Table 1)
the DDoS mitigator over 44 cores, the port-knocking firewall
over 22 cores, the heavy hitter and token bucket over 9 cores,
or the connection tracker over 5 cores. The small number of
stateful ALUs on the platform, as well as the limit on the
number of bits that can be read out from stateful memory into
packet fields, restrict the Tofino sequencer from scaling to a
larger number of CPU cores.

5 Related Work

Frameworks for network function performance. The prob-
lem of scaling out packet processing is prominent in net-
work function virtualization (NFV), with frameworks such as
split/merge [68], openNF [46], and Metron [54] enabling elas-
tic scaling. There have also been efforts to parallelize network
functions automatically [63] and designing data structures to
minimize cross-core contention [47]. These efforts are flow-
oriented, managing and distributing state at flow granularity.
In contrast, SCR scales packet processing for a single flow.

General techniques for software parallelism. Among the
canonical frameworks to implement software parallelism [57],
our scaling principles are most reminiscent of Single Program
Multiple Data (SPMD) parallelism, with the program being
identical on each core but the data being distinct. The se-
quencer in SCR makes the data distinct for each core.

Parallelizing finite state machines. A natural model of state-
ful packet processing programs is as finite state automata (the
state space is the set of flow states) making transitions on
events (packets). There have been significant efforts taken to
parallelize FSM execution using speculation [65,66] and data
parallelism [58]. In contrast, SCR exploits replication.

Parallel network software stacks. There has been recent in-
terest in abstractions and implementations that take advantage
of parallelism in network stacks, for TCP [55,72] and for end-
to-end data transfers to/from user space [39]. SCR takes a
complementary approach, using replication rather than decom-
posing the program into smaller parallelizable computations.

6 Conclusion

It is now more crucial than ever to investigate techniques
to scale packet processing using multiple cores. This paper
presented state-compute replication (SCR), a principle that
enables scaling the throughput of stateful packet-processing
programs monotonically across cores by leveraging a packet
history sequencer, even under realistic skewed packet traffic.

Acknowledgments

The work was supported in part by the U.S. National Sci-
ence Foundation (NSF) grants CNS #1910796, CAREER
#2340748, CNS #2008048, FMitF #2019302, and FMitF
#2422076, the European Union under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU,
the partnership on ‘“Telecommunications of the Future”
(PE00000001 - program “RESTART”), and gifts from the Net-
work Programming Initiative (NPI) and Xilinx. We thank our
shepherd Luis Pedrosa for his thoughtful comments on the fi-
nal versions of this paper and the anonymous NSDI reviewers
for their revision feedback. We are grateful to David Walker,
Jennifer Rexford, Sanjay Rao, and Santosh Nagarakatte for
helpful feedback on previous versions of this paper. We also
appreciate the support of the Rutgers Laboratory for Com-
puter Science Research (LCSR) staff, Kevin Conover, Tim
Hayes, and Chuck Hedrick, for their thoughtful support of
research infrastructure.

References

[1] Intel IPU. [Online, Retrieved Feb 21, 2023.]
https://www.intel.com/content/www/us/en/
products/details/network-io/ipu.html.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Linux Socket Filtering aka Berkeley Packet Fil-
ter (BPF). [Online, Retrieved Nov 05, 2020.]
https://www.kernel.org/doc/Documentation/
networking/filter.txt.

NVIDIA BlueField DPU. [Online, Retrieved
Feb 21, 2023.] https://www.nvidia.com/en-us/
networking/products/data-processing-unit.

Receive Side Scaling. [Online, Retrieved Feb 21, 2023.]
https://www.kernel.org/doc/Documentation/
networking/scaling.txt.

Benchmarking Methodology for Network Interconnect
Devices. [Online, Retrieved Sep 17, 2023.] https://
www.rfc-editor.org/rfc/rfc2544, 1999.

IEEE 802.1Qbb — Priority-based Flow Control. [Online,
Retrieved May 02, 2024.] https://1.1eee802.0rg/
dcb/802-1gbb/, 2011.

Flow Direc-
17, 2023.]

How to set up Intel Ethernet
tor. [Online, Retrieved Sep
https://www.intel.com/content/www/
us/en/developer/articles/training/
setting-up-intel-ethernet-flow-director.
html, 2017.

Open-sourcing Katran, a scalable network load
balancer. [Online, Retrieved Sep 17, 2023.]
https://engineering.fb.com/2018/05/22/open-
source/open-sourcing-katran-a-scalable-network-
load-balancer/, 2018.

A kernel patch to support RSS++.
line, Retrieved Apr 29, 2024.]
//github.com/rsspp/linux/commit/
4e09cf8bebac5b0aloccbb92¢c62£758£29%e3bbaa,
2019.

[On-
https:

Concurrency management in eBPF. [Online, Re-
trieved Sep 17, 2023.] https://lwn.net/Articles/
779120/, 2019.

The CAIDA UCSD Anonymized Internet Traces - 2019.
[Online, Retrieved Sep 17,2023.] https://www.caida.
org/catalog/datasets/passive_dataset, 2019.

NetFPGA-PLUS. [Online, Retrieved Sep 17, 2023.]
https://github.com/NetFPGA/NetFPGA-PLUS,
2021.

Nvidia ConnectX-6 DX. [Online, Retrieved
Apr 14, 2024.] https://www.nvidia.com/
content/dam/en-zz/Solutions/networking/
ethernet-adapters/ConnectX-6-Dx-Datasheet.
pdf, 2021.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Measuring BPF performance: Tips, tricks, and
best practices. [Online, Retrieved Sep 17, 2023.]
https://developers.redhat.com/articles/2022/06/22/
measuring-bpf-performance-tips-tricks-and-best-
practices, 2022.

BPF helpers manual page. [Online, Retrieved Sep 17,
2023.] https://www.man7.org/linux/man-pages/
man7/bpf-helpers.7.html, 2023.

BPF maps. [Online, Retrieved Sep 17, 2023.]
https://www.kernel.org/doc/html/latest/bpf/
maps.html, 2023.

Broadcom Trident 4: BCM56880 Series. [Online, Re-
trieved Jul 22, 2023.] https://www.broadcom.com/
products/ethernet-connectivity/switching/
strataxgs/bcm56880-series, 2023.

Built-in Functions for Memory Model Aware Atomic
Operations. [Online, Retrieved Sep 17, 2023.]
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/
gcc/_005f_005fatomic-Builtins.html, 2023.

Checksum Offloads. [Online, Retrieved Sep 17, 2023.]
https://www.kernel.org/doc/html/latest/
networking/checksum-offloads.html, 2023.

ConnectX-7 400G adapters. [Online, Retrieved
May 1, 2024.] https://resources.nvidia.com/
en-us-accelerated-networking-resource-library/
connectx-7-datasheet, 2023.

Data Plane Development Kit. [Online, Retrieved Jul 22,
2023.] https://www.intel.com/content/www/us/
en/developer/topic-technology/networking/
dpdk.html, 2023.

Intel Data Direct I/O technology. [Online, Retrieved Sep
17, 2023.] https://www.intel.com/content/www/
us/en/io/data-direct-i-o-technology.html,
2023.

Intel Tofino. [Online, Retrieved Jul 22, 2023.] https:
//www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-series.html, 2023.

Introduction to Intel Performance Counter
Monitor (PCM). [Online, Retrieved Sep 17,
2023.] https://www.intel.com/content/
www/us/en/developer/articles/tool/
performance-counter-monitor.html, 2023.

Legacy __sync Built-in Functions for Atomic Mem-
ory Access. [Online, Retrieved Sep 17, 2023.]
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/
gcc/_005f_005fsync-Builtins.html, 2023.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Open Tofino: P4 Intel Tofino Native Architecture - Pub-
lic version. [Online, Retrieved Sep 17, 2023.] https:
//github.com/barefootnetworks/Open-Tofino/
blob/master/PUBLIC_Tofino-Native-Arch.pdf,
2023.

Pensando infrastructure accelerators. [Online, Re-
trieved Jul 22, 2023.] https://www.amd.com/en/
accelerators/pensando, 2023.

Port knocking. [Online, Retrieved Jul 22, 2023.] https:
//help.ubuntu.com/community/PortKnocking,

2023.

Segmentation Offloads. [Online, Retrieved Sep
17, 2023.] https://www.kernel.org/doc/html/
latest/networking/segmentation-offloads.
html, 2023.

TCP Offload Engine: Chelsio Communications. [Online,
Retrieved Sep 17,2023.] https://www.chelsio.com/
nic/tcp-offload-engine/, 2023.

SCR experimental scripts and software. [On-
line, Retrieved Oct 03, 2024.] https://github.com/
smartnic/bpf-profile, 2024.

Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, and Amin Vahdat. Understanding
host interconnect congestion. In ACM Workshop on Hot
Topics in Networks (HotNets), 2022.

Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In ACM SIGCOMM, 2010.

Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling programmable transport protocols
in High-Speed NICs. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2020.

Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire,
and Dejan Kosti¢. Rss++: Load and state-aware receive
side scaling. In Conference on Emerging Networking
Experiments And Technologies (CoNEXT), 2019.

Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Understanding data center traffic char-
acteristics. Internet Measurement Conference (IMC),
2010.

Daniel
K8s

Borkmann and Martynas Pumputis.
Service Load Balancing with BPF &

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

XDP. [Online. Retrieved Jan 23, 2021.]
https://linuxplumbersconf.org/event/7/
contributions/674/attachments/568/1002/
plumbers_2020_cilium_load_balancer.pdf,
2020.

Pat Bosshart et al. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. ACM SIGCOMM, 2013.

Qizhe Cai, Midhul Vuppalapati, Jachyun Hwang, Chris-
tos Kozyrakis, and Rachit Agarwal. Towards us tail
latency and terabit ethernet: Disaggregating the host
network stack. In ACM SIGCOMM, 2022.

Arthur Chiao. Connection Tracking (conntrack): Design
and Implementation Inside Linux Kernel. [Online,
Retrieved Sep 17,2023.] https://arthurchiao.art/
blog/conntrack-design-and-implementation/,

2020.

Alexandros Daglis, Mark Sutherland, and Babak Fal-
safi. RPCValet: NIC-Driven Tail-Aware Balancing of
us-Scale RPCs. In Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2019.

Mihai Dobrescu, Norbert Egi, Katerina Argyraki,
Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
Routebricks: Exploiting parallelism to scale software
routers. In ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2009.

Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable soft-
ware network load balancer. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2016.

Arthur Fabre. L4drop: Xdp ddos mit-
igations. [Online, Retrieved Jul 25,
2023.] https://blog.cloudflare.com/

l4drop-xdp-ebpf-based-ddos-mitigations/.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, et al. Azure accelerated net-
working: SmartNICs in the public cloud. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2018.

Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Kbhalid,
Sourav Das, and Aditya Akella. OpenNF: Enabling

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Innovation in Network Function Control. ACM

SIGCOMM, 2014.

Massimo Girondi, Marco Chiesa, and Tom Barbette.
High-speed connection tracking in modern servers. In
IEEE International Conference on High Performance
Switching and Routing (HPSR), 2021.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over commodity ethernet at scale. In ACM SIGCOMM,
2016.

Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Se-
ungjoon Lee. Network function virtualization: Chal-
lenges and opportunities for innovations. IEEE Commu-
nications Magazine, 2015.

Toke Hgiland-Jgrgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The EXpress Data Path: Fast
Programmable Packet Processing in the Operating Sys-
tem Kernel. In ACM Conference on Emerging Network-
ing EXperiments and Technologies (CoNEXT), 2018.

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanoPU: A Nanosecond Network
Stack for Datacenters. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2021.

Jonathan Corbet. Accelerating networking with
AF_XDP. [Online. Retrieved Jan 20, 2021.] https:
//lwn.net/Articles/750845/, 2018.

Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi,
and Mun Choon Chan. Debugging transient faults in
data centers using synchronized network-wide packet
histories. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2021.

Georgios P. Katsikas, Tom Barbette, Dejan Kosti¢, Re-
becca Steinert, and Gerald Q. Maguire Jr. Metron: NFV
service chains at the true speed of the underlying hard-
ware. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

Antoine Kaufmann, Tim Stamler, Simon Peter,
Naveen Kr Sharma, Arvind Krishnamurthy, and
Thomas Anderson. TAS: TCP acceleration as an OS
service. In ACM EuroSys, 2019.

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A Micro-
kernel Approach to Host Networking. In ACM Sympo-
sium on Operating Systems Principles (SOSP), 2019.

Samuel Midkiff. Automatic parallelization: an overview
of fundamental compiler techniques. Springer Synthesis
Lectures on Computer Architecture, 2012.

Todd Mytkowicz, Madanlal Musuvathi, and Wolfram
Schulte. Data-Parallel Finite-State Machines. In Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2014.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio Lépez-Buedo, and Andrew W.
Moore. Understanding PCle Performance for End Host
Networking. In ACM SIGCOMM, 2018.

Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang
Xu, Yisong Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan
Lu, Enge Song, Jiao Zhang, Tao Huang, and Shunmin
Zhu. Sailfish: Accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches. In
ACM SIGCOMM, 2021.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. NetBricks: Tak-
ing the V out of NFV. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2016.

Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh,
Jonas Fietz, and Katerina Argyraki. Automated syn-
thesis of adversarial workloads for network functions.
In ACM SIGCOMM, 2018.

Francisco Pereira, Fernando M.V. Ramos, and Luis Pe-
drosa. Automatic parallelization of software network
functions. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2024.

Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2018.

Jungiao Qiu, Xiaofan Sun, Amir Hossein Nodehi Sabet,
and Zhijia Zhao. Scalable FSM Parallelization via Path
Fusion and Higher-Order Speculation. In Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2021.

Jungiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and
Shuaiwen Leon Song. Enabling Scalability-Sensitive
Speculative Parallelization for FSM Computations. In
International Conference on Supercomputing, 2017.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Quentin Monnet. Optimizing BPF: Smaller Programs
for Greater Performance. [Online. Retrieved Jan 20,
2021.] https://www.netronome.com/blog/optimizing-
bpf-smaller-programs-greater-performance/, 2020.

Shriram Rajagopalan, Dan Williams, Hani Jamjoom,
and Andrew Warfield. Split/Merge: System support for
elastic execution in virtual middleboxes. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2013.

Luigi Rizzo. Netmap: a novel framework for fast packet
I/0. In USENIX annual technical conference (ATC),
2012.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (data-
center) network. In ACM SIGCOMM, 2015.

Hugo Sadok, Miguel Elias M. Campista, and Luis Hen-
rique M. K. Costa. A case for spraying packets in soft-
ware middleboxes. In ACM Workshop on Hot Topics in
Networks (HotNets), 2018.

Rajath Shashidhara, Tim Stamler, Antoine Kaufmann,
and Simon Peter. FlexTOE: Flexible TCP offload with
Fine-Grained parallelism. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2022.

Nikita V. Shirokov. XDP: 1.5 years in production. Evolu-
tion and lessons learned. In Linux Plumbers Conference,
2018.

Shinae Woo and KyoungSoo Park. Scalable TCP Ses-
sion Monitoring with Symmetric Receive-side Scaling.
Technical report, KAIST, 2020.

Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker.
On the characteristics and origins of internet flow rates.
In ACM SIGCOMM, 2002.

Application t 2 d c1

DDoS mitigator 126 | 13 | 101 | 25
Heavy hitter monitor 138 | 17 | 105 | 32
Token bucket policer 153 | 22 | 102 | 51

Port-knocking firewall 128 | 15 | 101 | 27
TCP connection tracking | 140 | 39 | 71 | 69

Table 4: The throughput model parameters (in nanoseconds) for
packet-processing applications we evaluated.

Appendixes

The appendixes include supporting material that has not been
peer-reviewed.

A Predicting Throughput

This section provides a model that predicts the throughput
of SCR (§3.2) for any number of cores, given latency mea-
surements made with one and two cores at low load. We
also check the agreement between the empirically-measured
throughput and our model.

Suppose a system has k cores, where each core can dis-
patch a single packet in d cycles, and run a packet-processing
program that computes over a single packet in ¢ = ¢; + (k—
1) X ¢3 cycles, where ¢ is the time required to process the
current packet and ¢, the time for a state update using one
item of packet history. The time c¢; is smaller than ¢y, as the
state transition is a fragment of the computation extracted
from the program which processes one packet in entirety.
For each piggybacked packet, the total processing time is
d+cy+ (k—1) x cy. We define t 2 d + ¢y, the time to pro-
cess one packet including the dispatch and the program com-
putation. When ¢t dominates the state-computation time (i.e.,
t > cp), with k cores, the total rate at which externally-arriving
packets can be processed is k x m ~ k/t. Table 4 lists
the parameters we measured for packet-processing applica-
tions we evaluated. It shows that r = 3.6 — 9.9 x¢,. Hence, it
is possible to scale the packet-processing rate linearly with
the number of cores k.

We applied the parameters in Table 4 to the throughput
model and compared the predicted throughput to the actual
throughput. Figure 11 shows that they match well.

B Loss Recovery Algorithm

This section provides the detailed pseudocode and a proof of
correctness of the packet loss recovery algorithm outlined in
3.4.
Before we start the correctness proof of loss recovery algo-
rithm, we define the following notations.
1. sp: an SCR packet. sp;: the i’* SCR packet sent from the
sequencer to a core (please refer to §3.3.1 for more details).

Algorithm 1 SCR loss recovery

Input: the received SCR pkt (sp), current core (c)
1: Initialize:

2:
3
4
5:
6:
7
8
9

10:
11:
12:

14:
15:

max[c] < 0, Vi : log[c][i] <~ NOT_INIT

function scr_loss_recovery(sp, c)

maxseq <— sp.seq_num
minseq < max(1,maxseq — N+ 1)
for i < max[c] + 1 to maxseq do
if i < minseq then
log[c][i] + LOST
handle_loss_recovery(i,c)
else
history < get history of i from sp
log|c][i] < history
end if
end for
max[c] « maxseq

end function

16: function handle_loss_recovery(i, c)

32:
33:

Cothers <~ C\ {C}
Clost —0
while true do
for each ¢’ € Cypers do
if log[][i] is NOT_INIT then
continue
else if log[c'][i] is LOST then
Ciost < Cios U {C/}
if Cjo5r = Corhers then return
end if
else
history < log|c'][i]
update state using history
return
end if
end for
end while

34: end function

o
3
w
S
~N
&

S

S
\

\

P=

N
S

P=
A

/ —— Predicted / — Predicted / — Predicted

Actual Actual Actual

N

~
S

-

&

~
S
=
)
=
S

Throughput (Mpps)
\
Throughput (Mpps)
Throughput (Mpps)

H
S
w

)

2 4 6 8 10 12 14 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Number of cores Number of cores Number of cores

(a) DDoS mitigation (b) Heavy hitter detector (c) Token bucket policer

S
S
\
A
\
N
S

\

Throughput (Mpps)
3
N\
Throughput (Mpps)
it
5

/ —— Predicted —— Predicted

Actual Actual

H
S
@

2 4 6 8 10 12 14 1 2 3 4 5 6 7
Number of cores Number of cores

(d) Port-knocking firewall (¢) TCP connection tracking

Figure 11: Predicted and actual throughput (§4.1) in millions of
packets per second (Mpps) of five stateful packet-processing pro-
grams implemented using SCR (§3). The workloads of (a)-(d) and
(e) are from a university data center and a hyperscalar data center
(§4.1) separately.

2. p: aregular packet. p;: the i’ regular packet received by
the sequencer (in original or as part of the packet history,
please refer to §3.3.1 for more details).

3. C: the collection of all cores.

We want to prove that no core will be deadlocked by loss
recovery, i.e., every core will start processing (execute line 6)
and finish processing (finish executing line 6-12) every regular
packet, under the assumptions that (1) each core will receive
at least one SCR packet after packet loss, (2) we have infinite
memory, and (3) packet number monotonically increases.

Theorem 1. For any regular packet p;, if every core has re-
ceived p; (j > i), every core will finish processing p;.

Proof. We will first prove that any core will process p; to p;
in order. The order of packets to process follows the order at
line 5 (from max|c] + | to maxseq), i.e.,, after a core finishes
processing py, it will start processing py.1. Each core will be
triggered to process all packets including p; to p;, since each
core has received p; (j > 1),

Given the order of packets to process, we now prove all
cores can finish processing p;. If i = 1, all cores will start
processing p; (line 6) and then finish processing p; (Lemma
1). If i > 1, according to the order of a single core process-
ing packets and Lemma |, we get the induction hypothesis
that if all cores have started processing py, all cores will fin-
ish processing py and start processing py- 1. Using induction
hypothesis for i times, all cores will start and then finish pro-
cessing p;. O

Lemma 1. For any regular packet p;, if all cores have started
processing p;, then all cores will finish processing p;.

Proof. For any core c, no matter p; is lost or received, ¢ will
finish processing it.

If p; is received by c, after ¢ updates historyli] in its log
(line 10-11), c finishes processing p;.

If p; is lost at ¢ (detected at line 6), ¢ will wait for other
cores to update p; in their logs until ¢ gets history[i] or confirm
pi is lost at all the other cores (line 19-33). ¢ will not be
deadlocked in waiting, since p; will be updated to historyli] or
LOST in the logs of all cores which have started processing p;
(if line 6 is executed for p;, line 7 or line 11 will be executed).

O

In a practical implementation, logs are finite and sequence
numbers wrap around. We handle these concerns with a suf-
ficiently large log and a sequence space. Our current imple-
mentation uses the values 1,024 and 842,185 for the afore-
mentioned two quantities (respectively).

C SCR-Aware Multi-Core Programming

Consider a packet-
processing program
developed assuming

single-threaded execu-
tion on a single CPU
core. The question we
tackle in this subsec-
tion is: how should the program be changed to take advantage
of multi-core scaling with state-compute replication? We
walk through the process of adapting a program written in the
eBPF/XDP framework [50], but we believe it is conceptually
similar to adapt programs written in other frameworks such
as DPDK.

We describe the program transformations necessary for
SCR through a running example. Suppose we have a port-
knocking firewall [28] with the state machine shown in Figure
12. The program runs a copy of this state machine per source
IP address. If a source transmits IPv4/TCP packets with the
correct sequence of TCP destination ports, then all further
communication is permitted from that source. All other pack-
ets are dropped. Any transition not shown in the figure leads
to the default cLOSED_1 state, and only the OPEN state permits
packets to traverse the firewall successfully. A simplified
XDP implementation of this single-threaded firewall is shown
below.

Figure 12: A state machine for a
simple port-knocking firewall.

/* Definition of program state */
struct map states {
/* assume we define a dictionary with keys
as source IP addresses and values as firewall
states among CLOSED_{l1, 2, 3} and OPEN. */

/* State transition function. See Figure 12 */
int get_new_state(int curr_state, int dport) {
/* A function that implements the state machine for
the port knocking firewall. */
if (curr_state == CLOSED_1l && dport == PORT_1)
return CLOSED_2;

if (curr_state == CLOSED_2 && dport == PORT_2)
return CLOSED_3;

if (curr_state == CLOSED_3 && dport == PORT_3)
return OPEN;

if (curr_state == OPEN)
return OPEN;

return CLOSED_1;

/* The main function */
int simple_port_knocking(...) {

/* Assume the packet is laid out as a byte array
starting at the address pkt_start. Suppose the
packet is long enough to include headers up to
layer 4. First, parse IPv4/TCP pkts. */

struct ethhdr* eth = pkt_start; // parse Ethernet

int 13proto = eth->proto; // layer-3 protocol

int off = sizeof (struct ethhdr);

struct iphdr* iph = pkt_start + off;

int ldproto = iph->protocol; // layer-4 protocol

if (13proto != IPv4 || ldproto != TCP)

return XDP_DROP; // drop non IPv4/TCP pkts
int srcip = iph->src; // source IP addr

off += sizeof(struct iphdr);

struct tcphdr* tcp = pkt_start + off;

int dport = tcp->dport; // TCP dst port

/* Extract & update firewall state for this src. */
int state = map_lookup(states, srcip);

int new_state = get_new_state(state, dport);
map_update (states, srcip, new_state);

/* Final packet verdict */
if (new_state == OPEN)

return XDP_TX; // allow traversal
return XDP_DROP; // drop everything else

The program’s state is a key-value dictionary mapping
source [P addresses to an automaton state described in Figure
12. The function get_new_state implements the state transi-
tions. The main function, simple_port_knocking first parses
the input packet, dropping all packets other than IPv4/TCP
packets. Then the program fetches the recorded state corre-
sponding to the source IP on the packet, and performs the
state transition corresponding to the TCP destination port. If
the final state is OPEN, all subsequent packets of that source IP
may traverse the firewall to the other side. All other packets
are dropped.

To enable this program to use state-compute replication
across cores, this program should be transformed in the fol-
lowing ways. We believe that these transformations may be
automated by developing suitable compiler passes, but we
have not yet developed such a compiler.

(1) Define per-core state data structures and per-packet meta-
data structures. First, the program’s state must be replicated
across cores. To achieve this, we must define per-core state
data structures that are identical to the global state data struc-

tures, except that they are not shared among CPU cores.
Packet-processing frameworks provide APIs to define such
per-core data structures [16].

Additionally, we must define a per-packet metadata struc-
ture that includes any part of the packet that is used by the
program—through either control or data flow—to update the
state corresponding to that packet. For the port-knocking fire-
wall, the per-packet metadata should include the 13proto,
l4proto, srcip, and dport.

The data structures that maintain packet history on the

sequencer correspond to this per-packet metadata (§3.3).
(2) Fast-forward the state machine using the packet history.
The SCR-aware program must prepend a loop to “catch up”
the state machine for each packet missed by the CPU core
where the current packet is being processed. By leveraging
the recent history piggybacked on each packet, at the end of
this loop, the CPU core has the most up-to-the-packet state.

/* Assume the pointer ‘data’ locates where the
per-pkt metadata begins in the byte array of
the packet (Figure 4a). Suppose ‘index’
is the offset of the earliest packet §3.3.2 ,
and NUM_META is the number of packets in the
piggybacked history.

*/

int 13proto, l4proto, srcip, dport, i, j;

for (j = 0; j < NUM_META; j++) {

i = (index + j) % NUM_META; // ring buffer

struct meta *pkt = data + i * sizeof (meta);

13proto = pkt->13proto;

ldproto = pkt->ldproto;

srcip = pkt->srcip;

dport = pkt->dport;

if (13proto != IPv4 || ldproto != TCP)
continue; // no state txns or pkt verdicts

/* Update state for this srcip and dport: */

/* map_lookup; get_new_state; map_update. */

/* Note: No pkt verdicts for historic pkts. */

}
pkt_start = data + NUM_META * sizeof (struct meta)
+ sizeof (index);

A few salient points about the code fragment above. First,
the semantics of the ring buffer of packet history (§3.3) are
implemented by looping over the packet history metadata
starting at offset index rather than at offset 0. The decision to
implement the ring buffer semantics in software makes the
hardware significantly easier to design, since only a small part
of the hardware data structure needs to be updated for each
packet (§3.3.2). Second, the loop must implement appropri-
ate control flow before the state update to ensure that only
packets that should indeed update the flow state do. Note that
the metadata includes parts of the packet that are not only
the data dependencies for the state transition (srcip, dport)
but also the control dependencies (13proto, l4proto). Third,
no packet verdicts are given out for packets in the history:
we want the program to return a judgment for the “current”

packet, not the historic packets used merely to fast-forward
the state machines. Finally, the code fragment conveniently
adjusts pkt_start to the position in the packet buffer (Figure
4a) corresponding to where the “original” packet begins. The
rest of the original program—unmodified—may process this
packet to completion and assign a verdict.

What is excluded in our code transformations is also crucial.
This program avoids locking and explicit synchronization,
despite the fact that it runs on many cores, even if there is
global state maintained across all packets.

With these transformations, in principle, a packet-
processing program is able to scale its performance using
state-compute replication across multiple cores.

	Introduction
	Background and Motivation
	High Speed Packet Processing
	Parallelizing Stateful Packet Processing
	Goals

	State-Compute Replication (SCR)
	Scaling Principles
	Operationalizing SCR
	Packet History Sequencer
	Packet format
	Hardware data structures for packet history

	Discussion

	Evaluation
	Experiment Setup
	Multi-Core Throughput Scaling
	Practicality of Sequencer Hardware

	Related Work
	Conclusion
	Predicting Throughput
	Loss Recovery Algorithm
	SCR-Aware Multi-Core Programming

