
State-Compute Replication: Parallelizing High-Speed Stateful Packet Processing

Qiongwen Xu4, Sebastiano Miano⊕, Xiangyu Gao‡, Tao Wang‡, Adithya Murugadass4, Songyuan Zhang4,

Anirudh Sivaraman‡, Gianni Antichi Ω ⊕, Srinivas Narayana4

4 Rutgers University, USA ⊕ Politecnico di Milano, Italy ‡ New York University, USA Ω Queen Mary University of London, UK

Abstract
With the slowdown of Moore’s law, CPU-oriented packet

processing in software will be significantly outpaced by

emerging line speeds of network interface cards (NICs).

Single-core packet-processing throughput has saturated.

We consider the problem of high-speed packet processing

with multiple CPU cores. The key challenge is state—memory

that multiple packets must read and update. The prevailing

method to scale throughput with multiple cores involves state

sharding, processing all packets that update the same state,

e.g., flow, at the same core. However, given the skewed nature

of realistic flow size distributions, this method is untenable,

since total throughput is limited by single-core performance.

This paper introduces state-compute replication, a principle

to scale the throughput of a single stateful flow across mul-

tiple cores using replication. Our design leverages a packet

history sequencer running on a NIC or top-of-the-rack switch

to enable multiple cores to update state without explicit syn-

chronization. Our experiments with realistic data center and

wide-area Internet traces show that state-compute replication

can scale total packet-processing throughput linearly with

cores, independent of flow size distributions, across a range

of realistic packet-processing programs.

1 Introduction

Designing software to handle high packet-processing loads

is crucial in networked systems. For example, software load

balancers, CDN nodes, DDoS mitigators, and many other

middleboxes depend on it. Yet, with the slowdown of Moore’s

law, software packet processing has struggled to keep up with

line speeds of network interface cards (NICs), with emerging

speeds of 200 Gbit/s and beyond [20]. Consequently, there

have been significant efforts to speed up packet processing

through better network stack design, removing user-kernel

crossings, running software at lower layers of the stack (e.g.,

NIC device driver), and designing better host interconnects.

We consider the problem of scaling software packet pro-

cessing by using multiple cores on a server. The key challenge

is that many packet-processing applications are stateful, main-

taining and updating regions of memory across many packets.

If multiple cores contend to access the same memory regions,

there is significant memory contention and cache bouncing,

resulting in poor performance. Hence, the classic approach to

multicore scaling is to process packets touching distinct states,

i.e., flows, on different cores, hence removing memory con-

tention and synchronization. For example, a load balancer that

maintains a separate backend server for each 5-tuple may send

all packets of a given 5-tuple to a fixed core, but process dif-

ferent 5-tuples on different cores, hence scaling performance

with multiple cores. Many prior efforts have implemented and

optimized such sharding-oriented solutions [35,46,54,63,68].

However, we believe that the existing approaches to multi-

core scaling have run their course (§2). Realistic traffic work-

loads have heavy-tailed flow size distributions and are highly

skewed. With sharding, large “elephant flows” must be pro-

cessed by one CPU core, reducing overall performance due

to the low throughput of a single CPU core. With emerging

200 Gbit/s—1 Tbit/s NICs, a single packet processing core

may be too slow to keep up even with a single elephant flow.

Additionally, with the growing scales of volumetric resource

exhaustion attacks, packet processors must gracefully handle

attacks where adversaries force packets into a single flow [43].

This paper introduces a scaling principle, state-compute

replication (SCR), that improves the software packet-

processing throughput for a single, stateful flow with addi-

tional cores, while avoiding shared memory and contention.

Figure 1 shows how SCR scales the throughput of a single

TCP connection for a TCP connection state tracker [40] with

more cores, when other scaling techniques fail. A connection

tracker may change its internal state with each packet.

SCR applies to any packet processing program that may

be abstracted as a deterministic finite state machine. Intu-

itively, as long as each core can reconstruct the flow state by

processing all the packets of the flow, multiple cores can suc-

cessfully process a single stateful flow with zero cross-core

synchronization. However, naively processing every packet

with every CPU core cannot improve throughput with more
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Figure 1: Scaling the throughput of a TCP connection state tracker

for a single TCP connection across multiple cores. Sharing state

across cores degrades performance beyond 2 cores due to contention.

Sharding state (using RSS and RSS++ [35]) cannot improve through-

put beyond a single CPU core (§2). In contrast, State-Compute

Replication (§3) provides linear scale-up in throughput with cores.

cores. We need to meet two additional requirements. First,

in systems where CPU usage is dominated by per-packet

work, we must preserve the total number of packets moving

through the system. Second, we must divide up dispatch—the

CPU software labor of presenting the packets to the packet-

processing program—across multiple cores (§3.1). This leads

to the scaling principle below (more formal version in §3.1):

State-Compute Replication (informal). In a system bound

by per-packet CPU work and software dispatch, replicating

the state and the computation of a stateful flow across cores in-

creases throughput linearly with cores, so long as we preserve

the total number of packets traversing the system.

To meet the requirements for high performance in SCR,

we design a packet history sequencer (§3.2), an entity which

sees every packet and sprays packets across cores in a round-

robin fashion, while piggybacking the relevant information

from packets missed by a core on the next packet sent to that

core. The sequencer must maintain a small bounded history

of packet headers relevant to the packet-processing program.

A high-speed packet-processing pipeline, running either on a

programmable NIC or a top-of-the-rack switch, may serve as

a sequencer. We present sequencer designs for two hardware

platforms (§3.3), a Tofino switch, and a Verilog RTL module

we synthesized into the NetFPGA-PLUS reference pipeline.

We evaluated the scaling efficacy of SCR using a suite of

realistic programs and traffic (§4). SCR is the only technique

we are aware of that monotonically scales the total processing

throughput with additional cores regardless of the skewness

in the arriving flow size distribution. However, no technique

can continue scaling indefinitely. In §3.1 and §4, we demon-

strate the limits of SCR scaling, along with the significant

performance benefits to be enjoyed before hitting these limits.

Additionally, we show the resource usage for our sequencer’s

RTL design, which meets timing at 340 MHz. We believe this

design is simple and cheap enough to be added as an on-chip

accelerator to a future NIC.

All our software is publicly available [31]. This work does

not raise any ethical concerns.

2 Background and Motivation

2.1 High Speed Packet Processing

This paper considers packet-processing programs that must

work at heavy network loads with quick turnarounds for pack-

ets. We are specifically interested in applications implement-

ing a “hairpin” traffic flow: receiving a packet, processing

it as quickly as possible, and transmitting the packet right

out, at the highest possible rate. Such programs exhibit com-

pute and working set sizes that are smaller in comparison to

full-fledged applications (running in user space) or transport

protocols (TCP stacks) running at endpoints.

Examples of the kinds of applications we consider include

(i) middlebox workloads (network functions), such as fire-

walls, connection trackers, and intrusion detection/preven-

tion systems; and (ii) high-volume compute-light applications

such as key-value stores, telemetry systems, and stream-based

logging systems, which process many requests with a small

amount of computation per request [51]. A key characteristic

of such applications is their need for high packet-processing

rate (which is more important than byte-processing rate) and

the fact that their performance is primarily bottlenecked by

CPU usage [44, 69, 73].

The performance of such applications is mission-critical in

many production systems. Even small performance improve-

ments matter in Internet services with large server fleets and

heavy traffic. As a specific example, Meta’s Katran layer-4

load balancer [8] and CloudFlare’s DDoS protection solu-

tion [44] process every packet sent to those respective services,

and must withstand not only the high rate of request traffic des-

tined to those services but also large denial-of-service attacks.

More generally, the academic community has undertaken sig-

nificant efforts for performance optimization of network func-

tions, including optimization of the software frameworks [46],

designing language-based high-performance isolation [61],

and developing custom hardware offload solutions [64].

In this paper, we consider applications developed within

high-speed packet processing software frameworks. Given

the slowdown of Moore’s law and the end of Dennard scaling,

the software packet-processing performance of single CPU

cores has saturated. Even expert developers must work metic-

ulously hard to improve per-core throughput by small margins

(like 10%) [37, 50, 52, 67]. The community has pursued vari-

ous efforts to improve performance, such as re-architecting

the software stack to make efficiency gains [21, 56, 69], in-

troducing stateless hardware offloads working in conjunc-

tion with the software stack [19, 29], full-stack hardware of-

floads [30,34], and kernel extensions [2]. This paper considers

software frameworks that modify the device driver to enable

programmable and custom functionality to be incorporated

by developers at high performance with minimal intervention

from the existing kernel software stack [50].

Specifically, we study performance and evaluate our tech-



niques in the context of kernel extensions implemented using

the eXpress Data Path (XDP/eBPF [50]) within the Linux

kernel. In §3, we will discuss how our observations and prin-

ciples apply more generally to other high-speed software

packet-processing frameworks, including those written with

user-space libraries like DPDK [21].

2.2 Parallelizing Stateful Packet Processing

This paper considers the problem of parallelizing high-speed

packet processing programs across multiple cores. The key

challenge is handling state: memory that must be updated

in a sequential order upon processing each packet to pro-

duce a correct result. Consider the example of the connection

tracker [40], a program which identifies the TCP connection

state (e.g., SYN sent, SYN/ACK sent, etc.) using packets ob-

served from both directions of a TCP connection. Each packet

in the connection may modify the internal connection state

maintained by the program. There are two main techniques

used to parallelize such programs across cores.

Shared state parallelism. One could conceive a parallel im-

plementation that (arbitrarily) splits packets across multiple

cores, with explicit synchronization or retry logic guarding

access to the shared memory, i.e., the TCP connection state,

to ensure a correct result.

Shared-state parallelism works well when the contention to

shared memory is low. Specifically, shared-memory scaling

could work well when (i) packets of a single flow arrive slowly

enough, e.g., if there are a large number of connections with

a roughly-equal packet arrival rate, or (ii) when there are effi-

cient implementations available for synchronization or atomic

updates in software [47] or hardware [18, 25]. However, nei-

ther of these conditions are generally applicable. Many flow

size distributions encountered in practical networks are highly

skewed [36, 75] or exhibit highly bursty behavior [70], re-

sulting in significant memory contention if packets from the

heavier flows are spread across cores. Further, the state update

operation in many programs, including the TCP connection

tracker, are too complex to be implemented directly on atomic

hardware, since the latter only supports individual arithmetic

and logic operations (like fetch-add-write). Our evaluation

results (§4) show that the performance of shared-state mul-

ticore processing plummets with more cores under realistic

flow size distributions.

Sharded (shared-nothing) parallelism. Today, the predomi-

nant technique to scale stateful packet processing across mul-

tiple cores is to process packets that update the same memory

at the same core, sharding the overall state of the program

across cores. Sharding is achieved through techniques like

Receive Side Scaling (RSS [4]), available on modern NICs,

to direct packets from the same flow to the same core, and

using shared-nothing data structures on each core.

However, sharding suffers from a few disadvantages. First,

it is not always possible to avoid coordination through shard-

ing. There may be parts of the program state that are shared

across all packets, such as a list of free external ports in a

Network Address Translation (NAT) application. On the prac-

tical side, the RSS implementations on today’s NICs partition

packets across cores using a limited number of combinations

of packet header fields. For example, a NIC may be config-

ured to steer packets with a fixed combination of source and

destination IP addresses (but not a fixed source IP address)

to a fixed CPU core. Further, the granularity at which the

application wants to shard its state—for example, a key-value

cache may seek to shard state by the key requested in the

payload—could be infeasible to implement with the packet

header sets supported by the RSS capabilities of the NIC [63].

Second, sharding state may create load imbalance across

cores if some flows are heavier or more bursty than others,

creating hotspots on single CPU cores. Skewed flow size dis-

tributions [36], bursty flow transmission patterns [70], and

denial of service attacks [43] create conditions ripe for such

imbalance. The research community has investigated solu-

tions to balance the packet processing load by migrating flow

shards across CPU cores [35, 63]. However, the efficacy of

re-balancing is limited by the granularity at which flows can

be migrated across cores. As we show in our evaluation (§4),

the throughput of the heaviest and most bursty flows is still

limited by a single CPU core, which in turn limits the total

achieved throughput. Another alternative is to evenly spray

incoming packets across cores [41, 71], assuming that only

a small number of packets in each flow need to update the

flow’s state. If a core receives a packet that must update the

flow state, the packet is redirected to a designated core that

performs all writes to the state for that flow. However, the as-

sumption that state is mostly read-only is not universal, e.g., a

TCP connection tracker may update state potentially on every

packet. Further, packet reordering at the designated core can

lead to incorrect results [35].

2.3 Goals

Given the drawbacks of existing approaches for multi-core

scaling discussed above (§2.2), we seek a scaling technique

that achieves the following goals:

1. Generic stateful programming. The technique must pro-

duce correct results for general stateful updates, eschewing

solutions that only work for “simple” updates (i.e., fitting

hardware atomics) or only update state for a small number

of packets per flow.

2. Skew independence. The scaling technique should improve

performance independent of the incoming flow size distri-

bution or how the flows access the state in the program.

3. Monotonic performance gain. Performance should im-

prove, not degrade or collapse, with additional cores.



3 State-Compute Replication (SCR)

In §3.1, we present scaling principles for multi-core stateful

packet processing, to meet the goals in §2.3. In §3.2 through

§3.4, we show how to operationalize these principles.

3.1 Scaling Principles

To simplify the discussion, suppose the packet-processing

program is deterministic, i.e., in every execution, it produces

the same output state and packet given a fixed input state and

packet (we relax this assumption in §3.4).

Principle #1 (Replication for correctness). Sending every

packet reliably to every core, and replicating the state and

computation on every core, produces the correct output state

and packet on every core with no explicit cross-core synchro-

nization, regardless of how the state is accessed by packets.

This principle asks us to treat each core as one replica of

a replicated state machine running the deterministic packet-

processing program. Each core processes packets in the same

order, without missing any packets. With each incoming

packet, each core updates a private copy of its state, which

is equal to the private copy on every other core. There is no

need to synchronize explicitly. Further, replication provides

the benefit that the workload across cores is even regardless of

how the state is accessed by packets, i.e., skew-independent.

One way to apply this principle naively is to broadcast

every packet received externally on the machine to every core:

with k cores, for each external packet, the system will process

k internal packets, due to k-fold packet duplication. However,

artificially increasing the number of packets processed by the

system will significantly hurt performance. In CPU-bound

packet processing, smaller packets typically require the same

computation that larger packets do. That is, the total amount of

work performed by the system is proportional to the packets-

per-second offered, rather than the bits-per-second [50, 69].

So how should one use replication for multi-core scaling?

Understanding the dominant components of the per-packet

CPU work in high-speed packet-processing frameworks of-

fers insight. There are two parts to the CPU processing for

each packet after the packet reaches the core where it will be

ultimately processed: (i) dispatch, the CPU/software labor of

presenting the packet to the user-developed packet-processing

program, and signaling the packet(s) emitted by the program

for transmission by the NIC; and (ii) the program computation

running within the user-developed program itself. Dispatch

often dominates the per-packet CPU work [50].

While these observations are known in the context of high-

speed packet processing, we also benchmarked a simple ap-

plication on our own test machine to validate them. Consider

Figure 2, where we show the throughput (packets/second (a),

bits/second (b)), and latency (c) of a simple packet forwarder

written in the XDP framework running on a single CPU core.

Our testbed setup is described in much more detail later (§4),
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Figure 2: The nature of CPU work in high-speed packet processing:

Consider the throughput of a simple packet forwarding applica-

tion (packets/second (a), bits/second (b)) running on a single CPU

core clocked at 3.6 GHz, as the size of the incoming packets varies.

The average latency to execute the XDP program is also shown

in nanoseconds (c). CPU usage is tied to the number of packets

(not bits) processed per second. Further, significant time elapses in

dispatch: CPU work to present the input packet to and retrieve the

output packet from the program computation.

but we briefly note here that our device-under-test is an Intel

Ice Lake CPU configured to run at a fixed frequency of 3.6

GHz and attached to a 100 Gbit/s NIC. At each packet size be-

low 1024 bytes, the CPU core is fully utilized (at 1024 bytes

the bottleneck is the NIC bandwidth). The achieved packet-

s/second is stable across all packet sizes which are CPU bound

(see the 2 RXQ curve). With a processing latency of roughly

14 nanoseconds at all packet sizes (measured only for the XDP

forwarding program), back-to-back packet processing should

“ideally” process (14∗10−9)−1 ≈ 71 million packets/second.

However, the achieved best-case throughput (≈ 14 million

packets/second) is much smaller—implying that significant

CPU work is expended in presenting the input packets to and

extracting the output packets from the forwarder and setting

up the NIC to transmit and receive those packets. This is not

merely a feature of the framework we used (XDP); the DPDK

framework has similar dispatch characteristics [50].

Our key insight is that it is possible to replicate program

computation without replicating dispatch, enabling multi-core

performance scaling. This leads us to the next principle:

Principle #2 (State-Compute Replication). Piggybacking a

bounded recent packet history on each packet sent to a core

allows us to use replication (#1) while equalizing the external

and internal packets-per-second CPU work in the system.

Principle #2 states that replication (principle #1) is possible

without increasing the total internal packet rate or per-packet

CPU work done by the system. Suppose it is possible to spray

the incoming packets across cores in a round-robin fashion. If

there are k cores, each core receives every kth packet. Then:

1. It is unnecessary for each core to have the most up-to-

the-packet private state at all times. For correctness, it is

sufficient if a core has a state that is “fresh enough” to

make a decision on the current packet that it is processing.

2. With each new packet, suppose the core that receives it

also sees (as metadata on that packet) all the k−1 packets

from the last time it processed a packet, i.e., a recent packet

history. The core can simply “catch up” on the computa-

tions required to obtain the most up-to-the-packet value



for its private state.

3. If packets are sprayed round-robin across cores, the num-

ber of historic packets needed to ensure that the most up-

dated state is available to process the current packet is

equal to the number of cores. Further, just those packet

bits required to update the shared state are necessary from

each historic packet, allowing us to pack multiple packets’

worth of history into a single packet received at a core.

As a simple model, suppose a system has k cores, and

each core can dispatch a single packet in d cycles and runs a

packet-processing program that computes over a single packet

in c cycles. For each piggybacked packet, the total processing

time is d +(k× c). When dispatch time dominates compute

time (d� c), with k cores, the total rate at which externally-

arriving packets can be processed is k× 1
d+(k×c) ≈ k/d. Hence,

it is possible to scale the packet-processing rate linearly with

the number of cores k. In Appendix A, we show that a model

like this indeed accurately predicts the empirical throughput

achieved with a given number of cores.

Intuitively, doing some extra “lightweight” program compu-

tation per packet enables scaling the “heavyweight” dispatch

computation with more cores, while maintaining correctness.

Principle #3 (Scaling limits). Principle #2 provides a lin-

ear scale-up in the packets-per-second throughput with more

cores, so long as dispatch dominates the per-packet work.

The scaling benefits of principle #2 taper off beyond a point.

Dispatch can be overtaken as the primary contributor to per-

packet CPU work, for example, when (i) the compute time

k× c for each piggybacked packet becomes sizable; (ii) the

per-packet compute time c itself increases due to overheads

in the system, e.g., larger memory access time when a core’s

copy of the state spills into a larger memory; or (iii) other

components such as the NIC or PCIe become the bottleneck

rather than the CPU. When this happens, the approximation

in our simple linear model (d� c) no longer holds, and the

system’s packet rate no longer scales linearly with cores.

3.2 Operationalizing SCR

Operationalizing the scaling principles discussed above (§3.1)

conceptually requires two pieces.

A reliable packet history sequencer (§3.3). We require an

additional entity in the system, which we call a sequencer,

to (i) steer packets across cores in round-robin fashion, (ii)

maintain the most recent packet history across all packets

arriving at the machine, and (iii) piggyback the history on

each packet sent to the cores. After the packet is processed

by a CPU core, its piggybacked history can be stripped off

on the return path either at the core itself or at the sequencer.

The size of the packet history depends only on the number

of cores and metadata size (§3.1) and is independent of the

number of active flows.

The NIC hardware or the top-of-the-rack switch are natural
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(a) The sequencer stores relevant fields from the packet history, and

piggybacks the history on packets sprayed round-robin across cores.

Core 1 Si-3

Core 2 Si-2

Core 3 Si-1

f(pi-2), f(pi-1)

f(pi-1), f(pi)

f(pi), f(pi+1)

Si-1

Si

Si+1

pi

Si

pi+1

Si+1

pi+2

Si+2

Step 1 Step 2

(b) Each core fast-forwards its private state and then handles its packet.

Figure 3: An example illustrating the scaling principles. pi is the ith

packet received by the sequencer, f (p j) are relevant fields from p j ,

and Si is the state after processing packets p1, ..., pi in order.

points to introduce the sequencer functionality, since they

observe all the packets flowing into and out of the machine.

Today’s existing fixed-function NICs do not implement the

functionality necessary to construct and piggyback a reliable

packet history. However, we have identified two possible in-

stantiations that could, in the near future, achieve this: (i)

emerging NICs, e.g., with programmable pipelines [1, 3, 27],

implementing the full functionality of the reliable sequencer;

or (ii) a combination of a NIC implementing round-robin

packet steering [4, 7] and a programmable top-of-the-rack

switch pipeline [17, 23, 38] for maintaining and piggybacking

the packet history. We believe that either of these instantia-

tions may be realistic and applicable given the context: for ex-

ample, high-speed programmable NICs are already common

in some large production systems [45], as are programmable

switch pipelines [60]. We will show two possible hardware

designs in §3.3. Hereafter, for brevity, we refer to both of

these designs as simply sequencers.

An SCR-aware packet-processing program. The packet-

processing program must be developed to replicate the pro-

gram state and keep private copies per core. Further, the pro-

gram must process the packet history first before computing

over the current packet. In Appendix C, we show an example

that demonstrates how to transform a single-threaded pro-

gram to its SCR-aware variant. We believe that these program

transformations can be automated in the future.

An example showing scaling principles in action. Consider

Figure 3, where a sequencer and three cores are used to run

a packet-processing program. As shown in Figure 3a, the

sequencer sprays packets (i.e., pi, pi+1, . . .) in a round-robin

fashion across k = 3 cores (i.e., core1,core2,core3). Further,

the sequencer stores the recent packet history consisting of

the packet fields from the last k packets which are relevant

to evolving the flow state. We denote the relevant part of a



packet pi by f (pi). For example, in a TCP connection tracking

program, this includes the TCP 4-tuple, the TCP flags, and

sequence and ACK numbers. Note that this packet history is

updated only by the sequencer and is never written to by the

cores. In the example in Figure 3a, the packet history supplied

to core1 processing packet pi is f (pi−2), f (pi−1). As shown

in Figure 3b, each core updates its local private state, first

fast-forwarding the state by running the program through

the packet history f (pi−2), f (pi−1), and then processing the

packet pi sprayed to it.

If the packet-processing program is deterministic (§3.1),

an SCR-aware program is guaranteed to produce the correct

output state and packet if every CPU core is guaranteed to

(losslessly) receive the packets sent to it by the sequencer. We

show how to handle non-determinism and packet loss in §3.4.

3.3 Packet History Sequencer

The primary goal of the sequencer is to maintain and prop-

agate recent packet history to CPU cores to help replicate

the computation with the correct program state (§3.2). We

assume the NIC is already capable of spraying packets across

CPU cores [4, 7], and hence do not discuss that functional-

ity further. We describe the rest of the sequencer’s functions

in terms of the following: (i) designing a packet format that

modifies existing packets to piggyback history from the se-

quencer to the CPU cores; (ii) designing a hardware data

structure that maintains a recent bounded packet history at the

sequencer, and enables reading out the history into metadata

on the packet. The packet fields that are maintained in the

sequencer history depend on the specific fields used by the

packet-processing application. The number of historic packets

that must be tracked depends on the degree of parallelism that

is sought, e.g., the number of available CPU cores over which

scaling is implemented.

We have implemented sequencing hardware data struc-

tures on two platforms, the Tofino programmable switch

pipeline [23] and a Verilog module that we integrated into the

NetFPGA-PLUS project [12].

3.3.1 Packet format

The key question answered in this subsection is: given a

packet, what is the best place to put the packet history on

it? While this may initially appear to be just an engineering

detail, the packet format has important implications to the

design of hardware data structures on the sequencer and the

SCR-aware program.

As shown in Figure 4a, we choose to place the packet his-

tory close to the beginning of the packet, before the entirety

of the original packet. Relative to placing the packet history

between headers of the original packet, this placement simpli-

fies the hardware logic that writes the history into the packet,

as the write must always occur at a fixed address (0) in the

packet buffer. Further, for reasons explained in §3.3.2, we

include a pointer to the metadata of the packet that arrived

the earliest among the ones in the piggybacked history. The

earliest packet does not always correspond to the first piece

of metadata when reading the bytes of the packet in order.

Keeping all the bytes of the original packet together in

one place also simplifies developing an SCR-aware packet-

processing program. The packet parsing logic of the original

program can remain unmodified if the program starts parsing

from the location in the modified packet buffer which contains

all the bytes of the original packet in order.

Finally, we also prefix an additional Ethernet header to the

packet in instantiations of the sequencer which run outside

of the NIC, i.e., a top-of-the-rack switch. Adding this header

helps the NIC process the packet correctly: without it, the

packet appears to have an ill-formatted Ethernet MAC header

at the NIC. Our setup also uses this Ethernet header to force

RSS on the NIC [4] to spray packets across CPU cores (our

testbed NIC (§4.1) supports hashing on L2 headers). This

additional Ethernet header is not needed in a sequencer in-

stantiation running on the NIC.

3.3.2 Hardware data structures for packet history

We show how to design data structures to maintain and update

a recent packet history on two high-speed platforms, a Tofino

programmable switch pipeline [23] and a Verilog module inte-

grated into the NetFPGA-PLUS platform [12]. These designs

are specific to the platform where they are implemented, and

hence we describe them independently.

A key unifying principle between the two designs is that

although the items in the maintained packet history change

after each packet, we only update a small part of the data

structure for each packet. Conceptually, a ring buffer data

structure is appropriate to maintain such histories. Hence, in

both designs, we use an index pointer to refer to the current

data item that must be updated, which corresponds to the head

pointer of the abstract ring buffer where data is written.

Tofino. We use Tofino registers [26], which are stateful mem-

ories to hold data on the switch, to record the bits of each

historic packet relevant to the computation in the packet-

processing program. We use the Tofino parser to extract these

bits, which restricts our design only to support historic fields

up to 4 Kilobits deep in the packet [38].

Suppose the pipeline has s match-action table stages, R

registers per stage, and b bits per register. For simplicity in

this description, we assume there is exactly one packet field

of size b bits used in the computation in the packet-processing

program. Our data structure can maintain a maximum of (s−
1)×R×b bits of recent packet history, i.e., history for (s−
1)×R packets, as shown in Figure 4b. We have successfully

compiled the design to the Tofino ASIC.

First, we use a single register in the first stage to store the

index pointer. The pointer refers to the specific register in the
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Figure 4: Hardware data structures. (a) Packets modified to propagate history from the sequencer to CPU cores. The sequencer prefixes the

packet history to the original packet, which allows for a simpler implementation in hardware (§3.3) and simpler transformations to make a

packet-processing program SCR-aware (Appendix C). In instantiations where the sequencer is partly implemented on a top-of-the-rack switch

(§3.2), we further prefix a dummy Ethernet header to ensure that the NIC can process the packet correctly. (b) The data structure used to

maintain and propagate packet history on the Tofino programmable switch pipeline (§3.3.2). Inset shows the specific actions performed on each

Tofino register. (c) The data structure used to maintain and propagate packet history in our Verilog module on NetFPGA-PLUS (§3.3.2).

subsequent stages that must be updated with a header field

from the current packet. The index pointer is incremented by 1

for each packet, and wraps back to 0 when it reaches the max-

imum number of packets required in the history. The pointer

is also carried on a metadata field on the packet through the

remaining pipeline stages.

Next, register ALUs in subsequent stages are programmed

to read out the values stored in them into pre-designated

metadata fields on the packet. If the index pointer points to

this register, an additional action occurs: rewrite the stored

contents of the register by the pre-designated history fields

from the current packet.

Finally, all the metadata fields, consisting of the packet

history fields and the index pointer, are deparsed and serialized

into the packet in the format shown in Figure 4a. We also add

an additional Ethernet header to ensure that the server NIC

can receive the packets correctly (§3.3.1).

Recent work explored the design of ring buffers to store

packet histories in the context of debugging [53], reading out

the histories from the control plane when a debugging action

is triggered. A key difference in our design is that reading out

histories into the packet is a data plane operation, occurring

on every packet.

NetFPGA. To show the possibility of developing high-speed

fixed-function hardware for sequencing, we also present a

sequencer design developed in Verilog in Figure 4c.

Suppose we wish to maintain a history of N packets, each

packet contributing b bits of information. A simple design, for

small values of N and b (we used N = 16 and b = 112), uses

a memory which has N rows, each containing a tuple of b

bits. We also maintain a register containing the index pointer

(p bits), initialized to zero. At the beginning, the memory is

initialized with all zeroes. When a packet arrives, it is parsed

to extract the bits relevant to the packet history. Then the entire

memory is read and put in front of the packet (moving the

packet contents by a fixed size known beforehand, N×b+ p

bits). The information relevant to the packet history from the

current packet is put into the memory row pointed to by the

index pointer, and the index pointer is incremented (modulo

the memory size). We have integrated this design into the

NetFPGA-PLUS platform.

3.4 Discussion

In this section, we discuss how to generalize SCR to handle

non-determinism, packet loss, and multiple packet-processing

programs.

Handling Packet Loss. Packets can be lost either prior to the

sequencer, after the sequencer but prior to processing at a CPU

core, or after processing at a core. Among these, we only care

about the second kind of packet loss, since this is the only

one that is problematic specifically for SCR, introducing the

possibility that flow states on the CPU cores might become

inconsistent with each other.

We expect that SCR will be deployed in scenarios where

the event of packet loss between the sequencer and CPU

cores is rare. First, we do not anticipate any packet loss in an

instantiation where the sequencer is running entirely on a NIC,

since the host interconnect between the NIC and CPU cores

uses credit-based flow control and is lossless by design [32,

59]. In an instantiation where the sequencer is running on

a top-of-the-rack switch, it is possible to run link-level flow

control mechanisms like PFC [6] (as some large production

networks do [48]) to prevent packet loss between the switch

and server cores. We discuss below how SCR can handle

rare packet drop and corruption events while maintaining

consistency among the states on CPU cores.

How should a CPU core that has lost a packet arriving from

the sequencer synchronize itself to the correct flow state?

There are two design options: the core can either explicitly

read the full flow state from a more up-to-date core, or it can

read the packet history from either the sequencer or a log

written by a more up-to-date core, and then use the history to

catch up its private state (akin to Figure 3). Since we operate

in a regime where packet losses are rare, but the full set of flow

states is large, we prefer to synchronize the packet history

rather than the state. Further, to simplify the overall design,

we avoid explicit coordination between the cores and the

sequencer, synchronizing the history among the cores only.



Our objective is atomicity: any packet is either processed

by all the cores or none of the cores. If a packet is sent by

the sequencer to any core (in original or as part of the packet

history), it should be processed in the correct order by all the

cores. To achieve this, we (i) have the sequencer attach an

incrementing sequence number to each packet released by

it; (ii) use a per-core, lockless, single-writer multiple-reader

log, into which each core writes the history contained in each

packet it receives (including the relevant data for the original

packet); and (iii) introduce an algorithm to catch up the flow

state on each core upon detection of loss.

The algorithm proceeds as follows (more information

is available in Algorithm 1 in Appendix B). Each CPU

core c maintains a per-core log with one entry for each se-

quence number i. In a system with N cores, the history meta-

data of the packet with sequence i (say history[i]) will ap-

pear in packets with sequence numbers i through i+N −
1; conversely, a packet with sequence number j contains

history[minseq], · · · ,history[ j] where minseq , max(1, j−
N +1).

For core c and sequence number i, log[c][i] takes on one of

three possible values:



















history[i] if history for sequence i was received at c

NOT _INIT if the highest sequence received at c is j < i

LOST if c has received sequence j > i,

but sequence i was not received at c

At the beginning, for all cores c and sequence numbers i,

log[c][i] is set to NOT _INIT , to denote that each log entry

is uninitialized at every core. When a (fixed) core c receives

a packet with sequence number j, it first detects packet loss

by comparing the max sequence number it has seen so far

(say max[c]) with the earliest sequence number in the new

packet it receives (minseq), assuming no reordering between

the sequencer and the core. Then, c processes every sequence

number k such that max[c]< k ≤ j, in order of increasing k,

as follows:

1. if k < minseq, i.e., sequence k was lost between the se-

quencer and core c, the core updates log[c][k]← LOST .

For such packets, core c will read from the logs of other

cores c′ 6= c in a loop, until c discovers either that (i)

history[k] is written in log[c′][k], in which case c catches up

its private state by reading this history; or (ii) log[c′][k] =
LOST on all cores c′ 6= c, concluding that sequence k was

never originally received on any core, and does not need

to be recovered for atomicity;

2. if minseq≤ k≤ j, i.e., sequence k is successfully received

at core c (as part of the current packet), core c updates

log[c][k] ← history[k] available in the packet, and then

proceeds with regular processing as in §3.2.

In Appendix B, we formally prove that, under some mild

assumptions, this algorithm always terminates in a state that

is eventually consistent across all CPU cores. Despite cores

possibly waiting on one another, there will be no deadlocks.

While the treatment above uses an infinitely large log, practi-

cally, our log implementation is a circular buffer with a fixed

size (it is unnecessary to garbage-collect the log). The buffer

must be sized large enough to recover from packet losses and

transient speed mismatches across CPU cores, both of which

are expected to be small in practical deployments.

Handling programs that depend on timestamps. The use of

timestamps measured locally at each CPU core (e.g., to im-

plement a token bucket rate limiter) may result in the results

of computations at different CPU cores diverging from each

other. To handle this, we avoid measuring time locally at

each CPU core, and instead have the sequencer attach a times-

tamp for each packet to the packet history. Modern NICs and

programmable switches support high-resolution hardware

timestamping over packets [13, 26].

Handling programs involving randomization. For SCR to

produce a consistent state across cores, it is necessary that

the state computations on all CPU cores agree on the result

even if the computations involve random numbers. None of

our current benchmark programs involve randomization. For

those programs that do, we recommend to fix the seed of the

pseudorandom number generator to the same value across

different CPU cores.

Handling chained packet-processing programs. SCR can

handle multiple packet-processing programs run sequentially

(for example, for service function chaining [49]) by piggy-

backing the union of the historical packet fields for all the

programs on each packet from the sequencer to the core. In

addition to the program changes typically needed for SCR par-

allelism (Appendix C), the programs must also be rewritten to

handle packets that include additional fields of history for the

co-resident programs. We believe this can be accomplished

by the design of a suitable automatic compiler. We leave the

design of such compilers to future work.

4 Evaluation

We seek to answer two main questions through the experi-

ment setup described in §4.1.

(1) Does state-compute replication provide better multi-core

scaling than existing techniques (§4.2)?

(2) How practical is sequencer hardware (§4.3)?

4.1 Experiment Setup

Machines and configurations. Our experiment setup consists

of two server machines connected back-to-back over a 100

Gbit/s Nvidia/Mellanox ConnectX-5 NIC on each machine.

Our servers run Intel Ice Lake processors (Xeon Gold 6334)

with 16 physical cores (32 hyperthreads) and 256 GB DDR4

physical memory spread over two NUMA nodes. The system

bus is PCIe 4.0 16x. We run Ubuntu 22 with Linux kernel v6.5.



Program State Metadata size RSS hash Packet traces Atomic HW Lines of code

Key Value (bytes/packet) fields evaluated vs. Locks (shard/RSS)

DDoS mitigator source IP count 4 src & dst IP CAIDA, Univ DC Atomic HW 168

Heavy hitter monitor 5-tuple flow size 18 5-tuple CAIDA, Univ DC Atomic HW 141

TCP connection state tracking 5-tuple TCP state, timestamp, seq # 30 5-tuple Hyperscalar DC Locks 1029

Token bucket policer 5-tuple last packet timestamp, # tokens 18 5-tuple CAIDA, UnivDC Locks 169

Port-knocking firewall source IP knocking state (e.g., OPEN) 8 src & dst IP CAIDA, UnivDC Locks 123

Table 1: The packet-processing programs we evaluated.

One machine serves as a packet replayer/generator, running

a DPDK burst-replay program which can transmit packets

from a traffic trace. We have tested that the traffic genera-

tor can replay large traces (1 million packets) at speeds of

∼ 120 million packets/second (Mpps), for sufficiently small

packets (so that the NIC bandwidth is not saturated first).

The traffic generator can be directed to transmit packets at a

fixed transmission (TX) rate and measure the corresponding

received (RX) packet rate. Our second server is the Device

Under Test (DUT), which runs on identical hardware and op-

erating system as the first server. We implement standard con-

figurations to benchmark high-speed packet processing [50]:

hyperthreading is disabled; the processor C-states, DVFS, and

TurboBoost are disabled; dynamic IRQ balancing is disabled;

and the clock frequency is set to a fixed 3.6 GHz. We enable

PCIe descriptor compression and use 256 PCIe descriptors.

Receive-side scaling (RSS [4]) is configured according to

the baselines/programs, see Table 1. We use a single receive

queue (RXQ) per core unless specified otherwise. On our

setup, we have checked that the per-core packet-forwarding

throughput is comparable to prior work benchmarking the

XDP framework [50]. However, the absolute numbers are

lower than the multi-core throughput reported in recent litera-

ture using DPDK. We believe this may be due to the differ-

ences in the packet-processing framework (XDP vs. DPDK).

The definition of throughput. We use the standard maximum

loss-free forwarding rate (MLFFR [5]) methodology to bench-

mark packet-processing throughput. Our threshold for packet

loss is in fact larger than zero (we count < 4% loss as “loss-

free”), since, at high speeds we have observed that the soft-

ware typically always incurs a small amount of bursty packet

loss. We use binary search to expedite the search for the

MLFFR, stopping the search when the bounds of the search

interval are separated by less than 0.4 Mpps. Experimentally,

we observe that MLFFR is a stable throughput metric: we get

highly repeatable results across multiple runs. We only report

throughput from a single run of the MLFFR binary search.

Traces. We are interested in understanding whether SCR pro-

vides better multi-core scaling than existing techniques on re-

alistic traffic workloads. We have set up and used three traces

for throughput comparison: a university data center trace [36],

a wide-area Internet backbone trace from CAIDA [11], and a

synthetic trace with flows whose sizes and inter-arrivals were

sampled from a hyperscalar’s data center flow characteris-
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Figure 5: Flow size distributions of the packet traces we used. We

used real packet traces captured at (a) university data center [36] and

(b) wide-area Internet backbone by CAIDA [11]. We also synthe-

sized (c) a packet trace with real TCP flows whose sizes are drawn

from Microsoft’s data center flow size distribution [33].

tics [33]. These traces are highly dynamic, with flow states

being created and destroyed throughout—an aspect that we

believe is crucial to handle in real deployment environments

(i.e., the programs are not simply processing a stable set of

active flows). Further, we ensure that all TCP flows that begin

in the trace also end, by setting TCP SYN and FIN flags for

the first and last packets (respectively) of each flow in the

trace. This allows the trace to be replayed multiple times with

the correct program semantics. The flow size distributions of

the traces are shown in Figure 5.

The eBPF framework limits our implementations in terms

of the number of concurrent flows that our stateful data struc-

tures can include. This is not a limitation of the techniques,

but an artifact of the current packet-processing framework

we use (eBPF/XDP). To account for this limitation, specifi-

cally for the CAIDA trace, we have sampled flows from the

trace’s empirical flow size distribution to faithfully reflect the

underlying distribution, without over-running the limit on the

number of concurrent flows that any of our baseline programs

may hold across the lifetime of the experiment.

Baselines. We compare state-compute replication against (i)

state sharing, an approach that uses either hardware atomic

instructions (when the stateful update is simple enough) or

eBPF spinlocks [10] (when it is not) to share state across CPU

cores; (ii) state sharding using classic RSS; and (iii) sharding

using RSS++ [35, 63], the state-of-the-art flow sharding tech-

nique to balance CPU load. RSS++ solves an optimization

problem that takes as input the incoming load imposed by

flow shards, and migrates shards to minimize a linear combi-

nation of load imbalance across CPU cores and the number of

cross-core shard transfers needed. Both SCR and state sharing

spray packets evenly across CPU cores. The packets sent to



each core for the sharding techniques depends on the configu-

ration of RSS, which varies across the programs we evaluated

(see below and Table 1). Running RSS++ over eBPF/XDP

requires patching the NIC driver [9] to expose the RX hash

on packets to XDP programs. Unless specified otherwise, we

run SCR without loss recovery (§3.4) as we believe this is the

most representative scenario in which SCR will be deployed.

We evaluate loss recovery separately (§4.2).

Programs. We tested five packet-processing programs devel-

oped in eBPF/XDP, including (i) a heavy hitter monitor, (ii)

DDoS mitigator, (iii) TCP connection state tracker, (iv) port-

knocking firewall, and (v) a token bucket policer. Table 1 sum-

marizes these programs. Each program maintains state across

packets in the form of a key-value dictionary, whose size and

contents are listed in the table. We developed a cuckoo hash

table to implement the functionality of this dictionary with

a single BPF helper call [15]. The packet fields in the key

determine how RSS must be configured: packets having the

same key fields must be sent to the same CPU core. However,

today’s NICs do not allow RSS to steer packets on arbitrary

sets of packet fields [63]. We pre-process the trace to ensure

that RSS hashing indeed shards the flow state correctly. For

example, on the NIC in our testbed, the source (srcip) and

destination (dstip) IP addresses may be used together, but

not separately, as the RSS key to hash a packet to a core. For a

program that maintains flow state at the granularity of dstip,

an RSS key (srcip, dstip) could steer two packets with the

same dstip but different srcip to different CPU cores, violat-

ing sharding at the granularity of dstip. To prevent this, and

to evaluate our sharding baselines fairly, we pre-process our

traces (e.g., modifying packets such that every srcip, dstip

combination in the trace hashes to a core that only depends on

dstip) to ensure that RSS hashing indeed shards the flow state

correctly. For the connection tracker, since both directions of

the connection must go to the same CPU core, we use the

keyed hash function prescribed by symmetric RSS [74].

4.2 Multi-Core Throughput Scaling

In this section, we compare the MLFFR throughput (§4.1) of

several packet-processing programs (Table 1) scaled across

multiple cores using four techniques: SCR (§3), state shar-

ing with packets sprayed evenly across all cores, sharding

using RSS, and sharing using RSS++ (§2). Since the TCP

connection tracking program requires packets from the two

directions of the connection to be aligned, we evaluated it on a

synthetic but realistic hyperscalar data center trace (§4.1). For

the rest of the programs, we report results from real university

data center and Internet backbone traces.

We have ensured that these experiments reflect a fair com-

parison of CPU packet-processing efficacy. First, we truncated

the packets in the traces to a size smaller than the full MTU, to

stress CPU performance with a high packets/second (Mpps)

workload (§3.1). Further, we fix the packet sizes used across

all baselines for a given program. We used a fixed packet

size of 256 bytes for the connection tracker and 192 bytes

for the others. The packet size limits the number of items

of history metadata that can be piggybacked on each packet.

Since the metadata size changes by the program (Table 1), the

maximum number of cores we can support for a fixed packet

size also varies by program (we support 7 cores for the token

bucket, heavy hitter detector, and connection tracker, and 14

for the DDoS mitigation and port-knocking firewall).

Throughput results. Figure 6 and Figure 7 show the through-

put as we increase the number of packet-processing cores.

SCR is the only multi-core scaling technique that can mono-

tonically scale the throughput of all the stateful packet-

processing programs we evaluated across multiple cores, re-

gardless of the flow size distribution (§2.3). The throughput

for SCR increases linearly across cores in all of the configu-

rations we tested. Somewhat surprisingly, SCR provides even

better absolute performance than hardware atomic instruc-

tions in the case of the heavy hitter and DDoS mitigation

programs. However, the performance of lock-based sharing

falls off catastrophically with 3 or more cores.

The throughput of sharding using RSS depends on how the

RSS hash function steers flows to cores. On our experimental

setup, RSS can split flows evenly across CPU cores. However,

RSS neither splits individual heavy flows, nor does it intel-

ligently distribute heavy flows across CPU cores to balance

the load. When the packet rates of individual heavy flows in

the workload are within the processing capabilities of a single

CPU core, RSS++ [35] can improve upon RSS by spread-

ing the heavy flows across CPU cores. By measuring and

adapting to the workload on each CPU core, RSS++ can scale

throughput effectively with additional CPU cores, as has been

shown in prior work [35, 63]. However, when the workload

includes heavy flows whose (individual) packet rates exceed

the processing capability of a single CPU core, and the num-

ber of such flows is smaller than the number of available CPU

cores, simply spreading out the heavy flows across cores is in-

sufficient to improve throughput with additional cores. This is

the situation with the real packet workloads we tested (§4.1).

Such situations also arise under attacks that force sharded

packets to be handled on the same CPU core [43, 62]. It

becomes necessary to process individual heavy flows using

multiple cores, which is what SCR does.

Our results also show that RSS++ is not always better than

RSS. Re-balancing load by migrating a flow shard across

cores requires bouncing the cache line(s) containing the flow

states across cores, an action that can degrade performance

if done too frequently. On the other hand, rebalancing too

infrequently may fail to mitigate skew across cores, since the

per-shard load used to make CPU-balancing decisions may

become stale relative to the current load.

Why does SCR scale better than other techniques? Figure 8

shows detailed performance metrics measured from Intel’s



(a) DDoS mitigator (CAIDA) (b) Heavy hitter detector (CAIDA) (c) Token bucket policer (CAIDA)

SCR sharing (lock/atomic hw, see Table 1) sharding (RSS) sharding (RSS++) 

(d) Port-knocking firewall (CAIDA)

(e) DDoS mitigator (UnivDC) (f) Heavy hitter detector (UnivDC) (g) Token bucket policer (UnivDC) (h) Port-knocking firewall (UnivDC)

Figure 6: Throughput (millions of packets per second) of four stateful packet-processing programs implemented using state-compute replication

(§3), shared state, and sharding (§2). Packet traffic is replayed from real data center and Internet backbone traces (§4.1).

SCR

sharing (lock) 

sharding (RSS) 

sharding (RSS++) 

Figure 7: Throughput of TCP connection tracking parallelized using

four techniques, SCR (§3), shared state, sharding with RSS, and

sharding with RSS++ [35], on a hyperscalar data center trace (§4.1).

performance counter monitor (PCM [24]) and BPF profil-

ing [14]. We measure the L2 cache hit ratios, instructions re-

tired per cycle (IPC), and the program’s computation latency

(only the XDP portion, excluding the dispatch functionality in

the driver), as the load offered to the system increases, when

our token bucket policer is run across different numbers of

cores (2, 4, or 7). The numbers show the averages for these

metrics across the cores running the program. Error bars for

IPC show the min and max values across cores. IPC is a

meaningful metric to evaluate “CPU goodput” for eBPF/XDP

programs: unlike high-speed packet processing frameworks

like DPDK which poll the NIC and exhibit persistently high

IPC [42], eBPF/XDP drivers adapt CPU usage to load through

a mix of polling and interrupts.

Lock-based sharing in general suffers from lower L2 cache

hit ratios ((a)–(c)) and higher latencies ((g)–(i)) due to lock

and cache line contention across cores—a trend that holds

as the offered load increases and also with additional cores

(a) L2 hit ratio: 2 cores (b) L2 hit ratio: 4 cores (c) L2 hit ratio: 7 cores

(d) Retired IPC: 2 cores (e) Retired IPC: 4 cores (f) Retired IPC: 7 cores

(g) Latency: 2 cores (h) Latency: 4 cores (i) Latency: 7 cores

SCR sharing (lock) sharding (RSS) sharding (RSS++) 

SCR sharing (lock) sharding (RSS) sharding (RSS++) 

SCR sharing (lock) sharding (RSS) sharding (RSS++) 

Figure 8: Hardware performance metrics drawn from Intel PCM

while executing the token bucket program. As the offered load in-

creases, we show the program’s compute latency (measured purely

for the XDP portion), the L2 hit ratio, and the number of instructions

retired per CPU clock cycle (IPC), when the program is scaled to 2,

4, or 7 cores. Packet traffic is from a university data center (§4.1).
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Figure 9: The throughput scaling of a stateless program using SCR,

as the compute latency of the program varies but the dispatch latency

remains constant ((a) and (b) in packets/second, and (c) normalized

against single-core throughput at the same compute latency). As

discussed in §3.1, the more the dispatch time dominates compute

time, the more effective the multi-core scaling from SCR.

at the same offered load. As we might expect, IPC increases

with the offered load ((d)–(f)), since the cores get busier with

packet processing. While the sharding approaches (RSS and

RSS++) effectively use the CPU with a high average IPC

for 2 cores, their average IPC values drop significantly with

additional cores, with large variation across cores (see error

bars). This indicates a severe imbalance of useful CPU work

across cores: Flow-affinity-based sharding approaches are

unable to balance packet-processing load across cores, leaving

some cores idle and others heavily used.

In contrast to sharing and sharding approaches, SCR has

a consistently high IPC with more cores and higher offered

loads. SCR has higher packet-processing latency ((g)–(i))

than RSS-sharding since it needs to process the history for

each packet. RSS++ sometimes incurs higher compute latency

than SCR due to its need to monitor per-shard load, which

requires additional memory operations. SCR’s more effective

usage of the CPU cores results in better throughput scaling

than RSS and RSS++ (Figure 6 (g)).

Limits to SCR scaling. SCR suffers from two kinds of scal-

ing limitations. First, as discussed in §3.1, as the compute

latency increases in comparison to the dispatch latency, the

effectiveness of SCR’s multi-core scaling reduces. This is

because more time is spent “catching up” state, incurring sig-

nificant duplicated work across CPU cores. We evaluate how

the throughput of a stateless program varies as the compute

latency of this program increases, shown both in packets/sec-

ond (Figure 9a, Figure 9b) and normalized to the single-core

throughput for that compute latency (Figure 9c). With a small

compute latency (left of the graph), using N cores provides

≈ N× throughput relative to a single core, but this relative

benefit diminishes with increasing compute latency. Latency

profiles of our benchmarks show compute latencies smaller

than 70 nanoseconds (Table 4, Appendix A).

Second, SCR’s attachment of histories to packets incurs

non-negligible byte/second overheads. Adding to the number

of bytes per packet increases L3 cache pressure due to higher

DDIO cache occupancy [22] and incurs additional PCIe trans-

actions and bandwidth [59]. Further, when packet histories

are appended outside the NIC (e.g., top-of-the-rack switch),

(a) Adding packet history externally

SCR w/o LR (0%) sharing (lock, 0%) sharding (RSS, 0%) sharding (RSS++, 0%) 

(b) Impact of loss recovery

SCR w/ LR (0%) SCR w/ LR (0.01%) SCR w/ LR (0.1%) SCR w/ LR (1%)

Figure 10: (a) The throughput of a token bucket policer on the

university data center trace (§4.1), while truncating all packets in the

trace to 64 bytes, with only SCR adding metadata to packets before

feeding them to the NIC. (b) The throughput of a port-knocking

firewall on the university data center trace. SCR is run with and

without loss recovery (§3.4) at multiple packet loss rates.

Rows LUT Flip-flops

Usage Logic % Usage %

16 1045 646 0.060 2369 0.069

32 1852 1444 0.107 3158 0.091

64 2637 2229 0.153 4707 0.136

128 3390 2982 0.196 7786 0.226

Table 2: Sequencer resource usage after synthesis into the NetFPGA-

PLUS reference switch and meeting timing at 340 MHz.

SCR may saturate the NIC earlier than other approaches. We

compare SCR against the shared and sharded approaches,

when SCR alone adds history metadata before packets are fed

into the NIC while the packets for the latter approaches are

truncated to 64 bytes. Figure 10 (a) shows the throughput of

the token bucket program with the university data center trace.

After 11 cores, the CPU is no longer the bottleneck for SCR.

This prevents SCR from scaling to a higher packets/second

throughput. Yet, SCR saturates at a throughput much higher

than the other techniques.

Overheads of SCR’s loss recovery handling. We evaluate

how SCR’s loss recovery algorithm impacts throughput with

and without packet loss. Figure 10 (b) compares a version

of SCR without incorporating the loss recovery algorithm,

against a version that incorporates loss recovery at differ-

ent artificially-injected random packet loss rates (0%, 0.01%,

0.1% and 1%). We also show the performance of existing

scaling techniques (shared state, RSS, RSS++). The mere in-

clusion of the loss recovery algorithm impacts performance

due to the additional logging operations. Moreover, SCR’s

throughput degrades with higher loss rate due to recovery-

related synchronization (§3.4). However, SCR still outper-

forms and outscales existing multi-core scaling techniques.

4.3 Practicality of Sequencer Hardware

We integrated our Verilog module implementing the se-

quencer (§3.3.2) into the NetFPGA-PLUS [12] reference



Resource Avg% Resource Avg%

Exact match crossbars 23.31% SRAM 9.69%

VLIW instructions 9.11% TCAM 0.00%

Stateful ALUs 93.75% Map RAM 15.62%

Logical tables 23.96% Gateway 23.44%

Table 3: Resource usage (average % across stages) of a Tofino im-

plementation of the sequencer that uses as many stateful ALUs as

possible to store packet history, amounting to 44 32-bit fields.

switch, which is clocked at a maximum frequency of 340

MHz with a 1024-bit wide data bus, providing a bandwidth

of 348 Gbit/s. We use the Alveo U250 board, which contains

1728000 lookup tables (LUTs) and 3456000 flip-flops.

We synthesized our sequencer design with different num-

bers of memory rows (§3.3.2), corresponding to the size of

the packet history (in number of packets). Each row is 112

bits long, enough to maintain a TCP 4-tuple and an addi-

tional 16-bit value (e.g., a counter, timestamp, etc.) for each

historic packet. Table 2 shows the resource usage. If each

packet history metadata in the program is smaller than a row

(112 bits), parallelizing across N cores requires N rows. For

such programs, our design can meet timing (340 MHz) while

scaling to 128 cores. The LUT and flip-flop hardware usage is

negligible compared to the FPGA capacity at all row counts

measured. We believe that our sequencer design may be sim-

ple and cheap enough to be added as an on-chip accelerator

to a future NIC.

We have also implemented a stateful-register-based design

of the sequencer on the Tofino programmable switch (§3.3.2).

The resource usage of this design is shown in Table 3. Our

implementation was designed to use as many stateful registers

and ALUs as possible (our design uses 93% on average across

stages) to hold the largest number of bits of packet history. Our

design holds 44 32-bit fields, sufficient to parallelize (Table 1)

the DDoS mitigator over 44 cores, the port-knocking firewall

over 22 cores, the heavy hitter and token bucket over 9 cores,

or the connection tracker over 5 cores. The small number of

stateful ALUs on the platform, as well as the limit on the

number of bits that can be read out from stateful memory into

packet fields, restrict the Tofino sequencer from scaling to a

larger number of CPU cores.

5 Related Work

Frameworks for network function performance. The prob-

lem of scaling out packet processing is prominent in net-

work function virtualization (NFV), with frameworks such as

split/merge [68], openNF [46], and Metron [54] enabling elas-

tic scaling. There have also been efforts to parallelize network

functions automatically [63] and designing data structures to

minimize cross-core contention [47]. These efforts are flow-

oriented, managing and distributing state at flow granularity.

In contrast, SCR scales packet processing for a single flow.

General techniques for software parallelism. Among the

canonical frameworks to implement software parallelism [57],

our scaling principles are most reminiscent of Single Program

Multiple Data (SPMD) parallelism, with the program being

identical on each core but the data being distinct. The se-

quencer in SCR makes the data distinct for each core.

Parallelizing finite state machines. A natural model of state-

ful packet processing programs is as finite state automata (the

state space is the set of flow states) making transitions on

events (packets). There have been significant efforts taken to

parallelize FSM execution using speculation [65,66] and data

parallelism [58]. In contrast, SCR exploits replication.

Parallel network software stacks. There has been recent in-

terest in abstractions and implementations that take advantage

of parallelism in network stacks, for TCP [55,72] and for end-

to-end data transfers to/from user space [39]. SCR takes a

complementary approach, using replication rather than decom-

posing the program into smaller parallelizable computations.

6 Conclusion

It is now more crucial than ever to investigate techniques

to scale packet processing using multiple cores. This paper

presented state-compute replication (SCR), a principle that

enables scaling the throughput of stateful packet-processing

programs monotonically across cores by leveraging a packet

history sequencer, even under realistic skewed packet traffic.
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Application t c2 d c1

DDoS mitigator 126 13 101 25

Heavy hitter monitor 138 17 105 32

Token bucket policer 153 22 102 51

Port-knocking firewall 128 15 101 27

TCP connection tracking 140 39 71 69

Table 4: The throughput model parameters (in nanoseconds) for

packet-processing applications we evaluated.

Appendixes

The appendixes include supporting material that has not been

peer-reviewed.

A Predicting Throughput

This section provides a model that predicts the throughput

of SCR (§3.2) for any number of cores, given latency mea-

surements made with one and two cores at low load. We

also check the agreement between the empirically-measured

throughput and our model.

Suppose a system has k cores, where each core can dis-

patch a single packet in d cycles, and run a packet-processing

program that computes over a single packet in c = c1 +(k−
1)× c2 cycles, where c1 is the time required to process the

current packet and c2 the time for a state update using one

item of packet history. The time c2 is smaller than c1, as the

state transition is a fragment of the computation extracted

from the program which processes one packet in entirety.

For each piggybacked packet, the total processing time is

d + c1 +(k− 1)× c2. We define t , d + c1, the time to pro-

cess one packet including the dispatch and the program com-

putation. When t dominates the state-computation time (i.e.,

t� c2), with k cores, the total rate at which externally-arriving

packets can be processed is k× 1
t+(k−1)×c2

≈ k/t. Table 4 lists

the parameters we measured for packet-processing applica-

tions we evaluated. It shows that t ≈ 3.6 – 9.9 ×c2. Hence, it

is possible to scale the packet-processing rate linearly with

the number of cores k.

We applied the parameters in Table 4 to the throughput

model and compared the predicted throughput to the actual

throughput. Figure 11 shows that they match well.

B Loss Recovery Algorithm

This section provides the detailed pseudocode and a proof of

correctness of the packet loss recovery algorithm outlined in

§3.4.

Before we start the correctness proof of loss recovery algo-

rithm, we define the following notations.

1. sp: an SCR packet. spi: the ith SCR packet sent from the

sequencer to a core (please refer to §3.3.1 for more details).

Algorithm 1 SCR loss recovery

Input: the received SCR pkt (sp), current core (c)

1: Initialize:

max[c]← 0, ∀i : log[c][i]← NOT _INIT

2: function scr_loss_recovery(sp, c)

3: maxseq← sp.seq_num

4: minseq← max(1,maxseq−N +1)
5: for i← max[c]+1 to maxseq do

6: if i < minseq then

7: log[c][i]← LOST

8: handle_loss_recovery(i,c)
9: else

10: history← get history of i from sp

11: log[c][i]← history

12: end if

13: end for

14: max[c]← maxseq

15: end function

16: function handle_loss_recovery(i, c)

17: Cothers←C \{c}
18: Clost ← /0

19: while true do

20: for each c′ ∈ Cothers do

21: if log[c′][i] is NOT _INIT then

22: continue

23: else if log[c′][i] is LOST then

24: Clost ← Clost ∪{c
′}

25: if Clost =Cothers then return

26: end if

27: else

28: history← log[c′][i]
29: update state using history

30: return

31: end if

32: end for

33: end while

34: end function
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(c) Token bucket policer
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(d) Port-knocking firewall

1 2 3 4 5 6 7
Number of cores

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

pp
s)

Predicted
Actual

(e) TCP connection tracking

Figure 11: Predicted and actual throughput (§4.1) in millions of

packets per second (Mpps) of five stateful packet-processing pro-

grams implemented using SCR (§3). The workloads of (a)-(d) and

(e) are from a university data center and a hyperscalar data center

(§4.1) separately.

2. p: a regular packet. pi: the ith regular packet received by

the sequencer (in original or as part of the packet history,

please refer to §3.3.1 for more details).

3. C: the collection of all cores.

We want to prove that no core will be deadlocked by loss

recovery, i.e., every core will start processing (execute line 6)

and finish processing (finish executing line 6-12) every regular

packet, under the assumptions that (1) each core will receive

at least one SCR packet after packet loss, (2) we have infinite

memory, and (3) packet number monotonically increases.

Theorem 1. For any regular packet pi, if every core has re-

ceived p j ( j ≥ i), every core will finish processing pi.

Proof. We will first prove that any core will process p1 to pi

in order. The order of packets to process follows the order at

line 5 (from max[c]+1 to maxseq), i.e.,, after a core finishes

processing pk, it will start processing pk+1. Each core will be

triggered to process all packets including p1 to pi, since each

core has received p j ( j ≥ i),

Given the order of packets to process, we now prove all

cores can finish processing pi. If i = 1, all cores will start

processing p1 (line 6) and then finish processing p1 (Lemma

1). If i > 1, according to the order of a single core process-

ing packets and Lemma 1, we get the induction hypothesis

that if all cores have started processing pk, all cores will fin-

ish processing pk and start processing pk+1. Using induction

hypothesis for i times, all cores will start and then finish pro-

cessing pi.

Lemma 1. For any regular packet pi, if all cores have started

processing pi, then all cores will finish processing pi.

Proof. For any core c, no matter pi is lost or received, c will

finish processing it.

If pi is received by c, after c updates history[i] in its log

(line 10-11), c finishes processing pi.

If pi is lost at c (detected at line 6), c will wait for other

cores to update pi in their logs until c gets history[i] or confirm

pi is lost at all the other cores (line 19-33). c will not be

deadlocked in waiting, since pi will be updated to history[i] or

LOST in the logs of all cores which have started processing pi

(if line 6 is executed for pi, line 7 or line 11 will be executed).

In a practical implementation, logs are finite and sequence

numbers wrap around. We handle these concerns with a suf-

ficiently large log and a sequence space. Our current imple-

mentation uses the values 1,024 and 842,185 for the afore-

mentioned two quantities (respectively).

C SCR-Aware Multi-Core Programming
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Figure 12: A state machine for a

simple port-knocking firewall.

Consider a packet-

processing program

developed assuming

single-threaded execu-

tion on a single CPU

core. The question we

tackle in this subsec-

tion is: how should the program be changed to take advantage

of multi-core scaling with state-compute replication? We

walk through the process of adapting a program written in the

eBPF/XDP framework [50], but we believe it is conceptually

similar to adapt programs written in other frameworks such

as DPDK.

We describe the program transformations necessary for

SCR through a running example. Suppose we have a port-

knocking firewall [28] with the state machine shown in Figure

12. The program runs a copy of this state machine per source

IP address. If a source transmits IPv4/TCP packets with the

correct sequence of TCP destination ports, then all further

communication is permitted from that source. All other pack-

ets are dropped. Any transition not shown in the figure leads

to the default CLOSED_1 state, and only the OPEN state permits

packets to traverse the firewall successfully. A simplified

XDP implementation of this single-threaded firewall is shown

below.

/* Definition of program state */

struct map states {

/* assume we define a dictionary with keys

as source IP addresses and values as firewall

states among CLOSED_{1, 2, 3} and OPEN. */

}

/* State transition function. See Figure 12 */

int get_new_state(int curr_state, int dport) {

/* A function that implements the state machine for

the port knocking firewall. */

if (curr_state == CLOSED_1 && dport == PORT_1)

return CLOSED_2;



if (curr_state == CLOSED_2 && dport == PORT_2)

return CLOSED_3;

if (curr_state == CLOSED_3 && dport == PORT_3)

return OPEN;

if (curr_state == OPEN)

return OPEN;

return CLOSED_1;

}

/* The main function */

int simple_port_knocking(...) {

/* Assume the packet is laid out as a byte array

starting at the address pkt_start. Suppose the

packet is long enough to include headers up to

layer 4. First, parse IPv4/TCP pkts. */

struct ethhdr* eth = pkt_start; // parse Ethernet

int l3proto = eth->proto; // layer-3 protocol

int off = sizeof(struct ethhdr);

struct iphdr* iph = pkt_start + off;

int l4proto = iph->protocol; // layer-4 protocol

if (l3proto != IPv4 || l4proto != TCP)

return XDP_DROP; // drop non IPv4/TCP pkts

int srcip = iph->src; // source IP addr

off += sizeof(struct iphdr);

struct tcphdr* tcp = pkt_start + off;

int dport = tcp->dport; // TCP dst port

/* Extract & update firewall state for this src. */

int state = map_lookup(states, srcip);

int new_state = get_new_state(state, dport);

map_update(states, srcip, new_state);

/* Final packet verdict */

if (new_state == OPEN)

return XDP_TX; // allow traversal

return XDP_DROP; // drop everything else

}

The program’s state is a key-value dictionary mapping

source IP addresses to an automaton state described in Figure

12. The function get_new_state implements the state transi-

tions. The main function, simple_port_knocking first parses

the input packet, dropping all packets other than IPv4/TCP

packets. Then the program fetches the recorded state corre-

sponding to the source IP on the packet, and performs the

state transition corresponding to the TCP destination port. If

the final state is OPEN, all subsequent packets of that source IP

may traverse the firewall to the other side. All other packets

are dropped.

To enable this program to use state-compute replication

across cores, this program should be transformed in the fol-

lowing ways. We believe that these transformations may be

automated by developing suitable compiler passes, but we

have not yet developed such a compiler.

(1) Define per-core state data structures and per-packet meta-

data structures. First, the program’s state must be replicated

across cores. To achieve this, we must define per-core state

data structures that are identical to the global state data struc-

tures, except that they are not shared among CPU cores.

Packet-processing frameworks provide APIs to define such

per-core data structures [16].

Additionally, we must define a per-packet metadata struc-

ture that includes any part of the packet that is used by the

program—through either control or data flow—to update the

state corresponding to that packet. For the port-knocking fire-

wall, the per-packet metadata should include the l3proto,

l4proto, srcip, and dport.

The data structures that maintain packet history on the

sequencer correspond to this per-packet metadata (§3.3).

(2) Fast-forward the state machine using the packet history.

The SCR-aware program must prepend a loop to “catch up”

the state machine for each packet missed by the CPU core

where the current packet is being processed. By leveraging

the recent history piggybacked on each packet, at the end of

this loop, the CPU core has the most up-to-the-packet state.

/* Assume the pointer ‘data’ locates where the

per-pkt metadata begins in the byte array of

the packet (Figure 4a ). Suppose ‘index’

is the offset of the earliest packet §3.3.2 ,

and NUM_META is the number of packets in the

piggybacked history.

*/

int l3proto, l4proto, srcip, dport, i, j;

for (j = 0; j < NUM_META; j++) {

i = (index + j) % NUM_META; // ring buffer

struct meta *pkt = data + i * sizeof(meta);

l3proto = pkt->l3proto;

l4proto = pkt->l4proto;

srcip = pkt->srcip;

dport = pkt->dport;

if (l3proto != IPv4 || l4proto != TCP)

continue; // no state txns or pkt verdicts

/* Update state for this srcip and dport: */

/* map_lookup; get_new_state; map_update. */

/* Note: No pkt verdicts for historic pkts. */

}

pkt_start = data + NUM_META * sizeof(struct meta)

+ sizeof(index);

A few salient points about the code fragment above. First,

the semantics of the ring buffer of packet history (§3.3) are

implemented by looping over the packet history metadata

starting at offset index rather than at offset 0. The decision to

implement the ring buffer semantics in software makes the

hardware significantly easier to design, since only a small part

of the hardware data structure needs to be updated for each

packet (§3.3.2). Second, the loop must implement appropri-

ate control flow before the state update to ensure that only

packets that should indeed update the flow state do. Note that

the metadata includes parts of the packet that are not only

the data dependencies for the state transition (srcip, dport)

but also the control dependencies (l3proto, l4proto). Third,

no packet verdicts are given out for packets in the history:

we want the program to return a judgment for the “current”



packet, not the historic packets used merely to fast-forward

the state machines. Finally, the code fragment conveniently

adjusts pkt_start to the position in the packet buffer (Figure

4a) corresponding to where the “original” packet begins. The

rest of the original program—unmodified—may process this

packet to completion and assign a verdict.

What is excluded in our code transformations is also crucial.

This program avoids locking and explicit synchronization,

despite the fact that it runs on many cores, even if there is

global state maintained across all packets.

With these transformations, in principle, a packet-

processing program is able to scale its performance using

state-compute replication across multiple cores.
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