
Scalable and Fair Multicast for Financial Exchanges in the Cloud

Muhammad Haseeb
New York University

USA

Jinkun Geng
Stanford University

USA

Ulysses Butler
New York University

USA

Xiyu Hao
New York University

USA

Daniel Duclos-Cavalcanti
Technical University of Munich

Germany

Anirudh Sivaraman
New York University

USA

CCS CONCEPTS

· Networks→ Application layer protocols; Overlay and other

logical network structures.

KEYWORDS

Cloud, Financial Exchanges, Multicast, Con�dential Computing

ACM Reference Format:

Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu Hao, Daniel Duclos-

Cavalcanti, and Anirudh Sivaraman. 2024. Scalable and Fair Multicast for

Financial Exchanges in the Cloud. In ACM SIGCOMM 2024 Conference (ACM

SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York,

NY, USA, 3 pages. https://doi.org/10.1145/3672202.3673728

There has been a growing interest from industry [9, 13, 14] and

academia [8, 10] in migrating �nancial exchanges to the public

cloud because of multiple bene�ts provided by the cloud, e.g., ,

robust infrastructure, and potential cost savings [4]. However, mi-

grating �nancial exchanges from on-prem clusters to the cloud

poses several challenges.

Financial Exchanges Requirements: One fundamental require-

ment for a typical �nancial exchange is a fair multicast service [8].

Such a service (e.g., NASDAQ’s ITCH [12]) is responsible for dis-

seminating information about the state of the market (termed as

market data) to a large number of market participants (MPs). Mar-

ket data serves as an important reference for MPs to make trading

decisions, and High Frequency Trading (HFT) �rms often compete

on how quickly they can place trades based on this information.

To ensure fairness, market data should be delivered to every MP

almost simultaneously so that no MP can earn an unfair advantage

over another MP. Besides, HFT �rms also require consistently low

latency from exchange to MPs for market data distribution so that

MPs can trade on the most up-to-date information.

Challenges in the Cloud: While a high-performance fair multicast

service in on-prem clusters might be implemented using switch

support and carefully engineered networks,1 the situation is much

1Some �nancial �rms equalize wire lengths [16] to achieve simultaneous delivery of
market data to all MPs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0717-9/24/08. . . $15.00
https://doi.org/10.1145/3672202.3673728

less favorable in the public cloud, where the hardware (e.g., switch)

support for multicast is not usually available to cloud tenants. The

public cloud also exhibits higher and more varied latency than on-

prem clusters. This variance, combined with the limited control a

tenant possesses on the underlying network, makes it di�cult to

realize fair/simultaneous delivery of market data to all market par-

ticipants (MPs). As a result, implementing such a multicast service

for �nancial exchanges in the public cloud becomes challenging for

cloud tenants.

Jasper: We develop Jasper, an overlay multicast service for cloud-

hosted �nancial exchanges (Figure 1). To achieve low latency while

scaling to a large number of receivers, Jasper (1) builds a tree of

proxies for multicast, instead of having the sender directly unicast

its message to all receivers; (2) introduces a VM hedging technique

to tackle high latency variance where replicated messages traverse

through redundant paths; (3) designs a deployment model assuming

no trust between MPs and the exchange server that incorporates

a hold-and-release mechanism [8] (the receivers hold messages

and only process them at a deadline) with the Trusted Execution

Environment (TEE) technique [2] to ensure fairness.

A Proxy Tree: A tree reduces the serialization or transmission

delay required to unicast multiple messages back-to-back, but adds

additional hops in the sender-to-receiver path. In Jasper, we use

the tree structure as a starting point and develop new techniques

to lower latency and latency variance and achieve fairness in data

delivery while scaling to a large number of receivers. The structure

of a proxy2 tree (depth� and fan-out �) is tuned tominimize latency.

Existing cloud-based exchanges [8–10] implement multicast using

the direct unicast approach. This may be considered a special case

of a tree where � is 1 and � is # . We show that there is value in

increasing the� and decreasing the � as the number of receivers (#)

grows. We provide a heuristic for tuning � and � which provides

good performance: Given # receivers, we �x � = 10 and then

derive � = [;>610#] (round to the nearest integer). We �nd that

more sophisticated learning-based techniques do not outperform

our simple heuristic because of the high variation in latency and

performance of VMs in the public cloud.

VM hedging: For achieving consistently low latency and decreas-

ing the latency variance spatially, Jasper introduces a technique

called VM hedging, motivated by request hedging [6, 15, 17]. In VM

hedging, each VM in the proxy tree receives messages from two

or more di�erent sources (i.e., parent and one or more aunts), de-

�ned by hedging factor � , where the path lengths for all messages

are the same. A VM processes and forwards the message copy to

2The proxies are separate VMs. Traders’ VMs do not act as proxies/intermediaries.

36

Sender

P P P

P P P P P P P P P

Proxies use DPDK
and send messages to children +
a set of nieces

Sender may use either of two interfaces:
- DPDK
- eBPF/TC with Linux sockets

Receivers may use either of two interfaces: DPDK or eBPF/XDP with Linux sockets
All receiver VMs are equally divided among the last level of proxy VMs

Fanout and depth
of proxy tree
depends on # of
receivers

La
ye

r
2

La
ye

r
1

La
ye

r
0

1

0

1 1 1 1 1 1 1 1

0 0
0 1 2

0 1 2 3 4 5 6 7 8

Fig. 1: A Jasper Tree. Dotted edges represent hedging, which lowers the latency variance.

Hold-n-release

Receiver VM

Traders' program

En
cl

av
ePa

re
nt

Multicast Msg

Fig. 2: A receiver VM is partitioned

into a parent VM and a secure en-

clave (e.g., [2])

200 300 400 500
Overall Multicast Latency (microseconds)

0

20

40

60

80

100

C
D

F

AWS TG

DU

Jasper

Fig. 3: Jasper outperforms DU, and AWS.

50 100 150 200 250 300 350
Delivery Window Size(microseconds)

0

20

40

60

80

100
C
D

F

Jasper, H = 0

Jasper, H = 1

Jasper, H = 2

Fig. 4: Hedging reduces delivery window.

80 100 120 140 160 180
Latency (µs)

0

20

40

60

80

100

CD
F

Fig. 5: Enclave has high latency.

children that is received earliest and discards the rest. VM hedging

reduces the impact of latency �uctuations, yields much smaller

latency variance, and narrows down the window of time in which

all the multicast receivers receive a multicast message.

Jasper Deployment Model: To ensure perfect fair delivery of data,

the exchange requires the MPs to run a hold-and-release mecha-

nism, as proposed by CloudEx [8]. In this mechanism, deadlines

are attached to the messages, and an MP is supposed to receive a

message and only process it at or after a deadline associated with

the message. The deadlines are set, by the exchange in a way to

ensure that every MP will receive the message by the deadline.

The e�cacy of this fair delivery mechanism relies on the MPs to

respect the hold-and-release protocol. However, MPs have the in-

centive to not respect the protocol and process the messages before

the deadline to gain an advantage over the others, while they also

do not want the reveal their program to the exchange. To resolve

this dilemma, we incorporate TEEs, which have become generally

available in public cloud [2, 3, 5], to maintain security boundaries

between the exchange and traders. More speci�cally, MPs run their

trading algorithm inside the enclaves of the VMs owned by the

exchange, and the exchange runs the hold-and-release mechanism

outside the enclave (see Fig. 2). As a result, the MPs’ trading pro-

gram is protected by the TEE, and the exchange can execute the

hold-and-release protocol in its owned VMs. We benchmark the

latency of a TEE o�ered by AWS called Nitro Enclave. Figure 5

shows a high latency associated with it. In the future, we will work

to improve this latency. Other results in this article, do not use TEE.

Jasper outperforms AWS Transit Gateway: Figure 3 shows that

Jasper distinctly outperforms AWS-TG based multicast and DU

(Direct Unicasts approach). The median latency for Jasper is 129 µs.

whereas it is 228 µs for AWS TG and 254 µs for DU for 100 multicast

receivers. We observe more bene�ts from Jasper as the number of

receivers increases. We synchronize the clocks of using [7] with

an O(100) ns accuracy. The benchmark does not use TEE, which

would add an almost constant overhead on every technique.

VM Hedging reduces delivery window size: Figure 4 shows that

delivery window size (the di�erence between the time when the

�rst receiver and the last receiver receive a multicast message) is

reduced with hedging. Note that lost packets are ignored which

is a common practice in the on-prem exchanges as any recovered

packet would already be too late to be useful by the MPs. In our

preliminary benchmarks, we witness a signi�cantly low loss rate.

Next Steps: Currently Jasper mainly focuses on performance im-

provement in the outbound direction (i.e., market data dissemina-

tion from the exchange to MPs). However, the cloud environment

also presents challenges in the inbound direction (i.e., order sub-

mission from a large number of MPs to an exchange server). We

have several avenues to explore as the next steps:

(1) A distributed limit order book [1] would enable the exchange

to scale horizontally and improve the throughput of the system.

(2) A bucketed integer priority queue, instead of simple prior-

ity queues at the exchange, is desirable to build high-performance

exchange systems, which have lower time complexity and may

enhance the throughput of the exchange.

(3) Smartly prioritizing the critical orders (i.e., orders that are

more likely to get executed) when orders are sent from MPs to the

exchange server through the proxy tree. Such prioritized order sub-

mission would enhance market liquidity by matching more orders

per unit of time.

A detailed technical report of this project is available [11].

37

REFERENCES
[1] Frédéric Abergel, Marouane Anane, Anirban Chakraborti, Aymen Jedidi, and

Ioane Muni Toke. 2016. Limit Order Books. Cambridge University Press.
[2] AWS. 2024. AWS Nitro Enclaves. https://aws.amazon.com/ec2/nitro/nitro-

enclaves/. Accessed: 2024-05-22.
[3] Azure. 2023. Trusted Execution Environment (TEE). https://learn.microsoft.com/

en-us/azure/con�dential-computing/trusted-execution-environment. Accessed:
2024-05-22.

[4] Sara Castellanos. [n. d.]. Nasdaq Ramps Up Cloud Move. https://www.wsj.com/
articles/nasdaq-ramps-up-cloud-move-11600206624. Accessed: 2024-01-31.

[5] Alibaba Cloud. 2024. Build an SGX con�dential computing environ-
ment. https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-
encrypted-computing-environment. Accessed: 2024-05-22.

[6] Je�rey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM
56 (2013), 74–80. http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-
scale/fulltext

[7] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2018. Exploiting a Natural Network E�ect for Scalable, Fine-
grained Clock Synchronization. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation (Renton, WA, USA) (NSDI’18).
USENIX Association, Berkeley, CA, USA, 81–94.

[8] Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sriram, Yi-
long Geng, Balaji Prabhakar, Mendel Rosenblum, and Anirudh Sivaraman. 2021.
CloudEx: A Fair-Access Financial Exchange in the Cloud. In Proceedings of
the Workshop on Hot Topics in Operating Systems (Ann Arbor, Michigan) (Ho-
tOS ’21). Association for Computing Machinery, New York, NY, USA, 96–103.
https://doi.org/10.1145/3458336.3465278

[9] Junzhi Gong, Yuliang Li, Devdeep Ray, KK Yap, and Nandita Dukkipati. 2024.
Octopus: A Fair Packet Delivery Service. arXiv preprint arXiv:2401.08126 (2024).

[10] Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao, Radhika Mittal,
and Ranveer Chandra. 2023. DBO: Fairness for Cloud-Hosted Financial Exchanges.
In Proceedings of the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM
SIGCOMM ’23). Association for Computing Machinery, New York, NY, USA,
550–563. https://doi.org/10.1145/3603269.3604871

[11] Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu Hao, Daniel Duclos-
Cavalcanti, and Anirudh Sivaraman. 2024. Jasper: Scalable and Fair Multicast for
Financial Exchanges in the Cloud. arXiv:2402.09527

[12] NASDAQ. [n. d.]. Nasdaq TotalView-ITCH 5.0. https://
www.nasdaqtrader.com/content/technicalsupport/speci�cations/dataproducts/
NQTVITCHSpeci�cation.pdf. Accessed: 2024-02-02.

[13] Nasdaq.com. [n. d.]. Nasdaq and AWS Partner to Transform Capital Mar-
kets. https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-
transform-capital-markets-2021-12-01. Accessed: 2024-01-26.

[14] Alexander Osipovich. [n. d.]. Google Invests 1 Billion in Exchange Giant CME,
Strikes Cloud Deal. https://www.wsj.com/articles/google-invests-1-billion-in-
exchange-giant-cme-strikes-cloud-deal-11636029900. Accessed: 2021-02-02.

[15] Mia Primorac, Katerina Argyraki, and Edouard Bugnion. 2021. When to Hedge
in Interactive Services. In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21). USENIX Association, 373–387. https:
//www.usenix.org/conference/nsdi21/presentation/primorac

[16] Andrew Smith. 2014. Fast Money: The Battle Against the High Frequency Traders.
The Guardian 7 (2014).

[17] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia
Ratnasamy, and Scott Shenker. 2013. Low latency via Redundancy. In Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments and Technolo-
gies (Santa Barbara, California, USA) (CoNEXT ’13). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/2535372.2535392

38

	References

